ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.52 by dl, Mon Jul 12 11:01:14 2004 UTC vs.
Revision 1.320 by jsr166, Sun Sep 8 01:11:03 2019 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.atomic.AtomicReference;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.Predicate;
35 > import java.util.function.ToDoubleBiFunction;
36 > import java.util.function.ToDoubleFunction;
37 > import java.util.function.ToIntBiFunction;
38 > import java.util.function.ToIntFunction;
39 > import java.util.function.ToLongBiFunction;
40 > import java.util.function.ToLongFunction;
41 > import java.util.stream.Stream;
42 > import jdk.internal.misc.Unsafe;
43  
44   /**
45   * A hash table supporting full concurrency of retrievals and
46 < * adjustable expected concurrency for updates. This class obeys the
46 > * high expected concurrency for updates. This class obeys the
47   * same functional specification as {@link java.util.Hashtable}, and
48   * includes versions of methods corresponding to each method of
49 < * <tt>Hashtable</tt>. However, even though all operations are
49 > * {@code Hashtable}. However, even though all operations are
50   * thread-safe, retrieval operations do <em>not</em> entail locking,
51   * and there is <em>not</em> any support for locking the entire table
52   * in a way that prevents all access.  This class is fully
53 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
53 > * interoperable with {@code Hashtable} in programs that rely on its
54   * thread safety but not on its synchronization details.
55   *
56 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
57 < * block, so may overlap with update operations (including
58 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
59 < * of the most recently <em>completed</em> update operations holding
60 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
61 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
62 < * removal of only some entries.  Similarly, Iterators and
63 < * Enumerations return elements reflecting the state of the hash table
64 < * at some point at or since the creation of the iterator/enumeration.
65 < * They do <em>not</em> throw
66 < * {@link ConcurrentModificationException}.  However, iterators are
67 < * designed to be used by only one thread at a time.
68 < *
69 < * <p> The allowed concurrency among update operations is guided by
70 < * the optional <tt>concurrencyLevel</tt> constructor argument
71 < * (default 16), which is used as a hint for internal sizing.  The
72 < * table is internally partitioned to try to permit the indicated
73 < * number of concurrent updates without contention. Because placement
74 < * in hash tables is essentially random, the actual concurrency will
75 < * vary.  Ideally, you should choose a value to accommodate as many
76 < * threads as will ever concurrently modify the table. Using a
77 < * significantly higher value than you need can waste space and time,
78 < * and a significantly lower value can lead to thread contention. But
79 < * overestimates and underestimates within an order of magnitude do
80 < * not usually have much noticeable impact. A value of one is
81 < * appropriate when it is known that only one thread will modify and
82 < * all others will only read. Also, resizing this or any other kind of
83 < * hash table is a relatively slow operation, so, when possible, it is
84 < * a good idea to provide estimates of expected table sizes in
85 < * constructors.
56 > * <p>Retrieval operations (including {@code get}) generally do not
57 > * block, so may overlap with update operations (including {@code put}
58 > * and {@code remove}). Retrievals reflect the results of the most
59 > * recently <em>completed</em> update operations holding upon their
60 > * onset. (More formally, an update operation for a given key bears a
61 > * <em>happens-before</em> relation with any (non-null) retrieval for
62 > * that key reporting the updated value.)  For aggregate operations
63 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 > * reflect insertion or removal of only some entries.  Similarly,
65 > * Iterators, Spliterators and Enumerations return elements reflecting the
66 > * state of the hash table at some point at or since the creation of the
67 > * iterator/enumeration.  They do <em>not</em> throw {@link
68 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
69 > * However, iterators are designed to be used by only one thread at a time.
70 > * Bear in mind that the results of aggregate status methods including
71 > * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 > * useful only when a map is not undergoing concurrent updates in other threads.
73 > * Otherwise the results of these methods reflect transient states
74 > * that may be adequate for monitoring or estimation purposes, but not
75 > * for program control.
76 > *
77 > * <p>The table is dynamically expanded when there are too many
78 > * collisions (i.e., keys that have distinct hash codes but fall into
79 > * the same slot modulo the table size), with the expected average
80 > * effect of maintaining roughly two bins per mapping (corresponding
81 > * to a 0.75 load factor threshold for resizing). There may be much
82 > * variance around this average as mappings are added and removed, but
83 > * overall, this maintains a commonly accepted time/space tradeoff for
84 > * hash tables.  However, resizing this or any other kind of hash
85 > * table may be a relatively slow operation. When possible, it is a
86 > * good idea to provide a size estimate as an optional {@code
87 > * initialCapacity} constructor argument. An additional optional
88 > * {@code loadFactor} constructor argument provides a further means of
89 > * customizing initial table capacity by specifying the table density
90 > * to be used in calculating the amount of space to allocate for the
91 > * given number of elements.  Also, for compatibility with previous
92 > * versions of this class, constructors may optionally specify an
93 > * expected {@code concurrencyLevel} as an additional hint for
94 > * internal sizing.  Note that using many keys with exactly the same
95 > * {@code hashCode()} is a sure way to slow down performance of any
96 > * hash table. To ameliorate impact, when keys are {@link Comparable},
97 > * this class may use comparison order among keys to help break ties.
98 > *
99 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 > * (using {@link #keySet(Object)} when only keys are of interest, and the
102 > * mapped values are (perhaps transiently) not used or all take the
103 > * same mapping value.
104 > *
105 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 > * form of histogram or multiset) by using {@link
107 > * java.util.concurrent.atomic.LongAdder} values and initializing via
108 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111   *
112   * <p>This class and its views and iterators implement all of the
113   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114   * interfaces.
115   *
116 < * <p> Like {@link java.util.Hashtable} but unlike {@link
117 < * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
118 < * used as a key or value.
116 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 > * does <em>not</em> allow {@code null} to be used as a key or value.
118 > *
119 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 > * operations that, unlike most {@link Stream} methods, are designed
121 > * to be safely, and often sensibly, applied even with maps that are
122 > * being concurrently updated by other threads; for example, when
123 > * computing a snapshot summary of the values in a shared registry.
124 > * There are three kinds of operation, each with four forms, accepting
125 > * functions with keys, values, entries, and (key, value) pairs as
126 > * arguments and/or return values. Because the elements of a
127 > * ConcurrentHashMap are not ordered in any particular way, and may be
128 > * processed in different orders in different parallel executions, the
129 > * correctness of supplied functions should not depend on any
130 > * ordering, or on any other objects or values that may transiently
131 > * change while computation is in progress; and except for forEach
132 > * actions, should ideally be side-effect-free. Bulk operations on
133 > * {@link Map.Entry} objects do not support method {@code setValue}.
134 > *
135 > * <ul>
136 > * <li>forEach: Performs a given action on each element.
137 > * A variant form applies a given transformation on each element
138 > * before performing the action.
139 > *
140 > * <li>search: Returns the first available non-null result of
141 > * applying a given function on each element; skipping further
142 > * search when a result is found.
143 > *
144 > * <li>reduce: Accumulates each element.  The supplied reduction
145 > * function cannot rely on ordering (more formally, it should be
146 > * both associative and commutative).  There are five variants:
147 > *
148 > * <ul>
149 > *
150 > * <li>Plain reductions. (There is not a form of this method for
151 > * (key, value) function arguments since there is no corresponding
152 > * return type.)
153 > *
154 > * <li>Mapped reductions that accumulate the results of a given
155 > * function applied to each element.
156 > *
157 > * <li>Reductions to scalar doubles, longs, and ints, using a
158 > * given basis value.
159 > *
160 > * </ul>
161 > * </ul>
162 > *
163 > * <p>These bulk operations accept a {@code parallelismThreshold}
164 > * argument. Methods proceed sequentially if the current map size is
165 > * estimated to be less than the given threshold. Using a value of
166 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
167 > * of {@code 1} results in maximal parallelism by partitioning into
168 > * enough subtasks to fully utilize the {@link
169 > * ForkJoinPool#commonPool()} that is used for all parallel
170 > * computations. Normally, you would initially choose one of these
171 > * extreme values, and then measure performance of using in-between
172 > * values that trade off overhead versus throughput.
173 > *
174 > * <p>The concurrency properties of bulk operations follow
175 > * from those of ConcurrentHashMap: Any non-null result returned
176 > * from {@code get(key)} and related access methods bears a
177 > * happens-before relation with the associated insertion or
178 > * update.  The result of any bulk operation reflects the
179 > * composition of these per-element relations (but is not
180 > * necessarily atomic with respect to the map as a whole unless it
181 > * is somehow known to be quiescent).  Conversely, because keys
182 > * and values in the map are never null, null serves as a reliable
183 > * atomic indicator of the current lack of any result.  To
184 > * maintain this property, null serves as an implicit basis for
185 > * all non-scalar reduction operations. For the double, long, and
186 > * int versions, the basis should be one that, when combined with
187 > * any other value, returns that other value (more formally, it
188 > * should be the identity element for the reduction). Most common
189 > * reductions have these properties; for example, computing a sum
190 > * with basis 0 or a minimum with basis MAX_VALUE.
191 > *
192 > * <p>Search and transformation functions provided as arguments
193 > * should similarly return null to indicate the lack of any result
194 > * (in which case it is not used). In the case of mapped
195 > * reductions, this also enables transformations to serve as
196 > * filters, returning null (or, in the case of primitive
197 > * specializations, the identity basis) if the element should not
198 > * be combined. You can create compound transformations and
199 > * filterings by composing them yourself under this "null means
200 > * there is nothing there now" rule before using them in search or
201 > * reduce operations.
202 > *
203 > * <p>Methods accepting and/or returning Entry arguments maintain
204 > * key-value associations. They may be useful for example when
205 > * finding the key for the greatest value. Note that "plain" Entry
206 > * arguments can be supplied using {@code new
207 > * AbstractMap.SimpleEntry(k,v)}.
208 > *
209 > * <p>Bulk operations may complete abruptly, throwing an
210 > * exception encountered in the application of a supplied
211 > * function. Bear in mind when handling such exceptions that other
212 > * concurrently executing functions could also have thrown
213 > * exceptions, or would have done so if the first exception had
214 > * not occurred.
215 > *
216 > * <p>Speedups for parallel compared to sequential forms are common
217 > * but not guaranteed.  Parallel operations involving brief functions
218 > * on small maps may execute more slowly than sequential forms if the
219 > * underlying work to parallelize the computation is more expensive
220 > * than the computation itself.  Similarly, parallelization may not
221 > * lead to much actual parallelism if all processors are busy
222 > * performing unrelated tasks.
223 > *
224 > * <p>All arguments to all task methods must be non-null.
225   *
226   * <p>This class is a member of the
227 < * <a href="{@docRoot}/../guide/collections/index.html">
227 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
228   * Java Collections Framework</a>.
229   *
230   * @since 1.5
231   * @author Doug Lea
232   * @param <K> the type of keys maintained by this map
233 < * @param <V> the type of mapped values
233 > * @param <V> the type of mapped values
234   */
235 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
236 <        implements ConcurrentMap<K, V>, Serializable {
235 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 >    implements ConcurrentMap<K,V>, Serializable {
237      private static final long serialVersionUID = 7249069246763182397L;
238  
239      /*
240 <     * The basic strategy is to subdivide the table among Segments,
241 <     * each of which itself is a concurrently readable hash table.
240 >     * Overview:
241 >     *
242 >     * The primary design goal of this hash table is to maintain
243 >     * concurrent readability (typically method get(), but also
244 >     * iterators and related methods) while minimizing update
245 >     * contention. Secondary goals are to keep space consumption about
246 >     * the same or better than java.util.HashMap, and to support high
247 >     * initial insertion rates on an empty table by many threads.
248 >     *
249 >     * This map usually acts as a binned (bucketed) hash table.  Each
250 >     * key-value mapping is held in a Node.  Most nodes are instances
251 >     * of the basic Node class with hash, key, value, and next
252 >     * fields. However, various subclasses exist: TreeNodes are
253 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
254 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 >     * of bins during resizing. ReservationNodes are used as
256 >     * placeholders while establishing values in computeIfAbsent and
257 >     * related methods.  The types TreeBin, ForwardingNode, and
258 >     * ReservationNode do not hold normal user keys, values, or
259 >     * hashes, and are readily distinguishable during search etc
260 >     * because they have negative hash fields and null key and value
261 >     * fields. (These special nodes are either uncommon or transient,
262 >     * so the impact of carrying around some unused fields is
263 >     * insignificant.)
264 >     *
265 >     * The table is lazily initialized to a power-of-two size upon the
266 >     * first insertion.  Each bin in the table normally contains a
267 >     * list of Nodes (most often, the list has only zero or one Node).
268 >     * Table accesses require volatile/atomic reads, writes, and
269 >     * CASes.  Because there is no other way to arrange this without
270 >     * adding further indirections, we use intrinsics
271 >     * (jdk.internal.misc.Unsafe) operations.
272 >     *
273 >     * We use the top (sign) bit of Node hash fields for control
274 >     * purposes -- it is available anyway because of addressing
275 >     * constraints.  Nodes with negative hash fields are specially
276 >     * handled or ignored in map methods.
277 >     *
278 >     * Insertion (via put or its variants) of the first node in an
279 >     * empty bin is performed by just CASing it to the bin.  This is
280 >     * by far the most common case for put operations under most
281 >     * key/hash distributions.  Other update operations (insert,
282 >     * delete, and replace) require locks.  We do not want to waste
283 >     * the space required to associate a distinct lock object with
284 >     * each bin, so instead use the first node of a bin list itself as
285 >     * a lock. Locking support for these locks relies on builtin
286 >     * "synchronized" monitors.
287 >     *
288 >     * Using the first node of a list as a lock does not by itself
289 >     * suffice though: When a node is locked, any update must first
290 >     * validate that it is still the first node after locking it, and
291 >     * retry if not. Because new nodes are always appended to lists,
292 >     * once a node is first in a bin, it remains first until deleted
293 >     * or the bin becomes invalidated (upon resizing).
294 >     *
295 >     * The main disadvantage of per-bin locks is that other update
296 >     * operations on other nodes in a bin list protected by the same
297 >     * lock can stall, for example when user equals() or mapping
298 >     * functions take a long time.  However, statistically, under
299 >     * random hash codes, this is not a common problem.  Ideally, the
300 >     * frequency of nodes in bins follows a Poisson distribution
301 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 >     * parameter of about 0.5 on average, given the resizing threshold
303 >     * of 0.75, although with a large variance because of resizing
304 >     * granularity. Ignoring variance, the expected occurrences of
305 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 >     * first values are:
307 >     *
308 >     * 0:    0.60653066
309 >     * 1:    0.30326533
310 >     * 2:    0.07581633
311 >     * 3:    0.01263606
312 >     * 4:    0.00157952
313 >     * 5:    0.00015795
314 >     * 6:    0.00001316
315 >     * 7:    0.00000094
316 >     * 8:    0.00000006
317 >     * more: less than 1 in ten million
318 >     *
319 >     * Lock contention probability for two threads accessing distinct
320 >     * elements is roughly 1 / (8 * #elements) under random hashes.
321 >     *
322 >     * Actual hash code distributions encountered in practice
323 >     * sometimes deviate significantly from uniform randomness.  This
324 >     * includes the case when N > (1<<30), so some keys MUST collide.
325 >     * Similarly for dumb or hostile usages in which multiple keys are
326 >     * designed to have identical hash codes or ones that differs only
327 >     * in masked-out high bits. So we use a secondary strategy that
328 >     * applies when the number of nodes in a bin exceeds a
329 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
330 >     * specialized form of red-black trees), bounding search time to
331 >     * O(log N).  Each search step in a TreeBin is at least twice as
332 >     * slow as in a regular list, but given that N cannot exceed
333 >     * (1<<64) (before running out of addresses) this bounds search
334 >     * steps, lock hold times, etc, to reasonable constants (roughly
335 >     * 100 nodes inspected per operation worst case) so long as keys
336 >     * are Comparable (which is very common -- String, Long, etc).
337 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
338 >     * traversal pointers as regular nodes, so can be traversed in
339 >     * iterators in the same way.
340 >     *
341 >     * The table is resized when occupancy exceeds a percentage
342 >     * threshold (nominally, 0.75, but see below).  Any thread
343 >     * noticing an overfull bin may assist in resizing after the
344 >     * initiating thread allocates and sets up the replacement array.
345 >     * However, rather than stalling, these other threads may proceed
346 >     * with insertions etc.  The use of TreeBins shields us from the
347 >     * worst case effects of overfilling while resizes are in
348 >     * progress.  Resizing proceeds by transferring bins, one by one,
349 >     * from the table to the next table. However, threads claim small
350 >     * blocks of indices to transfer (via field transferIndex) before
351 >     * doing so, reducing contention.  A generation stamp in field
352 >     * sizeCtl ensures that resizings do not overlap. Because we are
353 >     * using power-of-two expansion, the elements from each bin must
354 >     * either stay at same index, or move with a power of two
355 >     * offset. We eliminate unnecessary node creation by catching
356 >     * cases where old nodes can be reused because their next fields
357 >     * won't change.  On average, only about one-sixth of them need
358 >     * cloning when a table doubles. The nodes they replace will be
359 >     * garbage collectible as soon as they are no longer referenced by
360 >     * any reader thread that may be in the midst of concurrently
361 >     * traversing table.  Upon transfer, the old table bin contains
362 >     * only a special forwarding node (with hash field "MOVED") that
363 >     * contains the next table as its key. On encountering a
364 >     * forwarding node, access and update operations restart, using
365 >     * the new table.
366 >     *
367 >     * Each bin transfer requires its bin lock, which can stall
368 >     * waiting for locks while resizing. However, because other
369 >     * threads can join in and help resize rather than contend for
370 >     * locks, average aggregate waits become shorter as resizing
371 >     * progresses.  The transfer operation must also ensure that all
372 >     * accessible bins in both the old and new table are usable by any
373 >     * traversal.  This is arranged in part by proceeding from the
374 >     * last bin (table.length - 1) up towards the first.  Upon seeing
375 >     * a forwarding node, traversals (see class Traverser) arrange to
376 >     * move to the new table without revisiting nodes.  To ensure that
377 >     * no intervening nodes are skipped even when moved out of order,
378 >     * a stack (see class TableStack) is created on first encounter of
379 >     * a forwarding node during a traversal, to maintain its place if
380 >     * later processing the current table. The need for these
381 >     * save/restore mechanics is relatively rare, but when one
382 >     * forwarding node is encountered, typically many more will be.
383 >     * So Traversers use a simple caching scheme to avoid creating so
384 >     * many new TableStack nodes. (Thanks to Peter Levart for
385 >     * suggesting use of a stack here.)
386 >     *
387 >     * The traversal scheme also applies to partial traversals of
388 >     * ranges of bins (via an alternate Traverser constructor)
389 >     * to support partitioned aggregate operations.  Also, read-only
390 >     * operations give up if ever forwarded to a null table, which
391 >     * provides support for shutdown-style clearing, which is also not
392 >     * currently implemented.
393 >     *
394 >     * Lazy table initialization minimizes footprint until first use,
395 >     * and also avoids resizings when the first operation is from a
396 >     * putAll, constructor with map argument, or deserialization.
397 >     * These cases attempt to override the initial capacity settings,
398 >     * but harmlessly fail to take effect in cases of races.
399 >     *
400 >     * The element count is maintained using a specialization of
401 >     * LongAdder. We need to incorporate a specialization rather than
402 >     * just use a LongAdder in order to access implicit
403 >     * contention-sensing that leads to creation of multiple
404 >     * CounterCells.  The counter mechanics avoid contention on
405 >     * updates but can encounter cache thrashing if read too
406 >     * frequently during concurrent access. To avoid reading so often,
407 >     * resizing under contention is attempted only upon adding to a
408 >     * bin already holding two or more nodes. Under uniform hash
409 >     * distributions, the probability of this occurring at threshold
410 >     * is around 13%, meaning that only about 1 in 8 puts check
411 >     * threshold (and after resizing, many fewer do so).
412 >     *
413 >     * TreeBins use a special form of comparison for search and
414 >     * related operations (which is the main reason we cannot use
415 >     * existing collections such as TreeMaps). TreeBins contain
416 >     * Comparable elements, but may contain others, as well as
417 >     * elements that are Comparable but not necessarily Comparable for
418 >     * the same T, so we cannot invoke compareTo among them. To handle
419 >     * this, the tree is ordered primarily by hash value, then by
420 >     * Comparable.compareTo order if applicable.  On lookup at a node,
421 >     * if elements are not comparable or compare as 0 then both left
422 >     * and right children may need to be searched in the case of tied
423 >     * hash values. (This corresponds to the full list search that
424 >     * would be necessary if all elements were non-Comparable and had
425 >     * tied hashes.) On insertion, to keep a total ordering (or as
426 >     * close as is required here) across rebalancings, we compare
427 >     * classes and identityHashCodes as tie-breakers. The red-black
428 >     * balancing code is updated from pre-jdk-collections
429 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 >     * Algorithms" (CLR).
432 >     *
433 >     * TreeBins also require an additional locking mechanism.  While
434 >     * list traversal is always possible by readers even during
435 >     * updates, tree traversal is not, mainly because of tree-rotations
436 >     * that may change the root node and/or its linkages.  TreeBins
437 >     * include a simple read-write lock mechanism parasitic on the
438 >     * main bin-synchronization strategy: Structural adjustments
439 >     * associated with an insertion or removal are already bin-locked
440 >     * (and so cannot conflict with other writers) but must wait for
441 >     * ongoing readers to finish. Since there can be only one such
442 >     * waiter, we use a simple scheme using a single "waiter" field to
443 >     * block writers.  However, readers need never block.  If the root
444 >     * lock is held, they proceed along the slow traversal path (via
445 >     * next-pointers) until the lock becomes available or the list is
446 >     * exhausted, whichever comes first. These cases are not fast, but
447 >     * maximize aggregate expected throughput.
448 >     *
449 >     * Maintaining API and serialization compatibility with previous
450 >     * versions of this class introduces several oddities. Mainly: We
451 >     * leave untouched but unused constructor arguments referring to
452 >     * concurrencyLevel. We accept a loadFactor constructor argument,
453 >     * but apply it only to initial table capacity (which is the only
454 >     * time that we can guarantee to honor it.) We also declare an
455 >     * unused "Segment" class that is instantiated in minimal form
456 >     * only when serializing.
457 >     *
458 >     * Also, solely for compatibility with previous versions of this
459 >     * class, it extends AbstractMap, even though all of its methods
460 >     * are overridden, so it is just useless baggage.
461 >     *
462 >     * This file is organized to make things a little easier to follow
463 >     * while reading than they might otherwise: First the main static
464 >     * declarations and utilities, then fields, then main public
465 >     * methods (with a few factorings of multiple public methods into
466 >     * internal ones), then sizing methods, trees, traversers, and
467 >     * bulk operations.
468       */
469  
470      /* ---------------- Constants -------------- */
471  
472      /**
473 <     * The default initial number of table slots for this table.
474 <     * Used when not otherwise specified in constructor.
473 >     * The largest possible table capacity.  This value must be
474 >     * exactly 1<<30 to stay within Java array allocation and indexing
475 >     * bounds for power of two table sizes, and is further required
476 >     * because the top two bits of 32bit hash fields are used for
477 >     * control purposes.
478       */
479 <    static int DEFAULT_INITIAL_CAPACITY = 16;
479 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
480  
481      /**
482 <     * The maximum capacity, used if a higher value is implicitly
483 <     * specified by either of the constructors with arguments.  MUST
95 <     * be a power of two <= 1<<30 to ensure that entries are indexible
96 <     * using ints.
482 >     * The default initial table capacity.  Must be a power of 2
483 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484       */
485 <    static final int MAXIMUM_CAPACITY = 1 << 30;
485 >    private static final int DEFAULT_CAPACITY = 16;
486  
487      /**
488 <     * The default load factor for this table.  Used when not
489 <     * otherwise specified in constructor.
488 >     * The largest possible (non-power of two) array size.
489 >     * Needed by toArray and related methods.
490       */
491 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
491 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492  
493      /**
494 <     * The default number of concurrency control segments.
495 <     **/
496 <    static final int DEFAULT_SEGMENTS = 16;
494 >     * The default concurrency level for this table. Unused but
495 >     * defined for compatibility with previous versions of this class.
496 >     */
497 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498  
499      /**
500 <     * The maximum number of segments to allow; used to bound
501 <     * constructor arguments.
500 >     * The load factor for this table. Overrides of this value in
501 >     * constructors affect only the initial table capacity.  The
502 >     * actual floating point value isn't normally used -- it is
503 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
504 >     * the associated resizing threshold.
505       */
506 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
506 >    private static final float LOAD_FACTOR = 0.75f;
507  
508      /**
509 <     * Number of unsynchronized retries in size and containsValue
510 <     * methods before resorting to locking. This is used to avoid
511 <     * unbounded retries if tables undergo continuous modification
512 <     * which would make it impossible to obtain an accurate result.
509 >     * The bin count threshold for using a tree rather than list for a
510 >     * bin.  Bins are converted to trees when adding an element to a
511 >     * bin with at least this many nodes. The value must be greater
512 >     * than 2, and should be at least 8 to mesh with assumptions in
513 >     * tree removal about conversion back to plain bins upon
514 >     * shrinkage.
515       */
516 <    static final int RETRIES_BEFORE_LOCK = 2;
124 <
125 <    /* ---------------- Fields -------------- */
516 >    static final int TREEIFY_THRESHOLD = 8;
517  
518      /**
519 <     * Mask value for indexing into segments. The upper bits of a
520 <     * key's hash code are used to choose the segment.
521 <     **/
522 <    final int segmentMask;
519 >     * The bin count threshold for untreeifying a (split) bin during a
520 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 >     * most 6 to mesh with shrinkage detection under removal.
522 >     */
523 >    static final int UNTREEIFY_THRESHOLD = 6;
524  
525      /**
526 <     * Shift value for indexing within segments.
527 <     **/
528 <    final int segmentShift;
526 >     * The smallest table capacity for which bins may be treeified.
527 >     * (Otherwise the table is resized if too many nodes in a bin.)
528 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 >     * conflicts between resizing and treeification thresholds.
530 >     */
531 >    static final int MIN_TREEIFY_CAPACITY = 64;
532  
533      /**
534 <     * The segments, each of which is a specialized hash table
534 >     * Minimum number of rebinnings per transfer step. Ranges are
535 >     * subdivided to allow multiple resizer threads.  This value
536 >     * serves as a lower bound to avoid resizers encountering
537 >     * excessive memory contention.  The value should be at least
538 >     * DEFAULT_CAPACITY.
539       */
540 <    final Segment[] segments;
540 >    private static final int MIN_TRANSFER_STRIDE = 16;
541  
542 <    transient Set<K> keySet;
543 <    transient Set<Map.Entry<K,V>> entrySet;
544 <    transient Collection<V> values;
542 >    /**
543 >     * The number of bits used for generation stamp in sizeCtl.
544 >     * Must be at least 6 for 32bit arrays.
545 >     */
546 >    private static final int RESIZE_STAMP_BITS = 16;
547  
548 <    /* ---------------- Small Utilities -------------- */
548 >    /**
549 >     * The maximum number of threads that can help resize.
550 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 >     */
552 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553  
554      /**
555 <     * Returns a hash code for non-null Object x.
151 <     * Uses the same hash code spreader as most other java.util hash tables.
152 <     * @param x the object serving as a key
153 <     * @return the hash code
555 >     * The bit shift for recording size stamp in sizeCtl.
556       */
557 <    static int hash(Object x) {
558 <        int h = x.hashCode();
559 <        h += ~(h << 9);
560 <        h ^=  (h >>> 14);
561 <        h +=  (h << 4);
562 <        h ^=  (h >>> 10);
563 <        return h;
564 <    }
557 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558 >
559 >    /*
560 >     * Encodings for Node hash fields. See above for explanation.
561 >     */
562 >    static final int MOVED     = -1; // hash for forwarding nodes
563 >    static final int TREEBIN   = -2; // hash for roots of trees
564 >    static final int RESERVED  = -3; // hash for transient reservations
565 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566 >
567 >    /** Number of CPUS, to place bounds on some sizings */
568 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
569  
570      /**
571 <     * Returns the segment that should be used for key with given hash
572 <     * @param hash the hash code for the key
573 <     * @return the segment
571 >     * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 >     * @serialField segments Segment[]
573 >     *   The segments, each of which is a specialized hash table.
574 >     * @serialField segmentMask int
575 >     *   Mask value for indexing into segments. The upper bits of a
576 >     *   key's hash code are used to choose the segment.
577 >     * @serialField segmentShift int
578 >     *   Shift value for indexing within segments.
579       */
580 <    final Segment<K,V> segmentFor(int hash) {
581 <        return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
582 <    }
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE),
584 >    };
585  
586 <    /* ---------------- Inner Classes -------------- */
586 >    /* ---------------- Nodes -------------- */
587  
588      /**
589 <     * ConcurrentHashMap list entry. Note that this is never exported
590 <     * out as a user-visible Map.Entry.
591 <     *
592 <     * Because the value field is volatile, not final, it is legal wrt
593 <     * the Java Memory Model for an unsynchronized reader to see null
594 <     * instead of initial value when read via a data race.  Although a
182 <     * reordering leading to this is not likely to ever actually
183 <     * occur, the Segment.readValueUnderLock method is used as a
184 <     * backup in case a null (pre-initialized) value is ever seen in
185 <     * an unsynchronized access method.
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595       */
596 <    static final class HashEntry<K,V> {
188 <        final K key;
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597          final int hash;
598 <        volatile V value;
599 <        final HashEntry<K,V> next;
598 >        final K key;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601  
602 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
194 <            this.key = key;
602 >        Node(int hash, K key, V val) {
603              this.hash = hash;
604 +            this.key = key;
605 +            this.val = val;
606 +        }
607 +
608 +        Node(int hash, K key, V val, Node<K,V> next) {
609 +            this(hash, key, val);
610              this.next = next;
611 <            this.value = value;
611 >        }
612 >
613 >        public final K getKey()     { return key; }
614 >        public final V getValue()   { return val; }
615 >        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 >        public final String toString() {
617 >            return Helpers.mapEntryToString(key, val);
618 >        }
619 >        public final V setValue(V value) {
620 >            throw new UnsupportedOperationException();
621 >        }
622 >
623 >        public final boolean equals(Object o) {
624 >            Object k, v, u; Map.Entry<?,?> e;
625 >            return ((o instanceof Map.Entry) &&
626 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 >                    (v = e.getValue()) != null &&
628 >                    (k == key || k.equals(key)) &&
629 >                    (v == (u = val) || v.equals(u)));
630 >        }
631 >
632 >        /**
633 >         * Virtualized support for map.get(); overridden in subclasses.
634 >         */
635 >        Node<K,V> find(int h, Object k) {
636 >            Node<K,V> e = this;
637 >            if (k != null) {
638 >                do {
639 >                    K ek;
640 >                    if (e.hash == h &&
641 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 >                        return e;
643 >                } while ((e = e.next) != null);
644 >            }
645 >            return null;
646          }
647      }
648  
649 +    /* ---------------- Static utilities -------------- */
650 +
651      /**
652 <     * Segments are specialized versions of hash tables.  This
653 <     * subclasses from ReentrantLock opportunistically, just to
654 <     * simplify some locking and avoid separate construction.
655 <     **/
656 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
657 <        /*
658 <         * Segments maintain a table of entry lists that are ALWAYS
659 <         * kept in a consistent state, so can be read without locking.
660 <         * Next fields of nodes are immutable (final).  All list
661 <         * additions are performed at the front of each bin. This
662 <         * makes it easy to check changes, and also fast to traverse.
663 <         * When nodes would otherwise be changed, new nodes are
664 <         * created to replace them. This works well for hash tables
665 <         * since the bin lists tend to be short. (The average length
666 <         * is less than two for the default load factor threshold.)
667 <         *
668 <         * Read operations can thus proceed without locking, but rely
669 <         * on selected uses of volatiles to ensure that completed
220 <         * write operations performed by other threads are
221 <         * noticed. For most purposes, the "count" field, tracking the
222 <         * number of elements, serves as that volatile variable
223 <         * ensuring visibility.  This is convenient because this field
224 <         * needs to be read in many read operations anyway:
225 <         *
226 <         *   - All (unsynchronized) read operations must first read the
227 <         *     "count" field, and should not look at table entries if
228 <         *     it is 0.
229 <         *
230 <         *   - All (synchronized) write operations should write to
231 <         *     the "count" field after structurally changing any bin.
232 <         *     The operations must not take any action that could even
233 <         *     momentarily cause a concurrent read operation to see
234 <         *     inconsistent data. This is made easier by the nature of
235 <         *     the read operations in Map. For example, no operation
236 <         *     can reveal that the table has grown but the threshold
237 <         *     has not yet been updated, so there are no atomicity
238 <         *     requirements for this with respect to reads.
239 <         *
240 <         * As a guide, all critical volatile reads and writes to the
241 <         * count field are marked in code comments.
242 <         */
652 >     * Spreads (XORs) higher bits of hash to lower and also forces top
653 >     * bit to 0. Because the table uses power-of-two masking, sets of
654 >     * hashes that vary only in bits above the current mask will
655 >     * always collide. (Among known examples are sets of Float keys
656 >     * holding consecutive whole numbers in small tables.)  So we
657 >     * apply a transform that spreads the impact of higher bits
658 >     * downward. There is a tradeoff between speed, utility, and
659 >     * quality of bit-spreading. Because many common sets of hashes
660 >     * are already reasonably distributed (so don't benefit from
661 >     * spreading), and because we use trees to handle large sets of
662 >     * collisions in bins, we just XOR some shifted bits in the
663 >     * cheapest possible way to reduce systematic lossage, as well as
664 >     * to incorporate impact of the highest bits that would otherwise
665 >     * never be used in index calculations because of table bounds.
666 >     */
667 >    static final int spread(int h) {
668 >        return (h ^ (h >>> 16)) & HASH_BITS;
669 >    }
670  
671 <        private static final long serialVersionUID = 2249069246763182397L;
671 >    /**
672 >     * Returns a power of two table size for the given desired capacity.
673 >     * See Hackers Delight, sec 3.2
674 >     */
675 >    private static final int tableSizeFor(int c) {
676 >        int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678 >    }
679  
680 <        /**
681 <         * The number of elements in this segment's region.
682 <         **/
683 <        transient volatile int count;
680 >    /**
681 >     * Returns x's Class if it is of the form "class C implements
682 >     * Comparable<C>", else null.
683 >     */
684 >    static Class<?> comparableClassFor(Object x) {
685 >        if (x instanceof Comparable) {
686 >            Class<?> c; Type[] ts, as; ParameterizedType p;
687 >            if ((c = x.getClass()) == String.class) // bypass checks
688 >                return c;
689 >            if ((ts = c.getGenericInterfaces()) != null) {
690 >                for (Type t : ts) {
691 >                    if ((t instanceof ParameterizedType) &&
692 >                        ((p = (ParameterizedType)t).getRawType() ==
693 >                         Comparable.class) &&
694 >                        (as = p.getActualTypeArguments()) != null &&
695 >                        as.length == 1 && as[0] == c) // type arg is c
696 >                        return c;
697 >                }
698 >            }
699 >        }
700 >        return null;
701 >    }
702  
703 <        /**
704 <         * Number of updates that alter the size of the table. This is
705 <         * used during bulk-read methods to make sure they see a
706 <         * consistent snapshot: If modCounts change during a traversal
707 <         * of segments computing size or checking containsValue, then
708 <         * we might have an inconsistent view of state so (usually)
709 <         * must retry.
710 <         */
711 <        transient int modCount;
703 >    /**
704 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
705 >     * class), else 0.
706 >     */
707 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708 >    static int compareComparables(Class<?> kc, Object k, Object x) {
709 >        return (x == null || x.getClass() != kc ? 0 :
710 >                ((Comparable)k).compareTo(x));
711 >    }
712  
713 <        /**
262 <         * The table is rehashed when its size exceeds this threshold.
263 <         * (The value of this field is always (int)(capacity *
264 <         * loadFactor).)
265 <         */
266 <        transient int threshold;
713 >    /* ---------------- Table element access -------------- */
714  
715 <        /**
716 <         * The per-segment table. Declared as a raw type, casted
717 <         * to HashEntry<K,V> on each use.
718 <         */
719 <        transient volatile HashEntry[] table;
715 >    /*
716 >     * Atomic access methods are used for table elements as well as
717 >     * elements of in-progress next table while resizing.  All uses of
718 >     * the tab arguments must be null checked by callers.  All callers
719 >     * also paranoically precheck that tab's length is not zero (or an
720 >     * equivalent check), thus ensuring that any index argument taking
721 >     * the form of a hash value anded with (length - 1) is a valid
722 >     * index.  Note that, to be correct wrt arbitrary concurrency
723 >     * errors by users, these checks must operate on local variables,
724 >     * which accounts for some odd-looking inline assignments below.
725 >     * Note that calls to setTabAt always occur within locked regions,
726 >     * and so require only release ordering.
727 >     */
728  
729 <        /**
730 <         * The load factor for the hash table.  Even though this value
731 <         * is same for all segments, it is replicated to avoid needing
732 <         * links to outer object.
278 <         * @serial
279 <         */
280 <        final float loadFactor;
729 >    @SuppressWarnings("unchecked")
730 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 >        return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 >    }
733  
734 <        Segment(int initialCapacity, float lf) {
735 <            loadFactor = lf;
736 <            setTable(new HashEntry[initialCapacity]);
737 <        }
734 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 >                                        Node<K,V> c, Node<K,V> v) {
736 >        return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 >    }
738  
739 <        /**
740 <         * Set table to new HashEntry array.
741 <         * Call only while holding lock or in constructor.
290 <         **/
291 <        void setTable(HashEntry[] newTable) {
292 <            threshold = (int)(newTable.length * loadFactor);
293 <            table = newTable;
294 <        }
739 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 >        U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741 >    }
742  
743 <        /**
744 <         * Return properly casted first entry of bin for given hash
745 <         */
746 <        HashEntry<K,V> getFirst(int hash) {
747 <            HashEntry[] tab = table;
748 <            return (HashEntry<K,V>) tab[hash & (tab.length - 1)];
743 >    /* ---------------- Fields -------------- */
744 >
745 >    /**
746 >     * The array of bins. Lazily initialized upon first insertion.
747 >     * Size is always a power of two. Accessed directly by iterators.
748 >     */
749 >    transient volatile Node<K,V>[] table;
750 >
751 >    /**
752 >     * The next table to use; non-null only while resizing.
753 >     */
754 >    private transient volatile Node<K,V>[] nextTable;
755 >
756 >    /**
757 >     * Base counter value, used mainly when there is no contention,
758 >     * but also as a fallback during table initialization
759 >     * races. Updated via CAS.
760 >     */
761 >    private transient volatile long baseCount;
762 >
763 >    /**
764 >     * Table initialization and resizing control.  When negative, the
765 >     * table is being initialized or resized: -1 for initialization,
766 >     * else -(1 + the number of active resizing threads).  Otherwise,
767 >     * when table is null, holds the initial table size to use upon
768 >     * creation, or 0 for default. After initialization, holds the
769 >     * next element count value upon which to resize the table.
770 >     */
771 >    private transient volatile int sizeCtl;
772 >
773 >    /**
774 >     * The next table index (plus one) to split while resizing.
775 >     */
776 >    private transient volatile int transferIndex;
777 >
778 >    /**
779 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780 >     */
781 >    private transient volatile int cellsBusy;
782 >
783 >    /**
784 >     * Table of counter cells. When non-null, size is a power of 2.
785 >     */
786 >    private transient volatile CounterCell[] counterCells;
787 >
788 >    // views
789 >    private transient KeySetView<K,V> keySet;
790 >    private transient ValuesView<K,V> values;
791 >    private transient EntrySetView<K,V> entrySet;
792 >
793 >
794 >    /* ---------------- Public operations -------------- */
795 >
796 >    /**
797 >     * Creates a new, empty map with the default initial table size (16).
798 >     */
799 >    public ConcurrentHashMap() {
800 >    }
801 >
802 >    /**
803 >     * Creates a new, empty map with an initial table size
804 >     * accommodating the specified number of elements without the need
805 >     * to dynamically resize.
806 >     *
807 >     * @param initialCapacity The implementation performs internal
808 >     * sizing to accommodate this many elements.
809 >     * @throws IllegalArgumentException if the initial capacity of
810 >     * elements is negative
811 >     */
812 >    public ConcurrentHashMap(int initialCapacity) {
813 >        this(initialCapacity, LOAD_FACTOR, 1);
814 >    }
815 >
816 >    /**
817 >     * Creates a new map with the same mappings as the given map.
818 >     *
819 >     * @param m the map
820 >     */
821 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 >        this.sizeCtl = DEFAULT_CAPACITY;
823 >        putAll(m);
824 >    }
825 >
826 >    /**
827 >     * Creates a new, empty map with an initial table size based on
828 >     * the given number of elements ({@code initialCapacity}) and
829 >     * initial table density ({@code loadFactor}).
830 >     *
831 >     * @param initialCapacity the initial capacity. The implementation
832 >     * performs internal sizing to accommodate this many elements,
833 >     * given the specified load factor.
834 >     * @param loadFactor the load factor (table density) for
835 >     * establishing the initial table size
836 >     * @throws IllegalArgumentException if the initial capacity of
837 >     * elements is negative or the load factor is nonpositive
838 >     *
839 >     * @since 1.6
840 >     */
841 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 >        this(initialCapacity, loadFactor, 1);
843 >    }
844 >
845 >    /**
846 >     * Creates a new, empty map with an initial table size based on
847 >     * the given number of elements ({@code initialCapacity}), initial
848 >     * table density ({@code loadFactor}), and number of concurrently
849 >     * updating threads ({@code concurrencyLevel}).
850 >     *
851 >     * @param initialCapacity the initial capacity. The implementation
852 >     * performs internal sizing to accommodate this many elements,
853 >     * given the specified load factor.
854 >     * @param loadFactor the load factor (table density) for
855 >     * establishing the initial table size
856 >     * @param concurrencyLevel the estimated number of concurrently
857 >     * updating threads. The implementation may use this value as
858 >     * a sizing hint.
859 >     * @throws IllegalArgumentException if the initial capacity is
860 >     * negative or the load factor or concurrencyLevel are
861 >     * nonpositive
862 >     */
863 >    public ConcurrentHashMap(int initialCapacity,
864 >                             float loadFactor, int concurrencyLevel) {
865 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 >            throw new IllegalArgumentException();
867 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
868 >            initialCapacity = concurrencyLevel;   // as estimated threads
869 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 >        this.sizeCtl = cap;
873 >    }
874 >
875 >    // Original (since JDK1.2) Map methods
876 >
877 >    /**
878 >     * {@inheritDoc}
879 >     */
880 >    public int size() {
881 >        long n = sumCount();
882 >        return ((n < 0L) ? 0 :
883 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 >                (int)n);
885 >    }
886 >
887 >    /**
888 >     * {@inheritDoc}
889 >     */
890 >    public boolean isEmpty() {
891 >        return sumCount() <= 0L; // ignore transient negative values
892 >    }
893 >
894 >    /**
895 >     * Returns the value to which the specified key is mapped,
896 >     * or {@code null} if this map contains no mapping for the key.
897 >     *
898 >     * <p>More formally, if this map contains a mapping from a key
899 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 >     * then this method returns {@code v}; otherwise it returns
901 >     * {@code null}.  (There can be at most one such mapping.)
902 >     *
903 >     * @throws NullPointerException if the specified key is null
904 >     */
905 >    public V get(Object key) {
906 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 >        int h = spread(key.hashCode());
908 >        if ((tab = table) != null && (n = tab.length) > 0 &&
909 >            (e = tabAt(tab, (n - 1) & h)) != null) {
910 >            if ((eh = e.hash) == h) {
911 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 >                    return e.val;
913 >            }
914 >            else if (eh < 0)
915 >                return (p = e.find(h, key)) != null ? p.val : null;
916 >            while ((e = e.next) != null) {
917 >                if (e.hash == h &&
918 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 >                    return e.val;
920 >            }
921          }
922 +        return null;
923 +    }
924  
925 <        /**
926 <         * Read value field of an entry under lock. Called if value
927 <         * field ever appears to be null. This is possible only if a
928 <         * compiler happens to reorder a HashEntry initialization with
929 <         * its table assignment, which is legal under memory model
930 <         * but is not known to ever occur.
931 <         */
932 <        V readValueUnderLock(HashEntry<K,V> e) {
933 <            lock();
934 <            try {
935 <                return e.value;
936 <            } finally {
937 <                unlock();
925 >    /**
926 >     * Tests if the specified object is a key in this table.
927 >     *
928 >     * @param  key possible key
929 >     * @return {@code true} if and only if the specified object
930 >     *         is a key in this table, as determined by the
931 >     *         {@code equals} method; {@code false} otherwise
932 >     * @throws NullPointerException if the specified key is null
933 >     */
934 >    public boolean containsKey(Object key) {
935 >        return get(key) != null;
936 >    }
937 >
938 >    /**
939 >     * Returns {@code true} if this map maps one or more keys to the
940 >     * specified value. Note: This method may require a full traversal
941 >     * of the map, and is much slower than method {@code containsKey}.
942 >     *
943 >     * @param value value whose presence in this map is to be tested
944 >     * @return {@code true} if this map maps one or more keys to the
945 >     *         specified value
946 >     * @throws NullPointerException if the specified value is null
947 >     */
948 >    public boolean containsValue(Object value) {
949 >        if (value == null)
950 >            throw new NullPointerException();
951 >        Node<K,V>[] t;
952 >        if ((t = table) != null) {
953 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
955 >                V v;
956 >                if ((v = p.val) == value || (v != null && value.equals(v)))
957 >                    return true;
958              }
959          }
960 +        return false;
961 +    }
962  
963 <        /* Specialized implementations of map methods */
963 >    /**
964 >     * Maps the specified key to the specified value in this table.
965 >     * Neither the key nor the value can be null.
966 >     *
967 >     * <p>The value can be retrieved by calling the {@code get} method
968 >     * with a key that is equal to the original key.
969 >     *
970 >     * @param key key with which the specified value is to be associated
971 >     * @param value value to be associated with the specified key
972 >     * @return the previous value associated with {@code key}, or
973 >     *         {@code null} if there was no mapping for {@code key}
974 >     * @throws NullPointerException if the specified key or value is null
975 >     */
976 >    public V put(K key, V value) {
977 >        return putVal(key, value, false);
978 >    }
979  
980 <        V get(Object key, int hash) {
981 <            if (count != 0) { // read-volatile
982 <                HashEntry<K,V> e = getFirst(hash);
983 <                while (e != null) {
984 <                    if (e.hash == hash && key.equals(e.key)) {
985 <                        V v = e.value;
986 <                        if (v != null)
987 <                            return v;
988 <                        return readValueUnderLock(e); // recheck
980 >    /** Implementation for put and putIfAbsent */
981 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
982 >        if (key == null || value == null) throw new NullPointerException();
983 >        int hash = spread(key.hashCode());
984 >        int binCount = 0;
985 >        for (Node<K,V>[] tab = table;;) {
986 >            Node<K,V> f; int n, i, fh; K fk; V fv;
987 >            if (tab == null || (n = tab.length) == 0)
988 >                tab = initTable();
989 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 >                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 >                    break;                   // no lock when adding to empty bin
992 >            }
993 >            else if ((fh = f.hash) == MOVED)
994 >                tab = helpTransfer(tab, f);
995 >            else if (onlyIfAbsent // check first node without acquiring lock
996 >                     && fh == hash
997 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998 >                     && (fv = f.val) != null)
999 >                return fv;
1000 >            else {
1001 >                V oldVal = null;
1002 >                synchronized (f) {
1003 >                    if (tabAt(tab, i) == f) {
1004 >                        if (fh >= 0) {
1005 >                            binCount = 1;
1006 >                            for (Node<K,V> e = f;; ++binCount) {
1007 >                                K ek;
1008 >                                if (e.hash == hash &&
1009 >                                    ((ek = e.key) == key ||
1010 >                                     (ek != null && key.equals(ek)))) {
1011 >                                    oldVal = e.val;
1012 >                                    if (!onlyIfAbsent)
1013 >                                        e.val = value;
1014 >                                    break;
1015 >                                }
1016 >                                Node<K,V> pred = e;
1017 >                                if ((e = e.next) == null) {
1018 >                                    pred.next = new Node<K,V>(hash, key, value);
1019 >                                    break;
1020 >                                }
1021 >                            }
1022 >                        }
1023 >                        else if (f instanceof TreeBin) {
1024 >                            Node<K,V> p;
1025 >                            binCount = 2;
1026 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027 >                                                           value)) != null) {
1028 >                                oldVal = p.val;
1029 >                                if (!onlyIfAbsent)
1030 >                                    p.val = value;
1031 >                            }
1032 >                        }
1033 >                        else if (f instanceof ReservationNode)
1034 >                            throw new IllegalStateException("Recursive update");
1035                      }
1036 <                    e = e.next;
1036 >                }
1037 >                if (binCount != 0) {
1038 >                    if (binCount >= TREEIFY_THRESHOLD)
1039 >                        treeifyBin(tab, i);
1040 >                    if (oldVal != null)
1041 >                        return oldVal;
1042 >                    break;
1043                  }
1044              }
335            return null;
1045          }
1046 +        addCount(1L, binCount);
1047 +        return null;
1048 +    }
1049  
1050 <        boolean containsKey(Object key, int hash) {
1051 <            if (count != 0) { // read-volatile
1052 <                HashEntry<K,V> e = getFirst(hash);
1053 <                while (e != null) {
1054 <                    if (e.hash == hash && key.equals(e.key))
1055 <                        return true;
1056 <                    e = e.next;
1050 >    /**
1051 >     * Copies all of the mappings from the specified map to this one.
1052 >     * These mappings replace any mappings that this map had for any of the
1053 >     * keys currently in the specified map.
1054 >     *
1055 >     * @param m mappings to be stored in this map
1056 >     */
1057 >    public void putAll(Map<? extends K, ? extends V> m) {
1058 >        tryPresize(m.size());
1059 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060 >            putVal(e.getKey(), e.getValue(), false);
1061 >    }
1062 >
1063 >    /**
1064 >     * Removes the key (and its corresponding value) from this map.
1065 >     * This method does nothing if the key is not in the map.
1066 >     *
1067 >     * @param  key the key that needs to be removed
1068 >     * @return the previous value associated with {@code key}, or
1069 >     *         {@code null} if there was no mapping for {@code key}
1070 >     * @throws NullPointerException if the specified key is null
1071 >     */
1072 >    public V remove(Object key) {
1073 >        return replaceNode(key, null, null);
1074 >    }
1075 >
1076 >    /**
1077 >     * Implementation for the four public remove/replace methods:
1078 >     * Replaces node value with v, conditional upon match of cv if
1079 >     * non-null.  If resulting value is null, delete.
1080 >     */
1081 >    final V replaceNode(Object key, V value, Object cv) {
1082 >        int hash = spread(key.hashCode());
1083 >        for (Node<K,V>[] tab = table;;) {
1084 >            Node<K,V> f; int n, i, fh;
1085 >            if (tab == null || (n = tab.length) == 0 ||
1086 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087 >                break;
1088 >            else if ((fh = f.hash) == MOVED)
1089 >                tab = helpTransfer(tab, f);
1090 >            else {
1091 >                V oldVal = null;
1092 >                boolean validated = false;
1093 >                synchronized (f) {
1094 >                    if (tabAt(tab, i) == f) {
1095 >                        if (fh >= 0) {
1096 >                            validated = true;
1097 >                            for (Node<K,V> e = f, pred = null;;) {
1098 >                                K ek;
1099 >                                if (e.hash == hash &&
1100 >                                    ((ek = e.key) == key ||
1101 >                                     (ek != null && key.equals(ek)))) {
1102 >                                    V ev = e.val;
1103 >                                    if (cv == null || cv == ev ||
1104 >                                        (ev != null && cv.equals(ev))) {
1105 >                                        oldVal = ev;
1106 >                                        if (value != null)
1107 >                                            e.val = value;
1108 >                                        else if (pred != null)
1109 >                                            pred.next = e.next;
1110 >                                        else
1111 >                                            setTabAt(tab, i, e.next);
1112 >                                    }
1113 >                                    break;
1114 >                                }
1115 >                                pred = e;
1116 >                                if ((e = e.next) == null)
1117 >                                    break;
1118 >                            }
1119 >                        }
1120 >                        else if (f instanceof TreeBin) {
1121 >                            validated = true;
1122 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1123 >                            TreeNode<K,V> r, p;
1124 >                            if ((r = t.root) != null &&
1125 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1126 >                                V pv = p.val;
1127 >                                if (cv == null || cv == pv ||
1128 >                                    (pv != null && cv.equals(pv))) {
1129 >                                    oldVal = pv;
1130 >                                    if (value != null)
1131 >                                        p.val = value;
1132 >                                    else if (t.removeTreeNode(p))
1133 >                                        setTabAt(tab, i, untreeify(t.first));
1134 >                                }
1135 >                            }
1136 >                        }
1137 >                        else if (f instanceof ReservationNode)
1138 >                            throw new IllegalStateException("Recursive update");
1139 >                    }
1140 >                }
1141 >                if (validated) {
1142 >                    if (oldVal != null) {
1143 >                        if (value == null)
1144 >                            addCount(-1L, -1);
1145 >                        return oldVal;
1146 >                    }
1147 >                    break;
1148                  }
1149              }
347            return false;
1150          }
1151 +        return null;
1152 +    }
1153  
1154 <        boolean containsValue(Object value) {
1155 <            if (count != 0) { // read-volatile
1156 <                HashEntry[] tab = table;
1157 <                int len = tab.length;
1158 <                for (int i = 0 ; i < len; i++) {
1159 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i];
1160 <                         e != null ;
1161 <                         e = e.next) {
1162 <                        V v = e.value;
1163 <                        if (v == null) // recheck
1164 <                            v = readValueUnderLock(e);
1165 <                        if (value.equals(v))
1166 <                            return true;
1154 >    /**
1155 >     * Removes all of the mappings from this map.
1156 >     */
1157 >    public void clear() {
1158 >        long delta = 0L; // negative number of deletions
1159 >        int i = 0;
1160 >        Node<K,V>[] tab = table;
1161 >        while (tab != null && i < tab.length) {
1162 >            int fh;
1163 >            Node<K,V> f = tabAt(tab, i);
1164 >            if (f == null)
1165 >                ++i;
1166 >            else if ((fh = f.hash) == MOVED) {
1167 >                tab = helpTransfer(tab, f);
1168 >                i = 0; // restart
1169 >            }
1170 >            else {
1171 >                synchronized (f) {
1172 >                    if (tabAt(tab, i) == f) {
1173 >                        Node<K,V> p = (fh >= 0 ? f :
1174 >                                       (f instanceof TreeBin) ?
1175 >                                       ((TreeBin<K,V>)f).first : null);
1176 >                        while (p != null) {
1177 >                            --delta;
1178 >                            p = p.next;
1179 >                        }
1180 >                        setTabAt(tab, i++, null);
1181                      }
1182                  }
1183              }
366            return false;
1184          }
1185 +        if (delta != 0L)
1186 +            addCount(delta, -1);
1187 +    }
1188  
1189 <        boolean replace(K key, int hash, V oldValue, V newValue) {
1190 <            lock();
1191 <            try {
1192 <                HashEntry<K,V> e = getFirst(hash);
1193 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1194 <                    e = e.next;
1195 <
1196 <                boolean replaced = false;
1197 <                if (e != null && oldValue.equals(e.value)) {
1198 <                    replaced = true;
1199 <                    e.value = newValue;
1200 <                }
1201 <                return replaced;
1202 <            } finally {
1203 <                unlock();
1189 >    /**
1190 >     * Returns a {@link Set} view of the keys contained in this map.
1191 >     * The set is backed by the map, so changes to the map are
1192 >     * reflected in the set, and vice-versa. The set supports element
1193 >     * removal, which removes the corresponding mapping from this map,
1194 >     * via the {@code Iterator.remove}, {@code Set.remove},
1195 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1196 >     * operations.  It does not support the {@code add} or
1197 >     * {@code addAll} operations.
1198 >     *
1199 >     * <p>The view's iterators and spliterators are
1200 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 >     *
1202 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204 >     *
1205 >     * @return the set view
1206 >     */
1207 >    public KeySetView<K,V> keySet() {
1208 >        KeySetView<K,V> ks;
1209 >        if ((ks = keySet) != null) return ks;
1210 >        return keySet = new KeySetView<K,V>(this, null);
1211 >    }
1212 >
1213 >    /**
1214 >     * Returns a {@link Collection} view of the values contained in this map.
1215 >     * The collection is backed by the map, so changes to the map are
1216 >     * reflected in the collection, and vice-versa.  The collection
1217 >     * supports element removal, which removes the corresponding
1218 >     * mapping from this map, via the {@code Iterator.remove},
1219 >     * {@code Collection.remove}, {@code removeAll},
1220 >     * {@code retainAll}, and {@code clear} operations.  It does not
1221 >     * support the {@code add} or {@code addAll} operations.
1222 >     *
1223 >     * <p>The view's iterators and spliterators are
1224 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 >     *
1226 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227 >     * and {@link Spliterator#NONNULL}.
1228 >     *
1229 >     * @return the collection view
1230 >     */
1231 >    public Collection<V> values() {
1232 >        ValuesView<K,V> vs;
1233 >        if ((vs = values) != null) return vs;
1234 >        return values = new ValuesView<K,V>(this);
1235 >    }
1236 >
1237 >    /**
1238 >     * Returns a {@link Set} view of the mappings contained in this map.
1239 >     * The set is backed by the map, so changes to the map are
1240 >     * reflected in the set, and vice-versa.  The set supports element
1241 >     * removal, which removes the corresponding mapping from the map,
1242 >     * via the {@code Iterator.remove}, {@code Set.remove},
1243 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1244 >     * operations.
1245 >     *
1246 >     * <p>The view's iterators and spliterators are
1247 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 >     *
1249 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251 >     *
1252 >     * @return the set view
1253 >     */
1254 >    public Set<Map.Entry<K,V>> entrySet() {
1255 >        EntrySetView<K,V> es;
1256 >        if ((es = entrySet) != null) return es;
1257 >        return entrySet = new EntrySetView<K,V>(this);
1258 >    }
1259 >
1260 >    /**
1261 >     * Returns the hash code value for this {@link Map}, i.e.,
1262 >     * the sum of, for each key-value pair in the map,
1263 >     * {@code key.hashCode() ^ value.hashCode()}.
1264 >     *
1265 >     * @return the hash code value for this map
1266 >     */
1267 >    public int hashCode() {
1268 >        int h = 0;
1269 >        Node<K,V>[] t;
1270 >        if ((t = table) != null) {
1271 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 >            for (Node<K,V> p; (p = it.advance()) != null; )
1273 >                h += p.key.hashCode() ^ p.val.hashCode();
1274 >        }
1275 >        return h;
1276 >    }
1277 >
1278 >    /**
1279 >     * Returns a string representation of this map.  The string
1280 >     * representation consists of a list of key-value mappings (in no
1281 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1282 >     * mappings are separated by the characters {@code ", "} (comma
1283 >     * and space).  Each key-value mapping is rendered as the key
1284 >     * followed by an equals sign ("{@code =}") followed by the
1285 >     * associated value.
1286 >     *
1287 >     * @return a string representation of this map
1288 >     */
1289 >    public String toString() {
1290 >        Node<K,V>[] t;
1291 >        int f = (t = table) == null ? 0 : t.length;
1292 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 >        StringBuilder sb = new StringBuilder();
1294 >        sb.append('{');
1295 >        Node<K,V> p;
1296 >        if ((p = it.advance()) != null) {
1297 >            for (;;) {
1298 >                K k = p.key;
1299 >                V v = p.val;
1300 >                sb.append(k == this ? "(this Map)" : k);
1301 >                sb.append('=');
1302 >                sb.append(v == this ? "(this Map)" : v);
1303 >                if ((p = it.advance()) == null)
1304 >                    break;
1305 >                sb.append(',').append(' ');
1306              }
1307          }
1308 +        return sb.append('}').toString();
1309 +    }
1310  
1311 <        V replace(K key, int hash, V newValue) {
1312 <            lock();
1313 <            try {
1314 <                HashEntry<K,V> e = getFirst(hash);
1315 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1316 <                    e = e.next;
1317 <
1318 <                V oldValue = null;
1319 <                if (e != null) {
1320 <                    oldValue = e.value;
1321 <                    e.value = newValue;
1322 <                }
1323 <                return oldValue;
1324 <            } finally {
1325 <                unlock();
1311 >    /**
1312 >     * Compares the specified object with this map for equality.
1313 >     * Returns {@code true} if the given object is a map with the same
1314 >     * mappings as this map.  This operation may return misleading
1315 >     * results if either map is concurrently modified during execution
1316 >     * of this method.
1317 >     *
1318 >     * @param o object to be compared for equality with this map
1319 >     * @return {@code true} if the specified object is equal to this map
1320 >     */
1321 >    public boolean equals(Object o) {
1322 >        if (o != this) {
1323 >            if (!(o instanceof Map))
1324 >                return false;
1325 >            Map<?,?> m = (Map<?,?>) o;
1326 >            Node<K,V>[] t;
1327 >            int f = (t = table) == null ? 0 : t.length;
1328 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 >                V val = p.val;
1331 >                Object v = m.get(p.key);
1332 >                if (v == null || (v != val && !v.equals(val)))
1333 >                    return false;
1334 >            }
1335 >            for (Map.Entry<?,?> e : m.entrySet()) {
1336 >                Object mk, mv, v;
1337 >                if ((mk = e.getKey()) == null ||
1338 >                    (mv = e.getValue()) == null ||
1339 >                    (v = get(mk)) == null ||
1340 >                    (mv != v && !mv.equals(v)))
1341 >                    return false;
1342              }
1343          }
1344 +        return true;
1345 +    }
1346  
1347 +    /**
1348 +     * Stripped-down version of helper class used in previous version,
1349 +     * declared for the sake of serialization compatibility.
1350 +     */
1351 +    static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 +        private static final long serialVersionUID = 2249069246763182397L;
1353 +        final float loadFactor;
1354 +        Segment(float lf) { this.loadFactor = lf; }
1355 +    }
1356  
1357 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
1358 <            lock();
1359 <            try {
1360 <                int c = count;
1361 <                if (c++ > threshold) // ensure capacity
1362 <                    rehash();
1363 <                HashEntry[] tab = table;
1364 <                int index = hash & (tab.length - 1);
1365 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
1366 <                HashEntry<K,V> e = first;
1367 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1368 <                    e = e.next;
1369 <
1370 <                V oldValue;
1371 <                if (e != null) {
1372 <                    oldValue = e.value;
1373 <                    if (!onlyIfAbsent)
1374 <                        e.value = value;
1375 <                }
1357 >    /**
1358 >     * Saves this map to a stream (that is, serializes it).
1359 >     *
1360 >     * @param s the stream
1361 >     * @throws java.io.IOException if an I/O error occurs
1362 >     * @serialData
1363 >     * the serialized fields, followed by the key (Object) and value
1364 >     * (Object) for each key-value mapping, followed by a null pair.
1365 >     * The key-value mappings are emitted in no particular order.
1366 >     */
1367 >    private void writeObject(java.io.ObjectOutputStream s)
1368 >        throws java.io.IOException {
1369 >        // For serialization compatibility
1370 >        // Emulate segment calculation from previous version of this class
1371 >        int sshift = 0;
1372 >        int ssize = 1;
1373 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374 >            ++sshift;
1375 >            ssize <<= 1;
1376 >        }
1377 >        int segmentShift = 32 - sshift;
1378 >        int segmentMask = ssize - 1;
1379 >        @SuppressWarnings("unchecked")
1380 >        Segment<K,V>[] segments = (Segment<K,V>[])
1381 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382 >        for (int i = 0; i < segments.length; ++i)
1383 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385 >        streamFields.put("segments", segments);
1386 >        streamFields.put("segmentShift", segmentShift);
1387 >        streamFields.put("segmentMask", segmentMask);
1388 >        s.writeFields();
1389 >
1390 >        Node<K,V>[] t;
1391 >        if ((t = table) != null) {
1392 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1394 >                s.writeObject(p.key);
1395 >                s.writeObject(p.val);
1396 >            }
1397 >        }
1398 >        s.writeObject(null);
1399 >        s.writeObject(null);
1400 >    }
1401 >
1402 >    /**
1403 >     * Reconstitutes this map from a stream (that is, deserializes it).
1404 >     * @param s the stream
1405 >     * @throws ClassNotFoundException if the class of a serialized object
1406 >     *         could not be found
1407 >     * @throws java.io.IOException if an I/O error occurs
1408 >     */
1409 >    private void readObject(java.io.ObjectInputStream s)
1410 >        throws java.io.IOException, ClassNotFoundException {
1411 >        /*
1412 >         * To improve performance in typical cases, we create nodes
1413 >         * while reading, then place in table once size is known.
1414 >         * However, we must also validate uniqueness and deal with
1415 >         * overpopulated bins while doing so, which requires
1416 >         * specialized versions of putVal mechanics.
1417 >         */
1418 >        sizeCtl = -1; // force exclusion for table construction
1419 >        s.defaultReadObject();
1420 >        long size = 0L;
1421 >        Node<K,V> p = null;
1422 >        for (;;) {
1423 >            @SuppressWarnings("unchecked")
1424 >            K k = (K) s.readObject();
1425 >            @SuppressWarnings("unchecked")
1426 >            V v = (V) s.readObject();
1427 >            if (k != null && v != null) {
1428 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429 >                ++size;
1430 >            }
1431 >            else
1432 >                break;
1433 >        }
1434 >        if (size == 0L)
1435 >            sizeCtl = 0;
1436 >        else {
1437 >            long ts = (long)(1.0 + size / LOAD_FACTOR);
1438 >            int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439 >                MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 >            @SuppressWarnings("unchecked")
1441 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 >            int mask = n - 1;
1443 >            long added = 0L;
1444 >            while (p != null) {
1445 >                boolean insertAtFront;
1446 >                Node<K,V> next = p.next, first;
1447 >                int h = p.hash, j = h & mask;
1448 >                if ((first = tabAt(tab, j)) == null)
1449 >                    insertAtFront = true;
1450                  else {
1451 <                    oldValue = null;
1452 <                    ++modCount;
1453 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
1454 <                    count = c; // write-volatile
1451 >                    K k = p.key;
1452 >                    if (first.hash < 0) {
1453 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1454 >                        if (t.putTreeVal(h, k, p.val) == null)
1455 >                            ++added;
1456 >                        insertAtFront = false;
1457 >                    }
1458 >                    else {
1459 >                        int binCount = 0;
1460 >                        insertAtFront = true;
1461 >                        Node<K,V> q; K qk;
1462 >                        for (q = first; q != null; q = q.next) {
1463 >                            if (q.hash == h &&
1464 >                                ((qk = q.key) == k ||
1465 >                                 (qk != null && k.equals(qk)))) {
1466 >                                insertAtFront = false;
1467 >                                break;
1468 >                            }
1469 >                            ++binCount;
1470 >                        }
1471 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472 >                            insertAtFront = false;
1473 >                            ++added;
1474 >                            p.next = first;
1475 >                            TreeNode<K,V> hd = null, tl = null;
1476 >                            for (q = p; q != null; q = q.next) {
1477 >                                TreeNode<K,V> t = new TreeNode<K,V>
1478 >                                    (q.hash, q.key, q.val, null, null);
1479 >                                if ((t.prev = tl) == null)
1480 >                                    hd = t;
1481 >                                else
1482 >                                    tl.next = t;
1483 >                                tl = t;
1484 >                            }
1485 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1486 >                        }
1487 >                    }
1488                  }
1489 <                return oldValue;
1490 <            } finally {
1491 <                unlock();
1489 >                if (insertAtFront) {
1490 >                    ++added;
1491 >                    p.next = first;
1492 >                    setTabAt(tab, j, p);
1493 >                }
1494 >                p = next;
1495              }
1496 +            table = tab;
1497 +            sizeCtl = n - (n >>> 2);
1498 +            baseCount = added;
1499          }
1500 +    }
1501  
1502 <        void rehash() {
438 <            HashEntry[] oldTable = table;            
439 <            int oldCapacity = oldTable.length;
440 <            if (oldCapacity >= MAXIMUM_CAPACITY)
441 <                return;
1502 >    // ConcurrentMap methods
1503  
1504 <            /*
1505 <             * Reclassify nodes in each list to new Map.  Because we are
1506 <             * using power-of-two expansion, the elements from each bin
1507 <             * must either stay at same index, or move with a power of two
1508 <             * offset. We eliminate unnecessary node creation by catching
1509 <             * cases where old nodes can be reused because their next
1510 <             * fields won't change. Statistically, at the default
1511 <             * threshold, only about one-sixth of them need cloning when
1512 <             * a table doubles. The nodes they replace will be garbage
1513 <             * collectable as soon as they are no longer referenced by any
453 <             * reader thread that may be in the midst of traversing table
454 <             * right now.
455 <             */
456 <
457 <            HashEntry[] newTable = new HashEntry[oldCapacity << 1];
458 <            threshold = (int)(newTable.length * loadFactor);
459 <            int sizeMask = newTable.length - 1;
460 <            for (int i = 0; i < oldCapacity ; i++) {
461 <                // We need to guarantee that any existing reads of old Map can
462 <                //  proceed. So we cannot yet null out each bin.
463 <                HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
464 <
465 <                if (e != null) {
466 <                    HashEntry<K,V> next = e.next;
467 <                    int idx = e.hash & sizeMask;
468 <
469 <                    //  Single node on list
470 <                    if (next == null)
471 <                        newTable[idx] = e;
1504 >    /**
1505 >     * {@inheritDoc}
1506 >     *
1507 >     * @return the previous value associated with the specified key,
1508 >     *         or {@code null} if there was no mapping for the key
1509 >     * @throws NullPointerException if the specified key or value is null
1510 >     */
1511 >    public V putIfAbsent(K key, V value) {
1512 >        return putVal(key, value, true);
1513 >    }
1514  
1515 <                    else {
1516 <                        // Reuse trailing consecutive sequence at same slot
1517 <                        HashEntry<K,V> lastRun = e;
1518 <                        int lastIdx = idx;
1519 <                        for (HashEntry<K,V> last = next;
1520 <                             last != null;
1521 <                             last = last.next) {
1522 <                            int k = last.hash & sizeMask;
1523 <                            if (k != lastIdx) {
1524 <                                lastIdx = k;
1525 <                                lastRun = last;
1515 >    /**
1516 >     * {@inheritDoc}
1517 >     *
1518 >     * @throws NullPointerException if the specified key is null
1519 >     */
1520 >    public boolean remove(Object key, Object value) {
1521 >        if (key == null)
1522 >            throw new NullPointerException();
1523 >        return value != null && replaceNode(key, null, value) != null;
1524 >    }
1525 >
1526 >    /**
1527 >     * {@inheritDoc}
1528 >     *
1529 >     * @throws NullPointerException if any of the arguments are null
1530 >     */
1531 >    public boolean replace(K key, V oldValue, V newValue) {
1532 >        if (key == null || oldValue == null || newValue == null)
1533 >            throw new NullPointerException();
1534 >        return replaceNode(key, newValue, oldValue) != null;
1535 >    }
1536 >
1537 >    /**
1538 >     * {@inheritDoc}
1539 >     *
1540 >     * @return the previous value associated with the specified key,
1541 >     *         or {@code null} if there was no mapping for the key
1542 >     * @throws NullPointerException if the specified key or value is null
1543 >     */
1544 >    public V replace(K key, V value) {
1545 >        if (key == null || value == null)
1546 >            throw new NullPointerException();
1547 >        return replaceNode(key, value, null);
1548 >    }
1549 >
1550 >    // Overrides of JDK8+ Map extension method defaults
1551 >
1552 >    /**
1553 >     * Returns the value to which the specified key is mapped, or the
1554 >     * given default value if this map contains no mapping for the
1555 >     * key.
1556 >     *
1557 >     * @param key the key whose associated value is to be returned
1558 >     * @param defaultValue the value to return if this map contains
1559 >     * no mapping for the given key
1560 >     * @return the mapping for the key, if present; else the default value
1561 >     * @throws NullPointerException if the specified key is null
1562 >     */
1563 >    public V getOrDefault(Object key, V defaultValue) {
1564 >        V v;
1565 >        return (v = get(key)) == null ? defaultValue : v;
1566 >    }
1567 >
1568 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1569 >        if (action == null) throw new NullPointerException();
1570 >        Node<K,V>[] t;
1571 >        if ((t = table) != null) {
1572 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1574 >                action.accept(p.key, p.val);
1575 >            }
1576 >        }
1577 >    }
1578 >
1579 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580 >        if (function == null) throw new NullPointerException();
1581 >        Node<K,V>[] t;
1582 >        if ((t = table) != null) {
1583 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 >                V oldValue = p.val;
1586 >                for (K key = p.key;;) {
1587 >                    V newValue = function.apply(key, oldValue);
1588 >                    if (newValue == null)
1589 >                        throw new NullPointerException();
1590 >                    if (replaceNode(key, newValue, oldValue) != null ||
1591 >                        (oldValue = get(key)) == null)
1592 >                        break;
1593 >                }
1594 >            }
1595 >        }
1596 >    }
1597 >
1598 >    /**
1599 >     * Helper method for EntrySetView.removeIf.
1600 >     */
1601 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 >        if (function == null) throw new NullPointerException();
1603 >        Node<K,V>[] t;
1604 >        boolean removed = false;
1605 >        if ((t = table) != null) {
1606 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1608 >                K k = p.key;
1609 >                V v = p.val;
1610 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611 >                if (function.test(e) && replaceNode(k, null, v) != null)
1612 >                    removed = true;
1613 >            }
1614 >        }
1615 >        return removed;
1616 >    }
1617 >
1618 >    /**
1619 >     * Helper method for ValuesView.removeIf.
1620 >     */
1621 >    boolean removeValueIf(Predicate<? super V> function) {
1622 >        if (function == null) throw new NullPointerException();
1623 >        Node<K,V>[] t;
1624 >        boolean removed = false;
1625 >        if ((t = table) != null) {
1626 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1628 >                K k = p.key;
1629 >                V v = p.val;
1630 >                if (function.test(v) && replaceNode(k, null, v) != null)
1631 >                    removed = true;
1632 >            }
1633 >        }
1634 >        return removed;
1635 >    }
1636 >
1637 >    /**
1638 >     * If the specified key is not already associated with a value,
1639 >     * attempts to compute its value using the given mapping function
1640 >     * and enters it into this map unless {@code null}.  The entire
1641 >     * method invocation is performed atomically, so the function is
1642 >     * applied at most once per key.  Some attempted update operations
1643 >     * on this map by other threads may be blocked while computation
1644 >     * is in progress, so the computation should be short and simple,
1645 >     * and must not attempt to update any other mappings of this map.
1646 >     *
1647 >     * @param key key with which the specified value is to be associated
1648 >     * @param mappingFunction the function to compute a value
1649 >     * @return the current (existing or computed) value associated with
1650 >     *         the specified key, or null if the computed value is null
1651 >     * @throws NullPointerException if the specified key or mappingFunction
1652 >     *         is null
1653 >     * @throws IllegalStateException if the computation detectably
1654 >     *         attempts a recursive update to this map that would
1655 >     *         otherwise never complete
1656 >     * @throws RuntimeException or Error if the mappingFunction does so,
1657 >     *         in which case the mapping is left unestablished
1658 >     */
1659 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1660 >        if (key == null || mappingFunction == null)
1661 >            throw new NullPointerException();
1662 >        int h = spread(key.hashCode());
1663 >        V val = null;
1664 >        int binCount = 0;
1665 >        for (Node<K,V>[] tab = table;;) {
1666 >            Node<K,V> f; int n, i, fh; K fk; V fv;
1667 >            if (tab == null || (n = tab.length) == 0)
1668 >                tab = initTable();
1669 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1670 >                Node<K,V> r = new ReservationNode<K,V>();
1671 >                synchronized (r) {
1672 >                    if (casTabAt(tab, i, null, r)) {
1673 >                        binCount = 1;
1674 >                        Node<K,V> node = null;
1675 >                        try {
1676 >                            if ((val = mappingFunction.apply(key)) != null)
1677 >                                node = new Node<K,V>(h, key, val);
1678 >                        } finally {
1679 >                            setTabAt(tab, i, node);
1680 >                        }
1681 >                    }
1682 >                }
1683 >                if (binCount != 0)
1684 >                    break;
1685 >            }
1686 >            else if ((fh = f.hash) == MOVED)
1687 >                tab = helpTransfer(tab, f);
1688 >            else if (fh == h    // check first node without acquiring lock
1689 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1690 >                     && (fv = f.val) != null)
1691 >                return fv;
1692 >            else {
1693 >                boolean added = false;
1694 >                synchronized (f) {
1695 >                    if (tabAt(tab, i) == f) {
1696 >                        if (fh >= 0) {
1697 >                            binCount = 1;
1698 >                            for (Node<K,V> e = f;; ++binCount) {
1699 >                                K ek;
1700 >                                if (e.hash == h &&
1701 >                                    ((ek = e.key) == key ||
1702 >                                     (ek != null && key.equals(ek)))) {
1703 >                                    val = e.val;
1704 >                                    break;
1705 >                                }
1706 >                                Node<K,V> pred = e;
1707 >                                if ((e = e.next) == null) {
1708 >                                    if ((val = mappingFunction.apply(key)) != null) {
1709 >                                        if (pred.next != null)
1710 >                                            throw new IllegalStateException("Recursive update");
1711 >                                        added = true;
1712 >                                        pred.next = new Node<K,V>(h, key, val);
1713 >                                    }
1714 >                                    break;
1715 >                                }
1716 >                            }
1717 >                        }
1718 >                        else if (f instanceof TreeBin) {
1719 >                            binCount = 2;
1720 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1721 >                            TreeNode<K,V> r, p;
1722 >                            if ((r = t.root) != null &&
1723 >                                (p = r.findTreeNode(h, key, null)) != null)
1724 >                                val = p.val;
1725 >                            else if ((val = mappingFunction.apply(key)) != null) {
1726 >                                added = true;
1727 >                                t.putTreeVal(h, key, val);
1728                              }
1729                          }
1730 <                        newTable[lastIdx] = lastRun;
1730 >                        else if (f instanceof ReservationNode)
1731 >                            throw new IllegalStateException("Recursive update");
1732 >                    }
1733 >                }
1734 >                if (binCount != 0) {
1735 >                    if (binCount >= TREEIFY_THRESHOLD)
1736 >                        treeifyBin(tab, i);
1737 >                    if (!added)
1738 >                        return val;
1739 >                    break;
1740 >                }
1741 >            }
1742 >        }
1743 >        if (val != null)
1744 >            addCount(1L, binCount);
1745 >        return val;
1746 >    }
1747  
1748 <                        // Clone all remaining nodes
1749 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1750 <                            int k = p.hash & sizeMask;
1751 <                            HashEntry<K,V> n = (HashEntry<K,V>)newTable[k];
1752 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
1753 <                                                             n, p.value);
1748 >    /**
1749 >     * If the value for the specified key is present, attempts to
1750 >     * compute a new mapping given the key and its current mapped
1751 >     * value.  The entire method invocation is performed atomically.
1752 >     * Some attempted update operations on this map by other threads
1753 >     * may be blocked while computation is in progress, so the
1754 >     * computation should be short and simple, and must not attempt to
1755 >     * update any other mappings of this map.
1756 >     *
1757 >     * @param key key with which a value may be associated
1758 >     * @param remappingFunction the function to compute a value
1759 >     * @return the new value associated with the specified key, or null if none
1760 >     * @throws NullPointerException if the specified key or remappingFunction
1761 >     *         is null
1762 >     * @throws IllegalStateException if the computation detectably
1763 >     *         attempts a recursive update to this map that would
1764 >     *         otherwise never complete
1765 >     * @throws RuntimeException or Error if the remappingFunction does so,
1766 >     *         in which case the mapping is unchanged
1767 >     */
1768 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1769 >        if (key == null || remappingFunction == null)
1770 >            throw new NullPointerException();
1771 >        int h = spread(key.hashCode());
1772 >        V val = null;
1773 >        int delta = 0;
1774 >        int binCount = 0;
1775 >        for (Node<K,V>[] tab = table;;) {
1776 >            Node<K,V> f; int n, i, fh;
1777 >            if (tab == null || (n = tab.length) == 0)
1778 >                tab = initTable();
1779 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1780 >                break;
1781 >            else if ((fh = f.hash) == MOVED)
1782 >                tab = helpTransfer(tab, f);
1783 >            else {
1784 >                synchronized (f) {
1785 >                    if (tabAt(tab, i) == f) {
1786 >                        if (fh >= 0) {
1787 >                            binCount = 1;
1788 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1789 >                                K ek;
1790 >                                if (e.hash == h &&
1791 >                                    ((ek = e.key) == key ||
1792 >                                     (ek != null && key.equals(ek)))) {
1793 >                                    val = remappingFunction.apply(key, e.val);
1794 >                                    if (val != null)
1795 >                                        e.val = val;
1796 >                                    else {
1797 >                                        delta = -1;
1798 >                                        Node<K,V> en = e.next;
1799 >                                        if (pred != null)
1800 >                                            pred.next = en;
1801 >                                        else
1802 >                                            setTabAt(tab, i, en);
1803 >                                    }
1804 >                                    break;
1805 >                                }
1806 >                                pred = e;
1807 >                                if ((e = e.next) == null)
1808 >                                    break;
1809 >                            }
1810 >                        }
1811 >                        else if (f instanceof TreeBin) {
1812 >                            binCount = 2;
1813 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1814 >                            TreeNode<K,V> r, p;
1815 >                            if ((r = t.root) != null &&
1816 >                                (p = r.findTreeNode(h, key, null)) != null) {
1817 >                                val = remappingFunction.apply(key, p.val);
1818 >                                if (val != null)
1819 >                                    p.val = val;
1820 >                                else {
1821 >                                    delta = -1;
1822 >                                    if (t.removeTreeNode(p))
1823 >                                        setTabAt(tab, i, untreeify(t.first));
1824 >                                }
1825 >                            }
1826                          }
1827 +                        else if (f instanceof ReservationNode)
1828 +                            throw new IllegalStateException("Recursive update");
1829                      }
1830                  }
1831 +                if (binCount != 0)
1832 +                    break;
1833              }
498            table = newTable;
1834          }
1835 +        if (delta != 0)
1836 +            addCount((long)delta, binCount);
1837 +        return val;
1838 +    }
1839  
1840 <        /**
1841 <         * Remove; match on key only if value null, else match both.
1842 <         */
1843 <        V remove(Object key, int hash, Object value) {
1844 <            lock();
1845 <            try {
1846 <                int c = count - 1;
1847 <                HashEntry[] tab = table;
1848 <                int index = hash & (tab.length - 1);
1849 <                HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
1850 <                HashEntry<K,V> e = first;
1851 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1852 <                    e = e.next;
1853 <
1854 <                V oldValue = null;
1855 <                if (e != null) {
1856 <                    V v = e.value;
1857 <                    if (value == null || value.equals(v)) {
1858 <                        oldValue = v;
1859 <                        // All entries following removed node can stay
1860 <                        // in list, but all preceding ones need to be
1861 <                        // cloned.
1862 <                        ++modCount;
1863 <                        HashEntry<K,V> newFirst = e.next;
1864 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
1865 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,  
1866 <                                                          newFirst, p.value);
1867 <                        tab[index] = newFirst;
1868 <                        count = c; // write-volatile
1840 >    /**
1841 >     * Attempts to compute a mapping for the specified key and its
1842 >     * current mapped value (or {@code null} if there is no current
1843 >     * mapping). The entire method invocation is performed atomically.
1844 >     * Some attempted update operations on this map by other threads
1845 >     * may be blocked while computation is in progress, so the
1846 >     * computation should be short and simple, and must not attempt to
1847 >     * update any other mappings of this Map.
1848 >     *
1849 >     * @param key key with which the specified value is to be associated
1850 >     * @param remappingFunction the function to compute a value
1851 >     * @return the new value associated with the specified key, or null if none
1852 >     * @throws NullPointerException if the specified key or remappingFunction
1853 >     *         is null
1854 >     * @throws IllegalStateException if the computation detectably
1855 >     *         attempts a recursive update to this map that would
1856 >     *         otherwise never complete
1857 >     * @throws RuntimeException or Error if the remappingFunction does so,
1858 >     *         in which case the mapping is unchanged
1859 >     */
1860 >    public V compute(K key,
1861 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1862 >        if (key == null || remappingFunction == null)
1863 >            throw new NullPointerException();
1864 >        int h = spread(key.hashCode());
1865 >        V val = null;
1866 >        int delta = 0;
1867 >        int binCount = 0;
1868 >        for (Node<K,V>[] tab = table;;) {
1869 >            Node<K,V> f; int n, i, fh;
1870 >            if (tab == null || (n = tab.length) == 0)
1871 >                tab = initTable();
1872 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1873 >                Node<K,V> r = new ReservationNode<K,V>();
1874 >                synchronized (r) {
1875 >                    if (casTabAt(tab, i, null, r)) {
1876 >                        binCount = 1;
1877 >                        Node<K,V> node = null;
1878 >                        try {
1879 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1880 >                                delta = 1;
1881 >                                node = new Node<K,V>(h, key, val);
1882 >                            }
1883 >                        } finally {
1884 >                            setTabAt(tab, i, node);
1885 >                        }
1886                      }
1887                  }
1888 <                return oldValue;
1889 <            } finally {
1890 <                unlock();
1888 >                if (binCount != 0)
1889 >                    break;
1890 >            }
1891 >            else if ((fh = f.hash) == MOVED)
1892 >                tab = helpTransfer(tab, f);
1893 >            else {
1894 >                synchronized (f) {
1895 >                    if (tabAt(tab, i) == f) {
1896 >                        if (fh >= 0) {
1897 >                            binCount = 1;
1898 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1899 >                                K ek;
1900 >                                if (e.hash == h &&
1901 >                                    ((ek = e.key) == key ||
1902 >                                     (ek != null && key.equals(ek)))) {
1903 >                                    val = remappingFunction.apply(key, e.val);
1904 >                                    if (val != null)
1905 >                                        e.val = val;
1906 >                                    else {
1907 >                                        delta = -1;
1908 >                                        Node<K,V> en = e.next;
1909 >                                        if (pred != null)
1910 >                                            pred.next = en;
1911 >                                        else
1912 >                                            setTabAt(tab, i, en);
1913 >                                    }
1914 >                                    break;
1915 >                                }
1916 >                                pred = e;
1917 >                                if ((e = e.next) == null) {
1918 >                                    val = remappingFunction.apply(key, null);
1919 >                                    if (val != null) {
1920 >                                        if (pred.next != null)
1921 >                                            throw new IllegalStateException("Recursive update");
1922 >                                        delta = 1;
1923 >                                        pred.next = new Node<K,V>(h, key, val);
1924 >                                    }
1925 >                                    break;
1926 >                                }
1927 >                            }
1928 >                        }
1929 >                        else if (f instanceof TreeBin) {
1930 >                            binCount = 1;
1931 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1932 >                            TreeNode<K,V> r, p;
1933 >                            if ((r = t.root) != null)
1934 >                                p = r.findTreeNode(h, key, null);
1935 >                            else
1936 >                                p = null;
1937 >                            V pv = (p == null) ? null : p.val;
1938 >                            val = remappingFunction.apply(key, pv);
1939 >                            if (val != null) {
1940 >                                if (p != null)
1941 >                                    p.val = val;
1942 >                                else {
1943 >                                    delta = 1;
1944 >                                    t.putTreeVal(h, key, val);
1945 >                                }
1946 >                            }
1947 >                            else if (p != null) {
1948 >                                delta = -1;
1949 >                                if (t.removeTreeNode(p))
1950 >                                    setTabAt(tab, i, untreeify(t.first));
1951 >                            }
1952 >                        }
1953 >                        else if (f instanceof ReservationNode)
1954 >                            throw new IllegalStateException("Recursive update");
1955 >                    }
1956 >                }
1957 >                if (binCount != 0) {
1958 >                    if (binCount >= TREEIFY_THRESHOLD)
1959 >                        treeifyBin(tab, i);
1960 >                    break;
1961 >                }
1962              }
1963          }
1964 +        if (delta != 0)
1965 +            addCount((long)delta, binCount);
1966 +        return val;
1967 +    }
1968  
1969 <        void clear() {
1970 <            if (count != 0) {
1971 <                lock();
1972 <                try {
1973 <                    HashEntry[] tab = table;
1974 <                    for (int i = 0; i < tab.length ; i++)
1975 <                        tab[i] = null;
1976 <                    ++modCount;
1977 <                    count = 0; // write-volatile
1978 <                } finally {
1979 <                    unlock();
1969 >    /**
1970 >     * If the specified key is not already associated with a
1971 >     * (non-null) value, associates it with the given value.
1972 >     * Otherwise, replaces the value with the results of the given
1973 >     * remapping function, or removes if {@code null}. The entire
1974 >     * method invocation is performed atomically.  Some attempted
1975 >     * update operations on this map by other threads may be blocked
1976 >     * while computation is in progress, so the computation should be
1977 >     * short and simple, and must not attempt to update any other
1978 >     * mappings of this Map.
1979 >     *
1980 >     * @param key key with which the specified value is to be associated
1981 >     * @param value the value to use if absent
1982 >     * @param remappingFunction the function to recompute a value if present
1983 >     * @return the new value associated with the specified key, or null if none
1984 >     * @throws NullPointerException if the specified key or the
1985 >     *         remappingFunction is null
1986 >     * @throws RuntimeException or Error if the remappingFunction does so,
1987 >     *         in which case the mapping is unchanged
1988 >     */
1989 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1990 >        if (key == null || value == null || remappingFunction == null)
1991 >            throw new NullPointerException();
1992 >        int h = spread(key.hashCode());
1993 >        V val = null;
1994 >        int delta = 0;
1995 >        int binCount = 0;
1996 >        for (Node<K,V>[] tab = table;;) {
1997 >            Node<K,V> f; int n, i, fh;
1998 >            if (tab == null || (n = tab.length) == 0)
1999 >                tab = initTable();
2000 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2001 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2002 >                    delta = 1;
2003 >                    val = value;
2004 >                    break;
2005 >                }
2006 >            }
2007 >            else if ((fh = f.hash) == MOVED)
2008 >                tab = helpTransfer(tab, f);
2009 >            else {
2010 >                synchronized (f) {
2011 >                    if (tabAt(tab, i) == f) {
2012 >                        if (fh >= 0) {
2013 >                            binCount = 1;
2014 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2015 >                                K ek;
2016 >                                if (e.hash == h &&
2017 >                                    ((ek = e.key) == key ||
2018 >                                     (ek != null && key.equals(ek)))) {
2019 >                                    val = remappingFunction.apply(e.val, value);
2020 >                                    if (val != null)
2021 >                                        e.val = val;
2022 >                                    else {
2023 >                                        delta = -1;
2024 >                                        Node<K,V> en = e.next;
2025 >                                        if (pred != null)
2026 >                                            pred.next = en;
2027 >                                        else
2028 >                                            setTabAt(tab, i, en);
2029 >                                    }
2030 >                                    break;
2031 >                                }
2032 >                                pred = e;
2033 >                                if ((e = e.next) == null) {
2034 >                                    delta = 1;
2035 >                                    val = value;
2036 >                                    pred.next = new Node<K,V>(h, key, val);
2037 >                                    break;
2038 >                                }
2039 >                            }
2040 >                        }
2041 >                        else if (f instanceof TreeBin) {
2042 >                            binCount = 2;
2043 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2044 >                            TreeNode<K,V> r = t.root;
2045 >                            TreeNode<K,V> p = (r == null) ? null :
2046 >                                r.findTreeNode(h, key, null);
2047 >                            val = (p == null) ? value :
2048 >                                remappingFunction.apply(p.val, value);
2049 >                            if (val != null) {
2050 >                                if (p != null)
2051 >                                    p.val = val;
2052 >                                else {
2053 >                                    delta = 1;
2054 >                                    t.putTreeVal(h, key, val);
2055 >                                }
2056 >                            }
2057 >                            else if (p != null) {
2058 >                                delta = -1;
2059 >                                if (t.removeTreeNode(p))
2060 >                                    setTabAt(tab, i, untreeify(t.first));
2061 >                            }
2062 >                        }
2063 >                        else if (f instanceof ReservationNode)
2064 >                            throw new IllegalStateException("Recursive update");
2065 >                    }
2066 >                }
2067 >                if (binCount != 0) {
2068 >                    if (binCount >= TREEIFY_THRESHOLD)
2069 >                        treeifyBin(tab, i);
2070 >                    break;
2071                  }
2072              }
2073          }
2074 +        if (delta != 0)
2075 +            addCount((long)delta, binCount);
2076 +        return val;
2077      }
2078  
2079 +    // Hashtable legacy methods
2080  
2081 +    /**
2082 +     * Tests if some key maps into the specified value in this table.
2083 +     *
2084 +     * <p>Note that this method is identical in functionality to
2085 +     * {@link #containsValue(Object)}, and exists solely to ensure
2086 +     * full compatibility with class {@link java.util.Hashtable},
2087 +     * which supported this method prior to introduction of the
2088 +     * Java Collections Framework.
2089 +     *
2090 +     * @param  value a value to search for
2091 +     * @return {@code true} if and only if some key maps to the
2092 +     *         {@code value} argument in this table as
2093 +     *         determined by the {@code equals} method;
2094 +     *         {@code false} otherwise
2095 +     * @throws NullPointerException if the specified value is null
2096 +     */
2097 +    public boolean contains(Object value) {
2098 +        return containsValue(value);
2099 +    }
2100  
2101 <    /* ---------------- Public operations -------------- */
2101 >    /**
2102 >     * Returns an enumeration of the keys in this table.
2103 >     *
2104 >     * @return an enumeration of the keys in this table
2105 >     * @see #keySet()
2106 >     */
2107 >    public Enumeration<K> keys() {
2108 >        Node<K,V>[] t;
2109 >        int f = (t = table) == null ? 0 : t.length;
2110 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2111 >    }
2112  
2113      /**
2114 <     * Creates a new, empty map with the specified initial
560 <     * capacity, load factor, and concurrency level.
2114 >     * Returns an enumeration of the values in this table.
2115       *
2116 <     * @param initialCapacity the initial capacity. The implementation
2117 <     * performs internal sizing to accommodate this many elements.
564 <     * @param loadFactor  the load factor threshold, used to control resizing.
565 <     * Resizing may be performed when the average number of elements per
566 <     * bin exceeds this threshold.
567 <     * @param concurrencyLevel the estimated number of concurrently
568 <     * updating threads. The implementation performs internal sizing
569 <     * to try to accommodate this many threads.  
570 <     * @throws IllegalArgumentException if the initial capacity is
571 <     * negative or the load factor or concurrencyLevel are
572 <     * nonpositive.
2116 >     * @return an enumeration of the values in this table
2117 >     * @see #values()
2118       */
2119 <    public ConcurrentHashMap(int initialCapacity,
2120 <                             float loadFactor, int concurrencyLevel) {
2121 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
2122 <            throw new IllegalArgumentException();
2119 >    public Enumeration<V> elements() {
2120 >        Node<K,V>[] t;
2121 >        int f = (t = table) == null ? 0 : t.length;
2122 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2123 >    }
2124  
2125 <        if (concurrencyLevel > MAX_SEGMENTS)
580 <            concurrencyLevel = MAX_SEGMENTS;
2125 >    // ConcurrentHashMap-only methods
2126  
2127 <        // Find power-of-two sizes best matching arguments
2128 <        int sshift = 0;
2129 <        int ssize = 1;
2130 <        while (ssize < concurrencyLevel) {
2131 <            ++sshift;
2132 <            ssize <<= 1;
2133 <        }
2134 <        segmentShift = 32 - sshift;
2135 <        segmentMask = ssize - 1;
2136 <        this.segments = new Segment[ssize];
2137 <
2138 <        if (initialCapacity > MAXIMUM_CAPACITY)
2139 <            initialCapacity = MAXIMUM_CAPACITY;
595 <        int c = initialCapacity / ssize;
596 <        if (c * ssize < initialCapacity)
597 <            ++c;
598 <        int cap = 1;
599 <        while (cap < c)
600 <            cap <<= 1;
601 <
602 <        for (int i = 0; i < this.segments.length; ++i)
603 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
2127 >    /**
2128 >     * Returns the number of mappings. This method should be used
2129 >     * instead of {@link #size} because a ConcurrentHashMap may
2130 >     * contain more mappings than can be represented as an int. The
2131 >     * value returned is an estimate; the actual count may differ if
2132 >     * there are concurrent insertions or removals.
2133 >     *
2134 >     * @return the number of mappings
2135 >     * @since 1.8
2136 >     */
2137 >    public long mappingCount() {
2138 >        long n = sumCount();
2139 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2140      }
2141  
2142      /**
2143 <     * Creates a new, empty map with the specified initial
2144 <     * capacity,  and with default load factor (<tt>0.75f</tt>)
609 <     * and concurrencyLevel (<tt>16</tt>).
2143 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2144 >     * from the given type to {@code Boolean.TRUE}.
2145       *
2146 <     * @param initialCapacity the initial capacity. The implementation
2147 <     * performs internal sizing to accommodate this many elements.
2146 >     * @param <K> the element type of the returned set
2147 >     * @return the new set
2148 >     * @since 1.8
2149 >     */
2150 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2151 >        return new KeySetView<K,Boolean>
2152 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2153 >    }
2154 >
2155 >    /**
2156 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2157 >     * from the given type to {@code Boolean.TRUE}.
2158 >     *
2159 >     * @param initialCapacity The implementation performs internal
2160 >     * sizing to accommodate this many elements.
2161 >     * @param <K> the element type of the returned set
2162 >     * @return the new set
2163       * @throws IllegalArgumentException if the initial capacity of
2164 <     * elements is negative.
2164 >     * elements is negative
2165 >     * @since 1.8
2166       */
2167 <    public ConcurrentHashMap(int initialCapacity) {
2168 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
2167 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2168 >        return new KeySetView<K,Boolean>
2169 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2170      }
2171  
2172      /**
2173 <     * Creates a new, empty map with a default initial capacity
2174 <     * (<tt>16</tt>), load factor (<tt>0.75f</tt>) and
2175 <     * concurrencyLevel (<tt>16</tt>).
2173 >     * Returns a {@link Set} view of the keys in this map, using the
2174 >     * given common mapped value for any additions (i.e., {@link
2175 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2176 >     * This is of course only appropriate if it is acceptable to use
2177 >     * the same value for all additions from this view.
2178 >     *
2179 >     * @param mappedValue the mapped value to use for any additions
2180 >     * @return the set view
2181 >     * @throws NullPointerException if the mappedValue is null
2182       */
2183 <    public ConcurrentHashMap() {
2184 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
2183 >    public KeySetView<K,V> keySet(V mappedValue) {
2184 >        if (mappedValue == null)
2185 >            throw new NullPointerException();
2186 >        return new KeySetView<K,V>(this, mappedValue);
2187      }
2188  
2189 +    /* ---------------- Special Nodes -------------- */
2190 +
2191      /**
2192 <     * Creates a new map with the same mappings as the given map.  The
631 <     * map is created with a capacity consistent with the default load
632 <     * factor (<tt>0.75f</tt>) and uses the default concurrencyLevel
633 <     * (<tt>16</tt>).
634 <     * @param t the map
2192 >     * A node inserted at head of bins during transfer operations.
2193       */
2194 <    public ConcurrentHashMap(Map<? extends K, ? extends V> t) {
2195 <        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
2196 <                      DEFAULT_INITIAL_CAPACITY),
2197 <             DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
2198 <        putAll(t);
2194 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2195 >        final Node<K,V>[] nextTable;
2196 >        ForwardingNode(Node<K,V>[] tab) {
2197 >            super(MOVED, null, null);
2198 >            this.nextTable = tab;
2199 >        }
2200 >
2201 >        Node<K,V> find(int h, Object k) {
2202 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2203 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2204 >                Node<K,V> e; int n;
2205 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2206 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2207 >                    return null;
2208 >                for (;;) {
2209 >                    int eh; K ek;
2210 >                    if ((eh = e.hash) == h &&
2211 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2212 >                        return e;
2213 >                    if (eh < 0) {
2214 >                        if (e instanceof ForwardingNode) {
2215 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2216 >                            continue outer;
2217 >                        }
2218 >                        else
2219 >                            return e.find(h, k);
2220 >                    }
2221 >                    if ((e = e.next) == null)
2222 >                        return null;
2223 >                }
2224 >            }
2225 >        }
2226      }
2227  
2228 <    // inherit Map javadoc
2229 <    public boolean isEmpty() {
2230 <        final Segment[] segments = this.segments;
2231 <        /*
2232 <         * We keep track of per-segment modCounts to avoid ABA
2233 <         * problems in which an element in one segment was added and
649 <         * in another removed during traversal, in which case the
650 <         * table was never actually empty at any point. Note the
651 <         * similar use of modCounts in the size() and containsValue()
652 <         * methods, which are the only other methods also susceptible
653 <         * to ABA problems.
654 <         */
655 <        int[] mc = new int[segments.length];
656 <        int mcsum = 0;
657 <        for (int i = 0; i < segments.length; ++i) {
658 <            if (segments[i].count != 0)
659 <                return false;
660 <            else
661 <                mcsum += mc[i] = segments[i].modCount;
2228 >    /**
2229 >     * A place-holder node used in computeIfAbsent and compute.
2230 >     */
2231 >    static final class ReservationNode<K,V> extends Node<K,V> {
2232 >        ReservationNode() {
2233 >            super(RESERVED, null, null);
2234          }
2235 <        // If mcsum happens to be zero, then we know we got a snapshot
2236 <        // before any modifications at all were made.  This is
2237 <        // probably common enough to bother tracking.
2238 <        if (mcsum != 0) {
2239 <            for (int i = 0; i < segments.length; ++i) {
2240 <                if (segments[i].count != 0 ||
2241 <                    mc[i] != segments[i].modCount)
2242 <                    return false;
2235 >
2236 >        Node<K,V> find(int h, Object k) {
2237 >            return null;
2238 >        }
2239 >    }
2240 >
2241 >    /* ---------------- Table Initialization and Resizing -------------- */
2242 >
2243 >    /**
2244 >     * Returns the stamp bits for resizing a table of size n.
2245 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2246 >     */
2247 >    static final int resizeStamp(int n) {
2248 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2249 >    }
2250 >
2251 >    /**
2252 >     * Initializes table, using the size recorded in sizeCtl.
2253 >     */
2254 >    private final Node<K,V>[] initTable() {
2255 >        Node<K,V>[] tab; int sc;
2256 >        while ((tab = table) == null || tab.length == 0) {
2257 >            if ((sc = sizeCtl) < 0)
2258 >                Thread.yield(); // lost initialization race; just spin
2259 >            else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2260 >                try {
2261 >                    if ((tab = table) == null || tab.length == 0) {
2262 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2263 >                        @SuppressWarnings("unchecked")
2264 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2265 >                        table = tab = nt;
2266 >                        sc = n - (n >>> 2);
2267 >                    }
2268 >                } finally {
2269 >                    sizeCtl = sc;
2270 >                }
2271 >                break;
2272              }
2273          }
2274 <        return true;
2274 >        return tab;
2275      }
2276  
2277 <    // inherit Map javadoc
2278 <    public int size() {
2279 <        final Segment[] segments = this.segments;
2280 <        long sum = 0;
2281 <        long check = 0;
2282 <        int[] mc = new int[segments.length];
2283 <        // Try a few times to get accurate count. On failure due to
2284 <        // continuous async changes in table, resort to locking.
2285 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
2286 <            check = 0;
2287 <            sum = 0;
2288 <            int mcsum = 0;
2289 <            for (int i = 0; i < segments.length; ++i) {
2290 <                sum += segments[i].count;
2291 <                mcsum += mc[i] = segments[i].modCount;
2292 <            }
2293 <            if (mcsum != 0) {
2294 <                for (int i = 0; i < segments.length; ++i) {
2295 <                    check += segments[i].count;
2296 <                    if (mc[i] != segments[i].modCount) {
2297 <                        check = -1; // force retry
2277 >    /**
2278 >     * Adds to count, and if table is too small and not already
2279 >     * resizing, initiates transfer. If already resizing, helps
2280 >     * perform transfer if work is available.  Rechecks occupancy
2281 >     * after a transfer to see if another resize is already needed
2282 >     * because resizings are lagging additions.
2283 >     *
2284 >     * @param x the count to add
2285 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2286 >     */
2287 >    private final void addCount(long x, int check) {
2288 >        CounterCell[] cs; long b, s;
2289 >        if ((cs = counterCells) != null ||
2290 >            !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2291 >            CounterCell c; long v; int m;
2292 >            boolean uncontended = true;
2293 >            if (cs == null || (m = cs.length - 1) < 0 ||
2294 >                (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2295 >                !(uncontended =
2296 >                  U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2297 >                fullAddCount(x, uncontended);
2298 >                return;
2299 >            }
2300 >            if (check <= 1)
2301 >                return;
2302 >            s = sumCount();
2303 >        }
2304 >        if (check >= 0) {
2305 >            Node<K,V>[] tab, nt; int n, sc;
2306 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2307 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2308 >                int rs = resizeStamp(n) << RESIZE_STAMP_SHIFT;
2309 >                if (sc < 0) {
2310 >                    if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2311 >                        (nt = nextTable) == null || transferIndex <= 0)
2312                          break;
2313 +                    if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2314 +                        transfer(tab, nt);
2315 +                }
2316 +                else if (U.compareAndSetInt(this, SIZECTL, sc, rs + 2))
2317 +                    transfer(tab, null);
2318 +                s = sumCount();
2319 +            }
2320 +        }
2321 +    }
2322 +
2323 +    /**
2324 +     * Helps transfer if a resize is in progress.
2325 +     */
2326 +    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2327 +        Node<K,V>[] nextTab; int sc;
2328 +        if (tab != null && (f instanceof ForwardingNode) &&
2329 +            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2330 +            int rs = resizeStamp(tab.length) << RESIZE_STAMP_SHIFT;
2331 +            while (nextTab == nextTable && table == tab &&
2332 +                   (sc = sizeCtl) < 0) {
2333 +                if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2334 +                    transferIndex <= 0)
2335 +                    break;
2336 +                if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2337 +                    transfer(tab, nextTab);
2338 +                    break;
2339 +                }
2340 +            }
2341 +            return nextTab;
2342 +        }
2343 +        return table;
2344 +    }
2345 +
2346 +    /**
2347 +     * Tries to presize table to accommodate the given number of elements.
2348 +     *
2349 +     * @param size number of elements (doesn't need to be perfectly accurate)
2350 +     */
2351 +    private final void tryPresize(int size) {
2352 +        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2353 +            tableSizeFor(size + (size >>> 1) + 1);
2354 +        int sc;
2355 +        while ((sc = sizeCtl) >= 0) {
2356 +            Node<K,V>[] tab = table; int n;
2357 +            if (tab == null || (n = tab.length) == 0) {
2358 +                n = (sc > c) ? sc : c;
2359 +                if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2360 +                    try {
2361 +                        if (table == tab) {
2362 +                            @SuppressWarnings("unchecked")
2363 +                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2364 +                            table = nt;
2365 +                            sc = n - (n >>> 2);
2366 +                        }
2367 +                    } finally {
2368 +                        sizeCtl = sc;
2369                      }
2370                  }
2371              }
2372 <            if (check == sum)
2372 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2373                  break;
2374 +            else if (tab == table) {
2375 +                int rs = resizeStamp(n);
2376 +                if (U.compareAndSetInt(this, SIZECTL, sc,
2377 +                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2378 +                    transfer(tab, null);
2379 +            }
2380          }
704        if (check != sum) { // Resort to locking all segments
705            sum = 0;
706            for (int i = 0; i < segments.length; ++i)
707                segments[i].lock();
708            for (int i = 0; i < segments.length; ++i)
709                sum += segments[i].count;
710            for (int i = 0; i < segments.length; ++i)
711                segments[i].unlock();
712        }
713        if (sum > Integer.MAX_VALUE)
714            return Integer.MAX_VALUE;
715        else
716            return (int)sum;
2381      }
2382  
2383 +    /**
2384 +     * Moves and/or copies the nodes in each bin to new table. See
2385 +     * above for explanation.
2386 +     */
2387 +    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2388 +        int n = tab.length, stride;
2389 +        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2390 +            stride = MIN_TRANSFER_STRIDE; // subdivide range
2391 +        if (nextTab == null) {            // initiating
2392 +            try {
2393 +                @SuppressWarnings("unchecked")
2394 +                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2395 +                nextTab = nt;
2396 +            } catch (Throwable ex) {      // try to cope with OOME
2397 +                sizeCtl = Integer.MAX_VALUE;
2398 +                return;
2399 +            }
2400 +            nextTable = nextTab;
2401 +            transferIndex = n;
2402 +        }
2403 +        int nextn = nextTab.length;
2404 +        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2405 +        boolean advance = true;
2406 +        boolean finishing = false; // to ensure sweep before committing nextTab
2407 +        for (int i = 0, bound = 0;;) {
2408 +            Node<K,V> f; int fh;
2409 +            while (advance) {
2410 +                int nextIndex, nextBound;
2411 +                if (--i >= bound || finishing)
2412 +                    advance = false;
2413 +                else if ((nextIndex = transferIndex) <= 0) {
2414 +                    i = -1;
2415 +                    advance = false;
2416 +                }
2417 +                else if (U.compareAndSetInt
2418 +                         (this, TRANSFERINDEX, nextIndex,
2419 +                          nextBound = (nextIndex > stride ?
2420 +                                       nextIndex - stride : 0))) {
2421 +                    bound = nextBound;
2422 +                    i = nextIndex - 1;
2423 +                    advance = false;
2424 +                }
2425 +            }
2426 +            if (i < 0 || i >= n || i + n >= nextn) {
2427 +                int sc;
2428 +                if (finishing) {
2429 +                    nextTable = null;
2430 +                    table = nextTab;
2431 +                    sizeCtl = (n << 1) - (n >>> 1);
2432 +                    return;
2433 +                }
2434 +                if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2435 +                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2436 +                        return;
2437 +                    finishing = advance = true;
2438 +                    i = n; // recheck before commit
2439 +                }
2440 +            }
2441 +            else if ((f = tabAt(tab, i)) == null)
2442 +                advance = casTabAt(tab, i, null, fwd);
2443 +            else if ((fh = f.hash) == MOVED)
2444 +                advance = true; // already processed
2445 +            else {
2446 +                synchronized (f) {
2447 +                    if (tabAt(tab, i) == f) {
2448 +                        Node<K,V> ln, hn;
2449 +                        if (fh >= 0) {
2450 +                            int runBit = fh & n;
2451 +                            Node<K,V> lastRun = f;
2452 +                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2453 +                                int b = p.hash & n;
2454 +                                if (b != runBit) {
2455 +                                    runBit = b;
2456 +                                    lastRun = p;
2457 +                                }
2458 +                            }
2459 +                            if (runBit == 0) {
2460 +                                ln = lastRun;
2461 +                                hn = null;
2462 +                            }
2463 +                            else {
2464 +                                hn = lastRun;
2465 +                                ln = null;
2466 +                            }
2467 +                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2468 +                                int ph = p.hash; K pk = p.key; V pv = p.val;
2469 +                                if ((ph & n) == 0)
2470 +                                    ln = new Node<K,V>(ph, pk, pv, ln);
2471 +                                else
2472 +                                    hn = new Node<K,V>(ph, pk, pv, hn);
2473 +                            }
2474 +                            setTabAt(nextTab, i, ln);
2475 +                            setTabAt(nextTab, i + n, hn);
2476 +                            setTabAt(tab, i, fwd);
2477 +                            advance = true;
2478 +                        }
2479 +                        else if (f instanceof TreeBin) {
2480 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2481 +                            TreeNode<K,V> lo = null, loTail = null;
2482 +                            TreeNode<K,V> hi = null, hiTail = null;
2483 +                            int lc = 0, hc = 0;
2484 +                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2485 +                                int h = e.hash;
2486 +                                TreeNode<K,V> p = new TreeNode<K,V>
2487 +                                    (h, e.key, e.val, null, null);
2488 +                                if ((h & n) == 0) {
2489 +                                    if ((p.prev = loTail) == null)
2490 +                                        lo = p;
2491 +                                    else
2492 +                                        loTail.next = p;
2493 +                                    loTail = p;
2494 +                                    ++lc;
2495 +                                }
2496 +                                else {
2497 +                                    if ((p.prev = hiTail) == null)
2498 +                                        hi = p;
2499 +                                    else
2500 +                                        hiTail.next = p;
2501 +                                    hiTail = p;
2502 +                                    ++hc;
2503 +                                }
2504 +                            }
2505 +                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2506 +                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2507 +                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2508 +                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2509 +                            setTabAt(nextTab, i, ln);
2510 +                            setTabAt(nextTab, i + n, hn);
2511 +                            setTabAt(tab, i, fwd);
2512 +                            advance = true;
2513 +                        }
2514 +                        else if (f instanceof ReservationNode)
2515 +                            throw new IllegalStateException("Recursive update");
2516 +                    }
2517 +                }
2518 +            }
2519 +        }
2520 +    }
2521 +
2522 +    /* ---------------- Counter support -------------- */
2523  
2524      /**
2525 <     * Returns the value to which the specified key is mapped in this table.
2526 <     *
723 <     * @param   key   a key in the table.
724 <     * @return  the value to which the key is mapped in this table;
725 <     *          <tt>null</tt> if the key is not mapped to any value in
726 <     *          this table.
727 <     * @throws  NullPointerException  if the key is
728 <     *               <tt>null</tt>.
2525 >     * A padded cell for distributing counts.  Adapted from LongAdder
2526 >     * and Striped64.  See their internal docs for explanation.
2527       */
2528 <    public V get(Object key) {
2529 <        int hash = hash(key); // throws NullPointerException if key null
2530 <        return segmentFor(hash).get(key, hash);
2528 >    @jdk.internal.vm.annotation.Contended static final class CounterCell {
2529 >        volatile long value;
2530 >        CounterCell(long x) { value = x; }
2531 >    }
2532 >
2533 >    final long sumCount() {
2534 >        CounterCell[] cs = counterCells;
2535 >        long sum = baseCount;
2536 >        if (cs != null) {
2537 >            for (CounterCell c : cs)
2538 >                if (c != null)
2539 >                    sum += c.value;
2540 >        }
2541 >        return sum;
2542      }
2543  
2544 +    // See LongAdder version for explanation
2545 +    private final void fullAddCount(long x, boolean wasUncontended) {
2546 +        int h;
2547 +        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2548 +            ThreadLocalRandom.localInit();      // force initialization
2549 +            h = ThreadLocalRandom.getProbe();
2550 +            wasUncontended = true;
2551 +        }
2552 +        boolean collide = false;                // True if last slot nonempty
2553 +        for (;;) {
2554 +            CounterCell[] cs; CounterCell c; int n; long v;
2555 +            if ((cs = counterCells) != null && (n = cs.length) > 0) {
2556 +                if ((c = cs[(n - 1) & h]) == null) {
2557 +                    if (cellsBusy == 0) {            // Try to attach new Cell
2558 +                        CounterCell r = new CounterCell(x); // Optimistic create
2559 +                        if (cellsBusy == 0 &&
2560 +                            U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2561 +                            boolean created = false;
2562 +                            try {               // Recheck under lock
2563 +                                CounterCell[] rs; int m, j;
2564 +                                if ((rs = counterCells) != null &&
2565 +                                    (m = rs.length) > 0 &&
2566 +                                    rs[j = (m - 1) & h] == null) {
2567 +                                    rs[j] = r;
2568 +                                    created = true;
2569 +                                }
2570 +                            } finally {
2571 +                                cellsBusy = 0;
2572 +                            }
2573 +                            if (created)
2574 +                                break;
2575 +                            continue;           // Slot is now non-empty
2576 +                        }
2577 +                    }
2578 +                    collide = false;
2579 +                }
2580 +                else if (!wasUncontended)       // CAS already known to fail
2581 +                    wasUncontended = true;      // Continue after rehash
2582 +                else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2583 +                    break;
2584 +                else if (counterCells != cs || n >= NCPU)
2585 +                    collide = false;            // At max size or stale
2586 +                else if (!collide)
2587 +                    collide = true;
2588 +                else if (cellsBusy == 0 &&
2589 +                         U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2590 +                    try {
2591 +                        if (counterCells == cs) // Expand table unless stale
2592 +                            counterCells = Arrays.copyOf(cs, n << 1);
2593 +                    } finally {
2594 +                        cellsBusy = 0;
2595 +                    }
2596 +                    collide = false;
2597 +                    continue;                   // Retry with expanded table
2598 +                }
2599 +                h = ThreadLocalRandom.advanceProbe(h);
2600 +            }
2601 +            else if (cellsBusy == 0 && counterCells == cs &&
2602 +                     U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2603 +                boolean init = false;
2604 +                try {                           // Initialize table
2605 +                    if (counterCells == cs) {
2606 +                        CounterCell[] rs = new CounterCell[2];
2607 +                        rs[h & 1] = new CounterCell(x);
2608 +                        counterCells = rs;
2609 +                        init = true;
2610 +                    }
2611 +                } finally {
2612 +                    cellsBusy = 0;
2613 +                }
2614 +                if (init)
2615 +                    break;
2616 +            }
2617 +            else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2618 +                break;                          // Fall back on using base
2619 +        }
2620 +    }
2621 +
2622 +    /* ---------------- Conversion from/to TreeBins -------------- */
2623 +
2624      /**
2625 <     * Tests if the specified object is a key in this table.
2626 <     *
738 <     * @param   key   possible key.
739 <     * @return  <tt>true</tt> if and only if the specified object
740 <     *          is a key in this table, as determined by the
741 <     *          <tt>equals</tt> method; <tt>false</tt> otherwise.
742 <     * @throws  NullPointerException  if the key is
743 <     *               <tt>null</tt>.
2625 >     * Replaces all linked nodes in bin at given index unless table is
2626 >     * too small, in which case resizes instead.
2627       */
2628 <    public boolean containsKey(Object key) {
2629 <        int hash = hash(key); // throws NullPointerException if key null
2630 <        return segmentFor(hash).containsKey(key, hash);
2628 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2629 >        Node<K,V> b; int n;
2630 >        if (tab != null) {
2631 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2632 >                tryPresize(n << 1);
2633 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2634 >                synchronized (b) {
2635 >                    if (tabAt(tab, index) == b) {
2636 >                        TreeNode<K,V> hd = null, tl = null;
2637 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2638 >                            TreeNode<K,V> p =
2639 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2640 >                                                  null, null);
2641 >                            if ((p.prev = tl) == null)
2642 >                                hd = p;
2643 >                            else
2644 >                                tl.next = p;
2645 >                            tl = p;
2646 >                        }
2647 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2648 >                    }
2649 >                }
2650 >            }
2651 >        }
2652      }
2653  
2654      /**
2655 <     * Returns <tt>true</tt> if this map maps one or more keys to the
752 <     * specified value. Note: This method requires a full internal
753 <     * traversal of the hash table, and so is much slower than
754 <     * method <tt>containsKey</tt>.
755 <     *
756 <     * @param value value whose presence in this map is to be tested.
757 <     * @return <tt>true</tt> if this map maps one or more keys to the
758 <     * specified value.
759 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
2655 >     * Returns a list of non-TreeNodes replacing those in given list.
2656       */
2657 <    public boolean containsValue(Object value) {
2658 <        if (value == null)
2659 <            throw new NullPointerException();
2660 <        
2661 <        // See explanation of modCount use above
2657 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2658 >        Node<K,V> hd = null, tl = null;
2659 >        for (Node<K,V> q = b; q != null; q = q.next) {
2660 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2661 >            if (tl == null)
2662 >                hd = p;
2663 >            else
2664 >                tl.next = p;
2665 >            tl = p;
2666 >        }
2667 >        return hd;
2668 >    }
2669  
2670 <        final Segment[] segments = this.segments;
768 <        int[] mc = new int[segments.length];
2670 >    /* ---------------- TreeNodes -------------- */
2671  
2672 <        // Try a few times without locking
2673 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
2674 <            int sum = 0;
2675 <            int mcsum = 0;
2676 <            for (int i = 0; i < segments.length; ++i) {
2677 <                int c = segments[i].count;
2678 <                mcsum += mc[i] = segments[i].modCount;
2679 <                if (segments[i].containsValue(value))
2680 <                    return true;
2672 >    /**
2673 >     * Nodes for use in TreeBins.
2674 >     */
2675 >    static final class TreeNode<K,V> extends Node<K,V> {
2676 >        TreeNode<K,V> parent;  // red-black tree links
2677 >        TreeNode<K,V> left;
2678 >        TreeNode<K,V> right;
2679 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2680 >        boolean red;
2681 >
2682 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2683 >                 TreeNode<K,V> parent) {
2684 >            super(hash, key, val, next);
2685 >            this.parent = parent;
2686 >        }
2687 >
2688 >        Node<K,V> find(int h, Object k) {
2689 >            return findTreeNode(h, k, null);
2690 >        }
2691 >
2692 >        /**
2693 >         * Returns the TreeNode (or null if not found) for the given key
2694 >         * starting at given root.
2695 >         */
2696 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2697 >            if (k != null) {
2698 >                TreeNode<K,V> p = this;
2699 >                do {
2700 >                    int ph, dir; K pk; TreeNode<K,V> q;
2701 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2702 >                    if ((ph = p.hash) > h)
2703 >                        p = pl;
2704 >                    else if (ph < h)
2705 >                        p = pr;
2706 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2707 >                        return p;
2708 >                    else if (pl == null)
2709 >                        p = pr;
2710 >                    else if (pr == null)
2711 >                        p = pl;
2712 >                    else if ((kc != null ||
2713 >                              (kc = comparableClassFor(k)) != null) &&
2714 >                             (dir = compareComparables(kc, k, pk)) != 0)
2715 >                        p = (dir < 0) ? pl : pr;
2716 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2717 >                        return q;
2718 >                    else
2719 >                        p = pl;
2720 >                } while (p != null);
2721              }
2722 <            boolean cleanSweep = true;
2723 <            if (mcsum != 0) {
2724 <                for (int i = 0; i < segments.length; ++i) {
2725 <                    int c = segments[i].count;
2726 <                    if (mc[i] != segments[i].modCount) {
2727 <                        cleanSweep = false;
2728 <                        break;
2722 >            return null;
2723 >        }
2724 >    }
2725 >
2726 >    /* ---------------- TreeBins -------------- */
2727 >
2728 >    /**
2729 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2730 >     * keys or values, but instead point to list of TreeNodes and
2731 >     * their root. They also maintain a parasitic read-write lock
2732 >     * forcing writers (who hold bin lock) to wait for readers (who do
2733 >     * not) to complete before tree restructuring operations.
2734 >     */
2735 >    static final class TreeBin<K,V> extends Node<K,V> {
2736 >        TreeNode<K,V> root;
2737 >        volatile TreeNode<K,V> first;
2738 >        volatile Thread waiter;
2739 >        volatile int lockState;
2740 >        // values for lockState
2741 >        static final int WRITER = 1; // set while holding write lock
2742 >        static final int WAITER = 2; // set when waiting for write lock
2743 >        static final int READER = 4; // increment value for setting read lock
2744 >
2745 >        /**
2746 >         * Tie-breaking utility for ordering insertions when equal
2747 >         * hashCodes and non-comparable. We don't require a total
2748 >         * order, just a consistent insertion rule to maintain
2749 >         * equivalence across rebalancings. Tie-breaking further than
2750 >         * necessary simplifies testing a bit.
2751 >         */
2752 >        static int tieBreakOrder(Object a, Object b) {
2753 >            int d;
2754 >            if (a == null || b == null ||
2755 >                (d = a.getClass().getName().
2756 >                 compareTo(b.getClass().getName())) == 0)
2757 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2758 >                     -1 : 1);
2759 >            return d;
2760 >        }
2761 >
2762 >        /**
2763 >         * Creates bin with initial set of nodes headed by b.
2764 >         */
2765 >        TreeBin(TreeNode<K,V> b) {
2766 >            super(TREEBIN, null, null);
2767 >            this.first = b;
2768 >            TreeNode<K,V> r = null;
2769 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2770 >                next = (TreeNode<K,V>)x.next;
2771 >                x.left = x.right = null;
2772 >                if (r == null) {
2773 >                    x.parent = null;
2774 >                    x.red = false;
2775 >                    r = x;
2776 >                }
2777 >                else {
2778 >                    K k = x.key;
2779 >                    int h = x.hash;
2780 >                    Class<?> kc = null;
2781 >                    for (TreeNode<K,V> p = r;;) {
2782 >                        int dir, ph;
2783 >                        K pk = p.key;
2784 >                        if ((ph = p.hash) > h)
2785 >                            dir = -1;
2786 >                        else if (ph < h)
2787 >                            dir = 1;
2788 >                        else if ((kc == null &&
2789 >                                  (kc = comparableClassFor(k)) == null) ||
2790 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2791 >                            dir = tieBreakOrder(k, pk);
2792 >                        TreeNode<K,V> xp = p;
2793 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2794 >                            x.parent = xp;
2795 >                            if (dir <= 0)
2796 >                                xp.left = x;
2797 >                            else
2798 >                                xp.right = x;
2799 >                            r = balanceInsertion(r, x);
2800 >                            break;
2801 >                        }
2802                      }
2803                  }
2804              }
2805 <            if (cleanSweep)
2806 <                return false;
2805 >            this.root = r;
2806 >            assert checkInvariants(root);
2807 >        }
2808 >
2809 >        /**
2810 >         * Acquires write lock for tree restructuring.
2811 >         */
2812 >        private final void lockRoot() {
2813 >            if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2814 >                contendedLock(); // offload to separate method
2815 >        }
2816 >
2817 >        /**
2818 >         * Releases write lock for tree restructuring.
2819 >         */
2820 >        private final void unlockRoot() {
2821 >            lockState = 0;
2822          }
2823 <        // Resort to locking all segments
2824 <        for (int i = 0; i < segments.length; ++i)
2825 <            segments[i].lock();
2826 <        boolean found = false;
2827 <        try {
2828 <            for (int i = 0; i < segments.length; ++i) {
2829 <                if (segments[i].containsValue(value)) {
2830 <                    found = true;
2823 >
2824 >        /**
2825 >         * Possibly blocks awaiting root lock.
2826 >         */
2827 >        private final void contendedLock() {
2828 >            boolean waiting = false;
2829 >            for (int s;;) {
2830 >                if (((s = lockState) & ~WAITER) == 0) {
2831 >                    if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2832 >                        if (waiting)
2833 >                            waiter = null;
2834 >                        return;
2835 >                    }
2836 >                }
2837 >                else if ((s & WAITER) == 0) {
2838 >                    if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2839 >                        waiting = true;
2840 >                        waiter = Thread.currentThread();
2841 >                    }
2842 >                }
2843 >                else if (waiting)
2844 >                    LockSupport.park(this);
2845 >            }
2846 >        }
2847 >
2848 >        /**
2849 >         * Returns matching node or null if none. Tries to search
2850 >         * using tree comparisons from root, but continues linear
2851 >         * search when lock not available.
2852 >         */
2853 >        final Node<K,V> find(int h, Object k) {
2854 >            if (k != null) {
2855 >                for (Node<K,V> e = first; e != null; ) {
2856 >                    int s; K ek;
2857 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2858 >                        if (e.hash == h &&
2859 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2860 >                            return e;
2861 >                        e = e.next;
2862 >                    }
2863 >                    else if (U.compareAndSetInt(this, LOCKSTATE, s,
2864 >                                                 s + READER)) {
2865 >                        TreeNode<K,V> r, p;
2866 >                        try {
2867 >                            p = ((r = root) == null ? null :
2868 >                                 r.findTreeNode(h, k, null));
2869 >                        } finally {
2870 >                            Thread w;
2871 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2872 >                                (READER|WAITER) && (w = waiter) != null)
2873 >                                LockSupport.unpark(w);
2874 >                        }
2875 >                        return p;
2876 >                    }
2877 >                }
2878 >            }
2879 >            return null;
2880 >        }
2881 >
2882 >        /**
2883 >         * Finds or adds a node.
2884 >         * @return null if added
2885 >         */
2886 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2887 >            Class<?> kc = null;
2888 >            boolean searched = false;
2889 >            for (TreeNode<K,V> p = root;;) {
2890 >                int dir, ph; K pk;
2891 >                if (p == null) {
2892 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2893                      break;
2894                  }
2895 +                else if ((ph = p.hash) > h)
2896 +                    dir = -1;
2897 +                else if (ph < h)
2898 +                    dir = 1;
2899 +                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2900 +                    return p;
2901 +                else if ((kc == null &&
2902 +                          (kc = comparableClassFor(k)) == null) ||
2903 +                         (dir = compareComparables(kc, k, pk)) == 0) {
2904 +                    if (!searched) {
2905 +                        TreeNode<K,V> q, ch;
2906 +                        searched = true;
2907 +                        if (((ch = p.left) != null &&
2908 +                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2909 +                            ((ch = p.right) != null &&
2910 +                             (q = ch.findTreeNode(h, k, kc)) != null))
2911 +                            return q;
2912 +                    }
2913 +                    dir = tieBreakOrder(k, pk);
2914 +                }
2915 +
2916 +                TreeNode<K,V> xp = p;
2917 +                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2918 +                    TreeNode<K,V> x, f = first;
2919 +                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2920 +                    if (f != null)
2921 +                        f.prev = x;
2922 +                    if (dir <= 0)
2923 +                        xp.left = x;
2924 +                    else
2925 +                        xp.right = x;
2926 +                    if (!xp.red)
2927 +                        x.red = true;
2928 +                    else {
2929 +                        lockRoot();
2930 +                        try {
2931 +                            root = balanceInsertion(root, x);
2932 +                        } finally {
2933 +                            unlockRoot();
2934 +                        }
2935 +                    }
2936 +                    break;
2937 +                }
2938 +            }
2939 +            assert checkInvariants(root);
2940 +            return null;
2941 +        }
2942 +
2943 +        /**
2944 +         * Removes the given node, that must be present before this
2945 +         * call.  This is messier than typical red-black deletion code
2946 +         * because we cannot swap the contents of an interior node
2947 +         * with a leaf successor that is pinned by "next" pointers
2948 +         * that are accessible independently of lock. So instead we
2949 +         * swap the tree linkages.
2950 +         *
2951 +         * @return true if now too small, so should be untreeified
2952 +         */
2953 +        final boolean removeTreeNode(TreeNode<K,V> p) {
2954 +            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2955 +            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2956 +            TreeNode<K,V> r, rl;
2957 +            if (pred == null)
2958 +                first = next;
2959 +            else
2960 +                pred.next = next;
2961 +            if (next != null)
2962 +                next.prev = pred;
2963 +            if (first == null) {
2964 +                root = null;
2965 +                return true;
2966 +            }
2967 +            if ((r = root) == null || r.right == null || // too small
2968 +                (rl = r.left) == null || rl.left == null)
2969 +                return true;
2970 +            lockRoot();
2971 +            try {
2972 +                TreeNode<K,V> replacement;
2973 +                TreeNode<K,V> pl = p.left;
2974 +                TreeNode<K,V> pr = p.right;
2975 +                if (pl != null && pr != null) {
2976 +                    TreeNode<K,V> s = pr, sl;
2977 +                    while ((sl = s.left) != null) // find successor
2978 +                        s = sl;
2979 +                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2980 +                    TreeNode<K,V> sr = s.right;
2981 +                    TreeNode<K,V> pp = p.parent;
2982 +                    if (s == pr) { // p was s's direct parent
2983 +                        p.parent = s;
2984 +                        s.right = p;
2985 +                    }
2986 +                    else {
2987 +                        TreeNode<K,V> sp = s.parent;
2988 +                        if ((p.parent = sp) != null) {
2989 +                            if (s == sp.left)
2990 +                                sp.left = p;
2991 +                            else
2992 +                                sp.right = p;
2993 +                        }
2994 +                        if ((s.right = pr) != null)
2995 +                            pr.parent = s;
2996 +                    }
2997 +                    p.left = null;
2998 +                    if ((p.right = sr) != null)
2999 +                        sr.parent = p;
3000 +                    if ((s.left = pl) != null)
3001 +                        pl.parent = s;
3002 +                    if ((s.parent = pp) == null)
3003 +                        r = s;
3004 +                    else if (p == pp.left)
3005 +                        pp.left = s;
3006 +                    else
3007 +                        pp.right = s;
3008 +                    if (sr != null)
3009 +                        replacement = sr;
3010 +                    else
3011 +                        replacement = p;
3012 +                }
3013 +                else if (pl != null)
3014 +                    replacement = pl;
3015 +                else if (pr != null)
3016 +                    replacement = pr;
3017 +                else
3018 +                    replacement = p;
3019 +                if (replacement != p) {
3020 +                    TreeNode<K,V> pp = replacement.parent = p.parent;
3021 +                    if (pp == null)
3022 +                        r = replacement;
3023 +                    else if (p == pp.left)
3024 +                        pp.left = replacement;
3025 +                    else
3026 +                        pp.right = replacement;
3027 +                    p.left = p.right = p.parent = null;
3028 +                }
3029 +
3030 +                root = (p.red) ? r : balanceDeletion(r, replacement);
3031 +
3032 +                if (p == replacement) {  // detach pointers
3033 +                    TreeNode<K,V> pp;
3034 +                    if ((pp = p.parent) != null) {
3035 +                        if (p == pp.left)
3036 +                            pp.left = null;
3037 +                        else if (p == pp.right)
3038 +                            pp.right = null;
3039 +                        p.parent = null;
3040 +                    }
3041 +                }
3042 +            } finally {
3043 +                unlockRoot();
3044 +            }
3045 +            assert checkInvariants(root);
3046 +            return false;
3047 +        }
3048 +
3049 +        /* ------------------------------------------------------------ */
3050 +        // Red-black tree methods, all adapted from CLR
3051 +
3052 +        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3053 +                                              TreeNode<K,V> p) {
3054 +            TreeNode<K,V> r, pp, rl;
3055 +            if (p != null && (r = p.right) != null) {
3056 +                if ((rl = p.right = r.left) != null)
3057 +                    rl.parent = p;
3058 +                if ((pp = r.parent = p.parent) == null)
3059 +                    (root = r).red = false;
3060 +                else if (pp.left == p)
3061 +                    pp.left = r;
3062 +                else
3063 +                    pp.right = r;
3064 +                r.left = p;
3065 +                p.parent = r;
3066 +            }
3067 +            return root;
3068 +        }
3069 +
3070 +        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3071 +                                               TreeNode<K,V> p) {
3072 +            TreeNode<K,V> l, pp, lr;
3073 +            if (p != null && (l = p.left) != null) {
3074 +                if ((lr = p.left = l.right) != null)
3075 +                    lr.parent = p;
3076 +                if ((pp = l.parent = p.parent) == null)
3077 +                    (root = l).red = false;
3078 +                else if (pp.right == p)
3079 +                    pp.right = l;
3080 +                else
3081 +                    pp.left = l;
3082 +                l.right = p;
3083 +                p.parent = l;
3084 +            }
3085 +            return root;
3086 +        }
3087 +
3088 +        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3089 +                                                    TreeNode<K,V> x) {
3090 +            x.red = true;
3091 +            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3092 +                if ((xp = x.parent) == null) {
3093 +                    x.red = false;
3094 +                    return x;
3095 +                }
3096 +                else if (!xp.red || (xpp = xp.parent) == null)
3097 +                    return root;
3098 +                if (xp == (xppl = xpp.left)) {
3099 +                    if ((xppr = xpp.right) != null && xppr.red) {
3100 +                        xppr.red = false;
3101 +                        xp.red = false;
3102 +                        xpp.red = true;
3103 +                        x = xpp;
3104 +                    }
3105 +                    else {
3106 +                        if (x == xp.right) {
3107 +                            root = rotateLeft(root, x = xp);
3108 +                            xpp = (xp = x.parent) == null ? null : xp.parent;
3109 +                        }
3110 +                        if (xp != null) {
3111 +                            xp.red = false;
3112 +                            if (xpp != null) {
3113 +                                xpp.red = true;
3114 +                                root = rotateRight(root, xpp);
3115 +                            }
3116 +                        }
3117 +                    }
3118 +                }
3119 +                else {
3120 +                    if (xppl != null && xppl.red) {
3121 +                        xppl.red = false;
3122 +                        xp.red = false;
3123 +                        xpp.red = true;
3124 +                        x = xpp;
3125 +                    }
3126 +                    else {
3127 +                        if (x == xp.left) {
3128 +                            root = rotateRight(root, x = xp);
3129 +                            xpp = (xp = x.parent) == null ? null : xp.parent;
3130 +                        }
3131 +                        if (xp != null) {
3132 +                            xp.red = false;
3133 +                            if (xpp != null) {
3134 +                                xpp.red = true;
3135 +                                root = rotateLeft(root, xpp);
3136 +                            }
3137 +                        }
3138 +                    }
3139 +                }
3140 +            }
3141 +        }
3142 +
3143 +        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3144 +                                                   TreeNode<K,V> x) {
3145 +            for (TreeNode<K,V> xp, xpl, xpr;;) {
3146 +                if (x == null || x == root)
3147 +                    return root;
3148 +                else if ((xp = x.parent) == null) {
3149 +                    x.red = false;
3150 +                    return x;
3151 +                }
3152 +                else if (x.red) {
3153 +                    x.red = false;
3154 +                    return root;
3155 +                }
3156 +                else if ((xpl = xp.left) == x) {
3157 +                    if ((xpr = xp.right) != null && xpr.red) {
3158 +                        xpr.red = false;
3159 +                        xp.red = true;
3160 +                        root = rotateLeft(root, xp);
3161 +                        xpr = (xp = x.parent) == null ? null : xp.right;
3162 +                    }
3163 +                    if (xpr == null)
3164 +                        x = xp;
3165 +                    else {
3166 +                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3167 +                        if ((sr == null || !sr.red) &&
3168 +                            (sl == null || !sl.red)) {
3169 +                            xpr.red = true;
3170 +                            x = xp;
3171 +                        }
3172 +                        else {
3173 +                            if (sr == null || !sr.red) {
3174 +                                if (sl != null)
3175 +                                    sl.red = false;
3176 +                                xpr.red = true;
3177 +                                root = rotateRight(root, xpr);
3178 +                                xpr = (xp = x.parent) == null ?
3179 +                                    null : xp.right;
3180 +                            }
3181 +                            if (xpr != null) {
3182 +                                xpr.red = (xp == null) ? false : xp.red;
3183 +                                if ((sr = xpr.right) != null)
3184 +                                    sr.red = false;
3185 +                            }
3186 +                            if (xp != null) {
3187 +                                xp.red = false;
3188 +                                root = rotateLeft(root, xp);
3189 +                            }
3190 +                            x = root;
3191 +                        }
3192 +                    }
3193 +                }
3194 +                else { // symmetric
3195 +                    if (xpl != null && xpl.red) {
3196 +                        xpl.red = false;
3197 +                        xp.red = true;
3198 +                        root = rotateRight(root, xp);
3199 +                        xpl = (xp = x.parent) == null ? null : xp.left;
3200 +                    }
3201 +                    if (xpl == null)
3202 +                        x = xp;
3203 +                    else {
3204 +                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3205 +                        if ((sl == null || !sl.red) &&
3206 +                            (sr == null || !sr.red)) {
3207 +                            xpl.red = true;
3208 +                            x = xp;
3209 +                        }
3210 +                        else {
3211 +                            if (sl == null || !sl.red) {
3212 +                                if (sr != null)
3213 +                                    sr.red = false;
3214 +                                xpl.red = true;
3215 +                                root = rotateLeft(root, xpl);
3216 +                                xpl = (xp = x.parent) == null ?
3217 +                                    null : xp.left;
3218 +                            }
3219 +                            if (xpl != null) {
3220 +                                xpl.red = (xp == null) ? false : xp.red;
3221 +                                if ((sl = xpl.left) != null)
3222 +                                    sl.red = false;
3223 +                            }
3224 +                            if (xp != null) {
3225 +                                xp.red = false;
3226 +                                root = rotateRight(root, xp);
3227 +                            }
3228 +                            x = root;
3229 +                        }
3230 +                    }
3231 +                }
3232              }
804        } finally {
805            for (int i = 0; i < segments.length; ++i)
806                segments[i].unlock();
3233          }
3234 <        return found;
3234 >
3235 >        /**
3236 >         * Checks invariants recursively for the tree of Nodes rooted at t.
3237 >         */
3238 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3239 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3240 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3241 >            if (tb != null && tb.next != t)
3242 >                return false;
3243 >            if (tn != null && tn.prev != t)
3244 >                return false;
3245 >            if (tp != null && t != tp.left && t != tp.right)
3246 >                return false;
3247 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3248 >                return false;
3249 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3250 >                return false;
3251 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3252 >                return false;
3253 >            if (tl != null && !checkInvariants(tl))
3254 >                return false;
3255 >            if (tr != null && !checkInvariants(tr))
3256 >                return false;
3257 >            return true;
3258 >        }
3259 >
3260 >        private static final long LOCKSTATE
3261 >            = U.objectFieldOffset(TreeBin.class, "lockState");
3262      }
3263  
3264 +    /* ----------------Table Traversal -------------- */
3265 +
3266      /**
3267 <     * Legacy method testing if some key maps into the specified value
3268 <     * in this table.  This method is identical in functionality to
3269 <     * {@link #containsValue}, and  exists solely to ensure
3270 <     * full compatibility with class {@link java.util.Hashtable},
3271 <     * which supported this method prior to introduction of the
3272 <     * Java Collections framework.
3267 >     * Records the table, its length, and current traversal index for a
3268 >     * traverser that must process a region of a forwarded table before
3269 >     * proceeding with current table.
3270 >     */
3271 >    static final class TableStack<K,V> {
3272 >        int length;
3273 >        int index;
3274 >        Node<K,V>[] tab;
3275 >        TableStack<K,V> next;
3276 >    }
3277  
3278 <     * @param      value   a value to search for.
3279 <     * @return     <tt>true</tt> if and only if some key maps to the
3280 <     *             <tt>value</tt> argument in this table as
3281 <     *             determined by the <tt>equals</tt> method;
3282 <     *             <tt>false</tt> otherwise.
3283 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
3278 >    /**
3279 >     * Encapsulates traversal for methods such as containsValue; also
3280 >     * serves as a base class for other iterators and spliterators.
3281 >     *
3282 >     * Method advance visits once each still-valid node that was
3283 >     * reachable upon iterator construction. It might miss some that
3284 >     * were added to a bin after the bin was visited, which is OK wrt
3285 >     * consistency guarantees. Maintaining this property in the face
3286 >     * of possible ongoing resizes requires a fair amount of
3287 >     * bookkeeping state that is difficult to optimize away amidst
3288 >     * volatile accesses.  Even so, traversal maintains reasonable
3289 >     * throughput.
3290 >     *
3291 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3292 >     * However, if the table has been resized, then all future steps
3293 >     * must traverse both the bin at the current index as well as at
3294 >     * (index + baseSize); and so on for further resizings. To
3295 >     * paranoically cope with potential sharing by users of iterators
3296 >     * across threads, iteration terminates if a bounds checks fails
3297 >     * for a table read.
3298       */
3299 <    public boolean contains(Object value) {
3300 <        return containsValue(value);
3299 >    static class Traverser<K,V> {
3300 >        Node<K,V>[] tab;        // current table; updated if resized
3301 >        Node<K,V> next;         // the next entry to use
3302 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3303 >        int index;              // index of bin to use next
3304 >        int baseIndex;          // current index of initial table
3305 >        int baseLimit;          // index bound for initial table
3306 >        final int baseSize;     // initial table size
3307 >
3308 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3309 >            this.tab = tab;
3310 >            this.baseSize = size;
3311 >            this.baseIndex = this.index = index;
3312 >            this.baseLimit = limit;
3313 >            this.next = null;
3314 >        }
3315 >
3316 >        /**
3317 >         * Advances if possible, returning next valid node, or null if none.
3318 >         */
3319 >        final Node<K,V> advance() {
3320 >            Node<K,V> e;
3321 >            if ((e = next) != null)
3322 >                e = e.next;
3323 >            for (;;) {
3324 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3325 >                if (e != null)
3326 >                    return next = e;
3327 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3328 >                    (n = t.length) <= (i = index) || i < 0)
3329 >                    return next = null;
3330 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3331 >                    if (e instanceof ForwardingNode) {
3332 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3333 >                        e = null;
3334 >                        pushState(t, i, n);
3335 >                        continue;
3336 >                    }
3337 >                    else if (e instanceof TreeBin)
3338 >                        e = ((TreeBin<K,V>)e).first;
3339 >                    else
3340 >                        e = null;
3341 >                }
3342 >                if (stack != null)
3343 >                    recoverState(n);
3344 >                else if ((index = i + baseSize) >= n)
3345 >                    index = ++baseIndex; // visit upper slots if present
3346 >            }
3347 >        }
3348 >
3349 >        /**
3350 >         * Saves traversal state upon encountering a forwarding node.
3351 >         */
3352 >        private void pushState(Node<K,V>[] t, int i, int n) {
3353 >            TableStack<K,V> s = spare;  // reuse if possible
3354 >            if (s != null)
3355 >                spare = s.next;
3356 >            else
3357 >                s = new TableStack<K,V>();
3358 >            s.tab = t;
3359 >            s.length = n;
3360 >            s.index = i;
3361 >            s.next = stack;
3362 >            stack = s;
3363 >        }
3364 >
3365 >        /**
3366 >         * Possibly pops traversal state.
3367 >         *
3368 >         * @param n length of current table
3369 >         */
3370 >        private void recoverState(int n) {
3371 >            TableStack<K,V> s; int len;
3372 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3373 >                n = len;
3374 >                index = s.index;
3375 >                tab = s.tab;
3376 >                s.tab = null;
3377 >                TableStack<K,V> next = s.next;
3378 >                s.next = spare; // save for reuse
3379 >                stack = next;
3380 >                spare = s;
3381 >            }
3382 >            if (s == null && (index += baseSize) >= n)
3383 >                index = ++baseIndex;
3384 >        }
3385      }
3386  
3387      /**
3388 <     * Maps the specified <tt>key</tt> to the specified
3389 <     * <tt>value</tt> in this table. Neither the key nor the
3390 <     * value can be <tt>null</tt>.
3388 >     * Base of key, value, and entry Iterators. Adds fields to
3389 >     * Traverser to support iterator.remove.
3390 >     */
3391 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3392 >        final ConcurrentHashMap<K,V> map;
3393 >        Node<K,V> lastReturned;
3394 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3395 >                    ConcurrentHashMap<K,V> map) {
3396 >            super(tab, size, index, limit);
3397 >            this.map = map;
3398 >            advance();
3399 >        }
3400 >
3401 >        public final boolean hasNext() { return next != null; }
3402 >        public final boolean hasMoreElements() { return next != null; }
3403 >
3404 >        public final void remove() {
3405 >            Node<K,V> p;
3406 >            if ((p = lastReturned) == null)
3407 >                throw new IllegalStateException();
3408 >            lastReturned = null;
3409 >            map.replaceNode(p.key, null, null);
3410 >        }
3411 >    }
3412 >
3413 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3414 >        implements Iterator<K>, Enumeration<K> {
3415 >        KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3416 >                    ConcurrentHashMap<K,V> map) {
3417 >            super(tab, size, index, limit, map);
3418 >        }
3419 >
3420 >        public final K next() {
3421 >            Node<K,V> p;
3422 >            if ((p = next) == null)
3423 >                throw new NoSuchElementException();
3424 >            K k = p.key;
3425 >            lastReturned = p;
3426 >            advance();
3427 >            return k;
3428 >        }
3429 >
3430 >        public final K nextElement() { return next(); }
3431 >    }
3432 >
3433 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3434 >        implements Iterator<V>, Enumeration<V> {
3435 >        ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3436 >                      ConcurrentHashMap<K,V> map) {
3437 >            super(tab, size, index, limit, map);
3438 >        }
3439 >
3440 >        public final V next() {
3441 >            Node<K,V> p;
3442 >            if ((p = next) == null)
3443 >                throw new NoSuchElementException();
3444 >            V v = p.val;
3445 >            lastReturned = p;
3446 >            advance();
3447 >            return v;
3448 >        }
3449 >
3450 >        public final V nextElement() { return next(); }
3451 >    }
3452 >
3453 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3454 >        implements Iterator<Map.Entry<K,V>> {
3455 >        EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3456 >                      ConcurrentHashMap<K,V> map) {
3457 >            super(tab, size, index, limit, map);
3458 >        }
3459 >
3460 >        public final Map.Entry<K,V> next() {
3461 >            Node<K,V> p;
3462 >            if ((p = next) == null)
3463 >                throw new NoSuchElementException();
3464 >            K k = p.key;
3465 >            V v = p.val;
3466 >            lastReturned = p;
3467 >            advance();
3468 >            return new MapEntry<K,V>(k, v, map);
3469 >        }
3470 >    }
3471 >
3472 >    /**
3473 >     * Exported Entry for EntryIterator.
3474 >     */
3475 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3476 >        final K key; // non-null
3477 >        V val;       // non-null
3478 >        final ConcurrentHashMap<K,V> map;
3479 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3480 >            this.key = key;
3481 >            this.val = val;
3482 >            this.map = map;
3483 >        }
3484 >        public K getKey()        { return key; }
3485 >        public V getValue()      { return val; }
3486 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3487 >        public String toString() {
3488 >            return Helpers.mapEntryToString(key, val);
3489 >        }
3490 >
3491 >        public boolean equals(Object o) {
3492 >            Object k, v; Map.Entry<?,?> e;
3493 >            return ((o instanceof Map.Entry) &&
3494 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3495 >                    (v = e.getValue()) != null &&
3496 >                    (k == key || k.equals(key)) &&
3497 >                    (v == val || v.equals(val)));
3498 >        }
3499 >
3500 >        /**
3501 >         * Sets our entry's value and writes through to the map. The
3502 >         * value to return is somewhat arbitrary here. Since we do not
3503 >         * necessarily track asynchronous changes, the most recent
3504 >         * "previous" value could be different from what we return (or
3505 >         * could even have been removed, in which case the put will
3506 >         * re-establish). We do not and cannot guarantee more.
3507 >         */
3508 >        public V setValue(V value) {
3509 >            if (value == null) throw new NullPointerException();
3510 >            V v = val;
3511 >            val = value;
3512 >            map.put(key, value);
3513 >            return v;
3514 >        }
3515 >    }
3516 >
3517 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3518 >        implements Spliterator<K> {
3519 >        long est;               // size estimate
3520 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3521 >                       long est) {
3522 >            super(tab, size, index, limit);
3523 >            this.est = est;
3524 >        }
3525 >
3526 >        public KeySpliterator<K,V> trySplit() {
3527 >            int i, f, h;
3528 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3529 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3530 >                                        f, est >>>= 1);
3531 >        }
3532 >
3533 >        public void forEachRemaining(Consumer<? super K> action) {
3534 >            if (action == null) throw new NullPointerException();
3535 >            for (Node<K,V> p; (p = advance()) != null;)
3536 >                action.accept(p.key);
3537 >        }
3538 >
3539 >        public boolean tryAdvance(Consumer<? super K> action) {
3540 >            if (action == null) throw new NullPointerException();
3541 >            Node<K,V> p;
3542 >            if ((p = advance()) == null)
3543 >                return false;
3544 >            action.accept(p.key);
3545 >            return true;
3546 >        }
3547 >
3548 >        public long estimateSize() { return est; }
3549 >
3550 >        public int characteristics() {
3551 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3552 >                Spliterator.NONNULL;
3553 >        }
3554 >    }
3555 >
3556 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3557 >        implements Spliterator<V> {
3558 >        long est;               // size estimate
3559 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3560 >                         long est) {
3561 >            super(tab, size, index, limit);
3562 >            this.est = est;
3563 >        }
3564 >
3565 >        public ValueSpliterator<K,V> trySplit() {
3566 >            int i, f, h;
3567 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3568 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3569 >                                          f, est >>>= 1);
3570 >        }
3571 >
3572 >        public void forEachRemaining(Consumer<? super V> action) {
3573 >            if (action == null) throw new NullPointerException();
3574 >            for (Node<K,V> p; (p = advance()) != null;)
3575 >                action.accept(p.val);
3576 >        }
3577 >
3578 >        public boolean tryAdvance(Consumer<? super V> action) {
3579 >            if (action == null) throw new NullPointerException();
3580 >            Node<K,V> p;
3581 >            if ((p = advance()) == null)
3582 >                return false;
3583 >            action.accept(p.val);
3584 >            return true;
3585 >        }
3586 >
3587 >        public long estimateSize() { return est; }
3588 >
3589 >        public int characteristics() {
3590 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3591 >        }
3592 >    }
3593 >
3594 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3595 >        implements Spliterator<Map.Entry<K,V>> {
3596 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3597 >        long est;               // size estimate
3598 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3599 >                         long est, ConcurrentHashMap<K,V> map) {
3600 >            super(tab, size, index, limit);
3601 >            this.map = map;
3602 >            this.est = est;
3603 >        }
3604 >
3605 >        public EntrySpliterator<K,V> trySplit() {
3606 >            int i, f, h;
3607 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3608 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3609 >                                          f, est >>>= 1, map);
3610 >        }
3611 >
3612 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3613 >            if (action == null) throw new NullPointerException();
3614 >            for (Node<K,V> p; (p = advance()) != null; )
3615 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3616 >        }
3617 >
3618 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3619 >            if (action == null) throw new NullPointerException();
3620 >            Node<K,V> p;
3621 >            if ((p = advance()) == null)
3622 >                return false;
3623 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3624 >            return true;
3625 >        }
3626 >
3627 >        public long estimateSize() { return est; }
3628 >
3629 >        public int characteristics() {
3630 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3631 >                Spliterator.NONNULL;
3632 >        }
3633 >    }
3634 >
3635 >    // Parallel bulk operations
3636 >
3637 >    /**
3638 >     * Computes initial batch value for bulk tasks. The returned value
3639 >     * is approximately exp2 of the number of times (minus one) to
3640 >     * split task by two before executing leaf action. This value is
3641 >     * faster to compute and more convenient to use as a guide to
3642 >     * splitting than is the depth, since it is used while dividing by
3643 >     * two anyway.
3644 >     */
3645 >    final int batchFor(long b) {
3646 >        long n;
3647 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3648 >            return 0;
3649 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3650 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3651 >    }
3652 >
3653 >    /**
3654 >     * Performs the given action for each (key, value).
3655       *
3656 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
3657 <     * with a key that is equal to the original key.
3656 >     * @param parallelismThreshold the (estimated) number of elements
3657 >     * needed for this operation to be executed in parallel
3658 >     * @param action the action
3659 >     * @since 1.8
3660 >     */
3661 >    public void forEach(long parallelismThreshold,
3662 >                        BiConsumer<? super K,? super V> action) {
3663 >        if (action == null) throw new NullPointerException();
3664 >        new ForEachMappingTask<K,V>
3665 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3666 >             action).invoke();
3667 >    }
3668 >
3669 >    /**
3670 >     * Performs the given action for each non-null transformation
3671 >     * of each (key, value).
3672       *
3673 <     * @param      key     the table key.
3674 <     * @param      value   the value.
3675 <     * @return     the previous value of the specified key in this table,
3676 <     *             or <tt>null</tt> if it did not have one.
3677 <     * @throws  NullPointerException  if the key or value is
3678 <     *               <tt>null</tt>.
3673 >     * @param parallelismThreshold the (estimated) number of elements
3674 >     * needed for this operation to be executed in parallel
3675 >     * @param transformer a function returning the transformation
3676 >     * for an element, or null if there is no transformation (in
3677 >     * which case the action is not applied)
3678 >     * @param action the action
3679 >     * @param <U> the return type of the transformer
3680 >     * @since 1.8
3681       */
3682 <    public V put(K key, V value) {
3683 <        if (value == null)
3682 >    public <U> void forEach(long parallelismThreshold,
3683 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3684 >                            Consumer<? super U> action) {
3685 >        if (transformer == null || action == null)
3686              throw new NullPointerException();
3687 <        int hash = hash(key);
3688 <        return segmentFor(hash).put(key, hash, value, false);
3687 >        new ForEachTransformedMappingTask<K,V,U>
3688 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3689 >             transformer, action).invoke();
3690      }
3691  
3692      /**
3693 <     * If the specified key is not already associated
3694 <     * with a value, associate it with the given value.
3695 <     * This is equivalent to
3696 <     * <pre>
3697 <     *   if (!map.containsKey(key))
3698 <     *      return map.put(key, value);
3699 <     *   else
3700 <     *      return map.get(key);
3701 <     * </pre>
3702 <     * Except that the action is performed atomically.
3703 <     * @param key key with which the specified value is to be associated.
3704 <     * @param value value to be associated with the specified key.
3705 <     * @return previous value associated with specified key, or <tt>null</tt>
3706 <     *         if there was no mapping for key.
867 <     * @throws NullPointerException if the specified key or value is
868 <     *            <tt>null</tt>.
3693 >     * Returns a non-null result from applying the given search
3694 >     * function on each (key, value), or null if none.  Upon
3695 >     * success, further element processing is suppressed and the
3696 >     * results of any other parallel invocations of the search
3697 >     * function are ignored.
3698 >     *
3699 >     * @param parallelismThreshold the (estimated) number of elements
3700 >     * needed for this operation to be executed in parallel
3701 >     * @param searchFunction a function returning a non-null
3702 >     * result on success, else null
3703 >     * @param <U> the return type of the search function
3704 >     * @return a non-null result from applying the given search
3705 >     * function on each (key, value), or null if none
3706 >     * @since 1.8
3707       */
3708 <    public V putIfAbsent(K key, V value) {
3709 <        if (value == null)
3708 >    public <U> U search(long parallelismThreshold,
3709 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3710 >        if (searchFunction == null) throw new NullPointerException();
3711 >        return new SearchMappingsTask<K,V,U>
3712 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3713 >             searchFunction, new AtomicReference<U>()).invoke();
3714 >    }
3715 >
3716 >    /**
3717 >     * Returns the result of accumulating the given transformation
3718 >     * of all (key, value) pairs using the given reducer to
3719 >     * combine values, or null if none.
3720 >     *
3721 >     * @param parallelismThreshold the (estimated) number of elements
3722 >     * needed for this operation to be executed in parallel
3723 >     * @param transformer a function returning the transformation
3724 >     * for an element, or null if there is no transformation (in
3725 >     * which case it is not combined)
3726 >     * @param reducer a commutative associative combining function
3727 >     * @param <U> the return type of the transformer
3728 >     * @return the result of accumulating the given transformation
3729 >     * of all (key, value) pairs
3730 >     * @since 1.8
3731 >     */
3732 >    public <U> U reduce(long parallelismThreshold,
3733 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3734 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3735 >        if (transformer == null || reducer == null)
3736              throw new NullPointerException();
3737 <        int hash = hash(key);
3738 <        return segmentFor(hash).put(key, hash, value, true);
3737 >        return new MapReduceMappingsTask<K,V,U>
3738 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3739 >             null, transformer, reducer).invoke();
3740      }
3741  
3742 +    /**
3743 +     * Returns the result of accumulating the given transformation
3744 +     * of all (key, value) pairs using the given reducer to
3745 +     * combine values, and the given basis as an identity value.
3746 +     *
3747 +     * @param parallelismThreshold the (estimated) number of elements
3748 +     * needed for this operation to be executed in parallel
3749 +     * @param transformer a function returning the transformation
3750 +     * for an element
3751 +     * @param basis the identity (initial default value) for the reduction
3752 +     * @param reducer a commutative associative combining function
3753 +     * @return the result of accumulating the given transformation
3754 +     * of all (key, value) pairs
3755 +     * @since 1.8
3756 +     */
3757 +    public double reduceToDouble(long parallelismThreshold,
3758 +                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3759 +                                 double basis,
3760 +                                 DoubleBinaryOperator reducer) {
3761 +        if (transformer == null || reducer == null)
3762 +            throw new NullPointerException();
3763 +        return new MapReduceMappingsToDoubleTask<K,V>
3764 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3765 +             null, transformer, basis, reducer).invoke();
3766 +    }
3767  
3768      /**
3769 <     * Copies all of the mappings from the specified map to this one.
3769 >     * Returns the result of accumulating the given transformation
3770 >     * of all (key, value) pairs using the given reducer to
3771 >     * combine values, and the given basis as an identity value.
3772       *
3773 <     * These mappings replace any mappings that this map had for any of the
3774 <     * keys currently in the specified Map.
3773 >     * @param parallelismThreshold the (estimated) number of elements
3774 >     * needed for this operation to be executed in parallel
3775 >     * @param transformer a function returning the transformation
3776 >     * for an element
3777 >     * @param basis the identity (initial default value) for the reduction
3778 >     * @param reducer a commutative associative combining function
3779 >     * @return the result of accumulating the given transformation
3780 >     * of all (key, value) pairs
3781 >     * @since 1.8
3782 >     */
3783 >    public long reduceToLong(long parallelismThreshold,
3784 >                             ToLongBiFunction<? super K, ? super V> transformer,
3785 >                             long basis,
3786 >                             LongBinaryOperator reducer) {
3787 >        if (transformer == null || reducer == null)
3788 >            throw new NullPointerException();
3789 >        return new MapReduceMappingsToLongTask<K,V>
3790 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3791 >             null, transformer, basis, reducer).invoke();
3792 >    }
3793 >
3794 >    /**
3795 >     * Returns the result of accumulating the given transformation
3796 >     * of all (key, value) pairs using the given reducer to
3797 >     * combine values, and the given basis as an identity value.
3798       *
3799 <     * @param t Mappings to be stored in this map.
3799 >     * @param parallelismThreshold the (estimated) number of elements
3800 >     * needed for this operation to be executed in parallel
3801 >     * @param transformer a function returning the transformation
3802 >     * for an element
3803 >     * @param basis the identity (initial default value) for the reduction
3804 >     * @param reducer a commutative associative combining function
3805 >     * @return the result of accumulating the given transformation
3806 >     * of all (key, value) pairs
3807 >     * @since 1.8
3808       */
3809 <    public void putAll(Map<? extends K, ? extends V> t) {
3810 <        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
3811 <            Entry<? extends K, ? extends V> e = it.next();
3812 <            put(e.getKey(), e.getValue());
3813 <        }
3809 >    public int reduceToInt(long parallelismThreshold,
3810 >                           ToIntBiFunction<? super K, ? super V> transformer,
3811 >                           int basis,
3812 >                           IntBinaryOperator reducer) {
3813 >        if (transformer == null || reducer == null)
3814 >            throw new NullPointerException();
3815 >        return new MapReduceMappingsToIntTask<K,V>
3816 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3817 >             null, transformer, basis, reducer).invoke();
3818      }
3819  
3820      /**
3821 <     * Removes the key (and its corresponding value) from this
895 <     * table. This method does nothing if the key is not in the table.
3821 >     * Performs the given action for each key.
3822       *
3823 <     * @param   key   the key that needs to be removed.
3824 <     * @return  the value to which the key had been mapped in this table,
3825 <     *          or <tt>null</tt> if the key did not have a mapping.
3826 <     * @throws  NullPointerException  if the key is
901 <     *               <tt>null</tt>.
3823 >     * @param parallelismThreshold the (estimated) number of elements
3824 >     * needed for this operation to be executed in parallel
3825 >     * @param action the action
3826 >     * @since 1.8
3827       */
3828 <    public V remove(Object key) {
3829 <        int hash = hash(key);
3830 <        return segmentFor(hash).remove(key, hash, null);
3828 >    public void forEachKey(long parallelismThreshold,
3829 >                           Consumer<? super K> action) {
3830 >        if (action == null) throw new NullPointerException();
3831 >        new ForEachKeyTask<K,V>
3832 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3833 >             action).invoke();
3834      }
3835  
3836      /**
3837 <     * Remove entry for key only if currently mapped to given value.
3838 <     * Acts as
3839 <     * <pre>
3840 <     *  if (map.get(key).equals(value)) {
3841 <     *     map.remove(key);
3842 <     *     return true;
3843 <     * } else return false;
3844 <     * </pre>
3845 <     * except that the action is performed atomically.
3846 <     * @param key key with which the specified value is associated.
3847 <     * @param value value associated with the specified key.
920 <     * @return true if the value was removed
921 <     * @throws NullPointerException if the specified key is
922 <     *            <tt>null</tt>.
3837 >     * Performs the given action for each non-null transformation
3838 >     * of each key.
3839 >     *
3840 >     * @param parallelismThreshold the (estimated) number of elements
3841 >     * needed for this operation to be executed in parallel
3842 >     * @param transformer a function returning the transformation
3843 >     * for an element, or null if there is no transformation (in
3844 >     * which case the action is not applied)
3845 >     * @param action the action
3846 >     * @param <U> the return type of the transformer
3847 >     * @since 1.8
3848       */
3849 <    public boolean remove(Object key, Object value) {
3850 <        int hash = hash(key);
3851 <        return segmentFor(hash).remove(key, hash, value) != null;
3849 >    public <U> void forEachKey(long parallelismThreshold,
3850 >                               Function<? super K, ? extends U> transformer,
3851 >                               Consumer<? super U> action) {
3852 >        if (transformer == null || action == null)
3853 >            throw new NullPointerException();
3854 >        new ForEachTransformedKeyTask<K,V,U>
3855 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3856 >             transformer, action).invoke();
3857      }
3858  
3859 +    /**
3860 +     * Returns a non-null result from applying the given search
3861 +     * function on each key, or null if none. Upon success,
3862 +     * further element processing is suppressed and the results of
3863 +     * any other parallel invocations of the search function are
3864 +     * ignored.
3865 +     *
3866 +     * @param parallelismThreshold the (estimated) number of elements
3867 +     * needed for this operation to be executed in parallel
3868 +     * @param searchFunction a function returning a non-null
3869 +     * result on success, else null
3870 +     * @param <U> the return type of the search function
3871 +     * @return a non-null result from applying the given search
3872 +     * function on each key, or null if none
3873 +     * @since 1.8
3874 +     */
3875 +    public <U> U searchKeys(long parallelismThreshold,
3876 +                            Function<? super K, ? extends U> searchFunction) {
3877 +        if (searchFunction == null) throw new NullPointerException();
3878 +        return new SearchKeysTask<K,V,U>
3879 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3880 +             searchFunction, new AtomicReference<U>()).invoke();
3881 +    }
3882  
3883      /**
3884 <     * Replace entry for key only if currently mapped to given value.
3885 <     * Acts as
3886 <     * <pre>
3887 <     *  if (map.get(key).equals(oldValue)) {
3888 <     *     map.put(key, newValue);
3889 <     *     return true;
3890 <     * } else return false;
3891 <     * </pre>
3892 <     * except that the action is performed atomically.
940 <     * @param key key with which the specified value is associated.
941 <     * @param oldValue value expected to be associated with the specified key.
942 <     * @param newValue value to be associated with the specified key.
943 <     * @return true if the value was replaced
944 <     * @throws NullPointerException if the specified key or values are
945 <     * <tt>null</tt>.
3884 >     * Returns the result of accumulating all keys using the given
3885 >     * reducer to combine values, or null if none.
3886 >     *
3887 >     * @param parallelismThreshold the (estimated) number of elements
3888 >     * needed for this operation to be executed in parallel
3889 >     * @param reducer a commutative associative combining function
3890 >     * @return the result of accumulating all keys using the given
3891 >     * reducer to combine values, or null if none
3892 >     * @since 1.8
3893       */
3894 <    public boolean replace(K key, V oldValue, V newValue) {
3895 <        if (oldValue == null || newValue == null)
3894 >    public K reduceKeys(long parallelismThreshold,
3895 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3896 >        if (reducer == null) throw new NullPointerException();
3897 >        return new ReduceKeysTask<K,V>
3898 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3899 >             null, reducer).invoke();
3900 >    }
3901 >
3902 >    /**
3903 >     * Returns the result of accumulating the given transformation
3904 >     * of all keys using the given reducer to combine values, or
3905 >     * null if none.
3906 >     *
3907 >     * @param parallelismThreshold the (estimated) number of elements
3908 >     * needed for this operation to be executed in parallel
3909 >     * @param transformer a function returning the transformation
3910 >     * for an element, or null if there is no transformation (in
3911 >     * which case it is not combined)
3912 >     * @param reducer a commutative associative combining function
3913 >     * @param <U> the return type of the transformer
3914 >     * @return the result of accumulating the given transformation
3915 >     * of all keys
3916 >     * @since 1.8
3917 >     */
3918 >    public <U> U reduceKeys(long parallelismThreshold,
3919 >                            Function<? super K, ? extends U> transformer,
3920 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3921 >        if (transformer == null || reducer == null)
3922              throw new NullPointerException();
3923 <        int hash = hash(key);
3924 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
3923 >        return new MapReduceKeysTask<K,V,U>
3924 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3925 >             null, transformer, reducer).invoke();
3926      }
3927  
3928      /**
3929 <     * Replace entry for key only if currently mapped to some value.
3930 <     * Acts as
3931 <     * <pre>
3932 <     *  if ((map.containsKey(key)) {
3933 <     *     return map.put(key, value);
3934 <     * } else return null;
3935 <     * </pre>
3936 <     * except that the action is performed atomically.
3937 <     * @param key key with which the specified value is associated.
3938 <     * @param value value to be associated with the specified key.
3939 <     * @return previous value associated with specified key, or <tt>null</tt>
3940 <     *         if there was no mapping for key.  
3941 <     * @throws NullPointerException if the specified key or value is
968 <     *            <tt>null</tt>.
3929 >     * Returns the result of accumulating the given transformation
3930 >     * of all keys using the given reducer to combine values, and
3931 >     * the given basis as an identity value.
3932 >     *
3933 >     * @param parallelismThreshold the (estimated) number of elements
3934 >     * needed for this operation to be executed in parallel
3935 >     * @param transformer a function returning the transformation
3936 >     * for an element
3937 >     * @param basis the identity (initial default value) for the reduction
3938 >     * @param reducer a commutative associative combining function
3939 >     * @return the result of accumulating the given transformation
3940 >     * of all keys
3941 >     * @since 1.8
3942       */
3943 <    public V replace(K key, V value) {
3944 <        if (value == null)
3943 >    public double reduceKeysToDouble(long parallelismThreshold,
3944 >                                     ToDoubleFunction<? super K> transformer,
3945 >                                     double basis,
3946 >                                     DoubleBinaryOperator reducer) {
3947 >        if (transformer == null || reducer == null)
3948              throw new NullPointerException();
3949 <        int hash = hash(key);
3950 <        return segmentFor(hash).replace(key, hash, value);
3949 >        return new MapReduceKeysToDoubleTask<K,V>
3950 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3951 >             null, transformer, basis, reducer).invoke();
3952      }
3953  
3954 +    /**
3955 +     * Returns the result of accumulating the given transformation
3956 +     * of all keys using the given reducer to combine values, and
3957 +     * the given basis as an identity value.
3958 +     *
3959 +     * @param parallelismThreshold the (estimated) number of elements
3960 +     * needed for this operation to be executed in parallel
3961 +     * @param transformer a function returning the transformation
3962 +     * for an element
3963 +     * @param basis the identity (initial default value) for the reduction
3964 +     * @param reducer a commutative associative combining function
3965 +     * @return the result of accumulating the given transformation
3966 +     * of all keys
3967 +     * @since 1.8
3968 +     */
3969 +    public long reduceKeysToLong(long parallelismThreshold,
3970 +                                 ToLongFunction<? super K> transformer,
3971 +                                 long basis,
3972 +                                 LongBinaryOperator reducer) {
3973 +        if (transformer == null || reducer == null)
3974 +            throw new NullPointerException();
3975 +        return new MapReduceKeysToLongTask<K,V>
3976 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3977 +             null, transformer, basis, reducer).invoke();
3978 +    }
3979  
3980      /**
3981 <     * Removes all mappings from this map.
3981 >     * Returns the result of accumulating the given transformation
3982 >     * of all keys using the given reducer to combine values, and
3983 >     * the given basis as an identity value.
3984 >     *
3985 >     * @param parallelismThreshold the (estimated) number of elements
3986 >     * needed for this operation to be executed in parallel
3987 >     * @param transformer a function returning the transformation
3988 >     * for an element
3989 >     * @param basis the identity (initial default value) for the reduction
3990 >     * @param reducer a commutative associative combining function
3991 >     * @return the result of accumulating the given transformation
3992 >     * of all keys
3993 >     * @since 1.8
3994       */
3995 <    public void clear() {
3996 <        for (int i = 0; i < segments.length; ++i)
3997 <            segments[i].clear();
3995 >    public int reduceKeysToInt(long parallelismThreshold,
3996 >                               ToIntFunction<? super K> transformer,
3997 >                               int basis,
3998 >                               IntBinaryOperator reducer) {
3999 >        if (transformer == null || reducer == null)
4000 >            throw new NullPointerException();
4001 >        return new MapReduceKeysToIntTask<K,V>
4002 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4003 >             null, transformer, basis, reducer).invoke();
4004      }
4005  
4006      /**
4007 <     * Returns a set view of the keys contained in this map.  The set is
4008 <     * backed by the map, so changes to the map are reflected in the set, and
4009 <     * vice-versa.  The set supports element removal, which removes the
4010 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
4011 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
4012 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
4013 <     * <tt>addAll</tt> operations.
4014 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
4015 <     * will never throw {@link java.util.ConcurrentModificationException},
4016 <     * and guarantees to traverse elements as they existed upon
4017 <     * construction of the iterator, and may (but is not guaranteed to)
4018 <     * reflect any modifications subsequent to construction.
4019 <     *
4020 <     * @return a set view of the keys contained in this map.
1001 <     */
1002 <    public Set<K> keySet() {
1003 <        Set<K> ks = keySet;
1004 <        return (ks != null) ? ks : (keySet = new KeySet());
4007 >     * Performs the given action for each value.
4008 >     *
4009 >     * @param parallelismThreshold the (estimated) number of elements
4010 >     * needed for this operation to be executed in parallel
4011 >     * @param action the action
4012 >     * @since 1.8
4013 >     */
4014 >    public void forEachValue(long parallelismThreshold,
4015 >                             Consumer<? super V> action) {
4016 >        if (action == null)
4017 >            throw new NullPointerException();
4018 >        new ForEachValueTask<K,V>
4019 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4020 >             action).invoke();
4021      }
4022  
4023 +    /**
4024 +     * Performs the given action for each non-null transformation
4025 +     * of each value.
4026 +     *
4027 +     * @param parallelismThreshold the (estimated) number of elements
4028 +     * needed for this operation to be executed in parallel
4029 +     * @param transformer a function returning the transformation
4030 +     * for an element, or null if there is no transformation (in
4031 +     * which case the action is not applied)
4032 +     * @param action the action
4033 +     * @param <U> the return type of the transformer
4034 +     * @since 1.8
4035 +     */
4036 +    public <U> void forEachValue(long parallelismThreshold,
4037 +                                 Function<? super V, ? extends U> transformer,
4038 +                                 Consumer<? super U> action) {
4039 +        if (transformer == null || action == null)
4040 +            throw new NullPointerException();
4041 +        new ForEachTransformedValueTask<K,V,U>
4042 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4043 +             transformer, action).invoke();
4044 +    }
4045  
4046      /**
4047 <     * Returns a collection view of the values contained in this map.  The
4048 <     * collection is backed by the map, so changes to the map are reflected in
4049 <     * the collection, and vice-versa.  The collection supports element
4050 <     * removal, which removes the corresponding mapping from this map, via the
4051 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1014 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1015 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1016 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1017 <     * will never throw {@link java.util.ConcurrentModificationException},
1018 <     * and guarantees to traverse elements as they existed upon
1019 <     * construction of the iterator, and may (but is not guaranteed to)
1020 <     * reflect any modifications subsequent to construction.
4047 >     * Returns a non-null result from applying the given search
4048 >     * function on each value, or null if none.  Upon success,
4049 >     * further element processing is suppressed and the results of
4050 >     * any other parallel invocations of the search function are
4051 >     * ignored.
4052       *
4053 <     * @return a collection view of the values contained in this map.
4053 >     * @param parallelismThreshold the (estimated) number of elements
4054 >     * needed for this operation to be executed in parallel
4055 >     * @param searchFunction a function returning a non-null
4056 >     * result on success, else null
4057 >     * @param <U> the return type of the search function
4058 >     * @return a non-null result from applying the given search
4059 >     * function on each value, or null if none
4060 >     * @since 1.8
4061       */
4062 <    public Collection<V> values() {
4063 <        Collection<V> vs = values;
4064 <        return (vs != null) ? vs : (values = new Values());
4062 >    public <U> U searchValues(long parallelismThreshold,
4063 >                              Function<? super V, ? extends U> searchFunction) {
4064 >        if (searchFunction == null) throw new NullPointerException();
4065 >        return new SearchValuesTask<K,V,U>
4066 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4067 >             searchFunction, new AtomicReference<U>()).invoke();
4068      }
4069  
4070 +    /**
4071 +     * Returns the result of accumulating all values using the
4072 +     * given reducer to combine values, or null if none.
4073 +     *
4074 +     * @param parallelismThreshold the (estimated) number of elements
4075 +     * needed for this operation to be executed in parallel
4076 +     * @param reducer a commutative associative combining function
4077 +     * @return the result of accumulating all values
4078 +     * @since 1.8
4079 +     */
4080 +    public V reduceValues(long parallelismThreshold,
4081 +                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4082 +        if (reducer == null) throw new NullPointerException();
4083 +        return new ReduceValuesTask<K,V>
4084 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4085 +             null, reducer).invoke();
4086 +    }
4087  
4088      /**
4089 <     * Returns a collection view of the mappings contained in this map.  Each
4090 <     * element in the returned collection is a <tt>Map.Entry</tt>.  The
4091 <     * collection is backed by the map, so changes to the map are reflected in
1034 <     * the collection, and vice-versa.  The collection supports element
1035 <     * removal, which removes the corresponding mapping from the map, via the
1036 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1037 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1038 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1039 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1040 <     * will never throw {@link java.util.ConcurrentModificationException},
1041 <     * and guarantees to traverse elements as they existed upon
1042 <     * construction of the iterator, and may (but is not guaranteed to)
1043 <     * reflect any modifications subsequent to construction.
4089 >     * Returns the result of accumulating the given transformation
4090 >     * of all values using the given reducer to combine values, or
4091 >     * null if none.
4092       *
4093 <     * @return a collection view of the mappings contained in this map.
4093 >     * @param parallelismThreshold the (estimated) number of elements
4094 >     * needed for this operation to be executed in parallel
4095 >     * @param transformer a function returning the transformation
4096 >     * for an element, or null if there is no transformation (in
4097 >     * which case it is not combined)
4098 >     * @param reducer a commutative associative combining function
4099 >     * @param <U> the return type of the transformer
4100 >     * @return the result of accumulating the given transformation
4101 >     * of all values
4102 >     * @since 1.8
4103       */
4104 <    public Set<Map.Entry<K,V>> entrySet() {
4105 <        Set<Map.Entry<K,V>> es = entrySet;
4106 <        return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
4104 >    public <U> U reduceValues(long parallelismThreshold,
4105 >                              Function<? super V, ? extends U> transformer,
4106 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4107 >        if (transformer == null || reducer == null)
4108 >            throw new NullPointerException();
4109 >        return new MapReduceValuesTask<K,V,U>
4110 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4111 >             null, transformer, reducer).invoke();
4112      }
4113  
4114 +    /**
4115 +     * Returns the result of accumulating the given transformation
4116 +     * of all values using the given reducer to combine values,
4117 +     * and the given basis as an identity value.
4118 +     *
4119 +     * @param parallelismThreshold the (estimated) number of elements
4120 +     * needed for this operation to be executed in parallel
4121 +     * @param transformer a function returning the transformation
4122 +     * for an element
4123 +     * @param basis the identity (initial default value) for the reduction
4124 +     * @param reducer a commutative associative combining function
4125 +     * @return the result of accumulating the given transformation
4126 +     * of all values
4127 +     * @since 1.8
4128 +     */
4129 +    public double reduceValuesToDouble(long parallelismThreshold,
4130 +                                       ToDoubleFunction<? super V> transformer,
4131 +                                       double basis,
4132 +                                       DoubleBinaryOperator reducer) {
4133 +        if (transformer == null || reducer == null)
4134 +            throw new NullPointerException();
4135 +        return new MapReduceValuesToDoubleTask<K,V>
4136 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4137 +             null, transformer, basis, reducer).invoke();
4138 +    }
4139  
4140      /**
4141 <     * Returns an enumeration of the keys in this table.
4141 >     * Returns the result of accumulating the given transformation
4142 >     * of all values using the given reducer to combine values,
4143 >     * and the given basis as an identity value.
4144       *
4145 <     * @return  an enumeration of the keys in this table.
4146 <     * @see     #keySet
4145 >     * @param parallelismThreshold the (estimated) number of elements
4146 >     * needed for this operation to be executed in parallel
4147 >     * @param transformer a function returning the transformation
4148 >     * for an element
4149 >     * @param basis the identity (initial default value) for the reduction
4150 >     * @param reducer a commutative associative combining function
4151 >     * @return the result of accumulating the given transformation
4152 >     * of all values
4153 >     * @since 1.8
4154       */
4155 <    public Enumeration<K> keys() {
4156 <        return new KeyIterator();
4155 >    public long reduceValuesToLong(long parallelismThreshold,
4156 >                                   ToLongFunction<? super V> transformer,
4157 >                                   long basis,
4158 >                                   LongBinaryOperator reducer) {
4159 >        if (transformer == null || reducer == null)
4160 >            throw new NullPointerException();
4161 >        return new MapReduceValuesToLongTask<K,V>
4162 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4163 >             null, transformer, basis, reducer).invoke();
4164      }
4165  
4166      /**
4167 <     * Returns an enumeration of the values in this table.
4167 >     * Returns the result of accumulating the given transformation
4168 >     * of all values using the given reducer to combine values,
4169 >     * and the given basis as an identity value.
4170       *
4171 <     * @return  an enumeration of the values in this table.
4172 <     * @see     #values
4171 >     * @param parallelismThreshold the (estimated) number of elements
4172 >     * needed for this operation to be executed in parallel
4173 >     * @param transformer a function returning the transformation
4174 >     * for an element
4175 >     * @param basis the identity (initial default value) for the reduction
4176 >     * @param reducer a commutative associative combining function
4177 >     * @return the result of accumulating the given transformation
4178 >     * of all values
4179 >     * @since 1.8
4180       */
4181 <    public Enumeration<V> elements() {
4182 <        return new ValueIterator();
4181 >    public int reduceValuesToInt(long parallelismThreshold,
4182 >                                 ToIntFunction<? super V> transformer,
4183 >                                 int basis,
4184 >                                 IntBinaryOperator reducer) {
4185 >        if (transformer == null || reducer == null)
4186 >            throw new NullPointerException();
4187 >        return new MapReduceValuesToIntTask<K,V>
4188 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4189 >             null, transformer, basis, reducer).invoke();
4190      }
4191  
4192 <    /* ---------------- Iterator Support -------------- */
4192 >    /**
4193 >     * Performs the given action for each entry.
4194 >     *
4195 >     * @param parallelismThreshold the (estimated) number of elements
4196 >     * needed for this operation to be executed in parallel
4197 >     * @param action the action
4198 >     * @since 1.8
4199 >     */
4200 >    public void forEachEntry(long parallelismThreshold,
4201 >                             Consumer<? super Map.Entry<K,V>> action) {
4202 >        if (action == null) throw new NullPointerException();
4203 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4204 >                                  action).invoke();
4205 >    }
4206  
4207 <    abstract class HashIterator {
4208 <        int nextSegmentIndex;
4209 <        int nextTableIndex;
4210 <        HashEntry[] currentTable;
4211 <        HashEntry<K, V> nextEntry;
4212 <        HashEntry<K, V> lastReturned;
4207 >    /**
4208 >     * Performs the given action for each non-null transformation
4209 >     * of each entry.
4210 >     *
4211 >     * @param parallelismThreshold the (estimated) number of elements
4212 >     * needed for this operation to be executed in parallel
4213 >     * @param transformer a function returning the transformation
4214 >     * for an element, or null if there is no transformation (in
4215 >     * which case the action is not applied)
4216 >     * @param action the action
4217 >     * @param <U> the return type of the transformer
4218 >     * @since 1.8
4219 >     */
4220 >    public <U> void forEachEntry(long parallelismThreshold,
4221 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4222 >                                 Consumer<? super U> action) {
4223 >        if (transformer == null || action == null)
4224 >            throw new NullPointerException();
4225 >        new ForEachTransformedEntryTask<K,V,U>
4226 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4227 >             transformer, action).invoke();
4228 >    }
4229  
4230 <        HashIterator() {
4231 <            nextSegmentIndex = segments.length - 1;
4232 <            nextTableIndex = -1;
4233 <            advance();
4234 <        }
4230 >    /**
4231 >     * Returns a non-null result from applying the given search
4232 >     * function on each entry, or null if none.  Upon success,
4233 >     * further element processing is suppressed and the results of
4234 >     * any other parallel invocations of the search function are
4235 >     * ignored.
4236 >     *
4237 >     * @param parallelismThreshold the (estimated) number of elements
4238 >     * needed for this operation to be executed in parallel
4239 >     * @param searchFunction a function returning a non-null
4240 >     * result on success, else null
4241 >     * @param <U> the return type of the search function
4242 >     * @return a non-null result from applying the given search
4243 >     * function on each entry, or null if none
4244 >     * @since 1.8
4245 >     */
4246 >    public <U> U searchEntries(long parallelismThreshold,
4247 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4248 >        if (searchFunction == null) throw new NullPointerException();
4249 >        return new SearchEntriesTask<K,V,U>
4250 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4251 >             searchFunction, new AtomicReference<U>()).invoke();
4252 >    }
4253  
4254 <        public boolean hasMoreElements() { return hasNext(); }
4254 >    /**
4255 >     * Returns the result of accumulating all entries using the
4256 >     * given reducer to combine values, or null if none.
4257 >     *
4258 >     * @param parallelismThreshold the (estimated) number of elements
4259 >     * needed for this operation to be executed in parallel
4260 >     * @param reducer a commutative associative combining function
4261 >     * @return the result of accumulating all entries
4262 >     * @since 1.8
4263 >     */
4264 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4265 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4266 >        if (reducer == null) throw new NullPointerException();
4267 >        return new ReduceEntriesTask<K,V>
4268 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4269 >             null, reducer).invoke();
4270 >    }
4271  
4272 <        final void advance() {
4273 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
4274 <                return;
4272 >    /**
4273 >     * Returns the result of accumulating the given transformation
4274 >     * of all entries using the given reducer to combine values,
4275 >     * or null if none.
4276 >     *
4277 >     * @param parallelismThreshold the (estimated) number of elements
4278 >     * needed for this operation to be executed in parallel
4279 >     * @param transformer a function returning the transformation
4280 >     * for an element, or null if there is no transformation (in
4281 >     * which case it is not combined)
4282 >     * @param reducer a commutative associative combining function
4283 >     * @param <U> the return type of the transformer
4284 >     * @return the result of accumulating the given transformation
4285 >     * of all entries
4286 >     * @since 1.8
4287 >     */
4288 >    public <U> U reduceEntries(long parallelismThreshold,
4289 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4290 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4291 >        if (transformer == null || reducer == null)
4292 >            throw new NullPointerException();
4293 >        return new MapReduceEntriesTask<K,V,U>
4294 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4295 >             null, transformer, reducer).invoke();
4296 >    }
4297  
4298 <            while (nextTableIndex >= 0) {
4299 <                if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
4300 <                    return;
4298 >    /**
4299 >     * Returns the result of accumulating the given transformation
4300 >     * of all entries using the given reducer to combine values,
4301 >     * and the given basis as an identity value.
4302 >     *
4303 >     * @param parallelismThreshold the (estimated) number of elements
4304 >     * needed for this operation to be executed in parallel
4305 >     * @param transformer a function returning the transformation
4306 >     * for an element
4307 >     * @param basis the identity (initial default value) for the reduction
4308 >     * @param reducer a commutative associative combining function
4309 >     * @return the result of accumulating the given transformation
4310 >     * of all entries
4311 >     * @since 1.8
4312 >     */
4313 >    public double reduceEntriesToDouble(long parallelismThreshold,
4314 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4315 >                                        double basis,
4316 >                                        DoubleBinaryOperator reducer) {
4317 >        if (transformer == null || reducer == null)
4318 >            throw new NullPointerException();
4319 >        return new MapReduceEntriesToDoubleTask<K,V>
4320 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4321 >             null, transformer, basis, reducer).invoke();
4322 >    }
4323 >
4324 >    /**
4325 >     * Returns the result of accumulating the given transformation
4326 >     * of all entries using the given reducer to combine values,
4327 >     * and the given basis as an identity value.
4328 >     *
4329 >     * @param parallelismThreshold the (estimated) number of elements
4330 >     * needed for this operation to be executed in parallel
4331 >     * @param transformer a function returning the transformation
4332 >     * for an element
4333 >     * @param basis the identity (initial default value) for the reduction
4334 >     * @param reducer a commutative associative combining function
4335 >     * @return the result of accumulating the given transformation
4336 >     * of all entries
4337 >     * @since 1.8
4338 >     */
4339 >    public long reduceEntriesToLong(long parallelismThreshold,
4340 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4341 >                                    long basis,
4342 >                                    LongBinaryOperator reducer) {
4343 >        if (transformer == null || reducer == null)
4344 >            throw new NullPointerException();
4345 >        return new MapReduceEntriesToLongTask<K,V>
4346 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4347 >             null, transformer, basis, reducer).invoke();
4348 >    }
4349 >
4350 >    /**
4351 >     * Returns the result of accumulating the given transformation
4352 >     * of all entries using the given reducer to combine values,
4353 >     * and the given basis as an identity value.
4354 >     *
4355 >     * @param parallelismThreshold the (estimated) number of elements
4356 >     * needed for this operation to be executed in parallel
4357 >     * @param transformer a function returning the transformation
4358 >     * for an element
4359 >     * @param basis the identity (initial default value) for the reduction
4360 >     * @param reducer a commutative associative combining function
4361 >     * @return the result of accumulating the given transformation
4362 >     * of all entries
4363 >     * @since 1.8
4364 >     */
4365 >    public int reduceEntriesToInt(long parallelismThreshold,
4366 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4367 >                                  int basis,
4368 >                                  IntBinaryOperator reducer) {
4369 >        if (transformer == null || reducer == null)
4370 >            throw new NullPointerException();
4371 >        return new MapReduceEntriesToIntTask<K,V>
4372 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4373 >             null, transformer, basis, reducer).invoke();
4374 >    }
4375 >
4376 >
4377 >    /* ----------------Views -------------- */
4378 >
4379 >    /**
4380 >     * Base class for views.
4381 >     */
4382 >    abstract static class CollectionView<K,V,E>
4383 >        implements Collection<E>, java.io.Serializable {
4384 >        private static final long serialVersionUID = 7249069246763182397L;
4385 >        final ConcurrentHashMap<K,V> map;
4386 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4387 >
4388 >        /**
4389 >         * Returns the map backing this view.
4390 >         *
4391 >         * @return the map backing this view
4392 >         */
4393 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4394 >
4395 >        /**
4396 >         * Removes all of the elements from this view, by removing all
4397 >         * the mappings from the map backing this view.
4398 >         */
4399 >        public final void clear()      { map.clear(); }
4400 >        public final int size()        { return map.size(); }
4401 >        public final boolean isEmpty() { return map.isEmpty(); }
4402 >
4403 >        // implementations below rely on concrete classes supplying these
4404 >        // abstract methods
4405 >        /**
4406 >         * Returns an iterator over the elements in this collection.
4407 >         *
4408 >         * <p>The returned iterator is
4409 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4410 >         *
4411 >         * @return an iterator over the elements in this collection
4412 >         */
4413 >        public abstract Iterator<E> iterator();
4414 >        public abstract boolean contains(Object o);
4415 >        public abstract boolean remove(Object o);
4416 >
4417 >        private static final String OOME_MSG = "Required array size too large";
4418 >
4419 >        public final Object[] toArray() {
4420 >            long sz = map.mappingCount();
4421 >            if (sz > MAX_ARRAY_SIZE)
4422 >                throw new OutOfMemoryError(OOME_MSG);
4423 >            int n = (int)sz;
4424 >            Object[] r = new Object[n];
4425 >            int i = 0;
4426 >            for (E e : this) {
4427 >                if (i == n) {
4428 >                    if (n >= MAX_ARRAY_SIZE)
4429 >                        throw new OutOfMemoryError(OOME_MSG);
4430 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4431 >                        n = MAX_ARRAY_SIZE;
4432 >                    else
4433 >                        n += (n >>> 1) + 1;
4434 >                    r = Arrays.copyOf(r, n);
4435 >                }
4436 >                r[i++] = e;
4437              }
4438 +            return (i == n) ? r : Arrays.copyOf(r, i);
4439 +        }
4440  
4441 <            while (nextSegmentIndex >= 0) {
4442 <                Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
4443 <                if (seg.count != 0) {
4444 <                    currentTable = seg.table;
4445 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
4446 <                        if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
4447 <                            nextTableIndex = j - 1;
4448 <                            return;
4449 <                        }
4450 <                    }
4441 >        @SuppressWarnings("unchecked")
4442 >        public final <T> T[] toArray(T[] a) {
4443 >            long sz = map.mappingCount();
4444 >            if (sz > MAX_ARRAY_SIZE)
4445 >                throw new OutOfMemoryError(OOME_MSG);
4446 >            int m = (int)sz;
4447 >            T[] r = (a.length >= m) ? a :
4448 >                (T[])java.lang.reflect.Array
4449 >                .newInstance(a.getClass().getComponentType(), m);
4450 >            int n = r.length;
4451 >            int i = 0;
4452 >            for (E e : this) {
4453 >                if (i == n) {
4454 >                    if (n >= MAX_ARRAY_SIZE)
4455 >                        throw new OutOfMemoryError(OOME_MSG);
4456 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4457 >                        n = MAX_ARRAY_SIZE;
4458 >                    else
4459 >                        n += (n >>> 1) + 1;
4460 >                    r = Arrays.copyOf(r, n);
4461                  }
4462 +                r[i++] = (T)e;
4463              }
4464 +            if (a == r && i < n) {
4465 +                r[i] = null; // null-terminate
4466 +                return r;
4467 +            }
4468 +            return (i == n) ? r : Arrays.copyOf(r, i);
4469          }
4470  
4471 <        public boolean hasNext() { return nextEntry != null; }
4471 >        /**
4472 >         * Returns a string representation of this collection.
4473 >         * The string representation consists of the string representations
4474 >         * of the collection's elements in the order they are returned by
4475 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4476 >         * Adjacent elements are separated by the characters {@code ", "}
4477 >         * (comma and space).  Elements are converted to strings as by
4478 >         * {@link String#valueOf(Object)}.
4479 >         *
4480 >         * @return a string representation of this collection
4481 >         */
4482 >        public final String toString() {
4483 >            StringBuilder sb = new StringBuilder();
4484 >            sb.append('[');
4485 >            Iterator<E> it = iterator();
4486 >            if (it.hasNext()) {
4487 >                for (;;) {
4488 >                    Object e = it.next();
4489 >                    sb.append(e == this ? "(this Collection)" : e);
4490 >                    if (!it.hasNext())
4491 >                        break;
4492 >                    sb.append(',').append(' ');
4493 >                }
4494 >            }
4495 >            return sb.append(']').toString();
4496 >        }
4497  
4498 <        HashEntry<K,V> nextEntry() {
4499 <            if (nextEntry == null)
4500 <                throw new NoSuchElementException();
4501 <            lastReturned = nextEntry;
4502 <            advance();
4503 <            return lastReturned;
4498 >        public final boolean containsAll(Collection<?> c) {
4499 >            if (c != this) {
4500 >                for (Object e : c) {
4501 >                    if (e == null || !contains(e))
4502 >                        return false;
4503 >                }
4504 >            }
4505 >            return true;
4506          }
4507  
4508 <        public void remove() {
4509 <            if (lastReturned == null)
4510 <                throw new IllegalStateException();
4511 <            ConcurrentHashMap.this.remove(lastReturned.key);
4512 <            lastReturned = null;
4508 >        public boolean removeAll(Collection<?> c) {
4509 >            if (c == null) throw new NullPointerException();
4510 >            boolean modified = false;
4511 >            // Use (c instanceof Set) as a hint that lookup in c is as
4512 >            // efficient as this view
4513 >            Node<K,V>[] t;
4514 >            if ((t = map.table) == null) {
4515 >                return false;
4516 >            } else if (c instanceof Set<?> && c.size() > t.length) {
4517 >                for (Iterator<?> it = iterator(); it.hasNext(); ) {
4518 >                    if (c.contains(it.next())) {
4519 >                        it.remove();
4520 >                        modified = true;
4521 >                    }
4522 >                }
4523 >            } else {
4524 >                for (Object e : c)
4525 >                    modified |= remove(e);
4526 >            }
4527 >            return modified;
4528          }
1129    }
4529  
4530 <    final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
4531 <        public K next() { return super.nextEntry().key; }
4532 <        public K nextElement() { return super.nextEntry().key; }
4533 <    }
4530 >        public final boolean retainAll(Collection<?> c) {
4531 >            if (c == null) throw new NullPointerException();
4532 >            boolean modified = false;
4533 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4534 >                if (!c.contains(it.next())) {
4535 >                    it.remove();
4536 >                    modified = true;
4537 >                }
4538 >            }
4539 >            return modified;
4540 >        }
4541  
1136    final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1137        public V next() { return super.nextEntry().value; }
1138        public V nextElement() { return super.nextEntry().value; }
4542      }
4543  
1141    
1142
4544      /**
4545 <     * Entry iterator. Exported Entry objects must write-through
4546 <     * changes in setValue, even if the nodes have been cloned. So we
4547 <     * cannot return internal HashEntry objects. Instead, the iterator
4548 <     * itself acts as a forwarding pseudo-entry.
4545 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4546 >     * which additions may optionally be enabled by mapping to a
4547 >     * common value.  This class cannot be directly instantiated.
4548 >     * See {@link #keySet() keySet()},
4549 >     * {@link #keySet(Object) keySet(V)},
4550 >     * {@link #newKeySet() newKeySet()},
4551 >     * {@link #newKeySet(int) newKeySet(int)}.
4552 >     *
4553 >     * @since 1.8
4554       */
4555 <    final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
4556 <        public Map.Entry<K,V> next() {
4557 <            nextEntry();
4558 <            return this;
4555 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4556 >        implements Set<K>, java.io.Serializable {
4557 >        private static final long serialVersionUID = 7249069246763182397L;
4558 >        private final V value;
4559 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4560 >            super(map);
4561 >            this.value = value;
4562          }
4563  
4564 <        public K getKey() {
4565 <            if (lastReturned == null)
4566 <                throw new IllegalStateException("Entry was removed");
4567 <            return lastReturned.key;
4564 >        /**
4565 >         * Returns the default mapped value for additions,
4566 >         * or {@code null} if additions are not supported.
4567 >         *
4568 >         * @return the default mapped value for additions, or {@code null}
4569 >         * if not supported
4570 >         */
4571 >        public V getMappedValue() { return value; }
4572 >
4573 >        /**
4574 >         * {@inheritDoc}
4575 >         * @throws NullPointerException if the specified key is null
4576 >         */
4577 >        public boolean contains(Object o) { return map.containsKey(o); }
4578 >
4579 >        /**
4580 >         * Removes the key from this map view, by removing the key (and its
4581 >         * corresponding value) from the backing map.  This method does
4582 >         * nothing if the key is not in the map.
4583 >         *
4584 >         * @param  o the key to be removed from the backing map
4585 >         * @return {@code true} if the backing map contained the specified key
4586 >         * @throws NullPointerException if the specified key is null
4587 >         */
4588 >        public boolean remove(Object o) { return map.remove(o) != null; }
4589 >
4590 >        /**
4591 >         * @return an iterator over the keys of the backing map
4592 >         */
4593 >        public Iterator<K> iterator() {
4594 >            Node<K,V>[] t;
4595 >            ConcurrentHashMap<K,V> m = map;
4596 >            int f = (t = m.table) == null ? 0 : t.length;
4597 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4598          }
4599  
4600 <        public V getValue() {
4601 <            if (lastReturned == null)
4602 <                throw new IllegalStateException("Entry was removed");
4603 <            return ConcurrentHashMap.this.get(lastReturned.key);
4600 >        /**
4601 >         * Adds the specified key to this set view by mapping the key to
4602 >         * the default mapped value in the backing map, if defined.
4603 >         *
4604 >         * @param e key to be added
4605 >         * @return {@code true} if this set changed as a result of the call
4606 >         * @throws NullPointerException if the specified key is null
4607 >         * @throws UnsupportedOperationException if no default mapped value
4608 >         * for additions was provided
4609 >         */
4610 >        public boolean add(K e) {
4611 >            V v;
4612 >            if ((v = value) == null)
4613 >                throw new UnsupportedOperationException();
4614 >            return map.putVal(e, v, true) == null;
4615          }
4616  
4617 <        public V setValue(V value) {
4618 <            if (lastReturned == null)
4619 <                throw new IllegalStateException("Entry was removed");
4620 <            return ConcurrentHashMap.this.put(lastReturned.key, value);
4617 >        /**
4618 >         * Adds all of the elements in the specified collection to this set,
4619 >         * as if by calling {@link #add} on each one.
4620 >         *
4621 >         * @param c the elements to be inserted into this set
4622 >         * @return {@code true} if this set changed as a result of the call
4623 >         * @throws NullPointerException if the collection or any of its
4624 >         * elements are {@code null}
4625 >         * @throws UnsupportedOperationException if no default mapped value
4626 >         * for additions was provided
4627 >         */
4628 >        public boolean addAll(Collection<? extends K> c) {
4629 >            boolean added = false;
4630 >            V v;
4631 >            if ((v = value) == null)
4632 >                throw new UnsupportedOperationException();
4633 >            for (K e : c) {
4634 >                if (map.putVal(e, v, true) == null)
4635 >                    added = true;
4636 >            }
4637 >            return added;
4638 >        }
4639 >
4640 >        public int hashCode() {
4641 >            int h = 0;
4642 >            for (K e : this)
4643 >                h += e.hashCode();
4644 >            return h;
4645          }
4646  
4647          public boolean equals(Object o) {
4648 <            // If not acting as entry, just use default.
4649 <            if (lastReturned == null)
4650 <                return super.equals(o);
4651 <            if (!(o instanceof Map.Entry))
4652 <                return false;
4653 <            Map.Entry e = (Map.Entry)o;
4654 <            return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
4648 >            Set<?> c;
4649 >            return ((o instanceof Set) &&
4650 >                    ((c = (Set<?>)o) == this ||
4651 >                     (containsAll(c) && c.containsAll(this))));
4652 >        }
4653 >
4654 >        public Spliterator<K> spliterator() {
4655 >            Node<K,V>[] t;
4656 >            ConcurrentHashMap<K,V> m = map;
4657 >            long n = m.sumCount();
4658 >            int f = (t = m.table) == null ? 0 : t.length;
4659 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4660 >        }
4661 >
4662 >        public void forEach(Consumer<? super K> action) {
4663 >            if (action == null) throw new NullPointerException();
4664 >            Node<K,V>[] t;
4665 >            if ((t = map.table) != null) {
4666 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4667 >                for (Node<K,V> p; (p = it.advance()) != null; )
4668 >                    action.accept(p.key);
4669 >            }
4670          }
4671 +    }
4672  
4673 <        public int hashCode() {
4674 <            // If not acting as entry, just use default.
4675 <            if (lastReturned == null)
4676 <                return super.hashCode();
4677 <
4678 <            Object k = getKey();
4679 <            Object v = getValue();
4680 <            return ((k == null) ? 0 : k.hashCode()) ^
4681 <                   ((v == null) ? 0 : v.hashCode());
4673 >    /**
4674 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4675 >     * values, in which additions are disabled. This class cannot be
4676 >     * directly instantiated. See {@link #values()}.
4677 >     */
4678 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4679 >        implements Collection<V>, java.io.Serializable {
4680 >        private static final long serialVersionUID = 2249069246763182397L;
4681 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4682 >        public final boolean contains(Object o) {
4683 >            return map.containsValue(o);
4684          }
4685  
4686 <        public String toString() {
4687 <            // If not acting as entry, just use default.
4688 <            if (lastReturned == null)
4689 <                return super.toString();
4690 <            else
4691 <                return getKey() + "=" + getValue();
4686 >        public final boolean remove(Object o) {
4687 >            if (o != null) {
4688 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4689 >                    if (o.equals(it.next())) {
4690 >                        it.remove();
4691 >                        return true;
4692 >                    }
4693 >                }
4694 >            }
4695 >            return false;
4696          }
4697  
4698 <        boolean eq(Object o1, Object o2) {
4699 <            return (o1 == null ? o2 == null : o1.equals(o2));
4698 >        public final Iterator<V> iterator() {
4699 >            ConcurrentHashMap<K,V> m = map;
4700 >            Node<K,V>[] t;
4701 >            int f = (t = m.table) == null ? 0 : t.length;
4702 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4703 >        }
4704 >
4705 >        public final boolean add(V e) {
4706 >            throw new UnsupportedOperationException();
4707 >        }
4708 >        public final boolean addAll(Collection<? extends V> c) {
4709 >            throw new UnsupportedOperationException();
4710 >        }
4711 >
4712 >        @Override public boolean removeAll(Collection<?> c) {
4713 >            if (c == null) throw new NullPointerException();
4714 >            boolean modified = false;
4715 >            for (Iterator<V> it = iterator(); it.hasNext();) {
4716 >                if (c.contains(it.next())) {
4717 >                    it.remove();
4718 >                    modified = true;
4719 >                }
4720 >            }
4721 >            return modified;
4722          }
4723  
4724 <    }
4724 >        public boolean removeIf(Predicate<? super V> filter) {
4725 >            return map.removeValueIf(filter);
4726 >        }
4727  
4728 <    final class KeySet extends AbstractSet<K> {
4729 <        public Iterator<K> iterator() {
4730 <            return new KeyIterator();
4728 >        public Spliterator<V> spliterator() {
4729 >            Node<K,V>[] t;
4730 >            ConcurrentHashMap<K,V> m = map;
4731 >            long n = m.sumCount();
4732 >            int f = (t = m.table) == null ? 0 : t.length;
4733 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4734          }
4735 <        public int size() {
4736 <            return ConcurrentHashMap.this.size();
4735 >
4736 >        public void forEach(Consumer<? super V> action) {
4737 >            if (action == null) throw new NullPointerException();
4738 >            Node<K,V>[] t;
4739 >            if ((t = map.table) != null) {
4740 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4741 >                for (Node<K,V> p; (p = it.advance()) != null; )
4742 >                    action.accept(p.val);
4743 >            }
4744          }
4745 +    }
4746 +
4747 +    /**
4748 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4749 +     * entries.  This class cannot be directly instantiated. See
4750 +     * {@link #entrySet()}.
4751 +     */
4752 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4753 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4754 +        private static final long serialVersionUID = 2249069246763182397L;
4755 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4756 +
4757          public boolean contains(Object o) {
4758 <            return ConcurrentHashMap.this.containsKey(o);
4758 >            Object k, v, r; Map.Entry<?,?> e;
4759 >            return ((o instanceof Map.Entry) &&
4760 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4761 >                    (r = map.get(k)) != null &&
4762 >                    (v = e.getValue()) != null &&
4763 >                    (v == r || v.equals(r)));
4764          }
4765 +
4766          public boolean remove(Object o) {
4767 <            return ConcurrentHashMap.this.remove(o) != null;
4767 >            Object k, v; Map.Entry<?,?> e;
4768 >            return ((o instanceof Map.Entry) &&
4769 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4770 >                    (v = e.getValue()) != null &&
4771 >                    map.remove(k, v));
4772          }
4773 <        public void clear() {
4774 <            ConcurrentHashMap.this.clear();
4773 >
4774 >        /**
4775 >         * @return an iterator over the entries of the backing map
4776 >         */
4777 >        public Iterator<Map.Entry<K,V>> iterator() {
4778 >            ConcurrentHashMap<K,V> m = map;
4779 >            Node<K,V>[] t;
4780 >            int f = (t = m.table) == null ? 0 : t.length;
4781 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4782          }
4783 <        public Object[] toArray() {
4784 <            Collection<K> c = new ArrayList<K>();
4785 <            for (Iterator<K> i = iterator(); i.hasNext(); )
1227 <                c.add(i.next());
1228 <            return c.toArray();
4783 >
4784 >        public boolean add(Entry<K,V> e) {
4785 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4786          }
4787 <        public <T> T[] toArray(T[] a) {
4788 <            Collection<K> c = new ArrayList<K>();
4789 <            for (Iterator<K> i = iterator(); i.hasNext(); )
4790 <                c.add(i.next());
4791 <            return c.toArray(a);
4787 >
4788 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4789 >            boolean added = false;
4790 >            for (Entry<K,V> e : c) {
4791 >                if (add(e))
4792 >                    added = true;
4793 >            }
4794 >            return added;
4795          }
4796 +
4797 +        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4798 +            return map.removeEntryIf(filter);
4799 +        }
4800 +
4801 +        public final int hashCode() {
4802 +            int h = 0;
4803 +            Node<K,V>[] t;
4804 +            if ((t = map.table) != null) {
4805 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4806 +                for (Node<K,V> p; (p = it.advance()) != null; ) {
4807 +                    h += p.hashCode();
4808 +                }
4809 +            }
4810 +            return h;
4811 +        }
4812 +
4813 +        public final boolean equals(Object o) {
4814 +            Set<?> c;
4815 +            return ((o instanceof Set) &&
4816 +                    ((c = (Set<?>)o) == this ||
4817 +                     (containsAll(c) && c.containsAll(this))));
4818 +        }
4819 +
4820 +        public Spliterator<Map.Entry<K,V>> spliterator() {
4821 +            Node<K,V>[] t;
4822 +            ConcurrentHashMap<K,V> m = map;
4823 +            long n = m.sumCount();
4824 +            int f = (t = m.table) == null ? 0 : t.length;
4825 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4826 +        }
4827 +
4828 +        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4829 +            if (action == null) throw new NullPointerException();
4830 +            Node<K,V>[] t;
4831 +            if ((t = map.table) != null) {
4832 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4833 +                for (Node<K,V> p; (p = it.advance()) != null; )
4834 +                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4835 +            }
4836 +        }
4837 +
4838      }
4839  
4840 <    final class Values extends AbstractCollection<V> {
4841 <        public Iterator<V> iterator() {
4842 <            return new ValueIterator();
4840 >    // -------------------------------------------------------
4841 >
4842 >    /**
4843 >     * Base class for bulk tasks. Repeats some fields and code from
4844 >     * class Traverser, because we need to subclass CountedCompleter.
4845 >     */
4846 >    @SuppressWarnings("serial")
4847 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4848 >        Node<K,V>[] tab;        // same as Traverser
4849 >        Node<K,V> next;
4850 >        TableStack<K,V> stack, spare;
4851 >        int index;
4852 >        int baseIndex;
4853 >        int baseLimit;
4854 >        final int baseSize;
4855 >        int batch;              // split control
4856 >
4857 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4858 >            super(par);
4859 >            this.batch = b;
4860 >            this.index = this.baseIndex = i;
4861 >            if ((this.tab = t) == null)
4862 >                this.baseSize = this.baseLimit = 0;
4863 >            else if (par == null)
4864 >                this.baseSize = this.baseLimit = t.length;
4865 >            else {
4866 >                this.baseLimit = f;
4867 >                this.baseSize = par.baseSize;
4868 >            }
4869          }
4870 <        public int size() {
4871 <            return ConcurrentHashMap.this.size();
4870 >
4871 >        /**
4872 >         * Same as Traverser version.
4873 >         */
4874 >        final Node<K,V> advance() {
4875 >            Node<K,V> e;
4876 >            if ((e = next) != null)
4877 >                e = e.next;
4878 >            for (;;) {
4879 >                Node<K,V>[] t; int i, n;
4880 >                if (e != null)
4881 >                    return next = e;
4882 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4883 >                    (n = t.length) <= (i = index) || i < 0)
4884 >                    return next = null;
4885 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4886 >                    if (e instanceof ForwardingNode) {
4887 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4888 >                        e = null;
4889 >                        pushState(t, i, n);
4890 >                        continue;
4891 >                    }
4892 >                    else if (e instanceof TreeBin)
4893 >                        e = ((TreeBin<K,V>)e).first;
4894 >                    else
4895 >                        e = null;
4896 >                }
4897 >                if (stack != null)
4898 >                    recoverState(n);
4899 >                else if ((index = i + baseSize) >= n)
4900 >                    index = ++baseIndex;
4901 >            }
4902          }
4903 <        public boolean contains(Object o) {
4904 <            return ConcurrentHashMap.this.containsValue(o);
4903 >
4904 >        private void pushState(Node<K,V>[] t, int i, int n) {
4905 >            TableStack<K,V> s = spare;
4906 >            if (s != null)
4907 >                spare = s.next;
4908 >            else
4909 >                s = new TableStack<K,V>();
4910 >            s.tab = t;
4911 >            s.length = n;
4912 >            s.index = i;
4913 >            s.next = stack;
4914 >            stack = s;
4915 >        }
4916 >
4917 >        private void recoverState(int n) {
4918 >            TableStack<K,V> s; int len;
4919 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4920 >                n = len;
4921 >                index = s.index;
4922 >                tab = s.tab;
4923 >                s.tab = null;
4924 >                TableStack<K,V> next = s.next;
4925 >                s.next = spare; // save for reuse
4926 >                stack = next;
4927 >                spare = s;
4928 >            }
4929 >            if (s == null && (index += baseSize) >= n)
4930 >                index = ++baseIndex;
4931          }
4932 <        public void clear() {
4933 <            ConcurrentHashMap.this.clear();
4932 >    }
4933 >
4934 >    /*
4935 >     * Task classes. Coded in a regular but ugly format/style to
4936 >     * simplify checks that each variant differs in the right way from
4937 >     * others. The null screenings exist because compilers cannot tell
4938 >     * that we've already null-checked task arguments, so we force
4939 >     * simplest hoisted bypass to help avoid convoluted traps.
4940 >     */
4941 >    @SuppressWarnings("serial")
4942 >    static final class ForEachKeyTask<K,V>
4943 >        extends BulkTask<K,V,Void> {
4944 >        final Consumer<? super K> action;
4945 >        ForEachKeyTask
4946 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4947 >             Consumer<? super K> action) {
4948 >            super(p, b, i, f, t);
4949 >            this.action = action;
4950 >        }
4951 >        public final void compute() {
4952 >            final Consumer<? super K> action;
4953 >            if ((action = this.action) != null) {
4954 >                for (int i = baseIndex, f, h; batch > 0 &&
4955 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4956 >                    addToPendingCount(1);
4957 >                    new ForEachKeyTask<K,V>
4958 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4959 >                         action).fork();
4960 >                }
4961 >                for (Node<K,V> p; (p = advance()) != null;)
4962 >                    action.accept(p.key);
4963 >                propagateCompletion();
4964 >            }
4965          }
4966 <        public Object[] toArray() {
4967 <            Collection<V> c = new ArrayList<V>();
4968 <            for (Iterator<V> i = iterator(); i.hasNext(); )
4969 <                c.add(i.next());
4970 <            return c.toArray();
4966 >    }
4967 >
4968 >    @SuppressWarnings("serial")
4969 >    static final class ForEachValueTask<K,V>
4970 >        extends BulkTask<K,V,Void> {
4971 >        final Consumer<? super V> action;
4972 >        ForEachValueTask
4973 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4974 >             Consumer<? super V> action) {
4975 >            super(p, b, i, f, t);
4976 >            this.action = action;
4977 >        }
4978 >        public final void compute() {
4979 >            final Consumer<? super V> action;
4980 >            if ((action = this.action) != null) {
4981 >                for (int i = baseIndex, f, h; batch > 0 &&
4982 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4983 >                    addToPendingCount(1);
4984 >                    new ForEachValueTask<K,V>
4985 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4986 >                         action).fork();
4987 >                }
4988 >                for (Node<K,V> p; (p = advance()) != null;)
4989 >                    action.accept(p.val);
4990 >                propagateCompletion();
4991 >            }
4992          }
4993 <        public <T> T[] toArray(T[] a) {
4994 <            Collection<V> c = new ArrayList<V>();
4995 <            for (Iterator<V> i = iterator(); i.hasNext(); )
4996 <                c.add(i.next());
4997 <            return c.toArray(a);
4993 >    }
4994 >
4995 >    @SuppressWarnings("serial")
4996 >    static final class ForEachEntryTask<K,V>
4997 >        extends BulkTask<K,V,Void> {
4998 >        final Consumer<? super Entry<K,V>> action;
4999 >        ForEachEntryTask
5000 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5001 >             Consumer<? super Entry<K,V>> action) {
5002 >            super(p, b, i, f, t);
5003 >            this.action = action;
5004 >        }
5005 >        public final void compute() {
5006 >            final Consumer<? super Entry<K,V>> action;
5007 >            if ((action = this.action) != null) {
5008 >                for (int i = baseIndex, f, h; batch > 0 &&
5009 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5010 >                    addToPendingCount(1);
5011 >                    new ForEachEntryTask<K,V>
5012 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5013 >                         action).fork();
5014 >                }
5015 >                for (Node<K,V> p; (p = advance()) != null; )
5016 >                    action.accept(p);
5017 >                propagateCompletion();
5018 >            }
5019          }
5020      }
5021  
5022 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
5023 <        public Iterator<Map.Entry<K,V>> iterator() {
5024 <            return new EntryIterator();
5022 >    @SuppressWarnings("serial")
5023 >    static final class ForEachMappingTask<K,V>
5024 >        extends BulkTask<K,V,Void> {
5025 >        final BiConsumer<? super K, ? super V> action;
5026 >        ForEachMappingTask
5027 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5028 >             BiConsumer<? super K,? super V> action) {
5029 >            super(p, b, i, f, t);
5030 >            this.action = action;
5031 >        }
5032 >        public final void compute() {
5033 >            final BiConsumer<? super K, ? super V> action;
5034 >            if ((action = this.action) != null) {
5035 >                for (int i = baseIndex, f, h; batch > 0 &&
5036 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5037 >                    addToPendingCount(1);
5038 >                    new ForEachMappingTask<K,V>
5039 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5040 >                         action).fork();
5041 >                }
5042 >                for (Node<K,V> p; (p = advance()) != null; )
5043 >                    action.accept(p.key, p.val);
5044 >                propagateCompletion();
5045 >            }
5046          }
5047 <        public boolean contains(Object o) {
5048 <            if (!(o instanceof Map.Entry))
5049 <                return false;
5050 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
5051 <            V v = ConcurrentHashMap.this.get(e.getKey());
5052 <            return v != null && v.equals(e.getValue());
5047 >    }
5048 >
5049 >    @SuppressWarnings("serial")
5050 >    static final class ForEachTransformedKeyTask<K,V,U>
5051 >        extends BulkTask<K,V,Void> {
5052 >        final Function<? super K, ? extends U> transformer;
5053 >        final Consumer<? super U> action;
5054 >        ForEachTransformedKeyTask
5055 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5056 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5057 >            super(p, b, i, f, t);
5058 >            this.transformer = transformer; this.action = action;
5059 >        }
5060 >        public final void compute() {
5061 >            final Function<? super K, ? extends U> transformer;
5062 >            final Consumer<? super U> action;
5063 >            if ((transformer = this.transformer) != null &&
5064 >                (action = this.action) != null) {
5065 >                for (int i = baseIndex, f, h; batch > 0 &&
5066 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5067 >                    addToPendingCount(1);
5068 >                    new ForEachTransformedKeyTask<K,V,U>
5069 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5070 >                         transformer, action).fork();
5071 >                }
5072 >                for (Node<K,V> p; (p = advance()) != null; ) {
5073 >                    U u;
5074 >                    if ((u = transformer.apply(p.key)) != null)
5075 >                        action.accept(u);
5076 >                }
5077 >                propagateCompletion();
5078 >            }
5079          }
5080 <        public boolean remove(Object o) {
5081 <            if (!(o instanceof Map.Entry))
5082 <                return false;
5083 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
5084 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
5080 >    }
5081 >
5082 >    @SuppressWarnings("serial")
5083 >    static final class ForEachTransformedValueTask<K,V,U>
5084 >        extends BulkTask<K,V,Void> {
5085 >        final Function<? super V, ? extends U> transformer;
5086 >        final Consumer<? super U> action;
5087 >        ForEachTransformedValueTask
5088 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5089 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5090 >            super(p, b, i, f, t);
5091 >            this.transformer = transformer; this.action = action;
5092 >        }
5093 >        public final void compute() {
5094 >            final Function<? super V, ? extends U> transformer;
5095 >            final Consumer<? super U> action;
5096 >            if ((transformer = this.transformer) != null &&
5097 >                (action = this.action) != null) {
5098 >                for (int i = baseIndex, f, h; batch > 0 &&
5099 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5100 >                    addToPendingCount(1);
5101 >                    new ForEachTransformedValueTask<K,V,U>
5102 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5103 >                         transformer, action).fork();
5104 >                }
5105 >                for (Node<K,V> p; (p = advance()) != null; ) {
5106 >                    U u;
5107 >                    if ((u = transformer.apply(p.val)) != null)
5108 >                        action.accept(u);
5109 >                }
5110 >                propagateCompletion();
5111 >            }
5112          }
5113 <        public int size() {
5114 <            return ConcurrentHashMap.this.size();
5113 >    }
5114 >
5115 >    @SuppressWarnings("serial")
5116 >    static final class ForEachTransformedEntryTask<K,V,U>
5117 >        extends BulkTask<K,V,Void> {
5118 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5119 >        final Consumer<? super U> action;
5120 >        ForEachTransformedEntryTask
5121 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5122 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5123 >            super(p, b, i, f, t);
5124 >            this.transformer = transformer; this.action = action;
5125 >        }
5126 >        public final void compute() {
5127 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5128 >            final Consumer<? super U> action;
5129 >            if ((transformer = this.transformer) != null &&
5130 >                (action = this.action) != null) {
5131 >                for (int i = baseIndex, f, h; batch > 0 &&
5132 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5133 >                    addToPendingCount(1);
5134 >                    new ForEachTransformedEntryTask<K,V,U>
5135 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5136 >                         transformer, action).fork();
5137 >                }
5138 >                for (Node<K,V> p; (p = advance()) != null; ) {
5139 >                    U u;
5140 >                    if ((u = transformer.apply(p)) != null)
5141 >                        action.accept(u);
5142 >                }
5143 >                propagateCompletion();
5144 >            }
5145          }
5146 <        public void clear() {
5147 <            ConcurrentHashMap.this.clear();
5146 >    }
5147 >
5148 >    @SuppressWarnings("serial")
5149 >    static final class ForEachTransformedMappingTask<K,V,U>
5150 >        extends BulkTask<K,V,Void> {
5151 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5152 >        final Consumer<? super U> action;
5153 >        ForEachTransformedMappingTask
5154 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5155 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5156 >             Consumer<? super U> action) {
5157 >            super(p, b, i, f, t);
5158 >            this.transformer = transformer; this.action = action;
5159 >        }
5160 >        public final void compute() {
5161 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5162 >            final Consumer<? super U> action;
5163 >            if ((transformer = this.transformer) != null &&
5164 >                (action = this.action) != null) {
5165 >                for (int i = baseIndex, f, h; batch > 0 &&
5166 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5167 >                    addToPendingCount(1);
5168 >                    new ForEachTransformedMappingTask<K,V,U>
5169 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5170 >                         transformer, action).fork();
5171 >                }
5172 >                for (Node<K,V> p; (p = advance()) != null; ) {
5173 >                    U u;
5174 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5175 >                        action.accept(u);
5176 >                }
5177 >                propagateCompletion();
5178 >            }
5179          }
5180 <        public Object[] toArray() {
5181 <            // Since we don't ordinarily have distinct Entry objects, we
5182 <            // must pack elements using exportable SimpleEntry
5183 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
5184 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
5185 <                c.add(new SimpleEntry<K,V>(i.next()));
5186 <            return c.toArray();
5180 >    }
5181 >
5182 >    @SuppressWarnings("serial")
5183 >    static final class SearchKeysTask<K,V,U>
5184 >        extends BulkTask<K,V,U> {
5185 >        final Function<? super K, ? extends U> searchFunction;
5186 >        final AtomicReference<U> result;
5187 >        SearchKeysTask
5188 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5189 >             Function<? super K, ? extends U> searchFunction,
5190 >             AtomicReference<U> result) {
5191 >            super(p, b, i, f, t);
5192 >            this.searchFunction = searchFunction; this.result = result;
5193 >        }
5194 >        public final U getRawResult() { return result.get(); }
5195 >        public final void compute() {
5196 >            final Function<? super K, ? extends U> searchFunction;
5197 >            final AtomicReference<U> result;
5198 >            if ((searchFunction = this.searchFunction) != null &&
5199 >                (result = this.result) != null) {
5200 >                for (int i = baseIndex, f, h; batch > 0 &&
5201 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5202 >                    if (result.get() != null)
5203 >                        return;
5204 >                    addToPendingCount(1);
5205 >                    new SearchKeysTask<K,V,U>
5206 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5207 >                         searchFunction, result).fork();
5208 >                }
5209 >                while (result.get() == null) {
5210 >                    U u;
5211 >                    Node<K,V> p;
5212 >                    if ((p = advance()) == null) {
5213 >                        propagateCompletion();
5214 >                        break;
5215 >                    }
5216 >                    if ((u = searchFunction.apply(p.key)) != null) {
5217 >                        if (result.compareAndSet(null, u))
5218 >                            quietlyCompleteRoot();
5219 >                        break;
5220 >                    }
5221 >                }
5222 >            }
5223          }
5224 <        public <T> T[] toArray(T[] a) {
5225 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
5226 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
5227 <                c.add(new SimpleEntry<K,V>(i.next()));
5228 <            return c.toArray(a);
5224 >    }
5225 >
5226 >    @SuppressWarnings("serial")
5227 >    static final class SearchValuesTask<K,V,U>
5228 >        extends BulkTask<K,V,U> {
5229 >        final Function<? super V, ? extends U> searchFunction;
5230 >        final AtomicReference<U> result;
5231 >        SearchValuesTask
5232 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5233 >             Function<? super V, ? extends U> searchFunction,
5234 >             AtomicReference<U> result) {
5235 >            super(p, b, i, f, t);
5236 >            this.searchFunction = searchFunction; this.result = result;
5237 >        }
5238 >        public final U getRawResult() { return result.get(); }
5239 >        public final void compute() {
5240 >            final Function<? super V, ? extends U> searchFunction;
5241 >            final AtomicReference<U> result;
5242 >            if ((searchFunction = this.searchFunction) != null &&
5243 >                (result = this.result) != null) {
5244 >                for (int i = baseIndex, f, h; batch > 0 &&
5245 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5246 >                    if (result.get() != null)
5247 >                        return;
5248 >                    addToPendingCount(1);
5249 >                    new SearchValuesTask<K,V,U>
5250 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5251 >                         searchFunction, result).fork();
5252 >                }
5253 >                while (result.get() == null) {
5254 >                    U u;
5255 >                    Node<K,V> p;
5256 >                    if ((p = advance()) == null) {
5257 >                        propagateCompletion();
5258 >                        break;
5259 >                    }
5260 >                    if ((u = searchFunction.apply(p.val)) != null) {
5261 >                        if (result.compareAndSet(null, u))
5262 >                            quietlyCompleteRoot();
5263 >                        break;
5264 >                    }
5265 >                }
5266 >            }
5267          }
5268 +    }
5269  
5270 +    @SuppressWarnings("serial")
5271 +    static final class SearchEntriesTask<K,V,U>
5272 +        extends BulkTask<K,V,U> {
5273 +        final Function<Entry<K,V>, ? extends U> searchFunction;
5274 +        final AtomicReference<U> result;
5275 +        SearchEntriesTask
5276 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5277 +             Function<Entry<K,V>, ? extends U> searchFunction,
5278 +             AtomicReference<U> result) {
5279 +            super(p, b, i, f, t);
5280 +            this.searchFunction = searchFunction; this.result = result;
5281 +        }
5282 +        public final U getRawResult() { return result.get(); }
5283 +        public final void compute() {
5284 +            final Function<Entry<K,V>, ? extends U> searchFunction;
5285 +            final AtomicReference<U> result;
5286 +            if ((searchFunction = this.searchFunction) != null &&
5287 +                (result = this.result) != null) {
5288 +                for (int i = baseIndex, f, h; batch > 0 &&
5289 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5290 +                    if (result.get() != null)
5291 +                        return;
5292 +                    addToPendingCount(1);
5293 +                    new SearchEntriesTask<K,V,U>
5294 +                        (this, batch >>>= 1, baseLimit = h, f, tab,
5295 +                         searchFunction, result).fork();
5296 +                }
5297 +                while (result.get() == null) {
5298 +                    U u;
5299 +                    Node<K,V> p;
5300 +                    if ((p = advance()) == null) {
5301 +                        propagateCompletion();
5302 +                        break;
5303 +                    }
5304 +                    if ((u = searchFunction.apply(p)) != null) {
5305 +                        if (result.compareAndSet(null, u))
5306 +                            quietlyCompleteRoot();
5307 +                        return;
5308 +                    }
5309 +                }
5310 +            }
5311 +        }
5312      }
5313  
5314 <    /**
5315 <     * This duplicates java.util.AbstractMap.SimpleEntry until this class
5316 <     * is made accessible.
5317 <     */
5318 <    static final class SimpleEntry<K,V> implements Entry<K,V> {
5319 <        K key;
5320 <        V value;
5314 >    @SuppressWarnings("serial")
5315 >    static final class SearchMappingsTask<K,V,U>
5316 >        extends BulkTask<K,V,U> {
5317 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5318 >        final AtomicReference<U> result;
5319 >        SearchMappingsTask
5320 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5321 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5322 >             AtomicReference<U> result) {
5323 >            super(p, b, i, f, t);
5324 >            this.searchFunction = searchFunction; this.result = result;
5325 >        }
5326 >        public final U getRawResult() { return result.get(); }
5327 >        public final void compute() {
5328 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5329 >            final AtomicReference<U> result;
5330 >            if ((searchFunction = this.searchFunction) != null &&
5331 >                (result = this.result) != null) {
5332 >                for (int i = baseIndex, f, h; batch > 0 &&
5333 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5334 >                    if (result.get() != null)
5335 >                        return;
5336 >                    addToPendingCount(1);
5337 >                    new SearchMappingsTask<K,V,U>
5338 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5339 >                         searchFunction, result).fork();
5340 >                }
5341 >                while (result.get() == null) {
5342 >                    U u;
5343 >                    Node<K,V> p;
5344 >                    if ((p = advance()) == null) {
5345 >                        propagateCompletion();
5346 >                        break;
5347 >                    }
5348 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5349 >                        if (result.compareAndSet(null, u))
5350 >                            quietlyCompleteRoot();
5351 >                        break;
5352 >                    }
5353 >                }
5354 >            }
5355 >        }
5356 >    }
5357  
5358 <        public SimpleEntry(K key, V value) {
5359 <            this.key   = key;
5360 <            this.value = value;
5358 >    @SuppressWarnings("serial")
5359 >    static final class ReduceKeysTask<K,V>
5360 >        extends BulkTask<K,V,K> {
5361 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5362 >        K result;
5363 >        ReduceKeysTask<K,V> rights, nextRight;
5364 >        ReduceKeysTask
5365 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5366 >             ReduceKeysTask<K,V> nextRight,
5367 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5368 >            super(p, b, i, f, t); this.nextRight = nextRight;
5369 >            this.reducer = reducer;
5370 >        }
5371 >        public final K getRawResult() { return result; }
5372 >        public final void compute() {
5373 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5374 >            if ((reducer = this.reducer) != null) {
5375 >                for (int i = baseIndex, f, h; batch > 0 &&
5376 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5377 >                    addToPendingCount(1);
5378 >                    (rights = new ReduceKeysTask<K,V>
5379 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5380 >                      rights, reducer)).fork();
5381 >                }
5382 >                K r = null;
5383 >                for (Node<K,V> p; (p = advance()) != null; ) {
5384 >                    K u = p.key;
5385 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5386 >                }
5387 >                result = r;
5388 >                CountedCompleter<?> c;
5389 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5390 >                    @SuppressWarnings("unchecked")
5391 >                    ReduceKeysTask<K,V>
5392 >                        t = (ReduceKeysTask<K,V>)c,
5393 >                        s = t.rights;
5394 >                    while (s != null) {
5395 >                        K tr, sr;
5396 >                        if ((sr = s.result) != null)
5397 >                            t.result = (((tr = t.result) == null) ? sr :
5398 >                                        reducer.apply(tr, sr));
5399 >                        s = t.rights = s.nextRight;
5400 >                    }
5401 >                }
5402 >            }
5403          }
5404 +    }
5405  
5406 <        public SimpleEntry(Entry<K,V> e) {
5407 <            this.key   = e.getKey();
5408 <            this.value = e.getValue();
5406 >    @SuppressWarnings("serial")
5407 >    static final class ReduceValuesTask<K,V>
5408 >        extends BulkTask<K,V,V> {
5409 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5410 >        V result;
5411 >        ReduceValuesTask<K,V> rights, nextRight;
5412 >        ReduceValuesTask
5413 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5414 >             ReduceValuesTask<K,V> nextRight,
5415 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5416 >            super(p, b, i, f, t); this.nextRight = nextRight;
5417 >            this.reducer = reducer;
5418 >        }
5419 >        public final V getRawResult() { return result; }
5420 >        public final void compute() {
5421 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5422 >            if ((reducer = this.reducer) != null) {
5423 >                for (int i = baseIndex, f, h; batch > 0 &&
5424 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5425 >                    addToPendingCount(1);
5426 >                    (rights = new ReduceValuesTask<K,V>
5427 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5428 >                      rights, reducer)).fork();
5429 >                }
5430 >                V r = null;
5431 >                for (Node<K,V> p; (p = advance()) != null; ) {
5432 >                    V v = p.val;
5433 >                    r = (r == null) ? v : reducer.apply(r, v);
5434 >                }
5435 >                result = r;
5436 >                CountedCompleter<?> c;
5437 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5438 >                    @SuppressWarnings("unchecked")
5439 >                    ReduceValuesTask<K,V>
5440 >                        t = (ReduceValuesTask<K,V>)c,
5441 >                        s = t.rights;
5442 >                    while (s != null) {
5443 >                        V tr, sr;
5444 >                        if ((sr = s.result) != null)
5445 >                            t.result = (((tr = t.result) == null) ? sr :
5446 >                                        reducer.apply(tr, sr));
5447 >                        s = t.rights = s.nextRight;
5448 >                    }
5449 >                }
5450 >            }
5451          }
5452 +    }
5453  
5454 <        public K getKey() {
5455 <            return key;
5454 >    @SuppressWarnings("serial")
5455 >    static final class ReduceEntriesTask<K,V>
5456 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5457 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5458 >        Map.Entry<K,V> result;
5459 >        ReduceEntriesTask<K,V> rights, nextRight;
5460 >        ReduceEntriesTask
5461 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5462 >             ReduceEntriesTask<K,V> nextRight,
5463 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5464 >            super(p, b, i, f, t); this.nextRight = nextRight;
5465 >            this.reducer = reducer;
5466 >        }
5467 >        public final Map.Entry<K,V> getRawResult() { return result; }
5468 >        public final void compute() {
5469 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5470 >            if ((reducer = this.reducer) != null) {
5471 >                for (int i = baseIndex, f, h; batch > 0 &&
5472 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5473 >                    addToPendingCount(1);
5474 >                    (rights = new ReduceEntriesTask<K,V>
5475 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5476 >                      rights, reducer)).fork();
5477 >                }
5478 >                Map.Entry<K,V> r = null;
5479 >                for (Node<K,V> p; (p = advance()) != null; )
5480 >                    r = (r == null) ? p : reducer.apply(r, p);
5481 >                result = r;
5482 >                CountedCompleter<?> c;
5483 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5484 >                    @SuppressWarnings("unchecked")
5485 >                    ReduceEntriesTask<K,V>
5486 >                        t = (ReduceEntriesTask<K,V>)c,
5487 >                        s = t.rights;
5488 >                    while (s != null) {
5489 >                        Map.Entry<K,V> tr, sr;
5490 >                        if ((sr = s.result) != null)
5491 >                            t.result = (((tr = t.result) == null) ? sr :
5492 >                                        reducer.apply(tr, sr));
5493 >                        s = t.rights = s.nextRight;
5494 >                    }
5495 >                }
5496 >            }
5497          }
5498 +    }
5499  
5500 <        public V getValue() {
5501 <            return value;
5500 >    @SuppressWarnings("serial")
5501 >    static final class MapReduceKeysTask<K,V,U>
5502 >        extends BulkTask<K,V,U> {
5503 >        final Function<? super K, ? extends U> transformer;
5504 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5505 >        U result;
5506 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5507 >        MapReduceKeysTask
5508 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5509 >             MapReduceKeysTask<K,V,U> nextRight,
5510 >             Function<? super K, ? extends U> transformer,
5511 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5512 >            super(p, b, i, f, t); this.nextRight = nextRight;
5513 >            this.transformer = transformer;
5514 >            this.reducer = reducer;
5515 >        }
5516 >        public final U getRawResult() { return result; }
5517 >        public final void compute() {
5518 >            final Function<? super K, ? extends U> transformer;
5519 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5520 >            if ((transformer = this.transformer) != null &&
5521 >                (reducer = this.reducer) != null) {
5522 >                for (int i = baseIndex, f, h; batch > 0 &&
5523 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5524 >                    addToPendingCount(1);
5525 >                    (rights = new MapReduceKeysTask<K,V,U>
5526 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5527 >                      rights, transformer, reducer)).fork();
5528 >                }
5529 >                U r = null;
5530 >                for (Node<K,V> p; (p = advance()) != null; ) {
5531 >                    U u;
5532 >                    if ((u = transformer.apply(p.key)) != null)
5533 >                        r = (r == null) ? u : reducer.apply(r, u);
5534 >                }
5535 >                result = r;
5536 >                CountedCompleter<?> c;
5537 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5538 >                    @SuppressWarnings("unchecked")
5539 >                    MapReduceKeysTask<K,V,U>
5540 >                        t = (MapReduceKeysTask<K,V,U>)c,
5541 >                        s = t.rights;
5542 >                    while (s != null) {
5543 >                        U tr, sr;
5544 >                        if ((sr = s.result) != null)
5545 >                            t.result = (((tr = t.result) == null) ? sr :
5546 >                                        reducer.apply(tr, sr));
5547 >                        s = t.rights = s.nextRight;
5548 >                    }
5549 >                }
5550 >            }
5551          }
5552 +    }
5553  
5554 <        public V setValue(V value) {
5555 <            V oldValue = this.value;
5556 <            this.value = value;
5557 <            return oldValue;
5554 >    @SuppressWarnings("serial")
5555 >    static final class MapReduceValuesTask<K,V,U>
5556 >        extends BulkTask<K,V,U> {
5557 >        final Function<? super V, ? extends U> transformer;
5558 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5559 >        U result;
5560 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5561 >        MapReduceValuesTask
5562 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5563 >             MapReduceValuesTask<K,V,U> nextRight,
5564 >             Function<? super V, ? extends U> transformer,
5565 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5566 >            super(p, b, i, f, t); this.nextRight = nextRight;
5567 >            this.transformer = transformer;
5568 >            this.reducer = reducer;
5569 >        }
5570 >        public final U getRawResult() { return result; }
5571 >        public final void compute() {
5572 >            final Function<? super V, ? extends U> transformer;
5573 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5574 >            if ((transformer = this.transformer) != null &&
5575 >                (reducer = this.reducer) != null) {
5576 >                for (int i = baseIndex, f, h; batch > 0 &&
5577 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5578 >                    addToPendingCount(1);
5579 >                    (rights = new MapReduceValuesTask<K,V,U>
5580 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5581 >                      rights, transformer, reducer)).fork();
5582 >                }
5583 >                U r = null;
5584 >                for (Node<K,V> p; (p = advance()) != null; ) {
5585 >                    U u;
5586 >                    if ((u = transformer.apply(p.val)) != null)
5587 >                        r = (r == null) ? u : reducer.apply(r, u);
5588 >                }
5589 >                result = r;
5590 >                CountedCompleter<?> c;
5591 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5592 >                    @SuppressWarnings("unchecked")
5593 >                    MapReduceValuesTask<K,V,U>
5594 >                        t = (MapReduceValuesTask<K,V,U>)c,
5595 >                        s = t.rights;
5596 >                    while (s != null) {
5597 >                        U tr, sr;
5598 >                        if ((sr = s.result) != null)
5599 >                            t.result = (((tr = t.result) == null) ? sr :
5600 >                                        reducer.apply(tr, sr));
5601 >                        s = t.rights = s.nextRight;
5602 >                    }
5603 >                }
5604 >            }
5605          }
5606 +    }
5607  
5608 <        public boolean equals(Object o) {
5609 <            if (!(o instanceof Map.Entry))
5610 <                return false;
5611 <            Map.Entry e = (Map.Entry)o;
5612 <            return eq(key, e.getKey()) && eq(value, e.getValue());
5608 >    @SuppressWarnings("serial")
5609 >    static final class MapReduceEntriesTask<K,V,U>
5610 >        extends BulkTask<K,V,U> {
5611 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5612 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5613 >        U result;
5614 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5615 >        MapReduceEntriesTask
5616 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5617 >             MapReduceEntriesTask<K,V,U> nextRight,
5618 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5619 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5620 >            super(p, b, i, f, t); this.nextRight = nextRight;
5621 >            this.transformer = transformer;
5622 >            this.reducer = reducer;
5623 >        }
5624 >        public final U getRawResult() { return result; }
5625 >        public final void compute() {
5626 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5627 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5628 >            if ((transformer = this.transformer) != null &&
5629 >                (reducer = this.reducer) != null) {
5630 >                for (int i = baseIndex, f, h; batch > 0 &&
5631 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5632 >                    addToPendingCount(1);
5633 >                    (rights = new MapReduceEntriesTask<K,V,U>
5634 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5635 >                      rights, transformer, reducer)).fork();
5636 >                }
5637 >                U r = null;
5638 >                for (Node<K,V> p; (p = advance()) != null; ) {
5639 >                    U u;
5640 >                    if ((u = transformer.apply(p)) != null)
5641 >                        r = (r == null) ? u : reducer.apply(r, u);
5642 >                }
5643 >                result = r;
5644 >                CountedCompleter<?> c;
5645 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5646 >                    @SuppressWarnings("unchecked")
5647 >                    MapReduceEntriesTask<K,V,U>
5648 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5649 >                        s = t.rights;
5650 >                    while (s != null) {
5651 >                        U tr, sr;
5652 >                        if ((sr = s.result) != null)
5653 >                            t.result = (((tr = t.result) == null) ? sr :
5654 >                                        reducer.apply(tr, sr));
5655 >                        s = t.rights = s.nextRight;
5656 >                    }
5657 >                }
5658 >            }
5659          }
5660 +    }
5661  
5662 <        public int hashCode() {
5663 <            return ((key   == null)   ? 0 :   key.hashCode()) ^
5664 <                   ((value == null)   ? 0 : value.hashCode());
5662 >    @SuppressWarnings("serial")
5663 >    static final class MapReduceMappingsTask<K,V,U>
5664 >        extends BulkTask<K,V,U> {
5665 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5666 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5667 >        U result;
5668 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5669 >        MapReduceMappingsTask
5670 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5671 >             MapReduceMappingsTask<K,V,U> nextRight,
5672 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5673 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5674 >            super(p, b, i, f, t); this.nextRight = nextRight;
5675 >            this.transformer = transformer;
5676 >            this.reducer = reducer;
5677 >        }
5678 >        public final U getRawResult() { return result; }
5679 >        public final void compute() {
5680 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5681 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5682 >            if ((transformer = this.transformer) != null &&
5683 >                (reducer = this.reducer) != null) {
5684 >                for (int i = baseIndex, f, h; batch > 0 &&
5685 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5686 >                    addToPendingCount(1);
5687 >                    (rights = new MapReduceMappingsTask<K,V,U>
5688 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5689 >                      rights, transformer, reducer)).fork();
5690 >                }
5691 >                U r = null;
5692 >                for (Node<K,V> p; (p = advance()) != null; ) {
5693 >                    U u;
5694 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5695 >                        r = (r == null) ? u : reducer.apply(r, u);
5696 >                }
5697 >                result = r;
5698 >                CountedCompleter<?> c;
5699 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5700 >                    @SuppressWarnings("unchecked")
5701 >                    MapReduceMappingsTask<K,V,U>
5702 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5703 >                        s = t.rights;
5704 >                    while (s != null) {
5705 >                        U tr, sr;
5706 >                        if ((sr = s.result) != null)
5707 >                            t.result = (((tr = t.result) == null) ? sr :
5708 >                                        reducer.apply(tr, sr));
5709 >                        s = t.rights = s.nextRight;
5710 >                    }
5711 >                }
5712 >            }
5713          }
5714 +    }
5715  
5716 <        public String toString() {
5717 <            return key + "=" + value;
5716 >    @SuppressWarnings("serial")
5717 >    static final class MapReduceKeysToDoubleTask<K,V>
5718 >        extends BulkTask<K,V,Double> {
5719 >        final ToDoubleFunction<? super K> transformer;
5720 >        final DoubleBinaryOperator reducer;
5721 >        final double basis;
5722 >        double result;
5723 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5724 >        MapReduceKeysToDoubleTask
5725 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5726 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5727 >             ToDoubleFunction<? super K> transformer,
5728 >             double basis,
5729 >             DoubleBinaryOperator reducer) {
5730 >            super(p, b, i, f, t); this.nextRight = nextRight;
5731 >            this.transformer = transformer;
5732 >            this.basis = basis; this.reducer = reducer;
5733 >        }
5734 >        public final Double getRawResult() { return result; }
5735 >        public final void compute() {
5736 >            final ToDoubleFunction<? super K> transformer;
5737 >            final DoubleBinaryOperator reducer;
5738 >            if ((transformer = this.transformer) != null &&
5739 >                (reducer = this.reducer) != null) {
5740 >                double r = this.basis;
5741 >                for (int i = baseIndex, f, h; batch > 0 &&
5742 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5743 >                    addToPendingCount(1);
5744 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5745 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5746 >                      rights, transformer, r, reducer)).fork();
5747 >                }
5748 >                for (Node<K,V> p; (p = advance()) != null; )
5749 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5750 >                result = r;
5751 >                CountedCompleter<?> c;
5752 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5753 >                    @SuppressWarnings("unchecked")
5754 >                    MapReduceKeysToDoubleTask<K,V>
5755 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5756 >                        s = t.rights;
5757 >                    while (s != null) {
5758 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5759 >                        s = t.rights = s.nextRight;
5760 >                    }
5761 >                }
5762 >            }
5763          }
5764 +    }
5765  
5766 <        static boolean eq(Object o1, Object o2) {
5767 <            return (o1 == null ? o2 == null : o1.equals(o2));
5766 >    @SuppressWarnings("serial")
5767 >    static final class MapReduceValuesToDoubleTask<K,V>
5768 >        extends BulkTask<K,V,Double> {
5769 >        final ToDoubleFunction<? super V> transformer;
5770 >        final DoubleBinaryOperator reducer;
5771 >        final double basis;
5772 >        double result;
5773 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5774 >        MapReduceValuesToDoubleTask
5775 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5776 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5777 >             ToDoubleFunction<? super V> transformer,
5778 >             double basis,
5779 >             DoubleBinaryOperator reducer) {
5780 >            super(p, b, i, f, t); this.nextRight = nextRight;
5781 >            this.transformer = transformer;
5782 >            this.basis = basis; this.reducer = reducer;
5783 >        }
5784 >        public final Double getRawResult() { return result; }
5785 >        public final void compute() {
5786 >            final ToDoubleFunction<? super V> transformer;
5787 >            final DoubleBinaryOperator reducer;
5788 >            if ((transformer = this.transformer) != null &&
5789 >                (reducer = this.reducer) != null) {
5790 >                double r = this.basis;
5791 >                for (int i = baseIndex, f, h; batch > 0 &&
5792 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5793 >                    addToPendingCount(1);
5794 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5795 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5796 >                      rights, transformer, r, reducer)).fork();
5797 >                }
5798 >                for (Node<K,V> p; (p = advance()) != null; )
5799 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5800 >                result = r;
5801 >                CountedCompleter<?> c;
5802 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5803 >                    @SuppressWarnings("unchecked")
5804 >                    MapReduceValuesToDoubleTask<K,V>
5805 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5806 >                        s = t.rights;
5807 >                    while (s != null) {
5808 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5809 >                        s = t.rights = s.nextRight;
5810 >                    }
5811 >                }
5812 >            }
5813          }
5814      }
5815  
5816 <    /* ---------------- Serialization Support -------------- */
5816 >    @SuppressWarnings("serial")
5817 >    static final class MapReduceEntriesToDoubleTask<K,V>
5818 >        extends BulkTask<K,V,Double> {
5819 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5820 >        final DoubleBinaryOperator reducer;
5821 >        final double basis;
5822 >        double result;
5823 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5824 >        MapReduceEntriesToDoubleTask
5825 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5826 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5827 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5828 >             double basis,
5829 >             DoubleBinaryOperator reducer) {
5830 >            super(p, b, i, f, t); this.nextRight = nextRight;
5831 >            this.transformer = transformer;
5832 >            this.basis = basis; this.reducer = reducer;
5833 >        }
5834 >        public final Double getRawResult() { return result; }
5835 >        public final void compute() {
5836 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5837 >            final DoubleBinaryOperator reducer;
5838 >            if ((transformer = this.transformer) != null &&
5839 >                (reducer = this.reducer) != null) {
5840 >                double r = this.basis;
5841 >                for (int i = baseIndex, f, h; batch > 0 &&
5842 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5843 >                    addToPendingCount(1);
5844 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5845 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5846 >                      rights, transformer, r, reducer)).fork();
5847 >                }
5848 >                for (Node<K,V> p; (p = advance()) != null; )
5849 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5850 >                result = r;
5851 >                CountedCompleter<?> c;
5852 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5853 >                    @SuppressWarnings("unchecked")
5854 >                    MapReduceEntriesToDoubleTask<K,V>
5855 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5856 >                        s = t.rights;
5857 >                    while (s != null) {
5858 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5859 >                        s = t.rights = s.nextRight;
5860 >                    }
5861 >                }
5862 >            }
5863 >        }
5864 >    }
5865  
5866 <    /**
5867 <     * Save the state of the <tt>ConcurrentHashMap</tt>
5868 <     * instance to a stream (i.e.,
5869 <     * serialize it).
5870 <     * @param s the stream
5871 <     * @serialData
5872 <     * the key (Object) and value (Object)
5873 <     * for each key-value mapping, followed by a null pair.
5874 <     * The key-value mappings are emitted in no particular order.
5875 <     */
5876 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
5877 <        s.defaultWriteObject();
5866 >    @SuppressWarnings("serial")
5867 >    static final class MapReduceMappingsToDoubleTask<K,V>
5868 >        extends BulkTask<K,V,Double> {
5869 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5870 >        final DoubleBinaryOperator reducer;
5871 >        final double basis;
5872 >        double result;
5873 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5874 >        MapReduceMappingsToDoubleTask
5875 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5876 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5877 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5878 >             double basis,
5879 >             DoubleBinaryOperator reducer) {
5880 >            super(p, b, i, f, t); this.nextRight = nextRight;
5881 >            this.transformer = transformer;
5882 >            this.basis = basis; this.reducer = reducer;
5883 >        }
5884 >        public final Double getRawResult() { return result; }
5885 >        public final void compute() {
5886 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5887 >            final DoubleBinaryOperator reducer;
5888 >            if ((transformer = this.transformer) != null &&
5889 >                (reducer = this.reducer) != null) {
5890 >                double r = this.basis;
5891 >                for (int i = baseIndex, f, h; batch > 0 &&
5892 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5893 >                    addToPendingCount(1);
5894 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5895 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5896 >                      rights, transformer, r, reducer)).fork();
5897 >                }
5898 >                for (Node<K,V> p; (p = advance()) != null; )
5899 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5900 >                result = r;
5901 >                CountedCompleter<?> c;
5902 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5903 >                    @SuppressWarnings("unchecked")
5904 >                    MapReduceMappingsToDoubleTask<K,V>
5905 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5906 >                        s = t.rights;
5907 >                    while (s != null) {
5908 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5909 >                        s = t.rights = s.nextRight;
5910 >                    }
5911 >                }
5912 >            }
5913 >        }
5914 >    }
5915  
5916 <        for (int k = 0; k < segments.length; ++k) {
5917 <            Segment<K,V> seg = (Segment<K,V>)segments[k];
5918 <            seg.lock();
5919 <            try {
5920 <                HashEntry[] tab = seg.table;
5921 <                for (int i = 0; i < tab.length; ++i) {
5922 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
5923 <                        s.writeObject(e.key);
5924 <                        s.writeObject(e.value);
5916 >    @SuppressWarnings("serial")
5917 >    static final class MapReduceKeysToLongTask<K,V>
5918 >        extends BulkTask<K,V,Long> {
5919 >        final ToLongFunction<? super K> transformer;
5920 >        final LongBinaryOperator reducer;
5921 >        final long basis;
5922 >        long result;
5923 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5924 >        MapReduceKeysToLongTask
5925 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5926 >             MapReduceKeysToLongTask<K,V> nextRight,
5927 >             ToLongFunction<? super K> transformer,
5928 >             long basis,
5929 >             LongBinaryOperator reducer) {
5930 >            super(p, b, i, f, t); this.nextRight = nextRight;
5931 >            this.transformer = transformer;
5932 >            this.basis = basis; this.reducer = reducer;
5933 >        }
5934 >        public final Long getRawResult() { return result; }
5935 >        public final void compute() {
5936 >            final ToLongFunction<? super K> transformer;
5937 >            final LongBinaryOperator reducer;
5938 >            if ((transformer = this.transformer) != null &&
5939 >                (reducer = this.reducer) != null) {
5940 >                long r = this.basis;
5941 >                for (int i = baseIndex, f, h; batch > 0 &&
5942 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5943 >                    addToPendingCount(1);
5944 >                    (rights = new MapReduceKeysToLongTask<K,V>
5945 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5946 >                      rights, transformer, r, reducer)).fork();
5947 >                }
5948 >                for (Node<K,V> p; (p = advance()) != null; )
5949 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5950 >                result = r;
5951 >                CountedCompleter<?> c;
5952 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5953 >                    @SuppressWarnings("unchecked")
5954 >                    MapReduceKeysToLongTask<K,V>
5955 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5956 >                        s = t.rights;
5957 >                    while (s != null) {
5958 >                        t.result = reducer.applyAsLong(t.result, s.result);
5959 >                        s = t.rights = s.nextRight;
5960                      }
5961                  }
1384            } finally {
1385                seg.unlock();
5962              }
5963          }
1388        s.writeObject(null);
1389        s.writeObject(null);
5964      }
5965  
5966 <    /**
5967 <     * Reconstitute the <tt>ConcurrentHashMap</tt>
5968 <     * instance from a stream (i.e.,
5969 <     * deserialize it).
5970 <     * @param s the stream
5971 <     */
5972 <    private void readObject(java.io.ObjectInputStream s)
5973 <        throws IOException, ClassNotFoundException  {
5974 <        s.defaultReadObject();
5966 >    @SuppressWarnings("serial")
5967 >    static final class MapReduceValuesToLongTask<K,V>
5968 >        extends BulkTask<K,V,Long> {
5969 >        final ToLongFunction<? super V> transformer;
5970 >        final LongBinaryOperator reducer;
5971 >        final long basis;
5972 >        long result;
5973 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5974 >        MapReduceValuesToLongTask
5975 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5976 >             MapReduceValuesToLongTask<K,V> nextRight,
5977 >             ToLongFunction<? super V> transformer,
5978 >             long basis,
5979 >             LongBinaryOperator reducer) {
5980 >            super(p, b, i, f, t); this.nextRight = nextRight;
5981 >            this.transformer = transformer;
5982 >            this.basis = basis; this.reducer = reducer;
5983 >        }
5984 >        public final Long getRawResult() { return result; }
5985 >        public final void compute() {
5986 >            final ToLongFunction<? super V> transformer;
5987 >            final LongBinaryOperator reducer;
5988 >            if ((transformer = this.transformer) != null &&
5989 >                (reducer = this.reducer) != null) {
5990 >                long r = this.basis;
5991 >                for (int i = baseIndex, f, h; batch > 0 &&
5992 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5993 >                    addToPendingCount(1);
5994 >                    (rights = new MapReduceValuesToLongTask<K,V>
5995 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5996 >                      rights, transformer, r, reducer)).fork();
5997 >                }
5998 >                for (Node<K,V> p; (p = advance()) != null; )
5999 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6000 >                result = r;
6001 >                CountedCompleter<?> c;
6002 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6003 >                    @SuppressWarnings("unchecked")
6004 >                    MapReduceValuesToLongTask<K,V>
6005 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6006 >                        s = t.rights;
6007 >                    while (s != null) {
6008 >                        t.result = reducer.applyAsLong(t.result, s.result);
6009 >                        s = t.rights = s.nextRight;
6010 >                    }
6011 >                }
6012 >            }
6013 >        }
6014 >    }
6015  
6016 <        // Initialize each segment to be minimally sized, and let grow.
6017 <        for (int i = 0; i < segments.length; ++i) {
6018 <            segments[i].setTable(new HashEntry[1]);
6016 >    @SuppressWarnings("serial")
6017 >    static final class MapReduceEntriesToLongTask<K,V>
6018 >        extends BulkTask<K,V,Long> {
6019 >        final ToLongFunction<Map.Entry<K,V>> transformer;
6020 >        final LongBinaryOperator reducer;
6021 >        final long basis;
6022 >        long result;
6023 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6024 >        MapReduceEntriesToLongTask
6025 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6026 >             MapReduceEntriesToLongTask<K,V> nextRight,
6027 >             ToLongFunction<Map.Entry<K,V>> transformer,
6028 >             long basis,
6029 >             LongBinaryOperator reducer) {
6030 >            super(p, b, i, f, t); this.nextRight = nextRight;
6031 >            this.transformer = transformer;
6032 >            this.basis = basis; this.reducer = reducer;
6033 >        }
6034 >        public final Long getRawResult() { return result; }
6035 >        public final void compute() {
6036 >            final ToLongFunction<Map.Entry<K,V>> transformer;
6037 >            final LongBinaryOperator reducer;
6038 >            if ((transformer = this.transformer) != null &&
6039 >                (reducer = this.reducer) != null) {
6040 >                long r = this.basis;
6041 >                for (int i = baseIndex, f, h; batch > 0 &&
6042 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6043 >                    addToPendingCount(1);
6044 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6045 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6046 >                      rights, transformer, r, reducer)).fork();
6047 >                }
6048 >                for (Node<K,V> p; (p = advance()) != null; )
6049 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6050 >                result = r;
6051 >                CountedCompleter<?> c;
6052 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6053 >                    @SuppressWarnings("unchecked")
6054 >                    MapReduceEntriesToLongTask<K,V>
6055 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6056 >                        s = t.rights;
6057 >                    while (s != null) {
6058 >                        t.result = reducer.applyAsLong(t.result, s.result);
6059 >                        s = t.rights = s.nextRight;
6060 >                    }
6061 >                }
6062 >            }
6063          }
6064 +    }
6065  
6066 <        // Read the keys and values, and put the mappings in the table
6067 <        for (;;) {
6068 <            K key = (K) s.readObject();
6069 <            V value = (V) s.readObject();
6070 <            if (key == null)
6071 <                break;
6072 <            put(key, value);
6066 >    @SuppressWarnings("serial")
6067 >    static final class MapReduceMappingsToLongTask<K,V>
6068 >        extends BulkTask<K,V,Long> {
6069 >        final ToLongBiFunction<? super K, ? super V> transformer;
6070 >        final LongBinaryOperator reducer;
6071 >        final long basis;
6072 >        long result;
6073 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6074 >        MapReduceMappingsToLongTask
6075 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6076 >             MapReduceMappingsToLongTask<K,V> nextRight,
6077 >             ToLongBiFunction<? super K, ? super V> transformer,
6078 >             long basis,
6079 >             LongBinaryOperator reducer) {
6080 >            super(p, b, i, f, t); this.nextRight = nextRight;
6081 >            this.transformer = transformer;
6082 >            this.basis = basis; this.reducer = reducer;
6083 >        }
6084 >        public final Long getRawResult() { return result; }
6085 >        public final void compute() {
6086 >            final ToLongBiFunction<? super K, ? super V> transformer;
6087 >            final LongBinaryOperator reducer;
6088 >            if ((transformer = this.transformer) != null &&
6089 >                (reducer = this.reducer) != null) {
6090 >                long r = this.basis;
6091 >                for (int i = baseIndex, f, h; batch > 0 &&
6092 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6093 >                    addToPendingCount(1);
6094 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6095 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6096 >                      rights, transformer, r, reducer)).fork();
6097 >                }
6098 >                for (Node<K,V> p; (p = advance()) != null; )
6099 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6100 >                result = r;
6101 >                CountedCompleter<?> c;
6102 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6103 >                    @SuppressWarnings("unchecked")
6104 >                    MapReduceMappingsToLongTask<K,V>
6105 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6106 >                        s = t.rights;
6107 >                    while (s != null) {
6108 >                        t.result = reducer.applyAsLong(t.result, s.result);
6109 >                        s = t.rights = s.nextRight;
6110 >                    }
6111 >                }
6112 >            }
6113 >        }
6114 >    }
6115 >
6116 >    @SuppressWarnings("serial")
6117 >    static final class MapReduceKeysToIntTask<K,V>
6118 >        extends BulkTask<K,V,Integer> {
6119 >        final ToIntFunction<? super K> transformer;
6120 >        final IntBinaryOperator reducer;
6121 >        final int basis;
6122 >        int result;
6123 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6124 >        MapReduceKeysToIntTask
6125 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6126 >             MapReduceKeysToIntTask<K,V> nextRight,
6127 >             ToIntFunction<? super K> transformer,
6128 >             int basis,
6129 >             IntBinaryOperator reducer) {
6130 >            super(p, b, i, f, t); this.nextRight = nextRight;
6131 >            this.transformer = transformer;
6132 >            this.basis = basis; this.reducer = reducer;
6133 >        }
6134 >        public final Integer getRawResult() { return result; }
6135 >        public final void compute() {
6136 >            final ToIntFunction<? super K> transformer;
6137 >            final IntBinaryOperator reducer;
6138 >            if ((transformer = this.transformer) != null &&
6139 >                (reducer = this.reducer) != null) {
6140 >                int r = this.basis;
6141 >                for (int i = baseIndex, f, h; batch > 0 &&
6142 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6143 >                    addToPendingCount(1);
6144 >                    (rights = new MapReduceKeysToIntTask<K,V>
6145 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6146 >                      rights, transformer, r, reducer)).fork();
6147 >                }
6148 >                for (Node<K,V> p; (p = advance()) != null; )
6149 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6150 >                result = r;
6151 >                CountedCompleter<?> c;
6152 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6153 >                    @SuppressWarnings("unchecked")
6154 >                    MapReduceKeysToIntTask<K,V>
6155 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6156 >                        s = t.rights;
6157 >                    while (s != null) {
6158 >                        t.result = reducer.applyAsInt(t.result, s.result);
6159 >                        s = t.rights = s.nextRight;
6160 >                    }
6161 >                }
6162 >            }
6163 >        }
6164 >    }
6165 >
6166 >    @SuppressWarnings("serial")
6167 >    static final class MapReduceValuesToIntTask<K,V>
6168 >        extends BulkTask<K,V,Integer> {
6169 >        final ToIntFunction<? super V> transformer;
6170 >        final IntBinaryOperator reducer;
6171 >        final int basis;
6172 >        int result;
6173 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6174 >        MapReduceValuesToIntTask
6175 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6176 >             MapReduceValuesToIntTask<K,V> nextRight,
6177 >             ToIntFunction<? super V> transformer,
6178 >             int basis,
6179 >             IntBinaryOperator reducer) {
6180 >            super(p, b, i, f, t); this.nextRight = nextRight;
6181 >            this.transformer = transformer;
6182 >            this.basis = basis; this.reducer = reducer;
6183 >        }
6184 >        public final Integer getRawResult() { return result; }
6185 >        public final void compute() {
6186 >            final ToIntFunction<? super V> transformer;
6187 >            final IntBinaryOperator reducer;
6188 >            if ((transformer = this.transformer) != null &&
6189 >                (reducer = this.reducer) != null) {
6190 >                int r = this.basis;
6191 >                for (int i = baseIndex, f, h; batch > 0 &&
6192 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6193 >                    addToPendingCount(1);
6194 >                    (rights = new MapReduceValuesToIntTask<K,V>
6195 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6196 >                      rights, transformer, r, reducer)).fork();
6197 >                }
6198 >                for (Node<K,V> p; (p = advance()) != null; )
6199 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6200 >                result = r;
6201 >                CountedCompleter<?> c;
6202 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6203 >                    @SuppressWarnings("unchecked")
6204 >                    MapReduceValuesToIntTask<K,V>
6205 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6206 >                        s = t.rights;
6207 >                    while (s != null) {
6208 >                        t.result = reducer.applyAsInt(t.result, s.result);
6209 >                        s = t.rights = s.nextRight;
6210 >                    }
6211 >                }
6212 >            }
6213 >        }
6214 >    }
6215 >
6216 >    @SuppressWarnings("serial")
6217 >    static final class MapReduceEntriesToIntTask<K,V>
6218 >        extends BulkTask<K,V,Integer> {
6219 >        final ToIntFunction<Map.Entry<K,V>> transformer;
6220 >        final IntBinaryOperator reducer;
6221 >        final int basis;
6222 >        int result;
6223 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6224 >        MapReduceEntriesToIntTask
6225 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6226 >             MapReduceEntriesToIntTask<K,V> nextRight,
6227 >             ToIntFunction<Map.Entry<K,V>> transformer,
6228 >             int basis,
6229 >             IntBinaryOperator reducer) {
6230 >            super(p, b, i, f, t); this.nextRight = nextRight;
6231 >            this.transformer = transformer;
6232 >            this.basis = basis; this.reducer = reducer;
6233 >        }
6234 >        public final Integer getRawResult() { return result; }
6235 >        public final void compute() {
6236 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6237 >            final IntBinaryOperator reducer;
6238 >            if ((transformer = this.transformer) != null &&
6239 >                (reducer = this.reducer) != null) {
6240 >                int r = this.basis;
6241 >                for (int i = baseIndex, f, h; batch > 0 &&
6242 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6243 >                    addToPendingCount(1);
6244 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6245 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6246 >                      rights, transformer, r, reducer)).fork();
6247 >                }
6248 >                for (Node<K,V> p; (p = advance()) != null; )
6249 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6250 >                result = r;
6251 >                CountedCompleter<?> c;
6252 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6253 >                    @SuppressWarnings("unchecked")
6254 >                    MapReduceEntriesToIntTask<K,V>
6255 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6256 >                        s = t.rights;
6257 >                    while (s != null) {
6258 >                        t.result = reducer.applyAsInt(t.result, s.result);
6259 >                        s = t.rights = s.nextRight;
6260 >                    }
6261 >                }
6262 >            }
6263          }
6264      }
1416 }
6265  
6266 +    @SuppressWarnings("serial")
6267 +    static final class MapReduceMappingsToIntTask<K,V>
6268 +        extends BulkTask<K,V,Integer> {
6269 +        final ToIntBiFunction<? super K, ? super V> transformer;
6270 +        final IntBinaryOperator reducer;
6271 +        final int basis;
6272 +        int result;
6273 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6274 +        MapReduceMappingsToIntTask
6275 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6276 +             MapReduceMappingsToIntTask<K,V> nextRight,
6277 +             ToIntBiFunction<? super K, ? super V> transformer,
6278 +             int basis,
6279 +             IntBinaryOperator reducer) {
6280 +            super(p, b, i, f, t); this.nextRight = nextRight;
6281 +            this.transformer = transformer;
6282 +            this.basis = basis; this.reducer = reducer;
6283 +        }
6284 +        public final Integer getRawResult() { return result; }
6285 +        public final void compute() {
6286 +            final ToIntBiFunction<? super K, ? super V> transformer;
6287 +            final IntBinaryOperator reducer;
6288 +            if ((transformer = this.transformer) != null &&
6289 +                (reducer = this.reducer) != null) {
6290 +                int r = this.basis;
6291 +                for (int i = baseIndex, f, h; batch > 0 &&
6292 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6293 +                    addToPendingCount(1);
6294 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6295 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6296 +                      rights, transformer, r, reducer)).fork();
6297 +                }
6298 +                for (Node<K,V> p; (p = advance()) != null; )
6299 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6300 +                result = r;
6301 +                CountedCompleter<?> c;
6302 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6303 +                    @SuppressWarnings("unchecked")
6304 +                    MapReduceMappingsToIntTask<K,V>
6305 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
6306 +                        s = t.rights;
6307 +                    while (s != null) {
6308 +                        t.result = reducer.applyAsInt(t.result, s.result);
6309 +                        s = t.rights = s.nextRight;
6310 +                    }
6311 +                }
6312 +            }
6313 +        }
6314 +    }
6315 +
6316 +    // Unsafe mechanics
6317 +    private static final Unsafe U = Unsafe.getUnsafe();
6318 +    private static final long SIZECTL
6319 +        = U.objectFieldOffset(ConcurrentHashMap.class, "sizeCtl");
6320 +    private static final long TRANSFERINDEX
6321 +        = U.objectFieldOffset(ConcurrentHashMap.class, "transferIndex");
6322 +    private static final long BASECOUNT
6323 +        = U.objectFieldOffset(ConcurrentHashMap.class, "baseCount");
6324 +    private static final long CELLSBUSY
6325 +        = U.objectFieldOffset(ConcurrentHashMap.class, "cellsBusy");
6326 +    private static final long CELLVALUE
6327 +        = U.objectFieldOffset(CounterCell.class, "value");
6328 +    private static final int ABASE = U.arrayBaseOffset(Node[].class);
6329 +    private static final int ASHIFT;
6330 +
6331 +    static {
6332 +        int scale = U.arrayIndexScale(Node[].class);
6333 +        if ((scale & (scale - 1)) != 0)
6334 +            throw new ExceptionInInitializerError("array index scale not a power of two");
6335 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6336 +
6337 +        // Reduce the risk of rare disastrous classloading in first call to
6338 +        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6339 +        Class<?> ensureLoaded = LockSupport.class;
6340 +
6341 +        // Eager class load observed to help JIT during startup
6342 +        ensureLoaded = ReservationNode.class;
6343 +    }
6344 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines