ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.52 by dl, Mon Jul 12 11:01:14 2004 UTC vs.
Revision 1.164 by dl, Thu Jan 17 14:21:02 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 > import java.util.concurrent.ForkJoinPool;
9 > import java.util.concurrent.CountedCompleter;
10 > import java.util.function.*;
11 > import java.util.Spliterator;
12 > import java.util.stream.Stream;
13 > import java.util.stream.Streams;
14 >
15 > import java.util.Comparator;
16 > import java.util.Arrays;
17 > import java.util.Map;
18 > import java.util.Set;
19 > import java.util.Collection;
20 > import java.util.AbstractMap;
21 > import java.util.AbstractSet;
22 > import java.util.AbstractCollection;
23 > import java.util.Hashtable;
24 > import java.util.HashMap;
25 > import java.util.Iterator;
26 > import java.util.Enumeration;
27 > import java.util.ConcurrentModificationException;
28 > import java.util.NoSuchElementException;
29 > import java.util.concurrent.ConcurrentMap;
30 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 > import java.util.concurrent.atomic.AtomicInteger;
32 > import java.util.concurrent.atomic.AtomicReference;
33   import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
34  
35   /**
36   * A hash table supporting full concurrency of retrievals and
37 < * adjustable expected concurrency for updates. This class obeys the
37 > * high expected concurrency for updates. This class obeys the
38   * same functional specification as {@link java.util.Hashtable}, and
39   * includes versions of methods corresponding to each method of
40 < * <tt>Hashtable</tt>. However, even though all operations are
40 > * {@code Hashtable}. However, even though all operations are
41   * thread-safe, retrieval operations do <em>not</em> entail locking,
42   * and there is <em>not</em> any support for locking the entire table
43   * in a way that prevents all access.  This class is fully
44 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
44 > * interoperable with {@code Hashtable} in programs that rely on its
45   * thread safety but not on its synchronization details.
46   *
47 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
48 < * block, so may overlap with update operations (including
49 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
50 < * of the most recently <em>completed</em> update operations holding
51 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
52 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
53 < * removal of only some entries.  Similarly, Iterators and
54 < * Enumerations return elements reflecting the state of the hash table
55 < * at some point at or since the creation of the iterator/enumeration.
56 < * They do <em>not</em> throw
57 < * {@link ConcurrentModificationException}.  However, iterators are
58 < * designed to be used by only one thread at a time.
59 < *
60 < * <p> The allowed concurrency among update operations is guided by
61 < * the optional <tt>concurrencyLevel</tt> constructor argument
62 < * (default 16), which is used as a hint for internal sizing.  The
63 < * table is internally partitioned to try to permit the indicated
64 < * number of concurrent updates without contention. Because placement
65 < * in hash tables is essentially random, the actual concurrency will
66 < * vary.  Ideally, you should choose a value to accommodate as many
67 < * threads as will ever concurrently modify the table. Using a
68 < * significantly higher value than you need can waste space and time,
69 < * and a significantly lower value can lead to thread contention. But
70 < * overestimates and underestimates within an order of magnitude do
71 < * not usually have much noticeable impact. A value of one is
72 < * appropriate when it is known that only one thread will modify and
73 < * all others will only read. Also, resizing this or any other kind of
74 < * hash table is a relatively slow operation, so, when possible, it is
75 < * a good idea to provide estimates of expected table sizes in
76 < * constructors.
47 > * <p>Retrieval operations (including {@code get}) generally do not
48 > * block, so may overlap with update operations (including {@code put}
49 > * and {@code remove}). Retrievals reflect the results of the most
50 > * recently <em>completed</em> update operations holding upon their
51 > * onset. (More formally, an update operation for a given key bears a
52 > * <em>happens-before</em> relation with any (non-null) retrieval for
53 > * that key reporting the updated value.)  For aggregate operations
54 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
55 > * reflect insertion or removal of only some entries.  Similarly,
56 > * Iterators and Enumerations return elements reflecting the state of
57 > * the hash table at some point at or since the creation of the
58 > * iterator/enumeration.  They do <em>not</em> throw {@link
59 > * ConcurrentModificationException}.  However, iterators are designed
60 > * to be used by only one thread at a time.  Bear in mind that the
61 > * results of aggregate status methods including {@code size}, {@code
62 > * isEmpty}, and {@code containsValue} are typically useful only when
63 > * a map is not undergoing concurrent updates in other threads.
64 > * Otherwise the results of these methods reflect transient states
65 > * that may be adequate for monitoring or estimation purposes, but not
66 > * for program control.
67 > *
68 > * <p>The table is dynamically expanded when there are too many
69 > * collisions (i.e., keys that have distinct hash codes but fall into
70 > * the same slot modulo the table size), with the expected average
71 > * effect of maintaining roughly two bins per mapping (corresponding
72 > * to a 0.75 load factor threshold for resizing). There may be much
73 > * variance around this average as mappings are added and removed, but
74 > * overall, this maintains a commonly accepted time/space tradeoff for
75 > * hash tables.  However, resizing this or any other kind of hash
76 > * table may be a relatively slow operation. When possible, it is a
77 > * good idea to provide a size estimate as an optional {@code
78 > * initialCapacity} constructor argument. An additional optional
79 > * {@code loadFactor} constructor argument provides a further means of
80 > * customizing initial table capacity by specifying the table density
81 > * to be used in calculating the amount of space to allocate for the
82 > * given number of elements.  Also, for compatibility with previous
83 > * versions of this class, constructors may optionally specify an
84 > * expected {@code concurrencyLevel} as an additional hint for
85 > * internal sizing.  Note that using many keys with exactly the same
86 > * {@code hashCode()} is a sure way to slow down performance of any
87 > * hash table.
88 > *
89 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91 > * (using {@link #keySet(Object)} when only keys are of interest, and the
92 > * mapped values are (perhaps transiently) not used or all take the
93 > * same mapping value.
94 > *
95 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 > * form of histogram or multiset) by using {@link
97 > * java.util.concurrent.atomic.LongAdder} values and initializing via
98 > * {@link #computeIfAbsent}. For example, to add a count to a {@code
99 > * ConcurrentHashMap<String,LongAdder> freqs}, you can use {@code
100 > * freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101   *
102   * <p>This class and its views and iterators implement all of the
103   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104   * interfaces.
105   *
106 < * <p> Like {@link java.util.Hashtable} but unlike {@link
107 < * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
108 < * used as a key or value.
106 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 > * does <em>not</em> allow {@code null} to be used as a key or value.
108 > *
109 > * <p>ConcurrentHashMaps support sequential and parallel operations
110 > * bulk operations. (Parallel forms use the {@link
111 > * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 > * contexts are available in class {@link ForkJoinTasks}. These
113 > * operations are designed to be safely, and often sensibly, applied
114 > * even with maps that are being concurrently updated by other
115 > * threads; for example, when computing a snapshot summary of the
116 > * values in a shared registry.  There are three kinds of operation,
117 > * each with four forms, accepting functions with Keys, Values,
118 > * Entries, and (Key, Value) arguments and/or return values. Because
119 > * the elements of a ConcurrentHashMap are not ordered in any
120 > * particular way, and may be processed in different orders in
121 > * different parallel executions, the correctness of supplied
122 > * functions should not depend on any ordering, or on any other
123 > * objects or values that may transiently change while computation is
124 > * in progress; and except for forEach actions, should ideally be
125 > * side-effect-free.
126 > *
127 > * <ul>
128 > * <li> forEach: Perform a given action on each element.
129 > * A variant form applies a given transformation on each element
130 > * before performing the action.</li>
131 > *
132 > * <li> search: Return the first available non-null result of
133 > * applying a given function on each element; skipping further
134 > * search when a result is found.</li>
135 > *
136 > * <li> reduce: Accumulate each element.  The supplied reduction
137 > * function cannot rely on ordering (more formally, it should be
138 > * both associative and commutative).  There are five variants:
139 > *
140 > * <ul>
141 > *
142 > * <li> Plain reductions. (There is not a form of this method for
143 > * (key, value) function arguments since there is no corresponding
144 > * return type.)</li>
145 > *
146 > * <li> Mapped reductions that accumulate the results of a given
147 > * function applied to each element.</li>
148 > *
149 > * <li> Reductions to scalar doubles, longs, and ints, using a
150 > * given basis value.</li>
151 > *
152 > * </li>
153 > * </ul>
154 > * </ul>
155 > *
156 > * <p>The concurrency properties of bulk operations follow
157 > * from those of ConcurrentHashMap: Any non-null result returned
158 > * from {@code get(key)} and related access methods bears a
159 > * happens-before relation with the associated insertion or
160 > * update.  The result of any bulk operation reflects the
161 > * composition of these per-element relations (but is not
162 > * necessarily atomic with respect to the map as a whole unless it
163 > * is somehow known to be quiescent).  Conversely, because keys
164 > * and values in the map are never null, null serves as a reliable
165 > * atomic indicator of the current lack of any result.  To
166 > * maintain this property, null serves as an implicit basis for
167 > * all non-scalar reduction operations. For the double, long, and
168 > * int versions, the basis should be one that, when combined with
169 > * any other value, returns that other value (more formally, it
170 > * should be the identity element for the reduction). Most common
171 > * reductions have these properties; for example, computing a sum
172 > * with basis 0 or a minimum with basis MAX_VALUE.
173 > *
174 > * <p>Search and transformation functions provided as arguments
175 > * should similarly return null to indicate the lack of any result
176 > * (in which case it is not used). In the case of mapped
177 > * reductions, this also enables transformations to serve as
178 > * filters, returning null (or, in the case of primitive
179 > * specializations, the identity basis) if the element should not
180 > * be combined. You can create compound transformations and
181 > * filterings by composing them yourself under this "null means
182 > * there is nothing there now" rule before using them in search or
183 > * reduce operations.
184 > *
185 > * <p>Methods accepting and/or returning Entry arguments maintain
186 > * key-value associations. They may be useful for example when
187 > * finding the key for the greatest value. Note that "plain" Entry
188 > * arguments can be supplied using {@code new
189 > * AbstractMap.SimpleEntry(k,v)}.
190 > *
191 > * <p>Bulk operations may complete abruptly, throwing an
192 > * exception encountered in the application of a supplied
193 > * function. Bear in mind when handling such exceptions that other
194 > * concurrently executing functions could also have thrown
195 > * exceptions, or would have done so if the first exception had
196 > * not occurred.
197 > *
198 > * <p>Speedups for parallel compared to sequential forms are common
199 > * but not guaranteed.  Parallel operations involving brief functions
200 > * on small maps may execute more slowly than sequential forms if the
201 > * underlying work to parallelize the computation is more expensive
202 > * than the computation itself.  Similarly, parallelization may not
203 > * lead to much actual parallelism if all processors are busy
204 > * performing unrelated tasks.
205 > *
206 > * <p>All arguments to all task methods must be non-null.
207   *
208   * <p>This class is a member of the
209 < * <a href="{@docRoot}/../guide/collections/index.html">
209 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210   * Java Collections Framework</a>.
211   *
212   * @since 1.5
213   * @author Doug Lea
214   * @param <K> the type of keys maintained by this map
215 < * @param <V> the type of mapped values
215 > * @param <V> the type of mapped values
216   */
217 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
218 <        implements ConcurrentMap<K, V>, Serializable {
217 > public class ConcurrentHashMap<K, V>
218 >    implements ConcurrentMap<K, V>, Serializable {
219      private static final long serialVersionUID = 7249069246763182397L;
220  
221      /*
222 <     * The basic strategy is to subdivide the table among Segments,
223 <     * each of which itself is a concurrently readable hash table.
222 >     * Overview:
223 >     *
224 >     * The primary design goal of this hash table is to maintain
225 >     * concurrent readability (typically method get(), but also
226 >     * iterators and related methods) while minimizing update
227 >     * contention. Secondary goals are to keep space consumption about
228 >     * the same or better than java.util.HashMap, and to support high
229 >     * initial insertion rates on an empty table by many threads.
230 >     *
231 >     * Each key-value mapping is held in a Node.  Because Node key
232 >     * fields can contain special values, they are defined using plain
233 >     * Object types (not type "K"). This leads to a lot of explicit
234 >     * casting (and many explicit warning suppressions to tell
235 >     * compilers not to complain about it). It also allows some of the
236 >     * public methods to be factored into a smaller number of internal
237 >     * methods (although sadly not so for the five variants of
238 >     * put-related operations). The validation-based approach
239 >     * explained below leads to a lot of code sprawl because
240 >     * retry-control precludes factoring into smaller methods.
241 >     *
242 >     * The table is lazily initialized to a power-of-two size upon the
243 >     * first insertion.  Each bin in the table normally contains a
244 >     * list of Nodes (most often, the list has only zero or one Node).
245 >     * Table accesses require volatile/atomic reads, writes, and
246 >     * CASes.  Because there is no other way to arrange this without
247 >     * adding further indirections, we use intrinsics
248 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
249 >     * are always accurately traversable under volatile reads, so long
250 >     * as lookups check hash code and non-nullness of value before
251 >     * checking key equality.
252 >     *
253 >     * We use the top (sign) bit of Node hash fields for control
254 >     * purposes -- it is available anyway because of addressing
255 >     * constraints.  Nodes with negative hash fields are forwarding
256 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
257 >     * of each normal Node's hash field contain a transformation of
258 >     * the key's hash code.
259 >     *
260 >     * Insertion (via put or its variants) of the first node in an
261 >     * empty bin is performed by just CASing it to the bin.  This is
262 >     * by far the most common case for put operations under most
263 >     * key/hash distributions.  Other update operations (insert,
264 >     * delete, and replace) require locks.  We do not want to waste
265 >     * the space required to associate a distinct lock object with
266 >     * each bin, so instead use the first node of a bin list itself as
267 >     * a lock. Locking support for these locks relies on builtin
268 >     * "synchronized" monitors.
269 >     *
270 >     * Using the first node of a list as a lock does not by itself
271 >     * suffice though: When a node is locked, any update must first
272 >     * validate that it is still the first node after locking it, and
273 >     * retry if not. Because new nodes are always appended to lists,
274 >     * once a node is first in a bin, it remains first until deleted
275 >     * or the bin becomes invalidated (upon resizing).  However,
276 >     * operations that only conditionally update may inspect nodes
277 >     * until the point of update. This is a converse of sorts to the
278 >     * lazy locking technique described by Herlihy & Shavit.
279 >     *
280 >     * The main disadvantage of per-bin locks is that other update
281 >     * operations on other nodes in a bin list protected by the same
282 >     * lock can stall, for example when user equals() or mapping
283 >     * functions take a long time.  However, statistically, under
284 >     * random hash codes, this is not a common problem.  Ideally, the
285 >     * frequency of nodes in bins follows a Poisson distribution
286 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287 >     * parameter of about 0.5 on average, given the resizing threshold
288 >     * of 0.75, although with a large variance because of resizing
289 >     * granularity. Ignoring variance, the expected occurrences of
290 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291 >     * first values are:
292 >     *
293 >     * 0:    0.60653066
294 >     * 1:    0.30326533
295 >     * 2:    0.07581633
296 >     * 3:    0.01263606
297 >     * 4:    0.00157952
298 >     * 5:    0.00015795
299 >     * 6:    0.00001316
300 >     * 7:    0.00000094
301 >     * 8:    0.00000006
302 >     * more: less than 1 in ten million
303 >     *
304 >     * Lock contention probability for two threads accessing distinct
305 >     * elements is roughly 1 / (8 * #elements) under random hashes.
306 >     *
307 >     * Actual hash code distributions encountered in practice
308 >     * sometimes deviate significantly from uniform randomness.  This
309 >     * includes the case when N > (1<<30), so some keys MUST collide.
310 >     * Similarly for dumb or hostile usages in which multiple keys are
311 >     * designed to have identical hash codes. Also, although we guard
312 >     * against the worst effects of this (see method spread), sets of
313 >     * hashes may differ only in bits that do not impact their bin
314 >     * index for a given power-of-two mask.  So we use a secondary
315 >     * strategy that applies when the number of nodes in a bin exceeds
316 >     * a threshold, and at least one of the keys implements
317 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
318 >     * (a specialized form of red-black trees), bounding search time
319 >     * to O(log N).  Each search step in a TreeBin is around twice as
320 >     * slow as in a regular list, but given that N cannot exceed
321 >     * (1<<64) (before running out of addresses) this bounds search
322 >     * steps, lock hold times, etc, to reasonable constants (roughly
323 >     * 100 nodes inspected per operation worst case) so long as keys
324 >     * are Comparable (which is very common -- String, Long, etc).
325 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
326 >     * traversal pointers as regular nodes, so can be traversed in
327 >     * iterators in the same way.
328 >     *
329 >     * The table is resized when occupancy exceeds a percentage
330 >     * threshold (nominally, 0.75, but see below).  Any thread
331 >     * noticing an overfull bin may assist in resizing after the
332 >     * initiating thread allocates and sets up the replacement
333 >     * array. However, rather than stalling, these other threads may
334 >     * proceed with insertions etc.  The use of TreeBins shields us
335 >     * from the worst case effects of overfilling while resizes are in
336 >     * progress.  Resizing proceeds by transferring bins, one by one,
337 >     * from the table to the next table. To enable concurrency, the
338 >     * next table must be (incrementally) prefilled with place-holders
339 >     * serving as reverse forwarders to the old table.  Because we are
340 >     * using power-of-two expansion, the elements from each bin must
341 >     * either stay at same index, or move with a power of two
342 >     * offset. We eliminate unnecessary node creation by catching
343 >     * cases where old nodes can be reused because their next fields
344 >     * won't change.  On average, only about one-sixth of them need
345 >     * cloning when a table doubles. The nodes they replace will be
346 >     * garbage collectable as soon as they are no longer referenced by
347 >     * any reader thread that may be in the midst of concurrently
348 >     * traversing table.  Upon transfer, the old table bin contains
349 >     * only a special forwarding node (with hash field "MOVED") that
350 >     * contains the next table as its key. On encountering a
351 >     * forwarding node, access and update operations restart, using
352 >     * the new table.
353 >     *
354 >     * Each bin transfer requires its bin lock, which can stall
355 >     * waiting for locks while resizing. However, because other
356 >     * threads can join in and help resize rather than contend for
357 >     * locks, average aggregate waits become shorter as resizing
358 >     * progresses.  The transfer operation must also ensure that all
359 >     * accessible bins in both the old and new table are usable by any
360 >     * traversal.  This is arranged by proceeding from the last bin
361 >     * (table.length - 1) up towards the first.  Upon seeing a
362 >     * forwarding node, traversals (see class Traverser) arrange to
363 >     * move to the new table without revisiting nodes.  However, to
364 >     * ensure that no intervening nodes are skipped, bin splitting can
365 >     * only begin after the associated reverse-forwarders are in
366 >     * place.
367 >     *
368 >     * The traversal scheme also applies to partial traversals of
369 >     * ranges of bins (via an alternate Traverser constructor)
370 >     * to support partitioned aggregate operations.  Also, read-only
371 >     * operations give up if ever forwarded to a null table, which
372 >     * provides support for shutdown-style clearing, which is also not
373 >     * currently implemented.
374 >     *
375 >     * Lazy table initialization minimizes footprint until first use,
376 >     * and also avoids resizings when the first operation is from a
377 >     * putAll, constructor with map argument, or deserialization.
378 >     * These cases attempt to override the initial capacity settings,
379 >     * but harmlessly fail to take effect in cases of races.
380 >     *
381 >     * The element count is maintained using a specialization of
382 >     * LongAdder. We need to incorporate a specialization rather than
383 >     * just use a LongAdder in order to access implicit
384 >     * contention-sensing that leads to creation of multiple
385 >     * Cells.  The counter mechanics avoid contention on
386 >     * updates but can encounter cache thrashing if read too
387 >     * frequently during concurrent access. To avoid reading so often,
388 >     * resizing under contention is attempted only upon adding to a
389 >     * bin already holding two or more nodes. Under uniform hash
390 >     * distributions, the probability of this occurring at threshold
391 >     * is around 13%, meaning that only about 1 in 8 puts check
392 >     * threshold (and after resizing, many fewer do so). The bulk
393 >     * putAll operation further reduces contention by only committing
394 >     * count updates upon these size checks.
395 >     *
396 >     * Maintaining API and serialization compatibility with previous
397 >     * versions of this class introduces several oddities. Mainly: We
398 >     * leave untouched but unused constructor arguments refering to
399 >     * concurrencyLevel. We accept a loadFactor constructor argument,
400 >     * but apply it only to initial table capacity (which is the only
401 >     * time that we can guarantee to honor it.) We also declare an
402 >     * unused "Segment" class that is instantiated in minimal form
403 >     * only when serializing.
404       */
405  
406      /* ---------------- Constants -------------- */
407  
408      /**
409 <     * The default initial number of table slots for this table.
410 <     * Used when not otherwise specified in constructor.
409 >     * The largest possible table capacity.  This value must be
410 >     * exactly 1<<30 to stay within Java array allocation and indexing
411 >     * bounds for power of two table sizes, and is further required
412 >     * because the top two bits of 32bit hash fields are used for
413 >     * control purposes.
414       */
415 <    static int DEFAULT_INITIAL_CAPACITY = 16;
415 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
416  
417      /**
418 <     * The maximum capacity, used if a higher value is implicitly
419 <     * specified by either of the constructors with arguments.  MUST
95 <     * be a power of two <= 1<<30 to ensure that entries are indexible
96 <     * using ints.
418 >     * The default initial table capacity.  Must be a power of 2
419 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420       */
421 <    static final int MAXIMUM_CAPACITY = 1 << 30;
421 >    private static final int DEFAULT_CAPACITY = 16;
422  
423      /**
424 <     * The default load factor for this table.  Used when not
425 <     * otherwise specified in constructor.
424 >     * The largest possible (non-power of two) array size.
425 >     * Needed by toArray and related methods.
426       */
427 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
427 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428  
429      /**
430 <     * The default number of concurrency control segments.
431 <     **/
432 <    static final int DEFAULT_SEGMENTS = 16;
430 >     * The default concurrency level for this table. Unused but
431 >     * defined for compatibility with previous versions of this class.
432 >     */
433 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434 >
435 >    /**
436 >     * The load factor for this table. Overrides of this value in
437 >     * constructors affect only the initial table capacity.  The
438 >     * actual floating point value isn't normally used -- it is
439 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
440 >     * the associated resizing threshold.
441 >     */
442 >    private static final float LOAD_FACTOR = 0.75f;
443  
444      /**
445 <     * The maximum number of segments to allow; used to bound
446 <     * constructor arguments.
445 >     * The bin count threshold for using a tree rather than list for a
446 >     * bin.  The value reflects the approximate break-even point for
447 >     * using tree-based operations.
448       */
449 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
449 >    private static final int TREE_THRESHOLD = 8;
450  
451      /**
452 <     * Number of unsynchronized retries in size and containsValue
453 <     * methods before resorting to locking. This is used to avoid
454 <     * unbounded retries if tables undergo continuous modification
455 <     * which would make it impossible to obtain an accurate result.
452 >     * Minimum number of rebinnings per transfer step. Ranges are
453 >     * subdivided to allow multiple resizer threads.  This value
454 >     * serves as a lower bound to avoid resizers encountering
455 >     * excessive memory contention.  The value should be at least
456 >     * DEFAULT_CAPACITY.
457       */
458 <    static final int RETRIES_BEFORE_LOCK = 2;
458 >    private static final int MIN_TRANSFER_STRIDE = 16;
459 >
460 >    /*
461 >     * Encodings for Node hash fields. See above for explanation.
462 >     */
463 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
464 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465 >
466 >    /** Number of CPUS, to place bounds on some sizings */
467 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
468 >
469 >    /* ---------------- Counters -------------- */
470 >
471 >    // Adapted from LongAdder and Striped64.
472 >    // See their internal docs for explanation.
473 >
474 >    // A padded cell for distributing counts
475 >    static final class Cell {
476 >        volatile long p0, p1, p2, p3, p4, p5, p6;
477 >        volatile long value;
478 >        volatile long q0, q1, q2, q3, q4, q5, q6;
479 >        Cell(long x) { value = x; }
480 >    }
481  
482      /* ---------------- Fields -------------- */
483  
484      /**
485 <     * Mask value for indexing into segments. The upper bits of a
486 <     * key's hash code are used to choose the segment.
487 <     **/
488 <    final int segmentMask;
485 >     * The array of bins. Lazily initialized upon first insertion.
486 >     * Size is always a power of two. Accessed directly by iterators.
487 >     */
488 >    transient volatile Node<V>[] table;
489 >
490 >    /**
491 >     * The next table to use; non-null only while resizing.
492 >     */
493 >    private transient volatile Node<V>[] nextTable;
494  
495      /**
496 <     * Shift value for indexing within segments.
497 <     **/
498 <    final int segmentShift;
496 >     * Base counter value, used mainly when there is no contention,
497 >     * but also as a fallback during table initialization
498 >     * races. Updated via CAS.
499 >     */
500 >    private transient volatile long baseCount;
501  
502      /**
503 <     * The segments, each of which is a specialized hash table
503 >     * Table initialization and resizing control.  When negative, the
504 >     * table is being initialized or resized: -1 for initialization,
505 >     * else -(1 + the number of active resizing threads).  Otherwise,
506 >     * when table is null, holds the initial table size to use upon
507 >     * creation, or 0 for default. After initialization, holds the
508 >     * next element count value upon which to resize the table.
509       */
510 <    final Segment[] segments;
510 >    private transient volatile int sizeCtl;
511  
512 <    transient Set<K> keySet;
513 <    transient Set<Map.Entry<K,V>> entrySet;
514 <    transient Collection<V> values;
512 >    /**
513 >     * The next table index (plus one) to split while resizing.
514 >     */
515 >    private transient volatile int transferIndex;
516  
517 <    /* ---------------- Small Utilities -------------- */
517 >    /**
518 >     * The least available table index to split while resizing.
519 >     */
520 >    private transient volatile int transferOrigin;
521  
522      /**
523 <     * Returns a hash code for non-null Object x.
151 <     * Uses the same hash code spreader as most other java.util hash tables.
152 <     * @param x the object serving as a key
153 <     * @return the hash code
523 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524       */
525 <    static int hash(Object x) {
526 <        int h = x.hashCode();
527 <        h += ~(h << 9);
528 <        h ^=  (h >>> 14);
529 <        h +=  (h << 4);
530 <        h ^=  (h >>> 10);
531 <        return h;
525 >    private transient volatile int cellsBusy;
526 >
527 >    /**
528 >     * Table of counter cells. When non-null, size is a power of 2.
529 >     */
530 >    private transient volatile Cell[] counterCells;
531 >
532 >    // views
533 >    private transient KeySetView<K,V> keySet;
534 >    private transient ValuesView<K,V> values;
535 >    private transient EntrySetView<K,V> entrySet;
536 >
537 >    /** For serialization compatibility. Null unless serialized; see below */
538 >    private Segment<K,V>[] segments;
539 >
540 >    /* ---------------- Table element access -------------- */
541 >
542 >    /*
543 >     * Volatile access methods are used for table elements as well as
544 >     * elements of in-progress next table while resizing.  Uses are
545 >     * null checked by callers, and implicitly bounds-checked, relying
546 >     * on the invariants that tab arrays have non-zero size, and all
547 >     * indices are masked with (tab.length - 1) which is never
548 >     * negative and always less than length. Note that, to be correct
549 >     * wrt arbitrary concurrency errors by users, bounds checks must
550 >     * operate on local variables, which accounts for some odd-looking
551 >     * inline assignments below.
552 >     */
553 >
554 >    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 >        (Node<V>[] tab, int i) { // used by Traverser
556 >        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557      }
558  
559 +    private static final <V> boolean casTabAt
560 +        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 +        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 +    }
563 +
564 +    private static final <V> void setTabAt
565 +        (Node<V>[] tab, int i, Node<V> v) {
566 +        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 +    }
568 +
569 +    /* ---------------- Nodes -------------- */
570 +
571      /**
572 <     * Returns the segment that should be used for key with given hash
573 <     * @param hash the hash code for the key
574 <     * @return the segment
575 <     */
576 <    final Segment<K,V> segmentFor(int hash) {
577 <        return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
578 <    }
579 <
173 <    /* ---------------- Inner Classes -------------- */
174 <
175 <    /**
176 <     * ConcurrentHashMap list entry. Note that this is never exported
177 <     * out as a user-visible Map.Entry.
178 <     *
179 <     * Because the value field is volatile, not final, it is legal wrt
180 <     * the Java Memory Model for an unsynchronized reader to see null
181 <     * instead of initial value when read via a data race.  Although a
182 <     * reordering leading to this is not likely to ever actually
183 <     * occur, the Segment.readValueUnderLock method is used as a
184 <     * backup in case a null (pre-initialized) value is ever seen in
185 <     * an unsynchronized access method.
572 >     * Key-value entry. Note that this is never exported out as a
573 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574 >     * field of MOVED are special, and do not contain user keys or
575 >     * values.  Otherwise, keys are never null, and null val fields
576 >     * indicate that a node is in the process of being deleted or
577 >     * created. For purposes of read-only access, a key may be read
578 >     * before a val, but can only be used after checking val to be
579 >     * non-null.
580       */
581 <    static final class HashEntry<K,V> {
188 <        final K key;
581 >    static class Node<V> {
582          final int hash;
583 <        volatile V value;
584 <        final HashEntry<K,V> next;
583 >        final Object key;
584 >        volatile V val;
585 >        volatile Node<V> next;
586  
587 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
194 <            this.key = key;
587 >        Node(int hash, Object key, V val, Node<V> next) {
588              this.hash = hash;
589 +            this.key = key;
590 +            this.val = val;
591              this.next = next;
197            this.value = value;
592          }
593      }
594  
595 +    /* ---------------- TreeBins -------------- */
596 +
597      /**
598 <     * Segments are specialized versions of hash tables.  This
599 <     * subclasses from ReentrantLock opportunistically, just to
600 <     * simplify some locking and avoid separate construction.
601 <     **/
602 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
603 <        /*
604 <         * Segments maintain a table of entry lists that are ALWAYS
605 <         * kept in a consistent state, so can be read without locking.
606 <         * Next fields of nodes are immutable (final).  All list
607 <         * additions are performed at the front of each bin. This
608 <         * makes it easy to check changes, and also fast to traverse.
609 <         * When nodes would otherwise be changed, new nodes are
610 <         * created to replace them. This works well for hash tables
611 <         * since the bin lists tend to be short. (The average length
216 <         * is less than two for the default load factor threshold.)
217 <         *
218 <         * Read operations can thus proceed without locking, but rely
219 <         * on selected uses of volatiles to ensure that completed
220 <         * write operations performed by other threads are
221 <         * noticed. For most purposes, the "count" field, tracking the
222 <         * number of elements, serves as that volatile variable
223 <         * ensuring visibility.  This is convenient because this field
224 <         * needs to be read in many read operations anyway:
225 <         *
226 <         *   - All (unsynchronized) read operations must first read the
227 <         *     "count" field, and should not look at table entries if
228 <         *     it is 0.
229 <         *
230 <         *   - All (synchronized) write operations should write to
231 <         *     the "count" field after structurally changing any bin.
232 <         *     The operations must not take any action that could even
233 <         *     momentarily cause a concurrent read operation to see
234 <         *     inconsistent data. This is made easier by the nature of
235 <         *     the read operations in Map. For example, no operation
236 <         *     can reveal that the table has grown but the threshold
237 <         *     has not yet been updated, so there are no atomicity
238 <         *     requirements for this with respect to reads.
239 <         *
240 <         * As a guide, all critical volatile reads and writes to the
241 <         * count field are marked in code comments.
242 <         */
598 >     * Nodes for use in TreeBins
599 >     */
600 >    static final class TreeNode<V> extends Node<V> {
601 >        TreeNode<V> parent;  // red-black tree links
602 >        TreeNode<V> left;
603 >        TreeNode<V> right;
604 >        TreeNode<V> prev;    // needed to unlink next upon deletion
605 >        boolean red;
606 >
607 >        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 >            super(hash, key, val, next);
609 >            this.parent = parent;
610 >        }
611 >    }
612  
613 +    /**
614 +     * A specialized form of red-black tree for use in bins
615 +     * whose size exceeds a threshold.
616 +     *
617 +     * TreeBins use a special form of comparison for search and
618 +     * related operations (which is the main reason we cannot use
619 +     * existing collections such as TreeMaps). TreeBins contain
620 +     * Comparable elements, but may contain others, as well as
621 +     * elements that are Comparable but not necessarily Comparable<T>
622 +     * for the same T, so we cannot invoke compareTo among them. To
623 +     * handle this, the tree is ordered primarily by hash value, then
624 +     * by getClass().getName() order, and then by Comparator order
625 +     * among elements of the same class.  On lookup at a node, if
626 +     * elements are not comparable or compare as 0, both left and
627 +     * right children may need to be searched in the case of tied hash
628 +     * values. (This corresponds to the full list search that would be
629 +     * necessary if all elements were non-Comparable and had tied
630 +     * hashes.)  The red-black balancing code is updated from
631 +     * pre-jdk-collections
632 +     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 +     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 +     * Algorithms" (CLR).
635 +     *
636 +     * TreeBins also maintain a separate locking discipline than
637 +     * regular bins. Because they are forwarded via special MOVED
638 +     * nodes at bin heads (which can never change once established),
639 +     * we cannot use those nodes as locks. Instead, TreeBin
640 +     * extends AbstractQueuedSynchronizer to support a simple form of
641 +     * read-write lock. For update operations and table validation,
642 +     * the exclusive form of lock behaves in the same way as bin-head
643 +     * locks. However, lookups use shared read-lock mechanics to allow
644 +     * multiple readers in the absence of writers.  Additionally,
645 +     * these lookups do not ever block: While the lock is not
646 +     * available, they proceed along the slow traversal path (via
647 +     * next-pointers) until the lock becomes available or the list is
648 +     * exhausted, whichever comes first. (These cases are not fast,
649 +     * but maximize aggregate expected throughput.)  The AQS mechanics
650 +     * for doing this are straightforward.  The lock state is held as
651 +     * AQS getState().  Read counts are negative; the write count (1)
652 +     * is positive.  There are no signalling preferences among readers
653 +     * and writers. Since we don't need to export full Lock API, we
654 +     * just override the minimal AQS methods and use them directly.
655 +     */
656 +    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657          private static final long serialVersionUID = 2249069246763182397L;
658 +        transient TreeNode<V> root;  // root of tree
659 +        transient TreeNode<V> first; // head of next-pointer list
660  
661 <        /**
662 <         * The number of elements in this segment's region.
663 <         **/
664 <        transient volatile int count;
661 >        /* AQS overrides */
662 >        public final boolean isHeldExclusively() { return getState() > 0; }
663 >        public final boolean tryAcquire(int ignore) {
664 >            if (compareAndSetState(0, 1)) {
665 >                setExclusiveOwnerThread(Thread.currentThread());
666 >                return true;
667 >            }
668 >            return false;
669 >        }
670 >        public final boolean tryRelease(int ignore) {
671 >            setExclusiveOwnerThread(null);
672 >            setState(0);
673 >            return true;
674 >        }
675 >        public final int tryAcquireShared(int ignore) {
676 >            for (int c;;) {
677 >                if ((c = getState()) > 0)
678 >                    return -1;
679 >                if (compareAndSetState(c, c -1))
680 >                    return 1;
681 >            }
682 >        }
683 >        public final boolean tryReleaseShared(int ignore) {
684 >            int c;
685 >            do {} while (!compareAndSetState(c = getState(), c + 1));
686 >            return c == -1;
687 >        }
688 >
689 >        /** From CLR */
690 >        private void rotateLeft(TreeNode<V> p) {
691 >            if (p != null) {
692 >                TreeNode<V> r = p.right, pp, rl;
693 >                if ((rl = p.right = r.left) != null)
694 >                    rl.parent = p;
695 >                if ((pp = r.parent = p.parent) == null)
696 >                    root = r;
697 >                else if (pp.left == p)
698 >                    pp.left = r;
699 >                else
700 >                    pp.right = r;
701 >                r.left = p;
702 >                p.parent = r;
703 >            }
704 >        }
705  
706 <        /**
707 <         * Number of updates that alter the size of the table. This is
708 <         * used during bulk-read methods to make sure they see a
709 <         * consistent snapshot: If modCounts change during a traversal
710 <         * of segments computing size or checking containsValue, then
711 <         * we might have an inconsistent view of state so (usually)
712 <         * must retry.
713 <         */
714 <        transient int modCount;
706 >        /** From CLR */
707 >        private void rotateRight(TreeNode<V> p) {
708 >            if (p != null) {
709 >                TreeNode<V> l = p.left, pp, lr;
710 >                if ((lr = p.left = l.right) != null)
711 >                    lr.parent = p;
712 >                if ((pp = l.parent = p.parent) == null)
713 >                    root = l;
714 >                else if (pp.right == p)
715 >                    pp.right = l;
716 >                else
717 >                    pp.left = l;
718 >                l.right = p;
719 >                p.parent = l;
720 >            }
721 >        }
722  
723          /**
724 <         * The table is rehashed when its size exceeds this threshold.
725 <         * (The value of this field is always (int)(capacity *
264 <         * loadFactor).)
724 >         * Returns the TreeNode (or null if not found) for the given key
725 >         * starting at given root.
726           */
727 <        transient int threshold;
727 >        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 >            (int h, Object k, TreeNode<V> p) {
729 >            Class<?> c = k.getClass();
730 >            while (p != null) {
731 >                int dir, ph;  Object pk; Class<?> pc;
732 >                if ((ph = p.hash) == h) {
733 >                    if ((pk = p.key) == k || k.equals(pk))
734 >                        return p;
735 >                    if (c != (pc = pk.getClass()) ||
736 >                        !(k instanceof Comparable) ||
737 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 >                        if ((dir = (c == pc) ? 0 :
739 >                             c.getName().compareTo(pc.getName())) == 0) {
740 >                            TreeNode<V> r = null, pl, pr; // check both sides
741 >                            if ((pr = p.right) != null && h >= pr.hash &&
742 >                                (r = getTreeNode(h, k, pr)) != null)
743 >                                return r;
744 >                            else if ((pl = p.left) != null && h <= pl.hash)
745 >                                dir = -1;
746 >                            else // nothing there
747 >                                return null;
748 >                        }
749 >                    }
750 >                }
751 >                else
752 >                    dir = (h < ph) ? -1 : 1;
753 >                p = (dir > 0) ? p.right : p.left;
754 >            }
755 >            return null;
756 >        }
757  
758          /**
759 <         * The per-segment table. Declared as a raw type, casted
760 <         * to HashEntry<K,V> on each use.
759 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760 >         * read-lock to call getTreeNode, but during failure to get
761 >         * lock, searches along next links.
762           */
763 <        transient volatile HashEntry[] table;
763 >        final V getValue(int h, Object k) {
764 >            Node<V> r = null;
765 >            int c = getState(); // Must read lock state first
766 >            for (Node<V> e = first; e != null; e = e.next) {
767 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
768 >                    try {
769 >                        r = getTreeNode(h, k, root);
770 >                    } finally {
771 >                        releaseShared(0);
772 >                    }
773 >                    break;
774 >                }
775 >                else if (e.hash == h && k.equals(e.key)) {
776 >                    r = e;
777 >                    break;
778 >                }
779 >                else
780 >                    c = getState();
781 >            }
782 >            return r == null ? null : r.val;
783 >        }
784  
785          /**
786 <         * The load factor for the hash table.  Even though this value
787 <         * is same for all segments, it is replicated to avoid needing
277 <         * links to outer object.
278 <         * @serial
786 >         * Finds or adds a node.
787 >         * @return null if added
788           */
789 <        final float loadFactor;
789 >        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 >            (int h, Object k, V v) {
791 >            Class<?> c = k.getClass();
792 >            TreeNode<V> pp = root, p = null;
793 >            int dir = 0;
794 >            while (pp != null) { // find existing node or leaf to insert at
795 >                int ph;  Object pk; Class<?> pc;
796 >                p = pp;
797 >                if ((ph = p.hash) == h) {
798 >                    if ((pk = p.key) == k || k.equals(pk))
799 >                        return p;
800 >                    if (c != (pc = pk.getClass()) ||
801 >                        !(k instanceof Comparable) ||
802 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 >                        TreeNode<V> s = null, r = null, pr;
804 >                        if ((dir = (c == pc) ? 0 :
805 >                             c.getName().compareTo(pc.getName())) == 0) {
806 >                            if ((pr = p.right) != null && h >= pr.hash &&
807 >                                (r = getTreeNode(h, k, pr)) != null)
808 >                                return r;
809 >                            else // continue left
810 >                                dir = -1;
811 >                        }
812 >                        else if ((pr = p.right) != null && h >= pr.hash)
813 >                            s = pr;
814 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
815 >                            return r;
816 >                    }
817 >                }
818 >                else
819 >                    dir = (h < ph) ? -1 : 1;
820 >                pp = (dir > 0) ? p.right : p.left;
821 >            }
822  
823 <        Segment(int initialCapacity, float lf) {
824 <            loadFactor = lf;
825 <            setTable(new HashEntry[initialCapacity]);
823 >            TreeNode<V> f = first;
824 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 >            if (p == null)
826 >                root = x;
827 >            else { // attach and rebalance; adapted from CLR
828 >                TreeNode<V> xp, xpp;
829 >                if (f != null)
830 >                    f.prev = x;
831 >                if (dir <= 0)
832 >                    p.left = x;
833 >                else
834 >                    p.right = x;
835 >                x.red = true;
836 >                while (x != null && (xp = x.parent) != null && xp.red &&
837 >                       (xpp = xp.parent) != null) {
838 >                    TreeNode<V> xppl = xpp.left;
839 >                    if (xp == xppl) {
840 >                        TreeNode<V> y = xpp.right;
841 >                        if (y != null && y.red) {
842 >                            y.red = false;
843 >                            xp.red = false;
844 >                            xpp.red = true;
845 >                            x = xpp;
846 >                        }
847 >                        else {
848 >                            if (x == xp.right) {
849 >                                rotateLeft(x = xp);
850 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
851 >                            }
852 >                            if (xp != null) {
853 >                                xp.red = false;
854 >                                if (xpp != null) {
855 >                                    xpp.red = true;
856 >                                    rotateRight(xpp);
857 >                                }
858 >                            }
859 >                        }
860 >                    }
861 >                    else {
862 >                        TreeNode<V> y = xppl;
863 >                        if (y != null && y.red) {
864 >                            y.red = false;
865 >                            xp.red = false;
866 >                            xpp.red = true;
867 >                            x = xpp;
868 >                        }
869 >                        else {
870 >                            if (x == xp.left) {
871 >                                rotateRight(x = xp);
872 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
873 >                            }
874 >                            if (xp != null) {
875 >                                xp.red = false;
876 >                                if (xpp != null) {
877 >                                    xpp.red = true;
878 >                                    rotateLeft(xpp);
879 >                                }
880 >                            }
881 >                        }
882 >                    }
883 >                }
884 >                TreeNode<V> r = root;
885 >                if (r != null && r.red)
886 >                    r.red = false;
887 >            }
888 >            return null;
889          }
890  
891          /**
892 <         * Set table to new HashEntry array.
893 <         * Call only while holding lock or in constructor.
894 <         **/
895 <        void setTable(HashEntry[] newTable) {
896 <            threshold = (int)(newTable.length * loadFactor);
897 <            table = newTable;
892 >         * Removes the given node, that must be present before this
893 >         * call.  This is messier than typical red-black deletion code
894 >         * because we cannot swap the contents of an interior node
895 >         * with a leaf successor that is pinned by "next" pointers
896 >         * that are accessible independently of lock. So instead we
897 >         * swap the tree linkages.
898 >         */
899 >        final void deleteTreeNode(TreeNode<V> p) {
900 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 >            TreeNode<V> pred = p.prev;
902 >            if (pred == null)
903 >                first = next;
904 >            else
905 >                pred.next = next;
906 >            if (next != null)
907 >                next.prev = pred;
908 >            TreeNode<V> replacement;
909 >            TreeNode<V> pl = p.left;
910 >            TreeNode<V> pr = p.right;
911 >            if (pl != null && pr != null) {
912 >                TreeNode<V> s = pr, sl;
913 >                while ((sl = s.left) != null) // find successor
914 >                    s = sl;
915 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 >                TreeNode<V> sr = s.right;
917 >                TreeNode<V> pp = p.parent;
918 >                if (s == pr) { // p was s's direct parent
919 >                    p.parent = s;
920 >                    s.right = p;
921 >                }
922 >                else {
923 >                    TreeNode<V> sp = s.parent;
924 >                    if ((p.parent = sp) != null) {
925 >                        if (s == sp.left)
926 >                            sp.left = p;
927 >                        else
928 >                            sp.right = p;
929 >                    }
930 >                    if ((s.right = pr) != null)
931 >                        pr.parent = s;
932 >                }
933 >                p.left = null;
934 >                if ((p.right = sr) != null)
935 >                    sr.parent = p;
936 >                if ((s.left = pl) != null)
937 >                    pl.parent = s;
938 >                if ((s.parent = pp) == null)
939 >                    root = s;
940 >                else if (p == pp.left)
941 >                    pp.left = s;
942 >                else
943 >                    pp.right = s;
944 >                replacement = sr;
945 >            }
946 >            else
947 >                replacement = (pl != null) ? pl : pr;
948 >            TreeNode<V> pp = p.parent;
949 >            if (replacement == null) {
950 >                if (pp == null) {
951 >                    root = null;
952 >                    return;
953 >                }
954 >                replacement = p;
955 >            }
956 >            else {
957 >                replacement.parent = pp;
958 >                if (pp == null)
959 >                    root = replacement;
960 >                else if (p == pp.left)
961 >                    pp.left = replacement;
962 >                else
963 >                    pp.right = replacement;
964 >                p.left = p.right = p.parent = null;
965 >            }
966 >            if (!p.red) { // rebalance, from CLR
967 >                TreeNode<V> x = replacement;
968 >                while (x != null) {
969 >                    TreeNode<V> xp, xpl;
970 >                    if (x.red || (xp = x.parent) == null) {
971 >                        x.red = false;
972 >                        break;
973 >                    }
974 >                    if (x == (xpl = xp.left)) {
975 >                        TreeNode<V> sib = xp.right;
976 >                        if (sib != null && sib.red) {
977 >                            sib.red = false;
978 >                            xp.red = true;
979 >                            rotateLeft(xp);
980 >                            sib = (xp = x.parent) == null ? null : xp.right;
981 >                        }
982 >                        if (sib == null)
983 >                            x = xp;
984 >                        else {
985 >                            TreeNode<V> sl = sib.left, sr = sib.right;
986 >                            if ((sr == null || !sr.red) &&
987 >                                (sl == null || !sl.red)) {
988 >                                sib.red = true;
989 >                                x = xp;
990 >                            }
991 >                            else {
992 >                                if (sr == null || !sr.red) {
993 >                                    if (sl != null)
994 >                                        sl.red = false;
995 >                                    sib.red = true;
996 >                                    rotateRight(sib);
997 >                                    sib = (xp = x.parent) == null ?
998 >                                        null : xp.right;
999 >                                }
1000 >                                if (sib != null) {
1001 >                                    sib.red = (xp == null) ? false : xp.red;
1002 >                                    if ((sr = sib.right) != null)
1003 >                                        sr.red = false;
1004 >                                }
1005 >                                if (xp != null) {
1006 >                                    xp.red = false;
1007 >                                    rotateLeft(xp);
1008 >                                }
1009 >                                x = root;
1010 >                            }
1011 >                        }
1012 >                    }
1013 >                    else { // symmetric
1014 >                        TreeNode<V> sib = xpl;
1015 >                        if (sib != null && sib.red) {
1016 >                            sib.red = false;
1017 >                            xp.red = true;
1018 >                            rotateRight(xp);
1019 >                            sib = (xp = x.parent) == null ? null : xp.left;
1020 >                        }
1021 >                        if (sib == null)
1022 >                            x = xp;
1023 >                        else {
1024 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1025 >                            if ((sl == null || !sl.red) &&
1026 >                                (sr == null || !sr.red)) {
1027 >                                sib.red = true;
1028 >                                x = xp;
1029 >                            }
1030 >                            else {
1031 >                                if (sl == null || !sl.red) {
1032 >                                    if (sr != null)
1033 >                                        sr.red = false;
1034 >                                    sib.red = true;
1035 >                                    rotateLeft(sib);
1036 >                                    sib = (xp = x.parent) == null ?
1037 >                                        null : xp.left;
1038 >                                }
1039 >                                if (sib != null) {
1040 >                                    sib.red = (xp == null) ? false : xp.red;
1041 >                                    if ((sl = sib.left) != null)
1042 >                                        sl.red = false;
1043 >                                }
1044 >                                if (xp != null) {
1045 >                                    xp.red = false;
1046 >                                    rotateRight(xp);
1047 >                                }
1048 >                                x = root;
1049 >                            }
1050 >                        }
1051 >                    }
1052 >                }
1053 >            }
1054 >            if (p == replacement && (pp = p.parent) != null) {
1055 >                if (p == pp.left) // detach pointers
1056 >                    pp.left = null;
1057 >                else if (p == pp.right)
1058 >                    pp.right = null;
1059 >                p.parent = null;
1060 >            }
1061          }
1062 +    }
1063  
1064 <        /**
1065 <         * Return properly casted first entry of bin for given hash
1066 <         */
1067 <        HashEntry<K,V> getFirst(int hash) {
1068 <            HashEntry[] tab = table;
1069 <            return (HashEntry<K,V>) tab[hash & (tab.length - 1)];
1064 >    /* ---------------- Collision reduction methods -------------- */
1065 >
1066 >    /**
1067 >     * Spreads higher bits to lower, and also forces top bit to 0.
1068 >     * Because the table uses power-of-two masking, sets of hashes
1069 >     * that vary only in bits above the current mask will always
1070 >     * collide. (Among known examples are sets of Float keys holding
1071 >     * consecutive whole numbers in small tables.)  To counter this,
1072 >     * we apply a transform that spreads the impact of higher bits
1073 >     * downward. There is a tradeoff between speed, utility, and
1074 >     * quality of bit-spreading. Because many common sets of hashes
1075 >     * are already reasonably distributed across bits (so don't benefit
1076 >     * from spreading), and because we use trees to handle large sets
1077 >     * of collisions in bins, we don't need excessively high quality.
1078 >     */
1079 >    private static final int spread(int h) {
1080 >        h ^= (h >>> 18) ^ (h >>> 12);
1081 >        return (h ^ (h >>> 10)) & HASH_BITS;
1082 >    }
1083 >
1084 >    /**
1085 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1086 >     * only when locked.
1087 >     */
1088 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 >        if (key instanceof Comparable) {
1090 >            TreeBin<V> t = new TreeBin<V>();
1091 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 >                t.putTreeNode(e.hash, e.key, e.val);
1093 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094          }
1095 +    }
1096  
1097 <        /**
1098 <         * Read value field of an entry under lock. Called if value
1099 <         * field ever appears to be null. This is possible only if a
1100 <         * compiler happens to reorder a HashEntry initialization with
1101 <         * its table assignment, which is legal under memory model
1102 <         * but is not known to ever occur.
1103 <         */
1104 <        V readValueUnderLock(HashEntry<K,V> e) {
1105 <            lock();
1106 <            try {
1107 <                return e.value;
1108 <            } finally {
1109 <                unlock();
1097 >    /* ---------------- Internal access and update methods -------------- */
1098 >
1099 >    /** Implementation for get and containsKey */
1100 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 >        int h = spread(k.hashCode());
1102 >        retry: for (Node<V>[] tab = table; tab != null;) {
1103 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 >                if ((eh = e.hash) < 0) {
1106 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1107 >                        return ((TreeBin<V>)ek).getValue(h, k);
1108 >                    else {                      // restart with new table
1109 >                        tab = (Node<V>[])ek;
1110 >                        continue retry;
1111 >                    }
1112 >                }
1113 >                else if (eh == h && (ev = e.val) != null &&
1114 >                         ((ek = e.key) == k || k.equals(ek)))
1115 >                    return ev;
1116              }
1117 +            break;
1118          }
1119 +        return null;
1120 +    }
1121  
1122 <        /* Specialized implementations of map methods */
1123 <
1124 <        V get(Object key, int hash) {
1125 <            if (count != 0) { // read-volatile
1126 <                HashEntry<K,V> e = getFirst(hash);
1127 <                while (e != null) {
1128 <                    if (e.hash == hash && key.equals(e.key)) {
1129 <                        V v = e.value;
1130 <                        if (v != null)
1131 <                            return v;
1132 <                        return readValueUnderLock(e); // recheck
1122 >    /**
1123 >     * Implementation for the four public remove/replace methods:
1124 >     * Replaces node value with v, conditional upon match of cv if
1125 >     * non-null.  If resulting value is null, delete.
1126 >     */
1127 >    @SuppressWarnings("unchecked") private final V internalReplace
1128 >        (Object k, V v, Object cv) {
1129 >        int h = spread(k.hashCode());
1130 >        V oldVal = null;
1131 >        for (Node<V>[] tab = table;;) {
1132 >            Node<V> f; int i, fh; Object fk;
1133 >            if (tab == null ||
1134 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135 >                break;
1136 >            else if ((fh = f.hash) < 0) {
1137 >                if ((fk = f.key) instanceof TreeBin) {
1138 >                    TreeBin<V> t = (TreeBin<V>)fk;
1139 >                    boolean validated = false;
1140 >                    boolean deleted = false;
1141 >                    t.acquire(0);
1142 >                    try {
1143 >                        if (tabAt(tab, i) == f) {
1144 >                            validated = true;
1145 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 >                            if (p != null) {
1147 >                                V pv = p.val;
1148 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1149 >                                    oldVal = pv;
1150 >                                    if ((p.val = v) == null) {
1151 >                                        deleted = true;
1152 >                                        t.deleteTreeNode(p);
1153 >                                    }
1154 >                                }
1155 >                            }
1156 >                        }
1157 >                    } finally {
1158 >                        t.release(0);
1159 >                    }
1160 >                    if (validated) {
1161 >                        if (deleted)
1162 >                            addCount(-1L, -1);
1163 >                        break;
1164                      }
1165 <                    e = e.next;
1165 >                }
1166 >                else
1167 >                    tab = (Node<V>[])fk;
1168 >            }
1169 >            else if (fh != h && f.next == null) // precheck
1170 >                break;                          // rules out possible existence
1171 >            else {
1172 >                boolean validated = false;
1173 >                boolean deleted = false;
1174 >                synchronized (f) {
1175 >                    if (tabAt(tab, i) == f) {
1176 >                        validated = true;
1177 >                        for (Node<V> e = f, pred = null;;) {
1178 >                            Object ek; V ev;
1179 >                            if (e.hash == h &&
1180 >                                ((ev = e.val) != null) &&
1181 >                                ((ek = e.key) == k || k.equals(ek))) {
1182 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1183 >                                    oldVal = ev;
1184 >                                    if ((e.val = v) == null) {
1185 >                                        deleted = true;
1186 >                                        Node<V> en = e.next;
1187 >                                        if (pred != null)
1188 >                                            pred.next = en;
1189 >                                        else
1190 >                                            setTabAt(tab, i, en);
1191 >                                    }
1192 >                                }
1193 >                                break;
1194 >                            }
1195 >                            pred = e;
1196 >                            if ((e = e.next) == null)
1197 >                                break;
1198 >                        }
1199 >                    }
1200 >                }
1201 >                if (validated) {
1202 >                    if (deleted)
1203 >                        addCount(-1L, -1);
1204 >                    break;
1205                  }
1206              }
335            return null;
1207          }
1208 +        return oldVal;
1209 +    }
1210  
1211 <        boolean containsKey(Object key, int hash) {
1212 <            if (count != 0) { // read-volatile
1213 <                HashEntry<K,V> e = getFirst(hash);
1214 <                while (e != null) {
1215 <                    if (e.hash == hash && key.equals(e.key))
1216 <                        return true;
1217 <                    e = e.next;
1211 >    /*
1212 >     * Internal versions of insertion methods
1213 >     * All have the same basic structure as the first (internalPut):
1214 >     *  1. If table uninitialized, create
1215 >     *  2. If bin empty, try to CAS new node
1216 >     *  3. If bin stale, use new table
1217 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218 >     *  5. Lock and validate; if valid, scan and add or update
1219 >     *
1220 >     * The putAll method differs mainly in attempting to pre-allocate
1221 >     * enough table space, and also more lazily performs count updates
1222 >     * and checks.
1223 >     *
1224 >     * Most of the function-accepting methods can't be factored nicely
1225 >     * because they require different functional forms, so instead
1226 >     * sprawl out similar mechanics.
1227 >     */
1228 >
1229 >    /** Implementation for put and putIfAbsent */
1230 >    @SuppressWarnings("unchecked") private final V internalPut
1231 >        (K k, V v, boolean onlyIfAbsent) {
1232 >        if (k == null || v == null) throw new NullPointerException();
1233 >        int h = spread(k.hashCode());
1234 >        int len = 0;
1235 >        for (Node<V>[] tab = table;;) {
1236 >            int i, fh; Node<V> f; Object fk; V fv;
1237 >            if (tab == null)
1238 >                tab = initTable();
1239 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 >                    break;                   // no lock when adding to empty bin
1242 >            }
1243 >            else if ((fh = f.hash) < 0) {
1244 >                if ((fk = f.key) instanceof TreeBin) {
1245 >                    TreeBin<V> t = (TreeBin<V>)fk;
1246 >                    V oldVal = null;
1247 >                    t.acquire(0);
1248 >                    try {
1249 >                        if (tabAt(tab, i) == f) {
1250 >                            len = 2;
1251 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1252 >                            if (p != null) {
1253 >                                oldVal = p.val;
1254 >                                if (!onlyIfAbsent)
1255 >                                    p.val = v;
1256 >                            }
1257 >                        }
1258 >                    } finally {
1259 >                        t.release(0);
1260 >                    }
1261 >                    if (len != 0) {
1262 >                        if (oldVal != null)
1263 >                            return oldVal;
1264 >                        break;
1265 >                    }
1266 >                }
1267 >                else
1268 >                    tab = (Node<V>[])fk;
1269 >            }
1270 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 >                return fv;
1273 >            else {
1274 >                V oldVal = null;
1275 >                synchronized (f) {
1276 >                    if (tabAt(tab, i) == f) {
1277 >                        len = 1;
1278 >                        for (Node<V> e = f;; ++len) {
1279 >                            Object ek; V ev;
1280 >                            if (e.hash == h &&
1281 >                                (ev = e.val) != null &&
1282 >                                ((ek = e.key) == k || k.equals(ek))) {
1283 >                                oldVal = ev;
1284 >                                if (!onlyIfAbsent)
1285 >                                    e.val = v;
1286 >                                break;
1287 >                            }
1288 >                            Node<V> last = e;
1289 >                            if ((e = e.next) == null) {
1290 >                                last.next = new Node<V>(h, k, v, null);
1291 >                                if (len >= TREE_THRESHOLD)
1292 >                                    replaceWithTreeBin(tab, i, k);
1293 >                                break;
1294 >                            }
1295 >                        }
1296 >                    }
1297 >                }
1298 >                if (len != 0) {
1299 >                    if (oldVal != null)
1300 >                        return oldVal;
1301 >                    break;
1302                  }
1303              }
347            return false;
1304          }
1305 +        addCount(1L, len);
1306 +        return null;
1307 +    }
1308  
1309 <        boolean containsValue(Object value) {
1310 <            if (count != 0) { // read-volatile
1311 <                HashEntry[] tab = table;
1312 <                int len = tab.length;
1313 <                for (int i = 0 ; i < len; i++) {
1314 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i];
1315 <                         e != null ;
1316 <                         e = e.next) {
1317 <                        V v = e.value;
1318 <                        if (v == null) // recheck
1319 <                            v = readValueUnderLock(e);
1320 <                        if (value.equals(v))
1321 <                            return true;
1309 >    /** Implementation for computeIfAbsent */
1310 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 >        (K k, Function<? super K, ? extends V> mf) {
1312 >        if (k == null || mf == null)
1313 >            throw new NullPointerException();
1314 >        int h = spread(k.hashCode());
1315 >        V val = null;
1316 >        int len = 0;
1317 >        for (Node<V>[] tab = table;;) {
1318 >            Node<V> f; int i; Object fk;
1319 >            if (tab == null)
1320 >                tab = initTable();
1321 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 >                Node<V> node = new Node<V>(h, k, null, null);
1323 >                synchronized (node) {
1324 >                    if (casTabAt(tab, i, null, node)) {
1325 >                        len = 1;
1326 >                        try {
1327 >                            if ((val = mf.apply(k)) != null)
1328 >                                node.val = val;
1329 >                        } finally {
1330 >                            if (val == null)
1331 >                                setTabAt(tab, i, null);
1332 >                        }
1333                      }
1334                  }
1335 +                if (len != 0)
1336 +                    break;
1337 +            }
1338 +            else if (f.hash < 0) {
1339 +                if ((fk = f.key) instanceof TreeBin) {
1340 +                    TreeBin<V> t = (TreeBin<V>)fk;
1341 +                    boolean added = false;
1342 +                    t.acquire(0);
1343 +                    try {
1344 +                        if (tabAt(tab, i) == f) {
1345 +                            len = 1;
1346 +                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 +                            if (p != null)
1348 +                                val = p.val;
1349 +                            else if ((val = mf.apply(k)) != null) {
1350 +                                added = true;
1351 +                                len = 2;
1352 +                                t.putTreeNode(h, k, val);
1353 +                            }
1354 +                        }
1355 +                    } finally {
1356 +                        t.release(0);
1357 +                    }
1358 +                    if (len != 0) {
1359 +                        if (!added)
1360 +                            return val;
1361 +                        break;
1362 +                    }
1363 +                }
1364 +                else
1365 +                    tab = (Node<V>[])fk;
1366 +            }
1367 +            else {
1368 +                for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 +                    Object ek; V ev;
1370 +                    if (e.hash == h && (ev = e.val) != null &&
1371 +                        ((ek = e.key) == k || k.equals(ek)))
1372 +                        return ev;
1373 +                }
1374 +                boolean added = false;
1375 +                synchronized (f) {
1376 +                    if (tabAt(tab, i) == f) {
1377 +                        len = 1;
1378 +                        for (Node<V> e = f;; ++len) {
1379 +                            Object ek; V ev;
1380 +                            if (e.hash == h &&
1381 +                                (ev = e.val) != null &&
1382 +                                ((ek = e.key) == k || k.equals(ek))) {
1383 +                                val = ev;
1384 +                                break;
1385 +                            }
1386 +                            Node<V> last = e;
1387 +                            if ((e = e.next) == null) {
1388 +                                if ((val = mf.apply(k)) != null) {
1389 +                                    added = true;
1390 +                                    last.next = new Node<V>(h, k, val, null);
1391 +                                    if (len >= TREE_THRESHOLD)
1392 +                                        replaceWithTreeBin(tab, i, k);
1393 +                                }
1394 +                                break;
1395 +                            }
1396 +                        }
1397 +                    }
1398 +                }
1399 +                if (len != 0) {
1400 +                    if (!added)
1401 +                        return val;
1402 +                    break;
1403 +                }
1404              }
366            return false;
1405          }
1406 +        if (val != null)
1407 +            addCount(1L, len);
1408 +        return val;
1409 +    }
1410  
1411 <        boolean replace(K key, int hash, V oldValue, V newValue) {
1412 <            lock();
1413 <            try {
1414 <                HashEntry<K,V> e = getFirst(hash);
1415 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1416 <                    e = e.next;
1411 >    /** Implementation for compute */
1412 >    @SuppressWarnings("unchecked") private final V internalCompute
1413 >        (K k, boolean onlyIfPresent,
1414 >         BiFunction<? super K, ? super V, ? extends V> mf) {
1415 >        if (k == null || mf == null)
1416 >            throw new NullPointerException();
1417 >        int h = spread(k.hashCode());
1418 >        V val = null;
1419 >        int delta = 0;
1420 >        int len = 0;
1421 >        for (Node<V>[] tab = table;;) {
1422 >            Node<V> f; int i, fh; Object fk;
1423 >            if (tab == null)
1424 >                tab = initTable();
1425 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426 >                if (onlyIfPresent)
1427 >                    break;
1428 >                Node<V> node = new Node<V>(h, k, null, null);
1429 >                synchronized (node) {
1430 >                    if (casTabAt(tab, i, null, node)) {
1431 >                        try {
1432 >                            len = 1;
1433 >                            if ((val = mf.apply(k, null)) != null) {
1434 >                                node.val = val;
1435 >                                delta = 1;
1436 >                            }
1437 >                        } finally {
1438 >                            if (delta == 0)
1439 >                                setTabAt(tab, i, null);
1440 >                        }
1441 >                    }
1442 >                }
1443 >                if (len != 0)
1444 >                    break;
1445 >            }
1446 >            else if ((fh = f.hash) < 0) {
1447 >                if ((fk = f.key) instanceof TreeBin) {
1448 >                    TreeBin<V> t = (TreeBin<V>)fk;
1449 >                    t.acquire(0);
1450 >                    try {
1451 >                        if (tabAt(tab, i) == f) {
1452 >                            len = 1;
1453 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 >                            if (p == null && onlyIfPresent)
1455 >                                break;
1456 >                            V pv = (p == null) ? null : p.val;
1457 >                            if ((val = mf.apply(k, pv)) != null) {
1458 >                                if (p != null)
1459 >                                    p.val = val;
1460 >                                else {
1461 >                                    len = 2;
1462 >                                    delta = 1;
1463 >                                    t.putTreeNode(h, k, val);
1464 >                                }
1465 >                            }
1466 >                            else if (p != null) {
1467 >                                delta = -1;
1468 >                                t.deleteTreeNode(p);
1469 >                            }
1470 >                        }
1471 >                    } finally {
1472 >                        t.release(0);
1473 >                    }
1474 >                    if (len != 0)
1475 >                        break;
1476 >                }
1477 >                else
1478 >                    tab = (Node<V>[])fk;
1479 >            }
1480 >            else {
1481 >                synchronized (f) {
1482 >                    if (tabAt(tab, i) == f) {
1483 >                        len = 1;
1484 >                        for (Node<V> e = f, pred = null;; ++len) {
1485 >                            Object ek; V ev;
1486 >                            if (e.hash == h &&
1487 >                                (ev = e.val) != null &&
1488 >                                ((ek = e.key) == k || k.equals(ek))) {
1489 >                                val = mf.apply(k, ev);
1490 >                                if (val != null)
1491 >                                    e.val = val;
1492 >                                else {
1493 >                                    delta = -1;
1494 >                                    Node<V> en = e.next;
1495 >                                    if (pred != null)
1496 >                                        pred.next = en;
1497 >                                    else
1498 >                                        setTabAt(tab, i, en);
1499 >                                }
1500 >                                break;
1501 >                            }
1502 >                            pred = e;
1503 >                            if ((e = e.next) == null) {
1504 >                                if (!onlyIfPresent &&
1505 >                                    (val = mf.apply(k, null)) != null) {
1506 >                                    pred.next = new Node<V>(h, k, val, null);
1507 >                                    delta = 1;
1508 >                                    if (len >= TREE_THRESHOLD)
1509 >                                        replaceWithTreeBin(tab, i, k);
1510 >                                }
1511 >                                break;
1512 >                            }
1513 >                        }
1514 >                    }
1515 >                }
1516 >                if (len != 0)
1517 >                    break;
1518 >            }
1519 >        }
1520 >        if (delta != 0)
1521 >            addCount((long)delta, len);
1522 >        return val;
1523 >    }
1524  
1525 <                boolean replaced = false;
1526 <                if (e != null && oldValue.equals(e.value)) {
1527 <                    replaced = true;
1528 <                    e.value = newValue;
1525 >    /** Implementation for merge */
1526 >    @SuppressWarnings("unchecked") private final V internalMerge
1527 >        (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 >        if (k == null || v == null || mf == null)
1529 >            throw new NullPointerException();
1530 >        int h = spread(k.hashCode());
1531 >        V val = null;
1532 >        int delta = 0;
1533 >        int len = 0;
1534 >        for (Node<V>[] tab = table;;) {
1535 >            int i; Node<V> f; Object fk; V fv;
1536 >            if (tab == null)
1537 >                tab = initTable();
1538 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 >                    delta = 1;
1541 >                    val = v;
1542 >                    break;
1543                  }
1544 <                return replaced;
1545 <            } finally {
1546 <                unlock();
1544 >            }
1545 >            else if (f.hash < 0) {
1546 >                if ((fk = f.key) instanceof TreeBin) {
1547 >                    TreeBin<V> t = (TreeBin<V>)fk;
1548 >                    t.acquire(0);
1549 >                    try {
1550 >                        if (tabAt(tab, i) == f) {
1551 >                            len = 1;
1552 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 >                            val = (p == null) ? v : mf.apply(p.val, v);
1554 >                            if (val != null) {
1555 >                                if (p != null)
1556 >                                    p.val = val;
1557 >                                else {
1558 >                                    len = 2;
1559 >                                    delta = 1;
1560 >                                    t.putTreeNode(h, k, val);
1561 >                                }
1562 >                            }
1563 >                            else if (p != null) {
1564 >                                delta = -1;
1565 >                                t.deleteTreeNode(p);
1566 >                            }
1567 >                        }
1568 >                    } finally {
1569 >                        t.release(0);
1570 >                    }
1571 >                    if (len != 0)
1572 >                        break;
1573 >                }
1574 >                else
1575 >                    tab = (Node<V>[])fk;
1576 >            }
1577 >            else {
1578 >                synchronized (f) {
1579 >                    if (tabAt(tab, i) == f) {
1580 >                        len = 1;
1581 >                        for (Node<V> e = f, pred = null;; ++len) {
1582 >                            Object ek; V ev;
1583 >                            if (e.hash == h &&
1584 >                                (ev = e.val) != null &&
1585 >                                ((ek = e.key) == k || k.equals(ek))) {
1586 >                                val = mf.apply(ev, v);
1587 >                                if (val != null)
1588 >                                    e.val = val;
1589 >                                else {
1590 >                                    delta = -1;
1591 >                                    Node<V> en = e.next;
1592 >                                    if (pred != null)
1593 >                                        pred.next = en;
1594 >                                    else
1595 >                                        setTabAt(tab, i, en);
1596 >                                }
1597 >                                break;
1598 >                            }
1599 >                            pred = e;
1600 >                            if ((e = e.next) == null) {
1601 >                                val = v;
1602 >                                pred.next = new Node<V>(h, k, val, null);
1603 >                                delta = 1;
1604 >                                if (len >= TREE_THRESHOLD)
1605 >                                    replaceWithTreeBin(tab, i, k);
1606 >                                break;
1607 >                            }
1608 >                        }
1609 >                    }
1610 >                }
1611 >                if (len != 0)
1612 >                    break;
1613              }
1614          }
1615 +        if (delta != 0)
1616 +            addCount((long)delta, len);
1617 +        return val;
1618 +    }
1619  
1620 <        V replace(K key, int hash, V newValue) {
1621 <            lock();
1622 <            try {
1623 <                HashEntry<K,V> e = getFirst(hash);
1624 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1625 <                    e = e.next;
1620 >    /** Implementation for putAll */
1621 >    @SuppressWarnings("unchecked") private final void internalPutAll
1622 >        (Map<? extends K, ? extends V> m) {
1623 >        tryPresize(m.size());
1624 >        long delta = 0L;     // number of uncommitted additions
1625 >        boolean npe = false; // to throw exception on exit for nulls
1626 >        try {                // to clean up counts on other exceptions
1627 >            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 >                Object k; V v;
1629 >                if (entry == null || (k = entry.getKey()) == null ||
1630 >                    (v = entry.getValue()) == null) {
1631 >                    npe = true;
1632 >                    break;
1633 >                }
1634 >                int h = spread(k.hashCode());
1635 >                for (Node<V>[] tab = table;;) {
1636 >                    int i; Node<V> f; int fh; Object fk;
1637 >                    if (tab == null)
1638 >                        tab = initTable();
1639 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 >                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 >                            ++delta;
1642 >                            break;
1643 >                        }
1644 >                    }
1645 >                    else if ((fh = f.hash) < 0) {
1646 >                        if ((fk = f.key) instanceof TreeBin) {
1647 >                            TreeBin<V> t = (TreeBin<V>)fk;
1648 >                            boolean validated = false;
1649 >                            t.acquire(0);
1650 >                            try {
1651 >                                if (tabAt(tab, i) == f) {
1652 >                                    validated = true;
1653 >                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 >                                    if (p != null)
1655 >                                        p.val = v;
1656 >                                    else {
1657 >                                        t.putTreeNode(h, k, v);
1658 >                                        ++delta;
1659 >                                    }
1660 >                                }
1661 >                            } finally {
1662 >                                t.release(0);
1663 >                            }
1664 >                            if (validated)
1665 >                                break;
1666 >                        }
1667 >                        else
1668 >                            tab = (Node<V>[])fk;
1669 >                    }
1670 >                    else {
1671 >                        int len = 0;
1672 >                        synchronized (f) {
1673 >                            if (tabAt(tab, i) == f) {
1674 >                                len = 1;
1675 >                                for (Node<V> e = f;; ++len) {
1676 >                                    Object ek; V ev;
1677 >                                    if (e.hash == h &&
1678 >                                        (ev = e.val) != null &&
1679 >                                        ((ek = e.key) == k || k.equals(ek))) {
1680 >                                        e.val = v;
1681 >                                        break;
1682 >                                    }
1683 >                                    Node<V> last = e;
1684 >                                    if ((e = e.next) == null) {
1685 >                                        ++delta;
1686 >                                        last.next = new Node<V>(h, k, v, null);
1687 >                                        if (len >= TREE_THRESHOLD)
1688 >                                            replaceWithTreeBin(tab, i, k);
1689 >                                        break;
1690 >                                    }
1691 >                                }
1692 >                            }
1693 >                        }
1694 >                        if (len != 0) {
1695 >                            if (len > 1) {
1696 >                                addCount(delta, len);
1697 >                                delta = 0L;
1698 >                            }
1699 >                            break;
1700 >                        }
1701 >                    }
1702 >                }
1703 >            }
1704 >        } finally {
1705 >            if (delta != 0L)
1706 >                addCount(delta, 2);
1707 >        }
1708 >        if (npe)
1709 >            throw new NullPointerException();
1710 >    }
1711  
1712 <                V oldValue = null;
1713 <                if (e != null) {
1714 <                    oldValue = e.value;
1715 <                    e.value = newValue;
1712 >    /**
1713 >     * Implementation for clear. Steps through each bin, removing all
1714 >     * nodes.
1715 >     */
1716 >    @SuppressWarnings("unchecked") private final void internalClear() {
1717 >        long delta = 0L; // negative number of deletions
1718 >        int i = 0;
1719 >        Node<V>[] tab = table;
1720 >        while (tab != null && i < tab.length) {
1721 >            Node<V> f = tabAt(tab, i);
1722 >            if (f == null)
1723 >                ++i;
1724 >            else if (f.hash < 0) {
1725 >                Object fk;
1726 >                if ((fk = f.key) instanceof TreeBin) {
1727 >                    TreeBin<V> t = (TreeBin<V>)fk;
1728 >                    t.acquire(0);
1729 >                    try {
1730 >                        if (tabAt(tab, i) == f) {
1731 >                            for (Node<V> p = t.first; p != null; p = p.next) {
1732 >                                if (p.val != null) { // (currently always true)
1733 >                                    p.val = null;
1734 >                                    --delta;
1735 >                                }
1736 >                            }
1737 >                            t.first = null;
1738 >                            t.root = null;
1739 >                            ++i;
1740 >                        }
1741 >                    } finally {
1742 >                        t.release(0);
1743 >                    }
1744 >                }
1745 >                else
1746 >                    tab = (Node<V>[])fk;
1747 >            }
1748 >            else {
1749 >                synchronized (f) {
1750 >                    if (tabAt(tab, i) == f) {
1751 >                        for (Node<V> e = f; e != null; e = e.next) {
1752 >                            if (e.val != null) {  // (currently always true)
1753 >                                e.val = null;
1754 >                                --delta;
1755 >                            }
1756 >                        }
1757 >                        setTabAt(tab, i, null);
1758 >                        ++i;
1759 >                    }
1760                  }
399                return oldValue;
400            } finally {
401                unlock();
1761              }
1762          }
1763 +        if (delta != 0L)
1764 +            addCount(delta, -1);
1765 +    }
1766  
1767 +    /* ---------------- Table Initialization and Resizing -------------- */
1768  
1769 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
1770 <            lock();
1771 <            try {
1772 <                int c = count;
1773 <                if (c++ > threshold) // ensure capacity
1774 <                    rehash();
1775 <                HashEntry[] tab = table;
1776 <                int index = hash & (tab.length - 1);
1777 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
1778 <                HashEntry<K,V> e = first;
1779 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1780 <                    e = e.next;
1769 >    /**
1770 >     * Returns a power of two table size for the given desired capacity.
1771 >     * See Hackers Delight, sec 3.2
1772 >     */
1773 >    private static final int tableSizeFor(int c) {
1774 >        int n = c - 1;
1775 >        n |= n >>> 1;
1776 >        n |= n >>> 2;
1777 >        n |= n >>> 4;
1778 >        n |= n >>> 8;
1779 >        n |= n >>> 16;
1780 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 >    }
1782  
1783 <                V oldValue;
1784 <                if (e != null) {
1785 <                    oldValue = e.value;
1786 <                    if (!onlyIfAbsent)
1787 <                        e.value = value;
1788 <                }
1789 <                else {
1790 <                    oldValue = null;
1791 <                    ++modCount;
1792 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
1793 <                    count = c; // write-volatile
1783 >    /**
1784 >     * Initializes table, using the size recorded in sizeCtl.
1785 >     */
1786 >    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787 >        Node<V>[] tab; int sc;
1788 >        while ((tab = table) == null) {
1789 >            if ((sc = sizeCtl) < 0)
1790 >                Thread.yield(); // lost initialization race; just spin
1791 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 >                try {
1793 >                    if ((tab = table) == null) {
1794 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 >                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796 >                        table = tab = (Node<V>[])tb;
1797 >                        sc = n - (n >>> 2);
1798 >                    }
1799 >                } finally {
1800 >                    sizeCtl = sc;
1801                  }
1802 <                return oldValue;
432 <            } finally {
433 <                unlock();
1802 >                break;
1803              }
1804          }
1805 +        return tab;
1806 +    }
1807  
1808 <        void rehash() {
1809 <            HashEntry[] oldTable = table;            
1810 <            int oldCapacity = oldTable.length;
1811 <            if (oldCapacity >= MAXIMUM_CAPACITY)
1808 >    /**
1809 >     * Adds to count, and if table is too small and not already
1810 >     * resizing, initiates transfer. If already resizing, helps
1811 >     * perform transfer if work is available.  Rechecks occupancy
1812 >     * after a transfer to see if another resize is already needed
1813 >     * because resizings are lagging additions.
1814 >     *
1815 >     * @param x the count to add
1816 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817 >     */
1818 >    private final void addCount(long x, int check) {
1819 >        Cell[] as; long b, s;
1820 >        if ((as = counterCells) != null ||
1821 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 >            Cell a; long v; int m;
1823 >            boolean uncontended = true;
1824 >            if (as == null || (m = as.length - 1) < 0 ||
1825 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 >                !(uncontended =
1827 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 >                fullAddCount(x, uncontended);
1829 >                return;
1830 >            }
1831 >            if (check <= 1)
1832                  return;
1833 +            s = sumCount();
1834 +        }
1835 +        if (check >= 0) {
1836 +            Node<V>[] tab, nt; int sc;
1837 +            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838 +                   tab.length < MAXIMUM_CAPACITY) {
1839 +                if (sc < 0) {
1840 +                    if (sc == -1 || transferIndex <= transferOrigin ||
1841 +                        (nt = nextTable) == null)
1842 +                        break;
1843 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844 +                        transfer(tab, nt);
1845 +                }
1846 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847 +                    transfer(tab, null);
1848 +                s = sumCount();
1849 +            }
1850 +        }
1851 +    }
1852  
1853 <            /*
1854 <             * Reclassify nodes in each list to new Map.  Because we are
1855 <             * using power-of-two expansion, the elements from each bin
1856 <             * must either stay at same index, or move with a power of two
1857 <             * offset. We eliminate unnecessary node creation by catching
1858 <             * cases where old nodes can be reused because their next
1859 <             * fields won't change. Statistically, at the default
1860 <             * threshold, only about one-sixth of them need cloning when
1861 <             * a table doubles. The nodes they replace will be garbage
1862 <             * collectable as soon as they are no longer referenced by any
1863 <             * reader thread that may be in the midst of traversing table
1864 <             * right now.
1865 <             */
1866 <
1867 <            HashEntry[] newTable = new HashEntry[oldCapacity << 1];
1868 <            threshold = (int)(newTable.length * loadFactor);
1869 <            int sizeMask = newTable.length - 1;
1870 <            for (int i = 0; i < oldCapacity ; i++) {
1871 <                // We need to guarantee that any existing reads of old Map can
1872 <                //  proceed. So we cannot yet null out each bin.
1873 <                HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
1874 <
1875 <                if (e != null) {
1876 <                    HashEntry<K,V> next = e.next;
1877 <                    int idx = e.hash & sizeMask;
1878 <
1879 <                    //  Single node on list
1880 <                    if (next == null)
1881 <                        newTable[idx] = e;
1853 >    /**
1854 >     * Tries to presize table to accommodate the given number of elements.
1855 >     *
1856 >     * @param size number of elements (doesn't need to be perfectly accurate)
1857 >     */
1858 >    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860 >            tableSizeFor(size + (size >>> 1) + 1);
1861 >        int sc;
1862 >        while ((sc = sizeCtl) >= 0) {
1863 >            Node<V>[] tab = table; int n;
1864 >            if (tab == null || (n = tab.length) == 0) {
1865 >                n = (sc > c) ? sc : c;
1866 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 >                    try {
1868 >                        if (table == tab) {
1869 >                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870 >                            table = (Node<V>[])tb;
1871 >                            sc = n - (n >>> 2);
1872 >                        }
1873 >                    } finally {
1874 >                        sizeCtl = sc;
1875 >                    }
1876 >                }
1877 >            }
1878 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879 >                break;
1880 >            else if (tab == table &&
1881 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882 >                transfer(tab, null);
1883 >        }
1884 >    }
1885  
1886 <                    else {
1887 <                        // Reuse trailing consecutive sequence at same slot
1888 <                        HashEntry<K,V> lastRun = e;
1889 <                        int lastIdx = idx;
1890 <                        for (HashEntry<K,V> last = next;
1891 <                             last != null;
1892 <                             last = last.next) {
1893 <                            int k = last.hash & sizeMask;
1894 <                            if (k != lastIdx) {
1895 <                                lastIdx = k;
1896 <                                lastRun = last;
1886 >    /*
1887 >     * Moves and/or copies the nodes in each bin to new table. See
1888 >     * above for explanation.
1889 >     */
1890 >    @SuppressWarnings("unchecked") private final void transfer
1891 >        (Node<V>[] tab, Node<V>[] nextTab) {
1892 >        int n = tab.length, stride;
1893 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1895 >        if (nextTab == null) {            // initiating
1896 >            try {
1897 >                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898 >                nextTab = (Node<V>[])tb;
1899 >            } catch (Throwable ex) {      // try to cope with OOME
1900 >                sizeCtl = Integer.MAX_VALUE;
1901 >                return;
1902 >            }
1903 >            nextTable = nextTab;
1904 >            transferOrigin = n;
1905 >            transferIndex = n;
1906 >            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
1908 >                int nextk = (k > stride) ? k - stride : 0;
1909 >                for (int m = nextk; m < k; ++m)
1910 >                    nextTab[m] = rev;
1911 >                for (int m = n + nextk; m < n + k; ++m)
1912 >                    nextTab[m] = rev;
1913 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914 >            }
1915 >        }
1916 >        int nextn = nextTab.length;
1917 >        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 >        boolean advance = true;
1919 >        for (int i = 0, bound = 0;;) {
1920 >            int nextIndex, nextBound; Node<V> f; Object fk;
1921 >            while (advance) {
1922 >                if (--i >= bound)
1923 >                    advance = false;
1924 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
1925 >                    i = -1;
1926 >                    advance = false;
1927 >                }
1928 >                else if (U.compareAndSwapInt
1929 >                         (this, TRANSFERINDEX, nextIndex,
1930 >                          nextBound = (nextIndex > stride ?
1931 >                                       nextIndex - stride : 0))) {
1932 >                    bound = nextBound;
1933 >                    i = nextIndex - 1;
1934 >                    advance = false;
1935 >                }
1936 >            }
1937 >            if (i < 0 || i >= n || i + n >= nextn) {
1938 >                for (int sc;;) {
1939 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940 >                        if (sc == -1) {
1941 >                            nextTable = null;
1942 >                            table = nextTab;
1943 >                            sizeCtl = (n << 1) - (n >>> 1);
1944 >                        }
1945 >                        return;
1946 >                    }
1947 >                }
1948 >            }
1949 >            else if ((f = tabAt(tab, i)) == null) {
1950 >                if (casTabAt(tab, i, null, fwd)) {
1951 >                    setTabAt(nextTab, i, null);
1952 >                    setTabAt(nextTab, i + n, null);
1953 >                    advance = true;
1954 >                }
1955 >            }
1956 >            else if (f.hash >= 0) {
1957 >                synchronized (f) {
1958 >                    if (tabAt(tab, i) == f) {
1959 >                        int runBit = f.hash & n;
1960 >                        Node<V> lastRun = f, lo = null, hi = null;
1961 >                        for (Node<V> p = f.next; p != null; p = p.next) {
1962 >                            int b = p.hash & n;
1963 >                            if (b != runBit) {
1964 >                                runBit = b;
1965 >                                lastRun = p;
1966                              }
1967                          }
1968 <                        newTable[lastIdx] = lastRun;
1969 <
1970 <                        // Clone all remaining nodes
1971 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1972 <                            int k = p.hash & sizeMask;
1973 <                            HashEntry<K,V> n = (HashEntry<K,V>)newTable[k];
1974 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
1975 <                                                             n, p.value);
1968 >                        if (runBit == 0)
1969 >                            lo = lastRun;
1970 >                        else
1971 >                            hi = lastRun;
1972 >                        for (Node<V> p = f; p != lastRun; p = p.next) {
1973 >                            int ph = p.hash;
1974 >                            Object pk = p.key; V pv = p.val;
1975 >                            if ((ph & n) == 0)
1976 >                                lo = new Node<V>(ph, pk, pv, lo);
1977 >                            else
1978 >                                hi = new Node<V>(ph, pk, pv, hi);
1979 >                        }
1980 >                        setTabAt(nextTab, i, lo);
1981 >                        setTabAt(nextTab, i + n, hi);
1982 >                        setTabAt(tab, i, fwd);
1983 >                        advance = true;
1984 >                    }
1985 >                }
1986 >            }
1987 >            else if ((fk = f.key) instanceof TreeBin) {
1988 >                TreeBin<V> t = (TreeBin<V>)fk;
1989 >                t.acquire(0);
1990 >                try {
1991 >                    if (tabAt(tab, i) == f) {
1992 >                        TreeBin<V> lt = new TreeBin<V>();
1993 >                        TreeBin<V> ht = new TreeBin<V>();
1994 >                        int lc = 0, hc = 0;
1995 >                        for (Node<V> e = t.first; e != null; e = e.next) {
1996 >                            int h = e.hash;
1997 >                            Object k = e.key; V v = e.val;
1998 >                            if ((h & n) == 0) {
1999 >                                ++lc;
2000 >                                lt.putTreeNode(h, k, v);
2001 >                            }
2002 >                            else {
2003 >                                ++hc;
2004 >                                ht.putTreeNode(h, k, v);
2005 >                            }
2006                          }
2007 +                        Node<V> ln, hn; // throw away trees if too small
2008 +                        if (lc < TREE_THRESHOLD) {
2009 +                            ln = null;
2010 +                            for (Node<V> p = lt.first; p != null; p = p.next)
2011 +                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 +                        }
2013 +                        else
2014 +                            ln = new Node<V>(MOVED, lt, null, null);
2015 +                        setTabAt(nextTab, i, ln);
2016 +                        if (hc < TREE_THRESHOLD) {
2017 +                            hn = null;
2018 +                            for (Node<V> p = ht.first; p != null; p = p.next)
2019 +                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 +                        }
2021 +                        else
2022 +                            hn = new Node<V>(MOVED, ht, null, null);
2023 +                        setTabAt(nextTab, i + n, hn);
2024 +                        setTabAt(tab, i, fwd);
2025 +                        advance = true;
2026                      }
2027 +                } finally {
2028 +                    t.release(0);
2029                  }
2030              }
2031 <            table = newTable;
2031 >            else
2032 >                advance = true; // already processed
2033          }
2034 +    }
2035  
2036 <        /**
502 <         * Remove; match on key only if value null, else match both.
503 <         */
504 <        V remove(Object key, int hash, Object value) {
505 <            lock();
506 <            try {
507 <                int c = count - 1;
508 <                HashEntry[] tab = table;
509 <                int index = hash & (tab.length - 1);
510 <                HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
511 <                HashEntry<K,V> e = first;
512 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
513 <                    e = e.next;
2036 >    /* ---------------- Counter support -------------- */
2037  
2038 <                V oldValue = null;
2039 <                if (e != null) {
2040 <                    V v = e.value;
2041 <                    if (value == null || value.equals(v)) {
2042 <                        oldValue = v;
2043 <                        // All entries following removed node can stay
2044 <                        // in list, but all preceding ones need to be
522 <                        // cloned.
523 <                        ++modCount;
524 <                        HashEntry<K,V> newFirst = e.next;
525 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
526 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,  
527 <                                                          newFirst, p.value);
528 <                        tab[index] = newFirst;
529 <                        count = c; // write-volatile
530 <                    }
531 <                }
532 <                return oldValue;
533 <            } finally {
534 <                unlock();
2038 >    final long sumCount() {
2039 >        Cell[] as = counterCells; Cell a;
2040 >        long sum = baseCount;
2041 >        if (as != null) {
2042 >            for (int i = 0; i < as.length; ++i) {
2043 >                if ((a = as[i]) != null)
2044 >                    sum += a.value;
2045              }
2046          }
2047 +        return sum;
2048 +    }
2049  
2050 <        void clear() {
2051 <            if (count != 0) {
2052 <                lock();
2053 <                try {
2054 <                    HashEntry[] tab = table;
2055 <                    for (int i = 0; i < tab.length ; i++)
2056 <                        tab[i] = null;
2057 <                    ++modCount;
2058 <                    count = 0; // write-volatile
2050 >    // See LongAdder version for explanation
2051 >    private final void fullAddCount(long x, boolean wasUncontended) {
2052 >        int h;
2053 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054 >            ThreadLocalRandom.localInit();      // force initialization
2055 >            h = ThreadLocalRandom.getProbe();
2056 >            wasUncontended = true;
2057 >        }
2058 >        boolean collide = false;                // True if last slot nonempty
2059 >        for (;;) {
2060 >            Cell[] as; Cell a; int n; long v;
2061 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2062 >                if ((a = as[(n - 1) & h]) == null) {
2063 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2064 >                        Cell r = new Cell(x); // Optimistic create
2065 >                        if (cellsBusy == 0 &&
2066 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 >                            boolean created = false;
2068 >                            try {               // Recheck under lock
2069 >                                Cell[] rs; int m, j;
2070 >                                if ((rs = counterCells) != null &&
2071 >                                    (m = rs.length) > 0 &&
2072 >                                    rs[j = (m - 1) & h] == null) {
2073 >                                    rs[j] = r;
2074 >                                    created = true;
2075 >                                }
2076 >                            } finally {
2077 >                                cellsBusy = 0;
2078 >                            }
2079 >                            if (created)
2080 >                                break;
2081 >                            continue;           // Slot is now non-empty
2082 >                        }
2083 >                    }
2084 >                    collide = false;
2085 >                }
2086 >                else if (!wasUncontended)       // CAS already known to fail
2087 >                    wasUncontended = true;      // Continue after rehash
2088 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089 >                    break;
2090 >                else if (counterCells != as || n >= NCPU)
2091 >                    collide = false;            // At max size or stale
2092 >                else if (!collide)
2093 >                    collide = true;
2094 >                else if (cellsBusy == 0 &&
2095 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 >                    try {
2097 >                        if (counterCells == as) {// Expand table unless stale
2098 >                            Cell[] rs = new Cell[n << 1];
2099 >                            for (int i = 0; i < n; ++i)
2100 >                                rs[i] = as[i];
2101 >                            counterCells = rs;
2102 >                        }
2103 >                    } finally {
2104 >                        cellsBusy = 0;
2105 >                    }
2106 >                    collide = false;
2107 >                    continue;                   // Retry with expanded table
2108 >                }
2109 >                h = ThreadLocalRandom.advanceProbe(h);
2110 >            }
2111 >            else if (cellsBusy == 0 && counterCells == as &&
2112 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 >                boolean init = false;
2114 >                try {                           // Initialize table
2115 >                    if (counterCells == as) {
2116 >                        Cell[] rs = new Cell[2];
2117 >                        rs[h & 1] = new Cell(x);
2118 >                        counterCells = rs;
2119 >                        init = true;
2120 >                    }
2121                  } finally {
2122 <                    unlock();
2122 >                    cellsBusy = 0;
2123                  }
2124 +                if (init)
2125 +                    break;
2126              }
2127 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128 +                break;                          // Fall back on using base
2129          }
2130      }
2131  
2132 +    /* ----------------Table Traversal -------------- */
2133 +
2134 +    /**
2135 +     * Encapsulates traversal for methods such as containsValue; also
2136 +     * serves as a base class for other iterators and bulk tasks.
2137 +     *
2138 +     * At each step, the iterator snapshots the key ("nextKey") and
2139 +     * value ("nextVal") of a valid node (i.e., one that, at point of
2140 +     * snapshot, has a non-null user value). Because val fields can
2141 +     * change (including to null, indicating deletion), field nextVal
2142 +     * might not be accurate at point of use, but still maintains the
2143 +     * weak consistency property of holding a value that was once
2144 +     * valid. To support iterator.remove, the nextKey field is not
2145 +     * updated (nulled out) when the iterator cannot advance.
2146 +     *
2147 +     * Internal traversals directly access these fields, as in:
2148 +     * {@code while (it.advance() != null) { process(it.nextKey); }}
2149 +     *
2150 +     * Exported iterators must track whether the iterator has advanced
2151 +     * (in hasNext vs next) (by setting/checking/nulling field
2152 +     * nextVal), and then extract key, value, or key-value pairs as
2153 +     * return values of next().
2154 +     *
2155 +     * The iterator visits once each still-valid node that was
2156 +     * reachable upon iterator construction. It might miss some that
2157 +     * were added to a bin after the bin was visited, which is OK wrt
2158 +     * consistency guarantees. Maintaining this property in the face
2159 +     * of possible ongoing resizes requires a fair amount of
2160 +     * bookkeeping state that is difficult to optimize away amidst
2161 +     * volatile accesses.  Even so, traversal maintains reasonable
2162 +     * throughput.
2163 +     *
2164 +     * Normally, iteration proceeds bin-by-bin traversing lists.
2165 +     * However, if the table has been resized, then all future steps
2166 +     * must traverse both the bin at the current index as well as at
2167 +     * (index + baseSize); and so on for further resizings. To
2168 +     * paranoically cope with potential sharing by users of iterators
2169 +     * across threads, iteration terminates if a bounds checks fails
2170 +     * for a table read.
2171 +     *
2172 +     * This class supports both Spliterator-based traversal and
2173 +     * CountedCompleter-based bulk tasks. The same "batch" field is
2174 +     * used, but in slightly different ways, in the two cases.  For
2175 +     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176 +     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177 +     * size that halves down to zero for leaf tasks, that is only
2178 +     * computed upon execution of the task. (Tasks can be submitted to
2179 +     * any pool, of any size, so we don't know scale factors until
2180 +     * running.)
2181 +     *
2182 +     * This class extends CountedCompleter to streamline parallel
2183 +     * iteration in bulk operations. This adds only a few fields of
2184 +     * space overhead, which is small enough in cases where it is not
2185 +     * needed to not worry about it.  Because CountedCompleter is
2186 +     * Serializable, but iterators need not be, we need to add warning
2187 +     * suppressions.
2188 +     */
2189 +    @SuppressWarnings("serial") static class Traverser<K,V,R>
2190 +        extends CountedCompleter<R> {
2191 +        final ConcurrentHashMap<K, V> map;
2192 +        Node<V> next;        // the next entry to use
2193 +        Object nextKey;      // cached key field of next
2194 +        V nextVal;           // cached val field of next
2195 +        Node<V>[] tab;       // current table; updated if resized
2196 +        int index;           // index of bin to use next
2197 +        int baseIndex;       // current index of initial table
2198 +        int baseLimit;       // index bound for initial table
2199 +        int baseSize;        // initial table size
2200 +        int batch;           // split control
2201 +        /** Creates iterator for all entries in the table. */
2202 +        Traverser(ConcurrentHashMap<K, V> map) {
2203 +            this.map = map;
2204 +            Node<V>[] t;
2205 +            if ((t = tab = map.table) != null)
2206 +                baseLimit = baseSize = t.length;
2207 +        }
2208 +
2209 +        /** Task constructor */
2210 +        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211 +            super(it);
2212 +            this.map = map;
2213 +            this.batch = batch; // -1 if unknown
2214 +            if (it == null) {
2215 +                Node<V>[] t;
2216 +                if ((t = tab = map.table) != null)
2217 +                    baseLimit = baseSize = t.length;
2218 +            }
2219 +            else { // split parent
2220 +                this.tab = it.tab;
2221 +                this.baseSize = it.baseSize;
2222 +                int hi = this.baseLimit = it.baseLimit;
2223 +                it.baseLimit = this.index = this.baseIndex =
2224 +                    (hi + it.baseIndex + 1) >>> 1;
2225 +            }
2226 +        }
2227 +
2228 +        /** Spliterator constructor */
2229 +        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230 +            super(it);
2231 +            this.map = map;
2232 +            if (it == null) {
2233 +                Node<V>[] t;
2234 +                if ((t = tab = map.table) != null)
2235 +                    baseLimit = baseSize = t.length;
2236 +                long n = map.sumCount();
2237 +                batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 +                         (int)n);
2239 +            }
2240 +            else {
2241 +                this.tab = it.tab;
2242 +                this.baseSize = it.baseSize;
2243 +                int hi = this.baseLimit = it.baseLimit;
2244 +                it.baseLimit = this.index = this.baseIndex =
2245 +                    (hi + it.baseIndex + 1) >>> 1;
2246 +                this.batch = it.batch >>>= 1;
2247 +            }
2248 +        }
2249 +
2250 +        /**
2251 +         * Advances next; returns nextVal or null if terminated.
2252 +         * See above for explanation.
2253 +         */
2254 +        @SuppressWarnings("unchecked") final V advance() {
2255 +            Node<V> e = next;
2256 +            V ev = null;
2257 +            outer: do {
2258 +                if (e != null)                  // advance past used/skipped node
2259 +                    e = e.next;
2260 +                while (e == null) {             // get to next non-null bin
2261 +                    ConcurrentHashMap<K, V> m;
2262 +                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2263 +                    if ((t = tab) != null)
2264 +                        n = t.length;
2265 +                    else if ((m = map) != null && (t = tab = m.table) != null)
2266 +                        n = baseLimit = baseSize = t.length;
2267 +                    else
2268 +                        break outer;
2269 +                    if ((b = baseIndex) >= baseLimit ||
2270 +                        (i = index) < 0 || i >= n)
2271 +                        break outer;
2272 +                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 +                        if ((ek = e.key) instanceof TreeBin)
2274 +                            e = ((TreeBin<V>)ek).first;
2275 +                        else {
2276 +                            tab = (Node<V>[])ek;
2277 +                            continue;           // restarts due to null val
2278 +                        }
2279 +                    }                           // visit upper slots if present
2280 +                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281 +                }
2282 +                nextKey = e.key;
2283 +            } while ((ev = e.val) == null);    // skip deleted or special nodes
2284 +            next = e;
2285 +            return nextVal = ev;
2286 +        }
2287  
2288 +        public final void remove() {
2289 +            Object k = nextKey;
2290 +            if (k == null && (advance() == null || (k = nextKey) == null))
2291 +                throw new IllegalStateException();
2292 +            map.internalReplace(k, null, null);
2293 +        }
2294 +
2295 +        public final boolean hasNext() {
2296 +            return nextVal != null || advance() != null;
2297 +        }
2298 +
2299 +        public final boolean hasMoreElements() { return hasNext(); }
2300 +
2301 +        public void compute() { } // default no-op CountedCompleter body
2302 +
2303 +        /**
2304 +         * Returns a batch value > 0 if this task should (and must) be
2305 +         * split, if so, adding to pending count, and in any case
2306 +         * updating batch value. The initial batch value is approx
2307 +         * exp2 of the number of times (minus one) to split task by
2308 +         * two before executing leaf action. This value is faster to
2309 +         * compute and more convenient to use as a guide to splitting
2310 +         * than is the depth, since it is used while dividing by two
2311 +         * anyway.
2312 +         */
2313 +        final int preSplit() {
2314 +            int b;  ForkJoinPool pool;
2315 +            if ((b = batch) < 0) { // force initialization
2316 +                int sp = (((pool = getPool()) == null) ?
2317 +                          ForkJoinPool.getCommonPoolParallelism() :
2318 +                          pool.getParallelism()) << 3; // slack of 8
2319 +                long n = map.sumCount();
2320 +                b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 +            }
2322 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 +            if ((batch = b) > 0)
2324 +                addToPendingCount(1);
2325 +            return b;
2326 +        }
2327 +
2328 +        // spliterator support
2329 +
2330 +        public boolean hasExactSize() {
2331 +            return false;
2332 +        }
2333 +
2334 +        public boolean hasExactSplits() {
2335 +            return false;
2336 +        }
2337 +
2338 +        public long estimateSize() {
2339 +            return batch;
2340 +        }
2341 +    }
2342  
2343      /* ---------------- Public operations -------------- */
2344  
2345      /**
2346 <     * Creates a new, empty map with the specified initial
2347 <     * capacity, load factor, and concurrency level.
2346 >     * Creates a new, empty map with the default initial table size (16).
2347 >     */
2348 >    public ConcurrentHashMap() {
2349 >    }
2350 >
2351 >    /**
2352 >     * Creates a new, empty map with an initial table size
2353 >     * accommodating the specified number of elements without the need
2354 >     * to dynamically resize.
2355       *
2356 <     * @param initialCapacity the initial capacity. The implementation
2357 <     * performs internal sizing to accommodate this many elements.
2358 <     * @param loadFactor  the load factor threshold, used to control resizing.
2359 <     * Resizing may be performed when the average number of elements per
566 <     * bin exceeds this threshold.
567 <     * @param concurrencyLevel the estimated number of concurrently
568 <     * updating threads. The implementation performs internal sizing
569 <     * to try to accommodate this many threads.  
570 <     * @throws IllegalArgumentException if the initial capacity is
571 <     * negative or the load factor or concurrencyLevel are
572 <     * nonpositive.
2356 >     * @param initialCapacity The implementation performs internal
2357 >     * sizing to accommodate this many elements.
2358 >     * @throws IllegalArgumentException if the initial capacity of
2359 >     * elements is negative
2360       */
2361 <    public ConcurrentHashMap(int initialCapacity,
2362 <                             float loadFactor, int concurrencyLevel) {
576 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
2361 >    public ConcurrentHashMap(int initialCapacity) {
2362 >        if (initialCapacity < 0)
2363              throw new IllegalArgumentException();
2364 +        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365 +                   MAXIMUM_CAPACITY :
2366 +                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2367 +        this.sizeCtl = cap;
2368 +    }
2369  
2370 <        if (concurrencyLevel > MAX_SEGMENTS)
2371 <            concurrencyLevel = MAX_SEGMENTS;
2372 <
2373 <        // Find power-of-two sizes best matching arguments
2374 <        int sshift = 0;
2375 <        int ssize = 1;
2376 <        while (ssize < concurrencyLevel) {
2377 <            ++sshift;
587 <            ssize <<= 1;
588 <        }
589 <        segmentShift = 32 - sshift;
590 <        segmentMask = ssize - 1;
591 <        this.segments = new Segment[ssize];
592 <
593 <        if (initialCapacity > MAXIMUM_CAPACITY)
594 <            initialCapacity = MAXIMUM_CAPACITY;
595 <        int c = initialCapacity / ssize;
596 <        if (c * ssize < initialCapacity)
597 <            ++c;
598 <        int cap = 1;
599 <        while (cap < c)
600 <            cap <<= 1;
601 <
602 <        for (int i = 0; i < this.segments.length; ++i)
603 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
2370 >    /**
2371 >     * Creates a new map with the same mappings as the given map.
2372 >     *
2373 >     * @param m the map
2374 >     */
2375 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2376 >        this.sizeCtl = DEFAULT_CAPACITY;
2377 >        internalPutAll(m);
2378      }
2379  
2380      /**
2381 <     * Creates a new, empty map with the specified initial
2382 <     * capacity,  and with default load factor (<tt>0.75f</tt>)
2383 <     * and concurrencyLevel (<tt>16</tt>).
2381 >     * Creates a new, empty map with an initial table size based on
2382 >     * the given number of elements ({@code initialCapacity}) and
2383 >     * initial table density ({@code loadFactor}).
2384       *
2385       * @param initialCapacity the initial capacity. The implementation
2386 <     * performs internal sizing to accommodate this many elements.
2386 >     * performs internal sizing to accommodate this many elements,
2387 >     * given the specified load factor.
2388 >     * @param loadFactor the load factor (table density) for
2389 >     * establishing the initial table size
2390       * @throws IllegalArgumentException if the initial capacity of
2391 <     * elements is negative.
2391 >     * elements is negative or the load factor is nonpositive
2392 >     *
2393 >     * @since 1.6
2394       */
2395 <    public ConcurrentHashMap(int initialCapacity) {
2396 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
2395 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2396 >        this(initialCapacity, loadFactor, 1);
2397      }
2398  
2399      /**
2400 <     * Creates a new, empty map with a default initial capacity
2401 <     * (<tt>16</tt>), load factor (<tt>0.75f</tt>) and
2402 <     * concurrencyLevel (<tt>16</tt>).
2400 >     * Creates a new, empty map with an initial table size based on
2401 >     * the given number of elements ({@code initialCapacity}), table
2402 >     * density ({@code loadFactor}), and number of concurrently
2403 >     * updating threads ({@code concurrencyLevel}).
2404 >     *
2405 >     * @param initialCapacity the initial capacity. The implementation
2406 >     * performs internal sizing to accommodate this many elements,
2407 >     * given the specified load factor.
2408 >     * @param loadFactor the load factor (table density) for
2409 >     * establishing the initial table size
2410 >     * @param concurrencyLevel the estimated number of concurrently
2411 >     * updating threads. The implementation may use this value as
2412 >     * a sizing hint.
2413 >     * @throws IllegalArgumentException if the initial capacity is
2414 >     * negative or the load factor or concurrencyLevel are
2415 >     * nonpositive
2416       */
2417 <    public ConcurrentHashMap() {
2418 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
2417 >    public ConcurrentHashMap(int initialCapacity,
2418 >                               float loadFactor, int concurrencyLevel) {
2419 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2420 >            throw new IllegalArgumentException();
2421 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2422 >            initialCapacity = concurrencyLevel;   // as estimated threads
2423 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2426 >        this.sizeCtl = cap;
2427      }
2428  
2429      /**
2430 <     * Creates a new map with the same mappings as the given map.  The
2431 <     * map is created with a capacity consistent with the default load
2432 <     * factor (<tt>0.75f</tt>) and uses the default concurrencyLevel
2433 <     * (<tt>16</tt>).
634 <     * @param t the map
2430 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2431 >     * from the given type to {@code Boolean.TRUE}.
2432 >     *
2433 >     * @return the new set
2434       */
2435 <    public ConcurrentHashMap(Map<? extends K, ? extends V> t) {
2436 <        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
2437 <                      DEFAULT_INITIAL_CAPACITY),
639 <             DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
640 <        putAll(t);
2435 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2436 >        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2437 >                                      Boolean.TRUE);
2438      }
2439  
2440 <    // inherit Map javadoc
2440 >    /**
2441 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2442 >     * from the given type to {@code Boolean.TRUE}.
2443 >     *
2444 >     * @param initialCapacity The implementation performs internal
2445 >     * sizing to accommodate this many elements.
2446 >     * @throws IllegalArgumentException if the initial capacity of
2447 >     * elements is negative
2448 >     * @return the new set
2449 >     */
2450 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 >        return new KeySetView<K,Boolean>
2452 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453 >    }
2454 >
2455 >    /**
2456 >     * {@inheritDoc}
2457 >     */
2458      public boolean isEmpty() {
2459 <        final Segment[] segments = this.segments;
646 <        /*
647 <         * We keep track of per-segment modCounts to avoid ABA
648 <         * problems in which an element in one segment was added and
649 <         * in another removed during traversal, in which case the
650 <         * table was never actually empty at any point. Note the
651 <         * similar use of modCounts in the size() and containsValue()
652 <         * methods, which are the only other methods also susceptible
653 <         * to ABA problems.
654 <         */
655 <        int[] mc = new int[segments.length];
656 <        int mcsum = 0;
657 <        for (int i = 0; i < segments.length; ++i) {
658 <            if (segments[i].count != 0)
659 <                return false;
660 <            else
661 <                mcsum += mc[i] = segments[i].modCount;
662 <        }
663 <        // If mcsum happens to be zero, then we know we got a snapshot
664 <        // before any modifications at all were made.  This is
665 <        // probably common enough to bother tracking.
666 <        if (mcsum != 0) {
667 <            for (int i = 0; i < segments.length; ++i) {
668 <                if (segments[i].count != 0 ||
669 <                    mc[i] != segments[i].modCount)
670 <                    return false;
671 <            }
672 <        }
673 <        return true;
2459 >        return sumCount() <= 0L; // ignore transient negative values
2460      }
2461  
2462 <    // inherit Map javadoc
2462 >    /**
2463 >     * {@inheritDoc}
2464 >     */
2465      public int size() {
2466 <        final Segment[] segments = this.segments;
2467 <        long sum = 0;
2468 <        long check = 0;
2469 <        int[] mc = new int[segments.length];
682 <        // Try a few times to get accurate count. On failure due to
683 <        // continuous async changes in table, resort to locking.
684 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
685 <            check = 0;
686 <            sum = 0;
687 <            int mcsum = 0;
688 <            for (int i = 0; i < segments.length; ++i) {
689 <                sum += segments[i].count;
690 <                mcsum += mc[i] = segments[i].modCount;
691 <            }
692 <            if (mcsum != 0) {
693 <                for (int i = 0; i < segments.length; ++i) {
694 <                    check += segments[i].count;
695 <                    if (mc[i] != segments[i].modCount) {
696 <                        check = -1; // force retry
697 <                        break;
698 <                    }
699 <                }
700 <            }
701 <            if (check == sum)
702 <                break;
703 <        }
704 <        if (check != sum) { // Resort to locking all segments
705 <            sum = 0;
706 <            for (int i = 0; i < segments.length; ++i)
707 <                segments[i].lock();
708 <            for (int i = 0; i < segments.length; ++i)
709 <                sum += segments[i].count;
710 <            for (int i = 0; i < segments.length; ++i)
711 <                segments[i].unlock();
712 <        }
713 <        if (sum > Integer.MAX_VALUE)
714 <            return Integer.MAX_VALUE;
715 <        else
716 <            return (int)sum;
2466 >        long n = sumCount();
2467 >        return ((n < 0L) ? 0 :
2468 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469 >                (int)n);
2470      }
2471  
2472 +    /**
2473 +     * Returns the number of mappings. This method should be used
2474 +     * instead of {@link #size} because a ConcurrentHashMap may
2475 +     * contain more mappings than can be represented as an int. The
2476 +     * value returned is an estimate; the actual count may differ if
2477 +     * there are concurrent insertions or removals.
2478 +     *
2479 +     * @return the number of mappings
2480 +     */
2481 +    public long mappingCount() {
2482 +        long n = sumCount();
2483 +        return (n < 0L) ? 0L : n; // ignore transient negative values
2484 +    }
2485  
2486      /**
2487 <     * Returns the value to which the specified key is mapped in this table.
2488 <     *
2489 <     * @param   key   a key in the table.
2490 <     * @return  the value to which the key is mapped in this table;
2491 <     *          <tt>null</tt> if the key is not mapped to any value in
2492 <     *          this table.
2493 <     * @throws  NullPointerException  if the key is
2494 <     *               <tt>null</tt>.
2487 >     * Returns the value to which the specified key is mapped,
2488 >     * or {@code null} if this map contains no mapping for the key.
2489 >     *
2490 >     * <p>More formally, if this map contains a mapping from a key
2491 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2492 >     * then this method returns {@code v}; otherwise it returns
2493 >     * {@code null}.  (There can be at most one such mapping.)
2494 >     *
2495 >     * @throws NullPointerException if the specified key is null
2496       */
2497      public V get(Object key) {
2498 <        int hash = hash(key); // throws NullPointerException if key null
2499 <        return segmentFor(hash).get(key, hash);
2498 >        return internalGet(key);
2499 >    }
2500 >
2501 >    /**
2502 >     * Returns the value to which the specified key is mapped,
2503 >     * or the given defaultValue if this map contains no mapping for the key.
2504 >     *
2505 >     * @param key the key
2506 >     * @param defaultValue the value to return if this map contains
2507 >     * no mapping for the given key
2508 >     * @return the mapping for the key, if present; else the defaultValue
2509 >     * @throws NullPointerException if the specified key is null
2510 >     */
2511 >    public V getValueOrDefault(Object key, V defaultValue) {
2512 >        V v;
2513 >        return (v = internalGet(key)) == null ? defaultValue : v;
2514      }
2515  
2516      /**
2517       * Tests if the specified object is a key in this table.
2518       *
2519 <     * @param   key   possible key.
2520 <     * @return  <tt>true</tt> if and only if the specified object
2521 <     *          is a key in this table, as determined by the
2522 <     *          <tt>equals</tt> method; <tt>false</tt> otherwise.
2523 <     * @throws  NullPointerException  if the key is
743 <     *               <tt>null</tt>.
2519 >     * @param  key   possible key
2520 >     * @return {@code true} if and only if the specified object
2521 >     *         is a key in this table, as determined by the
2522 >     *         {@code equals} method; {@code false} otherwise
2523 >     * @throws NullPointerException if the specified key is null
2524       */
2525      public boolean containsKey(Object key) {
2526 <        int hash = hash(key); // throws NullPointerException if key null
747 <        return segmentFor(hash).containsKey(key, hash);
2526 >        return internalGet(key) != null;
2527      }
2528  
2529      /**
2530 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2531 <     * specified value. Note: This method requires a full internal
2532 <     * traversal of the hash table, and so is much slower than
754 <     * method <tt>containsKey</tt>.
2530 >     * Returns {@code true} if this map maps one or more keys to the
2531 >     * specified value. Note: This method may require a full traversal
2532 >     * of the map, and is much slower than method {@code containsKey}.
2533       *
2534 <     * @param value value whose presence in this map is to be tested.
2535 <     * @return <tt>true</tt> if this map maps one or more keys to the
2536 <     * specified value.
2537 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
2534 >     * @param value value whose presence in this map is to be tested
2535 >     * @return {@code true} if this map maps one or more keys to the
2536 >     *         specified value
2537 >     * @throws NullPointerException if the specified value is null
2538       */
2539      public boolean containsValue(Object value) {
2540          if (value == null)
2541              throw new NullPointerException();
2542 <        
2543 <        // See explanation of modCount use above
2544 <
2545 <        final Segment[] segments = this.segments;
2546 <        int[] mc = new int[segments.length];
769 <
770 <        // Try a few times without locking
771 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
772 <            int sum = 0;
773 <            int mcsum = 0;
774 <            for (int i = 0; i < segments.length; ++i) {
775 <                int c = segments[i].count;
776 <                mcsum += mc[i] = segments[i].modCount;
777 <                if (segments[i].containsValue(value))
778 <                    return true;
779 <            }
780 <            boolean cleanSweep = true;
781 <            if (mcsum != 0) {
782 <                for (int i = 0; i < segments.length; ++i) {
783 <                    int c = segments[i].count;
784 <                    if (mc[i] != segments[i].modCount) {
785 <                        cleanSweep = false;
786 <                        break;
787 <                    }
788 <                }
789 <            }
790 <            if (cleanSweep)
791 <                return false;
2542 >        V v;
2543 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544 >        while ((v = it.advance()) != null) {
2545 >            if (v == value || value.equals(v))
2546 >                return true;
2547          }
2548 <        // Resort to locking all segments
794 <        for (int i = 0; i < segments.length; ++i)
795 <            segments[i].lock();
796 <        boolean found = false;
797 <        try {
798 <            for (int i = 0; i < segments.length; ++i) {
799 <                if (segments[i].containsValue(value)) {
800 <                    found = true;
801 <                    break;
802 <                }
803 <            }
804 <        } finally {
805 <            for (int i = 0; i < segments.length; ++i)
806 <                segments[i].unlock();
807 <        }
808 <        return found;
2548 >        return false;
2549      }
2550  
2551      /**
2552       * Legacy method testing if some key maps into the specified value
2553       * in this table.  This method is identical in functionality to
2554 <     * {@link #containsValue}, and  exists solely to ensure
2554 >     * {@link #containsValue}, and exists solely to ensure
2555       * full compatibility with class {@link java.util.Hashtable},
2556       * which supported this method prior to introduction of the
2557       * Java Collections framework.
2558 <
2559 <     * @param      value   a value to search for.
2560 <     * @return     <tt>true</tt> if and only if some key maps to the
2561 <     *             <tt>value</tt> argument in this table as
2562 <     *             determined by the <tt>equals</tt> method;
2563 <     *             <tt>false</tt> otherwise.
2564 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
2558 >     *
2559 >     * @param  value a value to search for
2560 >     * @return {@code true} if and only if some key maps to the
2561 >     *         {@code value} argument in this table as
2562 >     *         determined by the {@code equals} method;
2563 >     *         {@code false} otherwise
2564 >     * @throws NullPointerException if the specified value is null
2565       */
2566 <    public boolean contains(Object value) {
2566 >    @Deprecated public boolean contains(Object value) {
2567          return containsValue(value);
2568      }
2569  
2570      /**
2571 <     * Maps the specified <tt>key</tt> to the specified
2572 <     * <tt>value</tt> in this table. Neither the key nor the
833 <     * value can be <tt>null</tt>.
2571 >     * Maps the specified key to the specified value in this table.
2572 >     * Neither the key nor the value can be null.
2573       *
2574 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
2574 >     * <p>The value can be retrieved by calling the {@code get} method
2575       * with a key that is equal to the original key.
2576       *
2577 <     * @param      key     the table key.
2578 <     * @param      value   the value.
2579 <     * @return     the previous value of the specified key in this table,
2580 <     *             or <tt>null</tt> if it did not have one.
2581 <     * @throws  NullPointerException  if the key or value is
843 <     *               <tt>null</tt>.
2577 >     * @param key key with which the specified value is to be associated
2578 >     * @param value value to be associated with the specified key
2579 >     * @return the previous value associated with {@code key}, or
2580 >     *         {@code null} if there was no mapping for {@code key}
2581 >     * @throws NullPointerException if the specified key or value is null
2582       */
2583      public V put(K key, V value) {
2584 <        if (value == null)
847 <            throw new NullPointerException();
848 <        int hash = hash(key);
849 <        return segmentFor(hash).put(key, hash, value, false);
2584 >        return internalPut(key, value, false);
2585      }
2586  
2587      /**
2588 <     * If the specified key is not already associated
2589 <     * with a value, associate it with the given value.
2590 <     * This is equivalent to
2591 <     * <pre>
2592 <     *   if (!map.containsKey(key))
858 <     *      return map.put(key, value);
859 <     *   else
860 <     *      return map.get(key);
861 <     * </pre>
862 <     * Except that the action is performed atomically.
863 <     * @param key key with which the specified value is to be associated.
864 <     * @param value value to be associated with the specified key.
865 <     * @return previous value associated with specified key, or <tt>null</tt>
866 <     *         if there was no mapping for key.
867 <     * @throws NullPointerException if the specified key or value is
868 <     *            <tt>null</tt>.
2588 >     * {@inheritDoc}
2589 >     *
2590 >     * @return the previous value associated with the specified key,
2591 >     *         or {@code null} if there was no mapping for the key
2592 >     * @throws NullPointerException if the specified key or value is null
2593       */
2594      public V putIfAbsent(K key, V value) {
2595 <        if (value == null)
872 <            throw new NullPointerException();
873 <        int hash = hash(key);
874 <        return segmentFor(hash).put(key, hash, value, true);
2595 >        return internalPut(key, value, true);
2596      }
2597  
877
2598      /**
2599       * Copies all of the mappings from the specified map to this one.
880     *
2600       * These mappings replace any mappings that this map had for any of the
2601 <     * keys currently in the specified Map.
2601 >     * keys currently in the specified map.
2602       *
2603 <     * @param t Mappings to be stored in this map.
2603 >     * @param m mappings to be stored in this map
2604       */
2605 <    public void putAll(Map<? extends K, ? extends V> t) {
2606 <        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
2607 <            Entry<? extends K, ? extends V> e = it.next();
2608 <            put(e.getKey(), e.getValue());
2609 <        }
2605 >    public void putAll(Map<? extends K, ? extends V> m) {
2606 >        internalPutAll(m);
2607 >    }
2608 >
2609 >    /**
2610 >     * If the specified key is not already associated with a value (or
2611 >     * is mapped to {@code null}), attempts to compute its value using
2612 >     * the given mapping function and enters it into this map unless
2613 >     * {@code null}. The entire method invocation is performed
2614 >     * atomically, so the function is applied at most once per key.
2615 >     * Some attempted update operations on this map by other threads
2616 >     * may be blocked while computation is in progress, so the
2617 >     * computation should be short and simple, and must not attempt to
2618 >     * update any other mappings of this Map.
2619 >     *
2620 >     * @param key key with which the specified value is to be associated
2621 >     * @param mappingFunction the function to compute a value
2622 >     * @return the current (existing or computed) value associated with
2623 >     *         the specified key, or null if the computed value is null
2624 >     * @throws NullPointerException if the specified key or mappingFunction
2625 >     *         is null
2626 >     * @throws IllegalStateException if the computation detectably
2627 >     *         attempts a recursive update to this map that would
2628 >     *         otherwise never complete
2629 >     * @throws RuntimeException or Error if the mappingFunction does so,
2630 >     *         in which case the mapping is left unestablished
2631 >     */
2632 >    public V computeIfAbsent
2633 >        (K key, Function<? super K, ? extends V> mappingFunction) {
2634 >        return internalComputeIfAbsent(key, mappingFunction);
2635 >    }
2636 >
2637 >    /**
2638 >     * If the value for the specified key is present and non-null,
2639 >     * attempts to compute a new mapping given the key and its current
2640 >     * mapped value.  The entire method invocation is performed
2641 >     * atomically.  Some attempted update operations on this map by
2642 >     * other threads may be blocked while computation is in progress,
2643 >     * so the computation should be short and simple, and must not
2644 >     * attempt to update any other mappings of this Map.
2645 >     *
2646 >     * @param key key with which the specified value is to be associated
2647 >     * @param remappingFunction the function to compute a value
2648 >     * @return the new value associated with the specified key, or null if none
2649 >     * @throws NullPointerException if the specified key or remappingFunction
2650 >     *         is null
2651 >     * @throws IllegalStateException if the computation detectably
2652 >     *         attempts a recursive update to this map that would
2653 >     *         otherwise never complete
2654 >     * @throws RuntimeException or Error if the remappingFunction does so,
2655 >     *         in which case the mapping is unchanged
2656 >     */
2657 >    public V computeIfPresent
2658 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 >        return internalCompute(key, true, remappingFunction);
2660 >    }
2661 >
2662 >    /**
2663 >     * Attempts to compute a mapping for the specified key and its
2664 >     * current mapped value (or {@code null} if there is no current
2665 >     * mapping). The entire method invocation is performed atomically.
2666 >     * Some attempted update operations on this map by other threads
2667 >     * may be blocked while computation is in progress, so the
2668 >     * computation should be short and simple, and must not attempt to
2669 >     * update any other mappings of this Map.
2670 >     *
2671 >     * @param key key with which the specified value is to be associated
2672 >     * @param remappingFunction the function to compute a value
2673 >     * @return the new value associated with the specified key, or null if none
2674 >     * @throws NullPointerException if the specified key or remappingFunction
2675 >     *         is null
2676 >     * @throws IllegalStateException if the computation detectably
2677 >     *         attempts a recursive update to this map that would
2678 >     *         otherwise never complete
2679 >     * @throws RuntimeException or Error if the remappingFunction does so,
2680 >     *         in which case the mapping is unchanged
2681 >     */
2682 >    public V compute
2683 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 >        return internalCompute(key, false, remappingFunction);
2685 >    }
2686 >
2687 >    /**
2688 >     * If the specified key is not already associated with a
2689 >     * (non-null) value, associates it with the given value.
2690 >     * Otherwise, replaces the value with the results of the given
2691 >     * remapping function, or removes if {@code null}. The entire
2692 >     * method invocation is performed atomically.  Some attempted
2693 >     * update operations on this map by other threads may be blocked
2694 >     * while computation is in progress, so the computation should be
2695 >     * short and simple, and must not attempt to update any other
2696 >     * mappings of this Map.
2697 >     *
2698 >     * @param key key with which the specified value is to be associated
2699 >     * @param value the value to use if absent
2700 >     * @param remappingFunction the function to recompute a value if present
2701 >     * @return the new value associated with the specified key, or null if none
2702 >     * @throws NullPointerException if the specified key or the
2703 >     *         remappingFunction is null
2704 >     * @throws RuntimeException or Error if the remappingFunction does so,
2705 >     *         in which case the mapping is unchanged
2706 >     */
2707 >    public V merge
2708 >        (K key, V value,
2709 >         BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 >        return internalMerge(key, value, remappingFunction);
2711      }
2712  
2713      /**
2714 <     * Removes the key (and its corresponding value) from this
2715 <     * table. This method does nothing if the key is not in the table.
2714 >     * Removes the key (and its corresponding value) from this map.
2715 >     * This method does nothing if the key is not in the map.
2716       *
2717 <     * @param   key   the key that needs to be removed.
2718 <     * @return  the value to which the key had been mapped in this table,
2719 <     *          or <tt>null</tt> if the key did not have a mapping.
2720 <     * @throws  NullPointerException  if the key is
901 <     *               <tt>null</tt>.
2717 >     * @param  key the key that needs to be removed
2718 >     * @return the previous value associated with {@code key}, or
2719 >     *         {@code null} if there was no mapping for {@code key}
2720 >     * @throws NullPointerException if the specified key is null
2721       */
2722      public V remove(Object key) {
2723 <        int hash = hash(key);
905 <        return segmentFor(hash).remove(key, hash, null);
2723 >        return internalReplace(key, null, null);
2724      }
2725  
2726      /**
2727 <     * Remove entry for key only if currently mapped to given value.
2728 <     * Acts as
2729 <     * <pre>
912 <     *  if (map.get(key).equals(value)) {
913 <     *     map.remove(key);
914 <     *     return true;
915 <     * } else return false;
916 <     * </pre>
917 <     * except that the action is performed atomically.
918 <     * @param key key with which the specified value is associated.
919 <     * @param value value associated with the specified key.
920 <     * @return true if the value was removed
921 <     * @throws NullPointerException if the specified key is
922 <     *            <tt>null</tt>.
2727 >     * {@inheritDoc}
2728 >     *
2729 >     * @throws NullPointerException if the specified key is null
2730       */
2731      public boolean remove(Object key, Object value) {
2732 <        int hash = hash(key);
2733 <        return segmentFor(hash).remove(key, hash, value) != null;
2732 >        if (key == null)
2733 >            throw new NullPointerException();
2734 >        return value != null && internalReplace(key, null, value) != null;
2735      }
2736  
929
2737      /**
2738 <     * Replace entry for key only if currently mapped to given value.
2739 <     * Acts as
2740 <     * <pre>
934 <     *  if (map.get(key).equals(oldValue)) {
935 <     *     map.put(key, newValue);
936 <     *     return true;
937 <     * } else return false;
938 <     * </pre>
939 <     * except that the action is performed atomically.
940 <     * @param key key with which the specified value is associated.
941 <     * @param oldValue value expected to be associated with the specified key.
942 <     * @param newValue value to be associated with the specified key.
943 <     * @return true if the value was replaced
944 <     * @throws NullPointerException if the specified key or values are
945 <     * <tt>null</tt>.
2738 >     * {@inheritDoc}
2739 >     *
2740 >     * @throws NullPointerException if any of the arguments are null
2741       */
2742      public boolean replace(K key, V oldValue, V newValue) {
2743 <        if (oldValue == null || newValue == null)
2743 >        if (key == null || oldValue == null || newValue == null)
2744              throw new NullPointerException();
2745 <        int hash = hash(key);
951 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
2745 >        return internalReplace(key, newValue, oldValue) != null;
2746      }
2747  
2748      /**
2749 <     * Replace entry for key only if currently mapped to some value.
2750 <     * Acts as
2751 <     * <pre>
2752 <     *  if ((map.containsKey(key)) {
2753 <     *     return map.put(key, value);
960 <     * } else return null;
961 <     * </pre>
962 <     * except that the action is performed atomically.
963 <     * @param key key with which the specified value is associated.
964 <     * @param value value to be associated with the specified key.
965 <     * @return previous value associated with specified key, or <tt>null</tt>
966 <     *         if there was no mapping for key.  
967 <     * @throws NullPointerException if the specified key or value is
968 <     *            <tt>null</tt>.
2749 >     * {@inheritDoc}
2750 >     *
2751 >     * @return the previous value associated with the specified key,
2752 >     *         or {@code null} if there was no mapping for the key
2753 >     * @throws NullPointerException if the specified key or value is null
2754       */
2755      public V replace(K key, V value) {
2756 <        if (value == null)
2756 >        if (key == null || value == null)
2757              throw new NullPointerException();
2758 <        int hash = hash(key);
974 <        return segmentFor(hash).replace(key, hash, value);
2758 >        return internalReplace(key, value, null);
2759      }
2760  
977
2761      /**
2762 <     * Removes all mappings from this map.
2762 >     * Removes all of the mappings from this map.
2763       */
2764      public void clear() {
2765 <        for (int i = 0; i < segments.length; ++i)
983 <            segments[i].clear();
2765 >        internalClear();
2766      }
2767  
2768      /**
2769 <     * Returns a set view of the keys contained in this map.  The set is
2770 <     * backed by the map, so changes to the map are reflected in the set, and
2771 <     * vice-versa.  The set supports element removal, which removes the
990 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
991 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
992 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
993 <     * <tt>addAll</tt> operations.
994 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
995 <     * will never throw {@link java.util.ConcurrentModificationException},
996 <     * and guarantees to traverse elements as they existed upon
997 <     * construction of the iterator, and may (but is not guaranteed to)
998 <     * reflect any modifications subsequent to construction.
2769 >     * Returns a {@link Set} view of the keys contained in this map.
2770 >     * The set is backed by the map, so changes to the map are
2771 >     * reflected in the set, and vice-versa.
2772       *
2773 <     * @return a set view of the keys contained in this map.
2773 >     * @return the set view
2774       */
2775 <    public Set<K> keySet() {
2776 <        Set<K> ks = keySet;
2777 <        return (ks != null) ? ks : (keySet = new KeySet());
2775 >    public KeySetView<K,V> keySet() {
2776 >        KeySetView<K,V> ks = keySet;
2777 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2778      }
2779  
1007
2780      /**
2781 <     * Returns a collection view of the values contained in this map.  The
2782 <     * collection is backed by the map, so changes to the map are reflected in
2783 <     * the collection, and vice-versa.  The collection supports element
2784 <     * removal, which removes the corresponding mapping from this map, via the
2785 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1014 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1015 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1016 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1017 <     * will never throw {@link java.util.ConcurrentModificationException},
1018 <     * and guarantees to traverse elements as they existed upon
1019 <     * construction of the iterator, and may (but is not guaranteed to)
1020 <     * reflect any modifications subsequent to construction.
2781 >     * Returns a {@link Set} view of the keys in this map, using the
2782 >     * given common mapped value for any additions (i.e., {@link
2783 >     * Collection#add} and {@link Collection#addAll}). This is of
2784 >     * course only appropriate if it is acceptable to use the same
2785 >     * value for all additions from this view.
2786       *
2787 <     * @return a collection view of the values contained in this map.
2787 >     * @param mappedValue the mapped value to use for any
2788 >     * additions.
2789 >     * @return the set view
2790 >     * @throws NullPointerException if the mappedValue is null
2791       */
2792 <    public Collection<V> values() {
2793 <        Collection<V> vs = values;
2794 <        return (vs != null) ? vs : (values = new Values());
2792 >    public KeySetView<K,V> keySet(V mappedValue) {
2793 >        if (mappedValue == null)
2794 >            throw new NullPointerException();
2795 >        return new KeySetView<K,V>(this, mappedValue);
2796      }
2797  
2798 +    /**
2799 +     * Returns a {@link Collection} view of the values contained in this map.
2800 +     * The collection is backed by the map, so changes to the map are
2801 +     * reflected in the collection, and vice-versa.
2802 +     */
2803 +    public ValuesView<K,V> values() {
2804 +        ValuesView<K,V> vs = values;
2805 +        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2806 +    }
2807  
2808      /**
2809 <     * Returns a collection view of the mappings contained in this map.  Each
2810 <     * element in the returned collection is a <tt>Map.Entry</tt>.  The
2811 <     * collection is backed by the map, so changes to the map are reflected in
2812 <     * the collection, and vice-versa.  The collection supports element
2813 <     * removal, which removes the corresponding mapping from the map, via the
2814 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
2815 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
2816 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
2817 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
2818 <     * will never throw {@link java.util.ConcurrentModificationException},
2809 >     * Returns a {@link Set} view of the mappings contained in this map.
2810 >     * The set is backed by the map, so changes to the map are
2811 >     * reflected in the set, and vice-versa.  The set supports element
2812 >     * removal, which removes the corresponding mapping from the map,
2813 >     * via the {@code Iterator.remove}, {@code Set.remove},
2814 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2815 >     * operations.  It does not support the {@code add} or
2816 >     * {@code addAll} operations.
2817 >     *
2818 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2819 >     * that will never throw {@link ConcurrentModificationException},
2820       * and guarantees to traverse elements as they existed upon
2821       * construction of the iterator, and may (but is not guaranteed to)
2822       * reflect any modifications subsequent to construction.
1044     *
1045     * @return a collection view of the mappings contained in this map.
2823       */
2824      public Set<Map.Entry<K,V>> entrySet() {
2825 <        Set<Map.Entry<K,V>> es = entrySet;
2826 <        return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
2825 >        EntrySetView<K,V> es = entrySet;
2826 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2827      }
2828  
1052
2829      /**
2830       * Returns an enumeration of the keys in this table.
2831       *
2832 <     * @return  an enumeration of the keys in this table.
2833 <     * @see     #keySet
2832 >     * @return an enumeration of the keys in this table
2833 >     * @see #keySet()
2834       */
2835      public Enumeration<K> keys() {
2836 <        return new KeyIterator();
2836 >        return new KeyIterator<K,V>(this);
2837      }
2838  
2839      /**
2840       * Returns an enumeration of the values in this table.
2841       *
2842 <     * @return  an enumeration of the values in this table.
2843 <     * @see     #values
2842 >     * @return an enumeration of the values in this table
2843 >     * @see #values()
2844       */
2845      public Enumeration<V> elements() {
2846 <        return new ValueIterator();
2846 >        return new ValueIterator<K,V>(this);
2847 >    }
2848 >
2849 >    /**
2850 >     * Returns the hash code value for this {@link Map}, i.e.,
2851 >     * the sum of, for each key-value pair in the map,
2852 >     * {@code key.hashCode() ^ value.hashCode()}.
2853 >     *
2854 >     * @return the hash code value for this map
2855 >     */
2856 >    public int hashCode() {
2857 >        int h = 0;
2858 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2859 >        V v;
2860 >        while ((v = it.advance()) != null) {
2861 >            h += it.nextKey.hashCode() ^ v.hashCode();
2862 >        }
2863 >        return h;
2864 >    }
2865 >
2866 >    /**
2867 >     * Returns a string representation of this map.  The string
2868 >     * representation consists of a list of key-value mappings (in no
2869 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
2870 >     * mappings are separated by the characters {@code ", "} (comma
2871 >     * and space).  Each key-value mapping is rendered as the key
2872 >     * followed by an equals sign ("{@code =}") followed by the
2873 >     * associated value.
2874 >     *
2875 >     * @return a string representation of this map
2876 >     */
2877 >    public String toString() {
2878 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2879 >        StringBuilder sb = new StringBuilder();
2880 >        sb.append('{');
2881 >        V v;
2882 >        if ((v = it.advance()) != null) {
2883 >            for (;;) {
2884 >                Object k = it.nextKey;
2885 >                sb.append(k == this ? "(this Map)" : k);
2886 >                sb.append('=');
2887 >                sb.append(v == this ? "(this Map)" : v);
2888 >                if ((v = it.advance()) == null)
2889 >                    break;
2890 >                sb.append(',').append(' ');
2891 >            }
2892 >        }
2893 >        return sb.append('}').toString();
2894 >    }
2895 >
2896 >    /**
2897 >     * Compares the specified object with this map for equality.
2898 >     * Returns {@code true} if the given object is a map with the same
2899 >     * mappings as this map.  This operation may return misleading
2900 >     * results if either map is concurrently modified during execution
2901 >     * of this method.
2902 >     *
2903 >     * @param o object to be compared for equality with this map
2904 >     * @return {@code true} if the specified object is equal to this map
2905 >     */
2906 >    public boolean equals(Object o) {
2907 >        if (o != this) {
2908 >            if (!(o instanceof Map))
2909 >                return false;
2910 >            Map<?,?> m = (Map<?,?>) o;
2911 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2912 >            V val;
2913 >            while ((val = it.advance()) != null) {
2914 >                Object v = m.get(it.nextKey);
2915 >                if (v == null || (v != val && !v.equals(val)))
2916 >                    return false;
2917 >            }
2918 >            for (Map.Entry<?,?> e : m.entrySet()) {
2919 >                Object mk, mv, v;
2920 >                if ((mk = e.getKey()) == null ||
2921 >                    (mv = e.getValue()) == null ||
2922 >                    (v = internalGet(mk)) == null ||
2923 >                    (mv != v && !mv.equals(v)))
2924 >                    return false;
2925 >            }
2926 >        }
2927 >        return true;
2928      }
2929  
2930 <    /* ---------------- Iterator Support -------------- */
2930 >    /* ----------------Iterators -------------- */
2931  
2932 <    abstract class HashIterator {
2933 <        int nextSegmentIndex;
2934 <        int nextTableIndex;
2935 <        HashEntry[] currentTable;
2936 <        HashEntry<K, V> nextEntry;
2937 <        HashEntry<K, V> lastReturned;
2932 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
2933 >        extends Traverser<K,V,Object>
2934 >        implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2935 >        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2936 >        KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2937 >            super(map, it);
2938 >        }
2939 >        public KeyIterator<K,V> trySplit() {
2940 >            if (tab != null && baseIndex == baseLimit)
2941 >                return null;
2942 >            return new KeyIterator<K,V>(map, this);
2943 >        }
2944 >        @SuppressWarnings("unchecked") public final K next() {
2945 >            if (nextVal == null && advance() == null)
2946 >                throw new NoSuchElementException();
2947 >            Object k = nextKey;
2948 >            nextVal = null;
2949 >            return (K) k;
2950 >        }
2951  
2952 <        HashIterator() {
2953 <            nextSegmentIndex = segments.length - 1;
2954 <            nextTableIndex = -1;
2955 <            advance();
2952 >        public final K nextElement() { return next(); }
2953 >
2954 >        public Iterator<K> iterator() { return this; }
2955 >
2956 >        public void forEach(Block<? super K> action) {
2957 >            if (action == null) throw new NullPointerException();
2958 >            while (advance() != null)
2959 >                action.accept((K)nextKey);
2960          }
2961  
2962 <        public boolean hasMoreElements() { return hasNext(); }
2962 >        public boolean tryAdvance(Block<? super K> block) {
2963 >            if (block == null) throw new NullPointerException();
2964 >            if (advance() == null)
2965 >                return false;
2966 >            block.accept((K)nextKey);
2967 >            return true;
2968 >        }
2969 >    }
2970  
2971 <        final void advance() {
2972 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
2973 <                return;
2971 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
2972 >        extends Traverser<K,V,Object>
2973 >        implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2974 >        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2975 >        ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2976 >            super(map, it);
2977 >        }
2978 >        public ValueIterator<K,V> trySplit() {
2979 >            if (tab != null && baseIndex == baseLimit)
2980 >                return null;
2981 >            return new ValueIterator<K,V>(map, this);
2982 >        }
2983 >
2984 >        public final V next() {
2985 >            V v;
2986 >            if ((v = nextVal) == null && (v = advance()) == null)
2987 >                throw new NoSuchElementException();
2988 >            nextVal = null;
2989 >            return v;
2990 >        }
2991  
2992 <            while (nextTableIndex >= 0) {
2993 <                if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
2994 <                    return;
1097 <            }
2992 >        public final V nextElement() { return next(); }
2993 >
2994 >        public Iterator<V> iterator() { return this; }
2995  
2996 <            while (nextSegmentIndex >= 0) {
2997 <                Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
2998 <                if (seg.count != 0) {
2999 <                    currentTable = seg.table;
3000 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
3001 <                        if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
3002 <                            nextTableIndex = j - 1;
3003 <                            return;
2996 >        public void forEach(Block<? super V> action) {
2997 >            if (action == null) throw new NullPointerException();
2998 >            V v;
2999 >            while ((v = advance()) != null)
3000 >                action.accept(v);
3001 >        }
3002 >
3003 >        public boolean tryAdvance(Block<? super V> block) {
3004 >            V v;
3005 >            if (block == null) throw new NullPointerException();
3006 >            if ((v = advance()) == null)
3007 >                return false;
3008 >            block.accept(v);
3009 >            return true;
3010 >        }
3011 >
3012 >    }
3013 >
3014 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3015 >        extends Traverser<K,V,Object>
3016 >        implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3017 >        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3018 >        EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3019 >            super(map, it);
3020 >        }
3021 >        public EntryIterator<K,V> trySplit() {
3022 >            if (tab != null && baseIndex == baseLimit)
3023 >                return null;
3024 >            return new EntryIterator<K,V>(map, this);
3025 >        }
3026 >
3027 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3028 >            V v;
3029 >            if ((v = nextVal) == null && (v = advance()) == null)
3030 >                throw new NoSuchElementException();
3031 >            Object k = nextKey;
3032 >            nextVal = null;
3033 >            return new MapEntry<K,V>((K)k, v, map);
3034 >        }
3035 >
3036 >        public Iterator<Map.Entry<K,V>> iterator() { return this; }
3037 >
3038 >        public void forEach(Block<? super Map.Entry<K,V>> action) {
3039 >            if (action == null) throw new NullPointerException();
3040 >            V v;
3041 >            while ((v = advance()) != null)
3042 >                action.accept(entryFor((K)nextKey, v));
3043 >        }
3044 >
3045 >        public boolean tryAdvance(Block<? super Map.Entry<K,V>> block) {
3046 >            V v;
3047 >            if (block == null) throw new NullPointerException();
3048 >            if ((v = advance()) == null)
3049 >                return false;
3050 >            block.accept(entryFor((K)nextKey, v));
3051 >            return true;
3052 >        }
3053 >
3054 >    }
3055 >
3056 >    /**
3057 >     * Exported Entry for iterators
3058 >     */
3059 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3060 >        final K key; // non-null
3061 >        V val;       // non-null
3062 >        final ConcurrentHashMap<K, V> map;
3063 >        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3064 >            this.key = key;
3065 >            this.val = val;
3066 >            this.map = map;
3067 >        }
3068 >        public final K getKey()       { return key; }
3069 >        public final V getValue()     { return val; }
3070 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3071 >        public final String toString(){ return key + "=" + val; }
3072 >
3073 >        public final boolean equals(Object o) {
3074 >            Object k, v; Map.Entry<?,?> e;
3075 >            return ((o instanceof Map.Entry) &&
3076 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3077 >                    (v = e.getValue()) != null &&
3078 >                    (k == key || k.equals(key)) &&
3079 >                    (v == val || v.equals(val)));
3080 >        }
3081 >
3082 >        /**
3083 >         * Sets our entry's value and writes through to the map. The
3084 >         * value to return is somewhat arbitrary here. Since we do not
3085 >         * necessarily track asynchronous changes, the most recent
3086 >         * "previous" value could be different from what we return (or
3087 >         * could even have been removed in which case the put will
3088 >         * re-establish). We do not and cannot guarantee more.
3089 >         */
3090 >        public final V setValue(V value) {
3091 >            if (value == null) throw new NullPointerException();
3092 >            V v = val;
3093 >            val = value;
3094 >            map.put(key, value);
3095 >            return v;
3096 >        }
3097 >    }
3098 >
3099 >    /**
3100 >     * Returns exportable snapshot entry for the given key and value
3101 >     * when write-through can't or shouldn't be used.
3102 >     */
3103 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3104 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3105 >    }
3106 >
3107 >    /* ---------------- Serialization Support -------------- */
3108 >
3109 >    /**
3110 >     * Stripped-down version of helper class used in previous version,
3111 >     * declared for the sake of serialization compatibility
3112 >     */
3113 >    static class Segment<K,V> implements Serializable {
3114 >        private static final long serialVersionUID = 2249069246763182397L;
3115 >        final float loadFactor;
3116 >        Segment(float lf) { this.loadFactor = lf; }
3117 >    }
3118 >
3119 >    /**
3120 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3121 >     * stream (i.e., serializes it).
3122 >     * @param s the stream
3123 >     * @serialData
3124 >     * the key (Object) and value (Object)
3125 >     * for each key-value mapping, followed by a null pair.
3126 >     * The key-value mappings are emitted in no particular order.
3127 >     */
3128 >    @SuppressWarnings("unchecked") private void writeObject
3129 >        (java.io.ObjectOutputStream s)
3130 >        throws java.io.IOException {
3131 >        if (segments == null) { // for serialization compatibility
3132 >            segments = (Segment<K,V>[])
3133 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3134 >            for (int i = 0; i < segments.length; ++i)
3135 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3136 >        }
3137 >        s.defaultWriteObject();
3138 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3139 >        V v;
3140 >        while ((v = it.advance()) != null) {
3141 >            s.writeObject(it.nextKey);
3142 >            s.writeObject(v);
3143 >        }
3144 >        s.writeObject(null);
3145 >        s.writeObject(null);
3146 >        segments = null; // throw away
3147 >    }
3148 >
3149 >    /**
3150 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3151 >     * @param s the stream
3152 >     */
3153 >    @SuppressWarnings("unchecked") private void readObject
3154 >        (java.io.ObjectInputStream s)
3155 >        throws java.io.IOException, ClassNotFoundException {
3156 >        s.defaultReadObject();
3157 >        this.segments = null; // unneeded
3158 >
3159 >        // Create all nodes, then place in table once size is known
3160 >        long size = 0L;
3161 >        Node<V> p = null;
3162 >        for (;;) {
3163 >            K k = (K) s.readObject();
3164 >            V v = (V) s.readObject();
3165 >            if (k != null && v != null) {
3166 >                int h = spread(k.hashCode());
3167 >                p = new Node<V>(h, k, v, p);
3168 >                ++size;
3169 >            }
3170 >            else
3171 >                break;
3172 >        }
3173 >        if (p != null) {
3174 >            boolean init = false;
3175 >            int n;
3176 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3177 >                n = MAXIMUM_CAPACITY;
3178 >            else {
3179 >                int sz = (int)size;
3180 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3181 >            }
3182 >            int sc = sizeCtl;
3183 >            boolean collide = false;
3184 >            if (n > sc &&
3185 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3186 >                try {
3187 >                    if (table == null) {
3188 >                        init = true;
3189 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3190 >                        Node<V>[] tab = (Node<V>[])rt;
3191 >                        int mask = n - 1;
3192 >                        while (p != null) {
3193 >                            int j = p.hash & mask;
3194 >                            Node<V> next = p.next;
3195 >                            Node<V> q = p.next = tabAt(tab, j);
3196 >                            setTabAt(tab, j, p);
3197 >                            if (!collide && q != null && q.hash == p.hash)
3198 >                                collide = true;
3199 >                            p = next;
3200                          }
3201 +                        table = tab;
3202 +                        addCount(size, -1);
3203 +                        sc = n - (n >>> 2);
3204                      }
3205 +                } finally {
3206 +                    sizeCtl = sc;
3207 +                }
3208 +                if (collide) { // rescan and convert to TreeBins
3209 +                    Node<V>[] tab = table;
3210 +                    for (int i = 0; i < tab.length; ++i) {
3211 +                        int c = 0;
3212 +                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3213 +                            if (++c > TREE_THRESHOLD &&
3214 +                                (e.key instanceof Comparable)) {
3215 +                                replaceWithTreeBin(tab, i, e.key);
3216 +                                break;
3217 +                            }
3218 +                        }
3219 +                    }
3220 +                }
3221 +            }
3222 +            if (!init) { // Can only happen if unsafely published.
3223 +                while (p != null) {
3224 +                    internalPut((K)p.key, p.val, false);
3225 +                    p = p.next;
3226                  }
3227              }
3228          }
3229 +    }
3230  
3231 <        public boolean hasNext() { return nextEntry != null; }
3231 >    // -------------------------------------------------------
3232  
3233 <        HashEntry<K,V> nextEntry() {
3234 <            if (nextEntry == null)
3235 <                throw new NoSuchElementException();
3236 <            lastReturned = nextEntry;
3237 <            advance();
3238 <            return lastReturned;
3233 >    // Sequential bulk operations
3234 >
3235 >    /**
3236 >     * Performs the given action for each (key, value).
3237 >     *
3238 >     * @param action the action
3239 >     */
3240 >    @SuppressWarnings("unchecked") public void forEachSequentially
3241 >        (BiBlock<? super K, ? super V> action) {
3242 >        if (action == null) throw new NullPointerException();
3243 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3244 >        V v;
3245 >        while ((v = it.advance()) != null)
3246 >            action.accept((K)it.nextKey, v);
3247 >    }
3248 >
3249 >    /**
3250 >     * Performs the given action for each non-null transformation
3251 >     * of each (key, value).
3252 >     *
3253 >     * @param transformer a function returning the transformation
3254 >     * for an element, or null of there is no transformation (in
3255 >     * which case the action is not applied).
3256 >     * @param action the action
3257 >     */
3258 >    @SuppressWarnings("unchecked") public <U> void forEachSequentially
3259 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3260 >         Block<? super U> action) {
3261 >        if (transformer == null || action == null)
3262 >            throw new NullPointerException();
3263 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3264 >        V v; U u;
3265 >        while ((v = it.advance()) != null) {
3266 >            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3267 >                action.accept(u);
3268          }
3269 +    }
3270  
3271 <        public void remove() {
3272 <            if (lastReturned == null)
3273 <                throw new IllegalStateException();
3274 <            ConcurrentHashMap.this.remove(lastReturned.key);
3275 <            lastReturned = null;
3271 >    /**
3272 >     * Returns a non-null result from applying the given search
3273 >     * function on each (key, value), or null if none.
3274 >     *
3275 >     * @param searchFunction a function returning a non-null
3276 >     * result on success, else null
3277 >     * @return a non-null result from applying the given search
3278 >     * function on each (key, value), or null if none
3279 >     */
3280 >    @SuppressWarnings("unchecked") public <U> U searchSequentially
3281 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3282 >        if (searchFunction == null) throw new NullPointerException();
3283 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3284 >        V v; U u;
3285 >        while ((v = it.advance()) != null) {
3286 >            if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3287 >                return u;
3288 >        }
3289 >        return null;
3290 >    }
3291 >
3292 >    /**
3293 >     * Returns the result of accumulating the given transformation
3294 >     * of all (key, value) pairs using the given reducer to
3295 >     * combine values, or null if none.
3296 >     *
3297 >     * @param transformer a function returning the transformation
3298 >     * for an element, or null of there is no transformation (in
3299 >     * which case it is not combined).
3300 >     * @param reducer a commutative associative combining function
3301 >     * @return the result of accumulating the given transformation
3302 >     * of all (key, value) pairs
3303 >     */
3304 >    @SuppressWarnings("unchecked") public <U> U reduceSequentially
3305 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3306 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3307 >        if (transformer == null || reducer == null)
3308 >            throw new NullPointerException();
3309 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3310 >        U r = null, u; V v;
3311 >        while ((v = it.advance()) != null) {
3312 >            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3313 >                r = (r == null) ? u : reducer.apply(r, u);
3314          }
3315 +        return r;
3316      }
3317  
3318 <    final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
3319 <        public K next() { return super.nextEntry().key; }
3320 <        public K nextElement() { return super.nextEntry().key; }
3318 >    /**
3319 >     * Returns the result of accumulating the given transformation
3320 >     * of all (key, value) pairs using the given reducer to
3321 >     * combine values, and the given basis as an identity value.
3322 >     *
3323 >     * @param transformer a function returning the transformation
3324 >     * for an element
3325 >     * @param basis the identity (initial default value) for the reduction
3326 >     * @param reducer a commutative associative combining function
3327 >     * @return the result of accumulating the given transformation
3328 >     * of all (key, value) pairs
3329 >     */
3330 >    @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3331 >        (DoubleBiFunction<? super K, ? super V> transformer,
3332 >         double basis,
3333 >         DoubleBinaryOperator reducer) {
3334 >        if (transformer == null || reducer == null)
3335 >            throw new NullPointerException();
3336 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3337 >        double r = basis; V v;
3338 >        while ((v = it.advance()) != null)
3339 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey, v));
3340 >        return r;
3341      }
3342  
3343 <    final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
3344 <        public V next() { return super.nextEntry().value; }
3345 <        public V nextElement() { return super.nextEntry().value; }
3343 >    /**
3344 >     * Returns the result of accumulating the given transformation
3345 >     * of all (key, value) pairs using the given reducer to
3346 >     * combine values, and the given basis as an identity value.
3347 >     *
3348 >     * @param transformer a function returning the transformation
3349 >     * for an element
3350 >     * @param basis the identity (initial default value) for the reduction
3351 >     * @param reducer a commutative associative combining function
3352 >     * @return the result of accumulating the given transformation
3353 >     * of all (key, value) pairs
3354 >     */
3355 >    @SuppressWarnings("unchecked") public long reduceToLongSequentially
3356 >        (LongBiFunction<? super K, ? super V> transformer,
3357 >         long basis,
3358 >         LongBinaryOperator reducer) {
3359 >        if (transformer == null || reducer == null)
3360 >            throw new NullPointerException();
3361 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3362 >        long r = basis; V v;
3363 >        while ((v = it.advance()) != null)
3364 >            r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey, v));
3365 >        return r;
3366      }
3367  
3368 <    
3368 >    /**
3369 >     * Returns the result of accumulating the given transformation
3370 >     * of all (key, value) pairs using the given reducer to
3371 >     * combine values, and the given basis as an identity value.
3372 >     *
3373 >     * @param transformer a function returning the transformation
3374 >     * for an element
3375 >     * @param basis the identity (initial default value) for the reduction
3376 >     * @param reducer a commutative associative combining function
3377 >     * @return the result of accumulating the given transformation
3378 >     * of all (key, value) pairs
3379 >     */
3380 >    @SuppressWarnings("unchecked") public int reduceToIntSequentially
3381 >        (IntBiFunction<? super K, ? super V> transformer,
3382 >         int basis,
3383 >         IntBinaryOperator reducer) {
3384 >        if (transformer == null || reducer == null)
3385 >            throw new NullPointerException();
3386 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3387 >        int r = basis; V v;
3388 >        while ((v = it.advance()) != null)
3389 >            r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey, v));
3390 >        return r;
3391 >    }
3392  
3393      /**
3394 <     * Entry iterator. Exported Entry objects must write-through
3395 <     * changes in setValue, even if the nodes have been cloned. So we
3396 <     * cannot return internal HashEntry objects. Instead, the iterator
1147 <     * itself acts as a forwarding pseudo-entry.
3394 >     * Performs the given action for each key.
3395 >     *
3396 >     * @param action the action
3397       */
3398 <    final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
3399 <        public Map.Entry<K,V> next() {
3400 <            nextEntry();
3401 <            return this;
3398 >    @SuppressWarnings("unchecked") public void forEachKeySequentially
3399 >        (Block<? super K> action) {
3400 >        if (action == null) throw new NullPointerException();
3401 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3402 >        while (it.advance() != null)
3403 >            action.accept((K)it.nextKey);
3404 >    }
3405 >
3406 >    /**
3407 >     * Performs the given action for each non-null transformation
3408 >     * of each key.
3409 >     *
3410 >     * @param transformer a function returning the transformation
3411 >     * for an element, or null of there is no transformation (in
3412 >     * which case the action is not applied).
3413 >     * @param action the action
3414 >     */
3415 >    @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3416 >        (Function<? super K, ? extends U> transformer,
3417 >         Block<? super U> action) {
3418 >        if (transformer == null || action == null)
3419 >            throw new NullPointerException();
3420 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3421 >        U u;
3422 >        while (it.advance() != null) {
3423 >            if ((u = transformer.apply((K)it.nextKey)) != null)
3424 >                action.accept(u);
3425          }
3426 +        ForkJoinTasks.forEachKey
3427 +            (this, transformer, action).invoke();
3428 +    }
3429  
3430 <        public K getKey() {
3431 <            if (lastReturned == null)
3432 <                throw new IllegalStateException("Entry was removed");
3433 <            return lastReturned.key;
3430 >    /**
3431 >     * Returns a non-null result from applying the given search
3432 >     * function on each key, or null if none.
3433 >     *
3434 >     * @param searchFunction a function returning a non-null
3435 >     * result on success, else null
3436 >     * @return a non-null result from applying the given search
3437 >     * function on each key, or null if none
3438 >     */
3439 >    @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3440 >        (Function<? super K, ? extends U> searchFunction) {
3441 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3442 >        U u;
3443 >        while (it.advance() != null) {
3444 >            if ((u = searchFunction.apply((K)it.nextKey)) != null)
3445 >                return u;
3446          }
3447 +        return null;
3448 +    }
3449  
3450 <        public V getValue() {
3451 <            if (lastReturned == null)
3452 <                throw new IllegalStateException("Entry was removed");
3453 <            return ConcurrentHashMap.this.get(lastReturned.key);
3450 >    /**
3451 >     * Returns the result of accumulating all keys using the given
3452 >     * reducer to combine values, or null if none.
3453 >     *
3454 >     * @param reducer a commutative associative combining function
3455 >     * @return the result of accumulating all keys using the given
3456 >     * reducer to combine values, or null if none
3457 >     */
3458 >    @SuppressWarnings("unchecked") public K reduceKeysSequentially
3459 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
3460 >        if (reducer == null) throw new NullPointerException();
3461 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3462 >        K r = null;
3463 >        while (it.advance() != null) {
3464 >            K u = (K)it.nextKey;
3465 >            r = (r == null) ? u : reducer.apply(r, u);
3466          }
3467 +        return r;
3468 +    }
3469  
3470 <        public V setValue(V value) {
3471 <            if (lastReturned == null)
3472 <                throw new IllegalStateException("Entry was removed");
3473 <            return ConcurrentHashMap.this.put(lastReturned.key, value);
3470 >    /**
3471 >     * Returns the result of accumulating the given transformation
3472 >     * of all keys using the given reducer to combine values, or
3473 >     * null if none.
3474 >     *
3475 >     * @param transformer a function returning the transformation
3476 >     * for an element, or null of there is no transformation (in
3477 >     * which case it is not combined).
3478 >     * @param reducer a commutative associative combining function
3479 >     * @return the result of accumulating the given transformation
3480 >     * of all keys
3481 >     */
3482 >    @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3483 >        (Function<? super K, ? extends U> transformer,
3484 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3485 >        if (transformer == null || reducer == null)
3486 >            throw new NullPointerException();
3487 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3488 >        U r = null, u;
3489 >        while (it.advance() != null) {
3490 >            if ((u = transformer.apply((K)it.nextKey)) != null)
3491 >                r = (r == null) ? u : reducer.apply(r, u);
3492          }
3493 +        return r;
3494 +    }
3495  
3496 <        public boolean equals(Object o) {
3497 <            // If not acting as entry, just use default.
3498 <            if (lastReturned == null)
3499 <                return super.equals(o);
3500 <            if (!(o instanceof Map.Entry))
3501 <                return false;
3502 <            Map.Entry e = (Map.Entry)o;
3503 <            return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
3496 >    /**
3497 >     * Returns the result of accumulating the given transformation
3498 >     * of all keys using the given reducer to combine values, and
3499 >     * the given basis as an identity value.
3500 >     *
3501 >     * @param transformer a function returning the transformation
3502 >     * for an element
3503 >     * @param basis the identity (initial default value) for the reduction
3504 >     * @param reducer a commutative associative combining function
3505 >     * @return the result of accumulating the given transformation
3506 >     * of all keys
3507 >     */
3508 >    @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3509 >        (DoubleFunction<? super K> transformer,
3510 >         double basis,
3511 >         DoubleBinaryOperator reducer) {
3512 >        if (transformer == null || reducer == null)
3513 >            throw new NullPointerException();
3514 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3515 >        double r = basis;
3516 >        while (it.advance() != null)
3517 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey));
3518 >        return r;
3519 >    }
3520 >
3521 >    /**
3522 >     * Returns the result of accumulating the given transformation
3523 >     * of all keys using the given reducer to combine values, and
3524 >     * the given basis as an identity value.
3525 >     *
3526 >     * @param transformer a function returning the transformation
3527 >     * for an element
3528 >     * @param basis the identity (initial default value) for the reduction
3529 >     * @param reducer a commutative associative combining function
3530 >     * @return the result of accumulating the given transformation
3531 >     * of all keys
3532 >     */
3533 >    @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3534 >        (LongFunction<? super K> transformer,
3535 >         long basis,
3536 >         LongBinaryOperator reducer) {
3537 >        if (transformer == null || reducer == null)
3538 >            throw new NullPointerException();
3539 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3540 >        long r = basis;
3541 >        while (it.advance() != null)
3542 >            r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey));
3543 >        return r;
3544 >    }
3545 >
3546 >    /**
3547 >     * Returns the result of accumulating the given transformation
3548 >     * of all keys using the given reducer to combine values, and
3549 >     * the given basis as an identity value.
3550 >     *
3551 >     * @param transformer a function returning the transformation
3552 >     * for an element
3553 >     * @param basis the identity (initial default value) for the reduction
3554 >     * @param reducer a commutative associative combining function
3555 >     * @return the result of accumulating the given transformation
3556 >     * of all keys
3557 >     */
3558 >    @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3559 >        (IntFunction<? super K> transformer,
3560 >         int basis,
3561 >         IntBinaryOperator reducer) {
3562 >        if (transformer == null || reducer == null)
3563 >            throw new NullPointerException();
3564 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3565 >        int r = basis;
3566 >        while (it.advance() != null)
3567 >            r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey));
3568 >        return r;
3569 >    }
3570 >
3571 >    /**
3572 >     * Performs the given action for each value.
3573 >     *
3574 >     * @param action the action
3575 >     */
3576 >    public void forEachValueSequentially(Block<? super V> action) {
3577 >        if (action == null) throw new NullPointerException();
3578 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3579 >        V v;
3580 >        while ((v = it.advance()) != null)
3581 >            action.accept(v);
3582 >    }
3583 >
3584 >    /**
3585 >     * Performs the given action for each non-null transformation
3586 >     * of each value.
3587 >     *
3588 >     * @param transformer a function returning the transformation
3589 >     * for an element, or null of there is no transformation (in
3590 >     * which case the action is not applied).
3591 >     */
3592 >    public <U> void forEachValueSequentially
3593 >        (Function<? super V, ? extends U> transformer,
3594 >         Block<? super U> action) {
3595 >        if (transformer == null || action == null)
3596 >            throw new NullPointerException();
3597 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3598 >        V v; U u;
3599 >        while ((v = it.advance()) != null) {
3600 >            if ((u = transformer.apply(v)) != null)
3601 >                action.accept(u);
3602          }
3603 +    }
3604  
3605 <        public int hashCode() {
3606 <            // If not acting as entry, just use default.
3607 <            if (lastReturned == null)
3608 <                return super.hashCode();
3605 >    /**
3606 >     * Returns a non-null result from applying the given search
3607 >     * function on each value, or null if none.
3608 >     *
3609 >     * @param searchFunction a function returning a non-null
3610 >     * result on success, else null
3611 >     * @return a non-null result from applying the given search
3612 >     * function on each value, or null if none
3613 >     */
3614 >    public <U> U searchValuesSequentially
3615 >        (Function<? super V, ? extends U> searchFunction) {
3616 >        if (searchFunction == null) throw new NullPointerException();
3617 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3618 >        V v; U u;
3619 >        while ((v = it.advance()) != null) {
3620 >            if ((u = searchFunction.apply(v)) != null)
3621 >                return u;
3622 >        }
3623 >        return null;
3624 >    }
3625  
3626 <            Object k = getKey();
3627 <            Object v = getValue();
3628 <            return ((k == null) ? 0 : k.hashCode()) ^
3629 <                   ((v == null) ? 0 : v.hashCode());
3626 >    /**
3627 >     * Returns the result of accumulating all values using the
3628 >     * given reducer to combine values, or null if none.
3629 >     *
3630 >     * @param reducer a commutative associative combining function
3631 >     * @return the result of accumulating all values
3632 >     */
3633 >    public V reduceValuesSequentially
3634 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
3635 >        if (reducer == null) throw new NullPointerException();
3636 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637 >        V r = null; V v;
3638 >        while ((v = it.advance()) != null)
3639 >            r = (r == null) ? v : reducer.apply(r, v);
3640 >        return r;
3641 >    }
3642 >
3643 >    /**
3644 >     * Returns the result of accumulating the given transformation
3645 >     * of all values using the given reducer to combine values, or
3646 >     * null if none.
3647 >     *
3648 >     * @param transformer a function returning the transformation
3649 >     * for an element, or null of there is no transformation (in
3650 >     * which case it is not combined).
3651 >     * @param reducer a commutative associative combining function
3652 >     * @return the result of accumulating the given transformation
3653 >     * of all values
3654 >     */
3655 >    public <U> U reduceValuesSequentially
3656 >        (Function<? super V, ? extends U> transformer,
3657 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3658 >        if (transformer == null || reducer == null)
3659 >            throw new NullPointerException();
3660 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3661 >        U r = null, u; V v;
3662 >        while ((v = it.advance()) != null) {
3663 >            if ((u = transformer.apply(v)) != null)
3664 >                r = (r == null) ? u : reducer.apply(r, u);
3665          }
3666 +        return r;
3667 +    }
3668  
3669 <        public String toString() {
3670 <            // If not acting as entry, just use default.
3671 <            if (lastReturned == null)
3672 <                return super.toString();
3673 <            else
3674 <                return getKey() + "=" + getValue();
3669 >    /**
3670 >     * Returns the result of accumulating the given transformation
3671 >     * of all values using the given reducer to combine values,
3672 >     * and the given basis as an identity value.
3673 >     *
3674 >     * @param transformer a function returning the transformation
3675 >     * for an element
3676 >     * @param basis the identity (initial default value) for the reduction
3677 >     * @param reducer a commutative associative combining function
3678 >     * @return the result of accumulating the given transformation
3679 >     * of all values
3680 >     */
3681 >    public double reduceValuesToDoubleSequentially
3682 >        (DoubleFunction<? super V> transformer,
3683 >         double basis,
3684 >         DoubleBinaryOperator reducer) {
3685 >        if (transformer == null || reducer == null)
3686 >            throw new NullPointerException();
3687 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3688 >        double r = basis; V v;
3689 >        while ((v = it.advance()) != null)
3690 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3691 >        return r;
3692 >    }
3693 >
3694 >    /**
3695 >     * Returns the result of accumulating the given transformation
3696 >     * of all values using the given reducer to combine values,
3697 >     * and the given basis as an identity value.
3698 >     *
3699 >     * @param transformer a function returning the transformation
3700 >     * for an element
3701 >     * @param basis the identity (initial default value) for the reduction
3702 >     * @param reducer a commutative associative combining function
3703 >     * @return the result of accumulating the given transformation
3704 >     * of all values
3705 >     */
3706 >    public long reduceValuesToLongSequentially
3707 >        (LongFunction<? super V> transformer,
3708 >         long basis,
3709 >         LongBinaryOperator reducer) {
3710 >        if (transformer == null || reducer == null)
3711 >            throw new NullPointerException();
3712 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3713 >        long r = basis; V v;
3714 >        while ((v = it.advance()) != null)
3715 >            r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3716 >        return r;
3717 >    }
3718 >
3719 >    /**
3720 >     * Returns the result of accumulating the given transformation
3721 >     * of all values using the given reducer to combine values,
3722 >     * and the given basis as an identity value.
3723 >     *
3724 >     * @param transformer a function returning the transformation
3725 >     * for an element
3726 >     * @param basis the identity (initial default value) for the reduction
3727 >     * @param reducer a commutative associative combining function
3728 >     * @return the result of accumulating the given transformation
3729 >     * of all values
3730 >     */
3731 >    public int reduceValuesToIntSequentially
3732 >        (IntFunction<? super V> transformer,
3733 >         int basis,
3734 >         IntBinaryOperator reducer) {
3735 >        if (transformer == null || reducer == null)
3736 >            throw new NullPointerException();
3737 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738 >        int r = basis; V v;
3739 >        while ((v = it.advance()) != null)
3740 >            r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3741 >        return r;
3742 >    }
3743 >
3744 >    /**
3745 >     * Performs the given action for each entry.
3746 >     *
3747 >     * @param action the action
3748 >     */
3749 >    @SuppressWarnings("unchecked") public void forEachEntrySequentially
3750 >        (Block<? super Map.Entry<K,V>> action) {
3751 >        if (action == null) throw new NullPointerException();
3752 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3753 >        V v;
3754 >        while ((v = it.advance()) != null)
3755 >            action.accept(entryFor((K)it.nextKey, v));
3756 >    }
3757 >
3758 >    /**
3759 >     * Performs the given action for each non-null transformation
3760 >     * of each entry.
3761 >     *
3762 >     * @param transformer a function returning the transformation
3763 >     * for an element, or null of there is no transformation (in
3764 >     * which case the action is not applied).
3765 >     * @param action the action
3766 >     */
3767 >    @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3768 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3769 >         Block<? super U> action) {
3770 >        if (transformer == null || action == null)
3771 >            throw new NullPointerException();
3772 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3773 >        V v; U u;
3774 >        while ((v = it.advance()) != null) {
3775 >            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3776 >                action.accept(u);
3777          }
3778 +    }
3779  
3780 <        boolean eq(Object o1, Object o2) {
3781 <            return (o1 == null ? o2 == null : o1.equals(o2));
3780 >    /**
3781 >     * Returns a non-null result from applying the given search
3782 >     * function on each entry, or null if none.
3783 >     *
3784 >     * @param searchFunction a function returning a non-null
3785 >     * result on success, else null
3786 >     * @return a non-null result from applying the given search
3787 >     * function on each entry, or null if none
3788 >     */
3789 >    @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3790 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3791 >        if (searchFunction == null) throw new NullPointerException();
3792 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3793 >        V v; U u;
3794 >        while ((v = it.advance()) != null) {
3795 >            if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3796 >                return u;
3797          }
3798 +        return null;
3799 +    }
3800  
3801 +    /**
3802 +     * Returns the result of accumulating all entries using the
3803 +     * given reducer to combine values, or null if none.
3804 +     *
3805 +     * @param reducer a commutative associative combining function
3806 +     * @return the result of accumulating all entries
3807 +     */
3808 +    @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3809 +        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3810 +        if (reducer == null) throw new NullPointerException();
3811 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3812 +        Map.Entry<K,V> r = null; V v;
3813 +        while ((v = it.advance()) != null) {
3814 +            Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3815 +            r = (r == null) ? u : reducer.apply(r, u);
3816 +        }
3817 +        return r;
3818      }
3819  
3820 <    final class KeySet extends AbstractSet<K> {
3821 <        public Iterator<K> iterator() {
3822 <            return new KeyIterator();
3820 >    /**
3821 >     * Returns the result of accumulating the given transformation
3822 >     * of all entries using the given reducer to combine values,
3823 >     * or null if none.
3824 >     *
3825 >     * @param transformer a function returning the transformation
3826 >     * for an element, or null of there is no transformation (in
3827 >     * which case it is not combined).
3828 >     * @param reducer a commutative associative combining function
3829 >     * @return the result of accumulating the given transformation
3830 >     * of all entries
3831 >     */
3832 >    @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3833 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3834 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3835 >        if (transformer == null || reducer == null)
3836 >            throw new NullPointerException();
3837 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3838 >        U r = null, u; V v;
3839 >        while ((v = it.advance()) != null) {
3840 >            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3841 >                r = (r == null) ? u : reducer.apply(r, u);
3842          }
3843 <        public int size() {
3844 <            return ConcurrentHashMap.this.size();
3843 >        return r;
3844 >    }
3845 >
3846 >    /**
3847 >     * Returns the result of accumulating the given transformation
3848 >     * of all entries using the given reducer to combine values,
3849 >     * and the given basis as an identity value.
3850 >     *
3851 >     * @param transformer a function returning the transformation
3852 >     * for an element
3853 >     * @param basis the identity (initial default value) for the reduction
3854 >     * @param reducer a commutative associative combining function
3855 >     * @return the result of accumulating the given transformation
3856 >     * of all entries
3857 >     */
3858 >    @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3859 >        (DoubleFunction<Map.Entry<K,V>> transformer,
3860 >         double basis,
3861 >         DoubleBinaryOperator reducer) {
3862 >        if (transformer == null || reducer == null)
3863 >            throw new NullPointerException();
3864 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3865 >        double r = basis; V v;
3866 >        while ((v = it.advance()) != null)
3867 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)it.nextKey, v)));
3868 >        return r;
3869 >    }
3870 >
3871 >    /**
3872 >     * Returns the result of accumulating the given transformation
3873 >     * of all entries using the given reducer to combine values,
3874 >     * and the given basis as an identity value.
3875 >     *
3876 >     * @param transformer a function returning the transformation
3877 >     * for an element
3878 >     * @param basis the identity (initial default value) for the reduction
3879 >     * @param reducer a commutative associative combining function
3880 >     * @return the result of accumulating the given transformation
3881 >     * of all entries
3882 >     */
3883 >    @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
3884 >        (LongFunction<Map.Entry<K,V>> transformer,
3885 >         long basis,
3886 >         LongBinaryOperator reducer) {
3887 >        if (transformer == null || reducer == null)
3888 >            throw new NullPointerException();
3889 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3890 >        long r = basis; V v;
3891 >        while ((v = it.advance()) != null)
3892 >            r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)it.nextKey, v)));
3893 >        return r;
3894 >    }
3895 >
3896 >    /**
3897 >     * Returns the result of accumulating the given transformation
3898 >     * of all entries using the given reducer to combine values,
3899 >     * and the given basis as an identity value.
3900 >     *
3901 >     * @param transformer a function returning the transformation
3902 >     * for an element
3903 >     * @param basis the identity (initial default value) for the reduction
3904 >     * @param reducer a commutative associative combining function
3905 >     * @return the result of accumulating the given transformation
3906 >     * of all entries
3907 >     */
3908 >    @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
3909 >        (IntFunction<Map.Entry<K,V>> transformer,
3910 >         int basis,
3911 >         IntBinaryOperator reducer) {
3912 >        if (transformer == null || reducer == null)
3913 >            throw new NullPointerException();
3914 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3915 >        int r = basis; V v;
3916 >        while ((v = it.advance()) != null)
3917 >            r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)it.nextKey, v)));
3918 >        return r;
3919 >    }
3920 >
3921 >    // Parallel bulk operations
3922 >
3923 >    /**
3924 >     * Performs the given action for each (key, value).
3925 >     *
3926 >     * @param action the action
3927 >     */
3928 >    public void forEachInParallel(BiBlock<? super K,? super V> action) {
3929 >        ForkJoinTasks.forEach
3930 >            (this, action).invoke();
3931 >    }
3932 >
3933 >    /**
3934 >     * Performs the given action for each non-null transformation
3935 >     * of each (key, value).
3936 >     *
3937 >     * @param transformer a function returning the transformation
3938 >     * for an element, or null of there is no transformation (in
3939 >     * which case the action is not applied).
3940 >     * @param action the action
3941 >     */
3942 >    public <U> void forEachInParallel
3943 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3944 >                            Block<? super U> action) {
3945 >        ForkJoinTasks.forEach
3946 >            (this, transformer, action).invoke();
3947 >    }
3948 >
3949 >    /**
3950 >     * Returns a non-null result from applying the given search
3951 >     * function on each (key, value), or null if none.  Upon
3952 >     * success, further element processing is suppressed and the
3953 >     * results of any other parallel invocations of the search
3954 >     * function are ignored.
3955 >     *
3956 >     * @param searchFunction a function returning a non-null
3957 >     * result on success, else null
3958 >     * @return a non-null result from applying the given search
3959 >     * function on each (key, value), or null if none
3960 >     */
3961 >    public <U> U searchInParallel
3962 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3963 >        return ForkJoinTasks.search
3964 >            (this, searchFunction).invoke();
3965 >    }
3966 >
3967 >    /**
3968 >     * Returns the result of accumulating the given transformation
3969 >     * of all (key, value) pairs using the given reducer to
3970 >     * combine values, or null if none.
3971 >     *
3972 >     * @param transformer a function returning the transformation
3973 >     * for an element, or null of there is no transformation (in
3974 >     * which case it is not combined).
3975 >     * @param reducer a commutative associative combining function
3976 >     * @return the result of accumulating the given transformation
3977 >     * of all (key, value) pairs
3978 >     */
3979 >    public <U> U reduceInParallel
3980 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3981 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3982 >        return ForkJoinTasks.reduce
3983 >            (this, transformer, reducer).invoke();
3984 >    }
3985 >
3986 >    /**
3987 >     * Returns the result of accumulating the given transformation
3988 >     * of all (key, value) pairs using the given reducer to
3989 >     * combine values, and the given basis as an identity value.
3990 >     *
3991 >     * @param transformer a function returning the transformation
3992 >     * for an element
3993 >     * @param basis the identity (initial default value) for the reduction
3994 >     * @param reducer a commutative associative combining function
3995 >     * @return the result of accumulating the given transformation
3996 >     * of all (key, value) pairs
3997 >     */
3998 >    public double reduceToDoubleInParallel
3999 >        (DoubleBiFunction<? super K, ? super V> transformer,
4000 >         double basis,
4001 >         DoubleBinaryOperator reducer) {
4002 >        return ForkJoinTasks.reduceToDouble
4003 >            (this, transformer, basis, reducer).invoke();
4004 >    }
4005 >
4006 >    /**
4007 >     * Returns the result of accumulating the given transformation
4008 >     * of all (key, value) pairs using the given reducer to
4009 >     * combine values, and the given basis as an identity value.
4010 >     *
4011 >     * @param transformer a function returning the transformation
4012 >     * for an element
4013 >     * @param basis the identity (initial default value) for the reduction
4014 >     * @param reducer a commutative associative combining function
4015 >     * @return the result of accumulating the given transformation
4016 >     * of all (key, value) pairs
4017 >     */
4018 >    public long reduceToLongInParallel
4019 >        (LongBiFunction<? super K, ? super V> transformer,
4020 >         long basis,
4021 >         LongBinaryOperator reducer) {
4022 >        return ForkJoinTasks.reduceToLong
4023 >            (this, transformer, basis, reducer).invoke();
4024 >    }
4025 >
4026 >    /**
4027 >     * Returns the result of accumulating the given transformation
4028 >     * of all (key, value) pairs using the given reducer to
4029 >     * combine values, and the given basis as an identity value.
4030 >     *
4031 >     * @param transformer a function returning the transformation
4032 >     * for an element
4033 >     * @param basis the identity (initial default value) for the reduction
4034 >     * @param reducer a commutative associative combining function
4035 >     * @return the result of accumulating the given transformation
4036 >     * of all (key, value) pairs
4037 >     */
4038 >    public int reduceToIntInParallel
4039 >        (IntBiFunction<? super K, ? super V> transformer,
4040 >         int basis,
4041 >         IntBinaryOperator reducer) {
4042 >        return ForkJoinTasks.reduceToInt
4043 >            (this, transformer, basis, reducer).invoke();
4044 >    }
4045 >
4046 >    /**
4047 >     * Performs the given action for each key.
4048 >     *
4049 >     * @param action the action
4050 >     */
4051 >    public void forEachKeyInParallel(Block<? super K> action) {
4052 >        ForkJoinTasks.forEachKey
4053 >            (this, action).invoke();
4054 >    }
4055 >
4056 >    /**
4057 >     * Performs the given action for each non-null transformation
4058 >     * of each key.
4059 >     *
4060 >     * @param transformer a function returning the transformation
4061 >     * for an element, or null of there is no transformation (in
4062 >     * which case the action is not applied).
4063 >     * @param action the action
4064 >     */
4065 >    public <U> void forEachKeyInParallel
4066 >        (Function<? super K, ? extends U> transformer,
4067 >         Block<? super U> action) {
4068 >        ForkJoinTasks.forEachKey
4069 >            (this, transformer, action).invoke();
4070 >    }
4071 >
4072 >    /**
4073 >     * Returns a non-null result from applying the given search
4074 >     * function on each key, or null if none. Upon success,
4075 >     * further element processing is suppressed and the results of
4076 >     * any other parallel invocations of the search function are
4077 >     * ignored.
4078 >     *
4079 >     * @param searchFunction a function returning a non-null
4080 >     * result on success, else null
4081 >     * @return a non-null result from applying the given search
4082 >     * function on each key, or null if none
4083 >     */
4084 >    public <U> U searchKeysInParallel
4085 >        (Function<? super K, ? extends U> searchFunction) {
4086 >        return ForkJoinTasks.searchKeys
4087 >            (this, searchFunction).invoke();
4088 >    }
4089 >
4090 >    /**
4091 >     * Returns the result of accumulating all keys using the given
4092 >     * reducer to combine values, or null if none.
4093 >     *
4094 >     * @param reducer a commutative associative combining function
4095 >     * @return the result of accumulating all keys using the given
4096 >     * reducer to combine values, or null if none
4097 >     */
4098 >    public K reduceKeysInParallel
4099 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
4100 >        return ForkJoinTasks.reduceKeys
4101 >            (this, reducer).invoke();
4102 >    }
4103 >
4104 >    /**
4105 >     * Returns the result of accumulating the given transformation
4106 >     * of all keys using the given reducer to combine values, or
4107 >     * null if none.
4108 >     *
4109 >     * @param transformer a function returning the transformation
4110 >     * for an element, or null of there is no transformation (in
4111 >     * which case it is not combined).
4112 >     * @param reducer a commutative associative combining function
4113 >     * @return the result of accumulating the given transformation
4114 >     * of all keys
4115 >     */
4116 >    public <U> U reduceKeysInParallel
4117 >        (Function<? super K, ? extends U> transformer,
4118 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4119 >        return ForkJoinTasks.reduceKeys
4120 >            (this, transformer, reducer).invoke();
4121 >    }
4122 >
4123 >    /**
4124 >     * Returns the result of accumulating the given transformation
4125 >     * of all keys using the given reducer to combine values, and
4126 >     * the given basis as an identity value.
4127 >     *
4128 >     * @param transformer a function returning the transformation
4129 >     * for an element
4130 >     * @param basis the identity (initial default value) for the reduction
4131 >     * @param reducer a commutative associative combining function
4132 >     * @return the result of accumulating the given transformation
4133 >     * of all keys
4134 >     */
4135 >    public double reduceKeysToDoubleInParallel
4136 >        (DoubleFunction<? super K> transformer,
4137 >         double basis,
4138 >         DoubleBinaryOperator reducer) {
4139 >        return ForkJoinTasks.reduceKeysToDouble
4140 >            (this, transformer, basis, reducer).invoke();
4141 >    }
4142 >
4143 >    /**
4144 >     * Returns the result of accumulating the given transformation
4145 >     * of all keys using the given reducer to combine values, and
4146 >     * the given basis as an identity value.
4147 >     *
4148 >     * @param transformer a function returning the transformation
4149 >     * for an element
4150 >     * @param basis the identity (initial default value) for the reduction
4151 >     * @param reducer a commutative associative combining function
4152 >     * @return the result of accumulating the given transformation
4153 >     * of all keys
4154 >     */
4155 >    public long reduceKeysToLongInParallel
4156 >        (LongFunction<? super K> transformer,
4157 >         long basis,
4158 >         LongBinaryOperator reducer) {
4159 >        return ForkJoinTasks.reduceKeysToLong
4160 >            (this, transformer, basis, reducer).invoke();
4161 >    }
4162 >
4163 >    /**
4164 >     * Returns the result of accumulating the given transformation
4165 >     * of all keys using the given reducer to combine values, and
4166 >     * the given basis as an identity value.
4167 >     *
4168 >     * @param transformer a function returning the transformation
4169 >     * for an element
4170 >     * @param basis the identity (initial default value) for the reduction
4171 >     * @param reducer a commutative associative combining function
4172 >     * @return the result of accumulating the given transformation
4173 >     * of all keys
4174 >     */
4175 >    public int reduceKeysToIntInParallel
4176 >        (IntFunction<? super K> transformer,
4177 >         int basis,
4178 >         IntBinaryOperator reducer) {
4179 >        return ForkJoinTasks.reduceKeysToInt
4180 >            (this, transformer, basis, reducer).invoke();
4181 >    }
4182 >
4183 >    /**
4184 >     * Performs the given action for each value.
4185 >     *
4186 >     * @param action the action
4187 >     */
4188 >    public void forEachValueInParallel(Block<? super V> action) {
4189 >        ForkJoinTasks.forEachValue
4190 >            (this, action).invoke();
4191 >    }
4192 >
4193 >    /**
4194 >     * Performs the given action for each non-null transformation
4195 >     * of each value.
4196 >     *
4197 >     * @param transformer a function returning the transformation
4198 >     * for an element, or null of there is no transformation (in
4199 >     * which case the action is not applied).
4200 >     */
4201 >    public <U> void forEachValueInParallel
4202 >        (Function<? super V, ? extends U> transformer,
4203 >         Block<? super U> action) {
4204 >        ForkJoinTasks.forEachValue
4205 >            (this, transformer, action).invoke();
4206 >    }
4207 >
4208 >    /**
4209 >     * Returns a non-null result from applying the given search
4210 >     * function on each value, or null if none.  Upon success,
4211 >     * further element processing is suppressed and the results of
4212 >     * any other parallel invocations of the search function are
4213 >     * ignored.
4214 >     *
4215 >     * @param searchFunction a function returning a non-null
4216 >     * result on success, else null
4217 >     * @return a non-null result from applying the given search
4218 >     * function on each value, or null if none
4219 >     */
4220 >    public <U> U searchValuesInParallel
4221 >        (Function<? super V, ? extends U> searchFunction) {
4222 >        return ForkJoinTasks.searchValues
4223 >            (this, searchFunction).invoke();
4224 >    }
4225 >
4226 >    /**
4227 >     * Returns the result of accumulating all values using the
4228 >     * given reducer to combine values, or null if none.
4229 >     *
4230 >     * @param reducer a commutative associative combining function
4231 >     * @return the result of accumulating all values
4232 >     */
4233 >    public V reduceValuesInParallel
4234 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
4235 >        return ForkJoinTasks.reduceValues
4236 >            (this, reducer).invoke();
4237 >    }
4238 >
4239 >    /**
4240 >     * Returns the result of accumulating the given transformation
4241 >     * of all values using the given reducer to combine values, or
4242 >     * null if none.
4243 >     *
4244 >     * @param transformer a function returning the transformation
4245 >     * for an element, or null of there is no transformation (in
4246 >     * which case it is not combined).
4247 >     * @param reducer a commutative associative combining function
4248 >     * @return the result of accumulating the given transformation
4249 >     * of all values
4250 >     */
4251 >    public <U> U reduceValuesInParallel
4252 >        (Function<? super V, ? extends U> transformer,
4253 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4254 >        return ForkJoinTasks.reduceValues
4255 >            (this, transformer, reducer).invoke();
4256 >    }
4257 >
4258 >    /**
4259 >     * Returns the result of accumulating the given transformation
4260 >     * of all values using the given reducer to combine values,
4261 >     * and the given basis as an identity value.
4262 >     *
4263 >     * @param transformer a function returning the transformation
4264 >     * for an element
4265 >     * @param basis the identity (initial default value) for the reduction
4266 >     * @param reducer a commutative associative combining function
4267 >     * @return the result of accumulating the given transformation
4268 >     * of all values
4269 >     */
4270 >    public double reduceValuesToDoubleInParallel
4271 >        (DoubleFunction<? super V> transformer,
4272 >         double basis,
4273 >         DoubleBinaryOperator reducer) {
4274 >        return ForkJoinTasks.reduceValuesToDouble
4275 >            (this, transformer, basis, reducer).invoke();
4276 >    }
4277 >
4278 >    /**
4279 >     * Returns the result of accumulating the given transformation
4280 >     * of all values using the given reducer to combine values,
4281 >     * and the given basis as an identity value.
4282 >     *
4283 >     * @param transformer a function returning the transformation
4284 >     * for an element
4285 >     * @param basis the identity (initial default value) for the reduction
4286 >     * @param reducer a commutative associative combining function
4287 >     * @return the result of accumulating the given transformation
4288 >     * of all values
4289 >     */
4290 >    public long reduceValuesToLongInParallel
4291 >        (LongFunction<? super V> transformer,
4292 >         long basis,
4293 >         LongBinaryOperator reducer) {
4294 >        return ForkJoinTasks.reduceValuesToLong
4295 >            (this, transformer, basis, reducer).invoke();
4296 >    }
4297 >
4298 >    /**
4299 >     * Returns the result of accumulating the given transformation
4300 >     * of all values using the given reducer to combine values,
4301 >     * and the given basis as an identity value.
4302 >     *
4303 >     * @param transformer a function returning the transformation
4304 >     * for an element
4305 >     * @param basis the identity (initial default value) for the reduction
4306 >     * @param reducer a commutative associative combining function
4307 >     * @return the result of accumulating the given transformation
4308 >     * of all values
4309 >     */
4310 >    public int reduceValuesToIntInParallel
4311 >        (IntFunction<? super V> transformer,
4312 >         int basis,
4313 >         IntBinaryOperator reducer) {
4314 >        return ForkJoinTasks.reduceValuesToInt
4315 >            (this, transformer, basis, reducer).invoke();
4316 >    }
4317 >
4318 >    /**
4319 >     * Performs the given action for each entry.
4320 >     *
4321 >     * @param action the action
4322 >     */
4323 >    public void forEachEntryInParallel(Block<? super Map.Entry<K,V>> action) {
4324 >        ForkJoinTasks.forEachEntry
4325 >            (this, action).invoke();
4326 >    }
4327 >
4328 >    /**
4329 >     * Performs the given action for each non-null transformation
4330 >     * of each entry.
4331 >     *
4332 >     * @param transformer a function returning the transformation
4333 >     * for an element, or null of there is no transformation (in
4334 >     * which case the action is not applied).
4335 >     * @param action the action
4336 >     */
4337 >    public <U> void forEachEntryInParallel
4338 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4339 >         Block<? super U> action) {
4340 >        ForkJoinTasks.forEachEntry
4341 >            (this, transformer, action).invoke();
4342 >    }
4343 >
4344 >    /**
4345 >     * Returns a non-null result from applying the given search
4346 >     * function on each entry, or null if none.  Upon success,
4347 >     * further element processing is suppressed and the results of
4348 >     * any other parallel invocations of the search function are
4349 >     * ignored.
4350 >     *
4351 >     * @param searchFunction a function returning a non-null
4352 >     * result on success, else null
4353 >     * @return a non-null result from applying the given search
4354 >     * function on each entry, or null if none
4355 >     */
4356 >    public <U> U searchEntriesInParallel
4357 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4358 >        return ForkJoinTasks.searchEntries
4359 >            (this, searchFunction).invoke();
4360 >    }
4361 >
4362 >    /**
4363 >     * Returns the result of accumulating all entries using the
4364 >     * given reducer to combine values, or null if none.
4365 >     *
4366 >     * @param reducer a commutative associative combining function
4367 >     * @return the result of accumulating all entries
4368 >     */
4369 >    public Map.Entry<K,V> reduceEntriesInParallel
4370 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4371 >        return ForkJoinTasks.reduceEntries
4372 >            (this, reducer).invoke();
4373 >    }
4374 >
4375 >    /**
4376 >     * Returns the result of accumulating the given transformation
4377 >     * of all entries using the given reducer to combine values,
4378 >     * or null if none.
4379 >     *
4380 >     * @param transformer a function returning the transformation
4381 >     * for an element, or null of there is no transformation (in
4382 >     * which case it is not combined).
4383 >     * @param reducer a commutative associative combining function
4384 >     * @return the result of accumulating the given transformation
4385 >     * of all entries
4386 >     */
4387 >    public <U> U reduceEntriesInParallel
4388 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4389 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4390 >        return ForkJoinTasks.reduceEntries
4391 >            (this, transformer, reducer).invoke();
4392 >    }
4393 >
4394 >    /**
4395 >     * Returns the result of accumulating the given transformation
4396 >     * of all entries using the given reducer to combine values,
4397 >     * and the given basis as an identity value.
4398 >     *
4399 >     * @param transformer a function returning the transformation
4400 >     * for an element
4401 >     * @param basis the identity (initial default value) for the reduction
4402 >     * @param reducer a commutative associative combining function
4403 >     * @return the result of accumulating the given transformation
4404 >     * of all entries
4405 >     */
4406 >    public double reduceEntriesToDoubleInParallel
4407 >        (DoubleFunction<Map.Entry<K,V>> transformer,
4408 >         double basis,
4409 >         DoubleBinaryOperator reducer) {
4410 >        return ForkJoinTasks.reduceEntriesToDouble
4411 >            (this, transformer, basis, reducer).invoke();
4412 >    }
4413 >
4414 >    /**
4415 >     * Returns the result of accumulating the given transformation
4416 >     * of all entries using the given reducer to combine values,
4417 >     * and the given basis as an identity value.
4418 >     *
4419 >     * @param transformer a function returning the transformation
4420 >     * for an element
4421 >     * @param basis the identity (initial default value) for the reduction
4422 >     * @param reducer a commutative associative combining function
4423 >     * @return the result of accumulating the given transformation
4424 >     * of all entries
4425 >     */
4426 >    public long reduceEntriesToLongInParallel
4427 >        (LongFunction<Map.Entry<K,V>> transformer,
4428 >         long basis,
4429 >         LongBinaryOperator reducer) {
4430 >        return ForkJoinTasks.reduceEntriesToLong
4431 >            (this, transformer, basis, reducer).invoke();
4432 >    }
4433 >
4434 >    /**
4435 >     * Returns the result of accumulating the given transformation
4436 >     * of all entries using the given reducer to combine values,
4437 >     * and the given basis as an identity value.
4438 >     *
4439 >     * @param transformer a function returning the transformation
4440 >     * for an element
4441 >     * @param basis the identity (initial default value) for the reduction
4442 >     * @param reducer a commutative associative combining function
4443 >     * @return the result of accumulating the given transformation
4444 >     * of all entries
4445 >     */
4446 >    public int reduceEntriesToIntInParallel
4447 >        (IntFunction<Map.Entry<K,V>> transformer,
4448 >         int basis,
4449 >         IntBinaryOperator reducer) {
4450 >        return ForkJoinTasks.reduceEntriesToInt
4451 >            (this, transformer, basis, reducer).invoke();
4452 >    }
4453 >
4454 >
4455 >    /* ----------------Views -------------- */
4456 >
4457 >    /**
4458 >     * Base class for views.
4459 >     */
4460 >    static abstract class CHMView<K, V> implements java.io.Serializable {
4461 >        private static final long serialVersionUID = 7249069246763182397L;
4462 >        final ConcurrentHashMap<K, V> map;
4463 >        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
4464 >
4465 >        /**
4466 >         * Returns the map backing this view.
4467 >         *
4468 >         * @return the map backing this view
4469 >         */
4470 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4471 >
4472 >        public final int size()                 { return map.size(); }
4473 >        public final boolean isEmpty()          { return map.isEmpty(); }
4474 >        public final void clear()               { map.clear(); }
4475 >
4476 >        // implementations below rely on concrete classes supplying these
4477 >        abstract public Iterator<?> iterator();
4478 >        abstract public boolean contains(Object o);
4479 >        abstract public boolean remove(Object o);
4480 >
4481 >        private static final String oomeMsg = "Required array size too large";
4482 >
4483 >        public final Object[] toArray() {
4484 >            long sz = map.mappingCount();
4485 >            if (sz > (long)(MAX_ARRAY_SIZE))
4486 >                throw new OutOfMemoryError(oomeMsg);
4487 >            int n = (int)sz;
4488 >            Object[] r = new Object[n];
4489 >            int i = 0;
4490 >            Iterator<?> it = iterator();
4491 >            while (it.hasNext()) {
4492 >                if (i == n) {
4493 >                    if (n >= MAX_ARRAY_SIZE)
4494 >                        throw new OutOfMemoryError(oomeMsg);
4495 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4496 >                        n = MAX_ARRAY_SIZE;
4497 >                    else
4498 >                        n += (n >>> 1) + 1;
4499 >                    r = Arrays.copyOf(r, n);
4500 >                }
4501 >                r[i++] = it.next();
4502 >            }
4503 >            return (i == n) ? r : Arrays.copyOf(r, i);
4504          }
4505 <        public boolean contains(Object o) {
4506 <            return ConcurrentHashMap.this.containsKey(o);
4505 >
4506 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4507 >            long sz = map.mappingCount();
4508 >            if (sz > (long)(MAX_ARRAY_SIZE))
4509 >                throw new OutOfMemoryError(oomeMsg);
4510 >            int m = (int)sz;
4511 >            T[] r = (a.length >= m) ? a :
4512 >                (T[])java.lang.reflect.Array
4513 >                .newInstance(a.getClass().getComponentType(), m);
4514 >            int n = r.length;
4515 >            int i = 0;
4516 >            Iterator<?> it = iterator();
4517 >            while (it.hasNext()) {
4518 >                if (i == n) {
4519 >                    if (n >= MAX_ARRAY_SIZE)
4520 >                        throw new OutOfMemoryError(oomeMsg);
4521 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4522 >                        n = MAX_ARRAY_SIZE;
4523 >                    else
4524 >                        n += (n >>> 1) + 1;
4525 >                    r = Arrays.copyOf(r, n);
4526 >                }
4527 >                r[i++] = (T)it.next();
4528 >            }
4529 >            if (a == r && i < n) {
4530 >                r[i] = null; // null-terminate
4531 >                return r;
4532 >            }
4533 >            return (i == n) ? r : Arrays.copyOf(r, i);
4534          }
4535 <        public boolean remove(Object o) {
4536 <            return ConcurrentHashMap.this.remove(o) != null;
4535 >
4536 >        public final int hashCode() {
4537 >            int h = 0;
4538 >            for (Iterator<?> it = iterator(); it.hasNext();)
4539 >                h += it.next().hashCode();
4540 >            return h;
4541 >        }
4542 >
4543 >        public final String toString() {
4544 >            StringBuilder sb = new StringBuilder();
4545 >            sb.append('[');
4546 >            Iterator<?> it = iterator();
4547 >            if (it.hasNext()) {
4548 >                for (;;) {
4549 >                    Object e = it.next();
4550 >                    sb.append(e == this ? "(this Collection)" : e);
4551 >                    if (!it.hasNext())
4552 >                        break;
4553 >                    sb.append(',').append(' ');
4554 >                }
4555 >            }
4556 >            return sb.append(']').toString();
4557          }
4558 <        public void clear() {
4559 <            ConcurrentHashMap.this.clear();
4558 >
4559 >        public final boolean containsAll(Collection<?> c) {
4560 >            if (c != this) {
4561 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4562 >                    Object e = it.next();
4563 >                    if (e == null || !contains(e))
4564 >                        return false;
4565 >                }
4566 >            }
4567 >            return true;
4568          }
4569 <        public Object[] toArray() {
4570 <            Collection<K> c = new ArrayList<K>();
4571 <            for (Iterator<K> i = iterator(); i.hasNext(); )
4572 <                c.add(i.next());
4573 <            return c.toArray();
4569 >
4570 >        public final boolean removeAll(Collection<?> c) {
4571 >            boolean modified = false;
4572 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4573 >                if (c.contains(it.next())) {
4574 >                    it.remove();
4575 >                    modified = true;
4576 >                }
4577 >            }
4578 >            return modified;
4579          }
4580 <        public <T> T[] toArray(T[] a) {
4581 <            Collection<K> c = new ArrayList<K>();
4582 <            for (Iterator<K> i = iterator(); i.hasNext(); )
4583 <                c.add(i.next());
4584 <            return c.toArray(a);
4580 >
4581 >        public final boolean retainAll(Collection<?> c) {
4582 >            boolean modified = false;
4583 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4584 >                if (!c.contains(it.next())) {
4585 >                    it.remove();
4586 >                    modified = true;
4587 >                }
4588 >            }
4589 >            return modified;
4590          }
4591 +
4592      }
4593  
4594 <    final class Values extends AbstractCollection<V> {
4595 <        public Iterator<V> iterator() {
4596 <            return new ValueIterator();
4594 >    /**
4595 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4596 >     * which additions may optionally be enabled by mapping to a
4597 >     * common value.  This class cannot be directly instantiated. See
4598 >     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4599 >     * {@link #newKeySet(int)}.
4600 >     */
4601 >    public static class KeySetView<K,V> extends CHMView<K,V>
4602 >        implements Set<K>, java.io.Serializable {
4603 >        private static final long serialVersionUID = 7249069246763182397L;
4604 >        private final V value;
4605 >        KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
4606 >            super(map);
4607 >            this.value = value;
4608          }
4609 <        public int size() {
4610 <            return ConcurrentHashMap.this.size();
4609 >
4610 >        /**
4611 >         * Returns the default mapped value for additions,
4612 >         * or {@code null} if additions are not supported.
4613 >         *
4614 >         * @return the default mapped value for additions, or {@code null}
4615 >         * if not supported.
4616 >         */
4617 >        public V getMappedValue() { return value; }
4618 >
4619 >        // implement Set API
4620 >
4621 >        public boolean contains(Object o) { return map.containsKey(o); }
4622 >        public boolean remove(Object o)   { return map.remove(o) != null; }
4623 >
4624 >        /**
4625 >         * Returns a "weakly consistent" iterator that will never
4626 >         * throw {@link ConcurrentModificationException}, and
4627 >         * guarantees to traverse elements as they existed upon
4628 >         * construction of the iterator, and may (but is not
4629 >         * guaranteed to) reflect any modifications subsequent to
4630 >         * construction.
4631 >         *
4632 >         * @return an iterator over the keys of this map
4633 >         */
4634 >        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4635 >        public boolean add(K e) {
4636 >            V v;
4637 >            if ((v = value) == null)
4638 >                throw new UnsupportedOperationException();
4639 >            if (e == null)
4640 >                throw new NullPointerException();
4641 >            return map.internalPut(e, v, true) == null;
4642 >        }
4643 >        public boolean addAll(Collection<? extends K> c) {
4644 >            boolean added = false;
4645 >            V v;
4646 >            if ((v = value) == null)
4647 >                throw new UnsupportedOperationException();
4648 >            for (K e : c) {
4649 >                if (e == null)
4650 >                    throw new NullPointerException();
4651 >                if (map.internalPut(e, v, true) == null)
4652 >                    added = true;
4653 >            }
4654 >            return added;
4655 >        }
4656 >        public boolean equals(Object o) {
4657 >            Set<?> c;
4658 >            return ((o instanceof Set) &&
4659 >                    ((c = (Set<?>)o) == this ||
4660 >                     (containsAll(c) && c.containsAll(this))));
4661          }
4662 <        public boolean contains(Object o) {
4663 <            return ConcurrentHashMap.this.containsValue(o);
4662 >
4663 >        public Stream<K> stream() {
4664 >            return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4665 >        }
4666 >        public Stream<K> parallelStream() {
4667 >            return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4668 >                                          0);
4669 >        }
4670 >    }
4671 >
4672 >    /**
4673 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4674 >     * values, in which additions are disabled. This class cannot be
4675 >     * directly instantiated. See {@link #values},
4676 >     *
4677 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4678 >     * that will never throw {@link ConcurrentModificationException},
4679 >     * and guarantees to traverse elements as they existed upon
4680 >     * construction of the iterator, and may (but is not guaranteed to)
4681 >     * reflect any modifications subsequent to construction.
4682 >     */
4683 >    public static final class ValuesView<K,V> extends CHMView<K,V>
4684 >        implements Collection<V> {
4685 >        ValuesView(ConcurrentHashMap<K, V> map)   { super(map); }
4686 >        public final boolean contains(Object o) { return map.containsValue(o); }
4687 >        public final boolean remove(Object o) {
4688 >            if (o != null) {
4689 >                Iterator<V> it = new ValueIterator<K,V>(map);
4690 >                while (it.hasNext()) {
4691 >                    if (o.equals(it.next())) {
4692 >                        it.remove();
4693 >                        return true;
4694 >                    }
4695 >                }
4696 >            }
4697 >            return false;
4698          }
4699 <        public void clear() {
4700 <            ConcurrentHashMap.this.clear();
4699 >
4700 >        /**
4701 >         * Returns a "weakly consistent" iterator that will never
4702 >         * throw {@link ConcurrentModificationException}, and
4703 >         * guarantees to traverse elements as they existed upon
4704 >         * construction of the iterator, and may (but is not
4705 >         * guaranteed to) reflect any modifications subsequent to
4706 >         * construction.
4707 >         *
4708 >         * @return an iterator over the values of this map
4709 >         */
4710 >        public final Iterator<V> iterator() {
4711 >            return new ValueIterator<K,V>(map);
4712          }
4713 <        public Object[] toArray() {
4714 <            Collection<V> c = new ArrayList<V>();
1253 <            for (Iterator<V> i = iterator(); i.hasNext(); )
1254 <                c.add(i.next());
1255 <            return c.toArray();
4713 >        public final boolean add(V e) {
4714 >            throw new UnsupportedOperationException();
4715          }
4716 <        public <T> T[] toArray(T[] a) {
4717 <            Collection<V> c = new ArrayList<V>();
1259 <            for (Iterator<V> i = iterator(); i.hasNext(); )
1260 <                c.add(i.next());
1261 <            return c.toArray(a);
4716 >        public final boolean addAll(Collection<? extends V> c) {
4717 >            throw new UnsupportedOperationException();
4718          }
1263    }
4719  
4720 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4721 <        public Iterator<Map.Entry<K,V>> iterator() {
1267 <            return new EntryIterator();
4720 >        public Stream<V> stream() {
4721 >            return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4722          }
4723 <        public boolean contains(Object o) {
4724 <            if (!(o instanceof Map.Entry))
4725 <                return false;
4726 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1273 <            V v = ConcurrentHashMap.this.get(e.getKey());
1274 <            return v != null && v.equals(e.getValue());
4723 >
4724 >        public Stream<V> parallelStream() {
4725 >            return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4726 >                                          0);
4727          }
4728 <        public boolean remove(Object o) {
4729 <            if (!(o instanceof Map.Entry))
4730 <                return false;
4731 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
4732 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4728 >
4729 >    }
4730 >
4731 >    /**
4732 >     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4733 >     * entries.  This class cannot be directly instantiated. See
4734 >     * {@link #entrySet}.
4735 >     */
4736 >    public static final class EntrySetView<K,V> extends CHMView<K,V>
4737 >        implements Set<Map.Entry<K,V>> {
4738 >        EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4739 >        public final boolean contains(Object o) {
4740 >            Object k, v, r; Map.Entry<?,?> e;
4741 >            return ((o instanceof Map.Entry) &&
4742 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4743 >                    (r = map.get(k)) != null &&
4744 >                    (v = e.getValue()) != null &&
4745 >                    (v == r || v.equals(r)));
4746 >        }
4747 >        public final boolean remove(Object o) {
4748 >            Object k, v; Map.Entry<?,?> e;
4749 >            return ((o instanceof Map.Entry) &&
4750 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4751 >                    (v = e.getValue()) != null &&
4752 >                    map.remove(k, v));
4753          }
4754 <        public int size() {
4755 <            return ConcurrentHashMap.this.size();
4754 >
4755 >        /**
4756 >         * Returns a "weakly consistent" iterator that will never
4757 >         * throw {@link ConcurrentModificationException}, and
4758 >         * guarantees to traverse elements as they existed upon
4759 >         * construction of the iterator, and may (but is not
4760 >         * guaranteed to) reflect any modifications subsequent to
4761 >         * construction.
4762 >         *
4763 >         * @return an iterator over the entries of this map
4764 >         */
4765 >        public final Iterator<Map.Entry<K,V>> iterator() {
4766 >            return new EntryIterator<K,V>(map);
4767          }
4768 <        public void clear() {
4769 <            ConcurrentHashMap.this.clear();
4768 >
4769 >        public final boolean add(Entry<K,V> e) {
4770 >            K key = e.getKey();
4771 >            V value = e.getValue();
4772 >            if (key == null || value == null)
4773 >                throw new NullPointerException();
4774 >            return map.internalPut(key, value, false) == null;
4775 >        }
4776 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4777 >            boolean added = false;
4778 >            for (Entry<K,V> e : c) {
4779 >                if (add(e))
4780 >                    added = true;
4781 >            }
4782 >            return added;
4783          }
4784 <        public Object[] toArray() {
4785 <            // Since we don't ordinarily have distinct Entry objects, we
4786 <            // must pack elements using exportable SimpleEntry
4787 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4788 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1293 <                c.add(new SimpleEntry<K,V>(i.next()));
1294 <            return c.toArray();
4784 >        public boolean equals(Object o) {
4785 >            Set<?> c;
4786 >            return ((o instanceof Set) &&
4787 >                    ((c = (Set<?>)o) == this ||
4788 >                     (containsAll(c) && c.containsAll(this))));
4789          }
4790 <        public <T> T[] toArray(T[] a) {
4791 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4792 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1299 <                c.add(new SimpleEntry<K,V>(i.next()));
1300 <            return c.toArray(a);
4790 >
4791 >        public Stream<Map.Entry<K,V>> stream() {
4792 >            return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4793          }
4794  
4795 +        public Stream<Map.Entry<K,V>> parallelStream() {
4796 +            return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4797 +                                          0);
4798 +        }
4799      }
4800  
4801 +    // ---------------------------------------------------------------------
4802 +
4803      /**
4804 <     * This duplicates java.util.AbstractMap.SimpleEntry until this class
4805 <     * is made accessible.
4804 >     * Predefined tasks for performing bulk parallel operations on
4805 >     * ConcurrentHashMaps. These tasks follow the forms and rules used
4806 >     * for bulk operations. Each method has the same name, but returns
4807 >     * a task rather than invoking it. These methods may be useful in
4808 >     * custom applications such as submitting a task without waiting
4809 >     * for completion, using a custom pool, or combining with other
4810 >     * tasks.
4811       */
4812 <    static final class SimpleEntry<K,V> implements Entry<K,V> {
4813 <        K key;
1311 <        V value;
4812 >    public static class ForkJoinTasks {
4813 >        private ForkJoinTasks() {}
4814  
4815 <        public SimpleEntry(K key, V value) {
4816 <            this.key   = key;
4817 <            this.value = value;
4815 >        /**
4816 >         * Returns a task that when invoked, performs the given
4817 >         * action for each (key, value)
4818 >         *
4819 >         * @param map the map
4820 >         * @param action the action
4821 >         * @return the task
4822 >         */
4823 >        public static <K,V> ForkJoinTask<Void> forEach
4824 >            (ConcurrentHashMap<K,V> map,
4825 >             BiBlock<? super K, ? super V> action) {
4826 >            if (action == null) throw new NullPointerException();
4827 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4828          }
4829  
4830 <        public SimpleEntry(Entry<K,V> e) {
4831 <            this.key   = e.getKey();
4832 <            this.value = e.getValue();
4830 >        /**
4831 >         * Returns a task that when invoked, performs the given
4832 >         * action for each non-null transformation of each (key, value)
4833 >         *
4834 >         * @param map the map
4835 >         * @param transformer a function returning the transformation
4836 >         * for an element, or null if there is no transformation (in
4837 >         * which case the action is not applied)
4838 >         * @param action the action
4839 >         * @return the task
4840 >         */
4841 >        public static <K,V,U> ForkJoinTask<Void> forEach
4842 >            (ConcurrentHashMap<K,V> map,
4843 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4844 >             Block<? super U> action) {
4845 >            if (transformer == null || action == null)
4846 >                throw new NullPointerException();
4847 >            return new ForEachTransformedMappingTask<K,V,U>
4848 >                (map, null, -1, transformer, action);
4849          }
4850  
4851 <        public K getKey() {
4852 <            return key;
4851 >        /**
4852 >         * Returns a task that when invoked, returns a non-null result
4853 >         * from applying the given search function on each (key,
4854 >         * value), or null if none. Upon success, further element
4855 >         * processing is suppressed and the results of any other
4856 >         * parallel invocations of the search function are ignored.
4857 >         *
4858 >         * @param map the map
4859 >         * @param searchFunction a function returning a non-null
4860 >         * result on success, else null
4861 >         * @return the task
4862 >         */
4863 >        public static <K,V,U> ForkJoinTask<U> search
4864 >            (ConcurrentHashMap<K,V> map,
4865 >             BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4866 >            if (searchFunction == null) throw new NullPointerException();
4867 >            return new SearchMappingsTask<K,V,U>
4868 >                (map, null, -1, searchFunction,
4869 >                 new AtomicReference<U>());
4870          }
4871  
4872 <        public V getValue() {
4873 <            return value;
4872 >        /**
4873 >         * Returns a task that when invoked, returns the result of
4874 >         * accumulating the given transformation of all (key, value) pairs
4875 >         * using the given reducer to combine values, or null if none.
4876 >         *
4877 >         * @param map the map
4878 >         * @param transformer a function returning the transformation
4879 >         * for an element, or null if there is no transformation (in
4880 >         * which case it is not combined).
4881 >         * @param reducer a commutative associative combining function
4882 >         * @return the task
4883 >         */
4884 >        public static <K,V,U> ForkJoinTask<U> reduce
4885 >            (ConcurrentHashMap<K,V> map,
4886 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4887 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
4888 >            if (transformer == null || reducer == null)
4889 >                throw new NullPointerException();
4890 >            return new MapReduceMappingsTask<K,V,U>
4891 >                (map, null, -1, null, transformer, reducer);
4892          }
4893  
4894 <        public V setValue(V value) {
4895 <            V oldValue = this.value;
4896 <            this.value = value;
4897 <            return oldValue;
4894 >        /**
4895 >         * Returns a task that when invoked, returns the result of
4896 >         * accumulating the given transformation of all (key, value) pairs
4897 >         * using the given reducer to combine values, and the given
4898 >         * basis as an identity value.
4899 >         *
4900 >         * @param map the map
4901 >         * @param transformer a function returning the transformation
4902 >         * for an element
4903 >         * @param basis the identity (initial default value) for the reduction
4904 >         * @param reducer a commutative associative combining function
4905 >         * @return the task
4906 >         */
4907 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
4908 >            (ConcurrentHashMap<K,V> map,
4909 >             DoubleBiFunction<? super K, ? super V> transformer,
4910 >             double basis,
4911 >             DoubleBinaryOperator reducer) {
4912 >            if (transformer == null || reducer == null)
4913 >                throw new NullPointerException();
4914 >            return new MapReduceMappingsToDoubleTask<K,V>
4915 >                (map, null, -1, null, transformer, basis, reducer);
4916          }
4917  
4918 <        public boolean equals(Object o) {
4919 <            if (!(o instanceof Map.Entry))
4920 <                return false;
4921 <            Map.Entry e = (Map.Entry)o;
4922 <            return eq(key, e.getKey()) && eq(value, e.getValue());
4918 >        /**
4919 >         * Returns a task that when invoked, returns the result of
4920 >         * accumulating the given transformation of all (key, value) pairs
4921 >         * using the given reducer to combine values, and the given
4922 >         * basis as an identity value.
4923 >         *
4924 >         * @param map the map
4925 >         * @param transformer a function returning the transformation
4926 >         * for an element
4927 >         * @param basis the identity (initial default value) for the reduction
4928 >         * @param reducer a commutative associative combining function
4929 >         * @return the task
4930 >         */
4931 >        public static <K,V> ForkJoinTask<Long> reduceToLong
4932 >            (ConcurrentHashMap<K,V> map,
4933 >             LongBiFunction<? super K, ? super V> transformer,
4934 >             long basis,
4935 >             LongBinaryOperator reducer) {
4936 >            if (transformer == null || reducer == null)
4937 >                throw new NullPointerException();
4938 >            return new MapReduceMappingsToLongTask<K,V>
4939 >                (map, null, -1, null, transformer, basis, reducer);
4940 >        }
4941 >
4942 >        /**
4943 >         * Returns a task that when invoked, returns the result of
4944 >         * accumulating the given transformation of all (key, value) pairs
4945 >         * using the given reducer to combine values, and the given
4946 >         * basis as an identity value.
4947 >         *
4948 >         * @param transformer a function returning the transformation
4949 >         * for an element
4950 >         * @param basis the identity (initial default value) for the reduction
4951 >         * @param reducer a commutative associative combining function
4952 >         * @return the task
4953 >         */
4954 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
4955 >            (ConcurrentHashMap<K,V> map,
4956 >             IntBiFunction<? super K, ? super V> transformer,
4957 >             int basis,
4958 >             IntBinaryOperator reducer) {
4959 >            if (transformer == null || reducer == null)
4960 >                throw new NullPointerException();
4961 >            return new MapReduceMappingsToIntTask<K,V>
4962 >                (map, null, -1, null, transformer, basis, reducer);
4963 >        }
4964 >
4965 >        /**
4966 >         * Returns a task that when invoked, performs the given action
4967 >         * for each key.
4968 >         *
4969 >         * @param map the map
4970 >         * @param action the action
4971 >         * @return the task
4972 >         */
4973 >        public static <K,V> ForkJoinTask<Void> forEachKey
4974 >            (ConcurrentHashMap<K,V> map,
4975 >             Block<? super K> action) {
4976 >            if (action == null) throw new NullPointerException();
4977 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
4978 >        }
4979 >
4980 >        /**
4981 >         * Returns a task that when invoked, performs the given action
4982 >         * for each non-null transformation of each key.
4983 >         *
4984 >         * @param map the map
4985 >         * @param transformer a function returning the transformation
4986 >         * for an element, or null if there is no transformation (in
4987 >         * which case the action is not applied)
4988 >         * @param action the action
4989 >         * @return the task
4990 >         */
4991 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
4992 >            (ConcurrentHashMap<K,V> map,
4993 >             Function<? super K, ? extends U> transformer,
4994 >             Block<? super U> action) {
4995 >            if (transformer == null || action == null)
4996 >                throw new NullPointerException();
4997 >            return new ForEachTransformedKeyTask<K,V,U>
4998 >                (map, null, -1, transformer, action);
4999 >        }
5000 >
5001 >        /**
5002 >         * Returns a task that when invoked, returns a non-null result
5003 >         * from applying the given search function on each key, or
5004 >         * null if none.  Upon success, further element processing is
5005 >         * suppressed and the results of any other parallel
5006 >         * invocations of the search function are ignored.
5007 >         *
5008 >         * @param map the map
5009 >         * @param searchFunction a function returning a non-null
5010 >         * result on success, else null
5011 >         * @return the task
5012 >         */
5013 >        public static <K,V,U> ForkJoinTask<U> searchKeys
5014 >            (ConcurrentHashMap<K,V> map,
5015 >             Function<? super K, ? extends U> searchFunction) {
5016 >            if (searchFunction == null) throw new NullPointerException();
5017 >            return new SearchKeysTask<K,V,U>
5018 >                (map, null, -1, searchFunction,
5019 >                 new AtomicReference<U>());
5020          }
5021  
5022 <        public int hashCode() {
5023 <            return ((key   == null)   ? 0 :   key.hashCode()) ^
5024 <                   ((value == null)   ? 0 : value.hashCode());
5022 >        /**
5023 >         * Returns a task that when invoked, returns the result of
5024 >         * accumulating all keys using the given reducer to combine
5025 >         * values, or null if none.
5026 >         *
5027 >         * @param map the map
5028 >         * @param reducer a commutative associative combining function
5029 >         * @return the task
5030 >         */
5031 >        public static <K,V> ForkJoinTask<K> reduceKeys
5032 >            (ConcurrentHashMap<K,V> map,
5033 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5034 >            if (reducer == null) throw new NullPointerException();
5035 >            return new ReduceKeysTask<K,V>
5036 >                (map, null, -1, null, reducer);
5037          }
5038  
5039 <        public String toString() {
5040 <            return key + "=" + value;
5039 >        /**
5040 >         * Returns a task that when invoked, returns the result of
5041 >         * accumulating the given transformation of all keys using the given
5042 >         * reducer to combine values, or null if none.
5043 >         *
5044 >         * @param map the map
5045 >         * @param transformer a function returning the transformation
5046 >         * for an element, or null if there is no transformation (in
5047 >         * which case it is not combined).
5048 >         * @param reducer a commutative associative combining function
5049 >         * @return the task
5050 >         */
5051 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
5052 >            (ConcurrentHashMap<K,V> map,
5053 >             Function<? super K, ? extends U> transformer,
5054 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5055 >            if (transformer == null || reducer == null)
5056 >                throw new NullPointerException();
5057 >            return new MapReduceKeysTask<K,V,U>
5058 >                (map, null, -1, null, transformer, reducer);
5059          }
5060  
5061 <        static boolean eq(Object o1, Object o2) {
5062 <            return (o1 == null ? o2 == null : o1.equals(o2));
5061 >        /**
5062 >         * Returns a task that when invoked, returns the result of
5063 >         * accumulating the given transformation of all keys using the given
5064 >         * reducer to combine values, and the given basis as an
5065 >         * identity value.
5066 >         *
5067 >         * @param map the map
5068 >         * @param transformer a function returning the transformation
5069 >         * for an element
5070 >         * @param basis the identity (initial default value) for the reduction
5071 >         * @param reducer a commutative associative combining function
5072 >         * @return the task
5073 >         */
5074 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5075 >            (ConcurrentHashMap<K,V> map,
5076 >             DoubleFunction<? super K> transformer,
5077 >             double basis,
5078 >             DoubleBinaryOperator reducer) {
5079 >            if (transformer == null || reducer == null)
5080 >                throw new NullPointerException();
5081 >            return new MapReduceKeysToDoubleTask<K,V>
5082 >                (map, null, -1, null, transformer, basis, reducer);
5083 >        }
5084 >
5085 >        /**
5086 >         * Returns a task that when invoked, returns the result of
5087 >         * accumulating the given transformation of all keys using the given
5088 >         * reducer to combine values, and the given basis as an
5089 >         * identity value.
5090 >         *
5091 >         * @param map the map
5092 >         * @param transformer a function returning the transformation
5093 >         * for an element
5094 >         * @param basis the identity (initial default value) for the reduction
5095 >         * @param reducer a commutative associative combining function
5096 >         * @return the task
5097 >         */
5098 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5099 >            (ConcurrentHashMap<K,V> map,
5100 >             LongFunction<? super K> transformer,
5101 >             long basis,
5102 >             LongBinaryOperator reducer) {
5103 >            if (transformer == null || reducer == null)
5104 >                throw new NullPointerException();
5105 >            return new MapReduceKeysToLongTask<K,V>
5106 >                (map, null, -1, null, transformer, basis, reducer);
5107 >        }
5108 >
5109 >        /**
5110 >         * Returns a task that when invoked, returns the result of
5111 >         * accumulating the given transformation of all keys using the given
5112 >         * reducer to combine values, and the given basis as an
5113 >         * identity value.
5114 >         *
5115 >         * @param map the map
5116 >         * @param transformer a function returning the transformation
5117 >         * for an element
5118 >         * @param basis the identity (initial default value) for the reduction
5119 >         * @param reducer a commutative associative combining function
5120 >         * @return the task
5121 >         */
5122 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5123 >            (ConcurrentHashMap<K,V> map,
5124 >             IntFunction<? super K> transformer,
5125 >             int basis,
5126 >             IntBinaryOperator reducer) {
5127 >            if (transformer == null || reducer == null)
5128 >                throw new NullPointerException();
5129 >            return new MapReduceKeysToIntTask<K,V>
5130 >                (map, null, -1, null, transformer, basis, reducer);
5131 >        }
5132 >
5133 >        /**
5134 >         * Returns a task that when invoked, performs the given action
5135 >         * for each value.
5136 >         *
5137 >         * @param map the map
5138 >         * @param action the action
5139 >         */
5140 >        public static <K,V> ForkJoinTask<Void> forEachValue
5141 >            (ConcurrentHashMap<K,V> map,
5142 >             Block<? super V> action) {
5143 >            if (action == null) throw new NullPointerException();
5144 >            return new ForEachValueTask<K,V>(map, null, -1, action);
5145 >        }
5146 >
5147 >        /**
5148 >         * Returns a task that when invoked, performs the given action
5149 >         * for each non-null transformation of each value.
5150 >         *
5151 >         * @param map the map
5152 >         * @param transformer a function returning the transformation
5153 >         * for an element, or null if there is no transformation (in
5154 >         * which case the action is not applied)
5155 >         * @param action the action
5156 >         */
5157 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
5158 >            (ConcurrentHashMap<K,V> map,
5159 >             Function<? super V, ? extends U> transformer,
5160 >             Block<? super U> action) {
5161 >            if (transformer == null || action == null)
5162 >                throw new NullPointerException();
5163 >            return new ForEachTransformedValueTask<K,V,U>
5164 >                (map, null, -1, transformer, action);
5165 >        }
5166 >
5167 >        /**
5168 >         * Returns a task that when invoked, returns a non-null result
5169 >         * from applying the given search function on each value, or
5170 >         * null if none.  Upon success, further element processing is
5171 >         * suppressed and the results of any other parallel
5172 >         * invocations of the search function are ignored.
5173 >         *
5174 >         * @param map the map
5175 >         * @param searchFunction a function returning a non-null
5176 >         * result on success, else null
5177 >         * @return the task
5178 >         */
5179 >        public static <K,V,U> ForkJoinTask<U> searchValues
5180 >            (ConcurrentHashMap<K,V> map,
5181 >             Function<? super V, ? extends U> searchFunction) {
5182 >            if (searchFunction == null) throw new NullPointerException();
5183 >            return new SearchValuesTask<K,V,U>
5184 >                (map, null, -1, searchFunction,
5185 >                 new AtomicReference<U>());
5186 >        }
5187 >
5188 >        /**
5189 >         * Returns a task that when invoked, returns the result of
5190 >         * accumulating all values using the given reducer to combine
5191 >         * values, or null if none.
5192 >         *
5193 >         * @param map the map
5194 >         * @param reducer a commutative associative combining function
5195 >         * @return the task
5196 >         */
5197 >        public static <K,V> ForkJoinTask<V> reduceValues
5198 >            (ConcurrentHashMap<K,V> map,
5199 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5200 >            if (reducer == null) throw new NullPointerException();
5201 >            return new ReduceValuesTask<K,V>
5202 >                (map, null, -1, null, reducer);
5203 >        }
5204 >
5205 >        /**
5206 >         * Returns a task that when invoked, returns the result of
5207 >         * accumulating the given transformation of all values using the
5208 >         * given reducer to combine values, or null if none.
5209 >         *
5210 >         * @param map the map
5211 >         * @param transformer a function returning the transformation
5212 >         * for an element, or null if there is no transformation (in
5213 >         * which case it is not combined).
5214 >         * @param reducer a commutative associative combining function
5215 >         * @return the task
5216 >         */
5217 >        public static <K,V,U> ForkJoinTask<U> reduceValues
5218 >            (ConcurrentHashMap<K,V> map,
5219 >             Function<? super V, ? extends U> transformer,
5220 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5221 >            if (transformer == null || reducer == null)
5222 >                throw new NullPointerException();
5223 >            return new MapReduceValuesTask<K,V,U>
5224 >                (map, null, -1, null, transformer, reducer);
5225 >        }
5226 >
5227 >        /**
5228 >         * Returns a task that when invoked, returns the result of
5229 >         * accumulating the given transformation of all values using the
5230 >         * given reducer to combine values, and the given basis as an
5231 >         * identity value.
5232 >         *
5233 >         * @param map the map
5234 >         * @param transformer a function returning the transformation
5235 >         * for an element
5236 >         * @param basis the identity (initial default value) for the reduction
5237 >         * @param reducer a commutative associative combining function
5238 >         * @return the task
5239 >         */
5240 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5241 >            (ConcurrentHashMap<K,V> map,
5242 >             DoubleFunction<? super V> transformer,
5243 >             double basis,
5244 >             DoubleBinaryOperator reducer) {
5245 >            if (transformer == null || reducer == null)
5246 >                throw new NullPointerException();
5247 >            return new MapReduceValuesToDoubleTask<K,V>
5248 >                (map, null, -1, null, transformer, basis, reducer);
5249 >        }
5250 >
5251 >        /**
5252 >         * Returns a task that when invoked, returns the result of
5253 >         * accumulating the given transformation of all values using the
5254 >         * given reducer to combine values, and the given basis as an
5255 >         * identity value.
5256 >         *
5257 >         * @param map the map
5258 >         * @param transformer a function returning the transformation
5259 >         * for an element
5260 >         * @param basis the identity (initial default value) for the reduction
5261 >         * @param reducer a commutative associative combining function
5262 >         * @return the task
5263 >         */
5264 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5265 >            (ConcurrentHashMap<K,V> map,
5266 >             LongFunction<? super V> transformer,
5267 >             long basis,
5268 >             LongBinaryOperator reducer) {
5269 >            if (transformer == null || reducer == null)
5270 >                throw new NullPointerException();
5271 >            return new MapReduceValuesToLongTask<K,V>
5272 >                (map, null, -1, null, transformer, basis, reducer);
5273 >        }
5274 >
5275 >        /**
5276 >         * Returns a task that when invoked, returns the result of
5277 >         * accumulating the given transformation of all values using the
5278 >         * given reducer to combine values, and the given basis as an
5279 >         * identity value.
5280 >         *
5281 >         * @param map the map
5282 >         * @param transformer a function returning the transformation
5283 >         * for an element
5284 >         * @param basis the identity (initial default value) for the reduction
5285 >         * @param reducer a commutative associative combining function
5286 >         * @return the task
5287 >         */
5288 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5289 >            (ConcurrentHashMap<K,V> map,
5290 >             IntFunction<? super V> transformer,
5291 >             int basis,
5292 >             IntBinaryOperator reducer) {
5293 >            if (transformer == null || reducer == null)
5294 >                throw new NullPointerException();
5295 >            return new MapReduceValuesToIntTask<K,V>
5296 >                (map, null, -1, null, transformer, basis, reducer);
5297 >        }
5298 >
5299 >        /**
5300 >         * Returns a task that when invoked, perform the given action
5301 >         * for each entry.
5302 >         *
5303 >         * @param map the map
5304 >         * @param action the action
5305 >         */
5306 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5307 >            (ConcurrentHashMap<K,V> map,
5308 >             Block<? super Map.Entry<K,V>> action) {
5309 >            if (action == null) throw new NullPointerException();
5310 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5311 >        }
5312 >
5313 >        /**
5314 >         * Returns a task that when invoked, perform the given action
5315 >         * for each non-null transformation of each entry.
5316 >         *
5317 >         * @param map the map
5318 >         * @param transformer a function returning the transformation
5319 >         * for an element, or null if there is no transformation (in
5320 >         * which case the action is not applied)
5321 >         * @param action the action
5322 >         */
5323 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5324 >            (ConcurrentHashMap<K,V> map,
5325 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5326 >             Block<? super U> action) {
5327 >            if (transformer == null || action == null)
5328 >                throw new NullPointerException();
5329 >            return new ForEachTransformedEntryTask<K,V,U>
5330 >                (map, null, -1, transformer, action);
5331 >        }
5332 >
5333 >        /**
5334 >         * Returns a task that when invoked, returns a non-null result
5335 >         * from applying the given search function on each entry, or
5336 >         * null if none.  Upon success, further element processing is
5337 >         * suppressed and the results of any other parallel
5338 >         * invocations of the search function are ignored.
5339 >         *
5340 >         * @param map the map
5341 >         * @param searchFunction a function returning a non-null
5342 >         * result on success, else null
5343 >         * @return the task
5344 >         */
5345 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5346 >            (ConcurrentHashMap<K,V> map,
5347 >             Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5348 >            if (searchFunction == null) throw new NullPointerException();
5349 >            return new SearchEntriesTask<K,V,U>
5350 >                (map, null, -1, searchFunction,
5351 >                 new AtomicReference<U>());
5352 >        }
5353 >
5354 >        /**
5355 >         * Returns a task that when invoked, returns the result of
5356 >         * accumulating all entries using the given reducer to combine
5357 >         * values, or null if none.
5358 >         *
5359 >         * @param map the map
5360 >         * @param reducer a commutative associative combining function
5361 >         * @return the task
5362 >         */
5363 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5364 >            (ConcurrentHashMap<K,V> map,
5365 >             BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5366 >            if (reducer == null) throw new NullPointerException();
5367 >            return new ReduceEntriesTask<K,V>
5368 >                (map, null, -1, null, reducer);
5369 >        }
5370 >
5371 >        /**
5372 >         * Returns a task that when invoked, returns the result of
5373 >         * accumulating the given transformation of all entries using the
5374 >         * given reducer to combine values, or null if none.
5375 >         *
5376 >         * @param map the map
5377 >         * @param transformer a function returning the transformation
5378 >         * for an element, or null if there is no transformation (in
5379 >         * which case it is not combined).
5380 >         * @param reducer a commutative associative combining function
5381 >         * @return the task
5382 >         */
5383 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5384 >            (ConcurrentHashMap<K,V> map,
5385 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5386 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5387 >            if (transformer == null || reducer == null)
5388 >                throw new NullPointerException();
5389 >            return new MapReduceEntriesTask<K,V,U>
5390 >                (map, null, -1, null, transformer, reducer);
5391 >        }
5392 >
5393 >        /**
5394 >         * Returns a task that when invoked, returns the result of
5395 >         * accumulating the given transformation of all entries using the
5396 >         * given reducer to combine values, and the given basis as an
5397 >         * identity value.
5398 >         *
5399 >         * @param map the map
5400 >         * @param transformer a function returning the transformation
5401 >         * for an element
5402 >         * @param basis the identity (initial default value) for the reduction
5403 >         * @param reducer a commutative associative combining function
5404 >         * @return the task
5405 >         */
5406 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5407 >            (ConcurrentHashMap<K,V> map,
5408 >             DoubleFunction<Map.Entry<K,V>> transformer,
5409 >             double basis,
5410 >             DoubleBinaryOperator reducer) {
5411 >            if (transformer == null || reducer == null)
5412 >                throw new NullPointerException();
5413 >            return new MapReduceEntriesToDoubleTask<K,V>
5414 >                (map, null, -1, null, transformer, basis, reducer);
5415 >        }
5416 >
5417 >        /**
5418 >         * Returns a task that when invoked, returns the result of
5419 >         * accumulating the given transformation of all entries using the
5420 >         * given reducer to combine values, and the given basis as an
5421 >         * identity value.
5422 >         *
5423 >         * @param map the map
5424 >         * @param transformer a function returning the transformation
5425 >         * for an element
5426 >         * @param basis the identity (initial default value) for the reduction
5427 >         * @param reducer a commutative associative combining function
5428 >         * @return the task
5429 >         */
5430 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5431 >            (ConcurrentHashMap<K,V> map,
5432 >             LongFunction<Map.Entry<K,V>> transformer,
5433 >             long basis,
5434 >             LongBinaryOperator reducer) {
5435 >            if (transformer == null || reducer == null)
5436 >                throw new NullPointerException();
5437 >            return new MapReduceEntriesToLongTask<K,V>
5438 >                (map, null, -1, null, transformer, basis, reducer);
5439 >        }
5440 >
5441 >        /**
5442 >         * Returns a task that when invoked, returns the result of
5443 >         * accumulating the given transformation of all entries using the
5444 >         * given reducer to combine values, and the given basis as an
5445 >         * identity value.
5446 >         *
5447 >         * @param map the map
5448 >         * @param transformer a function returning the transformation
5449 >         * for an element
5450 >         * @param basis the identity (initial default value) for the reduction
5451 >         * @param reducer a commutative associative combining function
5452 >         * @return the task
5453 >         */
5454 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5455 >            (ConcurrentHashMap<K,V> map,
5456 >             IntFunction<Map.Entry<K,V>> transformer,
5457 >             int basis,
5458 >             IntBinaryOperator reducer) {
5459 >            if (transformer == null || reducer == null)
5460 >                throw new NullPointerException();
5461 >            return new MapReduceEntriesToIntTask<K,V>
5462 >                (map, null, -1, null, transformer, basis, reducer);
5463          }
5464      }
5465  
5466 <    /* ---------------- Serialization Support -------------- */
5466 >    // -------------------------------------------------------
5467  
5468 <    /**
5469 <     * Save the state of the <tt>ConcurrentHashMap</tt>
5470 <     * instance to a stream (i.e.,
5471 <     * serialize it).
5472 <     * @param s the stream
5473 <     * @serialData
1366 <     * the key (Object) and value (Object)
1367 <     * for each key-value mapping, followed by a null pair.
1368 <     * The key-value mappings are emitted in no particular order.
5468 >    /*
5469 >     * Task classes. Coded in a regular but ugly format/style to
5470 >     * simplify checks that each variant differs in the right way from
5471 >     * others. The null screenings exist because compilers cannot tell
5472 >     * that we've already null-checked task arguments, so we force
5473 >     * simplest hoisted bypass to help avoid convoluted traps.
5474       */
1370    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
1371        s.defaultWriteObject();
5475  
5476 <        for (int k = 0; k < segments.length; ++k) {
5477 <            Segment<K,V> seg = (Segment<K,V>)segments[k];
5478 <            seg.lock();
5479 <            try {
5480 <                HashEntry[] tab = seg.table;
5481 <                for (int i = 0; i < tab.length; ++i) {
5482 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
5483 <                        s.writeObject(e.key);
5484 <                        s.writeObject(e.value);
5476 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5477 >        extends Traverser<K,V,Void> {
5478 >        final Block<? super K> action;
5479 >        ForEachKeyTask
5480 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5481 >             Block<? super K> action) {
5482 >            super(m, p, b);
5483 >            this.action = action;
5484 >        }
5485 >        @SuppressWarnings("unchecked") public final void compute() {
5486 >            final Block<? super K> action;
5487 >            if ((action = this.action) != null) {
5488 >                for (int b; (b = preSplit()) > 0;)
5489 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5490 >                while (advance() != null)
5491 >                    action.accept((K)nextKey);
5492 >                propagateCompletion();
5493 >            }
5494 >        }
5495 >    }
5496 >
5497 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5498 >        extends Traverser<K,V,Void> {
5499 >        final Block<? super V> action;
5500 >        ForEachValueTask
5501 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5502 >             Block<? super V> action) {
5503 >            super(m, p, b);
5504 >            this.action = action;
5505 >        }
5506 >        @SuppressWarnings("unchecked") public final void compute() {
5507 >            final Block<? super V> action;
5508 >            if ((action = this.action) != null) {
5509 >                for (int b; (b = preSplit()) > 0;)
5510 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5511 >                V v;
5512 >                while ((v = advance()) != null)
5513 >                    action.accept(v);
5514 >                propagateCompletion();
5515 >            }
5516 >        }
5517 >    }
5518 >
5519 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5520 >        extends Traverser<K,V,Void> {
5521 >        final Block<? super Entry<K,V>> action;
5522 >        ForEachEntryTask
5523 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5524 >             Block<? super Entry<K,V>> action) {
5525 >            super(m, p, b);
5526 >            this.action = action;
5527 >        }
5528 >        @SuppressWarnings("unchecked") public final void compute() {
5529 >            final Block<? super Entry<K,V>> action;
5530 >            if ((action = this.action) != null) {
5531 >                for (int b; (b = preSplit()) > 0;)
5532 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5533 >                V v;
5534 >                while ((v = advance()) != null)
5535 >                    action.accept(entryFor((K)nextKey, v));
5536 >                propagateCompletion();
5537 >            }
5538 >        }
5539 >    }
5540 >
5541 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5542 >        extends Traverser<K,V,Void> {
5543 >        final BiBlock<? super K, ? super V> action;
5544 >        ForEachMappingTask
5545 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5546 >             BiBlock<? super K,? super V> action) {
5547 >            super(m, p, b);
5548 >            this.action = action;
5549 >        }
5550 >        @SuppressWarnings("unchecked") public final void compute() {
5551 >            final BiBlock<? super K, ? super V> action;
5552 >            if ((action = this.action) != null) {
5553 >                for (int b; (b = preSplit()) > 0;)
5554 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5555 >                V v;
5556 >                while ((v = advance()) != null)
5557 >                    action.accept((K)nextKey, v);
5558 >                propagateCompletion();
5559 >            }
5560 >        }
5561 >    }
5562 >
5563 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5564 >        extends Traverser<K,V,Void> {
5565 >        final Function<? super K, ? extends U> transformer;
5566 >        final Block<? super U> action;
5567 >        ForEachTransformedKeyTask
5568 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5569 >             Function<? super K, ? extends U> transformer, Block<? super U> action) {
5570 >            super(m, p, b);
5571 >            this.transformer = transformer; this.action = action;
5572 >        }
5573 >        @SuppressWarnings("unchecked") public final void compute() {
5574 >            final Function<? super K, ? extends U> transformer;
5575 >            final Block<? super U> action;
5576 >            if ((transformer = this.transformer) != null &&
5577 >                (action = this.action) != null) {
5578 >                for (int b; (b = preSplit()) > 0;)
5579 >                    new ForEachTransformedKeyTask<K,V,U>
5580 >                        (map, this, b, transformer, action).fork();
5581 >                U u;
5582 >                while (advance() != null) {
5583 >                    if ((u = transformer.apply((K)nextKey)) != null)
5584 >                        action.accept(u);
5585 >                }
5586 >                propagateCompletion();
5587 >            }
5588 >        }
5589 >    }
5590 >
5591 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5592 >        extends Traverser<K,V,Void> {
5593 >        final Function<? super V, ? extends U> transformer;
5594 >        final Block<? super U> action;
5595 >        ForEachTransformedValueTask
5596 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5597 >             Function<? super V, ? extends U> transformer, Block<? super U> action) {
5598 >            super(m, p, b);
5599 >            this.transformer = transformer; this.action = action;
5600 >        }
5601 >        @SuppressWarnings("unchecked") public final void compute() {
5602 >            final Function<? super V, ? extends U> transformer;
5603 >            final Block<? super U> action;
5604 >            if ((transformer = this.transformer) != null &&
5605 >                (action = this.action) != null) {
5606 >                for (int b; (b = preSplit()) > 0;)
5607 >                    new ForEachTransformedValueTask<K,V,U>
5608 >                        (map, this, b, transformer, action).fork();
5609 >                V v; U u;
5610 >                while ((v = advance()) != null) {
5611 >                    if ((u = transformer.apply(v)) != null)
5612 >                        action.accept(u);
5613 >                }
5614 >                propagateCompletion();
5615 >            }
5616 >        }
5617 >    }
5618 >
5619 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5620 >        extends Traverser<K,V,Void> {
5621 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5622 >        final Block<? super U> action;
5623 >        ForEachTransformedEntryTask
5624 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5625 >             Function<Map.Entry<K,V>, ? extends U> transformer, Block<? super U> action) {
5626 >            super(m, p, b);
5627 >            this.transformer = transformer; this.action = action;
5628 >        }
5629 >        @SuppressWarnings("unchecked") public final void compute() {
5630 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5631 >            final Block<? super U> action;
5632 >            if ((transformer = this.transformer) != null &&
5633 >                (action = this.action) != null) {
5634 >                for (int b; (b = preSplit()) > 0;)
5635 >                    new ForEachTransformedEntryTask<K,V,U>
5636 >                        (map, this, b, transformer, action).fork();
5637 >                V v; U u;
5638 >                while ((v = advance()) != null) {
5639 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5640 >                                                        v))) != null)
5641 >                        action.accept(u);
5642 >                }
5643 >                propagateCompletion();
5644 >            }
5645 >        }
5646 >    }
5647 >
5648 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5649 >        extends Traverser<K,V,Void> {
5650 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5651 >        final Block<? super U> action;
5652 >        ForEachTransformedMappingTask
5653 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5654 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5655 >             Block<? super U> action) {
5656 >            super(m, p, b);
5657 >            this.transformer = transformer; this.action = action;
5658 >        }
5659 >        @SuppressWarnings("unchecked") public final void compute() {
5660 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5661 >            final Block<? super U> action;
5662 >            if ((transformer = this.transformer) != null &&
5663 >                (action = this.action) != null) {
5664 >                for (int b; (b = preSplit()) > 0;)
5665 >                    new ForEachTransformedMappingTask<K,V,U>
5666 >                        (map, this, b, transformer, action).fork();
5667 >                V v; U u;
5668 >                while ((v = advance()) != null) {
5669 >                    if ((u = transformer.apply((K)nextKey, v)) != null)
5670 >                        action.accept(u);
5671 >                }
5672 >                propagateCompletion();
5673 >            }
5674 >        }
5675 >    }
5676 >
5677 >    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5678 >        extends Traverser<K,V,U> {
5679 >        final Function<? super K, ? extends U> searchFunction;
5680 >        final AtomicReference<U> result;
5681 >        SearchKeysTask
5682 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5683 >             Function<? super K, ? extends U> searchFunction,
5684 >             AtomicReference<U> result) {
5685 >            super(m, p, b);
5686 >            this.searchFunction = searchFunction; this.result = result;
5687 >        }
5688 >        public final U getRawResult() { return result.get(); }
5689 >        @SuppressWarnings("unchecked") public final void compute() {
5690 >            final Function<? super K, ? extends U> searchFunction;
5691 >            final AtomicReference<U> result;
5692 >            if ((searchFunction = this.searchFunction) != null &&
5693 >                (result = this.result) != null) {
5694 >                for (int b;;) {
5695 >                    if (result.get() != null)
5696 >                        return;
5697 >                    if ((b = preSplit()) <= 0)
5698 >                        break;
5699 >                    new SearchKeysTask<K,V,U>
5700 >                        (map, this, b, searchFunction, result).fork();
5701 >                }
5702 >                while (result.get() == null) {
5703 >                    U u;
5704 >                    if (advance() == null) {
5705 >                        propagateCompletion();
5706 >                        break;
5707 >                    }
5708 >                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5709 >                        if (result.compareAndSet(null, u))
5710 >                            quietlyCompleteRoot();
5711 >                        break;
5712                      }
5713                  }
1384            } finally {
1385                seg.unlock();
5714              }
5715          }
1388        s.writeObject(null);
1389        s.writeObject(null);
5716      }
5717  
5718 <    /**
5719 <     * Reconstitute the <tt>ConcurrentHashMap</tt>
5720 <     * instance from a stream (i.e.,
5721 <     * deserialize it).
5722 <     * @param s the stream
5723 <     */
5724 <    private void readObject(java.io.ObjectInputStream s)
5725 <        throws IOException, ClassNotFoundException  {
5726 <        s.defaultReadObject();
5718 >    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5719 >        extends Traverser<K,V,U> {
5720 >        final Function<? super V, ? extends U> searchFunction;
5721 >        final AtomicReference<U> result;
5722 >        SearchValuesTask
5723 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5724 >             Function<? super V, ? extends U> searchFunction,
5725 >             AtomicReference<U> result) {
5726 >            super(m, p, b);
5727 >            this.searchFunction = searchFunction; this.result = result;
5728 >        }
5729 >        public final U getRawResult() { return result.get(); }
5730 >        @SuppressWarnings("unchecked") public final void compute() {
5731 >            final Function<? super V, ? extends U> searchFunction;
5732 >            final AtomicReference<U> result;
5733 >            if ((searchFunction = this.searchFunction) != null &&
5734 >                (result = this.result) != null) {
5735 >                for (int b;;) {
5736 >                    if (result.get() != null)
5737 >                        return;
5738 >                    if ((b = preSplit()) <= 0)
5739 >                        break;
5740 >                    new SearchValuesTask<K,V,U>
5741 >                        (map, this, b, searchFunction, result).fork();
5742 >                }
5743 >                while (result.get() == null) {
5744 >                    V v; U u;
5745 >                    if ((v = advance()) == null) {
5746 >                        propagateCompletion();
5747 >                        break;
5748 >                    }
5749 >                    if ((u = searchFunction.apply(v)) != null) {
5750 >                        if (result.compareAndSet(null, u))
5751 >                            quietlyCompleteRoot();
5752 >                        break;
5753 >                    }
5754 >                }
5755 >            }
5756 >        }
5757 >    }
5758  
5759 <        // Initialize each segment to be minimally sized, and let grow.
5760 <        for (int i = 0; i < segments.length; ++i) {
5761 <            segments[i].setTable(new HashEntry[1]);
5759 >    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5760 >        extends Traverser<K,V,U> {
5761 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5762 >        final AtomicReference<U> result;
5763 >        SearchEntriesTask
5764 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5765 >             Function<Entry<K,V>, ? extends U> searchFunction,
5766 >             AtomicReference<U> result) {
5767 >            super(m, p, b);
5768 >            this.searchFunction = searchFunction; this.result = result;
5769 >        }
5770 >        public final U getRawResult() { return result.get(); }
5771 >        @SuppressWarnings("unchecked") public final void compute() {
5772 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5773 >            final AtomicReference<U> result;
5774 >            if ((searchFunction = this.searchFunction) != null &&
5775 >                (result = this.result) != null) {
5776 >                for (int b;;) {
5777 >                    if (result.get() != null)
5778 >                        return;
5779 >                    if ((b = preSplit()) <= 0)
5780 >                        break;
5781 >                    new SearchEntriesTask<K,V,U>
5782 >                        (map, this, b, searchFunction, result).fork();
5783 >                }
5784 >                while (result.get() == null) {
5785 >                    V v; U u;
5786 >                    if ((v = advance()) == null) {
5787 >                        propagateCompletion();
5788 >                        break;
5789 >                    }
5790 >                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5791 >                                                           v))) != null) {
5792 >                        if (result.compareAndSet(null, u))
5793 >                            quietlyCompleteRoot();
5794 >                        return;
5795 >                    }
5796 >                }
5797 >            }
5798          }
5799 +    }
5800  
5801 <        // Read the keys and values, and put the mappings in the table
5802 <        for (;;) {
5803 <            K key = (K) s.readObject();
5804 <            V value = (V) s.readObject();
5805 <            if (key == null)
5806 <                break;
5807 <            put(key, value);
5801 >    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5802 >        extends Traverser<K,V,U> {
5803 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5804 >        final AtomicReference<U> result;
5805 >        SearchMappingsTask
5806 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5807 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5808 >             AtomicReference<U> result) {
5809 >            super(m, p, b);
5810 >            this.searchFunction = searchFunction; this.result = result;
5811 >        }
5812 >        public final U getRawResult() { return result.get(); }
5813 >        @SuppressWarnings("unchecked") public final void compute() {
5814 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5815 >            final AtomicReference<U> result;
5816 >            if ((searchFunction = this.searchFunction) != null &&
5817 >                (result = this.result) != null) {
5818 >                for (int b;;) {
5819 >                    if (result.get() != null)
5820 >                        return;
5821 >                    if ((b = preSplit()) <= 0)
5822 >                        break;
5823 >                    new SearchMappingsTask<K,V,U>
5824 >                        (map, this, b, searchFunction, result).fork();
5825 >                }
5826 >                while (result.get() == null) {
5827 >                    V v; U u;
5828 >                    if ((v = advance()) == null) {
5829 >                        propagateCompletion();
5830 >                        break;
5831 >                    }
5832 >                    if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5833 >                        if (result.compareAndSet(null, u))
5834 >                            quietlyCompleteRoot();
5835 >                        break;
5836 >                    }
5837 >                }
5838 >            }
5839          }
5840      }
1416 }
5841  
5842 +    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5843 +        extends Traverser<K,V,K> {
5844 +        final BiFunction<? super K, ? super K, ? extends K> reducer;
5845 +        K result;
5846 +        ReduceKeysTask<K,V> rights, nextRight;
5847 +        ReduceKeysTask
5848 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5849 +             ReduceKeysTask<K,V> nextRight,
5850 +             BiFunction<? super K, ? super K, ? extends K> reducer) {
5851 +            super(m, p, b); this.nextRight = nextRight;
5852 +            this.reducer = reducer;
5853 +        }
5854 +        public final K getRawResult() { return result; }
5855 +        @SuppressWarnings("unchecked") public final void compute() {
5856 +            final BiFunction<? super K, ? super K, ? extends K> reducer;
5857 +            if ((reducer = this.reducer) != null) {
5858 +                for (int b; (b = preSplit()) > 0;)
5859 +                    (rights = new ReduceKeysTask<K,V>
5860 +                     (map, this, b, rights, reducer)).fork();
5861 +                K r = null;
5862 +                while (advance() != null) {
5863 +                    K u = (K)nextKey;
5864 +                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5865 +                }
5866 +                result = r;
5867 +                CountedCompleter<?> c;
5868 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5869 +                    ReduceKeysTask<K,V>
5870 +                        t = (ReduceKeysTask<K,V>)c,
5871 +                        s = t.rights;
5872 +                    while (s != null) {
5873 +                        K tr, sr;
5874 +                        if ((sr = s.result) != null)
5875 +                            t.result = (((tr = t.result) == null) ? sr :
5876 +                                        reducer.apply(tr, sr));
5877 +                        s = t.rights = s.nextRight;
5878 +                    }
5879 +                }
5880 +            }
5881 +        }
5882 +    }
5883 +
5884 +    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5885 +        extends Traverser<K,V,V> {
5886 +        final BiFunction<? super V, ? super V, ? extends V> reducer;
5887 +        V result;
5888 +        ReduceValuesTask<K,V> rights, nextRight;
5889 +        ReduceValuesTask
5890 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5891 +             ReduceValuesTask<K,V> nextRight,
5892 +             BiFunction<? super V, ? super V, ? extends V> reducer) {
5893 +            super(m, p, b); this.nextRight = nextRight;
5894 +            this.reducer = reducer;
5895 +        }
5896 +        public final V getRawResult() { return result; }
5897 +        @SuppressWarnings("unchecked") public final void compute() {
5898 +            final BiFunction<? super V, ? super V, ? extends V> reducer;
5899 +            if ((reducer = this.reducer) != null) {
5900 +                for (int b; (b = preSplit()) > 0;)
5901 +                    (rights = new ReduceValuesTask<K,V>
5902 +                     (map, this, b, rights, reducer)).fork();
5903 +                V r = null, v;
5904 +                while ((v = advance()) != null)
5905 +                    r = (r == null) ? v : reducer.apply(r, v);
5906 +                result = r;
5907 +                CountedCompleter<?> c;
5908 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5909 +                    ReduceValuesTask<K,V>
5910 +                        t = (ReduceValuesTask<K,V>)c,
5911 +                        s = t.rights;
5912 +                    while (s != null) {
5913 +                        V tr, sr;
5914 +                        if ((sr = s.result) != null)
5915 +                            t.result = (((tr = t.result) == null) ? sr :
5916 +                                        reducer.apply(tr, sr));
5917 +                        s = t.rights = s.nextRight;
5918 +                    }
5919 +                }
5920 +            }
5921 +        }
5922 +    }
5923 +
5924 +    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5925 +        extends Traverser<K,V,Map.Entry<K,V>> {
5926 +        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5927 +        Map.Entry<K,V> result;
5928 +        ReduceEntriesTask<K,V> rights, nextRight;
5929 +        ReduceEntriesTask
5930 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5931 +             ReduceEntriesTask<K,V> nextRight,
5932 +             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5933 +            super(m, p, b); this.nextRight = nextRight;
5934 +            this.reducer = reducer;
5935 +        }
5936 +        public final Map.Entry<K,V> getRawResult() { return result; }
5937 +        @SuppressWarnings("unchecked") public final void compute() {
5938 +            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5939 +            if ((reducer = this.reducer) != null) {
5940 +                for (int b; (b = preSplit()) > 0;)
5941 +                    (rights = new ReduceEntriesTask<K,V>
5942 +                     (map, this, b, rights, reducer)).fork();
5943 +                Map.Entry<K,V> r = null;
5944 +                V v;
5945 +                while ((v = advance()) != null) {
5946 +                    Map.Entry<K,V> u = entryFor((K)nextKey, v);
5947 +                    r = (r == null) ? u : reducer.apply(r, u);
5948 +                }
5949 +                result = r;
5950 +                CountedCompleter<?> c;
5951 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5952 +                    ReduceEntriesTask<K,V>
5953 +                        t = (ReduceEntriesTask<K,V>)c,
5954 +                        s = t.rights;
5955 +                    while (s != null) {
5956 +                        Map.Entry<K,V> tr, sr;
5957 +                        if ((sr = s.result) != null)
5958 +                            t.result = (((tr = t.result) == null) ? sr :
5959 +                                        reducer.apply(tr, sr));
5960 +                        s = t.rights = s.nextRight;
5961 +                    }
5962 +                }
5963 +            }
5964 +        }
5965 +    }
5966 +
5967 +    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5968 +        extends Traverser<K,V,U> {
5969 +        final Function<? super K, ? extends U> transformer;
5970 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
5971 +        U result;
5972 +        MapReduceKeysTask<K,V,U> rights, nextRight;
5973 +        MapReduceKeysTask
5974 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5975 +             MapReduceKeysTask<K,V,U> nextRight,
5976 +             Function<? super K, ? extends U> transformer,
5977 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
5978 +            super(m, p, b); this.nextRight = nextRight;
5979 +            this.transformer = transformer;
5980 +            this.reducer = reducer;
5981 +        }
5982 +        public final U getRawResult() { return result; }
5983 +        @SuppressWarnings("unchecked") public final void compute() {
5984 +            final Function<? super K, ? extends U> transformer;
5985 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
5986 +            if ((transformer = this.transformer) != null &&
5987 +                (reducer = this.reducer) != null) {
5988 +                for (int b; (b = preSplit()) > 0;)
5989 +                    (rights = new MapReduceKeysTask<K,V,U>
5990 +                     (map, this, b, rights, transformer, reducer)).fork();
5991 +                U r = null, u;
5992 +                while (advance() != null) {
5993 +                    if ((u = transformer.apply((K)nextKey)) != null)
5994 +                        r = (r == null) ? u : reducer.apply(r, u);
5995 +                }
5996 +                result = r;
5997 +                CountedCompleter<?> c;
5998 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5999 +                    MapReduceKeysTask<K,V,U>
6000 +                        t = (MapReduceKeysTask<K,V,U>)c,
6001 +                        s = t.rights;
6002 +                    while (s != null) {
6003 +                        U tr, sr;
6004 +                        if ((sr = s.result) != null)
6005 +                            t.result = (((tr = t.result) == null) ? sr :
6006 +                                        reducer.apply(tr, sr));
6007 +                        s = t.rights = s.nextRight;
6008 +                    }
6009 +                }
6010 +            }
6011 +        }
6012 +    }
6013 +
6014 +    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6015 +        extends Traverser<K,V,U> {
6016 +        final Function<? super V, ? extends U> transformer;
6017 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
6018 +        U result;
6019 +        MapReduceValuesTask<K,V,U> rights, nextRight;
6020 +        MapReduceValuesTask
6021 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6022 +             MapReduceValuesTask<K,V,U> nextRight,
6023 +             Function<? super V, ? extends U> transformer,
6024 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
6025 +            super(m, p, b); this.nextRight = nextRight;
6026 +            this.transformer = transformer;
6027 +            this.reducer = reducer;
6028 +        }
6029 +        public final U getRawResult() { return result; }
6030 +        @SuppressWarnings("unchecked") public final void compute() {
6031 +            final Function<? super V, ? extends U> transformer;
6032 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
6033 +            if ((transformer = this.transformer) != null &&
6034 +                (reducer = this.reducer) != null) {
6035 +                for (int b; (b = preSplit()) > 0;)
6036 +                    (rights = new MapReduceValuesTask<K,V,U>
6037 +                     (map, this, b, rights, transformer, reducer)).fork();
6038 +                U r = null, u;
6039 +                V v;
6040 +                while ((v = advance()) != null) {
6041 +                    if ((u = transformer.apply(v)) != null)
6042 +                        r = (r == null) ? u : reducer.apply(r, u);
6043 +                }
6044 +                result = r;
6045 +                CountedCompleter<?> c;
6046 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6047 +                    MapReduceValuesTask<K,V,U>
6048 +                        t = (MapReduceValuesTask<K,V,U>)c,
6049 +                        s = t.rights;
6050 +                    while (s != null) {
6051 +                        U tr, sr;
6052 +                        if ((sr = s.result) != null)
6053 +                            t.result = (((tr = t.result) == null) ? sr :
6054 +                                        reducer.apply(tr, sr));
6055 +                        s = t.rights = s.nextRight;
6056 +                    }
6057 +                }
6058 +            }
6059 +        }
6060 +    }
6061 +
6062 +    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6063 +        extends Traverser<K,V,U> {
6064 +        final Function<Map.Entry<K,V>, ? extends U> transformer;
6065 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
6066 +        U result;
6067 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
6068 +        MapReduceEntriesTask
6069 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6070 +             MapReduceEntriesTask<K,V,U> nextRight,
6071 +             Function<Map.Entry<K,V>, ? extends U> transformer,
6072 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
6073 +            super(m, p, b); this.nextRight = nextRight;
6074 +            this.transformer = transformer;
6075 +            this.reducer = reducer;
6076 +        }
6077 +        public final U getRawResult() { return result; }
6078 +        @SuppressWarnings("unchecked") public final void compute() {
6079 +            final Function<Map.Entry<K,V>, ? extends U> transformer;
6080 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
6081 +            if ((transformer = this.transformer) != null &&
6082 +                (reducer = this.reducer) != null) {
6083 +                for (int b; (b = preSplit()) > 0;)
6084 +                    (rights = new MapReduceEntriesTask<K,V,U>
6085 +                     (map, this, b, rights, transformer, reducer)).fork();
6086 +                U r = null, u;
6087 +                V v;
6088 +                while ((v = advance()) != null) {
6089 +                    if ((u = transformer.apply(entryFor((K)nextKey,
6090 +                                                        v))) != null)
6091 +                        r = (r == null) ? u : reducer.apply(r, u);
6092 +                }
6093 +                result = r;
6094 +                CountedCompleter<?> c;
6095 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6096 +                    MapReduceEntriesTask<K,V,U>
6097 +                        t = (MapReduceEntriesTask<K,V,U>)c,
6098 +                        s = t.rights;
6099 +                    while (s != null) {
6100 +                        U tr, sr;
6101 +                        if ((sr = s.result) != null)
6102 +                            t.result = (((tr = t.result) == null) ? sr :
6103 +                                        reducer.apply(tr, sr));
6104 +                        s = t.rights = s.nextRight;
6105 +                    }
6106 +                }
6107 +            }
6108 +        }
6109 +    }
6110 +
6111 +    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6112 +        extends Traverser<K,V,U> {
6113 +        final BiFunction<? super K, ? super V, ? extends U> transformer;
6114 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
6115 +        U result;
6116 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
6117 +        MapReduceMappingsTask
6118 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6119 +             MapReduceMappingsTask<K,V,U> nextRight,
6120 +             BiFunction<? super K, ? super V, ? extends U> transformer,
6121 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
6122 +            super(m, p, b); this.nextRight = nextRight;
6123 +            this.transformer = transformer;
6124 +            this.reducer = reducer;
6125 +        }
6126 +        public final U getRawResult() { return result; }
6127 +        @SuppressWarnings("unchecked") public final void compute() {
6128 +            final BiFunction<? super K, ? super V, ? extends U> transformer;
6129 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
6130 +            if ((transformer = this.transformer) != null &&
6131 +                (reducer = this.reducer) != null) {
6132 +                for (int b; (b = preSplit()) > 0;)
6133 +                    (rights = new MapReduceMappingsTask<K,V,U>
6134 +                     (map, this, b, rights, transformer, reducer)).fork();
6135 +                U r = null, u;
6136 +                V v;
6137 +                while ((v = advance()) != null) {
6138 +                    if ((u = transformer.apply((K)nextKey, v)) != null)
6139 +                        r = (r == null) ? u : reducer.apply(r, u);
6140 +                }
6141 +                result = r;
6142 +                CountedCompleter<?> c;
6143 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6144 +                    MapReduceMappingsTask<K,V,U>
6145 +                        t = (MapReduceMappingsTask<K,V,U>)c,
6146 +                        s = t.rights;
6147 +                    while (s != null) {
6148 +                        U tr, sr;
6149 +                        if ((sr = s.result) != null)
6150 +                            t.result = (((tr = t.result) == null) ? sr :
6151 +                                        reducer.apply(tr, sr));
6152 +                        s = t.rights = s.nextRight;
6153 +                    }
6154 +                }
6155 +            }
6156 +        }
6157 +    }
6158 +
6159 +    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6160 +        extends Traverser<K,V,Double> {
6161 +        final DoubleFunction<? super K> transformer;
6162 +        final DoubleBinaryOperator reducer;
6163 +        final double basis;
6164 +        double result;
6165 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6166 +        MapReduceKeysToDoubleTask
6167 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6168 +             MapReduceKeysToDoubleTask<K,V> nextRight,
6169 +             DoubleFunction<? super K> transformer,
6170 +             double basis,
6171 +             DoubleBinaryOperator reducer) {
6172 +            super(m, p, b); this.nextRight = nextRight;
6173 +            this.transformer = transformer;
6174 +            this.basis = basis; this.reducer = reducer;
6175 +        }
6176 +        public final Double getRawResult() { return result; }
6177 +        @SuppressWarnings("unchecked") public final void compute() {
6178 +            final DoubleFunction<? super K> transformer;
6179 +            final DoubleBinaryOperator reducer;
6180 +            if ((transformer = this.transformer) != null &&
6181 +                (reducer = this.reducer) != null) {
6182 +                double r = this.basis;
6183 +                for (int b; (b = preSplit()) > 0;)
6184 +                    (rights = new MapReduceKeysToDoubleTask<K,V>
6185 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6186 +                while (advance() != null)
6187 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey));
6188 +                result = r;
6189 +                CountedCompleter<?> c;
6190 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6191 +                    MapReduceKeysToDoubleTask<K,V>
6192 +                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6193 +                        s = t.rights;
6194 +                    while (s != null) {
6195 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6196 +                        s = t.rights = s.nextRight;
6197 +                    }
6198 +                }
6199 +            }
6200 +        }
6201 +    }
6202 +
6203 +    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6204 +        extends Traverser<K,V,Double> {
6205 +        final DoubleFunction<? super V> transformer;
6206 +        final DoubleBinaryOperator reducer;
6207 +        final double basis;
6208 +        double result;
6209 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6210 +        MapReduceValuesToDoubleTask
6211 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6212 +             MapReduceValuesToDoubleTask<K,V> nextRight,
6213 +             DoubleFunction<? super V> transformer,
6214 +             double basis,
6215 +             DoubleBinaryOperator reducer) {
6216 +            super(m, p, b); this.nextRight = nextRight;
6217 +            this.transformer = transformer;
6218 +            this.basis = basis; this.reducer = reducer;
6219 +        }
6220 +        public final Double getRawResult() { return result; }
6221 +        @SuppressWarnings("unchecked") public final void compute() {
6222 +            final DoubleFunction<? super V> transformer;
6223 +            final DoubleBinaryOperator reducer;
6224 +            if ((transformer = this.transformer) != null &&
6225 +                (reducer = this.reducer) != null) {
6226 +                double r = this.basis;
6227 +                for (int b; (b = preSplit()) > 0;)
6228 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
6229 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6230 +                V v;
6231 +                while ((v = advance()) != null)
6232 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6233 +                result = r;
6234 +                CountedCompleter<?> c;
6235 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6236 +                    MapReduceValuesToDoubleTask<K,V>
6237 +                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6238 +                        s = t.rights;
6239 +                    while (s != null) {
6240 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6241 +                        s = t.rights = s.nextRight;
6242 +                    }
6243 +                }
6244 +            }
6245 +        }
6246 +    }
6247 +
6248 +    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6249 +        extends Traverser<K,V,Double> {
6250 +        final DoubleFunction<Map.Entry<K,V>> transformer;
6251 +        final DoubleBinaryOperator reducer;
6252 +        final double basis;
6253 +        double result;
6254 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6255 +        MapReduceEntriesToDoubleTask
6256 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6257 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
6258 +             DoubleFunction<Map.Entry<K,V>> transformer,
6259 +             double basis,
6260 +             DoubleBinaryOperator reducer) {
6261 +            super(m, p, b); this.nextRight = nextRight;
6262 +            this.transformer = transformer;
6263 +            this.basis = basis; this.reducer = reducer;
6264 +        }
6265 +        public final Double getRawResult() { return result; }
6266 +        @SuppressWarnings("unchecked") public final void compute() {
6267 +            final DoubleFunction<Map.Entry<K,V>> transformer;
6268 +            final DoubleBinaryOperator reducer;
6269 +            if ((transformer = this.transformer) != null &&
6270 +                (reducer = this.reducer) != null) {
6271 +                double r = this.basis;
6272 +                for (int b; (b = preSplit()) > 0;)
6273 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6274 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6275 +                V v;
6276 +                while ((v = advance()) != null)
6277 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)nextKey,
6278 +                                                                    v)));
6279 +                result = r;
6280 +                CountedCompleter<?> c;
6281 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6282 +                    MapReduceEntriesToDoubleTask<K,V>
6283 +                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6284 +                        s = t.rights;
6285 +                    while (s != null) {
6286 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6287 +                        s = t.rights = s.nextRight;
6288 +                    }
6289 +                }
6290 +            }
6291 +        }
6292 +    }
6293 +
6294 +    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6295 +        extends Traverser<K,V,Double> {
6296 +        final DoubleBiFunction<? super K, ? super V> transformer;
6297 +        final DoubleBinaryOperator reducer;
6298 +        final double basis;
6299 +        double result;
6300 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6301 +        MapReduceMappingsToDoubleTask
6302 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6303 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
6304 +             DoubleBiFunction<? super K, ? super V> transformer,
6305 +             double basis,
6306 +             DoubleBinaryOperator reducer) {
6307 +            super(m, p, b); this.nextRight = nextRight;
6308 +            this.transformer = transformer;
6309 +            this.basis = basis; this.reducer = reducer;
6310 +        }
6311 +        public final Double getRawResult() { return result; }
6312 +        @SuppressWarnings("unchecked") public final void compute() {
6313 +            final DoubleBiFunction<? super K, ? super V> transformer;
6314 +            final DoubleBinaryOperator reducer;
6315 +            if ((transformer = this.transformer) != null &&
6316 +                (reducer = this.reducer) != null) {
6317 +                double r = this.basis;
6318 +                for (int b; (b = preSplit()) > 0;)
6319 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6320 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6321 +                V v;
6322 +                while ((v = advance()) != null)
6323 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey, v));
6324 +                result = r;
6325 +                CountedCompleter<?> c;
6326 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6327 +                    MapReduceMappingsToDoubleTask<K,V>
6328 +                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6329 +                        s = t.rights;
6330 +                    while (s != null) {
6331 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6332 +                        s = t.rights = s.nextRight;
6333 +                    }
6334 +                }
6335 +            }
6336 +        }
6337 +    }
6338 +
6339 +    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6340 +        extends Traverser<K,V,Long> {
6341 +        final LongFunction<? super K> transformer;
6342 +        final LongBinaryOperator reducer;
6343 +        final long basis;
6344 +        long result;
6345 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
6346 +        MapReduceKeysToLongTask
6347 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6348 +             MapReduceKeysToLongTask<K,V> nextRight,
6349 +             LongFunction<? super K> transformer,
6350 +             long basis,
6351 +             LongBinaryOperator reducer) {
6352 +            super(m, p, b); this.nextRight = nextRight;
6353 +            this.transformer = transformer;
6354 +            this.basis = basis; this.reducer = reducer;
6355 +        }
6356 +        public final Long getRawResult() { return result; }
6357 +        @SuppressWarnings("unchecked") public final void compute() {
6358 +            final LongFunction<? super K> transformer;
6359 +            final LongBinaryOperator reducer;
6360 +            if ((transformer = this.transformer) != null &&
6361 +                (reducer = this.reducer) != null) {
6362 +                long r = this.basis;
6363 +                for (int b; (b = preSplit()) > 0;)
6364 +                    (rights = new MapReduceKeysToLongTask<K,V>
6365 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6366 +                while (advance() != null)
6367 +                    r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey));
6368 +                result = r;
6369 +                CountedCompleter<?> c;
6370 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6371 +                    MapReduceKeysToLongTask<K,V>
6372 +                        t = (MapReduceKeysToLongTask<K,V>)c,
6373 +                        s = t.rights;
6374 +                    while (s != null) {
6375 +                        t.result = reducer.applyAsLong(t.result, s.result);
6376 +                        s = t.rights = s.nextRight;
6377 +                    }
6378 +                }
6379 +            }
6380 +        }
6381 +    }
6382 +
6383 +    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6384 +        extends Traverser<K,V,Long> {
6385 +        final LongFunction<? super V> transformer;
6386 +        final LongBinaryOperator reducer;
6387 +        final long basis;
6388 +        long result;
6389 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
6390 +        MapReduceValuesToLongTask
6391 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6392 +             MapReduceValuesToLongTask<K,V> nextRight,
6393 +             LongFunction<? super V> transformer,
6394 +             long basis,
6395 +             LongBinaryOperator reducer) {
6396 +            super(m, p, b); this.nextRight = nextRight;
6397 +            this.transformer = transformer;
6398 +            this.basis = basis; this.reducer = reducer;
6399 +        }
6400 +        public final Long getRawResult() { return result; }
6401 +        @SuppressWarnings("unchecked") public final void compute() {
6402 +            final LongFunction<? super V> transformer;
6403 +            final LongBinaryOperator reducer;
6404 +            if ((transformer = this.transformer) != null &&
6405 +                (reducer = this.reducer) != null) {
6406 +                long r = this.basis;
6407 +                for (int b; (b = preSplit()) > 0;)
6408 +                    (rights = new MapReduceValuesToLongTask<K,V>
6409 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6410 +                V v;
6411 +                while ((v = advance()) != null)
6412 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6413 +                result = r;
6414 +                CountedCompleter<?> c;
6415 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6416 +                    MapReduceValuesToLongTask<K,V>
6417 +                        t = (MapReduceValuesToLongTask<K,V>)c,
6418 +                        s = t.rights;
6419 +                    while (s != null) {
6420 +                        t.result = reducer.applyAsLong(t.result, s.result);
6421 +                        s = t.rights = s.nextRight;
6422 +                    }
6423 +                }
6424 +            }
6425 +        }
6426 +    }
6427 +
6428 +    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6429 +        extends Traverser<K,V,Long> {
6430 +        final LongFunction<Map.Entry<K,V>> transformer;
6431 +        final LongBinaryOperator reducer;
6432 +        final long basis;
6433 +        long result;
6434 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6435 +        MapReduceEntriesToLongTask
6436 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6437 +             MapReduceEntriesToLongTask<K,V> nextRight,
6438 +             LongFunction<Map.Entry<K,V>> transformer,
6439 +             long basis,
6440 +             LongBinaryOperator reducer) {
6441 +            super(m, p, b); this.nextRight = nextRight;
6442 +            this.transformer = transformer;
6443 +            this.basis = basis; this.reducer = reducer;
6444 +        }
6445 +        public final Long getRawResult() { return result; }
6446 +        @SuppressWarnings("unchecked") public final void compute() {
6447 +            final LongFunction<Map.Entry<K,V>> transformer;
6448 +            final LongBinaryOperator reducer;
6449 +            if ((transformer = this.transformer) != null &&
6450 +                (reducer = this.reducer) != null) {
6451 +                long r = this.basis;
6452 +                for (int b; (b = preSplit()) > 0;)
6453 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6454 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6455 +                V v;
6456 +                while ((v = advance()) != null)
6457 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)nextKey, v)));
6458 +                result = r;
6459 +                CountedCompleter<?> c;
6460 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6461 +                    MapReduceEntriesToLongTask<K,V>
6462 +                        t = (MapReduceEntriesToLongTask<K,V>)c,
6463 +                        s = t.rights;
6464 +                    while (s != null) {
6465 +                        t.result = reducer.applyAsLong(t.result, s.result);
6466 +                        s = t.rights = s.nextRight;
6467 +                    }
6468 +                }
6469 +            }
6470 +        }
6471 +    }
6472 +
6473 +    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6474 +        extends Traverser<K,V,Long> {
6475 +        final LongBiFunction<? super K, ? super V> transformer;
6476 +        final LongBinaryOperator reducer;
6477 +        final long basis;
6478 +        long result;
6479 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6480 +        MapReduceMappingsToLongTask
6481 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6482 +             MapReduceMappingsToLongTask<K,V> nextRight,
6483 +             LongBiFunction<? super K, ? super V> transformer,
6484 +             long basis,
6485 +             LongBinaryOperator reducer) {
6486 +            super(m, p, b); this.nextRight = nextRight;
6487 +            this.transformer = transformer;
6488 +            this.basis = basis; this.reducer = reducer;
6489 +        }
6490 +        public final Long getRawResult() { return result; }
6491 +        @SuppressWarnings("unchecked") public final void compute() {
6492 +            final LongBiFunction<? super K, ? super V> transformer;
6493 +            final LongBinaryOperator reducer;
6494 +            if ((transformer = this.transformer) != null &&
6495 +                (reducer = this.reducer) != null) {
6496 +                long r = this.basis;
6497 +                for (int b; (b = preSplit()) > 0;)
6498 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6499 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6500 +                V v;
6501 +                while ((v = advance()) != null)
6502 +                    r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey, v));
6503 +                result = r;
6504 +                CountedCompleter<?> c;
6505 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6506 +                    MapReduceMappingsToLongTask<K,V>
6507 +                        t = (MapReduceMappingsToLongTask<K,V>)c,
6508 +                        s = t.rights;
6509 +                    while (s != null) {
6510 +                        t.result = reducer.applyAsLong(t.result, s.result);
6511 +                        s = t.rights = s.nextRight;
6512 +                    }
6513 +                }
6514 +            }
6515 +        }
6516 +    }
6517 +
6518 +    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6519 +        extends Traverser<K,V,Integer> {
6520 +        final IntFunction<? super K> transformer;
6521 +        final IntBinaryOperator reducer;
6522 +        final int basis;
6523 +        int result;
6524 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6525 +        MapReduceKeysToIntTask
6526 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6527 +             MapReduceKeysToIntTask<K,V> nextRight,
6528 +             IntFunction<? super K> transformer,
6529 +             int basis,
6530 +             IntBinaryOperator reducer) {
6531 +            super(m, p, b); this.nextRight = nextRight;
6532 +            this.transformer = transformer;
6533 +            this.basis = basis; this.reducer = reducer;
6534 +        }
6535 +        public final Integer getRawResult() { return result; }
6536 +        @SuppressWarnings("unchecked") public final void compute() {
6537 +            final IntFunction<? super K> transformer;
6538 +            final IntBinaryOperator reducer;
6539 +            if ((transformer = this.transformer) != null &&
6540 +                (reducer = this.reducer) != null) {
6541 +                int r = this.basis;
6542 +                for (int b; (b = preSplit()) > 0;)
6543 +                    (rights = new MapReduceKeysToIntTask<K,V>
6544 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6545 +                while (advance() != null)
6546 +                    r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey));
6547 +                result = r;
6548 +                CountedCompleter<?> c;
6549 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6550 +                    MapReduceKeysToIntTask<K,V>
6551 +                        t = (MapReduceKeysToIntTask<K,V>)c,
6552 +                        s = t.rights;
6553 +                    while (s != null) {
6554 +                        t.result = reducer.applyAsInt(t.result, s.result);
6555 +                        s = t.rights = s.nextRight;
6556 +                    }
6557 +                }
6558 +            }
6559 +        }
6560 +    }
6561 +
6562 +    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6563 +        extends Traverser<K,V,Integer> {
6564 +        final IntFunction<? super V> transformer;
6565 +        final IntBinaryOperator reducer;
6566 +        final int basis;
6567 +        int result;
6568 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6569 +        MapReduceValuesToIntTask
6570 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6571 +             MapReduceValuesToIntTask<K,V> nextRight,
6572 +             IntFunction<? super V> transformer,
6573 +             int basis,
6574 +             IntBinaryOperator reducer) {
6575 +            super(m, p, b); this.nextRight = nextRight;
6576 +            this.transformer = transformer;
6577 +            this.basis = basis; this.reducer = reducer;
6578 +        }
6579 +        public final Integer getRawResult() { return result; }
6580 +        @SuppressWarnings("unchecked") public final void compute() {
6581 +            final IntFunction<? super V> transformer;
6582 +            final IntBinaryOperator reducer;
6583 +            if ((transformer = this.transformer) != null &&
6584 +                (reducer = this.reducer) != null) {
6585 +                int r = this.basis;
6586 +                for (int b; (b = preSplit()) > 0;)
6587 +                    (rights = new MapReduceValuesToIntTask<K,V>
6588 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6589 +                V v;
6590 +                while ((v = advance()) != null)
6591 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6592 +                result = r;
6593 +                CountedCompleter<?> c;
6594 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6595 +                    MapReduceValuesToIntTask<K,V>
6596 +                        t = (MapReduceValuesToIntTask<K,V>)c,
6597 +                        s = t.rights;
6598 +                    while (s != null) {
6599 +                        t.result = reducer.applyAsInt(t.result, s.result);
6600 +                        s = t.rights = s.nextRight;
6601 +                    }
6602 +                }
6603 +            }
6604 +        }
6605 +    }
6606 +
6607 +    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6608 +        extends Traverser<K,V,Integer> {
6609 +        final IntFunction<Map.Entry<K,V>> transformer;
6610 +        final IntBinaryOperator reducer;
6611 +        final int basis;
6612 +        int result;
6613 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6614 +        MapReduceEntriesToIntTask
6615 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6616 +             MapReduceEntriesToIntTask<K,V> nextRight,
6617 +             IntFunction<Map.Entry<K,V>> transformer,
6618 +             int basis,
6619 +             IntBinaryOperator reducer) {
6620 +            super(m, p, b); this.nextRight = nextRight;
6621 +            this.transformer = transformer;
6622 +            this.basis = basis; this.reducer = reducer;
6623 +        }
6624 +        public final Integer getRawResult() { return result; }
6625 +        @SuppressWarnings("unchecked") public final void compute() {
6626 +            final IntFunction<Map.Entry<K,V>> transformer;
6627 +            final IntBinaryOperator reducer;
6628 +            if ((transformer = this.transformer) != null &&
6629 +                (reducer = this.reducer) != null) {
6630 +                int r = this.basis;
6631 +                for (int b; (b = preSplit()) > 0;)
6632 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6633 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6634 +                V v;
6635 +                while ((v = advance()) != null)
6636 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)nextKey,
6637 +                                                                    v)));
6638 +                result = r;
6639 +                CountedCompleter<?> c;
6640 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6641 +                    MapReduceEntriesToIntTask<K,V>
6642 +                        t = (MapReduceEntriesToIntTask<K,V>)c,
6643 +                        s = t.rights;
6644 +                    while (s != null) {
6645 +                        t.result = reducer.applyAsInt(t.result, s.result);
6646 +                        s = t.rights = s.nextRight;
6647 +                    }
6648 +                }
6649 +            }
6650 +        }
6651 +    }
6652 +
6653 +    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6654 +        extends Traverser<K,V,Integer> {
6655 +        final IntBiFunction<? super K, ? super V> transformer;
6656 +        final IntBinaryOperator reducer;
6657 +        final int basis;
6658 +        int result;
6659 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6660 +        MapReduceMappingsToIntTask
6661 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6662 +             MapReduceMappingsToIntTask<K,V> nextRight,
6663 +             IntBiFunction<? super K, ? super V> transformer,
6664 +             int basis,
6665 +             IntBinaryOperator reducer) {
6666 +            super(m, p, b); this.nextRight = nextRight;
6667 +            this.transformer = transformer;
6668 +            this.basis = basis; this.reducer = reducer;
6669 +        }
6670 +        public final Integer getRawResult() { return result; }
6671 +        @SuppressWarnings("unchecked") public final void compute() {
6672 +            final IntBiFunction<? super K, ? super V> transformer;
6673 +            final IntBinaryOperator reducer;
6674 +            if ((transformer = this.transformer) != null &&
6675 +                (reducer = this.reducer) != null) {
6676 +                int r = this.basis;
6677 +                for (int b; (b = preSplit()) > 0;)
6678 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6679 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6680 +                V v;
6681 +                while ((v = advance()) != null)
6682 +                    r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey, v));
6683 +                result = r;
6684 +                CountedCompleter<?> c;
6685 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6686 +                    MapReduceMappingsToIntTask<K,V>
6687 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
6688 +                        s = t.rights;
6689 +                    while (s != null) {
6690 +                        t.result = reducer.applyAsInt(t.result, s.result);
6691 +                        s = t.rights = s.nextRight;
6692 +                    }
6693 +                }
6694 +            }
6695 +        }
6696 +    }
6697 +
6698 +    // Unsafe mechanics
6699 +    private static final sun.misc.Unsafe U;
6700 +    private static final long SIZECTL;
6701 +    private static final long TRANSFERINDEX;
6702 +    private static final long TRANSFERORIGIN;
6703 +    private static final long BASECOUNT;
6704 +    private static final long CELLSBUSY;
6705 +    private static final long CELLVALUE;
6706 +    private static final long ABASE;
6707 +    private static final int ASHIFT;
6708 +
6709 +    static {
6710 +        int ss;
6711 +        try {
6712 +            U = sun.misc.Unsafe.getUnsafe();
6713 +            Class<?> k = ConcurrentHashMap.class;
6714 +            SIZECTL = U.objectFieldOffset
6715 +                (k.getDeclaredField("sizeCtl"));
6716 +            TRANSFERINDEX = U.objectFieldOffset
6717 +                (k.getDeclaredField("transferIndex"));
6718 +            TRANSFERORIGIN = U.objectFieldOffset
6719 +                (k.getDeclaredField("transferOrigin"));
6720 +            BASECOUNT = U.objectFieldOffset
6721 +                (k.getDeclaredField("baseCount"));
6722 +            CELLSBUSY = U.objectFieldOffset
6723 +                (k.getDeclaredField("cellsBusy"));
6724 +            Class<?> ck = Cell.class;
6725 +            CELLVALUE = U.objectFieldOffset
6726 +                (ck.getDeclaredField("value"));
6727 +            Class<?> sc = Node[].class;
6728 +            ABASE = U.arrayBaseOffset(sc);
6729 +            ss = U.arrayIndexScale(sc);
6730 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6731 +        } catch (Exception e) {
6732 +            throw new Error(e);
6733 +        }
6734 +        if ((ss & (ss-1)) != 0)
6735 +            throw new Error("data type scale not a power of two");
6736 +    }
6737 +
6738 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines