ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.83 by jsr166, Mon Aug 22 03:42:10 2005 UTC vs.
Revision 1.134 by jsr166, Sun Oct 21 04:07:13 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 > import java.util.concurrent.atomic.LongAdder;
9 > import java.util.concurrent.ForkJoinPool;
10 > import java.util.concurrent.ForkJoinTask;
11 >
12 > import java.util.Comparator;
13 > import java.util.Arrays;
14 > import java.util.Map;
15 > import java.util.Set;
16 > import java.util.Collection;
17 > import java.util.AbstractMap;
18 > import java.util.AbstractSet;
19 > import java.util.AbstractCollection;
20 > import java.util.Hashtable;
21 > import java.util.HashMap;
22 > import java.util.Iterator;
23 > import java.util.Enumeration;
24 > import java.util.ConcurrentModificationException;
25 > import java.util.NoSuchElementException;
26 > import java.util.concurrent.ConcurrentMap;
27 > import java.util.concurrent.ThreadLocalRandom;
28 > import java.util.concurrent.locks.LockSupport;
29 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 > import java.util.concurrent.atomic.AtomicReference;
31 >
32   import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
33  
34   /**
35   * A hash table supporting full concurrency of retrievals and
36 < * adjustable expected concurrency for updates. This class obeys the
36 > * high expected concurrency for updates. This class obeys the
37   * same functional specification as {@link java.util.Hashtable}, and
38   * includes versions of methods corresponding to each method of
39 < * <tt>Hashtable</tt>. However, even though all operations are
39 > * {@code Hashtable}. However, even though all operations are
40   * thread-safe, retrieval operations do <em>not</em> entail locking,
41   * and there is <em>not</em> any support for locking the entire table
42   * in a way that prevents all access.  This class is fully
43 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
43 > * interoperable with {@code Hashtable} in programs that rely on its
44   * thread safety but not on its synchronization details.
45   *
46 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
47 < * block, so may overlap with update operations (including
48 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
49 < * of the most recently <em>completed</em> update operations holding
50 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
51 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
52 < * removal of only some entries.  Similarly, Iterators and
53 < * Enumerations return elements reflecting the state of the hash table
54 < * at some point at or since the creation of the iterator/enumeration.
55 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
56 < * However, iterators are designed to be used by only one thread at a time.
46 > * <p> Retrieval operations (including {@code get}) generally do not
47 > * block, so may overlap with update operations (including {@code put}
48 > * and {@code remove}). Retrievals reflect the results of the most
49 > * recently <em>completed</em> update operations holding upon their
50 > * onset. (More formally, an update operation for a given key bears a
51 > * <em>happens-before</em> relation with any (non-null) retrieval for
52 > * that key reporting the updated value.)  For aggregate operations
53 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
54 > * reflect insertion or removal of only some entries.  Similarly,
55 > * Iterators and Enumerations return elements reflecting the state of
56 > * the hash table at some point at or since the creation of the
57 > * iterator/enumeration.  They do <em>not</em> throw {@link
58 > * ConcurrentModificationException}.  However, iterators are designed
59 > * to be used by only one thread at a time.  Bear in mind that the
60 > * results of aggregate status methods including {@code size}, {@code
61 > * isEmpty}, and {@code containsValue} are typically useful only when
62 > * a map is not undergoing concurrent updates in other threads.
63 > * Otherwise the results of these methods reflect transient states
64 > * that may be adequate for monitoring or estimation purposes, but not
65 > * for program control.
66   *
67 < * <p> The allowed concurrency among update operations is guided by
68 < * the optional <tt>concurrencyLevel</tt> constructor argument
69 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
70 < * table is internally partitioned to try to permit the indicated
71 < * number of concurrent updates without contention. Because placement
72 < * in hash tables is essentially random, the actual concurrency will
73 < * vary.  Ideally, you should choose a value to accommodate as many
74 < * threads as will ever concurrently modify the table. Using a
75 < * significantly higher value than you need can waste space and time,
76 < * and a significantly lower value can lead to thread contention. But
77 < * overestimates and underestimates within an order of magnitude do
78 < * not usually have much noticeable impact. A value of one is
79 < * appropriate when it is known that only one thread will modify and
80 < * all others will only read. Also, resizing this or any other kind of
81 < * hash table is a relatively slow operation, so, when possible, it is
82 < * a good idea to provide estimates of expected table sizes in
83 < * constructors.
67 > * <p> The table is dynamically expanded when there are too many
68 > * collisions (i.e., keys that have distinct hash codes but fall into
69 > * the same slot modulo the table size), with the expected average
70 > * effect of maintaining roughly two bins per mapping (corresponding
71 > * to a 0.75 load factor threshold for resizing). There may be much
72 > * variance around this average as mappings are added and removed, but
73 > * overall, this maintains a commonly accepted time/space tradeoff for
74 > * hash tables.  However, resizing this or any other kind of hash
75 > * table may be a relatively slow operation. When possible, it is a
76 > * good idea to provide a size estimate as an optional {@code
77 > * initialCapacity} constructor argument. An additional optional
78 > * {@code loadFactor} constructor argument provides a further means of
79 > * customizing initial table capacity by specifying the table density
80 > * to be used in calculating the amount of space to allocate for the
81 > * given number of elements.  Also, for compatibility with previous
82 > * versions of this class, constructors may optionally specify an
83 > * expected {@code concurrencyLevel} as an additional hint for
84 > * internal sizing.  Note that using many keys with exactly the same
85 > * {@code hashCode()} is a sure way to slow down performance of any
86 > * hash table.
87   *
88   * <p>This class and its views and iterators implement all of the
89   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
90   * interfaces.
91   *
92   * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
93 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
93 > * does <em>not</em> allow {@code null} to be used as a key or value.
94   *
95   * <p>This class is a member of the
96 < * <a href="{@docRoot}/../guide/collections/index.html">
96 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
97   * Java Collections Framework</a>.
98   *
99 + * <p><em> During transition to JDK8, this
100 + * class declares and uses nested functional interfaces with different
101 + * names but the same forms as those expected for JDK8.<em>
102 + *
103   * @since 1.5
104   * @author Doug Lea
105   * @param <K> the type of keys maintained by this map
106   * @param <V> the type of mapped values
107   */
108 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
109 <        implements ConcurrentMap<K, V>, Serializable {
108 > public class ConcurrentHashMap<K, V>
109 >    implements ConcurrentMap<K, V>, Serializable {
110      private static final long serialVersionUID = 7249069246763182397L;
111  
112 +    /**
113 +     * A partitionable iterator. A Spliterator can be traversed
114 +     * directly, but can also be partitioned (before traversal) by
115 +     * creating another Spliterator that covers a non-overlapping
116 +     * portion of the elements, and so may be amenable to parallel
117 +     * execution.
118 +     *
119 +     * <p> This interface exports a subset of expected JDK8
120 +     * functionality.
121 +     *
122 +     * <p>Sample usage: Here is one (of the several) ways to compute
123 +     * the sum of the values held in a map using the ForkJoin
124 +     * framework. As illustrated here, Spliterators are well suited to
125 +     * designs in which a task repeatedly splits off half its work
126 +     * into forked subtasks until small enough to process directly,
127 +     * and then joins these subtasks. Variants of this style can also
128 +     * be used in completion-based designs.
129 +     *
130 +     * <pre>
131 +     * {@code ConcurrentHashMap<String, Long> m = ...
132 +     * // split as if have 8 * parallelism, for load balance
133 +     * int n = m.size();
134 +     * int p = aForkJoinPool.getParallelism() * 8;
135 +     * int split = (n < p)? n : p;
136 +     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
137 +     * // ...
138 +     * static class SumValues extends RecursiveTask<Long> {
139 +     *   final Spliterator<Long> s;
140 +     *   final int split;             // split while > 1
141 +     *   final SumValues nextJoin;    // records forked subtasks to join
142 +     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
143 +     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
144 +     *   }
145 +     *   public Long compute() {
146 +     *     long sum = 0;
147 +     *     SumValues subtasks = null; // fork subtasks
148 +     *     for (int s = split >>> 1; s > 0; s >>>= 1)
149 +     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
150 +     *     while (s.hasNext())        // directly process remaining elements
151 +     *       sum += s.next();
152 +     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
153 +     *       sum += t.join();         // collect subtask results
154 +     *     return sum;
155 +     *   }
156 +     * }
157 +     * }</pre>
158 +     */
159 +    public static interface Spliterator<T> extends Iterator<T> {
160 +        /**
161 +         * Returns a Spliterator covering approximately half of the
162 +         * elements, guaranteed not to overlap with those subsequently
163 +         * returned by this Spliterator.  After invoking this method,
164 +         * the current Spliterator will <em>not</em> produce any of
165 +         * the elements of the returned Spliterator, but the two
166 +         * Spliterators together will produce all of the elements that
167 +         * would have been produced by this Spliterator had this
168 +         * method not been called. The exact number of elements
169 +         * produced by the returned Spliterator is not guaranteed, and
170 +         * may be zero (i.e., with {@code hasNext()} reporting {@code
171 +         * false}) if this Spliterator cannot be further split.
172 +         *
173 +         * @return a Spliterator covering approximately half of the
174 +         * elements
175 +         * @throws IllegalStateException if this Spliterator has
176 +         * already commenced traversing elements
177 +         */
178 +        Spliterator<T> split();
179 +    }
180 +
181      /*
182 <     * The basic strategy is to subdivide the table among Segments,
183 <     * each of which itself is a concurrently readable hash table.
182 >     * Overview:
183 >     *
184 >     * The primary design goal of this hash table is to maintain
185 >     * concurrent readability (typically method get(), but also
186 >     * iterators and related methods) while minimizing update
187 >     * contention. Secondary goals are to keep space consumption about
188 >     * the same or better than java.util.HashMap, and to support high
189 >     * initial insertion rates on an empty table by many threads.
190 >     *
191 >     * Each key-value mapping is held in a Node.  Because Node fields
192 >     * can contain special values, they are defined using plain Object
193 >     * types. Similarly in turn, all internal methods that use them
194 >     * work off Object types. And similarly, so do the internal
195 >     * methods of auxiliary iterator and view classes.  All public
196 >     * generic typed methods relay in/out of these internal methods,
197 >     * supplying null-checks and casts as needed. This also allows
198 >     * many of the public methods to be factored into a smaller number
199 >     * of internal methods (although sadly not so for the five
200 >     * variants of put-related operations). The validation-based
201 >     * approach explained below leads to a lot of code sprawl because
202 >     * retry-control precludes factoring into smaller methods.
203 >     *
204 >     * The table is lazily initialized to a power-of-two size upon the
205 >     * first insertion.  Each bin in the table normally contains a
206 >     * list of Nodes (most often, the list has only zero or one Node).
207 >     * Table accesses require volatile/atomic reads, writes, and
208 >     * CASes.  Because there is no other way to arrange this without
209 >     * adding further indirections, we use intrinsics
210 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
211 >     * are always accurately traversable under volatile reads, so long
212 >     * as lookups check hash code and non-nullness of value before
213 >     * checking key equality.
214 >     *
215 >     * We use the top two bits of Node hash fields for control
216 >     * purposes -- they are available anyway because of addressing
217 >     * constraints.  As explained further below, these top bits are
218 >     * used as follows:
219 >     *  00 - Normal
220 >     *  01 - Locked
221 >     *  11 - Locked and may have a thread waiting for lock
222 >     *  10 - Node is a forwarding node
223 >     *
224 >     * The lower 30 bits of each Node's hash field contain a
225 >     * transformation of the key's hash code, except for forwarding
226 >     * nodes, for which the lower bits are zero (and so always have
227 >     * hash field == MOVED).
228 >     *
229 >     * Insertion (via put or its variants) of the first node in an
230 >     * empty bin is performed by just CASing it to the bin.  This is
231 >     * by far the most common case for put operations under most
232 >     * key/hash distributions.  Other update operations (insert,
233 >     * delete, and replace) require locks.  We do not want to waste
234 >     * the space required to associate a distinct lock object with
235 >     * each bin, so instead use the first node of a bin list itself as
236 >     * a lock. Blocking support for these locks relies on the builtin
237 >     * "synchronized" monitors.  However, we also need a tryLock
238 >     * construction, so we overlay these by using bits of the Node
239 >     * hash field for lock control (see above), and so normally use
240 >     * builtin monitors only for blocking and signalling using
241 >     * wait/notifyAll constructions. See Node.tryAwaitLock.
242 >     *
243 >     * Using the first node of a list as a lock does not by itself
244 >     * suffice though: When a node is locked, any update must first
245 >     * validate that it is still the first node after locking it, and
246 >     * retry if not. Because new nodes are always appended to lists,
247 >     * once a node is first in a bin, it remains first until deleted
248 >     * or the bin becomes invalidated (upon resizing).  However,
249 >     * operations that only conditionally update may inspect nodes
250 >     * until the point of update. This is a converse of sorts to the
251 >     * lazy locking technique described by Herlihy & Shavit.
252 >     *
253 >     * The main disadvantage of per-bin locks is that other update
254 >     * operations on other nodes in a bin list protected by the same
255 >     * lock can stall, for example when user equals() or mapping
256 >     * functions take a long time.  However, statistically, under
257 >     * random hash codes, this is not a common problem.  Ideally, the
258 >     * frequency of nodes in bins follows a Poisson distribution
259 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
260 >     * parameter of about 0.5 on average, given the resizing threshold
261 >     * of 0.75, although with a large variance because of resizing
262 >     * granularity. Ignoring variance, the expected occurrences of
263 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
264 >     * first values are:
265 >     *
266 >     * 0:    0.60653066
267 >     * 1:    0.30326533
268 >     * 2:    0.07581633
269 >     * 3:    0.01263606
270 >     * 4:    0.00157952
271 >     * 5:    0.00015795
272 >     * 6:    0.00001316
273 >     * 7:    0.00000094
274 >     * 8:    0.00000006
275 >     * more: less than 1 in ten million
276 >     *
277 >     * Lock contention probability for two threads accessing distinct
278 >     * elements is roughly 1 / (8 * #elements) under random hashes.
279 >     *
280 >     * Actual hash code distributions encountered in practice
281 >     * sometimes deviate significantly from uniform randomness.  This
282 >     * includes the case when N > (1<<30), so some keys MUST collide.
283 >     * Similarly for dumb or hostile usages in which multiple keys are
284 >     * designed to have identical hash codes. Also, although we guard
285 >     * against the worst effects of this (see method spread), sets of
286 >     * hashes may differ only in bits that do not impact their bin
287 >     * index for a given power-of-two mask.  So we use a secondary
288 >     * strategy that applies when the number of nodes in a bin exceeds
289 >     * a threshold, and at least one of the keys implements
290 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
291 >     * (a specialized form of red-black trees), bounding search time
292 >     * to O(log N).  Each search step in a TreeBin is around twice as
293 >     * slow as in a regular list, but given that N cannot exceed
294 >     * (1<<64) (before running out of addresses) this bounds search
295 >     * steps, lock hold times, etc, to reasonable constants (roughly
296 >     * 100 nodes inspected per operation worst case) so long as keys
297 >     * are Comparable (which is very common -- String, Long, etc).
298 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
299 >     * traversal pointers as regular nodes, so can be traversed in
300 >     * iterators in the same way.
301 >     *
302 >     * The table is resized when occupancy exceeds a percentage
303 >     * threshold (nominally, 0.75, but see below).  Only a single
304 >     * thread performs the resize (using field "sizeCtl", to arrange
305 >     * exclusion), but the table otherwise remains usable for reads
306 >     * and updates. Resizing proceeds by transferring bins, one by
307 >     * one, from the table to the next table.  Because we are using
308 >     * power-of-two expansion, the elements from each bin must either
309 >     * stay at same index, or move with a power of two offset. We
310 >     * eliminate unnecessary node creation by catching cases where old
311 >     * nodes can be reused because their next fields won't change.  On
312 >     * average, only about one-sixth of them need cloning when a table
313 >     * doubles. The nodes they replace will be garbage collectable as
314 >     * soon as they are no longer referenced by any reader thread that
315 >     * may be in the midst of concurrently traversing table.  Upon
316 >     * transfer, the old table bin contains only a special forwarding
317 >     * node (with hash field "MOVED") that contains the next table as
318 >     * its key. On encountering a forwarding node, access and update
319 >     * operations restart, using the new table.
320 >     *
321 >     * Each bin transfer requires its bin lock. However, unlike other
322 >     * cases, a transfer can skip a bin if it fails to acquire its
323 >     * lock, and revisit it later (unless it is a TreeBin). Method
324 >     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
325 >     * have been skipped because of failure to acquire a lock, and
326 >     * blocks only if none are available (i.e., only very rarely).
327 >     * The transfer operation must also ensure that all accessible
328 >     * bins in both the old and new table are usable by any traversal.
329 >     * When there are no lock acquisition failures, this is arranged
330 >     * simply by proceeding from the last bin (table.length - 1) up
331 >     * towards the first.  Upon seeing a forwarding node, traversals
332 >     * (see class Iter) arrange to move to the new table
333 >     * without revisiting nodes.  However, when any node is skipped
334 >     * during a transfer, all earlier table bins may have become
335 >     * visible, so are initialized with a reverse-forwarding node back
336 >     * to the old table until the new ones are established. (This
337 >     * sometimes requires transiently locking a forwarding node, which
338 >     * is possible under the above encoding.) These more expensive
339 >     * mechanics trigger only when necessary.
340 >     *
341 >     * The traversal scheme also applies to partial traversals of
342 >     * ranges of bins (via an alternate Traverser constructor)
343 >     * to support partitioned aggregate operations.  Also, read-only
344 >     * operations give up if ever forwarded to a null table, which
345 >     * provides support for shutdown-style clearing, which is also not
346 >     * currently implemented.
347 >     *
348 >     * Lazy table initialization minimizes footprint until first use,
349 >     * and also avoids resizings when the first operation is from a
350 >     * putAll, constructor with map argument, or deserialization.
351 >     * These cases attempt to override the initial capacity settings,
352 >     * but harmlessly fail to take effect in cases of races.
353 >     *
354 >     * The element count is maintained using a LongAdder, which avoids
355 >     * contention on updates but can encounter cache thrashing if read
356 >     * too frequently during concurrent access. To avoid reading so
357 >     * often, resizing is attempted either when a bin lock is
358 >     * contended, or upon adding to a bin already holding two or more
359 >     * nodes (checked before adding in the xIfAbsent methods, after
360 >     * adding in others). Under uniform hash distributions, the
361 >     * probability of this occurring at threshold is around 13%,
362 >     * meaning that only about 1 in 8 puts check threshold (and after
363 >     * resizing, many fewer do so). But this approximation has high
364 >     * variance for small table sizes, so we check on any collision
365 >     * for sizes <= 64. The bulk putAll operation further reduces
366 >     * contention by only committing count updates upon these size
367 >     * checks.
368 >     *
369 >     * Maintaining API and serialization compatibility with previous
370 >     * versions of this class introduces several oddities. Mainly: We
371 >     * leave untouched but unused constructor arguments refering to
372 >     * concurrencyLevel. We accept a loadFactor constructor argument,
373 >     * but apply it only to initial table capacity (which is the only
374 >     * time that we can guarantee to honor it.) We also declare an
375 >     * unused "Segment" class that is instantiated in minimal form
376 >     * only when serializing.
377       */
378  
379      /* ---------------- Constants -------------- */
380  
381      /**
382 <     * The default initial capacity for this table,
383 <     * used when not otherwise specified in a constructor.
382 >     * The largest possible table capacity.  This value must be
383 >     * exactly 1<<30 to stay within Java array allocation and indexing
384 >     * bounds for power of two table sizes, and is further required
385 >     * because the top two bits of 32bit hash fields are used for
386 >     * control purposes.
387       */
388 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
388 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
389  
390      /**
391 <     * The default load factor for this table, used when not
392 <     * otherwise specified in a constructor.
391 >     * The default initial table capacity.  Must be a power of 2
392 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
393       */
394 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
394 >    private static final int DEFAULT_CAPACITY = 16;
395  
396      /**
397 <     * The default concurrency level for this table, used when not
398 <     * otherwise specified in a constructor.
397 >     * The largest possible (non-power of two) array size.
398 >     * Needed by toArray and related methods.
399       */
400 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
400 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
401  
402      /**
403 <     * The maximum capacity, used if a higher value is implicitly
404 <     * specified by either of the constructors with arguments.  MUST
105 <     * be a power of two <= 1<<30 to ensure that entries are indexable
106 <     * using ints.
403 >     * The default concurrency level for this table. Unused but
404 >     * defined for compatibility with previous versions of this class.
405       */
406 <    static final int MAXIMUM_CAPACITY = 1 << 30;
406 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
407  
408      /**
409 <     * The maximum number of segments to allow; used to bound
410 <     * constructor arguments.
409 >     * The load factor for this table. Overrides of this value in
410 >     * constructors affect only the initial table capacity.  The
411 >     * actual floating point value isn't normally used -- it is
412 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
413 >     * the associated resizing threshold.
414       */
415 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
415 >    private static final float LOAD_FACTOR = 0.75f;
416  
417      /**
418 <     * Number of unsynchronized retries in size and containsValue
419 <     * methods before resorting to locking. This is used to avoid
420 <     * unbounded retries if tables undergo continuous modification
421 <     * which would make it impossible to obtain an accurate result.
418 >     * The buffer size for skipped bins during transfers. The
419 >     * value is arbitrary but should be large enough to avoid
420 >     * most locking stalls during resizes.
421 >     */
422 >    private static final int TRANSFER_BUFFER_SIZE = 32;
423 >
424 >    /**
425 >     * The bin count threshold for using a tree rather than list for a
426 >     * bin.  The value reflects the approximate break-even point for
427 >     * using tree-based operations.
428 >     */
429 >    private static final int TREE_THRESHOLD = 8;
430 >
431 >    /*
432 >     * Encodings for special uses of Node hash fields. See above for
433 >     * explanation.
434       */
435 <    static final int RETRIES_BEFORE_LOCK = 2;
435 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
436 >    static final int LOCKED    = 0x40000000; // set/tested only as a bit
437 >    static final int WAITING   = 0xc0000000; // both bits set/tested together
438 >    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
439  
440      /* ---------------- Fields -------------- */
441  
442      /**
443 <     * Mask value for indexing into segments. The upper bits of a
444 <     * key's hash code are used to choose the segment.
443 >     * The array of bins. Lazily initialized upon first insertion.
444 >     * Size is always a power of two. Accessed directly by iterators.
445       */
446 <    final int segmentMask;
446 >    transient volatile Node[] table;
447  
448      /**
449 <     * Shift value for indexing within segments.
449 >     * The counter maintaining number of elements.
450       */
451 <    final int segmentShift;
451 >    private transient final LongAdder counter;
452  
453      /**
454 <     * The segments, each of which is a specialized hash table
455 <     */
456 <    final Segment<K,V>[] segments;
454 >     * Table initialization and resizing control.  When negative, the
455 >     * table is being initialized or resized. Otherwise, when table is
456 >     * null, holds the initial table size to use upon creation, or 0
457 >     * for default. After initialization, holds the next element count
458 >     * value upon which to resize the table.
459 >     */
460 >    private transient volatile int sizeCtl;
461 >
462 >    // views
463 >    private transient KeySet<K,V> keySet;
464 >    private transient Values<K,V> values;
465 >    private transient EntrySet<K,V> entrySet;
466  
467 <    transient Set<K> keySet;
468 <    transient Set<Map.Entry<K,V>> entrySet;
144 <    transient Collection<V> values;
467 >    /** For serialization compatibility. Null unless serialized; see below */
468 >    private Segment<K,V>[] segments;
469  
470 <    /* ---------------- Small Utilities -------------- */
470 >    /* ---------------- Table element access -------------- */
471  
472 <    /**
473 <     * Returns a hash code for non-null Object x.
474 <     * Uses the same hash code spreader as most other java.util hash tables.
475 <     * @param x the object serving as a key
476 <     * @return the hash code
472 >    /*
473 >     * Volatile access methods are used for table elements as well as
474 >     * elements of in-progress next table while resizing.  Uses are
475 >     * null checked by callers, and implicitly bounds-checked, relying
476 >     * on the invariants that tab arrays have non-zero size, and all
477 >     * indices are masked with (tab.length - 1) which is never
478 >     * negative and always less than length. Note that, to be correct
479 >     * wrt arbitrary concurrency errors by users, bounds checks must
480 >     * operate on local variables, which accounts for some odd-looking
481 >     * inline assignments below.
482       */
483 <    static int hash(Object x) {
484 <        int h = x.hashCode();
485 <        h += ~(h << 9);
157 <        h ^=  (h >>> 14);
158 <        h +=  (h << 4);
159 <        h ^=  (h >>> 10);
160 <        return h;
483 >
484 >    static final Node tabAt(Node[] tab, int i) { // used by Iter
485 >        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
486      }
487  
488 <    /**
489 <     * Returns the segment that should be used for key with given hash
165 <     * @param hash the hash code for the key
166 <     * @return the segment
167 <     */
168 <    final Segment<K,V> segmentFor(int hash) {
169 <        return segments[(hash >>> segmentShift) & segmentMask];
488 >    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
489 >        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
490      }
491  
492 <    /* ---------------- Inner Classes -------------- */
492 >    private static final void setTabAt(Node[] tab, int i, Node v) {
493 >        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
494 >    }
495 >
496 >    /* ---------------- Nodes -------------- */
497  
498      /**
499 <     * ConcurrentHashMap list entry. Note that this is never exported
500 <     * out as a user-visible Map.Entry.
501 <     *
502 <     * Because the value field is volatile, not final, it is legal wrt
503 <     * the Java Memory Model for an unsynchronized reader to see null
504 <     * instead of initial value when read via a data race.  Although a
505 <     * reordering leading to this is not likely to ever actually
506 <     * occur, the Segment.readValueUnderLock method is used as a
507 <     * backup in case a null (pre-initialized) value is ever seen in
508 <     * an unsynchronized access method.
509 <     */
510 <    static final class HashEntry<K,V> {
511 <        final K key;
512 <        final int hash;
189 <        volatile V value;
190 <        final HashEntry<K,V> next;
499 >     * Key-value entry. Note that this is never exported out as a
500 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
501 >     * field of MOVED are special, and do not contain user keys or
502 >     * values.  Otherwise, keys are never null, and null val fields
503 >     * indicate that a node is in the process of being deleted or
504 >     * created. For purposes of read-only access, a key may be read
505 >     * before a val, but can only be used after checking val to be
506 >     * non-null.
507 >     */
508 >    static class Node {
509 >        volatile int hash;
510 >        final Object key;
511 >        volatile Object val;
512 >        volatile Node next;
513  
514 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 <            this.key = key;
514 >        Node(int hash, Object key, Object val, Node next) {
515              this.hash = hash;
516 +            this.key = key;
517 +            this.val = val;
518              this.next = next;
196            this.value = value;
519          }
520  
521 <        @SuppressWarnings("unchecked")
522 <        static final <K,V> HashEntry<K,V>[] newArray(int i) {
523 <            return new HashEntry[i];
524 <        }
203 <    }
204 <
205 <    /**
206 <     * Segments are specialized versions of hash tables.  This
207 <     * subclasses from ReentrantLock opportunistically, just to
208 <     * simplify some locking and avoid separate construction.
209 <     */
210 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
211 <        /*
212 <         * Segments maintain a table of entry lists that are ALWAYS
213 <         * kept in a consistent state, so can be read without locking.
214 <         * Next fields of nodes are immutable (final).  All list
215 <         * additions are performed at the front of each bin. This
216 <         * makes it easy to check changes, and also fast to traverse.
217 <         * When nodes would otherwise be changed, new nodes are
218 <         * created to replace them. This works well for hash tables
219 <         * since the bin lists tend to be short. (The average length
220 <         * is less than two for the default load factor threshold.)
221 <         *
222 <         * Read operations can thus proceed without locking, but rely
223 <         * on selected uses of volatiles to ensure that completed
224 <         * write operations performed by other threads are
225 <         * noticed. For most purposes, the "count" field, tracking the
226 <         * number of elements, serves as that volatile variable
227 <         * ensuring visibility.  This is convenient because this field
228 <         * needs to be read in many read operations anyway:
229 <         *
230 <         *   - All (unsynchronized) read operations must first read the
231 <         *     "count" field, and should not look at table entries if
232 <         *     it is 0.
233 <         *
234 <         *   - All (synchronized) write operations should write to
235 <         *     the "count" field after structurally changing any bin.
236 <         *     The operations must not take any action that could even
237 <         *     momentarily cause a concurrent read operation to see
238 <         *     inconsistent data. This is made easier by the nature of
239 <         *     the read operations in Map. For example, no operation
240 <         *     can reveal that the table has grown but the threshold
241 <         *     has not yet been updated, so there are no atomicity
242 <         *     requirements for this with respect to reads.
243 <         *
244 <         * As a guide, all critical volatile reads and writes to the
245 <         * count field are marked in code comments.
246 <         */
521 >        /** CompareAndSet the hash field */
522 >        final boolean casHash(int cmp, int val) {
523 >            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
524 >        }
525  
526 <        private static final long serialVersionUID = 2249069246763182397L;
526 >        /** The number of spins before blocking for a lock */
527 >        static final int MAX_SPINS =
528 >            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
529  
530          /**
531 <         * The number of elements in this segment's region.
531 >         * Spins a while if LOCKED bit set and this node is the first
532 >         * of its bin, and then sets WAITING bits on hash field and
533 >         * blocks (once) if they are still set.  It is OK for this
534 >         * method to return even if lock is not available upon exit,
535 >         * which enables these simple single-wait mechanics.
536 >         *
537 >         * The corresponding signalling operation is performed within
538 >         * callers: Upon detecting that WAITING has been set when
539 >         * unlocking lock (via a failed CAS from non-waiting LOCKED
540 >         * state), unlockers acquire the sync lock and perform a
541 >         * notifyAll.
542 >         *
543 >         * The initial sanity check on tab and bounds is not currently
544 >         * necessary in the only usages of this method, but enables
545 >         * use in other future contexts.
546           */
547 <        transient volatile int count;
547 >        final void tryAwaitLock(Node[] tab, int i) {
548 >            if (tab != null && i >= 0 && i < tab.length) { // sanity check
549 >                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
550 >                int spins = MAX_SPINS, h;
551 >                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
552 >                    if (spins >= 0) {
553 >                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
554 >                        if (r >= 0 && --spins == 0)
555 >                            Thread.yield();  // yield before block
556 >                    }
557 >                    else if (casHash(h, h | WAITING)) {
558 >                        synchronized (this) {
559 >                            if (tabAt(tab, i) == this &&
560 >                                (hash & WAITING) == WAITING) {
561 >                                try {
562 >                                    wait();
563 >                                } catch (InterruptedException ie) {
564 >                                    Thread.currentThread().interrupt();
565 >                                }
566 >                            }
567 >                            else
568 >                                notifyAll(); // possibly won race vs signaller
569 >                        }
570 >                        break;
571 >                    }
572 >                }
573 >            }
574 >        }
575  
576 <        /**
577 <         * Number of updates that alter the size of the table. This is
578 <         * used during bulk-read methods to make sure they see a
258 <         * consistent snapshot: If modCounts change during a traversal
259 <         * of segments computing size or checking containsValue, then
260 <         * we might have an inconsistent view of state so (usually)
261 <         * must retry.
262 <         */
263 <        transient int modCount;
576 >        // Unsafe mechanics for casHash
577 >        private static final sun.misc.Unsafe UNSAFE;
578 >        private static final long hashOffset;
579  
580 <        /**
581 <         * The table is rehashed when its size exceeds this threshold.
582 <         * (The value of this field is always <tt>(int)(capacity *
583 <         * loadFactor)</tt>.)
584 <         */
585 <        transient int threshold;
580 >        static {
581 >            try {
582 >                UNSAFE = sun.misc.Unsafe.getUnsafe();
583 >                Class<?> k = Node.class;
584 >                hashOffset = UNSAFE.objectFieldOffset
585 >                    (k.getDeclaredField("hash"));
586 >            } catch (Exception e) {
587 >                throw new Error(e);
588 >            }
589 >        }
590 >    }
591  
592 <        /**
273 <         * The per-segment table.
274 <         */
275 <        transient volatile HashEntry<K,V>[] table;
592 >    /* ---------------- TreeBins -------------- */
593  
594 <        /**
595 <         * The load factor for the hash table.  Even though this value
596 <         * is same for all segments, it is replicated to avoid needing
597 <         * links to outer object.
598 <         * @serial
599 <         */
600 <        final float loadFactor;
594 >    /**
595 >     * Nodes for use in TreeBins
596 >     */
597 >    static final class TreeNode extends Node {
598 >        TreeNode parent;  // red-black tree links
599 >        TreeNode left;
600 >        TreeNode right;
601 >        TreeNode prev;    // needed to unlink next upon deletion
602 >        boolean red;
603 >
604 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
605 >            super(hash, key, val, next);
606 >            this.parent = parent;
607 >        }
608 >    }
609  
610 <        Segment(int initialCapacity, float lf) {
611 <            loadFactor = lf;
612 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
610 >    /**
611 >     * A specialized form of red-black tree for use in bins
612 >     * whose size exceeds a threshold.
613 >     *
614 >     * TreeBins use a special form of comparison for search and
615 >     * related operations (which is the main reason we cannot use
616 >     * existing collections such as TreeMaps). TreeBins contain
617 >     * Comparable elements, but may contain others, as well as
618 >     * elements that are Comparable but not necessarily Comparable<T>
619 >     * for the same T, so we cannot invoke compareTo among them. To
620 >     * handle this, the tree is ordered primarily by hash value, then
621 >     * by getClass().getName() order, and then by Comparator order
622 >     * among elements of the same class.  On lookup at a node, if
623 >     * elements are not comparable or compare as 0, both left and
624 >     * right children may need to be searched in the case of tied hash
625 >     * values. (This corresponds to the full list search that would be
626 >     * necessary if all elements were non-Comparable and had tied
627 >     * hashes.)  The red-black balancing code is updated from
628 >     * pre-jdk-collections
629 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
630 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
631 >     * Algorithms" (CLR).
632 >     *
633 >     * TreeBins also maintain a separate locking discipline than
634 >     * regular bins. Because they are forwarded via special MOVED
635 >     * nodes at bin heads (which can never change once established),
636 >     * we cannot use those nodes as locks. Instead, TreeBin
637 >     * extends AbstractQueuedSynchronizer to support a simple form of
638 >     * read-write lock. For update operations and table validation,
639 >     * the exclusive form of lock behaves in the same way as bin-head
640 >     * locks. However, lookups use shared read-lock mechanics to allow
641 >     * multiple readers in the absence of writers.  Additionally,
642 >     * these lookups do not ever block: While the lock is not
643 >     * available, they proceed along the slow traversal path (via
644 >     * next-pointers) until the lock becomes available or the list is
645 >     * exhausted, whichever comes first. (These cases are not fast,
646 >     * but maximize aggregate expected throughput.)  The AQS mechanics
647 >     * for doing this are straightforward.  The lock state is held as
648 >     * AQS getState().  Read counts are negative; the write count (1)
649 >     * is positive.  There are no signalling preferences among readers
650 >     * and writers. Since we don't need to export full Lock API, we
651 >     * just override the minimal AQS methods and use them directly.
652 >     */
653 >    static final class TreeBin extends AbstractQueuedSynchronizer {
654 >        private static final long serialVersionUID = 2249069246763182397L;
655 >        transient TreeNode root;  // root of tree
656 >        transient TreeNode first; // head of next-pointer list
657 >
658 >        /* AQS overrides */
659 >        public final boolean isHeldExclusively() { return getState() > 0; }
660 >        public final boolean tryAcquire(int ignore) {
661 >            if (compareAndSetState(0, 1)) {
662 >                setExclusiveOwnerThread(Thread.currentThread());
663 >                return true;
664 >            }
665 >            return false;
666 >        }
667 >        public final boolean tryRelease(int ignore) {
668 >            setExclusiveOwnerThread(null);
669 >            setState(0);
670 >            return true;
671 >        }
672 >        public final int tryAcquireShared(int ignore) {
673 >            for (int c;;) {
674 >                if ((c = getState()) > 0)
675 >                    return -1;
676 >                if (compareAndSetState(c, c -1))
677 >                    return 1;
678 >            }
679 >        }
680 >        public final boolean tryReleaseShared(int ignore) {
681 >            int c;
682 >            do {} while (!compareAndSetState(c = getState(), c + 1));
683 >            return c == -1;
684 >        }
685 >
686 >        /** From CLR */
687 >        private void rotateLeft(TreeNode p) {
688 >            if (p != null) {
689 >                TreeNode r = p.right, pp, rl;
690 >                if ((rl = p.right = r.left) != null)
691 >                    rl.parent = p;
692 >                if ((pp = r.parent = p.parent) == null)
693 >                    root = r;
694 >                else if (pp.left == p)
695 >                    pp.left = r;
696 >                else
697 >                    pp.right = r;
698 >                r.left = p;
699 >                p.parent = r;
700 >            }
701          }
702  
703 <        @SuppressWarnings("unchecked")
704 <        static final <K,V> Segment<K,V>[] newArray(int i) {
705 <            return new Segment[i];
703 >        /** From CLR */
704 >        private void rotateRight(TreeNode p) {
705 >            if (p != null) {
706 >                TreeNode l = p.left, pp, lr;
707 >                if ((lr = p.left = l.right) != null)
708 >                    lr.parent = p;
709 >                if ((pp = l.parent = p.parent) == null)
710 >                    root = l;
711 >                else if (pp.right == p)
712 >                    pp.right = l;
713 >                else
714 >                    pp.left = l;
715 >                l.right = p;
716 >                p.parent = l;
717 >            }
718          }
719  
720          /**
721 <         * Sets table to new HashEntry array.
722 <         * Call only while holding lock or in constructor.
721 >         * Returns the TreeNode (or null if not found) for the given key
722 >         * starting at given root.
723           */
724 <        void setTable(HashEntry<K,V>[] newTable) {
725 <            threshold = (int)(newTable.length * loadFactor);
726 <            table = newTable;
724 >        @SuppressWarnings("unchecked") final TreeNode getTreeNode
725 >            (int h, Object k, TreeNode p) {
726 >            Class<?> c = k.getClass();
727 >            while (p != null) {
728 >                int dir, ph;  Object pk; Class<?> pc;
729 >                if ((ph = p.hash) == h) {
730 >                    if ((pk = p.key) == k || k.equals(pk))
731 >                        return p;
732 >                    if (c != (pc = pk.getClass()) ||
733 >                        !(k instanceof Comparable) ||
734 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
735 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
736 >                        TreeNode r = null, s = null, pl, pr;
737 >                        if (dir >= 0) {
738 >                            if ((pl = p.left) != null && h <= pl.hash)
739 >                                s = pl;
740 >                        }
741 >                        else if ((pr = p.right) != null && h >= pr.hash)
742 >                            s = pr;
743 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
744 >                            return r;
745 >                    }
746 >                }
747 >                else
748 >                    dir = (h < ph) ? -1 : 1;
749 >                p = (dir > 0) ? p.right : p.left;
750 >            }
751 >            return null;
752          }
753  
754          /**
755 <         * Returns properly casted first entry of bin for given hash.
755 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
756 >         * read-lock to call getTreeNode, but during failure to get
757 >         * lock, searches along next links.
758           */
759 <        HashEntry<K,V> getFirst(int hash) {
760 <            HashEntry<K,V>[] tab = table;
761 <            return tab[hash & (tab.length - 1)];
759 >        final Object getValue(int h, Object k) {
760 >            Node r = null;
761 >            int c = getState(); // Must read lock state first
762 >            for (Node e = first; e != null; e = e.next) {
763 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
764 >                    try {
765 >                        r = getTreeNode(h, k, root);
766 >                    } finally {
767 >                        releaseShared(0);
768 >                    }
769 >                    break;
770 >                }
771 >                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
772 >                    r = e;
773 >                    break;
774 >                }
775 >                else
776 >                    c = getState();
777 >            }
778 >            return r == null ? null : r.val;
779          }
780  
781          /**
782 <         * Reads value field of an entry under lock. Called if value
783 <         * field ever appears to be null. This is possible only if a
315 <         * compiler happens to reorder a HashEntry initialization with
316 <         * its table assignment, which is legal under memory model
317 <         * but is not known to ever occur.
782 >         * Finds or adds a node.
783 >         * @return null if added
784           */
785 <        V readValueUnderLock(HashEntry<K,V> e) {
786 <            lock();
787 <            try {
788 <                return e.value;
789 <            } finally {
790 <                unlock();
785 >        @SuppressWarnings("unchecked") final TreeNode putTreeNode
786 >            (int h, Object k, Object v) {
787 >            Class<?> c = k.getClass();
788 >            TreeNode pp = root, p = null;
789 >            int dir = 0;
790 >            while (pp != null) { // find existing node or leaf to insert at
791 >                int ph;  Object pk; Class<?> pc;
792 >                p = pp;
793 >                if ((ph = p.hash) == h) {
794 >                    if ((pk = p.key) == k || k.equals(pk))
795 >                        return p;
796 >                    if (c != (pc = pk.getClass()) ||
797 >                        !(k instanceof Comparable) ||
798 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
799 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
800 >                        TreeNode r = null, s = null, pl, pr;
801 >                        if (dir >= 0) {
802 >                            if ((pl = p.left) != null && h <= pl.hash)
803 >                                s = pl;
804 >                        }
805 >                        else if ((pr = p.right) != null && h >= pr.hash)
806 >                            s = pr;
807 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
808 >                            return r;
809 >                    }
810 >                }
811 >                else
812 >                    dir = (h < ph) ? -1 : 1;
813 >                pp = (dir > 0) ? p.right : p.left;
814              }
326        }
327
328        /* Specialized implementations of map methods */
815  
816 <        V get(Object key, int hash) {
817 <            if (count != 0) { // read-volatile
818 <                HashEntry<K,V> e = getFirst(hash);
819 <                while (e != null) {
820 <                    if (e.hash == hash && key.equals(e.key)) {
821 <                        V v = e.value;
822 <                        if (v != null)
823 <                            return v;
824 <                        return readValueUnderLock(e); // recheck
816 >            TreeNode f = first;
817 >            TreeNode x = first = new TreeNode(h, k, v, f, p);
818 >            if (p == null)
819 >                root = x;
820 >            else { // attach and rebalance; adapted from CLR
821 >                TreeNode xp, xpp;
822 >                if (f != null)
823 >                    f.prev = x;
824 >                if (dir <= 0)
825 >                    p.left = x;
826 >                else
827 >                    p.right = x;
828 >                x.red = true;
829 >                while (x != null && (xp = x.parent) != null && xp.red &&
830 >                       (xpp = xp.parent) != null) {
831 >                    TreeNode xppl = xpp.left;
832 >                    if (xp == xppl) {
833 >                        TreeNode y = xpp.right;
834 >                        if (y != null && y.red) {
835 >                            y.red = false;
836 >                            xp.red = false;
837 >                            xpp.red = true;
838 >                            x = xpp;
839 >                        }
840 >                        else {
841 >                            if (x == xp.right) {
842 >                                rotateLeft(x = xp);
843 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
844 >                            }
845 >                            if (xp != null) {
846 >                                xp.red = false;
847 >                                if (xpp != null) {
848 >                                    xpp.red = true;
849 >                                    rotateRight(xpp);
850 >                                }
851 >                            }
852 >                        }
853 >                    }
854 >                    else {
855 >                        TreeNode y = xppl;
856 >                        if (y != null && y.red) {
857 >                            y.red = false;
858 >                            xp.red = false;
859 >                            xpp.red = true;
860 >                            x = xpp;
861 >                        }
862 >                        else {
863 >                            if (x == xp.left) {
864 >                                rotateRight(x = xp);
865 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
866 >                            }
867 >                            if (xp != null) {
868 >                                xp.red = false;
869 >                                if (xpp != null) {
870 >                                    xpp.red = true;
871 >                                    rotateLeft(xpp);
872 >                                }
873 >                            }
874 >                        }
875                      }
340                    e = e.next;
876                  }
877 +                TreeNode r = root;
878 +                if (r != null && r.red)
879 +                    r.red = false;
880              }
881              return null;
882          }
883  
884 <        boolean containsKey(Object key, int hash) {
885 <            if (count != 0) { // read-volatile
886 <                HashEntry<K,V> e = getFirst(hash);
887 <                while (e != null) {
888 <                    if (e.hash == hash && key.equals(e.key))
889 <                        return true;
890 <                    e = e.next;
884 >        /**
885 >         * Removes the given node, that must be present before this
886 >         * call.  This is messier than typical red-black deletion code
887 >         * because we cannot swap the contents of an interior node
888 >         * with a leaf successor that is pinned by "next" pointers
889 >         * that are accessible independently of lock. So instead we
890 >         * swap the tree linkages.
891 >         */
892 >        final void deleteTreeNode(TreeNode p) {
893 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
894 >            TreeNode pred = p.prev;
895 >            if (pred == null)
896 >                first = next;
897 >            else
898 >                pred.next = next;
899 >            if (next != null)
900 >                next.prev = pred;
901 >            TreeNode replacement;
902 >            TreeNode pl = p.left;
903 >            TreeNode pr = p.right;
904 >            if (pl != null && pr != null) {
905 >                TreeNode s = pr, sl;
906 >                while ((sl = s.left) != null) // find successor
907 >                    s = sl;
908 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
909 >                TreeNode sr = s.right;
910 >                TreeNode pp = p.parent;
911 >                if (s == pr) { // p was s's direct parent
912 >                    p.parent = s;
913 >                    s.right = p;
914                  }
915 +                else {
916 +                    TreeNode sp = s.parent;
917 +                    if ((p.parent = sp) != null) {
918 +                        if (s == sp.left)
919 +                            sp.left = p;
920 +                        else
921 +                            sp.right = p;
922 +                    }
923 +                    if ((s.right = pr) != null)
924 +                        pr.parent = s;
925 +                }
926 +                p.left = null;
927 +                if ((p.right = sr) != null)
928 +                    sr.parent = p;
929 +                if ((s.left = pl) != null)
930 +                    pl.parent = s;
931 +                if ((s.parent = pp) == null)
932 +                    root = s;
933 +                else if (p == pp.left)
934 +                    pp.left = s;
935 +                else
936 +                    pp.right = s;
937 +                replacement = sr;
938              }
939 <            return false;
939 >            else
940 >                replacement = (pl != null) ? pl : pr;
941 >            TreeNode pp = p.parent;
942 >            if (replacement == null) {
943 >                if (pp == null) {
944 >                    root = null;
945 >                    return;
946 >                }
947 >                replacement = p;
948 >            }
949 >            else {
950 >                replacement.parent = pp;
951 >                if (pp == null)
952 >                    root = replacement;
953 >                else if (p == pp.left)
954 >                    pp.left = replacement;
955 >                else
956 >                    pp.right = replacement;
957 >                p.left = p.right = p.parent = null;
958 >            }
959 >            if (!p.red) { // rebalance, from CLR
960 >                TreeNode x = replacement;
961 >                while (x != null) {
962 >                    TreeNode xp, xpl;
963 >                    if (x.red || (xp = x.parent) == null) {
964 >                        x.red = false;
965 >                        break;
966 >                    }
967 >                    if (x == (xpl = xp.left)) {
968 >                        TreeNode sib = xp.right;
969 >                        if (sib != null && sib.red) {
970 >                            sib.red = false;
971 >                            xp.red = true;
972 >                            rotateLeft(xp);
973 >                            sib = (xp = x.parent) == null ? null : xp.right;
974 >                        }
975 >                        if (sib == null)
976 >                            x = xp;
977 >                        else {
978 >                            TreeNode sl = sib.left, sr = sib.right;
979 >                            if ((sr == null || !sr.red) &&
980 >                                (sl == null || !sl.red)) {
981 >                                sib.red = true;
982 >                                x = xp;
983 >                            }
984 >                            else {
985 >                                if (sr == null || !sr.red) {
986 >                                    if (sl != null)
987 >                                        sl.red = false;
988 >                                    sib.red = true;
989 >                                    rotateRight(sib);
990 >                                    sib = (xp = x.parent) == null ? null : xp.right;
991 >                                }
992 >                                if (sib != null) {
993 >                                    sib.red = (xp == null) ? false : xp.red;
994 >                                    if ((sr = sib.right) != null)
995 >                                        sr.red = false;
996 >                                }
997 >                                if (xp != null) {
998 >                                    xp.red = false;
999 >                                    rotateLeft(xp);
1000 >                                }
1001 >                                x = root;
1002 >                            }
1003 >                        }
1004 >                    }
1005 >                    else { // symmetric
1006 >                        TreeNode sib = xpl;
1007 >                        if (sib != null && sib.red) {
1008 >                            sib.red = false;
1009 >                            xp.red = true;
1010 >                            rotateRight(xp);
1011 >                            sib = (xp = x.parent) == null ? null : xp.left;
1012 >                        }
1013 >                        if (sib == null)
1014 >                            x = xp;
1015 >                        else {
1016 >                            TreeNode sl = sib.left, sr = sib.right;
1017 >                            if ((sl == null || !sl.red) &&
1018 >                                (sr == null || !sr.red)) {
1019 >                                sib.red = true;
1020 >                                x = xp;
1021 >                            }
1022 >                            else {
1023 >                                if (sl == null || !sl.red) {
1024 >                                    if (sr != null)
1025 >                                        sr.red = false;
1026 >                                    sib.red = true;
1027 >                                    rotateLeft(sib);
1028 >                                    sib = (xp = x.parent) == null ? null : xp.left;
1029 >                                }
1030 >                                if (sib != null) {
1031 >                                    sib.red = (xp == null) ? false : xp.red;
1032 >                                    if ((sl = sib.left) != null)
1033 >                                        sl.red = false;
1034 >                                }
1035 >                                if (xp != null) {
1036 >                                    xp.red = false;
1037 >                                    rotateRight(xp);
1038 >                                }
1039 >                                x = root;
1040 >                            }
1041 >                        }
1042 >                    }
1043 >                }
1044 >            }
1045 >            if (p == replacement && (pp = p.parent) != null) {
1046 >                if (p == pp.left) // detach pointers
1047 >                    pp.left = null;
1048 >                else if (p == pp.right)
1049 >                    pp.right = null;
1050 >                p.parent = null;
1051 >            }
1052 >        }
1053 >    }
1054 >
1055 >    /* ---------------- Collision reduction methods -------------- */
1056 >
1057 >    /**
1058 >     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1059 >     * Because the table uses power-of-two masking, sets of hashes
1060 >     * that vary only in bits above the current mask will always
1061 >     * collide. (Among known examples are sets of Float keys holding
1062 >     * consecutive whole numbers in small tables.)  To counter this,
1063 >     * we apply a transform that spreads the impact of higher bits
1064 >     * downward. There is a tradeoff between speed, utility, and
1065 >     * quality of bit-spreading. Because many common sets of hashes
1066 >     * are already reasonably distributed across bits (so don't benefit
1067 >     * from spreading), and because we use trees to handle large sets
1068 >     * of collisions in bins, we don't need excessively high quality.
1069 >     */
1070 >    private static final int spread(int h) {
1071 >        h ^= (h >>> 18) ^ (h >>> 12);
1072 >        return (h ^ (h >>> 10)) & HASH_BITS;
1073 >    }
1074 >
1075 >    /**
1076 >     * Replaces a list bin with a tree bin. Call only when locked.
1077 >     * Fails to replace if the given key is non-comparable or table
1078 >     * is, or needs, resizing.
1079 >     */
1080 >    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1081 >        if ((key instanceof Comparable) &&
1082 >            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1083 >            TreeBin t = new TreeBin();
1084 >            for (Node e = tabAt(tab, index); e != null; e = e.next)
1085 >                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1086 >            setTabAt(tab, index, new Node(MOVED, t, null, null));
1087          }
1088 +    }
1089 +
1090 +    /* ---------------- Internal access and update methods -------------- */
1091  
1092 <        boolean containsValue(Object value) {
1093 <            if (count != 0) { // read-volatile
1094 <                HashEntry<K,V>[] tab = table;
1095 <                int len = tab.length;
1096 <                for (int i = 0 ; i < len; i++) {
1097 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1098 <                        V v = e.value;
1099 <                        if (v == null) // recheck
1100 <                            v = readValueUnderLock(e);
1101 <                        if (value.equals(v))
1102 <                            return true;
1092 >    /** Implementation for get and containsKey */
1093 >    private final Object internalGet(Object k) {
1094 >        int h = spread(k.hashCode());
1095 >        retry: for (Node[] tab = table; tab != null;) {
1096 >            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1097 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1098 >                if ((eh = e.hash) == MOVED) {
1099 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1100 >                        return ((TreeBin)ek).getValue(h, k);
1101 >                    else {                        // restart with new table
1102 >                        tab = (Node[])ek;
1103 >                        continue retry;
1104                      }
1105                  }
1106 +                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1107 +                         ((ek = e.key) == k || k.equals(ek)))
1108 +                    return ev;
1109              }
1110 <            return false;
1110 >            break;
1111          }
1112 +        return null;
1113 +    }
1114  
1115 <        boolean replace(K key, int hash, V oldValue, V newValue) {
1116 <            lock();
1117 <            try {
1118 <                HashEntry<K,V> e = getFirst(hash);
1119 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1120 <                    e = e.next;
1121 <
1122 <                boolean replaced = false;
1123 <                if (e != null && oldValue.equals(e.value)) {
1124 <                    replaced = true;
1125 <                    e.value = newValue;
1115 >    /**
1116 >     * Implementation for the four public remove/replace methods:
1117 >     * Replaces node value with v, conditional upon match of cv if
1118 >     * non-null.  If resulting value is null, delete.
1119 >     */
1120 >    private final Object internalReplace(Object k, Object v, Object cv) {
1121 >        int h = spread(k.hashCode());
1122 >        Object oldVal = null;
1123 >        for (Node[] tab = table;;) {
1124 >            Node f; int i, fh; Object fk;
1125 >            if (tab == null ||
1126 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1127 >                break;
1128 >            else if ((fh = f.hash) == MOVED) {
1129 >                if ((fk = f.key) instanceof TreeBin) {
1130 >                    TreeBin t = (TreeBin)fk;
1131 >                    boolean validated = false;
1132 >                    boolean deleted = false;
1133 >                    t.acquire(0);
1134 >                    try {
1135 >                        if (tabAt(tab, i) == f) {
1136 >                            validated = true;
1137 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1138 >                            if (p != null) {
1139 >                                Object pv = p.val;
1140 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1141 >                                    oldVal = pv;
1142 >                                    if ((p.val = v) == null) {
1143 >                                        deleted = true;
1144 >                                        t.deleteTreeNode(p);
1145 >                                    }
1146 >                                }
1147 >                            }
1148 >                        }
1149 >                    } finally {
1150 >                        t.release(0);
1151 >                    }
1152 >                    if (validated) {
1153 >                        if (deleted)
1154 >                            counter.add(-1L);
1155 >                        break;
1156 >                    }
1157 >                }
1158 >                else
1159 >                    tab = (Node[])fk;
1160 >            }
1161 >            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1162 >                break;                          // rules out possible existence
1163 >            else if ((fh & LOCKED) != 0) {
1164 >                checkForResize();               // try resizing if can't get lock
1165 >                f.tryAwaitLock(tab, i);
1166 >            }
1167 >            else if (f.casHash(fh, fh | LOCKED)) {
1168 >                boolean validated = false;
1169 >                boolean deleted = false;
1170 >                try {
1171 >                    if (tabAt(tab, i) == f) {
1172 >                        validated = true;
1173 >                        for (Node e = f, pred = null;;) {
1174 >                            Object ek, ev;
1175 >                            if ((e.hash & HASH_BITS) == h &&
1176 >                                ((ev = e.val) != null) &&
1177 >                                ((ek = e.key) == k || k.equals(ek))) {
1178 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1179 >                                    oldVal = ev;
1180 >                                    if ((e.val = v) == null) {
1181 >                                        deleted = true;
1182 >                                        Node en = e.next;
1183 >                                        if (pred != null)
1184 >                                            pred.next = en;
1185 >                                        else
1186 >                                            setTabAt(tab, i, en);
1187 >                                    }
1188 >                                }
1189 >                                break;
1190 >                            }
1191 >                            pred = e;
1192 >                            if ((e = e.next) == null)
1193 >                                break;
1194 >                        }
1195 >                    }
1196 >                } finally {
1197 >                    if (!f.casHash(fh | LOCKED, fh)) {
1198 >                        f.hash = fh;
1199 >                        synchronized (f) { f.notifyAll(); };
1200 >                    }
1201 >                }
1202 >                if (validated) {
1203 >                    if (deleted)
1204 >                        counter.add(-1L);
1205 >                    break;
1206                  }
387                return replaced;
388            } finally {
389                unlock();
1207              }
1208          }
1209 +        return oldVal;
1210 +    }
1211  
1212 <        V replace(K key, int hash, V newValue) {
1213 <            lock();
1214 <            try {
1215 <                HashEntry<K,V> e = getFirst(hash);
1216 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1217 <                    e = e.next;
1212 >    /*
1213 >     * Internal versions of the six insertion methods, each a
1214 >     * little more complicated than the last. All have
1215 >     * the same basic structure as the first (internalPut):
1216 >     *  1. If table uninitialized, create
1217 >     *  2. If bin empty, try to CAS new node
1218 >     *  3. If bin stale, use new table
1219 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1220 >     *  5. Lock and validate; if valid, scan and add or update
1221 >     *
1222 >     * The others interweave other checks and/or alternative actions:
1223 >     *  * Plain put checks for and performs resize after insertion.
1224 >     *  * putIfAbsent prescans for mapping without lock (and fails to add
1225 >     *    if present), which also makes pre-emptive resize checks worthwhile.
1226 >     *  * computeIfAbsent extends form used in putIfAbsent with additional
1227 >     *    mechanics to deal with, calls, potential exceptions and null
1228 >     *    returns from function call.
1229 >     *  * compute uses the same function-call mechanics, but without
1230 >     *    the prescans
1231 >     *  * merge acts as putIfAbsent in the absent case, but invokes the
1232 >     *    update function if present
1233 >     *  * putAll attempts to pre-allocate enough table space
1234 >     *    and more lazily performs count updates and checks.
1235 >     *
1236 >     * Someday when details settle down a bit more, it might be worth
1237 >     * some factoring to reduce sprawl.
1238 >     */
1239  
1240 <                V oldValue = null;
1241 <                if (e != null) {
1242 <                    oldValue = e.value;
1243 <                    e.value = newValue;
1240 >    /** Implementation for put */
1241 >    private final Object internalPut(Object k, Object v) {
1242 >        int h = spread(k.hashCode());
1243 >        int count = 0;
1244 >        for (Node[] tab = table;;) {
1245 >            int i; Node f; int fh; Object fk;
1246 >            if (tab == null)
1247 >                tab = initTable();
1248 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1249 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1250 >                    break;                   // no lock when adding to empty bin
1251 >            }
1252 >            else if ((fh = f.hash) == MOVED) {
1253 >                if ((fk = f.key) instanceof TreeBin) {
1254 >                    TreeBin t = (TreeBin)fk;
1255 >                    Object oldVal = null;
1256 >                    t.acquire(0);
1257 >                    try {
1258 >                        if (tabAt(tab, i) == f) {
1259 >                            count = 2;
1260 >                            TreeNode p = t.putTreeNode(h, k, v);
1261 >                            if (p != null) {
1262 >                                oldVal = p.val;
1263 >                                p.val = v;
1264 >                            }
1265 >                        }
1266 >                    } finally {
1267 >                        t.release(0);
1268 >                    }
1269 >                    if (count != 0) {
1270 >                        if (oldVal != null)
1271 >                            return oldVal;
1272 >                        break;
1273 >                    }
1274 >                }
1275 >                else
1276 >                    tab = (Node[])fk;
1277 >            }
1278 >            else if ((fh & LOCKED) != 0) {
1279 >                checkForResize();
1280 >                f.tryAwaitLock(tab, i);
1281 >            }
1282 >            else if (f.casHash(fh, fh | LOCKED)) {
1283 >                Object oldVal = null;
1284 >                try {                        // needed in case equals() throws
1285 >                    if (tabAt(tab, i) == f) {
1286 >                        count = 1;
1287 >                        for (Node e = f;; ++count) {
1288 >                            Object ek, ev;
1289 >                            if ((e.hash & HASH_BITS) == h &&
1290 >                                (ev = e.val) != null &&
1291 >                                ((ek = e.key) == k || k.equals(ek))) {
1292 >                                oldVal = ev;
1293 >                                e.val = v;
1294 >                                break;
1295 >                            }
1296 >                            Node last = e;
1297 >                            if ((e = e.next) == null) {
1298 >                                last.next = new Node(h, k, v, null);
1299 >                                if (count >= TREE_THRESHOLD)
1300 >                                    replaceWithTreeBin(tab, i, k);
1301 >                                break;
1302 >                            }
1303 >                        }
1304 >                    }
1305 >                } finally {                  // unlock and signal if needed
1306 >                    if (!f.casHash(fh | LOCKED, fh)) {
1307 >                        f.hash = fh;
1308 >                        synchronized (f) { f.notifyAll(); };
1309 >                    }
1310 >                }
1311 >                if (count != 0) {
1312 >                    if (oldVal != null)
1313 >                        return oldVal;
1314 >                    if (tab.length <= 64)
1315 >                        count = 2;
1316 >                    break;
1317                  }
405                return oldValue;
406            } finally {
407                unlock();
1318              }
1319          }
1320 +        counter.add(1L);
1321 +        if (count > 1)
1322 +            checkForResize();
1323 +        return null;
1324 +    }
1325  
1326 +    /** Implementation for putIfAbsent */
1327 +    private final Object internalPutIfAbsent(Object k, Object v) {
1328 +        int h = spread(k.hashCode());
1329 +        int count = 0;
1330 +        for (Node[] tab = table;;) {
1331 +            int i; Node f; int fh; Object fk, fv;
1332 +            if (tab == null)
1333 +                tab = initTable();
1334 +            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1335 +                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1336 +                    break;
1337 +            }
1338 +            else if ((fh = f.hash) == MOVED) {
1339 +                if ((fk = f.key) instanceof TreeBin) {
1340 +                    TreeBin t = (TreeBin)fk;
1341 +                    Object oldVal = null;
1342 +                    t.acquire(0);
1343 +                    try {
1344 +                        if (tabAt(tab, i) == f) {
1345 +                            count = 2;
1346 +                            TreeNode p = t.putTreeNode(h, k, v);
1347 +                            if (p != null)
1348 +                                oldVal = p.val;
1349 +                        }
1350 +                    } finally {
1351 +                        t.release(0);
1352 +                    }
1353 +                    if (count != 0) {
1354 +                        if (oldVal != null)
1355 +                            return oldVal;
1356 +                        break;
1357 +                    }
1358 +                }
1359 +                else
1360 +                    tab = (Node[])fk;
1361 +            }
1362 +            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1363 +                     ((fk = f.key) == k || k.equals(fk)))
1364 +                return fv;
1365 +            else {
1366 +                Node g = f.next;
1367 +                if (g != null) { // at least 2 nodes -- search and maybe resize
1368 +                    for (Node e = g;;) {
1369 +                        Object ek, ev;
1370 +                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1371 +                            ((ek = e.key) == k || k.equals(ek)))
1372 +                            return ev;
1373 +                        if ((e = e.next) == null) {
1374 +                            checkForResize();
1375 +                            break;
1376 +                        }
1377 +                    }
1378 +                }
1379 +                if (((fh = f.hash) & LOCKED) != 0) {
1380 +                    checkForResize();
1381 +                    f.tryAwaitLock(tab, i);
1382 +                }
1383 +                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1384 +                    Object oldVal = null;
1385 +                    try {
1386 +                        if (tabAt(tab, i) == f) {
1387 +                            count = 1;
1388 +                            for (Node e = f;; ++count) {
1389 +                                Object ek, ev;
1390 +                                if ((e.hash & HASH_BITS) == h &&
1391 +                                    (ev = e.val) != null &&
1392 +                                    ((ek = e.key) == k || k.equals(ek))) {
1393 +                                    oldVal = ev;
1394 +                                    break;
1395 +                                }
1396 +                                Node last = e;
1397 +                                if ((e = e.next) == null) {
1398 +                                    last.next = new Node(h, k, v, null);
1399 +                                    if (count >= TREE_THRESHOLD)
1400 +                                        replaceWithTreeBin(tab, i, k);
1401 +                                    break;
1402 +                                }
1403 +                            }
1404 +                        }
1405 +                    } finally {
1406 +                        if (!f.casHash(fh | LOCKED, fh)) {
1407 +                            f.hash = fh;
1408 +                            synchronized (f) { f.notifyAll(); };
1409 +                        }
1410 +                    }
1411 +                    if (count != 0) {
1412 +                        if (oldVal != null)
1413 +                            return oldVal;
1414 +                        if (tab.length <= 64)
1415 +                            count = 2;
1416 +                        break;
1417 +                    }
1418 +                }
1419 +            }
1420 +        }
1421 +        counter.add(1L);
1422 +        if (count > 1)
1423 +            checkForResize();
1424 +        return null;
1425 +    }
1426  
1427 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
1428 <            lock();
1429 <            try {
1430 <                int c = count;
1431 <                if (c++ > threshold) // ensure capacity
1432 <                    rehash();
1433 <                HashEntry<K,V>[] tab = table;
1434 <                int index = hash & (tab.length - 1);
1435 <                HashEntry<K,V> first = tab[index];
1436 <                HashEntry<K,V> e = first;
1437 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1438 <                    e = e.next;
1439 <
1440 <                V oldValue;
1441 <                if (e != null) {
1442 <                    oldValue = e.value;
1443 <                    if (!onlyIfAbsent)
1444 <                        e.value = value;
1427 >    /** Implementation for computeIfAbsent */
1428 >    private final Object internalComputeIfAbsent(K k,
1429 >                                                 Fun<? super K, ?> mf) {
1430 >        int h = spread(k.hashCode());
1431 >        Object val = null;
1432 >        int count = 0;
1433 >        for (Node[] tab = table;;) {
1434 >            Node f; int i, fh; Object fk, fv;
1435 >            if (tab == null)
1436 >                tab = initTable();
1437 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1438 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1439 >                if (casTabAt(tab, i, null, node)) {
1440 >                    count = 1;
1441 >                    try {
1442 >                        if ((val = mf.apply(k)) != null)
1443 >                            node.val = val;
1444 >                    } finally {
1445 >                        if (val == null)
1446 >                            setTabAt(tab, i, null);
1447 >                        if (!node.casHash(fh, h)) {
1448 >                            node.hash = h;
1449 >                            synchronized (node) { node.notifyAll(); };
1450 >                        }
1451 >                    }
1452                  }
1453 <                else {
1454 <                    oldValue = null;
1455 <                    ++modCount;
1456 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
1457 <                    count = c; // write-volatile
1453 >                if (count != 0)
1454 >                    break;
1455 >            }
1456 >            else if ((fh = f.hash) == MOVED) {
1457 >                if ((fk = f.key) instanceof TreeBin) {
1458 >                    TreeBin t = (TreeBin)fk;
1459 >                    boolean added = false;
1460 >                    t.acquire(0);
1461 >                    try {
1462 >                        if (tabAt(tab, i) == f) {
1463 >                            count = 1;
1464 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1465 >                            if (p != null)
1466 >                                val = p.val;
1467 >                            else if ((val = mf.apply(k)) != null) {
1468 >                                added = true;
1469 >                                count = 2;
1470 >                                t.putTreeNode(h, k, val);
1471 >                            }
1472 >                        }
1473 >                    } finally {
1474 >                        t.release(0);
1475 >                    }
1476 >                    if (count != 0) {
1477 >                        if (!added)
1478 >                            return val;
1479 >                        break;
1480 >                    }
1481 >                }
1482 >                else
1483 >                    tab = (Node[])fk;
1484 >            }
1485 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1486 >                     ((fk = f.key) == k || k.equals(fk)))
1487 >                return fv;
1488 >            else {
1489 >                Node g = f.next;
1490 >                if (g != null) {
1491 >                    for (Node e = g;;) {
1492 >                        Object ek, ev;
1493 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1494 >                            ((ek = e.key) == k || k.equals(ek)))
1495 >                            return ev;
1496 >                        if ((e = e.next) == null) {
1497 >                            checkForResize();
1498 >                            break;
1499 >                        }
1500 >                    }
1501 >                }
1502 >                if (((fh = f.hash) & LOCKED) != 0) {
1503 >                    checkForResize();
1504 >                    f.tryAwaitLock(tab, i);
1505 >                }
1506 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1507 >                    boolean added = false;
1508 >                    try {
1509 >                        if (tabAt(tab, i) == f) {
1510 >                            count = 1;
1511 >                            for (Node e = f;; ++count) {
1512 >                                Object ek, ev;
1513 >                                if ((e.hash & HASH_BITS) == h &&
1514 >                                    (ev = e.val) != null &&
1515 >                                    ((ek = e.key) == k || k.equals(ek))) {
1516 >                                    val = ev;
1517 >                                    break;
1518 >                                }
1519 >                                Node last = e;
1520 >                                if ((e = e.next) == null) {
1521 >                                    if ((val = mf.apply(k)) != null) {
1522 >                                        added = true;
1523 >                                        last.next = new Node(h, k, val, null);
1524 >                                        if (count >= TREE_THRESHOLD)
1525 >                                            replaceWithTreeBin(tab, i, k);
1526 >                                    }
1527 >                                    break;
1528 >                                }
1529 >                            }
1530 >                        }
1531 >                    } finally {
1532 >                        if (!f.casHash(fh | LOCKED, fh)) {
1533 >                            f.hash = fh;
1534 >                            synchronized (f) { f.notifyAll(); };
1535 >                        }
1536 >                    }
1537 >                    if (count != 0) {
1538 >                        if (!added)
1539 >                            return val;
1540 >                        if (tab.length <= 64)
1541 >                            count = 2;
1542 >                        break;
1543 >                    }
1544                  }
437                return oldValue;
438            } finally {
439                unlock();
1545              }
1546          }
1547 +        if (val != null) {
1548 +            counter.add(1L);
1549 +            if (count > 1)
1550 +                checkForResize();
1551 +        }
1552 +        return val;
1553 +    }
1554  
1555 <        void rehash() {
1556 <            HashEntry<K,V>[] oldTable = table;
1557 <            int oldCapacity = oldTable.length;
1558 <            if (oldCapacity >= MAXIMUM_CAPACITY)
1559 <                return;
1560 <
1561 <            /*
1562 <             * Reclassify nodes in each list to new Map.  Because we are
1563 <             * using power-of-two expansion, the elements from each bin
1564 <             * must either stay at same index, or move with a power of two
1565 <             * offset. We eliminate unnecessary node creation by catching
1566 <             * cases where old nodes can be reused because their next
1567 <             * fields won't change. Statistically, at the default
1568 <             * threshold, only about one-sixth of them need cloning when
1569 <             * a table doubles. The nodes they replace will be garbage
1570 <             * collectable as soon as they are no longer referenced by any
1571 <             * reader thread that may be in the midst of traversing table
1572 <             * right now.
1573 <             */
1574 <
1575 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
1576 <            threshold = (int)(newTable.length * loadFactor);
1577 <            int sizeMask = newTable.length - 1;
1578 <            for (int i = 0; i < oldCapacity ; i++) {
1579 <                // We need to guarantee that any existing reads of old Map can
1580 <                //  proceed. So we cannot yet null out each bin.
1581 <                HashEntry<K,V> e = oldTable[i];
1582 <
1583 <                if (e != null) {
1584 <                    HashEntry<K,V> next = e.next;
1585 <                    int idx = e.hash & sizeMask;
1586 <
1587 <                    //  Single node on list
1588 <                    if (next == null)
1589 <                        newTable[idx] = e;
1555 >    /** Implementation for compute */
1556 >    @SuppressWarnings("unchecked") private final Object internalCompute
1557 >        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1558 >        int h = spread(k.hashCode());
1559 >        Object val = null;
1560 >        int delta = 0;
1561 >        int count = 0;
1562 >        for (Node[] tab = table;;) {
1563 >            Node f; int i, fh; Object fk;
1564 >            if (tab == null)
1565 >                tab = initTable();
1566 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1567 >                if (onlyIfPresent)
1568 >                    break;
1569 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1570 >                if (casTabAt(tab, i, null, node)) {
1571 >                    try {
1572 >                        count = 1;
1573 >                        if ((val = mf.apply(k, null)) != null) {
1574 >                            node.val = val;
1575 >                            delta = 1;
1576 >                        }
1577 >                    } finally {
1578 >                        if (delta == 0)
1579 >                            setTabAt(tab, i, null);
1580 >                        if (!node.casHash(fh, h)) {
1581 >                            node.hash = h;
1582 >                            synchronized (node) { node.notifyAll(); };
1583 >                        }
1584 >                    }
1585 >                }
1586 >                if (count != 0)
1587 >                    break;
1588 >            }
1589 >            else if ((fh = f.hash) == MOVED) {
1590 >                if ((fk = f.key) instanceof TreeBin) {
1591 >                    TreeBin t = (TreeBin)fk;
1592 >                    t.acquire(0);
1593 >                    try {
1594 >                        if (tabAt(tab, i) == f) {
1595 >                            count = 1;
1596 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1597 >                            Object pv = (p == null) ? null : p.val;
1598 >                            if ((val = mf.apply(k, (V)pv)) != null) {
1599 >                                if (p != null)
1600 >                                    p.val = val;
1601 >                                else {
1602 >                                    count = 2;
1603 >                                    delta = 1;
1604 >                                    t.putTreeNode(h, k, val);
1605 >                                }
1606 >                            }
1607 >                            else if (p != null) {
1608 >                                delta = -1;
1609 >                                t.deleteTreeNode(p);
1610 >                            }
1611 >                        }
1612 >                    } finally {
1613 >                        t.release(0);
1614 >                    }
1615 >                    if (count != 0)
1616 >                        break;
1617 >                }
1618 >                else
1619 >                    tab = (Node[])fk;
1620 >            }
1621 >            else if ((fh & LOCKED) != 0) {
1622 >                checkForResize();
1623 >                f.tryAwaitLock(tab, i);
1624 >            }
1625 >            else if (f.casHash(fh, fh | LOCKED)) {
1626 >                try {
1627 >                    if (tabAt(tab, i) == f) {
1628 >                        count = 1;
1629 >                        for (Node e = f, pred = null;; ++count) {
1630 >                            Object ek, ev;
1631 >                            if ((e.hash & HASH_BITS) == h &&
1632 >                                (ev = e.val) != null &&
1633 >                                ((ek = e.key) == k || k.equals(ek))) {
1634 >                                val = mf.apply(k, (V)ev);
1635 >                                if (val != null)
1636 >                                    e.val = val;
1637 >                                else {
1638 >                                    delta = -1;
1639 >                                    Node en = e.next;
1640 >                                    if (pred != null)
1641 >                                        pred.next = en;
1642 >                                    else
1643 >                                        setTabAt(tab, i, en);
1644 >                                }
1645 >                                break;
1646 >                            }
1647 >                            pred = e;
1648 >                            if ((e = e.next) == null) {
1649 >                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1650 >                                    pred.next = new Node(h, k, val, null);
1651 >                                    delta = 1;
1652 >                                    if (count >= TREE_THRESHOLD)
1653 >                                        replaceWithTreeBin(tab, i, k);
1654 >                                }
1655 >                                break;
1656 >                            }
1657 >                        }
1658 >                    }
1659 >                } finally {
1660 >                    if (!f.casHash(fh | LOCKED, fh)) {
1661 >                        f.hash = fh;
1662 >                        synchronized (f) { f.notifyAll(); };
1663 >                    }
1664 >                }
1665 >                if (count != 0) {
1666 >                    if (tab.length <= 64)
1667 >                        count = 2;
1668 >                    break;
1669 >                }
1670 >            }
1671 >        }
1672 >        if (delta != 0) {
1673 >            counter.add((long)delta);
1674 >            if (count > 1)
1675 >                checkForResize();
1676 >        }
1677 >        return val;
1678 >    }
1679  
1680 <                    else {
1681 <                        // Reuse trailing consecutive sequence at same slot
1682 <                        HashEntry<K,V> lastRun = e;
1683 <                        int lastIdx = idx;
1684 <                        for (HashEntry<K,V> last = next;
1685 <                             last != null;
1686 <                             last = last.next) {
1687 <                            int k = last.hash & sizeMask;
1688 <                            if (k != lastIdx) {
1689 <                                lastIdx = k;
1690 <                                lastRun = last;
1680 >    /** Implementation for merge */
1681 >    @SuppressWarnings("unchecked") private final Object internalMerge
1682 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1683 >        int h = spread(k.hashCode());
1684 >        Object val = null;
1685 >        int delta = 0;
1686 >        int count = 0;
1687 >        for (Node[] tab = table;;) {
1688 >            int i; Node f; int fh; Object fk, fv;
1689 >            if (tab == null)
1690 >                tab = initTable();
1691 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1692 >                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1693 >                    delta = 1;
1694 >                    val = v;
1695 >                    break;
1696 >                }
1697 >            }
1698 >            else if ((fh = f.hash) == MOVED) {
1699 >                if ((fk = f.key) instanceof TreeBin) {
1700 >                    TreeBin t = (TreeBin)fk;
1701 >                    t.acquire(0);
1702 >                    try {
1703 >                        if (tabAt(tab, i) == f) {
1704 >                            count = 1;
1705 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1706 >                            val = (p == null) ? v : mf.apply((V)p.val, v);
1707 >                            if (val != null) {
1708 >                                if (p != null)
1709 >                                    p.val = val;
1710 >                                else {
1711 >                                    count = 2;
1712 >                                    delta = 1;
1713 >                                    t.putTreeNode(h, k, val);
1714 >                                }
1715 >                            }
1716 >                            else if (p != null) {
1717 >                                delta = -1;
1718 >                                t.deleteTreeNode(p);
1719 >                            }
1720 >                        }
1721 >                    } finally {
1722 >                        t.release(0);
1723 >                    }
1724 >                    if (count != 0)
1725 >                        break;
1726 >                }
1727 >                else
1728 >                    tab = (Node[])fk;
1729 >            }
1730 >            else if ((fh & LOCKED) != 0) {
1731 >                checkForResize();
1732 >                f.tryAwaitLock(tab, i);
1733 >            }
1734 >            else if (f.casHash(fh, fh | LOCKED)) {
1735 >                try {
1736 >                    if (tabAt(tab, i) == f) {
1737 >                        count = 1;
1738 >                        for (Node e = f, pred = null;; ++count) {
1739 >                            Object ek, ev;
1740 >                            if ((e.hash & HASH_BITS) == h &&
1741 >                                (ev = e.val) != null &&
1742 >                                ((ek = e.key) == k || k.equals(ek))) {
1743 >                                val = mf.apply(v, (V)ev);
1744 >                                if (val != null)
1745 >                                    e.val = val;
1746 >                                else {
1747 >                                    delta = -1;
1748 >                                    Node en = e.next;
1749 >                                    if (pred != null)
1750 >                                        pred.next = en;
1751 >                                    else
1752 >                                        setTabAt(tab, i, en);
1753 >                                }
1754 >                                break;
1755 >                            }
1756 >                            pred = e;
1757 >                            if ((e = e.next) == null) {
1758 >                                val = v;
1759 >                                pred.next = new Node(h, k, val, null);
1760 >                                delta = 1;
1761 >                                if (count >= TREE_THRESHOLD)
1762 >                                    replaceWithTreeBin(tab, i, k);
1763 >                                break;
1764                              }
1765                          }
1766 <                        newTable[lastIdx] = lastRun;
1766 >                    }
1767 >                } finally {
1768 >                    if (!f.casHash(fh | LOCKED, fh)) {
1769 >                        f.hash = fh;
1770 >                        synchronized (f) { f.notifyAll(); };
1771 >                    }
1772 >                }
1773 >                if (count != 0) {
1774 >                    if (tab.length <= 64)
1775 >                        count = 2;
1776 >                    break;
1777 >                }
1778 >            }
1779 >        }
1780 >        if (delta != 0) {
1781 >            counter.add((long)delta);
1782 >            if (count > 1)
1783 >                checkForResize();
1784 >        }
1785 >        return val;
1786 >    }
1787  
1788 <                        // Clone all remaining nodes
1789 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1790 <                            int k = p.hash & sizeMask;
1791 <                            HashEntry<K,V> n = newTable[k];
1792 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
1793 <                                                             n, p.value);
1788 >    /** Implementation for putAll */
1789 >    private final void internalPutAll(Map<?, ?> m) {
1790 >        tryPresize(m.size());
1791 >        long delta = 0L;     // number of uncommitted additions
1792 >        boolean npe = false; // to throw exception on exit for nulls
1793 >        try {                // to clean up counts on other exceptions
1794 >            for (Map.Entry<?, ?> entry : m.entrySet()) {
1795 >                Object k, v;
1796 >                if (entry == null || (k = entry.getKey()) == null ||
1797 >                    (v = entry.getValue()) == null) {
1798 >                    npe = true;
1799 >                    break;
1800 >                }
1801 >                int h = spread(k.hashCode());
1802 >                for (Node[] tab = table;;) {
1803 >                    int i; Node f; int fh; Object fk;
1804 >                    if (tab == null)
1805 >                        tab = initTable();
1806 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1807 >                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1808 >                            ++delta;
1809 >                            break;
1810 >                        }
1811 >                    }
1812 >                    else if ((fh = f.hash) == MOVED) {
1813 >                        if ((fk = f.key) instanceof TreeBin) {
1814 >                            TreeBin t = (TreeBin)fk;
1815 >                            boolean validated = false;
1816 >                            t.acquire(0);
1817 >                            try {
1818 >                                if (tabAt(tab, i) == f) {
1819 >                                    validated = true;
1820 >                                    TreeNode p = t.getTreeNode(h, k, t.root);
1821 >                                    if (p != null)
1822 >                                        p.val = v;
1823 >                                    else {
1824 >                                        t.putTreeNode(h, k, v);
1825 >                                        ++delta;
1826 >                                    }
1827 >                                }
1828 >                            } finally {
1829 >                                t.release(0);
1830 >                            }
1831 >                            if (validated)
1832 >                                break;
1833 >                        }
1834 >                        else
1835 >                            tab = (Node[])fk;
1836 >                    }
1837 >                    else if ((fh & LOCKED) != 0) {
1838 >                        counter.add(delta);
1839 >                        delta = 0L;
1840 >                        checkForResize();
1841 >                        f.tryAwaitLock(tab, i);
1842 >                    }
1843 >                    else if (f.casHash(fh, fh | LOCKED)) {
1844 >                        int count = 0;
1845 >                        try {
1846 >                            if (tabAt(tab, i) == f) {
1847 >                                count = 1;
1848 >                                for (Node e = f;; ++count) {
1849 >                                    Object ek, ev;
1850 >                                    if ((e.hash & HASH_BITS) == h &&
1851 >                                        (ev = e.val) != null &&
1852 >                                        ((ek = e.key) == k || k.equals(ek))) {
1853 >                                        e.val = v;
1854 >                                        break;
1855 >                                    }
1856 >                                    Node last = e;
1857 >                                    if ((e = e.next) == null) {
1858 >                                        ++delta;
1859 >                                        last.next = new Node(h, k, v, null);
1860 >                                        if (count >= TREE_THRESHOLD)
1861 >                                            replaceWithTreeBin(tab, i, k);
1862 >                                        break;
1863 >                                    }
1864 >                                }
1865 >                            }
1866 >                        } finally {
1867 >                            if (!f.casHash(fh | LOCKED, fh)) {
1868 >                                f.hash = fh;
1869 >                                synchronized (f) { f.notifyAll(); };
1870 >                            }
1871 >                        }
1872 >                        if (count != 0) {
1873 >                            if (count > 1) {
1874 >                                counter.add(delta);
1875 >                                delta = 0L;
1876 >                                checkForResize();
1877 >                            }
1878 >                            break;
1879                          }
1880                      }
1881                  }
1882              }
1883 <            table = newTable;
1883 >        } finally {
1884 >            if (delta != 0)
1885 >                counter.add(delta);
1886          }
1887 +        if (npe)
1888 +            throw new NullPointerException();
1889 +    }
1890  
1891 <        /**
1892 <         * Remove; match on key only if value null, else match both.
1893 <         */
1894 <        V remove(Object key, int hash, Object value) {
1895 <            lock();
1896 <            try {
1897 <                int c = count - 1;
1898 <                HashEntry<K,V>[] tab = table;
1899 <                int index = hash & (tab.length - 1);
1900 <                HashEntry<K,V> first = tab[index];
1901 <                HashEntry<K,V> e = first;
1902 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1903 <                    e = e.next;
1891 >    /* ---------------- Table Initialization and Resizing -------------- */
1892 >
1893 >    /**
1894 >     * Returns a power of two table size for the given desired capacity.
1895 >     * See Hackers Delight, sec 3.2
1896 >     */
1897 >    private static final int tableSizeFor(int c) {
1898 >        int n = c - 1;
1899 >        n |= n >>> 1;
1900 >        n |= n >>> 2;
1901 >        n |= n >>> 4;
1902 >        n |= n >>> 8;
1903 >        n |= n >>> 16;
1904 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1905 >    }
1906  
1907 <                V oldValue = null;
1908 <                if (e != null) {
1909 <                    V v = e.value;
1910 <                    if (value == null || value.equals(v)) {
1911 <                        oldValue = v;
1912 <                        // All entries following removed node can stay
1913 <                        // in list, but all preceding ones need to be
1914 <                        // cloned.
1915 <                        ++modCount;
1916 <                        HashEntry<K,V> newFirst = e.next;
1917 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
1918 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
1919 <                                                          newFirst, p.value);
1920 <                        tab[index] = newFirst;
535 <                        count = c; // write-volatile
1907 >    /**
1908 >     * Initializes table, using the size recorded in sizeCtl.
1909 >     */
1910 >    private final Node[] initTable() {
1911 >        Node[] tab; int sc;
1912 >        while ((tab = table) == null) {
1913 >            if ((sc = sizeCtl) < 0)
1914 >                Thread.yield(); // lost initialization race; just spin
1915 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1916 >                try {
1917 >                    if ((tab = table) == null) {
1918 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1919 >                        tab = table = new Node[n];
1920 >                        sc = n - (n >>> 2);
1921                      }
1922 +                } finally {
1923 +                    sizeCtl = sc;
1924 +                }
1925 +                break;
1926 +            }
1927 +        }
1928 +        return tab;
1929 +    }
1930 +
1931 +    /**
1932 +     * If table is too small and not already resizing, creates next
1933 +     * table and transfers bins.  Rechecks occupancy after a transfer
1934 +     * to see if another resize is already needed because resizings
1935 +     * are lagging additions.
1936 +     */
1937 +    private final void checkForResize() {
1938 +        Node[] tab; int n, sc;
1939 +        while ((tab = table) != null &&
1940 +               (n = tab.length) < MAXIMUM_CAPACITY &&
1941 +               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1942 +               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1943 +            try {
1944 +                if (tab == table) {
1945 +                    table = rebuild(tab);
1946 +                    sc = (n << 1) - (n >>> 1);
1947                  }
538                return oldValue;
1948              } finally {
1949 <                unlock();
1949 >                sizeCtl = sc;
1950              }
1951          }
1952 +    }
1953  
1954 <        void clear() {
1955 <            if (count != 0) {
1956 <                lock();
1954 >    /**
1955 >     * Tries to presize table to accommodate the given number of elements.
1956 >     *
1957 >     * @param size number of elements (doesn't need to be perfectly accurate)
1958 >     */
1959 >    private final void tryPresize(int size) {
1960 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1961 >            tableSizeFor(size + (size >>> 1) + 1);
1962 >        int sc;
1963 >        while ((sc = sizeCtl) >= 0) {
1964 >            Node[] tab = table; int n;
1965 >            if (tab == null || (n = tab.length) == 0) {
1966 >                n = (sc > c) ? sc : c;
1967 >                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1968 >                    try {
1969 >                        if (table == tab) {
1970 >                            table = new Node[n];
1971 >                            sc = n - (n >>> 2);
1972 >                        }
1973 >                    } finally {
1974 >                        sizeCtl = sc;
1975 >                    }
1976 >                }
1977 >            }
1978 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1979 >                break;
1980 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1981                  try {
1982 <                    HashEntry<K,V>[] tab = table;
1983 <                    for (int i = 0; i < tab.length ; i++)
1984 <                        tab[i] = null;
1985 <                    ++modCount;
552 <                    count = 0; // write-volatile
1982 >                    if (table == tab) {
1983 >                        table = rebuild(tab);
1984 >                        sc = (n << 1) - (n >>> 1);
1985 >                    }
1986                  } finally {
1987 <                    unlock();
1987 >                    sizeCtl = sc;
1988                  }
1989              }
1990          }
1991      }
1992  
1993 +    /*
1994 +     * Moves and/or copies the nodes in each bin to new table. See
1995 +     * above for explanation.
1996 +     *
1997 +     * @return the new table
1998 +     */
1999 +    private static final Node[] rebuild(Node[] tab) {
2000 +        int n = tab.length;
2001 +        Node[] nextTab = new Node[n << 1];
2002 +        Node fwd = new Node(MOVED, nextTab, null, null);
2003 +        int[] buffer = null;       // holds bins to revisit; null until needed
2004 +        Node rev = null;           // reverse forwarder; null until needed
2005 +        int nbuffered = 0;         // the number of bins in buffer list
2006 +        int bufferIndex = 0;       // buffer index of current buffered bin
2007 +        int bin = n - 1;           // current non-buffered bin or -1 if none
2008 +
2009 +        for (int i = bin;;) {      // start upwards sweep
2010 +            int fh; Node f;
2011 +            if ((f = tabAt(tab, i)) == null) {
2012 +                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
2013 +                    if (!casTabAt(tab, i, f, fwd))
2014 +                        continue;
2015 +                }
2016 +                else {             // transiently use a locked forwarding node
2017 +                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2018 +                    if (!casTabAt(tab, i, f, g))
2019 +                        continue;
2020 +                    setTabAt(nextTab, i, null);
2021 +                    setTabAt(nextTab, i + n, null);
2022 +                    setTabAt(tab, i, fwd);
2023 +                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2024 +                        g.hash = MOVED;
2025 +                        synchronized (g) { g.notifyAll(); }
2026 +                    }
2027 +                }
2028 +            }
2029 +            else if ((fh = f.hash) == MOVED) {
2030 +                Object fk = f.key;
2031 +                if (fk instanceof TreeBin) {
2032 +                    TreeBin t = (TreeBin)fk;
2033 +                    boolean validated = false;
2034 +                    t.acquire(0);
2035 +                    try {
2036 +                        if (tabAt(tab, i) == f) {
2037 +                            validated = true;
2038 +                            splitTreeBin(nextTab, i, t);
2039 +                            setTabAt(tab, i, fwd);
2040 +                        }
2041 +                    } finally {
2042 +                        t.release(0);
2043 +                    }
2044 +                    if (!validated)
2045 +                        continue;
2046 +                }
2047 +            }
2048 +            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2049 +                boolean validated = false;
2050 +                try {              // split to lo and hi lists; copying as needed
2051 +                    if (tabAt(tab, i) == f) {
2052 +                        validated = true;
2053 +                        splitBin(nextTab, i, f);
2054 +                        setTabAt(tab, i, fwd);
2055 +                    }
2056 +                } finally {
2057 +                    if (!f.casHash(fh | LOCKED, fh)) {
2058 +                        f.hash = fh;
2059 +                        synchronized (f) { f.notifyAll(); };
2060 +                    }
2061 +                }
2062 +                if (!validated)
2063 +                    continue;
2064 +            }
2065 +            else {
2066 +                if (buffer == null) // initialize buffer for revisits
2067 +                    buffer = new int[TRANSFER_BUFFER_SIZE];
2068 +                if (bin < 0 && bufferIndex > 0) {
2069 +                    int j = buffer[--bufferIndex];
2070 +                    buffer[bufferIndex] = i;
2071 +                    i = j;         // swap with another bin
2072 +                    continue;
2073 +                }
2074 +                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2075 +                    f.tryAwaitLock(tab, i);
2076 +                    continue;      // no other options -- block
2077 +                }
2078 +                if (rev == null)   // initialize reverse-forwarder
2079 +                    rev = new Node(MOVED, tab, null, null);
2080 +                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2081 +                    continue;      // recheck before adding to list
2082 +                buffer[nbuffered++] = i;
2083 +                setTabAt(nextTab, i, rev);     // install place-holders
2084 +                setTabAt(nextTab, i + n, rev);
2085 +            }
2086  
2087 +            if (bin > 0)
2088 +                i = --bin;
2089 +            else if (buffer != null && nbuffered > 0) {
2090 +                bin = -1;
2091 +                i = buffer[bufferIndex = --nbuffered];
2092 +            }
2093 +            else
2094 +                return nextTab;
2095 +        }
2096 +    }
2097  
2098 <    /* ---------------- Public operations -------------- */
2098 >    /**
2099 >     * Splits a normal bin with list headed by e into lo and hi parts;
2100 >     * installs in given table.
2101 >     */
2102 >    private static void splitBin(Node[] nextTab, int i, Node e) {
2103 >        int bit = nextTab.length >>> 1; // bit to split on
2104 >        int runBit = e.hash & bit;
2105 >        Node lastRun = e, lo = null, hi = null;
2106 >        for (Node p = e.next; p != null; p = p.next) {
2107 >            int b = p.hash & bit;
2108 >            if (b != runBit) {
2109 >                runBit = b;
2110 >                lastRun = p;
2111 >            }
2112 >        }
2113 >        if (runBit == 0)
2114 >            lo = lastRun;
2115 >        else
2116 >            hi = lastRun;
2117 >        for (Node p = e; p != lastRun; p = p.next) {
2118 >            int ph = p.hash & HASH_BITS;
2119 >            Object pk = p.key, pv = p.val;
2120 >            if ((ph & bit) == 0)
2121 >                lo = new Node(ph, pk, pv, lo);
2122 >            else
2123 >                hi = new Node(ph, pk, pv, hi);
2124 >        }
2125 >        setTabAt(nextTab, i, lo);
2126 >        setTabAt(nextTab, i + bit, hi);
2127 >    }
2128  
2129      /**
2130 <     * Creates a new, empty map with the specified initial
566 <     * capacity, load factor and concurrency level.
567 <     *
568 <     * @param initialCapacity the initial capacity. The implementation
569 <     * performs internal sizing to accommodate this many elements.
570 <     * @param loadFactor  the load factor threshold, used to control resizing.
571 <     * Resizing may be performed when the average number of elements per
572 <     * bin exceeds this threshold.
573 <     * @param concurrencyLevel the estimated number of concurrently
574 <     * updating threads. The implementation performs internal sizing
575 <     * to try to accommodate this many threads.
576 <     * @throws IllegalArgumentException if the initial capacity is
577 <     * negative or the load factor or concurrencyLevel are
578 <     * nonpositive.
2130 >     * Splits a tree bin into lo and hi parts; installs in given table.
2131       */
2132 <    public ConcurrentHashMap(int initialCapacity,
2133 <                             float loadFactor, int concurrencyLevel) {
2134 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
2135 <            throw new IllegalArgumentException();
2132 >    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2133 >        int bit = nextTab.length >>> 1;
2134 >        TreeBin lt = new TreeBin();
2135 >        TreeBin ht = new TreeBin();
2136 >        int lc = 0, hc = 0;
2137 >        for (Node e = t.first; e != null; e = e.next) {
2138 >            int h = e.hash & HASH_BITS;
2139 >            Object k = e.key, v = e.val;
2140 >            if ((h & bit) == 0) {
2141 >                ++lc;
2142 >                lt.putTreeNode(h, k, v);
2143 >            }
2144 >            else {
2145 >                ++hc;
2146 >                ht.putTreeNode(h, k, v);
2147 >            }
2148 >        }
2149 >        Node ln, hn; // throw away trees if too small
2150 >        if (lc <= (TREE_THRESHOLD >>> 1)) {
2151 >            ln = null;
2152 >            for (Node p = lt.first; p != null; p = p.next)
2153 >                ln = new Node(p.hash, p.key, p.val, ln);
2154 >        }
2155 >        else
2156 >            ln = new Node(MOVED, lt, null, null);
2157 >        setTabAt(nextTab, i, ln);
2158 >        if (hc <= (TREE_THRESHOLD >>> 1)) {
2159 >            hn = null;
2160 >            for (Node p = ht.first; p != null; p = p.next)
2161 >                hn = new Node(p.hash, p.key, p.val, hn);
2162 >        }
2163 >        else
2164 >            hn = new Node(MOVED, ht, null, null);
2165 >        setTabAt(nextTab, i + bit, hn);
2166 >    }
2167  
2168 <        if (concurrencyLevel > MAX_SEGMENTS)
2169 <            concurrencyLevel = MAX_SEGMENTS;
2168 >    /**
2169 >     * Implementation for clear. Steps through each bin, removing all
2170 >     * nodes.
2171 >     */
2172 >    private final void internalClear() {
2173 >        long delta = 0L; // negative number of deletions
2174 >        int i = 0;
2175 >        Node[] tab = table;
2176 >        while (tab != null && i < tab.length) {
2177 >            int fh; Object fk;
2178 >            Node f = tabAt(tab, i);
2179 >            if (f == null)
2180 >                ++i;
2181 >            else if ((fh = f.hash) == MOVED) {
2182 >                if ((fk = f.key) instanceof TreeBin) {
2183 >                    TreeBin t = (TreeBin)fk;
2184 >                    t.acquire(0);
2185 >                    try {
2186 >                        if (tabAt(tab, i) == f) {
2187 >                            for (Node p = t.first; p != null; p = p.next) {
2188 >                                if (p.val != null) { // (currently always true)
2189 >                                    p.val = null;
2190 >                                    --delta;
2191 >                                }
2192 >                            }
2193 >                            t.first = null;
2194 >                            t.root = null;
2195 >                            ++i;
2196 >                        }
2197 >                    } finally {
2198 >                        t.release(0);
2199 >                    }
2200 >                }
2201 >                else
2202 >                    tab = (Node[])fk;
2203 >            }
2204 >            else if ((fh & LOCKED) != 0) {
2205 >                counter.add(delta); // opportunistically update count
2206 >                delta = 0L;
2207 >                f.tryAwaitLock(tab, i);
2208 >            }
2209 >            else if (f.casHash(fh, fh | LOCKED)) {
2210 >                try {
2211 >                    if (tabAt(tab, i) == f) {
2212 >                        for (Node e = f; e != null; e = e.next) {
2213 >                            if (e.val != null) {  // (currently always true)
2214 >                                e.val = null;
2215 >                                --delta;
2216 >                            }
2217 >                        }
2218 >                        setTabAt(tab, i, null);
2219 >                        ++i;
2220 >                    }
2221 >                } finally {
2222 >                    if (!f.casHash(fh | LOCKED, fh)) {
2223 >                        f.hash = fh;
2224 >                        synchronized (f) { f.notifyAll(); };
2225 >                    }
2226 >                }
2227 >            }
2228 >        }
2229 >        if (delta != 0)
2230 >            counter.add(delta);
2231 >    }
2232  
2233 <        // Find power-of-two sizes best matching arguments
589 <        int sshift = 0;
590 <        int ssize = 1;
591 <        while (ssize < concurrencyLevel) {
592 <            ++sshift;
593 <            ssize <<= 1;
594 <        }
595 <        segmentShift = 32 - sshift;
596 <        segmentMask = ssize - 1;
597 <        this.segments = Segment.newArray(ssize);
598 <
599 <        if (initialCapacity > MAXIMUM_CAPACITY)
600 <            initialCapacity = MAXIMUM_CAPACITY;
601 <        int c = initialCapacity / ssize;
602 <        if (c * ssize < initialCapacity)
603 <            ++c;
604 <        int cap = 1;
605 <        while (cap < c)
606 <            cap <<= 1;
2233 >    /* ----------------Table Traversal -------------- */
2234  
2235 <        for (int i = 0; i < this.segments.length; ++i)
2236 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
2235 >    /**
2236 >     * Encapsulates traversal for methods such as containsValue; also
2237 >     * serves as a base class for other iterators and bulk tasks.
2238 >     *
2239 >     * At each step, the iterator snapshots the key ("nextKey") and
2240 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2241 >     * snapshot, has a non-null user value). Because val fields can
2242 >     * change (including to null, indicating deletion), field nextVal
2243 >     * might not be accurate at point of use, but still maintains the
2244 >     * weak consistency property of holding a value that was once
2245 >     * valid.
2246 >     *
2247 >     * Internal traversals directly access these fields, as in:
2248 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2249 >     *
2250 >     * Exported iterators must track whether the iterator has advanced
2251 >     * (in hasNext vs next) (by setting/checking/nulling field
2252 >     * nextVal), and then extract key, value, or key-value pairs as
2253 >     * return values of next().
2254 >     *
2255 >     * The iterator visits once each still-valid node that was
2256 >     * reachable upon iterator construction. It might miss some that
2257 >     * were added to a bin after the bin was visited, which is OK wrt
2258 >     * consistency guarantees. Maintaining this property in the face
2259 >     * of possible ongoing resizes requires a fair amount of
2260 >     * bookkeeping state that is difficult to optimize away amidst
2261 >     * volatile accesses.  Even so, traversal maintains reasonable
2262 >     * throughput.
2263 >     *
2264 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2265 >     * However, if the table has been resized, then all future steps
2266 >     * must traverse both the bin at the current index as well as at
2267 >     * (index + baseSize); and so on for further resizings. To
2268 >     * paranoically cope with potential sharing by users of iterators
2269 >     * across threads, iteration terminates if a bounds checks fails
2270 >     * for a table read.
2271 >     *
2272 >     * This class extends ForkJoinTask to streamline parallel
2273 >     * iteration in bulk operations (see BulkTask). This adds only an
2274 >     * int of space overhead, which is close enough to negligible in
2275 >     * cases where it is not needed to not worry about it.  Because
2276 >     * ForkJoinTask is Serializable, but iterators need not be, we
2277 >     * need to add warning suppressions.
2278 >     */
2279 >    @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2280 >        final ConcurrentHashMap<K, V> map;
2281 >        Node next;           // the next entry to use
2282 >        Node last;           // the last entry used
2283 >        Object nextKey;      // cached key field of next
2284 >        Object nextVal;      // cached val field of next
2285 >        Node[] tab;          // current table; updated if resized
2286 >        int index;           // index of bin to use next
2287 >        int baseIndex;       // current index of initial table
2288 >        int baseLimit;       // index bound for initial table
2289 >        int baseSize;        // initial table size
2290 >
2291 >        /** Creates iterator for all entries in the table. */
2292 >        Traverser(ConcurrentHashMap<K, V> map) {
2293 >            this.map = map;
2294 >        }
2295 >
2296 >        /** Creates iterator for split() methods */
2297 >        Traverser(Traverser<K,V,?> it) {
2298 >            ConcurrentHashMap<K, V> m; Node[] t;
2299 >            if ((m = this.map = it.map) == null)
2300 >                t = null;
2301 >            else if ((t = it.tab) == null && // force parent tab initialization
2302 >                     (t = it.tab = m.table) != null)
2303 >                it.baseLimit = it.baseSize = t.length;
2304 >            this.tab = t;
2305 >            this.baseSize = it.baseSize;
2306 >            it.baseLimit = this.index = this.baseIndex =
2307 >                ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2308 >        }
2309 >
2310 >        /**
2311 >         * Advances next; returns nextVal or null if terminated.
2312 >         * See above for explanation.
2313 >         */
2314 >        final Object advance() {
2315 >            Node e = last = next;
2316 >            Object ev = null;
2317 >            outer: do {
2318 >                if (e != null)                  // advance past used/skipped node
2319 >                    e = e.next;
2320 >                while (e == null) {             // get to next non-null bin
2321 >                    ConcurrentHashMap<K, V> m;
2322 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2323 >                    if ((t = tab) != null)
2324 >                        n = t.length;
2325 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2326 >                        n = baseLimit = baseSize = t.length;
2327 >                    else
2328 >                        break outer;
2329 >                    if ((b = baseIndex) >= baseLimit ||
2330 >                        (i = index) < 0 || i >= n)
2331 >                        break outer;
2332 >                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2333 >                        if ((ek = e.key) instanceof TreeBin)
2334 >                            e = ((TreeBin)ek).first;
2335 >                        else {
2336 >                            tab = (Node[])ek;
2337 >                            continue;           // restarts due to null val
2338 >                        }
2339 >                    }                           // visit upper slots if present
2340 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2341 >                }
2342 >                nextKey = e.key;
2343 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2344 >            next = e;
2345 >            return nextVal = ev;
2346 >        }
2347 >
2348 >        public final void remove() {
2349 >            if (nextVal == null && last == null)
2350 >                advance();
2351 >            Node e = last;
2352 >            if (e == null)
2353 >                throw new IllegalStateException();
2354 >            last = null;
2355 >            map.remove(e.key);
2356 >        }
2357 >
2358 >        public final boolean hasNext() {
2359 >            return nextVal != null || advance() != null;
2360 >        }
2361 >
2362 >        public final boolean hasMoreElements() { return hasNext(); }
2363 >        public final void setRawResult(Object x) { }
2364 >        public R getRawResult() { return null; }
2365 >        public boolean exec() { return true; }
2366      }
2367  
2368 +    /* ---------------- Public operations -------------- */
2369 +
2370      /**
2371 <     * Creates a new, empty map with the specified initial capacity
2372 <     * and load factor and with the default concurrencyLevel (16).
2371 >     * Creates a new, empty map with the default initial table size (16).
2372 >     */
2373 >    public ConcurrentHashMap() {
2374 >        this.counter = new LongAdder();
2375 >    }
2376 >
2377 >    /**
2378 >     * Creates a new, empty map with an initial table size
2379 >     * accommodating the specified number of elements without the need
2380 >     * to dynamically resize.
2381       *
2382       * @param initialCapacity The implementation performs internal
2383       * sizing to accommodate this many elements.
2384 <     * @param loadFactor  the load factor threshold, used to control resizing.
2385 <     * Resizing may be performed when the average number of elements per
2386 <     * bin exceeds this threshold.
2384 >     * @throws IllegalArgumentException if the initial capacity of
2385 >     * elements is negative
2386 >     */
2387 >    public ConcurrentHashMap(int initialCapacity) {
2388 >        if (initialCapacity < 0)
2389 >            throw new IllegalArgumentException();
2390 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2391 >                   MAXIMUM_CAPACITY :
2392 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2393 >        this.counter = new LongAdder();
2394 >        this.sizeCtl = cap;
2395 >    }
2396 >
2397 >    /**
2398 >     * Creates a new map with the same mappings as the given map.
2399 >     *
2400 >     * @param m the map
2401 >     */
2402 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2403 >        this.counter = new LongAdder();
2404 >        this.sizeCtl = DEFAULT_CAPACITY;
2405 >        internalPutAll(m);
2406 >    }
2407 >
2408 >    /**
2409 >     * Creates a new, empty map with an initial table size based on
2410 >     * the given number of elements ({@code initialCapacity}) and
2411 >     * initial table density ({@code loadFactor}).
2412 >     *
2413 >     * @param initialCapacity the initial capacity. The implementation
2414 >     * performs internal sizing to accommodate this many elements,
2415 >     * given the specified load factor.
2416 >     * @param loadFactor the load factor (table density) for
2417 >     * establishing the initial table size
2418       * @throws IllegalArgumentException if the initial capacity of
2419       * elements is negative or the load factor is nonpositive
2420       *
2421       * @since 1.6
2422       */
2423      public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2424 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2424 >        this(initialCapacity, loadFactor, 1);
2425      }
2426  
2427      /**
2428 <     * Creates a new, empty map with the specified initial capacity,
2429 <     * and with default load factor (0.75) and concurrencyLevel (16).
2428 >     * Creates a new, empty map with an initial table size based on
2429 >     * the given number of elements ({@code initialCapacity}), table
2430 >     * density ({@code loadFactor}), and number of concurrently
2431 >     * updating threads ({@code concurrencyLevel}).
2432       *
2433       * @param initialCapacity the initial capacity. The implementation
2434 <     * performs internal sizing to accommodate this many elements.
2435 <     * @throws IllegalArgumentException if the initial capacity of
2436 <     * elements is negative.
2434 >     * performs internal sizing to accommodate this many elements,
2435 >     * given the specified load factor.
2436 >     * @param loadFactor the load factor (table density) for
2437 >     * establishing the initial table size
2438 >     * @param concurrencyLevel the estimated number of concurrently
2439 >     * updating threads. The implementation may use this value as
2440 >     * a sizing hint.
2441 >     * @throws IllegalArgumentException if the initial capacity is
2442 >     * negative or the load factor or concurrencyLevel are
2443 >     * nonpositive
2444       */
2445 <    public ConcurrentHashMap(int initialCapacity) {
2446 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2445 >    public ConcurrentHashMap(int initialCapacity,
2446 >                               float loadFactor, int concurrencyLevel) {
2447 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2448 >            throw new IllegalArgumentException();
2449 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2450 >            initialCapacity = concurrencyLevel;   // as estimated threads
2451 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2452 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2453 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2454 >        this.counter = new LongAdder();
2455 >        this.sizeCtl = cap;
2456      }
2457  
2458      /**
2459 <     * Creates a new, empty map with a default initial capacity (16),
645 <     * load factor (0.75) and concurrencyLevel (16).
2459 >     * {@inheritDoc}
2460       */
2461 <    public ConcurrentHashMap() {
2462 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2461 >    public boolean isEmpty() {
2462 >        return counter.sum() <= 0L; // ignore transient negative values
2463      }
2464  
2465      /**
2466 <     * Creates a new map with the same mappings as the given map.
653 <     * The map is created with a capacity of 1.5 times the number
654 <     * of mappings in the given map or 16 (whichever is greater),
655 <     * and a default load factor (0.75) and concurrencyLevel (16).
656 <     *
657 <     * @param m the map
2466 >     * {@inheritDoc}
2467       */
2468 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2469 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
2470 <                      DEFAULT_INITIAL_CAPACITY),
2471 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2472 <        putAll(m);
2468 >    public int size() {
2469 >        long n = counter.sum();
2470 >        return ((n < 0L) ? 0 :
2471 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2472 >                (int)n);
2473      }
2474  
2475      /**
2476 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
2476 >     * Returns the number of mappings. This method should be used
2477 >     * instead of {@link #size} because a ConcurrentHashMap may
2478 >     * contain more mappings than can be represented as an int. The
2479 >     * value returned is a snapshot; the actual count may differ if
2480 >     * there are ongoing concurrent insertions or removals.
2481       *
2482 <     * @return <tt>true</tt> if this map contains no key-value mappings
2482 >     * @return the number of mappings
2483       */
2484 <    public boolean isEmpty() {
2485 <        final Segment<K,V>[] segments = this.segments;
2486 <        /*
674 <         * We keep track of per-segment modCounts to avoid ABA
675 <         * problems in which an element in one segment was added and
676 <         * in another removed during traversal, in which case the
677 <         * table was never actually empty at any point. Note the
678 <         * similar use of modCounts in the size() and containsValue()
679 <         * methods, which are the only other methods also susceptible
680 <         * to ABA problems.
681 <         */
682 <        int[] mc = new int[segments.length];
683 <        int mcsum = 0;
684 <        for (int i = 0; i < segments.length; ++i) {
685 <            if (segments[i].count != 0)
686 <                return false;
687 <            else
688 <                mcsum += mc[i] = segments[i].modCount;
689 <        }
690 <        // If mcsum happens to be zero, then we know we got a snapshot
691 <        // before any modifications at all were made.  This is
692 <        // probably common enough to bother tracking.
693 <        if (mcsum != 0) {
694 <            for (int i = 0; i < segments.length; ++i) {
695 <                if (segments[i].count != 0 ||
696 <                    mc[i] != segments[i].modCount)
697 <                    return false;
698 <            }
699 <        }
700 <        return true;
2484 >    public long mappingCount() {
2485 >        long n = counter.sum();
2486 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2487      }
2488  
2489      /**
2490 <     * Returns the number of key-value mappings in this map.  If the
2491 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
2492 <     * <tt>Integer.MAX_VALUE</tt>.
2490 >     * Returns the value to which the specified key is mapped,
2491 >     * or {@code null} if this map contains no mapping for the key.
2492 >     *
2493 >     * <p>More formally, if this map contains a mapping from a key
2494 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2495 >     * then this method returns {@code v}; otherwise it returns
2496 >     * {@code null}.  (There can be at most one such mapping.)
2497       *
2498 <     * @return the number of key-value mappings in this map
2498 >     * @throws NullPointerException if the specified key is null
2499       */
2500 <    public int size() {
2501 <        final Segment<K,V>[] segments = this.segments;
2502 <        long sum = 0;
2503 <        long check = 0;
714 <        int[] mc = new int[segments.length];
715 <        // Try a few times to get accurate count. On failure due to
716 <        // continuous async changes in table, resort to locking.
717 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
718 <            check = 0;
719 <            sum = 0;
720 <            int mcsum = 0;
721 <            for (int i = 0; i < segments.length; ++i) {
722 <                sum += segments[i].count;
723 <                mcsum += mc[i] = segments[i].modCount;
724 <            }
725 <            if (mcsum != 0) {
726 <                for (int i = 0; i < segments.length; ++i) {
727 <                    check += segments[i].count;
728 <                    if (mc[i] != segments[i].modCount) {
729 <                        check = -1; // force retry
730 <                        break;
731 <                    }
732 <                }
733 <            }
734 <            if (check == sum)
735 <                break;
736 <        }
737 <        if (check != sum) { // Resort to locking all segments
738 <            sum = 0;
739 <            for (int i = 0; i < segments.length; ++i)
740 <                segments[i].lock();
741 <            for (int i = 0; i < segments.length; ++i)
742 <                sum += segments[i].count;
743 <            for (int i = 0; i < segments.length; ++i)
744 <                segments[i].unlock();
745 <        }
746 <        if (sum > Integer.MAX_VALUE)
747 <            return Integer.MAX_VALUE;
748 <        else
749 <            return (int)sum;
2500 >    @SuppressWarnings("unchecked") public V get(Object key) {
2501 >        if (key == null)
2502 >            throw new NullPointerException();
2503 >        return (V)internalGet(key);
2504      }
2505  
2506      /**
2507 <     * Returns the value to which this map maps the specified key, or
2508 <     * <tt>null</tt> if the map contains no mapping for the key.
2507 >     * Returns the value to which the specified key is mapped,
2508 >     * or the given defaultValue if this map contains no mapping for the key.
2509       *
2510 <     * @param key key whose associated value is to be returned
2511 <     * @return the value to which this map maps the specified key, or
2512 <     *         <tt>null</tt> if the map contains no mapping for the key
2510 >     * @param key the key
2511 >     * @param defaultValue the value to return if this map contains
2512 >     * no mapping for the given key
2513 >     * @return the mapping for the key, if present; else the defaultValue
2514       * @throws NullPointerException if the specified key is null
2515       */
2516 <    public V get(Object key) {
2517 <        int hash = hash(key); // throws NullPointerException if key null
2518 <        return segmentFor(hash).get(key, hash);
2516 >    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2517 >        if (key == null)
2518 >            throw new NullPointerException();
2519 >        V v = (V) internalGet(key);
2520 >        return v == null ? defaultValue : v;
2521      }
2522  
2523      /**
2524       * Tests if the specified object is a key in this table.
2525       *
2526       * @param  key   possible key
2527 <     * @return <tt>true</tt> if and only if the specified object
2527 >     * @return {@code true} if and only if the specified object
2528       *         is a key in this table, as determined by the
2529 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
2529 >     *         {@code equals} method; {@code false} otherwise
2530       * @throws NullPointerException if the specified key is null
2531       */
2532      public boolean containsKey(Object key) {
2533 <        int hash = hash(key); // throws NullPointerException if key null
2534 <        return segmentFor(hash).containsKey(key, hash);
2533 >        if (key == null)
2534 >            throw new NullPointerException();
2535 >        return internalGet(key) != null;
2536      }
2537  
2538      /**
2539 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2540 <     * specified value. Note: This method requires a full internal
2541 <     * traversal of the hash table, and so is much slower than
784 <     * method <tt>containsKey</tt>.
2539 >     * Returns {@code true} if this map maps one or more keys to the
2540 >     * specified value. Note: This method may require a full traversal
2541 >     * of the map, and is much slower than method {@code containsKey}.
2542       *
2543       * @param value value whose presence in this map is to be tested
2544 <     * @return <tt>true</tt> if this map maps one or more keys to the
2544 >     * @return {@code true} if this map maps one or more keys to the
2545       *         specified value
2546       * @throws NullPointerException if the specified value is null
2547       */
2548      public boolean containsValue(Object value) {
2549          if (value == null)
2550              throw new NullPointerException();
2551 <
2552 <        // See explanation of modCount use above
2553 <
2554 <        final Segment<K,V>[] segments = this.segments;
2555 <        int[] mc = new int[segments.length];
799 <
800 <        // Try a few times without locking
801 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
802 <            int sum = 0;
803 <            int mcsum = 0;
804 <            for (int i = 0; i < segments.length; ++i) {
805 <                int c = segments[i].count;
806 <                mcsum += mc[i] = segments[i].modCount;
807 <                if (segments[i].containsValue(value))
808 <                    return true;
809 <            }
810 <            boolean cleanSweep = true;
811 <            if (mcsum != 0) {
812 <                for (int i = 0; i < segments.length; ++i) {
813 <                    int c = segments[i].count;
814 <                    if (mc[i] != segments[i].modCount) {
815 <                        cleanSweep = false;
816 <                        break;
817 <                    }
818 <                }
819 <            }
820 <            if (cleanSweep)
821 <                return false;
822 <        }
823 <        // Resort to locking all segments
824 <        for (int i = 0; i < segments.length; ++i)
825 <            segments[i].lock();
826 <        boolean found = false;
827 <        try {
828 <            for (int i = 0; i < segments.length; ++i) {
829 <                if (segments[i].containsValue(value)) {
830 <                    found = true;
831 <                    break;
832 <                }
833 <            }
834 <        } finally {
835 <            for (int i = 0; i < segments.length; ++i)
836 <                segments[i].unlock();
2551 >        Object v;
2552 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2553 >        while ((v = it.advance()) != null) {
2554 >            if (v == value || value.equals(v))
2555 >                return true;
2556          }
2557 <        return found;
2557 >        return false;
2558      }
2559  
2560      /**
# Line 845 | Line 2564 | public class ConcurrentHashMap<K, V> ext
2564       * full compatibility with class {@link java.util.Hashtable},
2565       * which supported this method prior to introduction of the
2566       * Java Collections framework.
2567 <
2567 >     *
2568       * @param  value a value to search for
2569 <     * @return <tt>true</tt> if and only if some key maps to the
2570 <     *         <tt>value</tt> argument in this table as
2571 <     *         determined by the <tt>equals</tt> method;
2572 <     *         <tt>false</tt> otherwise
2569 >     * @return {@code true} if and only if some key maps to the
2570 >     *         {@code value} argument in this table as
2571 >     *         determined by the {@code equals} method;
2572 >     *         {@code false} otherwise
2573       * @throws NullPointerException if the specified value is null
2574       */
2575      public boolean contains(Object value) {
# Line 861 | Line 2580 | public class ConcurrentHashMap<K, V> ext
2580       * Maps the specified key to the specified value in this table.
2581       * Neither the key nor the value can be null.
2582       *
2583 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
2583 >     * <p> The value can be retrieved by calling the {@code get} method
2584       * with a key that is equal to the original key.
2585       *
2586       * @param key key with which the specified value is to be associated
2587       * @param value value to be associated with the specified key
2588 <     * @return the previous value associated with <tt>key</tt>, or
2589 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2588 >     * @return the previous value associated with {@code key}, or
2589 >     *         {@code null} if there was no mapping for {@code key}
2590       * @throws NullPointerException if the specified key or value is null
2591       */
2592 <    public V put(K key, V value) {
2593 <        if (value == null)
2592 >    @SuppressWarnings("unchecked") public V put(K key, V value) {
2593 >        if (key == null || value == null)
2594              throw new NullPointerException();
2595 <        int hash = hash(key);
877 <        return segmentFor(hash).put(key, hash, value, false);
2595 >        return (V)internalPut(key, value);
2596      }
2597  
2598      /**
2599       * {@inheritDoc}
2600       *
2601       * @return the previous value associated with the specified key,
2602 <     *         or <tt>null</tt> if there was no mapping for the key
2602 >     *         or {@code null} if there was no mapping for the key
2603       * @throws NullPointerException if the specified key or value is null
2604       */
2605 <    public V putIfAbsent(K key, V value) {
2606 <        if (value == null)
2605 >    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2606 >        if (key == null || value == null)
2607              throw new NullPointerException();
2608 <        int hash = hash(key);
891 <        return segmentFor(hash).put(key, hash, value, true);
2608 >        return (V)internalPutIfAbsent(key, value);
2609      }
2610  
2611      /**
# Line 899 | Line 2616 | public class ConcurrentHashMap<K, V> ext
2616       * @param m mappings to be stored in this map
2617       */
2618      public void putAll(Map<? extends K, ? extends V> m) {
2619 <        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) m.entrySet().iterator(); it.hasNext(); ) {
2620 <            Entry<? extends K, ? extends V> e = it.next();
2621 <            put(e.getKey(), e.getValue());
2622 <        }
2619 >        internalPutAll(m);
2620 >    }
2621 >
2622 >    /**
2623 >     * If the specified key is not already associated with a value,
2624 >     * computes its value using the given mappingFunction and enters
2625 >     * it into the map unless null.  This is equivalent to
2626 >     * <pre> {@code
2627 >     * if (map.containsKey(key))
2628 >     *   return map.get(key);
2629 >     * value = mappingFunction.apply(key);
2630 >     * if (value != null)
2631 >     *   map.put(key, value);
2632 >     * return value;}</pre>
2633 >     *
2634 >     * except that the action is performed atomically.  If the
2635 >     * function returns {@code null} no mapping is recorded. If the
2636 >     * function itself throws an (unchecked) exception, the exception
2637 >     * is rethrown to its caller, and no mapping is recorded.  Some
2638 >     * attempted update operations on this map by other threads may be
2639 >     * blocked while computation is in progress, so the computation
2640 >     * should be short and simple, and must not attempt to update any
2641 >     * other mappings of this Map. The most appropriate usage is to
2642 >     * construct a new object serving as an initial mapped value, or
2643 >     * memoized result, as in:
2644 >     *
2645 >     *  <pre> {@code
2646 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2647 >     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2648 >     *
2649 >     * @param key key with which the specified value is to be associated
2650 >     * @param mappingFunction the function to compute a value
2651 >     * @return the current (existing or computed) value associated with
2652 >     *         the specified key, or null if the computed value is null
2653 >     * @throws NullPointerException if the specified key or mappingFunction
2654 >     *         is null
2655 >     * @throws IllegalStateException if the computation detectably
2656 >     *         attempts a recursive update to this map that would
2657 >     *         otherwise never complete
2658 >     * @throws RuntimeException or Error if the mappingFunction does so,
2659 >     *         in which case the mapping is left unestablished
2660 >     */
2661 >    @SuppressWarnings("unchecked") public V computeIfAbsent
2662 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2663 >        if (key == null || mappingFunction == null)
2664 >            throw new NullPointerException();
2665 >        return (V)internalComputeIfAbsent(key, mappingFunction);
2666 >    }
2667 >
2668 >    /**
2669 >     * If the given key is present, computes a new mapping value given a key and
2670 >     * its current mapped value. This is equivalent to
2671 >     *  <pre> {@code
2672 >     *   if (map.containsKey(key)) {
2673 >     *     value = remappingFunction.apply(key, map.get(key));
2674 >     *     if (value != null)
2675 >     *       map.put(key, value);
2676 >     *     else
2677 >     *       map.remove(key);
2678 >     *   }
2679 >     * }</pre>
2680 >     *
2681 >     * except that the action is performed atomically.  If the
2682 >     * function returns {@code null}, the mapping is removed.  If the
2683 >     * function itself throws an (unchecked) exception, the exception
2684 >     * is rethrown to its caller, and the current mapping is left
2685 >     * unchanged.  Some attempted update operations on this map by
2686 >     * other threads may be blocked while computation is in progress,
2687 >     * so the computation should be short and simple, and must not
2688 >     * attempt to update any other mappings of this Map. For example,
2689 >     * to either create or append new messages to a value mapping:
2690 >     *
2691 >     * @param key key with which the specified value is to be associated
2692 >     * @param remappingFunction the function to compute a value
2693 >     * @return the new value associated with the specified key, or null if none
2694 >     * @throws NullPointerException if the specified key or remappingFunction
2695 >     *         is null
2696 >     * @throws IllegalStateException if the computation detectably
2697 >     *         attempts a recursive update to this map that would
2698 >     *         otherwise never complete
2699 >     * @throws RuntimeException or Error if the remappingFunction does so,
2700 >     *         in which case the mapping is unchanged
2701 >     */
2702 >    @SuppressWarnings("unchecked") public V computeIfPresent
2703 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2704 >        if (key == null || remappingFunction == null)
2705 >            throw new NullPointerException();
2706 >        return (V)internalCompute(key, true, remappingFunction);
2707 >    }
2708 >
2709 >    /**
2710 >     * Computes a new mapping value given a key and
2711 >     * its current mapped value (or {@code null} if there is no current
2712 >     * mapping). This is equivalent to
2713 >     *  <pre> {@code
2714 >     *   value = remappingFunction.apply(key, map.get(key));
2715 >     *   if (value != null)
2716 >     *     map.put(key, value);
2717 >     *   else
2718 >     *     map.remove(key);
2719 >     * }</pre>
2720 >     *
2721 >     * except that the action is performed atomically.  If the
2722 >     * function returns {@code null}, the mapping is removed.  If the
2723 >     * function itself throws an (unchecked) exception, the exception
2724 >     * is rethrown to its caller, and the current mapping is left
2725 >     * unchanged.  Some attempted update operations on this map by
2726 >     * other threads may be blocked while computation is in progress,
2727 >     * so the computation should be short and simple, and must not
2728 >     * attempt to update any other mappings of this Map. For example,
2729 >     * to either create or append new messages to a value mapping:
2730 >     *
2731 >     * <pre> {@code
2732 >     * Map<Key, String> map = ...;
2733 >     * final String msg = ...;
2734 >     * map.compute(key, new BiFun<Key, String, String>() {
2735 >     *   public String apply(Key k, String v) {
2736 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2737 >     *
2738 >     * @param key key with which the specified value is to be associated
2739 >     * @param remappingFunction the function to compute a value
2740 >     * @return the new value associated with the specified key, or null if none
2741 >     * @throws NullPointerException if the specified key or remappingFunction
2742 >     *         is null
2743 >     * @throws IllegalStateException if the computation detectably
2744 >     *         attempts a recursive update to this map that would
2745 >     *         otherwise never complete
2746 >     * @throws RuntimeException or Error if the remappingFunction does so,
2747 >     *         in which case the mapping is unchanged
2748 >     */
2749 >    @SuppressWarnings("unchecked") public V compute
2750 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2751 >        if (key == null || remappingFunction == null)
2752 >            throw new NullPointerException();
2753 >        return (V)internalCompute(key, false, remappingFunction);
2754 >    }
2755 >
2756 >    /**
2757 >     * If the specified key is not already associated
2758 >     * with a value, associate it with the given value.
2759 >     * Otherwise, replace the value with the results of
2760 >     * the given remapping function. This is equivalent to:
2761 >     *  <pre> {@code
2762 >     *   if (!map.containsKey(key))
2763 >     *     map.put(value);
2764 >     *   else {
2765 >     *     newValue = remappingFunction.apply(map.get(key), value);
2766 >     *     if (value != null)
2767 >     *       map.put(key, value);
2768 >     *     else
2769 >     *       map.remove(key);
2770 >     *   }
2771 >     * }</pre>
2772 >     * except that the action is performed atomically.  If the
2773 >     * function returns {@code null}, the mapping is removed.  If the
2774 >     * function itself throws an (unchecked) exception, the exception
2775 >     * is rethrown to its caller, and the current mapping is left
2776 >     * unchanged.  Some attempted update operations on this map by
2777 >     * other threads may be blocked while computation is in progress,
2778 >     * so the computation should be short and simple, and must not
2779 >     * attempt to update any other mappings of this Map.
2780 >     */
2781 >    @SuppressWarnings("unchecked") public V merge
2782 >        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2783 >        if (key == null || value == null || remappingFunction == null)
2784 >            throw new NullPointerException();
2785 >        return (V)internalMerge(key, value, remappingFunction);
2786      }
2787  
2788      /**
# Line 910 | Line 2790 | public class ConcurrentHashMap<K, V> ext
2790       * This method does nothing if the key is not in the map.
2791       *
2792       * @param  key the key that needs to be removed
2793 <     * @return the previous value associated with <tt>key</tt>, or
2794 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
2793 >     * @return the previous value associated with {@code key}, or
2794 >     *         {@code null} if there was no mapping for {@code key}
2795       * @throws NullPointerException if the specified key is null
2796       */
2797 <    public V remove(Object key) {
2798 <        int hash = hash(key);
2799 <        return segmentFor(hash).remove(key, hash, null);
2797 >    @SuppressWarnings("unchecked") public V remove(Object key) {
2798 >        if (key == null)
2799 >            throw new NullPointerException();
2800 >        return (V)internalReplace(key, null, null);
2801      }
2802  
2803      /**
# Line 925 | Line 2806 | public class ConcurrentHashMap<K, V> ext
2806       * @throws NullPointerException if the specified key is null
2807       */
2808      public boolean remove(Object key, Object value) {
2809 +        if (key == null)
2810 +            throw new NullPointerException();
2811          if (value == null)
2812              return false;
2813 <        int hash = hash(key);
931 <        return segmentFor(hash).remove(key, hash, value) != null;
2813 >        return internalReplace(key, null, value) != null;
2814      }
2815  
2816      /**
# Line 937 | Line 2819 | public class ConcurrentHashMap<K, V> ext
2819       * @throws NullPointerException if any of the arguments are null
2820       */
2821      public boolean replace(K key, V oldValue, V newValue) {
2822 <        if (oldValue == null || newValue == null)
2822 >        if (key == null || oldValue == null || newValue == null)
2823              throw new NullPointerException();
2824 <        int hash = hash(key);
943 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
2824 >        return internalReplace(key, newValue, oldValue) != null;
2825      }
2826  
2827      /**
2828       * {@inheritDoc}
2829       *
2830       * @return the previous value associated with the specified key,
2831 <     *         or <tt>null</tt> if there was no mapping for the key
2831 >     *         or {@code null} if there was no mapping for the key
2832       * @throws NullPointerException if the specified key or value is null
2833       */
2834 <    public V replace(K key, V value) {
2835 <        if (value == null)
2834 >    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2835 >        if (key == null || value == null)
2836              throw new NullPointerException();
2837 <        int hash = hash(key);
957 <        return segmentFor(hash).replace(key, hash, value);
2837 >        return (V)internalReplace(key, value, null);
2838      }
2839  
2840      /**
2841       * Removes all of the mappings from this map.
2842       */
2843      public void clear() {
2844 <        for (int i = 0; i < segments.length; ++i)
965 <            segments[i].clear();
2844 >        internalClear();
2845      }
2846  
2847      /**
# Line 970 | Line 2849 | public class ConcurrentHashMap<K, V> ext
2849       * The set is backed by the map, so changes to the map are
2850       * reflected in the set, and vice-versa.  The set supports element
2851       * removal, which removes the corresponding mapping from this map,
2852 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2853 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2854 <     * operations.  It does not support the <tt>add</tt> or
2855 <     * <tt>addAll</tt> operations.
2852 >     * via the {@code Iterator.remove}, {@code Set.remove},
2853 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2854 >     * operations.  It does not support the {@code add} or
2855 >     * {@code addAll} operations.
2856       *
2857 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2857 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2858       * that will never throw {@link ConcurrentModificationException},
2859       * and guarantees to traverse elements as they existed upon
2860       * construction of the iterator, and may (but is not guaranteed to)
2861       * reflect any modifications subsequent to construction.
2862       */
2863      public Set<K> keySet() {
2864 <        Set<K> ks = keySet;
2865 <        return (ks != null) ? ks : (keySet = new KeySet());
2864 >        KeySet<K,V> ks = keySet;
2865 >        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2866      }
2867  
2868      /**
# Line 991 | Line 2870 | public class ConcurrentHashMap<K, V> ext
2870       * The collection is backed by the map, so changes to the map are
2871       * reflected in the collection, and vice-versa.  The collection
2872       * supports element removal, which removes the corresponding
2873 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
2874 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
2875 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
2876 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
2873 >     * mapping from this map, via the {@code Iterator.remove},
2874 >     * {@code Collection.remove}, {@code removeAll},
2875 >     * {@code retainAll}, and {@code clear} operations.  It does not
2876 >     * support the {@code add} or {@code addAll} operations.
2877       *
2878 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2878 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2879       * that will never throw {@link ConcurrentModificationException},
2880       * and guarantees to traverse elements as they existed upon
2881       * construction of the iterator, and may (but is not guaranteed to)
2882       * reflect any modifications subsequent to construction.
2883       */
2884      public Collection<V> values() {
2885 <        Collection<V> vs = values;
2886 <        return (vs != null) ? vs : (values = new Values());
2885 >        Values<K,V> vs = values;
2886 >        return (vs != null) ? vs : (values = new Values<K,V>(this));
2887      }
2888  
2889      /**
# Line 1012 | Line 2891 | public class ConcurrentHashMap<K, V> ext
2891       * The set is backed by the map, so changes to the map are
2892       * reflected in the set, and vice-versa.  The set supports element
2893       * removal, which removes the corresponding mapping from the map,
2894 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2895 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2896 <     * operations.  It does not support the <tt>add</tt> or
2897 <     * <tt>addAll</tt> operations.
2894 >     * via the {@code Iterator.remove}, {@code Set.remove},
2895 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2896 >     * operations.  It does not support the {@code add} or
2897 >     * {@code addAll} operations.
2898       *
2899 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2899 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2900       * that will never throw {@link ConcurrentModificationException},
2901       * and guarantees to traverse elements as they existed upon
2902       * construction of the iterator, and may (but is not guaranteed to)
2903       * reflect any modifications subsequent to construction.
2904       */
2905      public Set<Map.Entry<K,V>> entrySet() {
2906 <        Set<Map.Entry<K,V>> es = entrySet;
2907 <        return (es != null) ? es : (entrySet = new EntrySet());
2906 >        EntrySet<K,V> es = entrySet;
2907 >        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2908      }
2909  
2910      /**
2911       * Returns an enumeration of the keys in this table.
2912       *
2913       * @return an enumeration of the keys in this table
2914 <     * @see #keySet
2914 >     * @see #keySet()
2915       */
2916      public Enumeration<K> keys() {
2917 <        return new KeyIterator();
2917 >        return new KeyIterator<K,V>(this);
2918      }
2919  
2920      /**
2921       * Returns an enumeration of the values in this table.
2922       *
2923       * @return an enumeration of the values in this table
2924 <     * @see #values
2924 >     * @see #values()
2925       */
2926      public Enumeration<V> elements() {
2927 <        return new ValueIterator();
2927 >        return new ValueIterator<K,V>(this);
2928      }
2929  
2930 <    /* ---------------- Iterator Support -------------- */
2931 <
2932 <    abstract class HashIterator {
2933 <        int nextSegmentIndex;
2934 <        int nextTableIndex;
2935 <        HashEntry<K,V>[] currentTable;
2936 <        HashEntry<K, V> nextEntry;
2937 <        HashEntry<K, V> lastReturned;
2930 >    /**
2931 >     * Returns a partitionable iterator of the keys in this map.
2932 >     *
2933 >     * @return a partitionable iterator of the keys in this map
2934 >     */
2935 >    public Spliterator<K> keySpliterator() {
2936 >        return new KeyIterator<K,V>(this);
2937 >    }
2938  
2939 <        HashIterator() {
2940 <            nextSegmentIndex = segments.length - 1;
2941 <            nextTableIndex = -1;
2942 <            advance();
2943 <        }
2939 >    /**
2940 >     * Returns a partitionable iterator of the values in this map.
2941 >     *
2942 >     * @return a partitionable iterator of the values in this map
2943 >     */
2944 >    public Spliterator<V> valueSpliterator() {
2945 >        return new ValueIterator<K,V>(this);
2946 >    }
2947  
2948 <        public boolean hasMoreElements() { return hasNext(); }
2948 >    /**
2949 >     * Returns a partitionable iterator of the entries in this map.
2950 >     *
2951 >     * @return a partitionable iterator of the entries in this map
2952 >     */
2953 >    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2954 >        return new EntryIterator<K,V>(this);
2955 >    }
2956  
2957 <        final void advance() {
2958 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
2959 <                return;
2957 >    /**
2958 >     * Returns the hash code value for this {@link Map}, i.e.,
2959 >     * the sum of, for each key-value pair in the map,
2960 >     * {@code key.hashCode() ^ value.hashCode()}.
2961 >     *
2962 >     * @return the hash code value for this map
2963 >     */
2964 >    public int hashCode() {
2965 >        int h = 0;
2966 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2967 >        Object v;
2968 >        while ((v = it.advance()) != null) {
2969 >            h += it.nextKey.hashCode() ^ v.hashCode();
2970 >        }
2971 >        return h;
2972 >    }
2973  
2974 <            while (nextTableIndex >= 0) {
2975 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
2976 <                    return;
2974 >    /**
2975 >     * Returns a string representation of this map.  The string
2976 >     * representation consists of a list of key-value mappings (in no
2977 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
2978 >     * mappings are separated by the characters {@code ", "} (comma
2979 >     * and space).  Each key-value mapping is rendered as the key
2980 >     * followed by an equals sign ("{@code =}") followed by the
2981 >     * associated value.
2982 >     *
2983 >     * @return a string representation of this map
2984 >     */
2985 >    public String toString() {
2986 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2987 >        StringBuilder sb = new StringBuilder();
2988 >        sb.append('{');
2989 >        Object v;
2990 >        if ((v = it.advance()) != null) {
2991 >            for (;;) {
2992 >                Object k = it.nextKey;
2993 >                sb.append(k == this ? "(this Map)" : k);
2994 >                sb.append('=');
2995 >                sb.append(v == this ? "(this Map)" : v);
2996 >                if ((v = it.advance()) == null)
2997 >                    break;
2998 >                sb.append(',').append(' ');
2999              }
3000 +        }
3001 +        return sb.append('}').toString();
3002 +    }
3003  
3004 <            while (nextSegmentIndex >= 0) {
3005 <                Segment<K,V> seg = segments[nextSegmentIndex--];
3006 <                if (seg.count != 0) {
3007 <                    currentTable = seg.table;
3008 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
3009 <                        if ( (nextEntry = currentTable[j]) != null) {
3010 <                            nextTableIndex = j - 1;
3011 <                            return;
3012 <                        }
3013 <                    }
3014 <                }
3004 >    /**
3005 >     * Compares the specified object with this map for equality.
3006 >     * Returns {@code true} if the given object is a map with the same
3007 >     * mappings as this map.  This operation may return misleading
3008 >     * results if either map is concurrently modified during execution
3009 >     * of this method.
3010 >     *
3011 >     * @param o object to be compared for equality with this map
3012 >     * @return {@code true} if the specified object is equal to this map
3013 >     */
3014 >    public boolean equals(Object o) {
3015 >        if (o != this) {
3016 >            if (!(o instanceof Map))
3017 >                return false;
3018 >            Map<?,?> m = (Map<?,?>) o;
3019 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3020 >            Object val;
3021 >            while ((val = it.advance()) != null) {
3022 >                Object v = m.get(it.nextKey);
3023 >                if (v == null || (v != val && !v.equals(val)))
3024 >                    return false;
3025 >            }
3026 >            for (Map.Entry<?,?> e : m.entrySet()) {
3027 >                Object mk, mv, v;
3028 >                if ((mk = e.getKey()) == null ||
3029 >                    (mv = e.getValue()) == null ||
3030 >                    (v = internalGet(mk)) == null ||
3031 >                    (mv != v && !mv.equals(v)))
3032 >                    return false;
3033              }
3034          }
3035 +        return true;
3036 +    }
3037  
3038 <        public boolean hasNext() { return nextEntry != null; }
3038 >    /* ----------------Iterators -------------- */
3039  
3040 <        HashEntry<K,V> nextEntry() {
3041 <            if (nextEntry == null)
3040 >    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3041 >        implements Spliterator<K>, Enumeration<K> {
3042 >        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3043 >        KeyIterator(Traverser<K,V,Object> it) {
3044 >            super(it);
3045 >        }
3046 >        public KeyIterator<K,V> split() {
3047 >            if (last != null || (next != null && nextVal == null))
3048 >                throw new IllegalStateException();
3049 >            return new KeyIterator<K,V>(this);
3050 >        }
3051 >        @SuppressWarnings("unchecked") public final K next() {
3052 >            if (nextVal == null && advance() == null)
3053                  throw new NoSuchElementException();
3054 <            lastReturned = nextEntry;
3055 <            advance();
3056 <            return lastReturned;
3054 >            Object k = nextKey;
3055 >            nextVal = null;
3056 >            return (K) k;
3057          }
3058  
3059 <        public void remove() {
3060 <            if (lastReturned == null)
3059 >        public final K nextElement() { return next(); }
3060 >    }
3061 >
3062 >    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3063 >        implements Spliterator<V>, Enumeration<V> {
3064 >        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3065 >        ValueIterator(Traverser<K,V,Object> it) {
3066 >            super(it);
3067 >        }
3068 >        public ValueIterator<K,V> split() {
3069 >            if (last != null || (next != null && nextVal == null))
3070                  throw new IllegalStateException();
3071 <            ConcurrentHashMap.this.remove(lastReturned.key);
1105 <            lastReturned = null;
3071 >            return new ValueIterator<K,V>(this);
3072          }
1107    }
3073  
3074 <    final class KeyIterator
3075 <        extends HashIterator
3076 <        implements Iterator<K>, Enumeration<K>
3077 <    {
3078 <        public K next()        { return super.nextEntry().key; }
3079 <        public K nextElement() { return super.nextEntry().key; }
3074 >        @SuppressWarnings("unchecked") public final V next() {
3075 >            Object v;
3076 >            if ((v = nextVal) == null && (v = advance()) == null)
3077 >                throw new NoSuchElementException();
3078 >            nextVal = null;
3079 >            return (V) v;
3080 >        }
3081 >
3082 >        public final V nextElement() { return next(); }
3083      }
3084  
3085 <    final class ValueIterator
3086 <        extends HashIterator
3087 <        implements Iterator<V>, Enumeration<V>
3088 <    {
3089 <        public V next()        { return super.nextEntry().value; }
3090 <        public V nextElement() { return super.nextEntry().value; }
3085 >    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3086 >        implements Spliterator<Map.Entry<K,V>> {
3087 >        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3088 >        EntryIterator(Traverser<K,V,Object> it) {
3089 >            super(it);
3090 >        }
3091 >        public EntryIterator<K,V> split() {
3092 >            if (last != null || (next != null && nextVal == null))
3093 >                throw new IllegalStateException();
3094 >            return new EntryIterator<K,V>(this);
3095 >        }
3096 >
3097 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3098 >            Object v;
3099 >            if ((v = nextVal) == null && (v = advance()) == null)
3100 >                throw new NoSuchElementException();
3101 >            Object k = nextKey;
3102 >            nextVal = null;
3103 >            return new MapEntry<K,V>((K)k, (V)v, map);
3104 >        }
3105      }
3106  
3107      /**
3108 <     * Custom Entry class used by EntryIterator.next(), that relays
1127 <     * setValue changes to the underlying map.
3108 >     * Exported Entry for iterators
3109       */
3110 <    final class WriteThroughEntry
3111 <        extends AbstractMap.SimpleEntry<K,V>
3112 <    {
3113 <        WriteThroughEntry(K k, V v) {
3114 <            super(k,v);
3110 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3111 >        final K key; // non-null
3112 >        V val;       // non-null
3113 >        final ConcurrentHashMap<K, V> map;
3114 >        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3115 >            this.key = key;
3116 >            this.val = val;
3117 >            this.map = map;
3118 >        }
3119 >        public final K getKey()       { return key; }
3120 >        public final V getValue()     { return val; }
3121 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3122 >        public final String toString(){ return key + "=" + val; }
3123 >
3124 >        public final boolean equals(Object o) {
3125 >            Object k, v; Map.Entry<?,?> e;
3126 >            return ((o instanceof Map.Entry) &&
3127 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3128 >                    (v = e.getValue()) != null &&
3129 >                    (k == key || k.equals(key)) &&
3130 >                    (v == val || v.equals(val)));
3131          }
3132  
3133          /**
3134 <         * Set our entry's value and write through to the map. The
3135 <         * value to return is somewhat arbitrary here. Since a
3136 <         * WriteThroughEntry does not necessarily track asynchronous
3137 <         * changes, the most recent "previous" value could be
3138 <         * different from what we return (or could even have been
3139 <         * removed in which case the put will re-establish). We do not
1143 <         * and cannot guarantee more.
3134 >         * Sets our entry's value and writes through to the map. The
3135 >         * value to return is somewhat arbitrary here. Since we do not
3136 >         * necessarily track asynchronous changes, the most recent
3137 >         * "previous" value could be different from what we return (or
3138 >         * could even have been removed in which case the put will
3139 >         * re-establish). We do not and cannot guarantee more.
3140           */
3141 <        public V setValue(V value) {
3141 >        public final V setValue(V value) {
3142              if (value == null) throw new NullPointerException();
3143 <            V v = super.setValue(value);
3144 <            ConcurrentHashMap.this.put(getKey(), value);
3143 >            V v = val;
3144 >            val = value;
3145 >            map.put(key, value);
3146              return v;
3147          }
3148      }
3149  
3150 <    final class EntryIterator
1154 <        extends HashIterator
1155 <        implements Iterator<Entry<K,V>>
1156 <    {
1157 <        public Map.Entry<K,V> next() {
1158 <            HashEntry<K,V> e = super.nextEntry();
1159 <            return new WriteThroughEntry(e.key, e.value);
1160 <        }
1161 <    }
3150 >    /* ----------------Views -------------- */
3151  
3152 <    final class KeySet extends AbstractSet<K> {
3153 <        public Iterator<K> iterator() {
3154 <            return new KeyIterator();
3155 <        }
3156 <        public int size() {
3157 <            return ConcurrentHashMap.this.size();
3152 >    /**
3153 >     * Base class for views.
3154 >     */
3155 >    static abstract class CHMView<K, V> {
3156 >        final ConcurrentHashMap<K, V> map;
3157 >        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
3158 >        public final int size()                 { return map.size(); }
3159 >        public final boolean isEmpty()          { return map.isEmpty(); }
3160 >        public final void clear()               { map.clear(); }
3161 >
3162 >        // implementations below rely on concrete classes supplying these
3163 >        abstract public Iterator<?> iterator();
3164 >        abstract public boolean contains(Object o);
3165 >        abstract public boolean remove(Object o);
3166 >
3167 >        private static final String oomeMsg = "Required array size too large";
3168 >
3169 >        public final Object[] toArray() {
3170 >            long sz = map.mappingCount();
3171 >            if (sz > (long)(MAX_ARRAY_SIZE))
3172 >                throw new OutOfMemoryError(oomeMsg);
3173 >            int n = (int)sz;
3174 >            Object[] r = new Object[n];
3175 >            int i = 0;
3176 >            Iterator<?> it = iterator();
3177 >            while (it.hasNext()) {
3178 >                if (i == n) {
3179 >                    if (n >= MAX_ARRAY_SIZE)
3180 >                        throw new OutOfMemoryError(oomeMsg);
3181 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3182 >                        n = MAX_ARRAY_SIZE;
3183 >                    else
3184 >                        n += (n >>> 1) + 1;
3185 >                    r = Arrays.copyOf(r, n);
3186 >                }
3187 >                r[i++] = it.next();
3188 >            }
3189 >            return (i == n) ? r : Arrays.copyOf(r, i);
3190          }
3191 <        public boolean contains(Object o) {
3192 <            return ConcurrentHashMap.this.containsKey(o);
3191 >
3192 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3193 >            long sz = map.mappingCount();
3194 >            if (sz > (long)(MAX_ARRAY_SIZE))
3195 >                throw new OutOfMemoryError(oomeMsg);
3196 >            int m = (int)sz;
3197 >            T[] r = (a.length >= m) ? a :
3198 >                (T[])java.lang.reflect.Array
3199 >                .newInstance(a.getClass().getComponentType(), m);
3200 >            int n = r.length;
3201 >            int i = 0;
3202 >            Iterator<?> it = iterator();
3203 >            while (it.hasNext()) {
3204 >                if (i == n) {
3205 >                    if (n >= MAX_ARRAY_SIZE)
3206 >                        throw new OutOfMemoryError(oomeMsg);
3207 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3208 >                        n = MAX_ARRAY_SIZE;
3209 >                    else
3210 >                        n += (n >>> 1) + 1;
3211 >                    r = Arrays.copyOf(r, n);
3212 >                }
3213 >                r[i++] = (T)it.next();
3214 >            }
3215 >            if (a == r && i < n) {
3216 >                r[i] = null; // null-terminate
3217 >                return r;
3218 >            }
3219 >            return (i == n) ? r : Arrays.copyOf(r, i);
3220          }
3221 <        public boolean remove(Object o) {
3222 <            return ConcurrentHashMap.this.remove(o) != null;
3221 >
3222 >        public final int hashCode() {
3223 >            int h = 0;
3224 >            for (Iterator<?> it = iterator(); it.hasNext();)
3225 >                h += it.next().hashCode();
3226 >            return h;
3227 >        }
3228 >
3229 >        public final String toString() {
3230 >            StringBuilder sb = new StringBuilder();
3231 >            sb.append('[');
3232 >            Iterator<?> it = iterator();
3233 >            if (it.hasNext()) {
3234 >                for (;;) {
3235 >                    Object e = it.next();
3236 >                    sb.append(e == this ? "(this Collection)" : e);
3237 >                    if (!it.hasNext())
3238 >                        break;
3239 >                    sb.append(',').append(' ');
3240 >                }
3241 >            }
3242 >            return sb.append(']').toString();
3243          }
3244 <        public void clear() {
3245 <            ConcurrentHashMap.this.clear();
3244 >
3245 >        public final boolean containsAll(Collection<?> c) {
3246 >            if (c != this) {
3247 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3248 >                    Object e = it.next();
3249 >                    if (e == null || !contains(e))
3250 >                        return false;
3251 >                }
3252 >            }
3253 >            return true;
3254          }
3255 <        public Object[] toArray() {
3256 <            Collection<K> c = new ArrayList<K>(size());
3257 <            for (K k : this)
3258 <                c.add(k);
3259 <            return c.toArray();
3255 >
3256 >        public final boolean removeAll(Collection<?> c) {
3257 >            boolean modified = false;
3258 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3259 >                if (c.contains(it.next())) {
3260 >                    it.remove();
3261 >                    modified = true;
3262 >                }
3263 >            }
3264 >            return modified;
3265          }
3266 <        public <T> T[] toArray(T[] a) {
3267 <            Collection<K> c = new ArrayList<K>();
3268 <            for (K k : this)
3269 <                c.add(k);
3270 <            return c.toArray(a);
3266 >
3267 >        public final boolean retainAll(Collection<?> c) {
3268 >            boolean modified = false;
3269 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3270 >                if (!c.contains(it.next())) {
3271 >                    it.remove();
3272 >                    modified = true;
3273 >                }
3274 >            }
3275 >            return modified;
3276          }
3277 +
3278      }
3279  
3280 <    final class Values extends AbstractCollection<V> {
3281 <        public Iterator<V> iterator() {
3282 <            return new ValueIterator();
3283 <        }
3284 <        public int size() {
3285 <            return ConcurrentHashMap.this.size();
3286 <        }
3287 <        public boolean contains(Object o) {
3288 <            return ConcurrentHashMap.this.containsValue(o);
3289 <        }
3290 <        public void clear() {
3291 <            ConcurrentHashMap.this.clear();
3292 <        }
3293 <        public Object[] toArray() {
3294 <            Collection<V> c = new ArrayList<V>(size());
3295 <            for (V v : this)
3296 <                c.add(v);
3297 <            return c.toArray();
3298 <        }
3299 <        public <T> T[] toArray(T[] a) {
1213 <            Collection<V> c = new ArrayList<V>(size());
1214 <            for (V v : this)
1215 <                c.add(v);
1216 <            return c.toArray(a);
3280 >    static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
3281 >        KeySet(ConcurrentHashMap<K, V> map)  {
3282 >            super(map);
3283 >        }
3284 >        public final boolean contains(Object o) { return map.containsKey(o); }
3285 >        public final boolean remove(Object o)   { return map.remove(o) != null; }
3286 >        public final Iterator<K> iterator() {
3287 >            return new KeyIterator<K,V>(map);
3288 >        }
3289 >        public final boolean add(K e) {
3290 >            throw new UnsupportedOperationException();
3291 >        }
3292 >        public final boolean addAll(Collection<? extends K> c) {
3293 >            throw new UnsupportedOperationException();
3294 >        }
3295 >        public boolean equals(Object o) {
3296 >            Set<?> c;
3297 >            return ((o instanceof Set) &&
3298 >                    ((c = (Set<?>)o) == this ||
3299 >                     (containsAll(c) && c.containsAll(this))));
3300          }
3301      }
3302  
3303 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3304 <        public Iterator<Map.Entry<K,V>> iterator() {
3305 <            return new EntryIterator();
3306 <        }
3307 <        public boolean contains(Object o) {
3308 <            if (!(o instanceof Map.Entry))
3309 <                return false;
3310 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3311 <            V v = ConcurrentHashMap.this.get(e.getKey());
3312 <            return v != null && v.equals(e.getValue());
3313 <        }
3314 <        public boolean remove(Object o) {
3315 <            if (!(o instanceof Map.Entry))
3316 <                return false;
3317 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3318 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
3303 >
3304 >    static final class Values<K,V> extends CHMView<K,V>
3305 >        implements Collection<V> {
3306 >        Values(ConcurrentHashMap<K, V> map)   { super(map); }
3307 >        public final boolean contains(Object o) { return map.containsValue(o); }
3308 >        public final boolean remove(Object o) {
3309 >            if (o != null) {
3310 >                Iterator<V> it = new ValueIterator<K,V>(map);
3311 >                while (it.hasNext()) {
3312 >                    if (o.equals(it.next())) {
3313 >                        it.remove();
3314 >                        return true;
3315 >                    }
3316 >                }
3317 >            }
3318 >            return false;
3319          }
3320 <        public int size() {
3321 <            return ConcurrentHashMap.this.size();
3320 >        public final Iterator<V> iterator() {
3321 >            return new ValueIterator<K,V>(map);
3322          }
3323 <        public void clear() {
3324 <            ConcurrentHashMap.this.clear();
3323 >        public final boolean add(V e) {
3324 >            throw new UnsupportedOperationException();
3325          }
3326 <        public Object[] toArray() {
3327 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1245 <            for (Map.Entry<K,V> e : this)
1246 <                c.add(e);
1247 <            return c.toArray();
1248 <        }
1249 <        public <T> T[] toArray(T[] a) {
1250 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1251 <            for (Map.Entry<K,V> e : this)
1252 <                c.add(e);
1253 <            return c.toArray(a);
3326 >        public final boolean addAll(Collection<? extends V> c) {
3327 >            throw new UnsupportedOperationException();
3328          }
3329  
3330      }
3331  
3332 +    static final class EntrySet<K,V> extends CHMView<K,V>
3333 +        implements Set<Map.Entry<K,V>> {
3334 +        EntrySet(ConcurrentHashMap<K, V> map) { super(map); }
3335 +        public final boolean contains(Object o) {
3336 +            Object k, v, r; Map.Entry<?,?> e;
3337 +            return ((o instanceof Map.Entry) &&
3338 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3339 +                    (r = map.get(k)) != null &&
3340 +                    (v = e.getValue()) != null &&
3341 +                    (v == r || v.equals(r)));
3342 +        }
3343 +        public final boolean remove(Object o) {
3344 +            Object k, v; Map.Entry<?,?> e;
3345 +            return ((o instanceof Map.Entry) &&
3346 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3347 +                    (v = e.getValue()) != null &&
3348 +                    map.remove(k, v));
3349 +        }
3350 +        public final Iterator<Map.Entry<K,V>> iterator() {
3351 +            return new EntryIterator<K,V>(map);
3352 +        }
3353 +        public final boolean add(Entry<K,V> e) {
3354 +            throw new UnsupportedOperationException();
3355 +        }
3356 +        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3357 +            throw new UnsupportedOperationException();
3358 +        }
3359 +        public boolean equals(Object o) {
3360 +            Set<?> c;
3361 +            return ((o instanceof Set) &&
3362 +                    ((c = (Set<?>)o) == this ||
3363 +                     (containsAll(c) && c.containsAll(this))));
3364 +        }
3365 +    }
3366 +
3367      /* ---------------- Serialization Support -------------- */
3368  
3369      /**
3370 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
3371 <     * stream (i.e., serialize it).
3370 >     * Stripped-down version of helper class used in previous version,
3371 >     * declared for the sake of serialization compatibility
3372 >     */
3373 >    static class Segment<K,V> implements Serializable {
3374 >        private static final long serialVersionUID = 2249069246763182397L;
3375 >        final float loadFactor;
3376 >        Segment(float lf) { this.loadFactor = lf; }
3377 >    }
3378 >
3379 >    /**
3380 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3381 >     * stream (i.e., serializes it).
3382       * @param s the stream
3383       * @serialData
3384       * the key (Object) and value (Object)
3385       * for each key-value mapping, followed by a null pair.
3386       * The key-value mappings are emitted in no particular order.
3387       */
3388 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
3388 >    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3389 >        throws java.io.IOException {
3390 >        if (segments == null) { // for serialization compatibility
3391 >            segments = (Segment<K,V>[])
3392 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3393 >            for (int i = 0; i < segments.length; ++i)
3394 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3395 >        }
3396          s.defaultWriteObject();
3397 <
3398 <        for (int k = 0; k < segments.length; ++k) {
3399 <            Segment<K,V> seg = segments[k];
3400 <            seg.lock();
3401 <            try {
1276 <                HashEntry<K,V>[] tab = seg.table;
1277 <                for (int i = 0; i < tab.length; ++i) {
1278 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1279 <                        s.writeObject(e.key);
1280 <                        s.writeObject(e.value);
1281 <                    }
1282 <                }
1283 <            } finally {
1284 <                seg.unlock();
1285 <            }
3397 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3398 >        Object v;
3399 >        while ((v = it.advance()) != null) {
3400 >            s.writeObject(it.nextKey);
3401 >            s.writeObject(v);
3402          }
3403          s.writeObject(null);
3404          s.writeObject(null);
3405 +        segments = null; // throw away
3406      }
3407  
3408      /**
3409 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1293 <     * stream (i.e., deserialize it).
3409 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3410       * @param s the stream
3411       */
3412 <    private void readObject(java.io.ObjectInputStream s)
3413 <        throws IOException, ClassNotFoundException  {
3412 >    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3413 >        throws java.io.IOException, ClassNotFoundException {
3414          s.defaultReadObject();
3415 +        this.segments = null; // unneeded
3416 +        // initialize transient final field
3417 +        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3418 +
3419 +        // Create all nodes, then place in table once size is known
3420 +        long size = 0L;
3421 +        Node p = null;
3422 +        for (;;) {
3423 +            K k = (K) s.readObject();
3424 +            V v = (V) s.readObject();
3425 +            if (k != null && v != null) {
3426 +                int h = spread(k.hashCode());
3427 +                p = new Node(h, k, v, p);
3428 +                ++size;
3429 +            }
3430 +            else
3431 +                break;
3432 +        }
3433 +        if (p != null) {
3434 +            boolean init = false;
3435 +            int n;
3436 +            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3437 +                n = MAXIMUM_CAPACITY;
3438 +            else {
3439 +                int sz = (int)size;
3440 +                n = tableSizeFor(sz + (sz >>> 1) + 1);
3441 +            }
3442 +            int sc = sizeCtl;
3443 +            boolean collide = false;
3444 +            if (n > sc &&
3445 +                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3446 +                try {
3447 +                    if (table == null) {
3448 +                        init = true;
3449 +                        Node[] tab = new Node[n];
3450 +                        int mask = n - 1;
3451 +                        while (p != null) {
3452 +                            int j = p.hash & mask;
3453 +                            Node next = p.next;
3454 +                            Node q = p.next = tabAt(tab, j);
3455 +                            setTabAt(tab, j, p);
3456 +                            if (!collide && q != null && q.hash == p.hash)
3457 +                                collide = true;
3458 +                            p = next;
3459 +                        }
3460 +                        table = tab;
3461 +                        counter.add(size);
3462 +                        sc = n - (n >>> 2);
3463 +                    }
3464 +                } finally {
3465 +                    sizeCtl = sc;
3466 +                }
3467 +                if (collide) { // rescan and convert to TreeBins
3468 +                    Node[] tab = table;
3469 +                    for (int i = 0; i < tab.length; ++i) {
3470 +                        int c = 0;
3471 +                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3472 +                            if (++c > TREE_THRESHOLD &&
3473 +                                (e.key instanceof Comparable)) {
3474 +                                replaceWithTreeBin(tab, i, e.key);
3475 +                                break;
3476 +                            }
3477 +                        }
3478 +                    }
3479 +                }
3480 +            }
3481 +            if (!init) { // Can only happen if unsafely published.
3482 +                while (p != null) {
3483 +                    internalPut(p.key, p.val);
3484 +                    p = p.next;
3485 +                }
3486 +            }
3487 +        }
3488 +    }
3489 +
3490 +
3491 +    // -------------------------------------------------------
3492 +
3493 +    // Sams
3494 +    /** Interface describing a void action of one argument */
3495 +    public interface Action<A> { void apply(A a); }
3496 +    /** Interface describing a void action of two arguments */
3497 +    public interface BiAction<A,B> { void apply(A a, B b); }
3498 +    /** Interface describing a function of one argument */
3499 +    public interface Fun<A,T> { T apply(A a); }
3500 +    /** Interface describing a function of two arguments */
3501 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
3502 +    /** Interface describing a function of no arguments */
3503 +    public interface Generator<T> { T apply(); }
3504 +    /** Interface describing a function mapping its argument to a double */
3505 +    public interface ObjectToDouble<A> { double apply(A a); }
3506 +    /** Interface describing a function mapping its argument to a long */
3507 +    public interface ObjectToLong<A> { long apply(A a); }
3508 +    /** Interface describing a function mapping its argument to an int */
3509 +    public interface ObjectToInt<A> {int apply(A a); }
3510 +    /** Interface describing a function mapping two arguments to a double */
3511 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3512 +    /** Interface describing a function mapping two arguments to a long */
3513 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3514 +    /** Interface describing a function mapping two arguments to an int */
3515 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3516 +    /** Interface describing a function mapping a double to a double */
3517 +    public interface DoubleToDouble { double apply(double a); }
3518 +    /** Interface describing a function mapping a long to a long */
3519 +    public interface LongToLong { long apply(long a); }
3520 +    /** Interface describing a function mapping an int to an int */
3521 +    public interface IntToInt { int apply(int a); }
3522 +    /** Interface describing a function mapping two doubles to a double */
3523 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3524 +    /** Interface describing a function mapping two longs to a long */
3525 +    public interface LongByLongToLong { long apply(long a, long b); }
3526 +    /** Interface describing a function mapping two ints to an int */
3527 +    public interface IntByIntToInt { int apply(int a, int b); }
3528 +
3529 +
3530 +    // -------------------------------------------------------
3531 +
3532 +    /**
3533 +     * Returns an extended {@link Parallel} view of this map using the
3534 +     * given executor for bulk parallel operations.
3535 +     *
3536 +     * @param executor the executor
3537 +     * @return a parallel view
3538 +     */
3539 +    public Parallel parallel(ForkJoinPool executor)  {
3540 +        return new Parallel(executor);
3541 +    }
3542  
3543 <        // Initialize each segment to be minimally sized, and let grow.
3544 <        for (int i = 0; i < segments.length; ++i) {
3545 <            segments[i].setTable(new HashEntry[1]);
3543 >    /**
3544 >     * An extended view of a ConcurrentHashMap supporting bulk
3545 >     * parallel operations. These operations are designed to be
3546 >     * safely, and often sensibly, applied even with maps that are
3547 >     * being concurrently updated by other threads; for example, when
3548 >     * computing a snapshot summary of the values in a shared
3549 >     * registry.  There are three kinds of operation, each with four
3550 >     * forms, accepting functions with Keys, Values, Entries, and
3551 >     * (Key, Value) arguments and/or return values. Because the
3552 >     * elements of a ConcurrentHashMap are not ordered in any
3553 >     * particular way, and may be processed in different orders in
3554 >     * different parallel executions, the correctness of supplied
3555 >     * functions should not depend on any ordering, or on any other
3556 >     * objects or values that may transiently change while computation
3557 >     * is in progress; and except for forEach actions, should ideally
3558 >     * be side-effect-free.
3559 >     *
3560 >     * <ul>
3561 >     * <li> forEach: Perform a given action on each element.
3562 >     * A variant form applies a given transformation on each element
3563 >     * before performing the action.</li>
3564 >     *
3565 >     * <li> search: Return the first available non-null result of
3566 >     * applying a given function on each element; skipping further
3567 >     * search when a result is found.</li>
3568 >     *
3569 >     * <li> reduce: Accumulate each element.  The supplied reduction
3570 >     * function cannot rely on ordering (more formally, it should be
3571 >     * both associative and commutative).  There are five variants:
3572 >     *
3573 >     * <ul>
3574 >     *
3575 >     * <li> Plain reductions. (There is not a form of this method for
3576 >     * (key, value) function arguments since there is no corresponding
3577 >     * return type.)</li>
3578 >     *
3579 >     * <li> Mapped reductions that accumulate the results of a given
3580 >     * function applied to each element.</li>
3581 >     *
3582 >     * <li> Reductions to scalar doubles, longs, and ints, using a
3583 >     * given basis value.</li>
3584 >     *
3585 >     * </li>
3586 >     * </ul>
3587 >     * </ul>
3588 >     *
3589 >     * <p>The concurrency properties of the bulk operations follow
3590 >     * from those of ConcurrentHashMap: Any non-null result returned
3591 >     * from {@code get(key)} and related access methods bears a
3592 >     * happens-before relation with the associated insertion or
3593 >     * update.  The result of any bulk operation reflects the
3594 >     * composition of these per-element relations (but is not
3595 >     * necessarily atomic with respect to the map as a whole unless it
3596 >     * is somehow known to be quiescent).  Conversely, because keys
3597 >     * and values in the map are never null, null serves as a reliable
3598 >     * atomic indicator of the current lack of any result.  To
3599 >     * maintain this property, null serves as an implicit basis for
3600 >     * all non-scalar reduction operations. For the double, long, and
3601 >     * int versions, the basis should be one that, when combined with
3602 >     * any other value, returns that other value (more formally, it
3603 >     * should be the identity element for the reduction). Most common
3604 >     * reductions have these properties; for example, computing a sum
3605 >     * with basis 0 or a minimum with basis MAX_VALUE.
3606 >     *
3607 >     * <p>Search and transformation functions provided as arguments
3608 >     * should similarly return null to indicate the lack of any result
3609 >     * (in which case it is not used). In the case of mapped
3610 >     * reductions, this also enables transformations to serve as
3611 >     * filters, returning null (or, in the case of primitive
3612 >     * specializations, the identity basis) if the element should not
3613 >     * be combined. You can create compound transformations and
3614 >     * filterings by composing them yourself under this "null means
3615 >     * there is nothing there now" rule before using them in search or
3616 >     * reduce operations.
3617 >     *
3618 >     * <p>Methods accepting and/or returning Entry arguments maintain
3619 >     * key-value associations. They may be useful for example when
3620 >     * finding the key for the greatest value. Note that "plain" Entry
3621 >     * arguments can be supplied using {@code new
3622 >     * AbstractMap.SimpleEntry(k,v)}.
3623 >     *
3624 >     * <p> Bulk operations may complete abruptly, throwing an
3625 >     * exception encountered in the application of a supplied
3626 >     * function. Bear in mind when handling such exceptions that other
3627 >     * concurrently executing functions could also have thrown
3628 >     * exceptions, or would have done so if the first exception had
3629 >     * not occurred.
3630 >     *
3631 >     * <p>Parallel speedups compared to sequential processing are
3632 >     * common but not guaranteed.  Operations involving brief
3633 >     * functions on small maps may execute more slowly than sequential
3634 >     * loops if the underlying work to parallelize the computation is
3635 >     * more expensive than the computation itself. Similarly,
3636 >     * parallelization may not lead to much actual parallelism if all
3637 >     * processors are busy performing unrelated tasks.
3638 >     *
3639 >     * <p> All arguments to all task methods must be non-null.
3640 >     *
3641 >     * <p><em>jsr166e note: During transition, this class
3642 >     * uses nested functional interfaces with different names but the
3643 >     * same forms as those expected for JDK8.<em>
3644 >     */
3645 >    public class Parallel {
3646 >        final ForkJoinPool fjp;
3647 >
3648 >        /**
3649 >         * Returns an extended view of this map using the given
3650 >         * executor for bulk parallel operations.
3651 >         *
3652 >         * @param executor the executor
3653 >         */
3654 >        public Parallel(ForkJoinPool executor)  {
3655 >            this.fjp = executor;
3656          }
3657  
3658 <        // Read the keys and values, and put the mappings in the table
3659 <        for (;;) {
3660 <            K key = (K) s.readObject();
3661 <            V value = (V) s.readObject();
3662 <            if (key == null)
3663 <                break;
3664 <            put(key, value);
3658 >        /**
3659 >         * Performs the given action for each (key, value).
3660 >         *
3661 >         * @param action the action
3662 >         */
3663 >        public void forEach(BiAction<K,V> action) {
3664 >            fjp.invoke(ForkJoinTasks.forEach
3665 >                       (ConcurrentHashMap.this, action));
3666 >        }
3667 >
3668 >        /**
3669 >         * Performs the given action for each non-null transformation
3670 >         * of each (key, value).
3671 >         *
3672 >         * @param transformer a function returning the transformation
3673 >         * for an element, or null of there is no transformation (in
3674 >         * which case the action is not applied)
3675 >         * @param action the action
3676 >         */
3677 >        public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3678 >                                Action<U> action) {
3679 >            fjp.invoke(ForkJoinTasks.forEach
3680 >                       (ConcurrentHashMap.this, transformer, action));
3681 >        }
3682 >
3683 >        /**
3684 >         * Returns a non-null result from applying the given search
3685 >         * function on each (key, value), or null if none.  Upon
3686 >         * success, further element processing is suppressed and the
3687 >         * results of any other parallel invocations of the search
3688 >         * function are ignored.
3689 >         *
3690 >         * @param searchFunction a function returning a non-null
3691 >         * result on success, else null
3692 >         * @return a non-null result from applying the given search
3693 >         * function on each (key, value), or null if none
3694 >         */
3695 >        public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3696 >            return fjp.invoke(ForkJoinTasks.search
3697 >                              (ConcurrentHashMap.this, searchFunction));
3698 >        }
3699 >
3700 >        /**
3701 >         * Returns the result of accumulating the given transformation
3702 >         * of all (key, value) pairs using the given reducer to
3703 >         * combine values, or null if none.
3704 >         *
3705 >         * @param transformer a function returning the transformation
3706 >         * for an element, or null of there is no transformation (in
3707 >         * which case it is not combined)
3708 >         * @param reducer a commutative associative combining function
3709 >         * @return the result of accumulating the given transformation
3710 >         * of all (key, value) pairs
3711 >         */
3712 >        public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3713 >                            BiFun<? super U, ? super U, ? extends U> reducer) {
3714 >            return fjp.invoke(ForkJoinTasks.reduce
3715 >                              (ConcurrentHashMap.this, transformer, reducer));
3716 >        }
3717 >
3718 >        /**
3719 >         * Returns the result of accumulating the given transformation
3720 >         * of all (key, value) pairs using the given reducer to
3721 >         * combine values, and the given basis as an identity value.
3722 >         *
3723 >         * @param transformer a function returning the transformation
3724 >         * for an element
3725 >         * @param basis the identity (initial default value) for the reduction
3726 >         * @param reducer a commutative associative combining function
3727 >         * @return the result of accumulating the given transformation
3728 >         * of all (key, value) pairs
3729 >         */
3730 >        public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3731 >                                     double basis,
3732 >                                     DoubleByDoubleToDouble reducer) {
3733 >            return fjp.invoke(ForkJoinTasks.reduceToDouble
3734 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3735 >        }
3736 >
3737 >        /**
3738 >         * Returns the result of accumulating the given transformation
3739 >         * of all (key, value) pairs using the given reducer to
3740 >         * combine values, and the given basis as an identity value.
3741 >         *
3742 >         * @param transformer a function returning the transformation
3743 >         * for an element
3744 >         * @param basis the identity (initial default value) for the reduction
3745 >         * @param reducer a commutative associative combining function
3746 >         * @return the result of accumulating the given transformation
3747 >         * of all (key, value) pairs
3748 >         */
3749 >        public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3750 >                                 long basis,
3751 >                                 LongByLongToLong reducer) {
3752 >            return fjp.invoke(ForkJoinTasks.reduceToLong
3753 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3754 >        }
3755 >
3756 >        /**
3757 >         * Returns the result of accumulating the given transformation
3758 >         * of all (key, value) pairs using the given reducer to
3759 >         * combine values, and the given basis as an identity value.
3760 >         *
3761 >         * @param transformer a function returning the transformation
3762 >         * for an element
3763 >         * @param basis the identity (initial default value) for the reduction
3764 >         * @param reducer a commutative associative combining function
3765 >         * @return the result of accumulating the given transformation
3766 >         * of all (key, value) pairs
3767 >         */
3768 >        public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3769 >                               int basis,
3770 >                               IntByIntToInt reducer) {
3771 >            return fjp.invoke(ForkJoinTasks.reduceToInt
3772 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3773 >        }
3774 >
3775 >        /**
3776 >         * Performs the given action for each key.
3777 >         *
3778 >         * @param action the action
3779 >         */
3780 >        public void forEachKey(Action<K> action) {
3781 >            fjp.invoke(ForkJoinTasks.forEachKey
3782 >                       (ConcurrentHashMap.this, action));
3783 >        }
3784 >
3785 >        /**
3786 >         * Performs the given action for each non-null transformation
3787 >         * of each key.
3788 >         *
3789 >         * @param transformer a function returning the transformation
3790 >         * for an element, or null of there is no transformation (in
3791 >         * which case the action is not applied)
3792 >         * @param action the action
3793 >         */
3794 >        public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3795 >                                   Action<U> action) {
3796 >            fjp.invoke(ForkJoinTasks.forEachKey
3797 >                       (ConcurrentHashMap.this, transformer, action));
3798 >        }
3799 >
3800 >        /**
3801 >         * Returns a non-null result from applying the given search
3802 >         * function on each key, or null if none. Upon success,
3803 >         * further element processing is suppressed and the results of
3804 >         * any other parallel invocations of the search function are
3805 >         * ignored.
3806 >         *
3807 >         * @param searchFunction a function returning a non-null
3808 >         * result on success, else null
3809 >         * @return a non-null result from applying the given search
3810 >         * function on each key, or null if none
3811 >         */
3812 >        public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3813 >            return fjp.invoke(ForkJoinTasks.searchKeys
3814 >                              (ConcurrentHashMap.this, searchFunction));
3815 >        }
3816 >
3817 >        /**
3818 >         * Returns the result of accumulating all keys using the given
3819 >         * reducer to combine values, or null if none.
3820 >         *
3821 >         * @param reducer a commutative associative combining function
3822 >         * @return the result of accumulating all keys using the given
3823 >         * reducer to combine values, or null if none
3824 >         */
3825 >        public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3826 >            return fjp.invoke(ForkJoinTasks.reduceKeys
3827 >                              (ConcurrentHashMap.this, reducer));
3828 >        }
3829 >
3830 >        /**
3831 >         * Returns the result of accumulating the given transformation
3832 >         * of all keys using the given reducer to combine values, or
3833 >         * null if none.
3834 >         *
3835 >         * @param transformer a function returning the transformation
3836 >         * for an element, or null of there is no transformation (in
3837 >         * which case it is not combined)
3838 >         * @param reducer a commutative associative combining function
3839 >         * @return the result of accumulating the given transformation
3840 >         * of all keys
3841 >         */
3842 >        public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3843 >                                BiFun<? super U, ? super U, ? extends U> reducer) {
3844 >            return fjp.invoke(ForkJoinTasks.reduceKeys
3845 >                              (ConcurrentHashMap.this, transformer, reducer));
3846 >        }
3847 >
3848 >        /**
3849 >         * Returns the result of accumulating the given transformation
3850 >         * of all keys using the given reducer to combine values, and
3851 >         * the given basis as an identity value.
3852 >         *
3853 >         * @param transformer a function returning the transformation
3854 >         * for an element
3855 >         * @param basis the identity (initial default value) for the reduction
3856 >         * @param reducer a commutative associative combining function
3857 >         * @return  the result of accumulating the given transformation
3858 >         * of all keys
3859 >         */
3860 >        public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3861 >                                         double basis,
3862 >                                         DoubleByDoubleToDouble reducer) {
3863 >            return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3864 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3865 >        }
3866 >
3867 >        /**
3868 >         * Returns the result of accumulating the given transformation
3869 >         * of all keys using the given reducer to combine values, and
3870 >         * the given basis as an identity value.
3871 >         *
3872 >         * @param transformer a function returning the transformation
3873 >         * for an element
3874 >         * @param basis the identity (initial default value) for the reduction
3875 >         * @param reducer a commutative associative combining function
3876 >         * @return the result of accumulating the given transformation
3877 >         * of all keys
3878 >         */
3879 >        public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3880 >                                     long basis,
3881 >                                     LongByLongToLong reducer) {
3882 >            return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3883 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3884 >        }
3885 >
3886 >        /**
3887 >         * Returns the result of accumulating the given transformation
3888 >         * of all keys using the given reducer to combine values, and
3889 >         * the given basis as an identity value.
3890 >         *
3891 >         * @param transformer a function returning the transformation
3892 >         * for an element
3893 >         * @param basis the identity (initial default value) for the reduction
3894 >         * @param reducer a commutative associative combining function
3895 >         * @return the result of accumulating the given transformation
3896 >         * of all keys
3897 >         */
3898 >        public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3899 >                                   int basis,
3900 >                                   IntByIntToInt reducer) {
3901 >            return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3902 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3903 >        }
3904 >
3905 >        /**
3906 >         * Performs the given action for each value.
3907 >         *
3908 >         * @param action the action
3909 >         */
3910 >        public void forEachValue(Action<V> action) {
3911 >            fjp.invoke(ForkJoinTasks.forEachValue
3912 >                       (ConcurrentHashMap.this, action));
3913 >        }
3914 >
3915 >        /**
3916 >         * Performs the given action for each non-null transformation
3917 >         * of each value.
3918 >         *
3919 >         * @param transformer a function returning the transformation
3920 >         * for an element, or null of there is no transformation (in
3921 >         * which case the action is not applied)
3922 >         */
3923 >        public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3924 >                                     Action<U> action) {
3925 >            fjp.invoke(ForkJoinTasks.forEachValue
3926 >                       (ConcurrentHashMap.this, transformer, action));
3927 >        }
3928 >
3929 >        /**
3930 >         * Returns a non-null result from applying the given search
3931 >         * function on each value, or null if none.  Upon success,
3932 >         * further element processing is suppressed and the results of
3933 >         * any other parallel invocations of the search function are
3934 >         * ignored.
3935 >         *
3936 >         * @param searchFunction a function returning a non-null
3937 >         * result on success, else null
3938 >         * @return a non-null result from applying the given search
3939 >         * function on each value, or null if none
3940 >         *
3941 >         */
3942 >        public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3943 >            return fjp.invoke(ForkJoinTasks.searchValues
3944 >                              (ConcurrentHashMap.this, searchFunction));
3945 >        }
3946 >
3947 >        /**
3948 >         * Returns the result of accumulating all values using the
3949 >         * given reducer to combine values, or null if none.
3950 >         *
3951 >         * @param reducer a commutative associative combining function
3952 >         * @return  the result of accumulating all values
3953 >         */
3954 >        public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3955 >            return fjp.invoke(ForkJoinTasks.reduceValues
3956 >                              (ConcurrentHashMap.this, reducer));
3957 >        }
3958 >
3959 >        /**
3960 >         * Returns the result of accumulating the given transformation
3961 >         * of all values using the given reducer to combine values, or
3962 >         * null if none.
3963 >         *
3964 >         * @param transformer a function returning the transformation
3965 >         * for an element, or null of there is no transformation (in
3966 >         * which case it is not combined)
3967 >         * @param reducer a commutative associative combining function
3968 >         * @return the result of accumulating the given transformation
3969 >         * of all values
3970 >         */
3971 >        public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3972 >                                  BiFun<? super U, ? super U, ? extends U> reducer) {
3973 >            return fjp.invoke(ForkJoinTasks.reduceValues
3974 >                              (ConcurrentHashMap.this, transformer, reducer));
3975 >        }
3976 >
3977 >        /**
3978 >         * Returns the result of accumulating the given transformation
3979 >         * of all values using the given reducer to combine values,
3980 >         * and the given basis as an identity value.
3981 >         *
3982 >         * @param transformer a function returning the transformation
3983 >         * for an element
3984 >         * @param basis the identity (initial default value) for the reduction
3985 >         * @param reducer a commutative associative combining function
3986 >         * @return the result of accumulating the given transformation
3987 >         * of all values
3988 >         */
3989 >        public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3990 >                                           double basis,
3991 >                                           DoubleByDoubleToDouble reducer) {
3992 >            return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3993 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3994 >        }
3995 >
3996 >        /**
3997 >         * Returns the result of accumulating the given transformation
3998 >         * of all values using the given reducer to combine values,
3999 >         * and the given basis as an identity value.
4000 >         *
4001 >         * @param transformer a function returning the transformation
4002 >         * for an element
4003 >         * @param basis the identity (initial default value) for the reduction
4004 >         * @param reducer a commutative associative combining function
4005 >         * @return the result of accumulating the given transformation
4006 >         * of all values
4007 >         */
4008 >        public long reduceValuesToLong(ObjectToLong<? super V> transformer,
4009 >                                       long basis,
4010 >                                       LongByLongToLong reducer) {
4011 >            return fjp.invoke(ForkJoinTasks.reduceValuesToLong
4012 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
4013 >        }
4014 >
4015 >        /**
4016 >         * Returns the result of accumulating the given transformation
4017 >         * of all values using the given reducer to combine values,
4018 >         * and the given basis as an identity value.
4019 >         *
4020 >         * @param transformer a function returning the transformation
4021 >         * for an element
4022 >         * @param basis the identity (initial default value) for the reduction
4023 >         * @param reducer a commutative associative combining function
4024 >         * @return the result of accumulating the given transformation
4025 >         * of all values
4026 >         */
4027 >        public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4028 >                                     int basis,
4029 >                                     IntByIntToInt reducer) {
4030 >            return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4031 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
4032 >        }
4033 >
4034 >        /**
4035 >         * Performs the given action for each entry.
4036 >         *
4037 >         * @param action the action
4038 >         */
4039 >        public void forEachEntry(Action<Map.Entry<K,V>> action) {
4040 >            fjp.invoke(ForkJoinTasks.forEachEntry
4041 >                       (ConcurrentHashMap.this, action));
4042 >        }
4043 >
4044 >        /**
4045 >         * Performs the given action for each non-null transformation
4046 >         * of each entry.
4047 >         *
4048 >         * @param transformer a function returning the transformation
4049 >         * for an element, or null of there is no transformation (in
4050 >         * which case the action is not applied)
4051 >         * @param action the action
4052 >         */
4053 >        public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4054 >                                     Action<U> action) {
4055 >            fjp.invoke(ForkJoinTasks.forEachEntry
4056 >                       (ConcurrentHashMap.this, transformer, action));
4057 >        }
4058 >
4059 >        /**
4060 >         * Returns a non-null result from applying the given search
4061 >         * function on each entry, or null if none.  Upon success,
4062 >         * further element processing is suppressed and the results of
4063 >         * any other parallel invocations of the search function are
4064 >         * ignored.
4065 >         *
4066 >         * @param searchFunction a function returning a non-null
4067 >         * result on success, else null
4068 >         * @return a non-null result from applying the given search
4069 >         * function on each entry, or null if none
4070 >         */
4071 >        public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4072 >            return fjp.invoke(ForkJoinTasks.searchEntries
4073 >                              (ConcurrentHashMap.this, searchFunction));
4074 >        }
4075 >
4076 >        /**
4077 >         * Returns the result of accumulating all entries using the
4078 >         * given reducer to combine values, or null if none.
4079 >         *
4080 >         * @param reducer a commutative associative combining function
4081 >         * @return the result of accumulating all entries
4082 >         */
4083 >        public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4084 >            return fjp.invoke(ForkJoinTasks.reduceEntries
4085 >                              (ConcurrentHashMap.this, reducer));
4086 >        }
4087 >
4088 >        /**
4089 >         * Returns the result of accumulating the given transformation
4090 >         * of all entries using the given reducer to combine values,
4091 >         * or null if none.
4092 >         *
4093 >         * @param transformer a function returning the transformation
4094 >         * for an element, or null of there is no transformation (in
4095 >         * which case it is not combined).
4096 >         * @param reducer a commutative associative combining function
4097 >         * @return the result of accumulating the given transformation
4098 >         * of all entries
4099 >         */
4100 >        public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4101 >                                   BiFun<? super U, ? super U, ? extends U> reducer) {
4102 >            return fjp.invoke(ForkJoinTasks.reduceEntries
4103 >                              (ConcurrentHashMap.this, transformer, reducer));
4104 >        }
4105 >
4106 >        /**
4107 >         * Returns the result of accumulating the given transformation
4108 >         * of all entries using the given reducer to combine values,
4109 >         * and the given basis as an identity value.
4110 >         *
4111 >         * @param transformer a function returning the transformation
4112 >         * for an element
4113 >         * @param basis the identity (initial default value) for the reduction
4114 >         * @param reducer a commutative associative combining function
4115 >         * @return the result of accumulating the given transformation
4116 >         * of all entries
4117 >         */
4118 >        public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4119 >                                            double basis,
4120 >                                            DoubleByDoubleToDouble reducer) {
4121 >            return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4122 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
4123 >        }
4124 >
4125 >        /**
4126 >         * Returns the result of accumulating the given transformation
4127 >         * of all entries using the given reducer to combine values,
4128 >         * and the given basis as an identity value.
4129 >         *
4130 >         * @param transformer a function returning the transformation
4131 >         * for an element
4132 >         * @param basis the identity (initial default value) for the reduction
4133 >         * @param reducer a commutative associative combining function
4134 >         * @return  the result of accumulating the given transformation
4135 >         * of all entries
4136 >         */
4137 >        public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4138 >                                        long basis,
4139 >                                        LongByLongToLong reducer) {
4140 >            return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4141 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
4142 >        }
4143 >
4144 >        /**
4145 >         * Returns the result of accumulating the given transformation
4146 >         * of all entries using the given reducer to combine values,
4147 >         * and the given basis as an identity value.
4148 >         *
4149 >         * @param transformer a function returning the transformation
4150 >         * for an element
4151 >         * @param basis the identity (initial default value) for the reduction
4152 >         * @param reducer a commutative associative combining function
4153 >         * @return the result of accumulating the given transformation
4154 >         * of all entries
4155 >         */
4156 >        public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4157 >                                      int basis,
4158 >                                      IntByIntToInt reducer) {
4159 >            return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
4160 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
4161 >        }
4162 >    }
4163 >
4164 >    // ---------------------------------------------------------------------
4165 >
4166 >    /**
4167 >     * Predefined tasks for performing bulk parallel operations on
4168 >     * ConcurrentHashMaps. These tasks follow the forms and rules used
4169 >     * in class {@link Parallel}. Each method has the same name, but
4170 >     * returns a task rather than invoking it. These methods may be
4171 >     * useful in custom applications such as submitting a task without
4172 >     * waiting for completion, or combining with other tasks.
4173 >     */
4174 >    public static class ForkJoinTasks {
4175 >        private ForkJoinTasks() {}
4176 >
4177 >        /**
4178 >         * Returns a task that when invoked, performs the given
4179 >         * action for each (key, value)
4180 >         *
4181 >         * @param map the map
4182 >         * @param action the action
4183 >         * @return the task
4184 >         */
4185 >        public static <K,V> ForkJoinTask<Void> forEach
4186 >            (ConcurrentHashMap<K,V> map,
4187 >             BiAction<K,V> action) {
4188 >            if (action == null) throw new NullPointerException();
4189 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4190 >        }
4191 >
4192 >        /**
4193 >         * Returns a task that when invoked, performs the given
4194 >         * action for each non-null transformation of each (key, value)
4195 >         *
4196 >         * @param map the map
4197 >         * @param transformer a function returning the transformation
4198 >         * for an element, or null of there is no transformation (in
4199 >         * which case the action is not applied)
4200 >         * @param action the action
4201 >         * @return the task
4202 >         */
4203 >        public static <K,V,U> ForkJoinTask<Void> forEach
4204 >            (ConcurrentHashMap<K,V> map,
4205 >             BiFun<? super K, ? super V, ? extends U> transformer,
4206 >             Action<U> action) {
4207 >            if (transformer == null || action == null)
4208 >                throw new NullPointerException();
4209 >            return new ForEachTransformedMappingTask<K,V,U>
4210 >                (map, null, -1, transformer, action);
4211 >        }
4212 >
4213 >        /**
4214 >         * Returns a task that when invoked, returns a non-null result
4215 >         * from applying the given search function on each (key,
4216 >         * value), or null if none. Upon success, further element
4217 >         * processing is suppressed and the results of any other
4218 >         * parallel invocations of the search function are ignored.
4219 >         *
4220 >         * @param map the map
4221 >         * @param searchFunction a function returning a non-null
4222 >         * result on success, else null
4223 >         * @return the task
4224 >         */
4225 >        public static <K,V,U> ForkJoinTask<U> search
4226 >            (ConcurrentHashMap<K,V> map,
4227 >             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4228 >            if (searchFunction == null) throw new NullPointerException();
4229 >            return new SearchMappingsTask<K,V,U>
4230 >                (map, null, -1, searchFunction,
4231 >                 new AtomicReference<U>());
4232 >        }
4233 >
4234 >        /**
4235 >         * Returns a task that when invoked, returns the result of
4236 >         * accumulating the given transformation of all (key, value) pairs
4237 >         * using the given reducer to combine values, or null if none.
4238 >         *
4239 >         * @param map the map
4240 >         * @param transformer a function returning the transformation
4241 >         * for an element, or null of there is no transformation (in
4242 >         * which case it is not combined).
4243 >         * @param reducer a commutative associative combining function
4244 >         * @return the task
4245 >         */
4246 >        public static <K,V,U> ForkJoinTask<U> reduce
4247 >            (ConcurrentHashMap<K,V> map,
4248 >             BiFun<? super K, ? super V, ? extends U> transformer,
4249 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4250 >            if (transformer == null || reducer == null)
4251 >                throw new NullPointerException();
4252 >            return new MapReduceMappingsTask<K,V,U>
4253 >                (map, null, -1, null, transformer, reducer);
4254 >        }
4255 >
4256 >        /**
4257 >         * Returns a task that when invoked, returns the result of
4258 >         * accumulating the given transformation of all (key, value) pairs
4259 >         * using the given reducer to combine values, and the given
4260 >         * basis as an identity value.
4261 >         *
4262 >         * @param map the map
4263 >         * @param transformer a function returning the transformation
4264 >         * for an element
4265 >         * @param basis the identity (initial default value) for the reduction
4266 >         * @param reducer a commutative associative combining function
4267 >         * @return the task
4268 >         */
4269 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
4270 >            (ConcurrentHashMap<K,V> map,
4271 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
4272 >             double basis,
4273 >             DoubleByDoubleToDouble reducer) {
4274 >            if (transformer == null || reducer == null)
4275 >                throw new NullPointerException();
4276 >            return new MapReduceMappingsToDoubleTask<K,V>
4277 >                (map, null, -1, null, transformer, basis, reducer);
4278 >        }
4279 >
4280 >        /**
4281 >         * Returns a task that when invoked, returns the result of
4282 >         * accumulating the given transformation of all (key, value) pairs
4283 >         * using the given reducer to combine values, and the given
4284 >         * basis as an identity value.
4285 >         *
4286 >         * @param map the map
4287 >         * @param transformer a function returning the transformation
4288 >         * for an element
4289 >         * @param basis the identity (initial default value) for the reduction
4290 >         * @param reducer a commutative associative combining function
4291 >         * @return the task
4292 >         */
4293 >        public static <K,V> ForkJoinTask<Long> reduceToLong
4294 >            (ConcurrentHashMap<K,V> map,
4295 >             ObjectByObjectToLong<? super K, ? super V> transformer,
4296 >             long basis,
4297 >             LongByLongToLong reducer) {
4298 >            if (transformer == null || reducer == null)
4299 >                throw new NullPointerException();
4300 >            return new MapReduceMappingsToLongTask<K,V>
4301 >                (map, null, -1, null, transformer, basis, reducer);
4302 >        }
4303 >
4304 >        /**
4305 >         * Returns a task that when invoked, returns the result of
4306 >         * accumulating the given transformation of all (key, value) pairs
4307 >         * using the given reducer to combine values, and the given
4308 >         * basis as an identity value.
4309 >         *
4310 >         * @param transformer a function returning the transformation
4311 >         * for an element
4312 >         * @param basis the identity (initial default value) for the reduction
4313 >         * @param reducer a commutative associative combining function
4314 >         * @return the task
4315 >         */
4316 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
4317 >            (ConcurrentHashMap<K,V> map,
4318 >             ObjectByObjectToInt<? super K, ? super V> transformer,
4319 >             int basis,
4320 >             IntByIntToInt reducer) {
4321 >            if (transformer == null || reducer == null)
4322 >                throw new NullPointerException();
4323 >            return new MapReduceMappingsToIntTask<K,V>
4324 >                (map, null, -1, null, transformer, basis, reducer);
4325 >        }
4326 >
4327 >        /**
4328 >         * Returns a task that when invoked, performs the given action
4329 >         * for each key.
4330 >         *
4331 >         * @param map the map
4332 >         * @param action the action
4333 >         * @return the task
4334 >         */
4335 >        public static <K,V> ForkJoinTask<Void> forEachKey
4336 >            (ConcurrentHashMap<K,V> map,
4337 >             Action<K> action) {
4338 >            if (action == null) throw new NullPointerException();
4339 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
4340 >        }
4341 >
4342 >        /**
4343 >         * Returns a task that when invoked, performs the given action
4344 >         * for each non-null transformation of each key.
4345 >         *
4346 >         * @param map the map
4347 >         * @param transformer a function returning the transformation
4348 >         * for an element, or null of there is no transformation (in
4349 >         * which case the action is not applied)
4350 >         * @param action the action
4351 >         * @return the task
4352 >         */
4353 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
4354 >            (ConcurrentHashMap<K,V> map,
4355 >             Fun<? super K, ? extends U> transformer,
4356 >             Action<U> action) {
4357 >            if (transformer == null || action == null)
4358 >                throw new NullPointerException();
4359 >            return new ForEachTransformedKeyTask<K,V,U>
4360 >                (map, null, -1, transformer, action);
4361 >        }
4362 >
4363 >        /**
4364 >         * Returns a task that when invoked, returns a non-null result
4365 >         * from applying the given search function on each key, or
4366 >         * null if none.  Upon success, further element processing is
4367 >         * suppressed and the results of any other parallel
4368 >         * invocations of the search function are ignored.
4369 >         *
4370 >         * @param map the map
4371 >         * @param searchFunction a function returning a non-null
4372 >         * result on success, else null
4373 >         * @return the task
4374 >         */
4375 >        public static <K,V,U> ForkJoinTask<U> searchKeys
4376 >            (ConcurrentHashMap<K,V> map,
4377 >             Fun<? super K, ? extends U> searchFunction) {
4378 >            if (searchFunction == null) throw new NullPointerException();
4379 >            return new SearchKeysTask<K,V,U>
4380 >                (map, null, -1, searchFunction,
4381 >                 new AtomicReference<U>());
4382 >        }
4383 >
4384 >        /**
4385 >         * Returns a task that when invoked, returns the result of
4386 >         * accumulating all keys using the given reducer to combine
4387 >         * values, or null if none.
4388 >         *
4389 >         * @param map the map
4390 >         * @param reducer a commutative associative combining function
4391 >         * @return the task
4392 >         */
4393 >        public static <K,V> ForkJoinTask<K> reduceKeys
4394 >            (ConcurrentHashMap<K,V> map,
4395 >             BiFun<? super K, ? super K, ? extends K> reducer) {
4396 >            if (reducer == null) throw new NullPointerException();
4397 >            return new ReduceKeysTask<K,V>
4398 >                (map, null, -1, null, reducer);
4399 >        }
4400 >
4401 >        /**
4402 >         * Returns a task that when invoked, returns the result of
4403 >         * accumulating the given transformation of all keys using the given
4404 >         * reducer to combine values, or null if none.
4405 >         *
4406 >         * @param map the map
4407 >         * @param transformer a function returning the transformation
4408 >         * for an element, or null of there is no transformation (in
4409 >         * which case it is not combined).
4410 >         * @param reducer a commutative associative combining function
4411 >         * @return the task
4412 >         */
4413 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
4414 >            (ConcurrentHashMap<K,V> map,
4415 >             Fun<? super K, ? extends U> transformer,
4416 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4417 >            if (transformer == null || reducer == null)
4418 >                throw new NullPointerException();
4419 >            return new MapReduceKeysTask<K,V,U>
4420 >                (map, null, -1, null, transformer, reducer);
4421 >        }
4422 >
4423 >        /**
4424 >         * Returns a task that when invoked, returns the result of
4425 >         * accumulating the given transformation of all keys using the given
4426 >         * reducer to combine values, and the given basis as an
4427 >         * identity value.
4428 >         *
4429 >         * @param map the map
4430 >         * @param transformer a function returning the transformation
4431 >         * for an element
4432 >         * @param basis the identity (initial default value) for the reduction
4433 >         * @param reducer a commutative associative combining function
4434 >         * @return the task
4435 >         */
4436 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4437 >            (ConcurrentHashMap<K,V> map,
4438 >             ObjectToDouble<? super K> transformer,
4439 >             double basis,
4440 >             DoubleByDoubleToDouble reducer) {
4441 >            if (transformer == null || reducer == null)
4442 >                throw new NullPointerException();
4443 >            return new MapReduceKeysToDoubleTask<K,V>
4444 >                (map, null, -1, null, transformer, basis, reducer);
4445 >        }
4446 >
4447 >        /**
4448 >         * Returns a task that when invoked, returns the result of
4449 >         * accumulating the given transformation of all keys using the given
4450 >         * reducer to combine values, and the given basis as an
4451 >         * identity value.
4452 >         *
4453 >         * @param map the map
4454 >         * @param transformer a function returning the transformation
4455 >         * for an element
4456 >         * @param basis the identity (initial default value) for the reduction
4457 >         * @param reducer a commutative associative combining function
4458 >         * @return the task
4459 >         */
4460 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4461 >            (ConcurrentHashMap<K,V> map,
4462 >             ObjectToLong<? super K> transformer,
4463 >             long basis,
4464 >             LongByLongToLong reducer) {
4465 >            if (transformer == null || reducer == null)
4466 >                throw new NullPointerException();
4467 >            return new MapReduceKeysToLongTask<K,V>
4468 >                (map, null, -1, null, transformer, basis, reducer);
4469 >        }
4470 >
4471 >        /**
4472 >         * Returns a task that when invoked, returns the result of
4473 >         * accumulating the given transformation of all keys using the given
4474 >         * reducer to combine values, and the given basis as an
4475 >         * identity value.
4476 >         *
4477 >         * @param map the map
4478 >         * @param transformer a function returning the transformation
4479 >         * for an element
4480 >         * @param basis the identity (initial default value) for the reduction
4481 >         * @param reducer a commutative associative combining function
4482 >         * @return the task
4483 >         */
4484 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4485 >            (ConcurrentHashMap<K,V> map,
4486 >             ObjectToInt<? super K> transformer,
4487 >             int basis,
4488 >             IntByIntToInt reducer) {
4489 >            if (transformer == null || reducer == null)
4490 >                throw new NullPointerException();
4491 >            return new MapReduceKeysToIntTask<K,V>
4492 >                (map, null, -1, null, transformer, basis, reducer);
4493 >        }
4494 >
4495 >        /**
4496 >         * Returns a task that when invoked, performs the given action
4497 >         * for each value.
4498 >         *
4499 >         * @param map the map
4500 >         * @param action the action
4501 >         */
4502 >        public static <K,V> ForkJoinTask<Void> forEachValue
4503 >            (ConcurrentHashMap<K,V> map,
4504 >             Action<V> action) {
4505 >            if (action == null) throw new NullPointerException();
4506 >            return new ForEachValueTask<K,V>(map, null, -1, action);
4507 >        }
4508 >
4509 >        /**
4510 >         * Returns a task that when invoked, performs the given action
4511 >         * for each non-null transformation of each value.
4512 >         *
4513 >         * @param map the map
4514 >         * @param transformer a function returning the transformation
4515 >         * for an element, or null of there is no transformation (in
4516 >         * which case the action is not applied)
4517 >         * @param action the action
4518 >         */
4519 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
4520 >            (ConcurrentHashMap<K,V> map,
4521 >             Fun<? super V, ? extends U> transformer,
4522 >             Action<U> action) {
4523 >            if (transformer == null || action == null)
4524 >                throw new NullPointerException();
4525 >            return new ForEachTransformedValueTask<K,V,U>
4526 >                (map, null, -1, transformer, action);
4527 >        }
4528 >
4529 >        /**
4530 >         * Returns a task that when invoked, returns a non-null result
4531 >         * from applying the given search function on each value, or
4532 >         * null if none.  Upon success, further element processing is
4533 >         * suppressed and the results of any other parallel
4534 >         * invocations of the search function are ignored.
4535 >         *
4536 >         * @param map the map
4537 >         * @param searchFunction a function returning a non-null
4538 >         * result on success, else null
4539 >         * @return the task
4540 >         *
4541 >         */
4542 >        public static <K,V,U> ForkJoinTask<U> searchValues
4543 >            (ConcurrentHashMap<K,V> map,
4544 >             Fun<? super V, ? extends U> searchFunction) {
4545 >            if (searchFunction == null) throw new NullPointerException();
4546 >            return new SearchValuesTask<K,V,U>
4547 >                (map, null, -1, searchFunction,
4548 >                 new AtomicReference<U>());
4549 >        }
4550 >
4551 >        /**
4552 >         * Returns a task that when invoked, returns the result of
4553 >         * accumulating all values using the given reducer to combine
4554 >         * values, or null if none.
4555 >         *
4556 >         * @param map the map
4557 >         * @param reducer a commutative associative combining function
4558 >         * @return the task
4559 >         */
4560 >        public static <K,V> ForkJoinTask<V> reduceValues
4561 >            (ConcurrentHashMap<K,V> map,
4562 >             BiFun<? super V, ? super V, ? extends V> reducer) {
4563 >            if (reducer == null) throw new NullPointerException();
4564 >            return new ReduceValuesTask<K,V>
4565 >                (map, null, -1, null, reducer);
4566 >        }
4567 >
4568 >        /**
4569 >         * Returns a task that when invoked, returns the result of
4570 >         * accumulating the given transformation of all values using the
4571 >         * given reducer to combine values, or null if none.
4572 >         *
4573 >         * @param map the map
4574 >         * @param transformer a function returning the transformation
4575 >         * for an element, or null of there is no transformation (in
4576 >         * which case it is not combined).
4577 >         * @param reducer a commutative associative combining function
4578 >         * @return the task
4579 >         */
4580 >        public static <K,V,U> ForkJoinTask<U> reduceValues
4581 >            (ConcurrentHashMap<K,V> map,
4582 >             Fun<? super V, ? extends U> transformer,
4583 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4584 >            if (transformer == null || reducer == null)
4585 >                throw new NullPointerException();
4586 >            return new MapReduceValuesTask<K,V,U>
4587 >                (map, null, -1, null, transformer, reducer);
4588 >        }
4589 >
4590 >        /**
4591 >         * Returns a task that when invoked, returns the result of
4592 >         * accumulating the given transformation of all values using the
4593 >         * given reducer to combine values, and the given basis as an
4594 >         * identity value.
4595 >         *
4596 >         * @param map the map
4597 >         * @param transformer a function returning the transformation
4598 >         * for an element
4599 >         * @param basis the identity (initial default value) for the reduction
4600 >         * @param reducer a commutative associative combining function
4601 >         * @return the task
4602 >         */
4603 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4604 >            (ConcurrentHashMap<K,V> map,
4605 >             ObjectToDouble<? super V> transformer,
4606 >             double basis,
4607 >             DoubleByDoubleToDouble reducer) {
4608 >            if (transformer == null || reducer == null)
4609 >                throw new NullPointerException();
4610 >            return new MapReduceValuesToDoubleTask<K,V>
4611 >                (map, null, -1, null, transformer, basis, reducer);
4612 >        }
4613 >
4614 >        /**
4615 >         * Returns a task that when invoked, returns the result of
4616 >         * accumulating the given transformation of all values using the
4617 >         * given reducer to combine values, and the given basis as an
4618 >         * identity value.
4619 >         *
4620 >         * @param map the map
4621 >         * @param transformer a function returning the transformation
4622 >         * for an element
4623 >         * @param basis the identity (initial default value) for the reduction
4624 >         * @param reducer a commutative associative combining function
4625 >         * @return the task
4626 >         */
4627 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4628 >            (ConcurrentHashMap<K,V> map,
4629 >             ObjectToLong<? super V> transformer,
4630 >             long basis,
4631 >             LongByLongToLong reducer) {
4632 >            if (transformer == null || reducer == null)
4633 >                throw new NullPointerException();
4634 >            return new MapReduceValuesToLongTask<K,V>
4635 >                (map, null, -1, null, transformer, basis, reducer);
4636 >        }
4637 >
4638 >        /**
4639 >         * Returns a task that when invoked, returns the result of
4640 >         * accumulating the given transformation of all values using the
4641 >         * given reducer to combine values, and the given basis as an
4642 >         * identity value.
4643 >         *
4644 >         * @param map the map
4645 >         * @param transformer a function returning the transformation
4646 >         * for an element
4647 >         * @param basis the identity (initial default value) for the reduction
4648 >         * @param reducer a commutative associative combining function
4649 >         * @return the task
4650 >         */
4651 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4652 >            (ConcurrentHashMap<K,V> map,
4653 >             ObjectToInt<? super V> transformer,
4654 >             int basis,
4655 >             IntByIntToInt reducer) {
4656 >            if (transformer == null || reducer == null)
4657 >                throw new NullPointerException();
4658 >            return new MapReduceValuesToIntTask<K,V>
4659 >                (map, null, -1, null, transformer, basis, reducer);
4660 >        }
4661 >
4662 >        /**
4663 >         * Returns a task that when invoked, perform the given action
4664 >         * for each entry.
4665 >         *
4666 >         * @param map the map
4667 >         * @param action the action
4668 >         */
4669 >        public static <K,V> ForkJoinTask<Void> forEachEntry
4670 >            (ConcurrentHashMap<K,V> map,
4671 >             Action<Map.Entry<K,V>> action) {
4672 >            if (action == null) throw new NullPointerException();
4673 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
4674 >        }
4675 >
4676 >        /**
4677 >         * Returns a task that when invoked, perform the given action
4678 >         * for each non-null transformation of each entry.
4679 >         *
4680 >         * @param map the map
4681 >         * @param transformer a function returning the transformation
4682 >         * for an element, or null of there is no transformation (in
4683 >         * which case the action is not applied)
4684 >         * @param action the action
4685 >         */
4686 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
4687 >            (ConcurrentHashMap<K,V> map,
4688 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
4689 >             Action<U> action) {
4690 >            if (transformer == null || action == null)
4691 >                throw new NullPointerException();
4692 >            return new ForEachTransformedEntryTask<K,V,U>
4693 >                (map, null, -1, transformer, action);
4694 >        }
4695 >
4696 >        /**
4697 >         * Returns a task that when invoked, returns a non-null result
4698 >         * from applying the given search function on each entry, or
4699 >         * null if none.  Upon success, further element processing is
4700 >         * suppressed and the results of any other parallel
4701 >         * invocations of the search function are ignored.
4702 >         *
4703 >         * @param map the map
4704 >         * @param searchFunction a function returning a non-null
4705 >         * result on success, else null
4706 >         * @return the task
4707 >         *
4708 >         */
4709 >        public static <K,V,U> ForkJoinTask<U> searchEntries
4710 >            (ConcurrentHashMap<K,V> map,
4711 >             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4712 >            if (searchFunction == null) throw new NullPointerException();
4713 >            return new SearchEntriesTask<K,V,U>
4714 >                (map, null, -1, searchFunction,
4715 >                 new AtomicReference<U>());
4716 >        }
4717 >
4718 >        /**
4719 >         * Returns a task that when invoked, returns the result of
4720 >         * accumulating all entries using the given reducer to combine
4721 >         * values, or null if none.
4722 >         *
4723 >         * @param map the map
4724 >         * @param reducer a commutative associative combining function
4725 >         * @return the task
4726 >         */
4727 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4728 >            (ConcurrentHashMap<K,V> map,
4729 >             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4730 >            if (reducer == null) throw new NullPointerException();
4731 >            return new ReduceEntriesTask<K,V>
4732 >                (map, null, -1, null, reducer);
4733 >        }
4734 >
4735 >        /**
4736 >         * Returns a task that when invoked, returns the result of
4737 >         * accumulating the given transformation of all entries using the
4738 >         * given reducer to combine values, or null if none.
4739 >         *
4740 >         * @param map the map
4741 >         * @param transformer a function returning the transformation
4742 >         * for an element, or null of there is no transformation (in
4743 >         * which case it is not combined).
4744 >         * @param reducer a commutative associative combining function
4745 >         * @return the task
4746 >         */
4747 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
4748 >            (ConcurrentHashMap<K,V> map,
4749 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
4750 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4751 >            if (transformer == null || reducer == null)
4752 >                throw new NullPointerException();
4753 >            return new MapReduceEntriesTask<K,V,U>
4754 >                (map, null, -1, null, transformer, reducer);
4755 >        }
4756 >
4757 >        /**
4758 >         * Returns a task that when invoked, returns the result of
4759 >         * accumulating the given transformation of all entries using the
4760 >         * given reducer to combine values, and the given basis as an
4761 >         * identity value.
4762 >         *
4763 >         * @param map the map
4764 >         * @param transformer a function returning the transformation
4765 >         * for an element
4766 >         * @param basis the identity (initial default value) for the reduction
4767 >         * @param reducer a commutative associative combining function
4768 >         * @return the task
4769 >         */
4770 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4771 >            (ConcurrentHashMap<K,V> map,
4772 >             ObjectToDouble<Map.Entry<K,V>> transformer,
4773 >             double basis,
4774 >             DoubleByDoubleToDouble reducer) {
4775 >            if (transformer == null || reducer == null)
4776 >                throw new NullPointerException();
4777 >            return new MapReduceEntriesToDoubleTask<K,V>
4778 >                (map, null, -1, null, transformer, basis, reducer);
4779 >        }
4780 >
4781 >        /**
4782 >         * Returns a task that when invoked, returns the result of
4783 >         * accumulating the given transformation of all entries using the
4784 >         * given reducer to combine values, and the given basis as an
4785 >         * identity value.
4786 >         *
4787 >         * @param map the map
4788 >         * @param transformer a function returning the transformation
4789 >         * for an element
4790 >         * @param basis the identity (initial default value) for the reduction
4791 >         * @param reducer a commutative associative combining function
4792 >         * @return the task
4793 >         */
4794 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4795 >            (ConcurrentHashMap<K,V> map,
4796 >             ObjectToLong<Map.Entry<K,V>> transformer,
4797 >             long basis,
4798 >             LongByLongToLong reducer) {
4799 >            if (transformer == null || reducer == null)
4800 >                throw new NullPointerException();
4801 >            return new MapReduceEntriesToLongTask<K,V>
4802 >                (map, null, -1, null, transformer, basis, reducer);
4803 >        }
4804 >
4805 >        /**
4806 >         * Returns a task that when invoked, returns the result of
4807 >         * accumulating the given transformation of all entries using the
4808 >         * given reducer to combine values, and the given basis as an
4809 >         * identity value.
4810 >         *
4811 >         * @param map the map
4812 >         * @param transformer a function returning the transformation
4813 >         * for an element
4814 >         * @param basis the identity (initial default value) for the reduction
4815 >         * @param reducer a commutative associative combining function
4816 >         * @return the task
4817 >         */
4818 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4819 >            (ConcurrentHashMap<K,V> map,
4820 >             ObjectToInt<Map.Entry<K,V>> transformer,
4821 >             int basis,
4822 >             IntByIntToInt reducer) {
4823 >            if (transformer == null || reducer == null)
4824 >                throw new NullPointerException();
4825 >            return new MapReduceEntriesToIntTask<K,V>
4826 >                (map, null, -1, null, transformer, basis, reducer);
4827 >        }
4828 >    }
4829 >
4830 >    // -------------------------------------------------------
4831 >
4832 >    /**
4833 >     * Base for FJ tasks for bulk operations. This adds a variant of
4834 >     * CountedCompleters and some split and merge bookkeeping to
4835 >     * iterator functionality. The forEach and reduce methods are
4836 >     * similar to those illustrated in CountedCompleter documentation,
4837 >     * except that bottom-up reduction completions perform them within
4838 >     * their compute methods. The search methods are like forEach
4839 >     * except they continually poll for success and exit early.  Also,
4840 >     * exceptions are handled in a simpler manner, by just trying to
4841 >     * complete root task exceptionally.
4842 >     */
4843 >    @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4844 >        final BulkTask<K,V,?> parent;  // completion target
4845 >        int batch;                     // split control; -1 for unknown
4846 >        int pending;                   // completion control
4847 >
4848 >        BulkTask(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
4849 >                 int batch) {
4850 >            super(map);
4851 >            this.parent = parent;
4852 >            this.batch = batch;
4853 >            if (parent != null && map != null) { // split parent
4854 >                Node[] t;
4855 >                if ((t = parent.tab) == null &&
4856 >                    (t = parent.tab = map.table) != null)
4857 >                    parent.baseLimit = parent.baseSize = t.length;
4858 >                this.tab = t;
4859 >                this.baseSize = parent.baseSize;
4860 >                int hi = this.baseLimit = parent.baseLimit;
4861 >                parent.baseLimit = this.index = this.baseIndex =
4862 >                    (hi + parent.baseIndex + 1) >>> 1;
4863 >            }
4864 >        }
4865 >
4866 >        // FJ methods
4867 >
4868 >        /**
4869 >         * Propagates completion. Note that all reduce actions
4870 >         * bypass this method to combine while completing.
4871 >         */
4872 >        final void tryComplete() {
4873 >            BulkTask<K,V,?> a = this, s = a;
4874 >            for (int c;;) {
4875 >                if ((c = a.pending) == 0) {
4876 >                    if ((a = (s = a).parent) == null) {
4877 >                        s.quietlyComplete();
4878 >                        break;
4879 >                    }
4880 >                }
4881 >                else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4882 >                    break;
4883 >            }
4884 >        }
4885 >
4886 >        /**
4887 >         * Forces root task to complete.
4888 >         * @param ex if null, complete normally, else exceptionally
4889 >         * @return false to simplify use
4890 >         */
4891 >        final boolean tryCompleteComputation(Throwable ex) {
4892 >            for (BulkTask<K,V,?> a = this;;) {
4893 >                BulkTask<K,V,?> p = a.parent;
4894 >                if (p == null) {
4895 >                    if (ex != null)
4896 >                        a.completeExceptionally(ex);
4897 >                    else
4898 >                        a.quietlyComplete();
4899 >                    return false;
4900 >                }
4901 >                a = p;
4902 >            }
4903 >        }
4904 >
4905 >        /**
4906 >         * Version of tryCompleteComputation for function screening checks
4907 >         */
4908 >        final boolean abortOnNullFunction() {
4909 >            return tryCompleteComputation(new Error("Unexpected null function"));
4910 >        }
4911 >
4912 >        // utilities
4913 >
4914 >        /** CompareAndSet pending count */
4915 >        final boolean casPending(int cmp, int val) {
4916 >            return U.compareAndSwapInt(this, PENDING, cmp, val);
4917 >        }
4918 >
4919 >        /**
4920 >         * Returns approx exp2 of the number of times (minus one) to
4921 >         * split task by two before executing leaf action. This value
4922 >         * is faster to compute and more convenient to use as a guide
4923 >         * to splitting than is the depth, since it is used while
4924 >         * dividing by two anyway.
4925 >         */
4926 >        final int batch() {
4927 >            ConcurrentHashMap<K, V> m; int b; Node[] t;
4928 >            if ((b = batch) < 0 && (m = map) != null) { // force initialization
4929 >                if ((t = tab) == null && (t = tab = m.table) != null)
4930 >                    baseLimit = baseSize = t.length;
4931 >                if (t != null) {
4932 >                    long n = m.counter.sum();
4933 >                    int sp = getPool().getParallelism() << 3; // slack of 8
4934 >                    b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4935 >                }
4936 >            }
4937 >            return b;
4938 >        }
4939 >
4940 >        /**
4941 >         * Returns exportable snapshot entry.
4942 >         */
4943 >        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4944 >            return new AbstractMap.SimpleEntry<K,V>(k, v);
4945 >        }
4946 >
4947 >        // Unsafe mechanics
4948 >        private static final sun.misc.Unsafe U;
4949 >        private static final long PENDING;
4950 >        static {
4951 >            try {
4952 >                U = sun.misc.Unsafe.getUnsafe();
4953 >                PENDING = U.objectFieldOffset
4954 >                    (BulkTask.class.getDeclaredField("pending"));
4955 >            } catch (Exception e) {
4956 >                throw new Error(e);
4957 >            }
4958 >        }
4959 >    }
4960 >
4961 >    /*
4962 >     * Task classes. Coded in a regular but ugly format/style to
4963 >     * simplify checks that each variant differs in the right way from
4964 >     * others.
4965 >     */
4966 >
4967 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4968 >        extends BulkTask<K,V,Void> {
4969 >        final Action<K> action;
4970 >        ForEachKeyTask
4971 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
4972 >             Action<K> action) {
4973 >            super(m, p, b);
4974 >            this.action = action;
4975 >        }
4976 >        @SuppressWarnings("unchecked") public final boolean exec() {
4977 >            final Action<K> action = this.action;
4978 >            if (action == null)
4979 >                return abortOnNullFunction();
4980 >            try {
4981 >                int b = batch(), c;
4982 >                while (b > 1 && baseIndex != baseLimit) {
4983 >                    do {} while (!casPending(c = pending, c+1));
4984 >                    new ForEachKeyTask<K,V>(map, this, b >>>= 1, action).fork();
4985 >                }
4986 >                while (advance() != null)
4987 >                    action.apply((K)nextKey);
4988 >                tryComplete();
4989 >            } catch (Throwable ex) {
4990 >                return tryCompleteComputation(ex);
4991 >            }
4992 >            return false;
4993 >        }
4994 >    }
4995 >
4996 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4997 >        extends BulkTask<K,V,Void> {
4998 >        final Action<V> action;
4999 >        ForEachValueTask
5000 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5001 >             Action<V> action) {
5002 >            super(m, p, b);
5003 >            this.action = action;
5004 >        }
5005 >        @SuppressWarnings("unchecked") public final boolean exec() {
5006 >            final Action<V> action = this.action;
5007 >            if (action == null)
5008 >                return abortOnNullFunction();
5009 >            try {
5010 >                int b = batch(), c;
5011 >                while (b > 1 && baseIndex != baseLimit) {
5012 >                    do {} while (!casPending(c = pending, c+1));
5013 >                    new ForEachValueTask<K,V>(map, this, b >>>= 1, action).fork();
5014 >                }
5015 >                Object v;
5016 >                while ((v = advance()) != null)
5017 >                    action.apply((V)v);
5018 >                tryComplete();
5019 >            } catch (Throwable ex) {
5020 >                return tryCompleteComputation(ex);
5021 >            }
5022 >            return false;
5023 >        }
5024 >    }
5025 >
5026 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5027 >        extends BulkTask<K,V,Void> {
5028 >        final Action<Entry<K,V>> action;
5029 >        ForEachEntryTask
5030 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5031 >             Action<Entry<K,V>> action) {
5032 >            super(m, p, b);
5033 >            this.action = action;
5034 >        }
5035 >        @SuppressWarnings("unchecked") public final boolean exec() {
5036 >            final Action<Entry<K,V>> action = this.action;
5037 >            if (action == null)
5038 >                return abortOnNullFunction();
5039 >            try {
5040 >                int b = batch(), c;
5041 >                while (b > 1 && baseIndex != baseLimit) {
5042 >                    do {} while (!casPending(c = pending, c+1));
5043 >                    new ForEachEntryTask<K,V>(map, this, b >>>= 1, action).fork();
5044 >                }
5045 >                Object v;
5046 >                while ((v = advance()) != null)
5047 >                    action.apply(entryFor((K)nextKey, (V)v));
5048 >                tryComplete();
5049 >            } catch (Throwable ex) {
5050 >                return tryCompleteComputation(ex);
5051 >            }
5052 >            return false;
5053 >        }
5054 >    }
5055 >
5056 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5057 >        extends BulkTask<K,V,Void> {
5058 >        final BiAction<K,V> action;
5059 >        ForEachMappingTask
5060 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5061 >             BiAction<K,V> action) {
5062 >            super(m, p, b);
5063 >            this.action = action;
5064 >        }
5065 >        @SuppressWarnings("unchecked") public final boolean exec() {
5066 >            final BiAction<K,V> action = this.action;
5067 >            if (action == null)
5068 >                return abortOnNullFunction();
5069 >            try {
5070 >                int b = batch(), c;
5071 >                while (b > 1 && baseIndex != baseLimit) {
5072 >                    do {} while (!casPending(c = pending, c+1));
5073 >                    new ForEachMappingTask<K,V>(map, this, b >>>= 1,
5074 >                                                action).fork();
5075 >                }
5076 >                Object v;
5077 >                while ((v = advance()) != null)
5078 >                    action.apply((K)nextKey, (V)v);
5079 >                tryComplete();
5080 >            } catch (Throwable ex) {
5081 >                return tryCompleteComputation(ex);
5082 >            }
5083 >            return false;
5084          }
5085      }
5086 +
5087 +    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5088 +        extends BulkTask<K,V,Void> {
5089 +        final Fun<? super K, ? extends U> transformer;
5090 +        final Action<U> action;
5091 +        ForEachTransformedKeyTask
5092 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5093 +             Fun<? super K, ? extends U> transformer,
5094 +             Action<U> action) {
5095 +            super(m, p, b);
5096 +            this.transformer = transformer;
5097 +            this.action = action;
5098 +
5099 +        }
5100 +        @SuppressWarnings("unchecked") public final boolean exec() {
5101 +            final Fun<? super K, ? extends U> transformer =
5102 +                this.transformer;
5103 +            final Action<U> action = this.action;
5104 +            if (transformer == null || action == null)
5105 +                return abortOnNullFunction();
5106 +            try {
5107 +                int b = batch(), c;
5108 +                while (b > 1 && baseIndex != baseLimit) {
5109 +                    do {} while (!casPending(c = pending, c+1));
5110 +                    new ForEachTransformedKeyTask<K,V,U>
5111 +                        (map, this, b >>>= 1, transformer, action).fork();
5112 +                }
5113 +                U u;
5114 +                while (advance() != null) {
5115 +                    if ((u = transformer.apply((K)nextKey)) != null)
5116 +                        action.apply(u);
5117 +                }
5118 +                tryComplete();
5119 +            } catch (Throwable ex) {
5120 +                return tryCompleteComputation(ex);
5121 +            }
5122 +            return false;
5123 +        }
5124 +    }
5125 +
5126 +    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5127 +        extends BulkTask<K,V,Void> {
5128 +        final Fun<? super V, ? extends U> transformer;
5129 +        final Action<U> action;
5130 +        ForEachTransformedValueTask
5131 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5132 +             Fun<? super V, ? extends U> transformer,
5133 +             Action<U> action) {
5134 +            super(m, p, b);
5135 +            this.transformer = transformer;
5136 +            this.action = action;
5137 +
5138 +        }
5139 +        @SuppressWarnings("unchecked") public final boolean exec() {
5140 +            final Fun<? super V, ? extends U> transformer =
5141 +                this.transformer;
5142 +            final Action<U> action = this.action;
5143 +            if (transformer == null || action == null)
5144 +                return abortOnNullFunction();
5145 +            try {
5146 +                int b = batch(), c;
5147 +                while (b > 1 && baseIndex != baseLimit) {
5148 +                    do {} while (!casPending(c = pending, c+1));
5149 +                    new ForEachTransformedValueTask<K,V,U>
5150 +                        (map, this, b >>>= 1, transformer, action).fork();
5151 +                }
5152 +                Object v; U u;
5153 +                while ((v = advance()) != null) {
5154 +                    if ((u = transformer.apply((V)v)) != null)
5155 +                        action.apply(u);
5156 +                }
5157 +                tryComplete();
5158 +            } catch (Throwable ex) {
5159 +                return tryCompleteComputation(ex);
5160 +            }
5161 +            return false;
5162 +        }
5163 +    }
5164 +
5165 +    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5166 +        extends BulkTask<K,V,Void> {
5167 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5168 +        final Action<U> action;
5169 +        ForEachTransformedEntryTask
5170 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5171 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5172 +             Action<U> action) {
5173 +            super(m, p, b);
5174 +            this.transformer = transformer;
5175 +            this.action = action;
5176 +
5177 +        }
5178 +        @SuppressWarnings("unchecked") public final boolean exec() {
5179 +            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5180 +                this.transformer;
5181 +            final Action<U> action = this.action;
5182 +            if (transformer == null || action == null)
5183 +                return abortOnNullFunction();
5184 +            try {
5185 +                int b = batch(), c;
5186 +                while (b > 1 && baseIndex != baseLimit) {
5187 +                    do {} while (!casPending(c = pending, c+1));
5188 +                    new ForEachTransformedEntryTask<K,V,U>
5189 +                        (map, this, b >>>= 1, transformer, action).fork();
5190 +                }
5191 +                Object v; U u;
5192 +                while ((v = advance()) != null) {
5193 +                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5194 +                        action.apply(u);
5195 +                }
5196 +                tryComplete();
5197 +            } catch (Throwable ex) {
5198 +                return tryCompleteComputation(ex);
5199 +            }
5200 +            return false;
5201 +        }
5202 +    }
5203 +
5204 +    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5205 +        extends BulkTask<K,V,Void> {
5206 +        final BiFun<? super K, ? super V, ? extends U> transformer;
5207 +        final Action<U> action;
5208 +        ForEachTransformedMappingTask
5209 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5210 +             BiFun<? super K, ? super V, ? extends U> transformer,
5211 +             Action<U> action) {
5212 +            super(m, p, b);
5213 +            this.transformer = transformer;
5214 +            this.action = action;
5215 +
5216 +        }
5217 +        @SuppressWarnings("unchecked") public final boolean exec() {
5218 +            final BiFun<? super K, ? super V, ? extends U> transformer =
5219 +                this.transformer;
5220 +            final Action<U> action = this.action;
5221 +            if (transformer == null || action == null)
5222 +                return abortOnNullFunction();
5223 +            try {
5224 +                int b = batch(), c;
5225 +                while (b > 1 && baseIndex != baseLimit) {
5226 +                    do {} while (!casPending(c = pending, c+1));
5227 +                    new ForEachTransformedMappingTask<K,V,U>
5228 +                        (map, this, b >>>= 1, transformer, action).fork();
5229 +                }
5230 +                Object v; U u;
5231 +                while ((v = advance()) != null) {
5232 +                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5233 +                        action.apply(u);
5234 +                }
5235 +                tryComplete();
5236 +            } catch (Throwable ex) {
5237 +                return tryCompleteComputation(ex);
5238 +            }
5239 +            return false;
5240 +        }
5241 +    }
5242 +
5243 +    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5244 +        extends BulkTask<K,V,U> {
5245 +        final Fun<? super K, ? extends U> searchFunction;
5246 +        final AtomicReference<U> result;
5247 +        SearchKeysTask
5248 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5249 +             Fun<? super K, ? extends U> searchFunction,
5250 +             AtomicReference<U> result) {
5251 +            super(m, p, b);
5252 +            this.searchFunction = searchFunction; this.result = result;
5253 +        }
5254 +        @SuppressWarnings("unchecked") public final boolean exec() {
5255 +            AtomicReference<U> result = this.result;
5256 +            final Fun<? super K, ? extends U> searchFunction =
5257 +                this.searchFunction;
5258 +            if (searchFunction == null || result == null)
5259 +                return abortOnNullFunction();
5260 +            try {
5261 +                int b = batch(), c;
5262 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5263 +                    do {} while (!casPending(c = pending, c+1));
5264 +                    new SearchKeysTask<K,V,U>(map, this, b >>>= 1,
5265 +                                              searchFunction, result).fork();
5266 +                }
5267 +                U u;
5268 +                while (result.get() == null && advance() != null) {
5269 +                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5270 +                        if (result.compareAndSet(null, u))
5271 +                            tryCompleteComputation(null);
5272 +                        break;
5273 +                    }
5274 +                }
5275 +                tryComplete();
5276 +            } catch (Throwable ex) {
5277 +                return tryCompleteComputation(ex);
5278 +            }
5279 +            return false;
5280 +        }
5281 +        public final U getRawResult() { return result.get(); }
5282 +    }
5283 +
5284 +    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5285 +        extends BulkTask<K,V,U> {
5286 +        final Fun<? super V, ? extends U> searchFunction;
5287 +        final AtomicReference<U> result;
5288 +        SearchValuesTask
5289 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5290 +             Fun<? super V, ? extends U> searchFunction,
5291 +             AtomicReference<U> result) {
5292 +            super(m, p, b);
5293 +            this.searchFunction = searchFunction; this.result = result;
5294 +        }
5295 +        @SuppressWarnings("unchecked") public final boolean exec() {
5296 +            AtomicReference<U> result = this.result;
5297 +            final Fun<? super V, ? extends U> searchFunction =
5298 +                this.searchFunction;
5299 +            if (searchFunction == null || result == null)
5300 +                return abortOnNullFunction();
5301 +            try {
5302 +                int b = batch(), c;
5303 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5304 +                    do {} while (!casPending(c = pending, c+1));
5305 +                    new SearchValuesTask<K,V,U>(map, this, b >>>= 1,
5306 +                                                searchFunction, result).fork();
5307 +                }
5308 +                Object v; U u;
5309 +                while (result.get() == null && (v = advance()) != null) {
5310 +                    if ((u = searchFunction.apply((V)v)) != null) {
5311 +                        if (result.compareAndSet(null, u))
5312 +                            tryCompleteComputation(null);
5313 +                        break;
5314 +                    }
5315 +                }
5316 +                tryComplete();
5317 +            } catch (Throwable ex) {
5318 +                return tryCompleteComputation(ex);
5319 +            }
5320 +            return false;
5321 +        }
5322 +        public final U getRawResult() { return result.get(); }
5323 +    }
5324 +
5325 +    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5326 +        extends BulkTask<K,V,U> {
5327 +        final Fun<Entry<K,V>, ? extends U> searchFunction;
5328 +        final AtomicReference<U> result;
5329 +        SearchEntriesTask
5330 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5331 +             Fun<Entry<K,V>, ? extends U> searchFunction,
5332 +             AtomicReference<U> result) {
5333 +            super(m, p, b);
5334 +            this.searchFunction = searchFunction; this.result = result;
5335 +        }
5336 +        @SuppressWarnings("unchecked") public final boolean exec() {
5337 +            AtomicReference<U> result = this.result;
5338 +            final Fun<Entry<K,V>, ? extends U> searchFunction =
5339 +                this.searchFunction;
5340 +            if (searchFunction == null || result == null)
5341 +                return abortOnNullFunction();
5342 +            try {
5343 +                int b = batch(), c;
5344 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5345 +                    do {} while (!casPending(c = pending, c+1));
5346 +                    new SearchEntriesTask<K,V,U>(map, this, b >>>= 1,
5347 +                                                 searchFunction, result).fork();
5348 +                }
5349 +                Object v; U u;
5350 +                while (result.get() == null && (v = advance()) != null) {
5351 +                    if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5352 +                        if (result.compareAndSet(null, u))
5353 +                            tryCompleteComputation(null);
5354 +                        break;
5355 +                    }
5356 +                }
5357 +                tryComplete();
5358 +            } catch (Throwable ex) {
5359 +                return tryCompleteComputation(ex);
5360 +            }
5361 +            return false;
5362 +        }
5363 +        public final U getRawResult() { return result.get(); }
5364 +    }
5365 +
5366 +    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5367 +        extends BulkTask<K,V,U> {
5368 +        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5369 +        final AtomicReference<U> result;
5370 +        SearchMappingsTask
5371 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5372 +             BiFun<? super K, ? super V, ? extends U> searchFunction,
5373 +             AtomicReference<U> result) {
5374 +            super(m, p, b);
5375 +            this.searchFunction = searchFunction; this.result = result;
5376 +        }
5377 +        @SuppressWarnings("unchecked") public final boolean exec() {
5378 +            AtomicReference<U> result = this.result;
5379 +            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5380 +                this.searchFunction;
5381 +            if (searchFunction == null || result == null)
5382 +                return abortOnNullFunction();
5383 +            try {
5384 +                int b = batch(), c;
5385 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5386 +                    do {} while (!casPending(c = pending, c+1));
5387 +                    new SearchMappingsTask<K,V,U>(map, this, b >>>= 1,
5388 +                                                  searchFunction, result).fork();
5389 +                }
5390 +                Object v; U u;
5391 +                while (result.get() == null && (v = advance()) != null) {
5392 +                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5393 +                        if (result.compareAndSet(null, u))
5394 +                            tryCompleteComputation(null);
5395 +                        break;
5396 +                    }
5397 +                }
5398 +                tryComplete();
5399 +            } catch (Throwable ex) {
5400 +                return tryCompleteComputation(ex);
5401 +            }
5402 +            return false;
5403 +        }
5404 +        public final U getRawResult() { return result.get(); }
5405 +    }
5406 +
5407 +    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5408 +        extends BulkTask<K,V,K> {
5409 +        final BiFun<? super K, ? super K, ? extends K> reducer;
5410 +        K result;
5411 +        ReduceKeysTask<K,V> rights, nextRight;
5412 +        ReduceKeysTask
5413 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5414 +             ReduceKeysTask<K,V> nextRight,
5415 +             BiFun<? super K, ? super K, ? extends K> reducer) {
5416 +            super(m, p, b); this.nextRight = nextRight;
5417 +            this.reducer = reducer;
5418 +        }
5419 +        @SuppressWarnings("unchecked") public final boolean exec() {
5420 +            final BiFun<? super K, ? super K, ? extends K> reducer =
5421 +                this.reducer;
5422 +            if (reducer == null)
5423 +                return abortOnNullFunction();
5424 +            try {
5425 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5426 +                    do {} while (!casPending(c = pending, c+1));
5427 +                    (rights = new ReduceKeysTask<K,V>
5428 +                     (map, this, b >>>= 1, rights, reducer)).fork();
5429 +                }
5430 +                K r = null;
5431 +                while (advance() != null) {
5432 +                    K u = (K)nextKey;
5433 +                    r = (r == null) ? u : reducer.apply(r, u);
5434 +                }
5435 +                result = r;
5436 +                for (ReduceKeysTask<K,V> t = this, s;;) {
5437 +                    int c; BulkTask<K,V,?> par; K tr, sr;
5438 +                    if ((c = t.pending) == 0) {
5439 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5440 +                            if ((sr = s.result) != null)
5441 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5442 +                        }
5443 +                        if ((par = t.parent) == null ||
5444 +                            !(par instanceof ReduceKeysTask)) {
5445 +                            t.quietlyComplete();
5446 +                            break;
5447 +                        }
5448 +                        t = (ReduceKeysTask<K,V>)par;
5449 +                    }
5450 +                    else if (t.casPending(c, c - 1))
5451 +                        break;
5452 +                }
5453 +            } catch (Throwable ex) {
5454 +                return tryCompleteComputation(ex);
5455 +            }
5456 +            return false;
5457 +        }
5458 +        public final K getRawResult() { return result; }
5459 +    }
5460 +
5461 +    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5462 +        extends BulkTask<K,V,V> {
5463 +        final BiFun<? super V, ? super V, ? extends V> reducer;
5464 +        V result;
5465 +        ReduceValuesTask<K,V> rights, nextRight;
5466 +        ReduceValuesTask
5467 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5468 +             ReduceValuesTask<K,V> nextRight,
5469 +             BiFun<? super V, ? super V, ? extends V> reducer) {
5470 +            super(m, p, b); this.nextRight = nextRight;
5471 +            this.reducer = reducer;
5472 +        }
5473 +        @SuppressWarnings("unchecked") public final boolean exec() {
5474 +            final BiFun<? super V, ? super V, ? extends V> reducer =
5475 +                this.reducer;
5476 +            if (reducer == null)
5477 +                return abortOnNullFunction();
5478 +            try {
5479 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5480 +                    do {} while (!casPending(c = pending, c+1));
5481 +                    (rights = new ReduceValuesTask<K,V>
5482 +                     (map, this, b >>>= 1, rights, reducer)).fork();
5483 +                }
5484 +                V r = null;
5485 +                Object v;
5486 +                while ((v = advance()) != null) {
5487 +                    V u = (V)v;
5488 +                    r = (r == null) ? u : reducer.apply(r, u);
5489 +                }
5490 +                result = r;
5491 +                for (ReduceValuesTask<K,V> t = this, s;;) {
5492 +                    int c; BulkTask<K,V,?> par; V tr, sr;
5493 +                    if ((c = t.pending) == 0) {
5494 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5495 +                            if ((sr = s.result) != null)
5496 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5497 +                        }
5498 +                        if ((par = t.parent) == null ||
5499 +                            !(par instanceof ReduceValuesTask)) {
5500 +                            t.quietlyComplete();
5501 +                            break;
5502 +                        }
5503 +                        t = (ReduceValuesTask<K,V>)par;
5504 +                    }
5505 +                    else if (t.casPending(c, c - 1))
5506 +                        break;
5507 +                }
5508 +            } catch (Throwable ex) {
5509 +                return tryCompleteComputation(ex);
5510 +            }
5511 +            return false;
5512 +        }
5513 +        public final V getRawResult() { return result; }
5514 +    }
5515 +
5516 +    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5517 +        extends BulkTask<K,V,Map.Entry<K,V>> {
5518 +        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5519 +        Map.Entry<K,V> result;
5520 +        ReduceEntriesTask<K,V> rights, nextRight;
5521 +        ReduceEntriesTask
5522 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5523 +             ReduceEntriesTask<K,V> nextRight,
5524 +             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5525 +            super(m, p, b); this.nextRight = nextRight;
5526 +            this.reducer = reducer;
5527 +        }
5528 +        @SuppressWarnings("unchecked") public final boolean exec() {
5529 +            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5530 +                this.reducer;
5531 +            if (reducer == null)
5532 +                return abortOnNullFunction();
5533 +            try {
5534 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5535 +                    do {} while (!casPending(c = pending, c+1));
5536 +                    (rights = new ReduceEntriesTask<K,V>
5537 +                     (map, this, b >>>= 1, rights, reducer)).fork();
5538 +                }
5539 +                Map.Entry<K,V> r = null;
5540 +                Object v;
5541 +                while ((v = advance()) != null) {
5542 +                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5543 +                    r = (r == null) ? u : reducer.apply(r, u);
5544 +                }
5545 +                result = r;
5546 +                for (ReduceEntriesTask<K,V> t = this, s;;) {
5547 +                    int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5548 +                    if ((c = t.pending) == 0) {
5549 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5550 +                            if ((sr = s.result) != null)
5551 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5552 +                        }
5553 +                        if ((par = t.parent) == null ||
5554 +                            !(par instanceof ReduceEntriesTask)) {
5555 +                            t.quietlyComplete();
5556 +                            break;
5557 +                        }
5558 +                        t = (ReduceEntriesTask<K,V>)par;
5559 +                    }
5560 +                    else if (t.casPending(c, c - 1))
5561 +                        break;
5562 +                }
5563 +            } catch (Throwable ex) {
5564 +                return tryCompleteComputation(ex);
5565 +            }
5566 +            return false;
5567 +        }
5568 +        public final Map.Entry<K,V> getRawResult() { return result; }
5569 +    }
5570 +
5571 +    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5572 +        extends BulkTask<K,V,U> {
5573 +        final Fun<? super K, ? extends U> transformer;
5574 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5575 +        U result;
5576 +        MapReduceKeysTask<K,V,U> rights, nextRight;
5577 +        MapReduceKeysTask
5578 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5579 +             MapReduceKeysTask<K,V,U> nextRight,
5580 +             Fun<? super K, ? extends U> transformer,
5581 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5582 +            super(m, p, b); this.nextRight = nextRight;
5583 +            this.transformer = transformer;
5584 +            this.reducer = reducer;
5585 +        }
5586 +        @SuppressWarnings("unchecked") public final boolean exec() {
5587 +            final Fun<? super K, ? extends U> transformer =
5588 +                this.transformer;
5589 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5590 +                this.reducer;
5591 +            if (transformer == null || reducer == null)
5592 +                return abortOnNullFunction();
5593 +            try {
5594 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5595 +                    do {} while (!casPending(c = pending, c+1));
5596 +                    (rights = new MapReduceKeysTask<K,V,U>
5597 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5598 +                }
5599 +                U r = null, u;
5600 +                while (advance() != null) {
5601 +                    if ((u = transformer.apply((K)nextKey)) != null)
5602 +                        r = (r == null) ? u : reducer.apply(r, u);
5603 +                }
5604 +                result = r;
5605 +                for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5606 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5607 +                    if ((c = t.pending) == 0) {
5608 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5609 +                            if ((sr = s.result) != null)
5610 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5611 +                        }
5612 +                        if ((par = t.parent) == null ||
5613 +                            !(par instanceof MapReduceKeysTask)) {
5614 +                            t.quietlyComplete();
5615 +                            break;
5616 +                        }
5617 +                        t = (MapReduceKeysTask<K,V,U>)par;
5618 +                    }
5619 +                    else if (t.casPending(c, c - 1))
5620 +                        break;
5621 +                }
5622 +            } catch (Throwable ex) {
5623 +                return tryCompleteComputation(ex);
5624 +            }
5625 +            return false;
5626 +        }
5627 +        public final U getRawResult() { return result; }
5628 +    }
5629 +
5630 +    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5631 +        extends BulkTask<K,V,U> {
5632 +        final Fun<? super V, ? extends U> transformer;
5633 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5634 +        U result;
5635 +        MapReduceValuesTask<K,V,U> rights, nextRight;
5636 +        MapReduceValuesTask
5637 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5638 +             MapReduceValuesTask<K,V,U> nextRight,
5639 +             Fun<? super V, ? extends U> transformer,
5640 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5641 +            super(m, p, b); this.nextRight = nextRight;
5642 +            this.transformer = transformer;
5643 +            this.reducer = reducer;
5644 +        }
5645 +        @SuppressWarnings("unchecked") public final boolean exec() {
5646 +            final Fun<? super V, ? extends U> transformer =
5647 +                this.transformer;
5648 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5649 +                this.reducer;
5650 +            if (transformer == null || reducer == null)
5651 +                return abortOnNullFunction();
5652 +            try {
5653 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5654 +                    do {} while (!casPending(c = pending, c+1));
5655 +                    (rights = new MapReduceValuesTask<K,V,U>
5656 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5657 +                }
5658 +                U r = null, u;
5659 +                Object v;
5660 +                while ((v = advance()) != null) {
5661 +                    if ((u = transformer.apply((V)v)) != null)
5662 +                        r = (r == null) ? u : reducer.apply(r, u);
5663 +                }
5664 +                result = r;
5665 +                for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5666 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5667 +                    if ((c = t.pending) == 0) {
5668 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5669 +                            if ((sr = s.result) != null)
5670 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5671 +                        }
5672 +                        if ((par = t.parent) == null ||
5673 +                            !(par instanceof MapReduceValuesTask)) {
5674 +                            t.quietlyComplete();
5675 +                            break;
5676 +                        }
5677 +                        t = (MapReduceValuesTask<K,V,U>)par;
5678 +                    }
5679 +                    else if (t.casPending(c, c - 1))
5680 +                        break;
5681 +                }
5682 +            } catch (Throwable ex) {
5683 +                return tryCompleteComputation(ex);
5684 +            }
5685 +            return false;
5686 +        }
5687 +        public final U getRawResult() { return result; }
5688 +    }
5689 +
5690 +    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5691 +        extends BulkTask<K,V,U> {
5692 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5693 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5694 +        U result;
5695 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
5696 +        MapReduceEntriesTask
5697 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5698 +             MapReduceEntriesTask<K,V,U> nextRight,
5699 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5700 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5701 +            super(m, p, b); this.nextRight = nextRight;
5702 +            this.transformer = transformer;
5703 +            this.reducer = reducer;
5704 +        }
5705 +        @SuppressWarnings("unchecked") public final boolean exec() {
5706 +            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5707 +                this.transformer;
5708 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5709 +                this.reducer;
5710 +            if (transformer == null || reducer == null)
5711 +                return abortOnNullFunction();
5712 +            try {
5713 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5714 +                    do {} while (!casPending(c = pending, c+1));
5715 +                    (rights = new MapReduceEntriesTask<K,V,U>
5716 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5717 +                }
5718 +                U r = null, u;
5719 +                Object v;
5720 +                while ((v = advance()) != null) {
5721 +                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5722 +                        r = (r == null) ? u : reducer.apply(r, u);
5723 +                }
5724 +                result = r;
5725 +                for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5726 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5727 +                    if ((c = t.pending) == 0) {
5728 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5729 +                            if ((sr = s.result) != null)
5730 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5731 +                        }
5732 +                        if ((par = t.parent) == null ||
5733 +                            !(par instanceof MapReduceEntriesTask)) {
5734 +                            t.quietlyComplete();
5735 +                            break;
5736 +                        }
5737 +                        t = (MapReduceEntriesTask<K,V,U>)par;
5738 +                    }
5739 +                    else if (t.casPending(c, c - 1))
5740 +                        break;
5741 +                }
5742 +            } catch (Throwable ex) {
5743 +                return tryCompleteComputation(ex);
5744 +            }
5745 +            return false;
5746 +        }
5747 +        public final U getRawResult() { return result; }
5748 +    }
5749 +
5750 +    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5751 +        extends BulkTask<K,V,U> {
5752 +        final BiFun<? super K, ? super V, ? extends U> transformer;
5753 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5754 +        U result;
5755 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
5756 +        MapReduceMappingsTask
5757 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5758 +             MapReduceMappingsTask<K,V,U> nextRight,
5759 +             BiFun<? super K, ? super V, ? extends U> transformer,
5760 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5761 +            super(m, p, b); this.nextRight = nextRight;
5762 +            this.transformer = transformer;
5763 +            this.reducer = reducer;
5764 +        }
5765 +        @SuppressWarnings("unchecked") public final boolean exec() {
5766 +            final BiFun<? super K, ? super V, ? extends U> transformer =
5767 +                this.transformer;
5768 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5769 +                this.reducer;
5770 +            if (transformer == null || reducer == null)
5771 +                return abortOnNullFunction();
5772 +            try {
5773 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5774 +                    do {} while (!casPending(c = pending, c+1));
5775 +                    (rights = new MapReduceMappingsTask<K,V,U>
5776 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5777 +                }
5778 +                U r = null, u;
5779 +                Object v;
5780 +                while ((v = advance()) != null) {
5781 +                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5782 +                        r = (r == null) ? u : reducer.apply(r, u);
5783 +                }
5784 +                result = r;
5785 +                for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5786 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5787 +                    if ((c = t.pending) == 0) {
5788 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5789 +                            if ((sr = s.result) != null)
5790 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5791 +                        }
5792 +                        if ((par = t.parent) == null ||
5793 +                            !(par instanceof MapReduceMappingsTask)) {
5794 +                            t.quietlyComplete();
5795 +                            break;
5796 +                        }
5797 +                        t = (MapReduceMappingsTask<K,V,U>)par;
5798 +                    }
5799 +                    else if (t.casPending(c, c - 1))
5800 +                        break;
5801 +                }
5802 +            } catch (Throwable ex) {
5803 +                return tryCompleteComputation(ex);
5804 +            }
5805 +            return false;
5806 +        }
5807 +        public final U getRawResult() { return result; }
5808 +    }
5809 +
5810 +    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5811 +        extends BulkTask<K,V,Double> {
5812 +        final ObjectToDouble<? super K> transformer;
5813 +        final DoubleByDoubleToDouble reducer;
5814 +        final double basis;
5815 +        double result;
5816 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5817 +        MapReduceKeysToDoubleTask
5818 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5819 +             MapReduceKeysToDoubleTask<K,V> nextRight,
5820 +             ObjectToDouble<? super K> transformer,
5821 +             double basis,
5822 +             DoubleByDoubleToDouble reducer) {
5823 +            super(m, p, b); this.nextRight = nextRight;
5824 +            this.transformer = transformer;
5825 +            this.basis = basis; this.reducer = reducer;
5826 +        }
5827 +        @SuppressWarnings("unchecked") public final boolean exec() {
5828 +            final ObjectToDouble<? super K> transformer =
5829 +                this.transformer;
5830 +            final DoubleByDoubleToDouble reducer = this.reducer;
5831 +            if (transformer == null || reducer == null)
5832 +                return abortOnNullFunction();
5833 +            try {
5834 +                final double id = this.basis;
5835 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5836 +                    do {} while (!casPending(c = pending, c+1));
5837 +                    (rights = new MapReduceKeysToDoubleTask<K,V>
5838 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5839 +                }
5840 +                double r = id;
5841 +                while (advance() != null)
5842 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
5843 +                result = r;
5844 +                for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
5845 +                    int c; BulkTask<K,V,?> par;
5846 +                    if ((c = t.pending) == 0) {
5847 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5848 +                            t.result = reducer.apply(t.result, s.result);
5849 +                        }
5850 +                        if ((par = t.parent) == null ||
5851 +                            !(par instanceof MapReduceKeysToDoubleTask)) {
5852 +                            t.quietlyComplete();
5853 +                            break;
5854 +                        }
5855 +                        t = (MapReduceKeysToDoubleTask<K,V>)par;
5856 +                    }
5857 +                    else if (t.casPending(c, c - 1))
5858 +                        break;
5859 +                }
5860 +            } catch (Throwable ex) {
5861 +                return tryCompleteComputation(ex);
5862 +            }
5863 +            return false;
5864 +        }
5865 +        public final Double getRawResult() { return result; }
5866 +    }
5867 +
5868 +    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5869 +        extends BulkTask<K,V,Double> {
5870 +        final ObjectToDouble<? super V> transformer;
5871 +        final DoubleByDoubleToDouble reducer;
5872 +        final double basis;
5873 +        double result;
5874 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5875 +        MapReduceValuesToDoubleTask
5876 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5877 +             MapReduceValuesToDoubleTask<K,V> nextRight,
5878 +             ObjectToDouble<? super V> transformer,
5879 +             double basis,
5880 +             DoubleByDoubleToDouble reducer) {
5881 +            super(m, p, b); this.nextRight = nextRight;
5882 +            this.transformer = transformer;
5883 +            this.basis = basis; this.reducer = reducer;
5884 +        }
5885 +        @SuppressWarnings("unchecked") public final boolean exec() {
5886 +            final ObjectToDouble<? super V> transformer =
5887 +                this.transformer;
5888 +            final DoubleByDoubleToDouble reducer = this.reducer;
5889 +            if (transformer == null || reducer == null)
5890 +                return abortOnNullFunction();
5891 +            try {
5892 +                final double id = this.basis;
5893 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5894 +                    do {} while (!casPending(c = pending, c+1));
5895 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
5896 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5897 +                }
5898 +                double r = id;
5899 +                Object v;
5900 +                while ((v = advance()) != null)
5901 +                    r = reducer.apply(r, transformer.apply((V)v));
5902 +                result = r;
5903 +                for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
5904 +                    int c; BulkTask<K,V,?> par;
5905 +                    if ((c = t.pending) == 0) {
5906 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5907 +                            t.result = reducer.apply(t.result, s.result);
5908 +                        }
5909 +                        if ((par = t.parent) == null ||
5910 +                            !(par instanceof MapReduceValuesToDoubleTask)) {
5911 +                            t.quietlyComplete();
5912 +                            break;
5913 +                        }
5914 +                        t = (MapReduceValuesToDoubleTask<K,V>)par;
5915 +                    }
5916 +                    else if (t.casPending(c, c - 1))
5917 +                        break;
5918 +                }
5919 +            } catch (Throwable ex) {
5920 +                return tryCompleteComputation(ex);
5921 +            }
5922 +            return false;
5923 +        }
5924 +        public final Double getRawResult() { return result; }
5925 +    }
5926 +
5927 +    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5928 +        extends BulkTask<K,V,Double> {
5929 +        final ObjectToDouble<Map.Entry<K,V>> transformer;
5930 +        final DoubleByDoubleToDouble reducer;
5931 +        final double basis;
5932 +        double result;
5933 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5934 +        MapReduceEntriesToDoubleTask
5935 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5936 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
5937 +             ObjectToDouble<Map.Entry<K,V>> transformer,
5938 +             double basis,
5939 +             DoubleByDoubleToDouble reducer) {
5940 +            super(m, p, b); this.nextRight = nextRight;
5941 +            this.transformer = transformer;
5942 +            this.basis = basis; this.reducer = reducer;
5943 +        }
5944 +        @SuppressWarnings("unchecked") public final boolean exec() {
5945 +            final ObjectToDouble<Map.Entry<K,V>> transformer =
5946 +                this.transformer;
5947 +            final DoubleByDoubleToDouble reducer = this.reducer;
5948 +            if (transformer == null || reducer == null)
5949 +                return abortOnNullFunction();
5950 +            try {
5951 +                final double id = this.basis;
5952 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5953 +                    do {} while (!casPending(c = pending, c+1));
5954 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5955 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5956 +                }
5957 +                double r = id;
5958 +                Object v;
5959 +                while ((v = advance()) != null)
5960 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5961 +                result = r;
5962 +                for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
5963 +                    int c; BulkTask<K,V,?> par;
5964 +                    if ((c = t.pending) == 0) {
5965 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5966 +                            t.result = reducer.apply(t.result, s.result);
5967 +                        }
5968 +                        if ((par = t.parent) == null ||
5969 +                            !(par instanceof MapReduceEntriesToDoubleTask)) {
5970 +                            t.quietlyComplete();
5971 +                            break;
5972 +                        }
5973 +                        t = (MapReduceEntriesToDoubleTask<K,V>)par;
5974 +                    }
5975 +                    else if (t.casPending(c, c - 1))
5976 +                        break;
5977 +                }
5978 +            } catch (Throwable ex) {
5979 +                return tryCompleteComputation(ex);
5980 +            }
5981 +            return false;
5982 +        }
5983 +        public final Double getRawResult() { return result; }
5984 +    }
5985 +
5986 +    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5987 +        extends BulkTask<K,V,Double> {
5988 +        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5989 +        final DoubleByDoubleToDouble reducer;
5990 +        final double basis;
5991 +        double result;
5992 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5993 +        MapReduceMappingsToDoubleTask
5994 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5995 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
5996 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
5997 +             double basis,
5998 +             DoubleByDoubleToDouble reducer) {
5999 +            super(m, p, b); this.nextRight = nextRight;
6000 +            this.transformer = transformer;
6001 +            this.basis = basis; this.reducer = reducer;
6002 +        }
6003 +        @SuppressWarnings("unchecked") public final boolean exec() {
6004 +            final ObjectByObjectToDouble<? super K, ? super V> transformer =
6005 +                this.transformer;
6006 +            final DoubleByDoubleToDouble reducer = this.reducer;
6007 +            if (transformer == null || reducer == null)
6008 +                return abortOnNullFunction();
6009 +            try {
6010 +                final double id = this.basis;
6011 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6012 +                    do {} while (!casPending(c = pending, c+1));
6013 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6014 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6015 +                }
6016 +                double r = id;
6017 +                Object v;
6018 +                while ((v = advance()) != null)
6019 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6020 +                result = r;
6021 +                for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6022 +                    int c; BulkTask<K,V,?> par;
6023 +                    if ((c = t.pending) == 0) {
6024 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6025 +                            t.result = reducer.apply(t.result, s.result);
6026 +                        }
6027 +                        if ((par = t.parent) == null ||
6028 +                            !(par instanceof MapReduceMappingsToDoubleTask)) {
6029 +                            t.quietlyComplete();
6030 +                            break;
6031 +                        }
6032 +                        t = (MapReduceMappingsToDoubleTask<K,V>)par;
6033 +                    }
6034 +                    else if (t.casPending(c, c - 1))
6035 +                        break;
6036 +                }
6037 +            } catch (Throwable ex) {
6038 +                return tryCompleteComputation(ex);
6039 +            }
6040 +            return false;
6041 +        }
6042 +        public final Double getRawResult() { return result; }
6043 +    }
6044 +
6045 +    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6046 +        extends BulkTask<K,V,Long> {
6047 +        final ObjectToLong<? super K> transformer;
6048 +        final LongByLongToLong reducer;
6049 +        final long basis;
6050 +        long result;
6051 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
6052 +        MapReduceKeysToLongTask
6053 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6054 +             MapReduceKeysToLongTask<K,V> nextRight,
6055 +             ObjectToLong<? super K> transformer,
6056 +             long basis,
6057 +             LongByLongToLong reducer) {
6058 +            super(m, p, b); this.nextRight = nextRight;
6059 +            this.transformer = transformer;
6060 +            this.basis = basis; this.reducer = reducer;
6061 +        }
6062 +        @SuppressWarnings("unchecked") public final boolean exec() {
6063 +            final ObjectToLong<? super K> transformer =
6064 +                this.transformer;
6065 +            final LongByLongToLong reducer = this.reducer;
6066 +            if (transformer == null || reducer == null)
6067 +                return abortOnNullFunction();
6068 +            try {
6069 +                final long id = this.basis;
6070 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6071 +                    do {} while (!casPending(c = pending, c+1));
6072 +                    (rights = new MapReduceKeysToLongTask<K,V>
6073 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6074 +                }
6075 +                long r = id;
6076 +                while (advance() != null)
6077 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6078 +                result = r;
6079 +                for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6080 +                    int c; BulkTask<K,V,?> par;
6081 +                    if ((c = t.pending) == 0) {
6082 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6083 +                            t.result = reducer.apply(t.result, s.result);
6084 +                        }
6085 +                        if ((par = t.parent) == null ||
6086 +                            !(par instanceof MapReduceKeysToLongTask)) {
6087 +                            t.quietlyComplete();
6088 +                            break;
6089 +                        }
6090 +                        t = (MapReduceKeysToLongTask<K,V>)par;
6091 +                    }
6092 +                    else if (t.casPending(c, c - 1))
6093 +                        break;
6094 +                }
6095 +            } catch (Throwable ex) {
6096 +                return tryCompleteComputation(ex);
6097 +            }
6098 +            return false;
6099 +        }
6100 +        public final Long getRawResult() { return result; }
6101 +    }
6102 +
6103 +    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6104 +        extends BulkTask<K,V,Long> {
6105 +        final ObjectToLong<? super V> transformer;
6106 +        final LongByLongToLong reducer;
6107 +        final long basis;
6108 +        long result;
6109 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
6110 +        MapReduceValuesToLongTask
6111 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6112 +             MapReduceValuesToLongTask<K,V> nextRight,
6113 +             ObjectToLong<? super V> transformer,
6114 +             long basis,
6115 +             LongByLongToLong reducer) {
6116 +            super(m, p, b); this.nextRight = nextRight;
6117 +            this.transformer = transformer;
6118 +            this.basis = basis; this.reducer = reducer;
6119 +        }
6120 +        @SuppressWarnings("unchecked") public final boolean exec() {
6121 +            final ObjectToLong<? super V> transformer =
6122 +                this.transformer;
6123 +            final LongByLongToLong reducer = this.reducer;
6124 +            if (transformer == null || reducer == null)
6125 +                return abortOnNullFunction();
6126 +            try {
6127 +                final long id = this.basis;
6128 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6129 +                    do {} while (!casPending(c = pending, c+1));
6130 +                    (rights = new MapReduceValuesToLongTask<K,V>
6131 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6132 +                }
6133 +                long r = id;
6134 +                Object v;
6135 +                while ((v = advance()) != null)
6136 +                    r = reducer.apply(r, transformer.apply((V)v));
6137 +                result = r;
6138 +                for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6139 +                    int c; BulkTask<K,V,?> par;
6140 +                    if ((c = t.pending) == 0) {
6141 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6142 +                            t.result = reducer.apply(t.result, s.result);
6143 +                        }
6144 +                        if ((par = t.parent) == null ||
6145 +                            !(par instanceof MapReduceValuesToLongTask)) {
6146 +                            t.quietlyComplete();
6147 +                            break;
6148 +                        }
6149 +                        t = (MapReduceValuesToLongTask<K,V>)par;
6150 +                    }
6151 +                    else if (t.casPending(c, c - 1))
6152 +                        break;
6153 +                }
6154 +            } catch (Throwable ex) {
6155 +                return tryCompleteComputation(ex);
6156 +            }
6157 +            return false;
6158 +        }
6159 +        public final Long getRawResult() { return result; }
6160 +    }
6161 +
6162 +    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6163 +        extends BulkTask<K,V,Long> {
6164 +        final ObjectToLong<Map.Entry<K,V>> transformer;
6165 +        final LongByLongToLong reducer;
6166 +        final long basis;
6167 +        long result;
6168 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6169 +        MapReduceEntriesToLongTask
6170 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6171 +             MapReduceEntriesToLongTask<K,V> nextRight,
6172 +             ObjectToLong<Map.Entry<K,V>> transformer,
6173 +             long basis,
6174 +             LongByLongToLong reducer) {
6175 +            super(m, p, b); this.nextRight = nextRight;
6176 +            this.transformer = transformer;
6177 +            this.basis = basis; this.reducer = reducer;
6178 +        }
6179 +        @SuppressWarnings("unchecked") public final boolean exec() {
6180 +            final ObjectToLong<Map.Entry<K,V>> transformer =
6181 +                this.transformer;
6182 +            final LongByLongToLong reducer = this.reducer;
6183 +            if (transformer == null || reducer == null)
6184 +                return abortOnNullFunction();
6185 +            try {
6186 +                final long id = this.basis;
6187 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6188 +                    do {} while (!casPending(c = pending, c+1));
6189 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6190 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6191 +                }
6192 +                long r = id;
6193 +                Object v;
6194 +                while ((v = advance()) != null)
6195 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6196 +                result = r;
6197 +                for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6198 +                    int c; BulkTask<K,V,?> par;
6199 +                    if ((c = t.pending) == 0) {
6200 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6201 +                            t.result = reducer.apply(t.result, s.result);
6202 +                        }
6203 +                        if ((par = t.parent) == null ||
6204 +                            !(par instanceof MapReduceEntriesToLongTask)) {
6205 +                            t.quietlyComplete();
6206 +                            break;
6207 +                        }
6208 +                        t = (MapReduceEntriesToLongTask<K,V>)par;
6209 +                    }
6210 +                    else if (t.casPending(c, c - 1))
6211 +                        break;
6212 +                }
6213 +            } catch (Throwable ex) {
6214 +                return tryCompleteComputation(ex);
6215 +            }
6216 +            return false;
6217 +        }
6218 +        public final Long getRawResult() { return result; }
6219 +    }
6220 +
6221 +    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6222 +        extends BulkTask<K,V,Long> {
6223 +        final ObjectByObjectToLong<? super K, ? super V> transformer;
6224 +        final LongByLongToLong reducer;
6225 +        final long basis;
6226 +        long result;
6227 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6228 +        MapReduceMappingsToLongTask
6229 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6230 +             MapReduceMappingsToLongTask<K,V> nextRight,
6231 +             ObjectByObjectToLong<? super K, ? super V> transformer,
6232 +             long basis,
6233 +             LongByLongToLong reducer) {
6234 +            super(m, p, b); this.nextRight = nextRight;
6235 +            this.transformer = transformer;
6236 +            this.basis = basis; this.reducer = reducer;
6237 +        }
6238 +        @SuppressWarnings("unchecked") public final boolean exec() {
6239 +            final ObjectByObjectToLong<? super K, ? super V> transformer =
6240 +                this.transformer;
6241 +            final LongByLongToLong reducer = this.reducer;
6242 +            if (transformer == null || reducer == null)
6243 +                return abortOnNullFunction();
6244 +            try {
6245 +                final long id = this.basis;
6246 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6247 +                    do {} while (!casPending(c = pending, c+1));
6248 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6249 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6250 +                }
6251 +                long r = id;
6252 +                Object v;
6253 +                while ((v = advance()) != null)
6254 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6255 +                result = r;
6256 +                for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6257 +                    int c; BulkTask<K,V,?> par;
6258 +                    if ((c = t.pending) == 0) {
6259 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6260 +                            t.result = reducer.apply(t.result, s.result);
6261 +                        }
6262 +                        if ((par = t.parent) == null ||
6263 +                            !(par instanceof MapReduceMappingsToLongTask)) {
6264 +                            t.quietlyComplete();
6265 +                            break;
6266 +                        }
6267 +                        t = (MapReduceMappingsToLongTask<K,V>)par;
6268 +                    }
6269 +                    else if (t.casPending(c, c - 1))
6270 +                        break;
6271 +                }
6272 +            } catch (Throwable ex) {
6273 +                return tryCompleteComputation(ex);
6274 +            }
6275 +            return false;
6276 +        }
6277 +        public final Long getRawResult() { return result; }
6278 +    }
6279 +
6280 +    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6281 +        extends BulkTask<K,V,Integer> {
6282 +        final ObjectToInt<? super K> transformer;
6283 +        final IntByIntToInt reducer;
6284 +        final int basis;
6285 +        int result;
6286 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6287 +        MapReduceKeysToIntTask
6288 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6289 +             MapReduceKeysToIntTask<K,V> nextRight,
6290 +             ObjectToInt<? super K> transformer,
6291 +             int basis,
6292 +             IntByIntToInt reducer) {
6293 +            super(m, p, b); this.nextRight = nextRight;
6294 +            this.transformer = transformer;
6295 +            this.basis = basis; this.reducer = reducer;
6296 +        }
6297 +        @SuppressWarnings("unchecked") public final boolean exec() {
6298 +            final ObjectToInt<? super K> transformer =
6299 +                this.transformer;
6300 +            final IntByIntToInt reducer = this.reducer;
6301 +            if (transformer == null || reducer == null)
6302 +                return abortOnNullFunction();
6303 +            try {
6304 +                final int id = this.basis;
6305 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6306 +                    do {} while (!casPending(c = pending, c+1));
6307 +                    (rights = new MapReduceKeysToIntTask<K,V>
6308 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6309 +                }
6310 +                int r = id;
6311 +                while (advance() != null)
6312 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6313 +                result = r;
6314 +                for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6315 +                    int c; BulkTask<K,V,?> par;
6316 +                    if ((c = t.pending) == 0) {
6317 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6318 +                            t.result = reducer.apply(t.result, s.result);
6319 +                        }
6320 +                        if ((par = t.parent) == null ||
6321 +                            !(par instanceof MapReduceKeysToIntTask)) {
6322 +                            t.quietlyComplete();
6323 +                            break;
6324 +                        }
6325 +                        t = (MapReduceKeysToIntTask<K,V>)par;
6326 +                    }
6327 +                    else if (t.casPending(c, c - 1))
6328 +                        break;
6329 +                }
6330 +            } catch (Throwable ex) {
6331 +                return tryCompleteComputation(ex);
6332 +            }
6333 +            return false;
6334 +        }
6335 +        public final Integer getRawResult() { return result; }
6336 +    }
6337 +
6338 +    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6339 +        extends BulkTask<K,V,Integer> {
6340 +        final ObjectToInt<? super V> transformer;
6341 +        final IntByIntToInt reducer;
6342 +        final int basis;
6343 +        int result;
6344 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6345 +        MapReduceValuesToIntTask
6346 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6347 +             MapReduceValuesToIntTask<K,V> nextRight,
6348 +             ObjectToInt<? super V> transformer,
6349 +             int basis,
6350 +             IntByIntToInt reducer) {
6351 +            super(m, p, b); this.nextRight = nextRight;
6352 +            this.transformer = transformer;
6353 +            this.basis = basis; this.reducer = reducer;
6354 +        }
6355 +        @SuppressWarnings("unchecked") public final boolean exec() {
6356 +            final ObjectToInt<? super V> transformer =
6357 +                this.transformer;
6358 +            final IntByIntToInt reducer = this.reducer;
6359 +            if (transformer == null || reducer == null)
6360 +                return abortOnNullFunction();
6361 +            try {
6362 +                final int id = this.basis;
6363 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6364 +                    do {} while (!casPending(c = pending, c+1));
6365 +                    (rights = new MapReduceValuesToIntTask<K,V>
6366 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6367 +                }
6368 +                int r = id;
6369 +                Object v;
6370 +                while ((v = advance()) != null)
6371 +                    r = reducer.apply(r, transformer.apply((V)v));
6372 +                result = r;
6373 +                for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
6374 +                    int c; BulkTask<K,V,?> par;
6375 +                    if ((c = t.pending) == 0) {
6376 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6377 +                            t.result = reducer.apply(t.result, s.result);
6378 +                        }
6379 +                        if ((par = t.parent) == null ||
6380 +                            !(par instanceof MapReduceValuesToIntTask)) {
6381 +                            t.quietlyComplete();
6382 +                            break;
6383 +                        }
6384 +                        t = (MapReduceValuesToIntTask<K,V>)par;
6385 +                    }
6386 +                    else if (t.casPending(c, c - 1))
6387 +                        break;
6388 +                }
6389 +            } catch (Throwable ex) {
6390 +                return tryCompleteComputation(ex);
6391 +            }
6392 +            return false;
6393 +        }
6394 +        public final Integer getRawResult() { return result; }
6395 +    }
6396 +
6397 +    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6398 +        extends BulkTask<K,V,Integer> {
6399 +        final ObjectToInt<Map.Entry<K,V>> transformer;
6400 +        final IntByIntToInt reducer;
6401 +        final int basis;
6402 +        int result;
6403 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6404 +        MapReduceEntriesToIntTask
6405 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6406 +             MapReduceEntriesToIntTask<K,V> nextRight,
6407 +             ObjectToInt<Map.Entry<K,V>> transformer,
6408 +             int basis,
6409 +             IntByIntToInt reducer) {
6410 +            super(m, p, b); this.nextRight = nextRight;
6411 +            this.transformer = transformer;
6412 +            this.basis = basis; this.reducer = reducer;
6413 +        }
6414 +        @SuppressWarnings("unchecked") public final boolean exec() {
6415 +            final ObjectToInt<Map.Entry<K,V>> transformer =
6416 +                this.transformer;
6417 +            final IntByIntToInt reducer = this.reducer;
6418 +            if (transformer == null || reducer == null)
6419 +                return abortOnNullFunction();
6420 +            try {
6421 +                final int id = this.basis;
6422 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6423 +                    do {} while (!casPending(c = pending, c+1));
6424 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6425 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6426 +                }
6427 +                int r = id;
6428 +                Object v;
6429 +                while ((v = advance()) != null)
6430 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6431 +                result = r;
6432 +                for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6433 +                    int c; BulkTask<K,V,?> par;
6434 +                    if ((c = t.pending) == 0) {
6435 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6436 +                            t.result = reducer.apply(t.result, s.result);
6437 +                        }
6438 +                        if ((par = t.parent) == null ||
6439 +                            !(par instanceof MapReduceEntriesToIntTask)) {
6440 +                            t.quietlyComplete();
6441 +                            break;
6442 +                        }
6443 +                        t = (MapReduceEntriesToIntTask<K,V>)par;
6444 +                    }
6445 +                    else if (t.casPending(c, c - 1))
6446 +                        break;
6447 +                }
6448 +            } catch (Throwable ex) {
6449 +                return tryCompleteComputation(ex);
6450 +            }
6451 +            return false;
6452 +        }
6453 +        public final Integer getRawResult() { return result; }
6454 +    }
6455 +
6456 +    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6457 +        extends BulkTask<K,V,Integer> {
6458 +        final ObjectByObjectToInt<? super K, ? super V> transformer;
6459 +        final IntByIntToInt reducer;
6460 +        final int basis;
6461 +        int result;
6462 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6463 +        MapReduceMappingsToIntTask
6464 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6465 +             MapReduceMappingsToIntTask<K,V> rights,
6466 +             ObjectByObjectToInt<? super K, ? super V> transformer,
6467 +             int basis,
6468 +             IntByIntToInt reducer) {
6469 +            super(m, p, b); this.nextRight = nextRight;
6470 +            this.transformer = transformer;
6471 +            this.basis = basis; this.reducer = reducer;
6472 +        }
6473 +        @SuppressWarnings("unchecked") public final boolean exec() {
6474 +            final ObjectByObjectToInt<? super K, ? super V> transformer =
6475 +                this.transformer;
6476 +            final IntByIntToInt reducer = this.reducer;
6477 +            if (transformer == null || reducer == null)
6478 +                return abortOnNullFunction();
6479 +            try {
6480 +                final int id = this.basis;
6481 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6482 +                    do {} while (!casPending(c = pending, c+1));
6483 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6484 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6485 +                }
6486 +                int r = id;
6487 +                Object v;
6488 +                while ((v = advance()) != null)
6489 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6490 +                result = r;
6491 +                for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6492 +                    int c; BulkTask<K,V,?> par;
6493 +                    if ((c = t.pending) == 0) {
6494 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6495 +                            t.result = reducer.apply(t.result, s.result);
6496 +                        }
6497 +                        if ((par = t.parent) == null ||
6498 +                            !(par instanceof MapReduceMappingsToIntTask)) {
6499 +                            t.quietlyComplete();
6500 +                            break;
6501 +                        }
6502 +                        t = (MapReduceMappingsToIntTask<K,V>)par;
6503 +                    }
6504 +                    else if (t.casPending(c, c - 1))
6505 +                        break;
6506 +                }
6507 +            } catch (Throwable ex) {
6508 +                return tryCompleteComputation(ex);
6509 +            }
6510 +            return false;
6511 +        }
6512 +        public final Integer getRawResult() { return result; }
6513 +    }
6514 +
6515 +
6516 +    // Unsafe mechanics
6517 +    private static final sun.misc.Unsafe UNSAFE;
6518 +    private static final long counterOffset;
6519 +    private static final long sizeCtlOffset;
6520 +    private static final long ABASE;
6521 +    private static final int ASHIFT;
6522 +
6523 +    static {
6524 +        int ss;
6525 +        try {
6526 +            UNSAFE = sun.misc.Unsafe.getUnsafe();
6527 +            Class<?> k = ConcurrentHashMap.class;
6528 +            counterOffset = UNSAFE.objectFieldOffset
6529 +                (k.getDeclaredField("counter"));
6530 +            sizeCtlOffset = UNSAFE.objectFieldOffset
6531 +                (k.getDeclaredField("sizeCtl"));
6532 +            Class<?> sc = Node[].class;
6533 +            ABASE = UNSAFE.arrayBaseOffset(sc);
6534 +            ss = UNSAFE.arrayIndexScale(sc);
6535 +        } catch (Exception e) {
6536 +            throw new Error(e);
6537 +        }
6538 +        if ((ss & (ss-1)) != 0)
6539 +            throw new Error("data type scale not a power of two");
6540 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6541 +    }
6542   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines