ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.52 by dl, Mon Jul 12 11:01:14 2004 UTC vs.
Revision 1.84 by jsr166, Sat Sep 10 09:36:20 2005 UTC

# Line 33 | Line 33 | import java.io.ObjectOutputStream;
33   * removal of only some entries.  Similarly, Iterators and
34   * Enumerations return elements reflecting the state of the hash table
35   * at some point at or since the creation of the iterator/enumeration.
36 < * They do <em>not</em> throw
37 < * {@link ConcurrentModificationException}.  However, iterators are
38 < * designed to be used by only one thread at a time.
36 > * They do <em>not</em> throw {@link ConcurrentModificationException}.
37 > * However, iterators are designed to be used by only one thread at a time.
38   *
39   * <p> The allowed concurrency among update operations is guided by
40   * the optional <tt>concurrencyLevel</tt> constructor argument
41 < * (default 16), which is used as a hint for internal sizing.  The
41 > * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
42   * table is internally partitioned to try to permit the indicated
43   * number of concurrent updates without contention. Because placement
44   * in hash tables is essentially random, the actual concurrency will
# Line 59 | Line 58 | import java.io.ObjectOutputStream;
58   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
59   * interfaces.
60   *
61 < * <p> Like {@link java.util.Hashtable} but unlike {@link
62 < * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
64 < * used as a key or value.
61 > * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
62 > * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
63   *
64   * <p>This class is a member of the
65   * <a href="{@docRoot}/../guide/collections/index.html">
# Line 70 | Line 68 | import java.io.ObjectOutputStream;
68   * @since 1.5
69   * @author Doug Lea
70   * @param <K> the type of keys maintained by this map
71 < * @param <V> the type of mapped values
71 > * @param <V> the type of mapped values
72   */
73   public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74          implements ConcurrentMap<K, V>, Serializable {
# Line 84 | Line 82 | public class ConcurrentHashMap<K, V> ext
82      /* ---------------- Constants -------------- */
83  
84      /**
85 <     * The default initial number of table slots for this table.
86 <     * Used when not otherwise specified in constructor.
85 >     * The default initial capacity for this table,
86 >     * used when not otherwise specified in a constructor.
87       */
88 <    static int DEFAULT_INITIAL_CAPACITY = 16;
88 >    static final int DEFAULT_INITIAL_CAPACITY = 16;
89  
90      /**
91 <     * The maximum capacity, used if a higher value is implicitly
92 <     * specified by either of the constructors with arguments.  MUST
95 <     * be a power of two <= 1<<30 to ensure that entries are indexible
96 <     * using ints.
91 >     * The default load factor for this table, used when not
92 >     * otherwise specified in a constructor.
93       */
94 <    static final int MAXIMUM_CAPACITY = 1 << 30;
94 >    static final float DEFAULT_LOAD_FACTOR = 0.75f;
95  
96      /**
97 <     * The default load factor for this table.  Used when not
98 <     * otherwise specified in constructor.
97 >     * The default concurrency level for this table, used when not
98 >     * otherwise specified in a constructor.
99       */
100 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
100 >    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
101  
102      /**
103 <     * The default number of concurrency control segments.
104 <     **/
105 <    static final int DEFAULT_SEGMENTS = 16;
103 >     * The maximum capacity, used if a higher value is implicitly
104 >     * specified by either of the constructors with arguments.  MUST
105 >     * be a power of two <= 1<<30 to ensure that entries are indexable
106 >     * using ints.
107 >     */
108 >    static final int MAXIMUM_CAPACITY = 1 << 30;
109  
110      /**
111       * The maximum number of segments to allow; used to bound
# Line 127 | Line 126 | public class ConcurrentHashMap<K, V> ext
126      /**
127       * Mask value for indexing into segments. The upper bits of a
128       * key's hash code are used to choose the segment.
129 <     **/
129 >     */
130      final int segmentMask;
131  
132      /**
133       * Shift value for indexing within segments.
134 <     **/
134 >     */
135      final int segmentShift;
136  
137      /**
138       * The segments, each of which is a specialized hash table
139       */
140 <    final Segment[] segments;
140 >    final Segment<K,V>[] segments;
141  
142      transient Set<K> keySet;
143      transient Set<Map.Entry<K,V>> entrySet;
# Line 167 | Line 166 | public class ConcurrentHashMap<K, V> ext
166       * @return the segment
167       */
168      final Segment<K,V> segmentFor(int hash) {
169 <        return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
169 >        return segments[(hash >>> segmentShift) & segmentMask];
170      }
171  
172      /* ---------------- Inner Classes -------------- */
173  
174      /**
175       * ConcurrentHashMap list entry. Note that this is never exported
176 <     * out as a user-visible Map.Entry.
177 <     *
176 >     * out as a user-visible Map.Entry.
177 >     *
178       * Because the value field is volatile, not final, it is legal wrt
179       * the Java Memory Model for an unsynchronized reader to see null
180       * instead of initial value when read via a data race.  Although a
# Line 196 | Line 195 | public class ConcurrentHashMap<K, V> ext
195              this.next = next;
196              this.value = value;
197          }
198 +
199 +        @SuppressWarnings("unchecked")
200 +        static final <K,V> HashEntry<K,V>[] newArray(int i) {
201 +            return new HashEntry[i];
202 +        }
203      }
204  
205      /**
206       * Segments are specialized versions of hash tables.  This
207       * subclasses from ReentrantLock opportunistically, just to
208       * simplify some locking and avoid separate construction.
209 <     **/
209 >     */
210      static final class Segment<K,V> extends ReentrantLock implements Serializable {
211          /*
212           * Segments maintain a table of entry lists that are ALWAYS
# Line 245 | Line 249 | public class ConcurrentHashMap<K, V> ext
249  
250          /**
251           * The number of elements in this segment's region.
252 <         **/
252 >         */
253          transient volatile int count;
254  
255          /**
# Line 260 | Line 264 | public class ConcurrentHashMap<K, V> ext
264  
265          /**
266           * The table is rehashed when its size exceeds this threshold.
267 <         * (The value of this field is always (int)(capacity *
268 <         * loadFactor).)
267 >         * (The value of this field is always <tt>(int)(capacity *
268 >         * loadFactor)</tt>.)
269           */
270          transient int threshold;
271  
272          /**
273 <         * The per-segment table. Declared as a raw type, casted
270 <         * to HashEntry<K,V> on each use.
273 >         * The per-segment table.
274           */
275 <        transient volatile HashEntry[] table;
275 >        transient volatile HashEntry<K,V>[] table;
276  
277          /**
278           * The load factor for the hash table.  Even though this value
# Line 281 | Line 284 | public class ConcurrentHashMap<K, V> ext
284  
285          Segment(int initialCapacity, float lf) {
286              loadFactor = lf;
287 <            setTable(new HashEntry[initialCapacity]);
287 >            setTable(HashEntry.<K,V>newArray(initialCapacity));
288 >        }
289 >
290 >        @SuppressWarnings("unchecked")
291 >        static final <K,V> Segment<K,V>[] newArray(int i) {
292 >            return new Segment[i];
293          }
294  
295          /**
296 <         * Set table to new HashEntry array.
296 >         * Sets table to new HashEntry array.
297           * Call only while holding lock or in constructor.
298 <         **/
299 <        void setTable(HashEntry[] newTable) {
298 >         */
299 >        void setTable(HashEntry<K,V>[] newTable) {
300              threshold = (int)(newTable.length * loadFactor);
301              table = newTable;
302          }
303  
304          /**
305 <         * Return properly casted first entry of bin for given hash
305 >         * Returns properly casted first entry of bin for given hash.
306           */
307          HashEntry<K,V> getFirst(int hash) {
308 <            HashEntry[] tab = table;
309 <            return (HashEntry<K,V>) tab[hash & (tab.length - 1)];
308 >            HashEntry<K,V>[] tab = table;
309 >            return tab[hash & (tab.length - 1)];
310          }
311  
312          /**
313 <         * Read value field of an entry under lock. Called if value
313 >         * Reads value field of an entry under lock. Called if value
314           * field ever appears to be null. This is possible only if a
315           * compiler happens to reorder a HashEntry initialization with
316           * its table assignment, which is legal under memory model
# Line 349 | Line 357 | public class ConcurrentHashMap<K, V> ext
357  
358          boolean containsValue(Object value) {
359              if (count != 0) { // read-volatile
360 <                HashEntry[] tab = table;
360 >                HashEntry<K,V>[] tab = table;
361                  int len = tab.length;
362                  for (int i = 0 ; i < len; i++) {
363 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i];
356 <                         e != null ;
357 <                         e = e.next) {
363 >                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
364                          V v = e.value;
365                          if (v == null) // recheck
366                              v = readValueUnderLock(e);
# Line 409 | Line 415 | public class ConcurrentHashMap<K, V> ext
415                  int c = count;
416                  if (c++ > threshold) // ensure capacity
417                      rehash();
418 <                HashEntry[] tab = table;
418 >                HashEntry<K,V>[] tab = table;
419                  int index = hash & (tab.length - 1);
420 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
420 >                HashEntry<K,V> first = tab[index];
421                  HashEntry<K,V> e = first;
422                  while (e != null && (e.hash != hash || !key.equals(e.key)))
423                      e = e.next;
# Line 435 | Line 441 | public class ConcurrentHashMap<K, V> ext
441          }
442  
443          void rehash() {
444 <            HashEntry[] oldTable = table;            
444 >            HashEntry<K,V>[] oldTable = table;
445              int oldCapacity = oldTable.length;
446              if (oldCapacity >= MAXIMUM_CAPACITY)
447                  return;
# Line 454 | Line 460 | public class ConcurrentHashMap<K, V> ext
460               * right now.
461               */
462  
463 <            HashEntry[] newTable = new HashEntry[oldCapacity << 1];
463 >            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
464              threshold = (int)(newTable.length * loadFactor);
465              int sizeMask = newTable.length - 1;
466              for (int i = 0; i < oldCapacity ; i++) {
467                  // We need to guarantee that any existing reads of old Map can
468                  //  proceed. So we cannot yet null out each bin.
469 <                HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
469 >                HashEntry<K,V> e = oldTable[i];
470  
471                  if (e != null) {
472                      HashEntry<K,V> next = e.next;
# Line 488 | Line 494 | public class ConcurrentHashMap<K, V> ext
494                          // Clone all remaining nodes
495                          for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
496                              int k = p.hash & sizeMask;
497 <                            HashEntry<K,V> n = (HashEntry<K,V>)newTable[k];
497 >                            HashEntry<K,V> n = newTable[k];
498                              newTable[k] = new HashEntry<K,V>(p.key, p.hash,
499                                                               n, p.value);
500                          }
# Line 505 | Line 511 | public class ConcurrentHashMap<K, V> ext
511              lock();
512              try {
513                  int c = count - 1;
514 <                HashEntry[] tab = table;
514 >                HashEntry<K,V>[] tab = table;
515                  int index = hash & (tab.length - 1);
516 <                HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
516 >                HashEntry<K,V> first = tab[index];
517                  HashEntry<K,V> e = first;
518                  while (e != null && (e.hash != hash || !key.equals(e.key)))
519                      e = e.next;
# Line 523 | Line 529 | public class ConcurrentHashMap<K, V> ext
529                          ++modCount;
530                          HashEntry<K,V> newFirst = e.next;
531                          for (HashEntry<K,V> p = first; p != e; p = p.next)
532 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,  
532 >                            newFirst = new HashEntry<K,V>(p.key, p.hash,
533                                                            newFirst, p.value);
534                          tab[index] = newFirst;
535                          count = c; // write-volatile
# Line 539 | Line 545 | public class ConcurrentHashMap<K, V> ext
545              if (count != 0) {
546                  lock();
547                  try {
548 <                    HashEntry[] tab = table;
548 >                    HashEntry<K,V>[] tab = table;
549                      for (int i = 0; i < tab.length ; i++)
550                          tab[i] = null;
551                      ++modCount;
# Line 557 | Line 563 | public class ConcurrentHashMap<K, V> ext
563  
564      /**
565       * Creates a new, empty map with the specified initial
566 <     * capacity, load factor, and concurrency level.
566 >     * capacity, load factor and concurrency level.
567       *
568       * @param initialCapacity the initial capacity. The implementation
569       * performs internal sizing to accommodate this many elements.
570       * @param loadFactor  the load factor threshold, used to control resizing.
571 <     * Resizing may be performed when the average number of elements per
571 >     * Resizing may be performed when the average number of elements per
572       * bin exceeds this threshold.
573       * @param concurrencyLevel the estimated number of concurrently
574       * updating threads. The implementation performs internal sizing
575 <     * to try to accommodate this many threads.  
575 >     * to try to accommodate this many threads.
576       * @throws IllegalArgumentException if the initial capacity is
577       * negative or the load factor or concurrencyLevel are
578       * nonpositive.
# Line 588 | Line 594 | public class ConcurrentHashMap<K, V> ext
594          }
595          segmentShift = 32 - sshift;
596          segmentMask = ssize - 1;
597 <        this.segments = new Segment[ssize];
597 >        this.segments = Segment.newArray(ssize);
598  
599          if (initialCapacity > MAXIMUM_CAPACITY)
600              initialCapacity = MAXIMUM_CAPACITY;
# Line 604 | Line 610 | public class ConcurrentHashMap<K, V> ext
610      }
611  
612      /**
613 <     * Creates a new, empty map with the specified initial
614 <     * capacity,  and with default load factor (<tt>0.75f</tt>)
615 <     * and concurrencyLevel (<tt>16</tt>).
613 >     * Creates a new, empty map with the specified initial capacity
614 >     * and load factor and with the default concurrencyLevel (16).
615 >     *
616 >     * @param initialCapacity The implementation performs internal
617 >     * sizing to accommodate this many elements.
618 >     * @param loadFactor  the load factor threshold, used to control resizing.
619 >     * Resizing may be performed when the average number of elements per
620 >     * bin exceeds this threshold.
621 >     * @throws IllegalArgumentException if the initial capacity of
622 >     * elements is negative or the load factor is nonpositive
623 >     *
624 >     * @since 1.6
625 >     */
626 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
627 >        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
628 >    }
629 >
630 >    /**
631 >     * Creates a new, empty map with the specified initial capacity,
632 >     * and with default load factor (0.75) and concurrencyLevel (16).
633       *
634       * @param initialCapacity the initial capacity. The implementation
635       * performs internal sizing to accommodate this many elements.
# Line 614 | Line 637 | public class ConcurrentHashMap<K, V> ext
637       * elements is negative.
638       */
639      public ConcurrentHashMap(int initialCapacity) {
640 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
640 >        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
641      }
642  
643      /**
644 <     * Creates a new, empty map with a default initial capacity
645 <     * (<tt>16</tt>), load factor (<tt>0.75f</tt>) and
623 <     * concurrencyLevel (<tt>16</tt>).
644 >     * Creates a new, empty map with a default initial capacity (16),
645 >     * load factor (0.75) and concurrencyLevel (16).
646       */
647      public ConcurrentHashMap() {
648 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
648 >        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
649      }
650  
651      /**
652 <     * Creates a new map with the same mappings as the given map.  The
653 <     * map is created with a capacity consistent with the default load
654 <     * factor (<tt>0.75f</tt>) and uses the default concurrencyLevel
655 <     * (<tt>16</tt>).
656 <     * @param t the map
652 >     * Creates a new map with the same mappings as the given map.
653 >     * The map is created with a capacity of 1.5 times the number
654 >     * of mappings in the given map or 16 (whichever is greater),
655 >     * and a default load factor (0.75) and concurrencyLevel (16).
656 >     *
657 >     * @param m the map
658       */
659 <    public ConcurrentHashMap(Map<? extends K, ? extends V> t) {
660 <        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
659 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
660 >        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
661                        DEFAULT_INITIAL_CAPACITY),
662 <             DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
663 <        putAll(t);
662 >             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
663 >        putAll(m);
664      }
665  
666 <    // inherit Map javadoc
666 >    /**
667 >     * Returns <tt>true</tt> if this map contains no key-value mappings.
668 >     *
669 >     * @return <tt>true</tt> if this map contains no key-value mappings
670 >     */
671      public boolean isEmpty() {
672 <        final Segment[] segments = this.segments;
672 >        final Segment<K,V>[] segments = this.segments;
673          /*
674           * We keep track of per-segment modCounts to avoid ABA
675           * problems in which an element in one segment was added and
# Line 657 | Line 684 | public class ConcurrentHashMap<K, V> ext
684          for (int i = 0; i < segments.length; ++i) {
685              if (segments[i].count != 0)
686                  return false;
687 <            else
687 >            else
688                  mcsum += mc[i] = segments[i].modCount;
689          }
690          // If mcsum happens to be zero, then we know we got a snapshot
# Line 666 | Line 693 | public class ConcurrentHashMap<K, V> ext
693          if (mcsum != 0) {
694              for (int i = 0; i < segments.length; ++i) {
695                  if (segments[i].count != 0 ||
696 <                    mc[i] != segments[i].modCount)
696 >                    mc[i] != segments[i].modCount)
697                      return false;
698              }
699          }
700          return true;
701      }
702  
703 <    // inherit Map javadoc
703 >    /**
704 >     * Returns the number of key-value mappings in this map.  If the
705 >     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
706 >     * <tt>Integer.MAX_VALUE</tt>.
707 >     *
708 >     * @return the number of key-value mappings in this map
709 >     */
710      public int size() {
711 <        final Segment[] segments = this.segments;
711 >        final Segment<K,V>[] segments = this.segments;
712          long sum = 0;
713          long check = 0;
714          int[] mc = new int[segments.length];
# Line 698 | Line 731 | public class ConcurrentHashMap<K, V> ext
731                      }
732                  }
733              }
734 <            if (check == sum)
734 >            if (check == sum)
735                  break;
736          }
737          if (check != sum) { // Resort to locking all segments
738              sum = 0;
739 <            for (int i = 0; i < segments.length; ++i)
739 >            for (int i = 0; i < segments.length; ++i)
740                  segments[i].lock();
741 <            for (int i = 0; i < segments.length; ++i)
741 >            for (int i = 0; i < segments.length; ++i)
742                  sum += segments[i].count;
743 <            for (int i = 0; i < segments.length; ++i)
743 >            for (int i = 0; i < segments.length; ++i)
744                  segments[i].unlock();
745          }
746          if (sum > Integer.MAX_VALUE)
# Line 716 | Line 749 | public class ConcurrentHashMap<K, V> ext
749              return (int)sum;
750      }
751  
719
752      /**
753 <     * Returns the value to which the specified key is mapped in this table.
753 >     * Returns the value to which this map maps the specified key, or
754 >     * <tt>null</tt> if the map contains no mapping for the key.
755       *
756 <     * @param   key   a key in the table.
757 <     * @return  the value to which the key is mapped in this table;
758 <     *          <tt>null</tt> if the key is not mapped to any value in
759 <     *          this table.
727 <     * @throws  NullPointerException  if the key is
728 <     *               <tt>null</tt>.
756 >     * @param key key whose associated value is to be returned
757 >     * @return the value to which this map maps the specified key, or
758 >     *         <tt>null</tt> if the map contains no mapping for the key
759 >     * @throws NullPointerException if the specified key is null
760       */
761      public V get(Object key) {
762          int hash = hash(key); // throws NullPointerException if key null
# Line 735 | Line 766 | public class ConcurrentHashMap<K, V> ext
766      /**
767       * Tests if the specified object is a key in this table.
768       *
769 <     * @param   key   possible key.
770 <     * @return  <tt>true</tt> if and only if the specified object
771 <     *          is a key in this table, as determined by the
772 <     *          <tt>equals</tt> method; <tt>false</tt> otherwise.
773 <     * @throws  NullPointerException  if the key is
743 <     *               <tt>null</tt>.
769 >     * @param  key   possible key
770 >     * @return <tt>true</tt> if and only if the specified object
771 >     *         is a key in this table, as determined by the
772 >     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
773 >     * @throws NullPointerException if the specified key is null
774       */
775      public boolean containsKey(Object key) {
776          int hash = hash(key); // throws NullPointerException if key null
# Line 753 | Line 783 | public class ConcurrentHashMap<K, V> ext
783       * traversal of the hash table, and so is much slower than
784       * method <tt>containsKey</tt>.
785       *
786 <     * @param value value whose presence in this map is to be tested.
786 >     * @param value value whose presence in this map is to be tested
787       * @return <tt>true</tt> if this map maps one or more keys to the
788 <     * specified value.
789 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
788 >     *         specified value
789 >     * @throws NullPointerException if the specified value is null
790       */
791      public boolean containsValue(Object value) {
792          if (value == null)
793              throw new NullPointerException();
794 <        
794 >
795          // See explanation of modCount use above
796  
797 <        final Segment[] segments = this.segments;
797 >        final Segment<K,V>[] segments = this.segments;
798          int[] mc = new int[segments.length];
799  
800          // Try a few times without locking
# Line 791 | Line 821 | public class ConcurrentHashMap<K, V> ext
821                  return false;
822          }
823          // Resort to locking all segments
824 <        for (int i = 0; i < segments.length; ++i)
824 >        for (int i = 0; i < segments.length; ++i)
825              segments[i].lock();
826          boolean found = false;
827          try {
# Line 802 | Line 832 | public class ConcurrentHashMap<K, V> ext
832                  }
833              }
834          } finally {
835 <            for (int i = 0; i < segments.length; ++i)
835 >            for (int i = 0; i < segments.length; ++i)
836                  segments[i].unlock();
837          }
838          return found;
# Line 811 | Line 841 | public class ConcurrentHashMap<K, V> ext
841      /**
842       * Legacy method testing if some key maps into the specified value
843       * in this table.  This method is identical in functionality to
844 <     * {@link #containsValue}, and  exists solely to ensure
844 >     * {@link #containsValue}, and exists solely to ensure
845       * full compatibility with class {@link java.util.Hashtable},
846       * which supported this method prior to introduction of the
847       * Java Collections framework.
848  
849 <     * @param      value   a value to search for.
850 <     * @return     <tt>true</tt> if and only if some key maps to the
851 <     *             <tt>value</tt> argument in this table as
852 <     *             determined by the <tt>equals</tt> method;
853 <     *             <tt>false</tt> otherwise.
854 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
849 >     * @param  value a value to search for
850 >     * @return <tt>true</tt> if and only if some key maps to the
851 >     *         <tt>value</tt> argument in this table as
852 >     *         determined by the <tt>equals</tt> method;
853 >     *         <tt>false</tt> otherwise
854 >     * @throws NullPointerException if the specified value is null
855       */
856      public boolean contains(Object value) {
857          return containsValue(value);
858      }
859  
860      /**
861 <     * Maps the specified <tt>key</tt> to the specified
862 <     * <tt>value</tt> in this table. Neither the key nor the
833 <     * value can be <tt>null</tt>.
861 >     * Maps the specified key to the specified value in this table.
862 >     * Neither the key nor the value can be null.
863       *
864       * <p> The value can be retrieved by calling the <tt>get</tt> method
865       * with a key that is equal to the original key.
866       *
867 <     * @param      key     the table key.
868 <     * @param      value   the value.
869 <     * @return     the previous value of the specified key in this table,
870 <     *             or <tt>null</tt> if it did not have one.
871 <     * @throws  NullPointerException  if the key or value is
843 <     *               <tt>null</tt>.
867 >     * @param key key with which the specified value is to be associated
868 >     * @param value value to be associated with the specified key
869 >     * @return the previous value associated with <tt>key</tt>, or
870 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
871 >     * @throws NullPointerException if the specified key or value is null
872       */
873      public V put(K key, V value) {
874          if (value == null)
# Line 850 | Line 878 | public class ConcurrentHashMap<K, V> ext
878      }
879  
880      /**
881 <     * If the specified key is not already associated
882 <     * with a value, associate it with the given value.
883 <     * This is equivalent to
884 <     * <pre>
885 <     *   if (!map.containsKey(key))
858 <     *      return map.put(key, value);
859 <     *   else
860 <     *      return map.get(key);
861 <     * </pre>
862 <     * Except that the action is performed atomically.
863 <     * @param key key with which the specified value is to be associated.
864 <     * @param value value to be associated with the specified key.
865 <     * @return previous value associated with specified key, or <tt>null</tt>
866 <     *         if there was no mapping for key.
867 <     * @throws NullPointerException if the specified key or value is
868 <     *            <tt>null</tt>.
881 >     * {@inheritDoc}
882 >     *
883 >     * @return the previous value associated with the specified key,
884 >     *         or <tt>null</tt> if there was no mapping for the key
885 >     * @throws NullPointerException if the specified key or value is null
886       */
887      public V putIfAbsent(K key, V value) {
888          if (value == null)
# Line 874 | Line 891 | public class ConcurrentHashMap<K, V> ext
891          return segmentFor(hash).put(key, hash, value, true);
892      }
893  
877
894      /**
895       * Copies all of the mappings from the specified map to this one.
880     *
896       * These mappings replace any mappings that this map had for any of the
897 <     * keys currently in the specified Map.
897 >     * keys currently in the specified map.
898       *
899 <     * @param t Mappings to be stored in this map.
899 >     * @param m mappings to be stored in this map
900       */
901 <    public void putAll(Map<? extends K, ? extends V> t) {
902 <        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
888 <            Entry<? extends K, ? extends V> e = it.next();
901 >    public void putAll(Map<? extends K, ? extends V> m) {
902 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
903              put(e.getKey(), e.getValue());
890        }
904      }
905  
906      /**
907 <     * Removes the key (and its corresponding value) from this
908 <     * table. This method does nothing if the key is not in the table.
907 >     * Removes the key (and its corresponding value) from this map.
908 >     * This method does nothing if the key is not in the map.
909       *
910 <     * @param   key   the key that needs to be removed.
911 <     * @return  the value to which the key had been mapped in this table,
912 <     *          or <tt>null</tt> if the key did not have a mapping.
913 <     * @throws  NullPointerException  if the key is
901 <     *               <tt>null</tt>.
910 >     * @param  key the key that needs to be removed
911 >     * @return the previous value associated with <tt>key</tt>, or
912 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
913 >     * @throws NullPointerException if the specified key is null
914       */
915      public V remove(Object key) {
916 <        int hash = hash(key);
916 >        int hash = hash(key);
917          return segmentFor(hash).remove(key, hash, null);
918      }
919  
920      /**
921 <     * Remove entry for key only if currently mapped to given value.
922 <     * Acts as
923 <     * <pre>
912 <     *  if (map.get(key).equals(value)) {
913 <     *     map.remove(key);
914 <     *     return true;
915 <     * } else return false;
916 <     * </pre>
917 <     * except that the action is performed atomically.
918 <     * @param key key with which the specified value is associated.
919 <     * @param value value associated with the specified key.
920 <     * @return true if the value was removed
921 <     * @throws NullPointerException if the specified key is
922 <     *            <tt>null</tt>.
921 >     * {@inheritDoc}
922 >     *
923 >     * @throws NullPointerException if the specified key is null
924       */
925      public boolean remove(Object key, Object value) {
926 +        if (value == null)
927 +            return false;
928          int hash = hash(key);
929          return segmentFor(hash).remove(key, hash, value) != null;
930      }
931  
929
932      /**
933 <     * Replace entry for key only if currently mapped to given value.
934 <     * Acts as
935 <     * <pre>
934 <     *  if (map.get(key).equals(oldValue)) {
935 <     *     map.put(key, newValue);
936 <     *     return true;
937 <     * } else return false;
938 <     * </pre>
939 <     * except that the action is performed atomically.
940 <     * @param key key with which the specified value is associated.
941 <     * @param oldValue value expected to be associated with the specified key.
942 <     * @param newValue value to be associated with the specified key.
943 <     * @return true if the value was replaced
944 <     * @throws NullPointerException if the specified key or values are
945 <     * <tt>null</tt>.
933 >     * {@inheritDoc}
934 >     *
935 >     * @throws NullPointerException if any of the arguments are null
936       */
937      public boolean replace(K key, V oldValue, V newValue) {
938          if (oldValue == null || newValue == null)
# Line 952 | Line 942 | public class ConcurrentHashMap<K, V> ext
942      }
943  
944      /**
945 <     * Replace entry for key only if currently mapped to some value.
946 <     * Acts as
947 <     * <pre>
948 <     *  if ((map.containsKey(key)) {
949 <     *     return map.put(key, value);
960 <     * } else return null;
961 <     * </pre>
962 <     * except that the action is performed atomically.
963 <     * @param key key with which the specified value is associated.
964 <     * @param value value to be associated with the specified key.
965 <     * @return previous value associated with specified key, or <tt>null</tt>
966 <     *         if there was no mapping for key.  
967 <     * @throws NullPointerException if the specified key or value is
968 <     *            <tt>null</tt>.
945 >     * {@inheritDoc}
946 >     *
947 >     * @return the previous value associated with the specified key,
948 >     *         or <tt>null</tt> if there was no mapping for the key
949 >     * @throws NullPointerException if the specified key or value is null
950       */
951      public V replace(K key, V value) {
952          if (value == null)
# Line 974 | Line 955 | public class ConcurrentHashMap<K, V> ext
955          return segmentFor(hash).replace(key, hash, value);
956      }
957  
977
958      /**
959 <     * Removes all mappings from this map.
959 >     * Removes all of the mappings from this map.
960       */
961      public void clear() {
962          for (int i = 0; i < segments.length; ++i)
# Line 984 | Line 964 | public class ConcurrentHashMap<K, V> ext
964      }
965  
966      /**
967 <     * Returns a set view of the keys contained in this map.  The set is
968 <     * backed by the map, so changes to the map are reflected in the set, and
969 <     * vice-versa.  The set supports element removal, which removes the
970 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
971 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
972 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
967 >     * Returns a {@link Set} view of the keys contained in this map.
968 >     * The set is backed by the map, so changes to the map are
969 >     * reflected in the set, and vice-versa.  The set supports element
970 >     * removal, which removes the corresponding mapping from this map,
971 >     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
972 >     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
973 >     * operations.  It does not support the <tt>add</tt> or
974       * <tt>addAll</tt> operations.
975 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
976 <     * will never throw {@link java.util.ConcurrentModificationException},
975 >     *
976 >     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
977 >     * that will never throw {@link ConcurrentModificationException},
978       * and guarantees to traverse elements as they existed upon
979       * construction of the iterator, and may (but is not guaranteed to)
980       * reflect any modifications subsequent to construction.
999     *
1000     * @return a set view of the keys contained in this map.
981       */
982      public Set<K> keySet() {
983          Set<K> ks = keySet;
984          return (ks != null) ? ks : (keySet = new KeySet());
985      }
986  
1007
987      /**
988 <     * Returns a collection view of the values contained in this map.  The
989 <     * collection is backed by the map, so changes to the map are reflected in
990 <     * the collection, and vice-versa.  The collection supports element
991 <     * removal, which removes the corresponding mapping from this map, via the
992 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
993 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
994 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
995 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
996 <     * will never throw {@link java.util.ConcurrentModificationException},
988 >     * Returns a {@link Collection} view of the values contained in this map.
989 >     * The collection is backed by the map, so changes to the map are
990 >     * reflected in the collection, and vice-versa.  The collection
991 >     * supports element removal, which removes the corresponding
992 >     * mapping from this map, via the <tt>Iterator.remove</tt>,
993 >     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
994 >     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
995 >     * support the <tt>add</tt> or <tt>addAll</tt> operations.
996 >     *
997 >     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
998 >     * that will never throw {@link ConcurrentModificationException},
999       * and guarantees to traverse elements as they existed upon
1000       * construction of the iterator, and may (but is not guaranteed to)
1001       * reflect any modifications subsequent to construction.
1021     *
1022     * @return a collection view of the values contained in this map.
1002       */
1003      public Collection<V> values() {
1004          Collection<V> vs = values;
1005          return (vs != null) ? vs : (values = new Values());
1006      }
1007  
1029
1008      /**
1009 <     * Returns a collection view of the mappings contained in this map.  Each
1010 <     * element in the returned collection is a <tt>Map.Entry</tt>.  The
1011 <     * collection is backed by the map, so changes to the map are reflected in
1012 <     * the collection, and vice-versa.  The collection supports element
1013 <     * removal, which removes the corresponding mapping from the map, via the
1014 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1015 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1016 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1017 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1018 <     * will never throw {@link java.util.ConcurrentModificationException},
1009 >     * Returns a {@link Set} view of the mappings contained in this map.
1010 >     * The set is backed by the map, so changes to the map are
1011 >     * reflected in the set, and vice-versa.  The set supports element
1012 >     * removal, which removes the corresponding mapping from the map,
1013 >     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1014 >     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1015 >     * operations.  It does not support the <tt>add</tt> or
1016 >     * <tt>addAll</tt> operations.
1017 >     *
1018 >     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1019 >     * that will never throw {@link ConcurrentModificationException},
1020       * and guarantees to traverse elements as they existed upon
1021       * construction of the iterator, and may (but is not guaranteed to)
1022       * reflect any modifications subsequent to construction.
1044     *
1045     * @return a collection view of the mappings contained in this map.
1023       */
1024      public Set<Map.Entry<K,V>> entrySet() {
1025          Set<Map.Entry<K,V>> es = entrySet;
1026 <        return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
1026 >        return (es != null) ? es : (entrySet = new EntrySet());
1027      }
1028  
1052
1029      /**
1030       * Returns an enumeration of the keys in this table.
1031       *
1032 <     * @return  an enumeration of the keys in this table.
1033 <     * @see     #keySet
1032 >     * @return an enumeration of the keys in this table
1033 >     * @see #keySet
1034       */
1035      public Enumeration<K> keys() {
1036          return new KeyIterator();
# Line 1063 | Line 1039 | public class ConcurrentHashMap<K, V> ext
1039      /**
1040       * Returns an enumeration of the values in this table.
1041       *
1042 <     * @return  an enumeration of the values in this table.
1043 <     * @see     #values
1042 >     * @return an enumeration of the values in this table
1043 >     * @see #values
1044       */
1045      public Enumeration<V> elements() {
1046          return new ValueIterator();
# Line 1075 | Line 1051 | public class ConcurrentHashMap<K, V> ext
1051      abstract class HashIterator {
1052          int nextSegmentIndex;
1053          int nextTableIndex;
1054 <        HashEntry[] currentTable;
1054 >        HashEntry<K,V>[] currentTable;
1055          HashEntry<K, V> nextEntry;
1056          HashEntry<K, V> lastReturned;
1057  
# Line 1092 | Line 1068 | public class ConcurrentHashMap<K, V> ext
1068                  return;
1069  
1070              while (nextTableIndex >= 0) {
1071 <                if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
1071 >                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
1072                      return;
1073              }
1074  
1075              while (nextSegmentIndex >= 0) {
1076 <                Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
1076 >                Segment<K,V> seg = segments[nextSegmentIndex--];
1077                  if (seg.count != 0) {
1078                      currentTable = seg.table;
1079                      for (int j = currentTable.length - 1; j >= 0; --j) {
1080 <                        if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
1080 >                        if ( (nextEntry = currentTable[j]) != null) {
1081                              nextTableIndex = j - 1;
1082                              return;
1083                          }
# Line 1128 | Line 1104 | public class ConcurrentHashMap<K, V> ext
1104          }
1105      }
1106  
1107 <    final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1108 <        public K next() { return super.nextEntry().key; }
1107 >    final class KeyIterator
1108 >        extends HashIterator
1109 >        implements Iterator<K>, Enumeration<K>
1110 >    {
1111 >        public K next()        { return super.nextEntry().key; }
1112          public K nextElement() { return super.nextEntry().key; }
1113      }
1114  
1115 <    final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1116 <        public V next() { return super.nextEntry().value; }
1115 >    final class ValueIterator
1116 >        extends HashIterator
1117 >        implements Iterator<V>, Enumeration<V>
1118 >    {
1119 >        public V next()        { return super.nextEntry().value; }
1120          public V nextElement() { return super.nextEntry().value; }
1121      }
1122  
1141    
1142
1123      /**
1124 <     * Entry iterator. Exported Entry objects must write-through
1125 <     * changes in setValue, even if the nodes have been cloned. So we
1146 <     * cannot return internal HashEntry objects. Instead, the iterator
1147 <     * itself acts as a forwarding pseudo-entry.
1124 >     * Custom Entry class used by EntryIterator.next(), that relays
1125 >     * setValue changes to the underlying map.
1126       */
1127 <    final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1128 <        public Map.Entry<K,V> next() {
1129 <            nextEntry();
1130 <            return this;
1131 <        }
1154 <
1155 <        public K getKey() {
1156 <            if (lastReturned == null)
1157 <                throw new IllegalStateException("Entry was removed");
1158 <            return lastReturned.key;
1127 >    final class WriteThroughEntry
1128 >        extends AbstractMap.SimpleEntry<K,V>
1129 >    {
1130 >        WriteThroughEntry(K k, V v) {
1131 >            super(k,v);
1132          }
1133  
1134 <        public V getValue() {
1135 <            if (lastReturned == null)
1136 <                throw new IllegalStateException("Entry was removed");
1137 <            return ConcurrentHashMap.this.get(lastReturned.key);
1138 <        }
1139 <
1140 <        public V setValue(V value) {
1141 <            if (lastReturned == null)
1142 <                throw new IllegalStateException("Entry was removed");
1143 <            return ConcurrentHashMap.this.put(lastReturned.key, value);
1144 <        }
1145 <
1146 <        public boolean equals(Object o) {
1147 <            // If not acting as entry, just use default.
1175 <            if (lastReturned == null)
1176 <                return super.equals(o);
1177 <            if (!(o instanceof Map.Entry))
1178 <                return false;
1179 <            Map.Entry e = (Map.Entry)o;
1180 <            return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1181 <        }
1182 <
1183 <        public int hashCode() {
1184 <            // If not acting as entry, just use default.
1185 <            if (lastReturned == null)
1186 <                return super.hashCode();
1187 <
1188 <            Object k = getKey();
1189 <            Object v = getValue();
1190 <            return ((k == null) ? 0 : k.hashCode()) ^
1191 <                   ((v == null) ? 0 : v.hashCode());
1192 <        }
1193 <
1194 <        public String toString() {
1195 <            // If not acting as entry, just use default.
1196 <            if (lastReturned == null)
1197 <                return super.toString();
1198 <            else
1199 <                return getKey() + "=" + getValue();
1134 >        /**
1135 >         * Set our entry's value and write through to the map. The
1136 >         * value to return is somewhat arbitrary here. Since a
1137 >         * WriteThroughEntry does not necessarily track asynchronous
1138 >         * changes, the most recent "previous" value could be
1139 >         * different from what we return (or could even have been
1140 >         * removed in which case the put will re-establish). We do not
1141 >         * and cannot guarantee more.
1142 >         */
1143 >        public V setValue(V value) {
1144 >            if (value == null) throw new NullPointerException();
1145 >            V v = super.setValue(value);
1146 >            ConcurrentHashMap.this.put(getKey(), value);
1147 >            return v;
1148          }
1149 +    }
1150  
1151 <        boolean eq(Object o1, Object o2) {
1152 <            return (o1 == null ? o2 == null : o1.equals(o2));
1151 >    final class EntryIterator
1152 >        extends HashIterator
1153 >        implements Iterator<Entry<K,V>>
1154 >    {
1155 >        public Map.Entry<K,V> next() {
1156 >            HashEntry<K,V> e = super.nextEntry();
1157 >            return new WriteThroughEntry(e.key, e.value);
1158          }
1205
1159      }
1160  
1161      final class KeySet extends AbstractSet<K> {
# Line 1222 | Line 1175 | public class ConcurrentHashMap<K, V> ext
1175              ConcurrentHashMap.this.clear();
1176          }
1177          public Object[] toArray() {
1178 <            Collection<K> c = new ArrayList<K>();
1179 <            for (Iterator<K> i = iterator(); i.hasNext(); )
1180 <                c.add(i.next());
1178 >            Collection<K> c = new ArrayList<K>(size());
1179 >            for (K k : this)
1180 >                c.add(k);
1181              return c.toArray();
1182          }
1183          public <T> T[] toArray(T[] a) {
1184              Collection<K> c = new ArrayList<K>();
1185 <            for (Iterator<K> i = iterator(); i.hasNext(); )
1186 <                c.add(i.next());
1185 >            for (K k : this)
1186 >                c.add(k);
1187              return c.toArray(a);
1188          }
1189      }
# Line 1249 | Line 1202 | public class ConcurrentHashMap<K, V> ext
1202              ConcurrentHashMap.this.clear();
1203          }
1204          public Object[] toArray() {
1205 <            Collection<V> c = new ArrayList<V>();
1206 <            for (Iterator<V> i = iterator(); i.hasNext(); )
1207 <                c.add(i.next());
1205 >            Collection<V> c = new ArrayList<V>(size());
1206 >            for (V v : this)
1207 >                c.add(v);
1208              return c.toArray();
1209          }
1210          public <T> T[] toArray(T[] a) {
1211 <            Collection<V> c = new ArrayList<V>();
1212 <            for (Iterator<V> i = iterator(); i.hasNext(); )
1213 <                c.add(i.next());
1211 >            Collection<V> c = new ArrayList<V>(size());
1212 >            for (V v : this)
1213 >                c.add(v);
1214              return c.toArray(a);
1215          }
1216      }
# Line 1269 | Line 1222 | public class ConcurrentHashMap<K, V> ext
1222          public boolean contains(Object o) {
1223              if (!(o instanceof Map.Entry))
1224                  return false;
1225 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1225 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1226              V v = ConcurrentHashMap.this.get(e.getKey());
1227              return v != null && v.equals(e.getValue());
1228          }
1229          public boolean remove(Object o) {
1230              if (!(o instanceof Map.Entry))
1231                  return false;
1232 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1232 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1233              return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1234          }
1235          public int size() {
# Line 1286 | Line 1239 | public class ConcurrentHashMap<K, V> ext
1239              ConcurrentHashMap.this.clear();
1240          }
1241          public Object[] toArray() {
1289            // Since we don't ordinarily have distinct Entry objects, we
1290            // must pack elements using exportable SimpleEntry
1242              Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1243 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1244 <                c.add(new SimpleEntry<K,V>(i.next()));
1243 >            for (Map.Entry<K,V> e : this)
1244 >                c.add(e);
1245              return c.toArray();
1246          }
1247          public <T> T[] toArray(T[] a) {
1248              Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1249 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1250 <                c.add(new SimpleEntry<K,V>(i.next()));
1249 >            for (Map.Entry<K,V> e : this)
1250 >                c.add(e);
1251              return c.toArray(a);
1252          }
1253  
1254      }
1255  
1305    /**
1306     * This duplicates java.util.AbstractMap.SimpleEntry until this class
1307     * is made accessible.
1308     */
1309    static final class SimpleEntry<K,V> implements Entry<K,V> {
1310        K key;
1311        V value;
1312
1313        public SimpleEntry(K key, V value) {
1314            this.key   = key;
1315            this.value = value;
1316        }
1317
1318        public SimpleEntry(Entry<K,V> e) {
1319            this.key   = e.getKey();
1320            this.value = e.getValue();
1321        }
1322
1323        public K getKey() {
1324            return key;
1325        }
1326
1327        public V getValue() {
1328            return value;
1329        }
1330
1331        public V setValue(V value) {
1332            V oldValue = this.value;
1333            this.value = value;
1334            return oldValue;
1335        }
1336
1337        public boolean equals(Object o) {
1338            if (!(o instanceof Map.Entry))
1339                return false;
1340            Map.Entry e = (Map.Entry)o;
1341            return eq(key, e.getKey()) && eq(value, e.getValue());
1342        }
1343
1344        public int hashCode() {
1345            return ((key   == null)   ? 0 :   key.hashCode()) ^
1346                   ((value == null)   ? 0 : value.hashCode());
1347        }
1348
1349        public String toString() {
1350            return key + "=" + value;
1351        }
1352
1353        static boolean eq(Object o1, Object o2) {
1354            return (o1 == null ? o2 == null : o1.equals(o2));
1355        }
1356    }
1357
1256      /* ---------------- Serialization Support -------------- */
1257  
1258      /**
1259 <     * Save the state of the <tt>ConcurrentHashMap</tt>
1260 <     * instance to a stream (i.e.,
1363 <     * serialize it).
1259 >     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
1260 >     * stream (i.e., serialize it).
1261       * @param s the stream
1262       * @serialData
1263       * the key (Object) and value (Object)
# Line 1371 | Line 1268 | public class ConcurrentHashMap<K, V> ext
1268          s.defaultWriteObject();
1269  
1270          for (int k = 0; k < segments.length; ++k) {
1271 <            Segment<K,V> seg = (Segment<K,V>)segments[k];
1271 >            Segment<K,V> seg = segments[k];
1272              seg.lock();
1273              try {
1274 <                HashEntry[] tab = seg.table;
1274 >                HashEntry<K,V>[] tab = seg.table;
1275                  for (int i = 0; i < tab.length; ++i) {
1276 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1276 >                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1277                          s.writeObject(e.key);
1278                          s.writeObject(e.value);
1279                      }
# Line 1390 | Line 1287 | public class ConcurrentHashMap<K, V> ext
1287      }
1288  
1289      /**
1290 <     * Reconstitute the <tt>ConcurrentHashMap</tt>
1291 <     * instance from a stream (i.e.,
1395 <     * deserialize it).
1290 >     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1291 >     * stream (i.e., deserialize it).
1292       * @param s the stream
1293       */
1294      private void readObject(java.io.ObjectInputStream s)
# Line 1414 | Line 1310 | public class ConcurrentHashMap<K, V> ext
1310          }
1311      }
1312   }
1417

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines