ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.83 by jsr166, Mon Aug 22 03:42:10 2005 UTC vs.
Revision 1.141 by jsr166, Tue Oct 30 16:54:26 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 > import java.util.concurrent.atomic.LongAdder;
9 > import java.util.concurrent.ForkJoinPool;
10 > import java.util.concurrent.ForkJoinTask;
11 >
12 > import java.util.Comparator;
13 > import java.util.Arrays;
14 > import java.util.Map;
15 > import java.util.Set;
16 > import java.util.Collection;
17 > import java.util.AbstractMap;
18 > import java.util.AbstractSet;
19 > import java.util.AbstractCollection;
20 > import java.util.Hashtable;
21 > import java.util.HashMap;
22 > import java.util.Iterator;
23 > import java.util.Enumeration;
24 > import java.util.ConcurrentModificationException;
25 > import java.util.NoSuchElementException;
26 > import java.util.concurrent.ConcurrentMap;
27 > import java.util.concurrent.ThreadLocalRandom;
28 > import java.util.concurrent.locks.LockSupport;
29 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 > import java.util.concurrent.atomic.AtomicReference;
31 >
32   import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
33  
34   /**
35   * A hash table supporting full concurrency of retrievals and
36 < * adjustable expected concurrency for updates. This class obeys the
36 > * high expected concurrency for updates. This class obeys the
37   * same functional specification as {@link java.util.Hashtable}, and
38   * includes versions of methods corresponding to each method of
39 < * <tt>Hashtable</tt>. However, even though all operations are
39 > * {@code Hashtable}. However, even though all operations are
40   * thread-safe, retrieval operations do <em>not</em> entail locking,
41   * and there is <em>not</em> any support for locking the entire table
42   * in a way that prevents all access.  This class is fully
43 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
43 > * interoperable with {@code Hashtable} in programs that rely on its
44   * thread safety but not on its synchronization details.
45   *
46 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
47 < * block, so may overlap with update operations (including
48 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
49 < * of the most recently <em>completed</em> update operations holding
50 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
51 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
52 < * removal of only some entries.  Similarly, Iterators and
53 < * Enumerations return elements reflecting the state of the hash table
54 < * at some point at or since the creation of the iterator/enumeration.
55 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
56 < * However, iterators are designed to be used by only one thread at a time.
57 < *
58 < * <p> The allowed concurrency among update operations is guided by
59 < * the optional <tt>concurrencyLevel</tt> constructor argument
60 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
61 < * table is internally partitioned to try to permit the indicated
62 < * number of concurrent updates without contention. Because placement
63 < * in hash tables is essentially random, the actual concurrency will
64 < * vary.  Ideally, you should choose a value to accommodate as many
65 < * threads as will ever concurrently modify the table. Using a
66 < * significantly higher value than you need can waste space and time,
67 < * and a significantly lower value can lead to thread contention. But
68 < * overestimates and underestimates within an order of magnitude do
69 < * not usually have much noticeable impact. A value of one is
70 < * appropriate when it is known that only one thread will modify and
71 < * all others will only read. Also, resizing this or any other kind of
72 < * hash table is a relatively slow operation, so, when possible, it is
73 < * a good idea to provide estimates of expected table sizes in
74 < * constructors.
46 > * <p> Retrieval operations (including {@code get}) generally do not
47 > * block, so may overlap with update operations (including {@code put}
48 > * and {@code remove}). Retrievals reflect the results of the most
49 > * recently <em>completed</em> update operations holding upon their
50 > * onset. (More formally, an update operation for a given key bears a
51 > * <em>happens-before</em> relation with any (non-null) retrieval for
52 > * that key reporting the updated value.)  For aggregate operations
53 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
54 > * reflect insertion or removal of only some entries.  Similarly,
55 > * Iterators and Enumerations return elements reflecting the state of
56 > * the hash table at some point at or since the creation of the
57 > * iterator/enumeration.  They do <em>not</em> throw {@link
58 > * ConcurrentModificationException}.  However, iterators are designed
59 > * to be used by only one thread at a time.  Bear in mind that the
60 > * results of aggregate status methods including {@code size}, {@code
61 > * isEmpty}, and {@code containsValue} are typically useful only when
62 > * a map is not undergoing concurrent updates in other threads.
63 > * Otherwise the results of these methods reflect transient states
64 > * that may be adequate for monitoring or estimation purposes, but not
65 > * for program control.
66 > *
67 > * <p> The table is dynamically expanded when there are too many
68 > * collisions (i.e., keys that have distinct hash codes but fall into
69 > * the same slot modulo the table size), with the expected average
70 > * effect of maintaining roughly two bins per mapping (corresponding
71 > * to a 0.75 load factor threshold for resizing). There may be much
72 > * variance around this average as mappings are added and removed, but
73 > * overall, this maintains a commonly accepted time/space tradeoff for
74 > * hash tables.  However, resizing this or any other kind of hash
75 > * table may be a relatively slow operation. When possible, it is a
76 > * good idea to provide a size estimate as an optional {@code
77 > * initialCapacity} constructor argument. An additional optional
78 > * {@code loadFactor} constructor argument provides a further means of
79 > * customizing initial table capacity by specifying the table density
80 > * to be used in calculating the amount of space to allocate for the
81 > * given number of elements.  Also, for compatibility with previous
82 > * versions of this class, constructors may optionally specify an
83 > * expected {@code concurrencyLevel} as an additional hint for
84 > * internal sizing.  Note that using many keys with exactly the same
85 > * {@code hashCode()} is a sure way to slow down performance of any
86 > * hash table.
87 > *
88 > * <p> A {@link Set} projection of a ConcurrentHashMap may be created
89 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90 > * (using {@link #keySet(Object)} when only keys are of interest, and the
91 > * mapped values are (perhaps transiently) not used or all take the
92 > * same mapping value.
93 > *
94 > * <p> A ConcurrentHashMap can be used as scalable frequency map (a
95 > * form of histogram or multiset) by using {@link LongAdder} values
96 > * and initializing via {@link #computeIfAbsent}. For example, to add
97 > * a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you
98 > * can use {@code freqs.computeIfAbsent(k -> new
99 > * LongAdder()).increment();}
100   *
101   * <p>This class and its views and iterators implement all of the
102   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
103   * interfaces.
104   *
105   * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
106 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
106 > * does <em>not</em> allow {@code null} to be used as a key or value.
107 > *
108 > * <p>ConcurrentHashMaps support parallel operations using the {@link
109 > * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
110 > * are available in class {@link ForkJoinTasks}). These operations are
111 > * designed to be safely, and often sensibly, applied even with maps
112 > * that are being concurrently updated by other threads; for example,
113 > * when computing a snapshot summary of the values in a shared
114 > * registry.  There are three kinds of operation, each with four
115 > * forms, accepting functions with Keys, Values, Entries, and (Key,
116 > * Value) arguments and/or return values. Because the elements of a
117 > * ConcurrentHashMap are not ordered in any particular way, and may be
118 > * processed in different orders in different parallel executions, the
119 > * correctness of supplied functions should not depend on any
120 > * ordering, or on any other objects or values that may transiently
121 > * change while computation is in progress; and except for forEach
122 > * actions, should ideally be side-effect-free.
123 > *
124 > * <ul>
125 > * <li> forEach: Perform a given action on each element.
126 > * A variant form applies a given transformation on each element
127 > * before performing the action.</li>
128 > *
129 > * <li> search: Return the first available non-null result of
130 > * applying a given function on each element; skipping further
131 > * search when a result is found.</li>
132 > *
133 > * <li> reduce: Accumulate each element.  The supplied reduction
134 > * function cannot rely on ordering (more formally, it should be
135 > * both associative and commutative).  There are five variants:
136 > *
137 > * <ul>
138 > *
139 > * <li> Plain reductions. (There is not a form of this method for
140 > * (key, value) function arguments since there is no corresponding
141 > * return type.)</li>
142 > *
143 > * <li> Mapped reductions that accumulate the results of a given
144 > * function applied to each element.</li>
145 > *
146 > * <li> Reductions to scalar doubles, longs, and ints, using a
147 > * given basis value.</li>
148 > *
149 > * </li>
150 > * </ul>
151 > * </ul>
152 > *
153 > * <p>The concurrency properties of bulk operations follow
154 > * from those of ConcurrentHashMap: Any non-null result returned
155 > * from {@code get(key)} and related access methods bears a
156 > * happens-before relation with the associated insertion or
157 > * update.  The result of any bulk operation reflects the
158 > * composition of these per-element relations (but is not
159 > * necessarily atomic with respect to the map as a whole unless it
160 > * is somehow known to be quiescent).  Conversely, because keys
161 > * and values in the map are never null, null serves as a reliable
162 > * atomic indicator of the current lack of any result.  To
163 > * maintain this property, null serves as an implicit basis for
164 > * all non-scalar reduction operations. For the double, long, and
165 > * int versions, the basis should be one that, when combined with
166 > * any other value, returns that other value (more formally, it
167 > * should be the identity element for the reduction). Most common
168 > * reductions have these properties; for example, computing a sum
169 > * with basis 0 or a minimum with basis MAX_VALUE.
170 > *
171 > * <p>Search and transformation functions provided as arguments
172 > * should similarly return null to indicate the lack of any result
173 > * (in which case it is not used). In the case of mapped
174 > * reductions, this also enables transformations to serve as
175 > * filters, returning null (or, in the case of primitive
176 > * specializations, the identity basis) if the element should not
177 > * be combined. You can create compound transformations and
178 > * filterings by composing them yourself under this "null means
179 > * there is nothing there now" rule before using them in search or
180 > * reduce operations.
181 > *
182 > * <p>Methods accepting and/or returning Entry arguments maintain
183 > * key-value associations. They may be useful for example when
184 > * finding the key for the greatest value. Note that "plain" Entry
185 > * arguments can be supplied using {@code new
186 > * AbstractMap.SimpleEntry(k,v)}.
187 > *
188 > * <p> Bulk operations may complete abruptly, throwing an
189 > * exception encountered in the application of a supplied
190 > * function. Bear in mind when handling such exceptions that other
191 > * concurrently executing functions could also have thrown
192 > * exceptions, or would have done so if the first exception had
193 > * not occurred.
194 > *
195 > * <p>Parallel speedups for bulk operations compared to sequential
196 > * processing are common but not guaranteed.  Operations involving
197 > * brief functions on small maps may execute more slowly than
198 > * sequential loops if the underlying work to parallelize the
199 > * computation is more expensive than the computation itself.
200 > * Similarly, parallelization may not lead to much actual parallelism
201 > * if all processors are busy performing unrelated tasks.
202 > *
203 > * <p> All arguments to all task methods must be non-null.
204 > *
205 > * <p><em>jsr166e note: During transition, this class
206 > * uses nested functional interfaces with different names but the
207 > * same forms as those expected for JDK8.<em>
208   *
209   * <p>This class is a member of the
210 < * <a href="{@docRoot}/../guide/collections/index.html">
210 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
211   * Java Collections Framework</a>.
212   *
213   * @since 1.5
# Line 70 | Line 215 | import java.io.ObjectOutputStream;
215   * @param <K> the type of keys maintained by this map
216   * @param <V> the type of mapped values
217   */
218 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
219 <        implements ConcurrentMap<K, V>, Serializable {
218 > public class ConcurrentHashMap<K, V>
219 >    implements ConcurrentMap<K, V>, Serializable {
220      private static final long serialVersionUID = 7249069246763182397L;
221  
222 +    /**
223 +     * A partitionable iterator. A Spliterator can be traversed
224 +     * directly, but can also be partitioned (before traversal) by
225 +     * creating another Spliterator that covers a non-overlapping
226 +     * portion of the elements, and so may be amenable to parallel
227 +     * execution.
228 +     *
229 +     * <p> This interface exports a subset of expected JDK8
230 +     * functionality.
231 +     *
232 +     * <p>Sample usage: Here is one (of the several) ways to compute
233 +     * the sum of the values held in a map using the ForkJoin
234 +     * framework. As illustrated here, Spliterators are well suited to
235 +     * designs in which a task repeatedly splits off half its work
236 +     * into forked subtasks until small enough to process directly,
237 +     * and then joins these subtasks. Variants of this style can also
238 +     * be used in completion-based designs.
239 +     *
240 +     * <pre>
241 +     * {@code ConcurrentHashMap<String, Long> m = ...
242 +     * // split as if have 8 * parallelism, for load balance
243 +     * int n = m.size();
244 +     * int p = aForkJoinPool.getParallelism() * 8;
245 +     * int split = (n < p)? n : p;
246 +     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
247 +     * // ...
248 +     * static class SumValues extends RecursiveTask<Long> {
249 +     *   final Spliterator<Long> s;
250 +     *   final int split;             // split while > 1
251 +     *   final SumValues nextJoin;    // records forked subtasks to join
252 +     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
253 +     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
254 +     *   }
255 +     *   public Long compute() {
256 +     *     long sum = 0;
257 +     *     SumValues subtasks = null; // fork subtasks
258 +     *     for (int s = split >>> 1; s > 0; s >>>= 1)
259 +     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
260 +     *     while (s.hasNext())        // directly process remaining elements
261 +     *       sum += s.next();
262 +     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
263 +     *       sum += t.join();         // collect subtask results
264 +     *     return sum;
265 +     *   }
266 +     * }
267 +     * }</pre>
268 +     */
269 +    public static interface Spliterator<T> extends Iterator<T> {
270 +        /**
271 +         * Returns a Spliterator covering approximately half of the
272 +         * elements, guaranteed not to overlap with those subsequently
273 +         * returned by this Spliterator.  After invoking this method,
274 +         * the current Spliterator will <em>not</em> produce any of
275 +         * the elements of the returned Spliterator, but the two
276 +         * Spliterators together will produce all of the elements that
277 +         * would have been produced by this Spliterator had this
278 +         * method not been called. The exact number of elements
279 +         * produced by the returned Spliterator is not guaranteed, and
280 +         * may be zero (i.e., with {@code hasNext()} reporting {@code
281 +         * false}) if this Spliterator cannot be further split.
282 +         *
283 +         * @return a Spliterator covering approximately half of the
284 +         * elements
285 +         * @throws IllegalStateException if this Spliterator has
286 +         * already commenced traversing elements
287 +         */
288 +        Spliterator<T> split();
289 +    }
290 +
291 +    /**
292 +     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
293 +     * which additions may optionally be enabled by mapping to a
294 +     * common value.  This class cannot be directly instantiated. See
295 +     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
296 +     * {@link #newKeySet(int)}.
297 +     *
298 +     * <p>The view's {@code iterator} is a "weakly consistent" iterator
299 +     * that will never throw {@link ConcurrentModificationException},
300 +     * and guarantees to traverse elements as they existed upon
301 +     * construction of the iterator, and may (but is not guaranteed to)
302 +     * reflect any modifications subsequent to construction.
303 +     */
304 +    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
305 +        private static final long serialVersionUID = 7249069246763182397L;
306 +        private final V value;
307 +        KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
308 +            super(map);
309 +            this.value = value;
310 +        }
311 +
312 +        /**
313 +         * Returns the map backing this view.
314 +         *
315 +         * @return the map backing this view
316 +         */
317 +        public ConcurrentHashMap<K,V> getMap() { return map; }
318 +
319 +        /**
320 +         * Returns the default mapped value for additions,
321 +         * or {@code null} if additions are not supported.
322 +         *
323 +         * @return the default mapped value for additions, or {@code null}
324 +         * if not supported.
325 +         */
326 +        public V getMappedValue() { return value; }
327 +
328 +        // implement Set API
329 +
330 +        public boolean contains(Object o) { return map.containsKey(o); }
331 +        public boolean remove(Object o)   { return map.remove(o) != null; }
332 +        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
333 +        public boolean add(K e) {
334 +            V v;
335 +            if ((v = value) == null)
336 +                throw new UnsupportedOperationException();
337 +            if (e == null)
338 +                throw new NullPointerException();
339 +            return map.internalPutIfAbsent(e, v) == null;
340 +        }
341 +        public boolean addAll(Collection<? extends K> c) {
342 +            boolean added = false;
343 +            V v;
344 +            if ((v = value) == null)
345 +                throw new UnsupportedOperationException();
346 +            for (K e : c) {
347 +                if (e == null)
348 +                    throw new NullPointerException();
349 +                if (map.internalPutIfAbsent(e, v) == null)
350 +                    added = true;
351 +            }
352 +            return added;
353 +        }
354 +        public boolean equals(Object o) {
355 +            Set<?> c;
356 +            return ((o instanceof Set) &&
357 +                    ((c = (Set<?>)o) == this ||
358 +                     (containsAll(c) && c.containsAll(this))));
359 +        }
360 +    }
361 +
362      /*
363 <     * The basic strategy is to subdivide the table among Segments,
364 <     * each of which itself is a concurrently readable hash table.
363 >     * Overview:
364 >     *
365 >     * The primary design goal of this hash table is to maintain
366 >     * concurrent readability (typically method get(), but also
367 >     * iterators and related methods) while minimizing update
368 >     * contention. Secondary goals are to keep space consumption about
369 >     * the same or better than java.util.HashMap, and to support high
370 >     * initial insertion rates on an empty table by many threads.
371 >     *
372 >     * Each key-value mapping is held in a Node.  Because Node fields
373 >     * can contain special values, they are defined using plain Object
374 >     * types. Similarly in turn, all internal methods that use them
375 >     * work off Object types. And similarly, so do the internal
376 >     * methods of auxiliary iterator and view classes.  All public
377 >     * generic typed methods relay in/out of these internal methods,
378 >     * supplying null-checks and casts as needed. This also allows
379 >     * many of the public methods to be factored into a smaller number
380 >     * of internal methods (although sadly not so for the five
381 >     * variants of put-related operations). The validation-based
382 >     * approach explained below leads to a lot of code sprawl because
383 >     * retry-control precludes factoring into smaller methods.
384 >     *
385 >     * The table is lazily initialized to a power-of-two size upon the
386 >     * first insertion.  Each bin in the table normally contains a
387 >     * list of Nodes (most often, the list has only zero or one Node).
388 >     * Table accesses require volatile/atomic reads, writes, and
389 >     * CASes.  Because there is no other way to arrange this without
390 >     * adding further indirections, we use intrinsics
391 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
392 >     * are always accurately traversable under volatile reads, so long
393 >     * as lookups check hash code and non-nullness of value before
394 >     * checking key equality.
395 >     *
396 >     * We use the top two bits of Node hash fields for control
397 >     * purposes -- they are available anyway because of addressing
398 >     * constraints.  As explained further below, these top bits are
399 >     * used as follows:
400 >     *  00 - Normal
401 >     *  01 - Locked
402 >     *  11 - Locked and may have a thread waiting for lock
403 >     *  10 - Node is a forwarding node
404 >     *
405 >     * The lower 30 bits of each Node's hash field contain a
406 >     * transformation of the key's hash code, except for forwarding
407 >     * nodes, for which the lower bits are zero (and so always have
408 >     * hash field == MOVED).
409 >     *
410 >     * Insertion (via put or its variants) of the first node in an
411 >     * empty bin is performed by just CASing it to the bin.  This is
412 >     * by far the most common case for put operations under most
413 >     * key/hash distributions.  Other update operations (insert,
414 >     * delete, and replace) require locks.  We do not want to waste
415 >     * the space required to associate a distinct lock object with
416 >     * each bin, so instead use the first node of a bin list itself as
417 >     * a lock. Blocking support for these locks relies on the builtin
418 >     * "synchronized" monitors.  However, we also need a tryLock
419 >     * construction, so we overlay these by using bits of the Node
420 >     * hash field for lock control (see above), and so normally use
421 >     * builtin monitors only for blocking and signalling using
422 >     * wait/notifyAll constructions. See Node.tryAwaitLock.
423 >     *
424 >     * Using the first node of a list as a lock does not by itself
425 >     * suffice though: When a node is locked, any update must first
426 >     * validate that it is still the first node after locking it, and
427 >     * retry if not. Because new nodes are always appended to lists,
428 >     * once a node is first in a bin, it remains first until deleted
429 >     * or the bin becomes invalidated (upon resizing).  However,
430 >     * operations that only conditionally update may inspect nodes
431 >     * until the point of update. This is a converse of sorts to the
432 >     * lazy locking technique described by Herlihy & Shavit.
433 >     *
434 >     * The main disadvantage of per-bin locks is that other update
435 >     * operations on other nodes in a bin list protected by the same
436 >     * lock can stall, for example when user equals() or mapping
437 >     * functions take a long time.  However, statistically, under
438 >     * random hash codes, this is not a common problem.  Ideally, the
439 >     * frequency of nodes in bins follows a Poisson distribution
440 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
441 >     * parameter of about 0.5 on average, given the resizing threshold
442 >     * of 0.75, although with a large variance because of resizing
443 >     * granularity. Ignoring variance, the expected occurrences of
444 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
445 >     * first values are:
446 >     *
447 >     * 0:    0.60653066
448 >     * 1:    0.30326533
449 >     * 2:    0.07581633
450 >     * 3:    0.01263606
451 >     * 4:    0.00157952
452 >     * 5:    0.00015795
453 >     * 6:    0.00001316
454 >     * 7:    0.00000094
455 >     * 8:    0.00000006
456 >     * more: less than 1 in ten million
457 >     *
458 >     * Lock contention probability for two threads accessing distinct
459 >     * elements is roughly 1 / (8 * #elements) under random hashes.
460 >     *
461 >     * Actual hash code distributions encountered in practice
462 >     * sometimes deviate significantly from uniform randomness.  This
463 >     * includes the case when N > (1<<30), so some keys MUST collide.
464 >     * Similarly for dumb or hostile usages in which multiple keys are
465 >     * designed to have identical hash codes. Also, although we guard
466 >     * against the worst effects of this (see method spread), sets of
467 >     * hashes may differ only in bits that do not impact their bin
468 >     * index for a given power-of-two mask.  So we use a secondary
469 >     * strategy that applies when the number of nodes in a bin exceeds
470 >     * a threshold, and at least one of the keys implements
471 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
472 >     * (a specialized form of red-black trees), bounding search time
473 >     * to O(log N).  Each search step in a TreeBin is around twice as
474 >     * slow as in a regular list, but given that N cannot exceed
475 >     * (1<<64) (before running out of addresses) this bounds search
476 >     * steps, lock hold times, etc, to reasonable constants (roughly
477 >     * 100 nodes inspected per operation worst case) so long as keys
478 >     * are Comparable (which is very common -- String, Long, etc).
479 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
480 >     * traversal pointers as regular nodes, so can be traversed in
481 >     * iterators in the same way.
482 >     *
483 >     * The table is resized when occupancy exceeds a percentage
484 >     * threshold (nominally, 0.75, but see below).  Only a single
485 >     * thread performs the resize (using field "sizeCtl", to arrange
486 >     * exclusion), but the table otherwise remains usable for reads
487 >     * and updates. Resizing proceeds by transferring bins, one by
488 >     * one, from the table to the next table.  Because we are using
489 >     * power-of-two expansion, the elements from each bin must either
490 >     * stay at same index, or move with a power of two offset. We
491 >     * eliminate unnecessary node creation by catching cases where old
492 >     * nodes can be reused because their next fields won't change.  On
493 >     * average, only about one-sixth of them need cloning when a table
494 >     * doubles. The nodes they replace will be garbage collectable as
495 >     * soon as they are no longer referenced by any reader thread that
496 >     * may be in the midst of concurrently traversing table.  Upon
497 >     * transfer, the old table bin contains only a special forwarding
498 >     * node (with hash field "MOVED") that contains the next table as
499 >     * its key. On encountering a forwarding node, access and update
500 >     * operations restart, using the new table.
501 >     *
502 >     * Each bin transfer requires its bin lock. However, unlike other
503 >     * cases, a transfer can skip a bin if it fails to acquire its
504 >     * lock, and revisit it later (unless it is a TreeBin). Method
505 >     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
506 >     * have been skipped because of failure to acquire a lock, and
507 >     * blocks only if none are available (i.e., only very rarely).
508 >     * The transfer operation must also ensure that all accessible
509 >     * bins in both the old and new table are usable by any traversal.
510 >     * When there are no lock acquisition failures, this is arranged
511 >     * simply by proceeding from the last bin (table.length - 1) up
512 >     * towards the first.  Upon seeing a forwarding node, traversals
513 >     * (see class Iter) arrange to move to the new table
514 >     * without revisiting nodes.  However, when any node is skipped
515 >     * during a transfer, all earlier table bins may have become
516 >     * visible, so are initialized with a reverse-forwarding node back
517 >     * to the old table until the new ones are established. (This
518 >     * sometimes requires transiently locking a forwarding node, which
519 >     * is possible under the above encoding.) These more expensive
520 >     * mechanics trigger only when necessary.
521 >     *
522 >     * The traversal scheme also applies to partial traversals of
523 >     * ranges of bins (via an alternate Traverser constructor)
524 >     * to support partitioned aggregate operations.  Also, read-only
525 >     * operations give up if ever forwarded to a null table, which
526 >     * provides support for shutdown-style clearing, which is also not
527 >     * currently implemented.
528 >     *
529 >     * Lazy table initialization minimizes footprint until first use,
530 >     * and also avoids resizings when the first operation is from a
531 >     * putAll, constructor with map argument, or deserialization.
532 >     * These cases attempt to override the initial capacity settings,
533 >     * but harmlessly fail to take effect in cases of races.
534 >     *
535 >     * The element count is maintained using a LongAdder, which avoids
536 >     * contention on updates but can encounter cache thrashing if read
537 >     * too frequently during concurrent access. To avoid reading so
538 >     * often, resizing is attempted either when a bin lock is
539 >     * contended, or upon adding to a bin already holding two or more
540 >     * nodes (checked before adding in the xIfAbsent methods, after
541 >     * adding in others). Under uniform hash distributions, the
542 >     * probability of this occurring at threshold is around 13%,
543 >     * meaning that only about 1 in 8 puts check threshold (and after
544 >     * resizing, many fewer do so). But this approximation has high
545 >     * variance for small table sizes, so we check on any collision
546 >     * for sizes <= 64. The bulk putAll operation further reduces
547 >     * contention by only committing count updates upon these size
548 >     * checks.
549 >     *
550 >     * Maintaining API and serialization compatibility with previous
551 >     * versions of this class introduces several oddities. Mainly: We
552 >     * leave untouched but unused constructor arguments refering to
553 >     * concurrencyLevel. We accept a loadFactor constructor argument,
554 >     * but apply it only to initial table capacity (which is the only
555 >     * time that we can guarantee to honor it.) We also declare an
556 >     * unused "Segment" class that is instantiated in minimal form
557 >     * only when serializing.
558       */
559  
560      /* ---------------- Constants -------------- */
561  
562      /**
563 <     * The default initial capacity for this table,
564 <     * used when not otherwise specified in a constructor.
563 >     * The largest possible table capacity.  This value must be
564 >     * exactly 1<<30 to stay within Java array allocation and indexing
565 >     * bounds for power of two table sizes, and is further required
566 >     * because the top two bits of 32bit hash fields are used for
567 >     * control purposes.
568 >     */
569 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
570 >
571 >    /**
572 >     * The default initial table capacity.  Must be a power of 2
573 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
574       */
575 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
575 >    private static final int DEFAULT_CAPACITY = 16;
576  
577      /**
578 <     * The default load factor for this table, used when not
579 <     * otherwise specified in a constructor.
578 >     * The largest possible (non-power of two) array size.
579 >     * Needed by toArray and related methods.
580       */
581 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
581 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
582  
583      /**
584 <     * The default concurrency level for this table, used when not
585 <     * otherwise specified in a constructor.
584 >     * The default concurrency level for this table. Unused but
585 >     * defined for compatibility with previous versions of this class.
586       */
587 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
587 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
588  
589      /**
590 <     * The maximum capacity, used if a higher value is implicitly
591 <     * specified by either of the constructors with arguments.  MUST
592 <     * be a power of two <= 1<<30 to ensure that entries are indexable
593 <     * using ints.
590 >     * The load factor for this table. Overrides of this value in
591 >     * constructors affect only the initial table capacity.  The
592 >     * actual floating point value isn't normally used -- it is
593 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
594 >     * the associated resizing threshold.
595       */
596 <    static final int MAXIMUM_CAPACITY = 1 << 30;
596 >    private static final float LOAD_FACTOR = 0.75f;
597  
598      /**
599 <     * The maximum number of segments to allow; used to bound
600 <     * constructor arguments.
599 >     * The buffer size for skipped bins during transfers. The
600 >     * value is arbitrary but should be large enough to avoid
601 >     * most locking stalls during resizes.
602       */
603 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
603 >    private static final int TRANSFER_BUFFER_SIZE = 32;
604  
605      /**
606 <     * Number of unsynchronized retries in size and containsValue
607 <     * methods before resorting to locking. This is used to avoid
608 <     * unbounded retries if tables undergo continuous modification
609 <     * which would make it impossible to obtain an accurate result.
606 >     * The bin count threshold for using a tree rather than list for a
607 >     * bin.  The value reflects the approximate break-even point for
608 >     * using tree-based operations.
609 >     */
610 >    private static final int TREE_THRESHOLD = 8;
611 >
612 >    /*
613 >     * Encodings for special uses of Node hash fields. See above for
614 >     * explanation.
615       */
616 <    static final int RETRIES_BEFORE_LOCK = 2;
616 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
617 >    static final int LOCKED    = 0x40000000; // set/tested only as a bit
618 >    static final int WAITING   = 0xc0000000; // both bits set/tested together
619 >    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
620  
621      /* ---------------- Fields -------------- */
622  
623      /**
624 <     * Mask value for indexing into segments. The upper bits of a
625 <     * key's hash code are used to choose the segment.
624 >     * The array of bins. Lazily initialized upon first insertion.
625 >     * Size is always a power of two. Accessed directly by iterators.
626       */
627 <    final int segmentMask;
627 >    transient volatile Node[] table;
628  
629      /**
630 <     * Shift value for indexing within segments.
630 >     * The counter maintaining number of elements.
631       */
632 <    final int segmentShift;
632 >    private transient final LongAdder counter;
633  
634      /**
635 <     * The segments, each of which is a specialized hash table
636 <     */
637 <    final Segment<K,V>[] segments;
635 >     * Table initialization and resizing control.  When negative, the
636 >     * table is being initialized or resized. Otherwise, when table is
637 >     * null, holds the initial table size to use upon creation, or 0
638 >     * for default. After initialization, holds the next element count
639 >     * value upon which to resize the table.
640 >     */
641 >    private transient volatile int sizeCtl;
642 >
643 >    // views
644 >    private transient KeySetView<K,V> keySet;
645 >    private transient Values<K,V> values;
646 >    private transient EntrySet<K,V> entrySet;
647  
648 <    transient Set<K> keySet;
649 <    transient Set<Map.Entry<K,V>> entrySet;
144 <    transient Collection<V> values;
648 >    /** For serialization compatibility. Null unless serialized; see below */
649 >    private Segment<K,V>[] segments;
650  
651 <    /* ---------------- Small Utilities -------------- */
651 >    /* ---------------- Table element access -------------- */
652  
653 <    /**
654 <     * Returns a hash code for non-null Object x.
655 <     * Uses the same hash code spreader as most other java.util hash tables.
656 <     * @param x the object serving as a key
657 <     * @return the hash code
653 >    /*
654 >     * Volatile access methods are used for table elements as well as
655 >     * elements of in-progress next table while resizing.  Uses are
656 >     * null checked by callers, and implicitly bounds-checked, relying
657 >     * on the invariants that tab arrays have non-zero size, and all
658 >     * indices are masked with (tab.length - 1) which is never
659 >     * negative and always less than length. Note that, to be correct
660 >     * wrt arbitrary concurrency errors by users, bounds checks must
661 >     * operate on local variables, which accounts for some odd-looking
662 >     * inline assignments below.
663       */
664 <    static int hash(Object x) {
665 <        int h = x.hashCode();
666 <        h += ~(h << 9);
157 <        h ^=  (h >>> 14);
158 <        h +=  (h << 4);
159 <        h ^=  (h >>> 10);
160 <        return h;
664 >
665 >    static final Node tabAt(Node[] tab, int i) { // used by Iter
666 >        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
667      }
668  
669 <    /**
670 <     * Returns the segment that should be used for key with given hash
165 <     * @param hash the hash code for the key
166 <     * @return the segment
167 <     */
168 <    final Segment<K,V> segmentFor(int hash) {
169 <        return segments[(hash >>> segmentShift) & segmentMask];
669 >    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
670 >        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
671      }
672  
673 <    /* ---------------- Inner Classes -------------- */
673 >    private static final void setTabAt(Node[] tab, int i, Node v) {
674 >        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
675 >    }
676 >
677 >    /* ---------------- Nodes -------------- */
678  
679      /**
680 <     * ConcurrentHashMap list entry. Note that this is never exported
681 <     * out as a user-visible Map.Entry.
682 <     *
683 <     * Because the value field is volatile, not final, it is legal wrt
684 <     * the Java Memory Model for an unsynchronized reader to see null
685 <     * instead of initial value when read via a data race.  Although a
686 <     * reordering leading to this is not likely to ever actually
687 <     * occur, the Segment.readValueUnderLock method is used as a
688 <     * backup in case a null (pre-initialized) value is ever seen in
689 <     * an unsynchronized access method.
690 <     */
691 <    static final class HashEntry<K,V> {
692 <        final K key;
693 <        final int hash;
189 <        volatile V value;
190 <        final HashEntry<K,V> next;
680 >     * Key-value entry. Note that this is never exported out as a
681 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
682 >     * field of MOVED are special, and do not contain user keys or
683 >     * values.  Otherwise, keys are never null, and null val fields
684 >     * indicate that a node is in the process of being deleted or
685 >     * created. For purposes of read-only access, a key may be read
686 >     * before a val, but can only be used after checking val to be
687 >     * non-null.
688 >     */
689 >    static class Node {
690 >        volatile int hash;
691 >        final Object key;
692 >        volatile Object val;
693 >        volatile Node next;
694  
695 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 <            this.key = key;
695 >        Node(int hash, Object key, Object val, Node next) {
696              this.hash = hash;
697 +            this.key = key;
698 +            this.val = val;
699              this.next = next;
196            this.value = value;
700          }
701  
702 <        @SuppressWarnings("unchecked")
703 <        static final <K,V> HashEntry<K,V>[] newArray(int i) {
704 <            return new HashEntry[i];
705 <        }
203 <    }
204 <
205 <    /**
206 <     * Segments are specialized versions of hash tables.  This
207 <     * subclasses from ReentrantLock opportunistically, just to
208 <     * simplify some locking and avoid separate construction.
209 <     */
210 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
211 <        /*
212 <         * Segments maintain a table of entry lists that are ALWAYS
213 <         * kept in a consistent state, so can be read without locking.
214 <         * Next fields of nodes are immutable (final).  All list
215 <         * additions are performed at the front of each bin. This
216 <         * makes it easy to check changes, and also fast to traverse.
217 <         * When nodes would otherwise be changed, new nodes are
218 <         * created to replace them. This works well for hash tables
219 <         * since the bin lists tend to be short. (The average length
220 <         * is less than two for the default load factor threshold.)
221 <         *
222 <         * Read operations can thus proceed without locking, but rely
223 <         * on selected uses of volatiles to ensure that completed
224 <         * write operations performed by other threads are
225 <         * noticed. For most purposes, the "count" field, tracking the
226 <         * number of elements, serves as that volatile variable
227 <         * ensuring visibility.  This is convenient because this field
228 <         * needs to be read in many read operations anyway:
229 <         *
230 <         *   - All (unsynchronized) read operations must first read the
231 <         *     "count" field, and should not look at table entries if
232 <         *     it is 0.
233 <         *
234 <         *   - All (synchronized) write operations should write to
235 <         *     the "count" field after structurally changing any bin.
236 <         *     The operations must not take any action that could even
237 <         *     momentarily cause a concurrent read operation to see
238 <         *     inconsistent data. This is made easier by the nature of
239 <         *     the read operations in Map. For example, no operation
240 <         *     can reveal that the table has grown but the threshold
241 <         *     has not yet been updated, so there are no atomicity
242 <         *     requirements for this with respect to reads.
243 <         *
244 <         * As a guide, all critical volatile reads and writes to the
245 <         * count field are marked in code comments.
246 <         */
702 >        /** CompareAndSet the hash field */
703 >        final boolean casHash(int cmp, int val) {
704 >            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
705 >        }
706  
707 <        private static final long serialVersionUID = 2249069246763182397L;
707 >        /** The number of spins before blocking for a lock */
708 >        static final int MAX_SPINS =
709 >            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
710  
711          /**
712 <         * The number of elements in this segment's region.
712 >         * Spins a while if LOCKED bit set and this node is the first
713 >         * of its bin, and then sets WAITING bits on hash field and
714 >         * blocks (once) if they are still set.  It is OK for this
715 >         * method to return even if lock is not available upon exit,
716 >         * which enables these simple single-wait mechanics.
717 >         *
718 >         * The corresponding signalling operation is performed within
719 >         * callers: Upon detecting that WAITING has been set when
720 >         * unlocking lock (via a failed CAS from non-waiting LOCKED
721 >         * state), unlockers acquire the sync lock and perform a
722 >         * notifyAll.
723 >         *
724 >         * The initial sanity check on tab and bounds is not currently
725 >         * necessary in the only usages of this method, but enables
726 >         * use in other future contexts.
727           */
728 <        transient volatile int count;
728 >        final void tryAwaitLock(Node[] tab, int i) {
729 >            if (tab != null && i >= 0 && i < tab.length) { // sanity check
730 >                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
731 >                int spins = MAX_SPINS, h;
732 >                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
733 >                    if (spins >= 0) {
734 >                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
735 >                        if (r >= 0 && --spins == 0)
736 >                            Thread.yield();  // yield before block
737 >                    }
738 >                    else if (casHash(h, h | WAITING)) {
739 >                        synchronized (this) {
740 >                            if (tabAt(tab, i) == this &&
741 >                                (hash & WAITING) == WAITING) {
742 >                                try {
743 >                                    wait();
744 >                                } catch (InterruptedException ie) {
745 >                                    Thread.currentThread().interrupt();
746 >                                }
747 >                            }
748 >                            else
749 >                                notifyAll(); // possibly won race vs signaller
750 >                        }
751 >                        break;
752 >                    }
753 >                }
754 >            }
755 >        }
756  
757 <        /**
758 <         * Number of updates that alter the size of the table. This is
759 <         * used during bulk-read methods to make sure they see a
258 <         * consistent snapshot: If modCounts change during a traversal
259 <         * of segments computing size or checking containsValue, then
260 <         * we might have an inconsistent view of state so (usually)
261 <         * must retry.
262 <         */
263 <        transient int modCount;
757 >        // Unsafe mechanics for casHash
758 >        private static final sun.misc.Unsafe UNSAFE;
759 >        private static final long hashOffset;
760  
761 <        /**
762 <         * The table is rehashed when its size exceeds this threshold.
763 <         * (The value of this field is always <tt>(int)(capacity *
764 <         * loadFactor)</tt>.)
765 <         */
766 <        transient int threshold;
761 >        static {
762 >            try {
763 >                UNSAFE = sun.misc.Unsafe.getUnsafe();
764 >                Class<?> k = Node.class;
765 >                hashOffset = UNSAFE.objectFieldOffset
766 >                    (k.getDeclaredField("hash"));
767 >            } catch (Exception e) {
768 >                throw new Error(e);
769 >            }
770 >        }
771 >    }
772  
773 <        /**
273 <         * The per-segment table.
274 <         */
275 <        transient volatile HashEntry<K,V>[] table;
773 >    /* ---------------- TreeBins -------------- */
774  
775 <        /**
776 <         * The load factor for the hash table.  Even though this value
777 <         * is same for all segments, it is replicated to avoid needing
778 <         * links to outer object.
779 <         * @serial
780 <         */
781 <        final float loadFactor;
775 >    /**
776 >     * Nodes for use in TreeBins
777 >     */
778 >    static final class TreeNode extends Node {
779 >        TreeNode parent;  // red-black tree links
780 >        TreeNode left;
781 >        TreeNode right;
782 >        TreeNode prev;    // needed to unlink next upon deletion
783 >        boolean red;
784 >
785 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
786 >            super(hash, key, val, next);
787 >            this.parent = parent;
788 >        }
789 >    }
790  
791 <        Segment(int initialCapacity, float lf) {
792 <            loadFactor = lf;
793 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
791 >    /**
792 >     * A specialized form of red-black tree for use in bins
793 >     * whose size exceeds a threshold.
794 >     *
795 >     * TreeBins use a special form of comparison for search and
796 >     * related operations (which is the main reason we cannot use
797 >     * existing collections such as TreeMaps). TreeBins contain
798 >     * Comparable elements, but may contain others, as well as
799 >     * elements that are Comparable but not necessarily Comparable<T>
800 >     * for the same T, so we cannot invoke compareTo among them. To
801 >     * handle this, the tree is ordered primarily by hash value, then
802 >     * by getClass().getName() order, and then by Comparator order
803 >     * among elements of the same class.  On lookup at a node, if
804 >     * elements are not comparable or compare as 0, both left and
805 >     * right children may need to be searched in the case of tied hash
806 >     * values. (This corresponds to the full list search that would be
807 >     * necessary if all elements were non-Comparable and had tied
808 >     * hashes.)  The red-black balancing code is updated from
809 >     * pre-jdk-collections
810 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
811 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
812 >     * Algorithms" (CLR).
813 >     *
814 >     * TreeBins also maintain a separate locking discipline than
815 >     * regular bins. Because they are forwarded via special MOVED
816 >     * nodes at bin heads (which can never change once established),
817 >     * we cannot use those nodes as locks. Instead, TreeBin
818 >     * extends AbstractQueuedSynchronizer to support a simple form of
819 >     * read-write lock. For update operations and table validation,
820 >     * the exclusive form of lock behaves in the same way as bin-head
821 >     * locks. However, lookups use shared read-lock mechanics to allow
822 >     * multiple readers in the absence of writers.  Additionally,
823 >     * these lookups do not ever block: While the lock is not
824 >     * available, they proceed along the slow traversal path (via
825 >     * next-pointers) until the lock becomes available or the list is
826 >     * exhausted, whichever comes first. (These cases are not fast,
827 >     * but maximize aggregate expected throughput.)  The AQS mechanics
828 >     * for doing this are straightforward.  The lock state is held as
829 >     * AQS getState().  Read counts are negative; the write count (1)
830 >     * is positive.  There are no signalling preferences among readers
831 >     * and writers. Since we don't need to export full Lock API, we
832 >     * just override the minimal AQS methods and use them directly.
833 >     */
834 >    static final class TreeBin extends AbstractQueuedSynchronizer {
835 >        private static final long serialVersionUID = 2249069246763182397L;
836 >        transient TreeNode root;  // root of tree
837 >        transient TreeNode first; // head of next-pointer list
838 >
839 >        /* AQS overrides */
840 >        public final boolean isHeldExclusively() { return getState() > 0; }
841 >        public final boolean tryAcquire(int ignore) {
842 >            if (compareAndSetState(0, 1)) {
843 >                setExclusiveOwnerThread(Thread.currentThread());
844 >                return true;
845 >            }
846 >            return false;
847 >        }
848 >        public final boolean tryRelease(int ignore) {
849 >            setExclusiveOwnerThread(null);
850 >            setState(0);
851 >            return true;
852 >        }
853 >        public final int tryAcquireShared(int ignore) {
854 >            for (int c;;) {
855 >                if ((c = getState()) > 0)
856 >                    return -1;
857 >                if (compareAndSetState(c, c -1))
858 >                    return 1;
859 >            }
860 >        }
861 >        public final boolean tryReleaseShared(int ignore) {
862 >            int c;
863 >            do {} while (!compareAndSetState(c = getState(), c + 1));
864 >            return c == -1;
865 >        }
866 >
867 >        /** From CLR */
868 >        private void rotateLeft(TreeNode p) {
869 >            if (p != null) {
870 >                TreeNode r = p.right, pp, rl;
871 >                if ((rl = p.right = r.left) != null)
872 >                    rl.parent = p;
873 >                if ((pp = r.parent = p.parent) == null)
874 >                    root = r;
875 >                else if (pp.left == p)
876 >                    pp.left = r;
877 >                else
878 >                    pp.right = r;
879 >                r.left = p;
880 >                p.parent = r;
881 >            }
882          }
883  
884 <        @SuppressWarnings("unchecked")
885 <        static final <K,V> Segment<K,V>[] newArray(int i) {
886 <            return new Segment[i];
884 >        /** From CLR */
885 >        private void rotateRight(TreeNode p) {
886 >            if (p != null) {
887 >                TreeNode l = p.left, pp, lr;
888 >                if ((lr = p.left = l.right) != null)
889 >                    lr.parent = p;
890 >                if ((pp = l.parent = p.parent) == null)
891 >                    root = l;
892 >                else if (pp.right == p)
893 >                    pp.right = l;
894 >                else
895 >                    pp.left = l;
896 >                l.right = p;
897 >                p.parent = l;
898 >            }
899          }
900  
901          /**
902 <         * Sets table to new HashEntry array.
903 <         * Call only while holding lock or in constructor.
902 >         * Returns the TreeNode (or null if not found) for the given key
903 >         * starting at given root.
904           */
905 <        void setTable(HashEntry<K,V>[] newTable) {
906 <            threshold = (int)(newTable.length * loadFactor);
907 <            table = newTable;
905 >        @SuppressWarnings("unchecked") final TreeNode getTreeNode
906 >            (int h, Object k, TreeNode p) {
907 >            Class<?> c = k.getClass();
908 >            while (p != null) {
909 >                int dir, ph;  Object pk; Class<?> pc;
910 >                if ((ph = p.hash) == h) {
911 >                    if ((pk = p.key) == k || k.equals(pk))
912 >                        return p;
913 >                    if (c != (pc = pk.getClass()) ||
914 >                        !(k instanceof Comparable) ||
915 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
916 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
917 >                        TreeNode r = null, s = null, pl, pr;
918 >                        if (dir >= 0) {
919 >                            if ((pl = p.left) != null && h <= pl.hash)
920 >                                s = pl;
921 >                        }
922 >                        else if ((pr = p.right) != null && h >= pr.hash)
923 >                            s = pr;
924 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
925 >                            return r;
926 >                    }
927 >                }
928 >                else
929 >                    dir = (h < ph) ? -1 : 1;
930 >                p = (dir > 0) ? p.right : p.left;
931 >            }
932 >            return null;
933          }
934  
935          /**
936 <         * Returns properly casted first entry of bin for given hash.
936 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
937 >         * read-lock to call getTreeNode, but during failure to get
938 >         * lock, searches along next links.
939           */
940 <        HashEntry<K,V> getFirst(int hash) {
941 <            HashEntry<K,V>[] tab = table;
942 <            return tab[hash & (tab.length - 1)];
940 >        final Object getValue(int h, Object k) {
941 >            Node r = null;
942 >            int c = getState(); // Must read lock state first
943 >            for (Node e = first; e != null; e = e.next) {
944 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
945 >                    try {
946 >                        r = getTreeNode(h, k, root);
947 >                    } finally {
948 >                        releaseShared(0);
949 >                    }
950 >                    break;
951 >                }
952 >                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
953 >                    r = e;
954 >                    break;
955 >                }
956 >                else
957 >                    c = getState();
958 >            }
959 >            return r == null ? null : r.val;
960          }
961  
962          /**
963 <         * Reads value field of an entry under lock. Called if value
964 <         * field ever appears to be null. This is possible only if a
315 <         * compiler happens to reorder a HashEntry initialization with
316 <         * its table assignment, which is legal under memory model
317 <         * but is not known to ever occur.
963 >         * Finds or adds a node.
964 >         * @return null if added
965           */
966 <        V readValueUnderLock(HashEntry<K,V> e) {
967 <            lock();
968 <            try {
969 <                return e.value;
970 <            } finally {
971 <                unlock();
966 >        @SuppressWarnings("unchecked") final TreeNode putTreeNode
967 >            (int h, Object k, Object v) {
968 >            Class<?> c = k.getClass();
969 >            TreeNode pp = root, p = null;
970 >            int dir = 0;
971 >            while (pp != null) { // find existing node or leaf to insert at
972 >                int ph;  Object pk; Class<?> pc;
973 >                p = pp;
974 >                if ((ph = p.hash) == h) {
975 >                    if ((pk = p.key) == k || k.equals(pk))
976 >                        return p;
977 >                    if (c != (pc = pk.getClass()) ||
978 >                        !(k instanceof Comparable) ||
979 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
980 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
981 >                        TreeNode r = null, s = null, pl, pr;
982 >                        if (dir >= 0) {
983 >                            if ((pl = p.left) != null && h <= pl.hash)
984 >                                s = pl;
985 >                        }
986 >                        else if ((pr = p.right) != null && h >= pr.hash)
987 >                            s = pr;
988 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
989 >                            return r;
990 >                    }
991 >                }
992 >                else
993 >                    dir = (h < ph) ? -1 : 1;
994 >                pp = (dir > 0) ? p.right : p.left;
995              }
326        }
327
328        /* Specialized implementations of map methods */
996  
997 <        V get(Object key, int hash) {
998 <            if (count != 0) { // read-volatile
999 <                HashEntry<K,V> e = getFirst(hash);
1000 <                while (e != null) {
1001 <                    if (e.hash == hash && key.equals(e.key)) {
1002 <                        V v = e.value;
1003 <                        if (v != null)
1004 <                            return v;
1005 <                        return readValueUnderLock(e); // recheck
997 >            TreeNode f = first;
998 >            TreeNode x = first = new TreeNode(h, k, v, f, p);
999 >            if (p == null)
1000 >                root = x;
1001 >            else { // attach and rebalance; adapted from CLR
1002 >                TreeNode xp, xpp;
1003 >                if (f != null)
1004 >                    f.prev = x;
1005 >                if (dir <= 0)
1006 >                    p.left = x;
1007 >                else
1008 >                    p.right = x;
1009 >                x.red = true;
1010 >                while (x != null && (xp = x.parent) != null && xp.red &&
1011 >                       (xpp = xp.parent) != null) {
1012 >                    TreeNode xppl = xpp.left;
1013 >                    if (xp == xppl) {
1014 >                        TreeNode y = xpp.right;
1015 >                        if (y != null && y.red) {
1016 >                            y.red = false;
1017 >                            xp.red = false;
1018 >                            xpp.red = true;
1019 >                            x = xpp;
1020 >                        }
1021 >                        else {
1022 >                            if (x == xp.right) {
1023 >                                rotateLeft(x = xp);
1024 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
1025 >                            }
1026 >                            if (xp != null) {
1027 >                                xp.red = false;
1028 >                                if (xpp != null) {
1029 >                                    xpp.red = true;
1030 >                                    rotateRight(xpp);
1031 >                                }
1032 >                            }
1033 >                        }
1034 >                    }
1035 >                    else {
1036 >                        TreeNode y = xppl;
1037 >                        if (y != null && y.red) {
1038 >                            y.red = false;
1039 >                            xp.red = false;
1040 >                            xpp.red = true;
1041 >                            x = xpp;
1042 >                        }
1043 >                        else {
1044 >                            if (x == xp.left) {
1045 >                                rotateRight(x = xp);
1046 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
1047 >                            }
1048 >                            if (xp != null) {
1049 >                                xp.red = false;
1050 >                                if (xpp != null) {
1051 >                                    xpp.red = true;
1052 >                                    rotateLeft(xpp);
1053 >                                }
1054 >                            }
1055 >                        }
1056                      }
340                    e = e.next;
1057                  }
1058 +                TreeNode r = root;
1059 +                if (r != null && r.red)
1060 +                    r.red = false;
1061              }
1062              return null;
1063          }
1064  
1065 <        boolean containsKey(Object key, int hash) {
1066 <            if (count != 0) { // read-volatile
1067 <                HashEntry<K,V> e = getFirst(hash);
1068 <                while (e != null) {
1069 <                    if (e.hash == hash && key.equals(e.key))
1070 <                        return true;
1071 <                    e = e.next;
1065 >        /**
1066 >         * Removes the given node, that must be present before this
1067 >         * call.  This is messier than typical red-black deletion code
1068 >         * because we cannot swap the contents of an interior node
1069 >         * with a leaf successor that is pinned by "next" pointers
1070 >         * that are accessible independently of lock. So instead we
1071 >         * swap the tree linkages.
1072 >         */
1073 >        final void deleteTreeNode(TreeNode p) {
1074 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1075 >            TreeNode pred = p.prev;
1076 >            if (pred == null)
1077 >                first = next;
1078 >            else
1079 >                pred.next = next;
1080 >            if (next != null)
1081 >                next.prev = pred;
1082 >            TreeNode replacement;
1083 >            TreeNode pl = p.left;
1084 >            TreeNode pr = p.right;
1085 >            if (pl != null && pr != null) {
1086 >                TreeNode s = pr, sl;
1087 >                while ((sl = s.left) != null) // find successor
1088 >                    s = sl;
1089 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1090 >                TreeNode sr = s.right;
1091 >                TreeNode pp = p.parent;
1092 >                if (s == pr) { // p was s's direct parent
1093 >                    p.parent = s;
1094 >                    s.right = p;
1095                  }
1096 +                else {
1097 +                    TreeNode sp = s.parent;
1098 +                    if ((p.parent = sp) != null) {
1099 +                        if (s == sp.left)
1100 +                            sp.left = p;
1101 +                        else
1102 +                            sp.right = p;
1103 +                    }
1104 +                    if ((s.right = pr) != null)
1105 +                        pr.parent = s;
1106 +                }
1107 +                p.left = null;
1108 +                if ((p.right = sr) != null)
1109 +                    sr.parent = p;
1110 +                if ((s.left = pl) != null)
1111 +                    pl.parent = s;
1112 +                if ((s.parent = pp) == null)
1113 +                    root = s;
1114 +                else if (p == pp.left)
1115 +                    pp.left = s;
1116 +                else
1117 +                    pp.right = s;
1118 +                replacement = sr;
1119 +            }
1120 +            else
1121 +                replacement = (pl != null) ? pl : pr;
1122 +            TreeNode pp = p.parent;
1123 +            if (replacement == null) {
1124 +                if (pp == null) {
1125 +                    root = null;
1126 +                    return;
1127 +                }
1128 +                replacement = p;
1129 +            }
1130 +            else {
1131 +                replacement.parent = pp;
1132 +                if (pp == null)
1133 +                    root = replacement;
1134 +                else if (p == pp.left)
1135 +                    pp.left = replacement;
1136 +                else
1137 +                    pp.right = replacement;
1138 +                p.left = p.right = p.parent = null;
1139 +            }
1140 +            if (!p.red) { // rebalance, from CLR
1141 +                TreeNode x = replacement;
1142 +                while (x != null) {
1143 +                    TreeNode xp, xpl;
1144 +                    if (x.red || (xp = x.parent) == null) {
1145 +                        x.red = false;
1146 +                        break;
1147 +                    }
1148 +                    if (x == (xpl = xp.left)) {
1149 +                        TreeNode sib = xp.right;
1150 +                        if (sib != null && sib.red) {
1151 +                            sib.red = false;
1152 +                            xp.red = true;
1153 +                            rotateLeft(xp);
1154 +                            sib = (xp = x.parent) == null ? null : xp.right;
1155 +                        }
1156 +                        if (sib == null)
1157 +                            x = xp;
1158 +                        else {
1159 +                            TreeNode sl = sib.left, sr = sib.right;
1160 +                            if ((sr == null || !sr.red) &&
1161 +                                (sl == null || !sl.red)) {
1162 +                                sib.red = true;
1163 +                                x = xp;
1164 +                            }
1165 +                            else {
1166 +                                if (sr == null || !sr.red) {
1167 +                                    if (sl != null)
1168 +                                        sl.red = false;
1169 +                                    sib.red = true;
1170 +                                    rotateRight(sib);
1171 +                                    sib = (xp = x.parent) == null ? null : xp.right;
1172 +                                }
1173 +                                if (sib != null) {
1174 +                                    sib.red = (xp == null) ? false : xp.red;
1175 +                                    if ((sr = sib.right) != null)
1176 +                                        sr.red = false;
1177 +                                }
1178 +                                if (xp != null) {
1179 +                                    xp.red = false;
1180 +                                    rotateLeft(xp);
1181 +                                }
1182 +                                x = root;
1183 +                            }
1184 +                        }
1185 +                    }
1186 +                    else { // symmetric
1187 +                        TreeNode sib = xpl;
1188 +                        if (sib != null && sib.red) {
1189 +                            sib.red = false;
1190 +                            xp.red = true;
1191 +                            rotateRight(xp);
1192 +                            sib = (xp = x.parent) == null ? null : xp.left;
1193 +                        }
1194 +                        if (sib == null)
1195 +                            x = xp;
1196 +                        else {
1197 +                            TreeNode sl = sib.left, sr = sib.right;
1198 +                            if ((sl == null || !sl.red) &&
1199 +                                (sr == null || !sr.red)) {
1200 +                                sib.red = true;
1201 +                                x = xp;
1202 +                            }
1203 +                            else {
1204 +                                if (sl == null || !sl.red) {
1205 +                                    if (sr != null)
1206 +                                        sr.red = false;
1207 +                                    sib.red = true;
1208 +                                    rotateLeft(sib);
1209 +                                    sib = (xp = x.parent) == null ? null : xp.left;
1210 +                                }
1211 +                                if (sib != null) {
1212 +                                    sib.red = (xp == null) ? false : xp.red;
1213 +                                    if ((sl = sib.left) != null)
1214 +                                        sl.red = false;
1215 +                                }
1216 +                                if (xp != null) {
1217 +                                    xp.red = false;
1218 +                                    rotateRight(xp);
1219 +                                }
1220 +                                x = root;
1221 +                            }
1222 +                        }
1223 +                    }
1224 +                }
1225 +            }
1226 +            if (p == replacement && (pp = p.parent) != null) {
1227 +                if (p == pp.left) // detach pointers
1228 +                    pp.left = null;
1229 +                else if (p == pp.right)
1230 +                    pp.right = null;
1231 +                p.parent = null;
1232              }
355            return false;
1233          }
1234 +    }
1235 +
1236 +    /* ---------------- Collision reduction methods -------------- */
1237 +
1238 +    /**
1239 +     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1240 +     * Because the table uses power-of-two masking, sets of hashes
1241 +     * that vary only in bits above the current mask will always
1242 +     * collide. (Among known examples are sets of Float keys holding
1243 +     * consecutive whole numbers in small tables.)  To counter this,
1244 +     * we apply a transform that spreads the impact of higher bits
1245 +     * downward. There is a tradeoff between speed, utility, and
1246 +     * quality of bit-spreading. Because many common sets of hashes
1247 +     * are already reasonably distributed across bits (so don't benefit
1248 +     * from spreading), and because we use trees to handle large sets
1249 +     * of collisions in bins, we don't need excessively high quality.
1250 +     */
1251 +    private static final int spread(int h) {
1252 +        h ^= (h >>> 18) ^ (h >>> 12);
1253 +        return (h ^ (h >>> 10)) & HASH_BITS;
1254 +    }
1255 +
1256 +    /**
1257 +     * Replaces a list bin with a tree bin. Call only when locked.
1258 +     * Fails to replace if the given key is non-comparable or table
1259 +     * is, or needs, resizing.
1260 +     */
1261 +    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1262 +        if ((key instanceof Comparable) &&
1263 +            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1264 +            TreeBin t = new TreeBin();
1265 +            for (Node e = tabAt(tab, index); e != null; e = e.next)
1266 +                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1267 +            setTabAt(tab, index, new Node(MOVED, t, null, null));
1268 +        }
1269 +    }
1270 +
1271 +    /* ---------------- Internal access and update methods -------------- */
1272  
1273 <        boolean containsValue(Object value) {
1274 <            if (count != 0) { // read-volatile
1275 <                HashEntry<K,V>[] tab = table;
1276 <                int len = tab.length;
1277 <                for (int i = 0 ; i < len; i++) {
1278 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1279 <                        V v = e.value;
1280 <                        if (v == null) // recheck
1281 <                            v = readValueUnderLock(e);
1282 <                        if (value.equals(v))
1283 <                            return true;
1273 >    /** Implementation for get and containsKey */
1274 >    private final Object internalGet(Object k) {
1275 >        int h = spread(k.hashCode());
1276 >        retry: for (Node[] tab = table; tab != null;) {
1277 >            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1278 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1279 >                if ((eh = e.hash) == MOVED) {
1280 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1281 >                        return ((TreeBin)ek).getValue(h, k);
1282 >                    else {                        // restart with new table
1283 >                        tab = (Node[])ek;
1284 >                        continue retry;
1285                      }
1286                  }
1287 +                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1288 +                         ((ek = e.key) == k || k.equals(ek)))
1289 +                    return ev;
1290              }
1291 <            return false;
1291 >            break;
1292          }
1293 +        return null;
1294 +    }
1295  
1296 <        boolean replace(K key, int hash, V oldValue, V newValue) {
1297 <            lock();
1298 <            try {
1299 <                HashEntry<K,V> e = getFirst(hash);
1300 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1301 <                    e = e.next;
1302 <
1303 <                boolean replaced = false;
1304 <                if (e != null && oldValue.equals(e.value)) {
1305 <                    replaced = true;
1306 <                    e.value = newValue;
1296 >    /**
1297 >     * Implementation for the four public remove/replace methods:
1298 >     * Replaces node value with v, conditional upon match of cv if
1299 >     * non-null.  If resulting value is null, delete.
1300 >     */
1301 >    private final Object internalReplace(Object k, Object v, Object cv) {
1302 >        int h = spread(k.hashCode());
1303 >        Object oldVal = null;
1304 >        for (Node[] tab = table;;) {
1305 >            Node f; int i, fh; Object fk;
1306 >            if (tab == null ||
1307 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1308 >                break;
1309 >            else if ((fh = f.hash) == MOVED) {
1310 >                if ((fk = f.key) instanceof TreeBin) {
1311 >                    TreeBin t = (TreeBin)fk;
1312 >                    boolean validated = false;
1313 >                    boolean deleted = false;
1314 >                    t.acquire(0);
1315 >                    try {
1316 >                        if (tabAt(tab, i) == f) {
1317 >                            validated = true;
1318 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1319 >                            if (p != null) {
1320 >                                Object pv = p.val;
1321 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1322 >                                    oldVal = pv;
1323 >                                    if ((p.val = v) == null) {
1324 >                                        deleted = true;
1325 >                                        t.deleteTreeNode(p);
1326 >                                    }
1327 >                                }
1328 >                            }
1329 >                        }
1330 >                    } finally {
1331 >                        t.release(0);
1332 >                    }
1333 >                    if (validated) {
1334 >                        if (deleted)
1335 >                            counter.add(-1L);
1336 >                        break;
1337 >                    }
1338 >                }
1339 >                else
1340 >                    tab = (Node[])fk;
1341 >            }
1342 >            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1343 >                break;                          // rules out possible existence
1344 >            else if ((fh & LOCKED) != 0) {
1345 >                checkForResize();               // try resizing if can't get lock
1346 >                f.tryAwaitLock(tab, i);
1347 >            }
1348 >            else if (f.casHash(fh, fh | LOCKED)) {
1349 >                boolean validated = false;
1350 >                boolean deleted = false;
1351 >                try {
1352 >                    if (tabAt(tab, i) == f) {
1353 >                        validated = true;
1354 >                        for (Node e = f, pred = null;;) {
1355 >                            Object ek, ev;
1356 >                            if ((e.hash & HASH_BITS) == h &&
1357 >                                ((ev = e.val) != null) &&
1358 >                                ((ek = e.key) == k || k.equals(ek))) {
1359 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1360 >                                    oldVal = ev;
1361 >                                    if ((e.val = v) == null) {
1362 >                                        deleted = true;
1363 >                                        Node en = e.next;
1364 >                                        if (pred != null)
1365 >                                            pred.next = en;
1366 >                                        else
1367 >                                            setTabAt(tab, i, en);
1368 >                                    }
1369 >                                }
1370 >                                break;
1371 >                            }
1372 >                            pred = e;
1373 >                            if ((e = e.next) == null)
1374 >                                break;
1375 >                        }
1376 >                    }
1377 >                } finally {
1378 >                    if (!f.casHash(fh | LOCKED, fh)) {
1379 >                        f.hash = fh;
1380 >                        synchronized (f) { f.notifyAll(); };
1381 >                    }
1382 >                }
1383 >                if (validated) {
1384 >                    if (deleted)
1385 >                        counter.add(-1L);
1386 >                    break;
1387                  }
387                return replaced;
388            } finally {
389                unlock();
1388              }
1389          }
1390 +        return oldVal;
1391 +    }
1392  
1393 <        V replace(K key, int hash, V newValue) {
1394 <            lock();
1395 <            try {
1396 <                HashEntry<K,V> e = getFirst(hash);
1397 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1398 <                    e = e.next;
1393 >    /*
1394 >     * Internal versions of the six insertion methods, each a
1395 >     * little more complicated than the last. All have
1396 >     * the same basic structure as the first (internalPut):
1397 >     *  1. If table uninitialized, create
1398 >     *  2. If bin empty, try to CAS new node
1399 >     *  3. If bin stale, use new table
1400 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1401 >     *  5. Lock and validate; if valid, scan and add or update
1402 >     *
1403 >     * The others interweave other checks and/or alternative actions:
1404 >     *  * Plain put checks for and performs resize after insertion.
1405 >     *  * putIfAbsent prescans for mapping without lock (and fails to add
1406 >     *    if present), which also makes pre-emptive resize checks worthwhile.
1407 >     *  * computeIfAbsent extends form used in putIfAbsent with additional
1408 >     *    mechanics to deal with, calls, potential exceptions and null
1409 >     *    returns from function call.
1410 >     *  * compute uses the same function-call mechanics, but without
1411 >     *    the prescans
1412 >     *  * merge acts as putIfAbsent in the absent case, but invokes the
1413 >     *    update function if present
1414 >     *  * putAll attempts to pre-allocate enough table space
1415 >     *    and more lazily performs count updates and checks.
1416 >     *
1417 >     * Someday when details settle down a bit more, it might be worth
1418 >     * some factoring to reduce sprawl.
1419 >     */
1420  
1421 <                V oldValue = null;
1422 <                if (e != null) {
1423 <                    oldValue = e.value;
1424 <                    e.value = newValue;
1421 >    /** Implementation for put */
1422 >    private final Object internalPut(Object k, Object v) {
1423 >        int h = spread(k.hashCode());
1424 >        int count = 0;
1425 >        for (Node[] tab = table;;) {
1426 >            int i; Node f; int fh; Object fk;
1427 >            if (tab == null)
1428 >                tab = initTable();
1429 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1430 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1431 >                    break;                   // no lock when adding to empty bin
1432 >            }
1433 >            else if ((fh = f.hash) == MOVED) {
1434 >                if ((fk = f.key) instanceof TreeBin) {
1435 >                    TreeBin t = (TreeBin)fk;
1436 >                    Object oldVal = null;
1437 >                    t.acquire(0);
1438 >                    try {
1439 >                        if (tabAt(tab, i) == f) {
1440 >                            count = 2;
1441 >                            TreeNode p = t.putTreeNode(h, k, v);
1442 >                            if (p != null) {
1443 >                                oldVal = p.val;
1444 >                                p.val = v;
1445 >                            }
1446 >                        }
1447 >                    } finally {
1448 >                        t.release(0);
1449 >                    }
1450 >                    if (count != 0) {
1451 >                        if (oldVal != null)
1452 >                            return oldVal;
1453 >                        break;
1454 >                    }
1455 >                }
1456 >                else
1457 >                    tab = (Node[])fk;
1458 >            }
1459 >            else if ((fh & LOCKED) != 0) {
1460 >                checkForResize();
1461 >                f.tryAwaitLock(tab, i);
1462 >            }
1463 >            else if (f.casHash(fh, fh | LOCKED)) {
1464 >                Object oldVal = null;
1465 >                try {                        // needed in case equals() throws
1466 >                    if (tabAt(tab, i) == f) {
1467 >                        count = 1;
1468 >                        for (Node e = f;; ++count) {
1469 >                            Object ek, ev;
1470 >                            if ((e.hash & HASH_BITS) == h &&
1471 >                                (ev = e.val) != null &&
1472 >                                ((ek = e.key) == k || k.equals(ek))) {
1473 >                                oldVal = ev;
1474 >                                e.val = v;
1475 >                                break;
1476 >                            }
1477 >                            Node last = e;
1478 >                            if ((e = e.next) == null) {
1479 >                                last.next = new Node(h, k, v, null);
1480 >                                if (count >= TREE_THRESHOLD)
1481 >                                    replaceWithTreeBin(tab, i, k);
1482 >                                break;
1483 >                            }
1484 >                        }
1485 >                    }
1486 >                } finally {                  // unlock and signal if needed
1487 >                    if (!f.casHash(fh | LOCKED, fh)) {
1488 >                        f.hash = fh;
1489 >                        synchronized (f) { f.notifyAll(); };
1490 >                    }
1491 >                }
1492 >                if (count != 0) {
1493 >                    if (oldVal != null)
1494 >                        return oldVal;
1495 >                    if (tab.length <= 64)
1496 >                        count = 2;
1497 >                    break;
1498                  }
405                return oldValue;
406            } finally {
407                unlock();
1499              }
1500          }
1501 +        counter.add(1L);
1502 +        if (count > 1)
1503 +            checkForResize();
1504 +        return null;
1505 +    }
1506  
1507 +    /** Implementation for putIfAbsent */
1508 +    private final Object internalPutIfAbsent(Object k, Object v) {
1509 +        int h = spread(k.hashCode());
1510 +        int count = 0;
1511 +        for (Node[] tab = table;;) {
1512 +            int i; Node f; int fh; Object fk, fv;
1513 +            if (tab == null)
1514 +                tab = initTable();
1515 +            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1516 +                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1517 +                    break;
1518 +            }
1519 +            else if ((fh = f.hash) == MOVED) {
1520 +                if ((fk = f.key) instanceof TreeBin) {
1521 +                    TreeBin t = (TreeBin)fk;
1522 +                    Object oldVal = null;
1523 +                    t.acquire(0);
1524 +                    try {
1525 +                        if (tabAt(tab, i) == f) {
1526 +                            count = 2;
1527 +                            TreeNode p = t.putTreeNode(h, k, v);
1528 +                            if (p != null)
1529 +                                oldVal = p.val;
1530 +                        }
1531 +                    } finally {
1532 +                        t.release(0);
1533 +                    }
1534 +                    if (count != 0) {
1535 +                        if (oldVal != null)
1536 +                            return oldVal;
1537 +                        break;
1538 +                    }
1539 +                }
1540 +                else
1541 +                    tab = (Node[])fk;
1542 +            }
1543 +            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1544 +                     ((fk = f.key) == k || k.equals(fk)))
1545 +                return fv;
1546 +            else {
1547 +                Node g = f.next;
1548 +                if (g != null) { // at least 2 nodes -- search and maybe resize
1549 +                    for (Node e = g;;) {
1550 +                        Object ek, ev;
1551 +                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1552 +                            ((ek = e.key) == k || k.equals(ek)))
1553 +                            return ev;
1554 +                        if ((e = e.next) == null) {
1555 +                            checkForResize();
1556 +                            break;
1557 +                        }
1558 +                    }
1559 +                }
1560 +                if (((fh = f.hash) & LOCKED) != 0) {
1561 +                    checkForResize();
1562 +                    f.tryAwaitLock(tab, i);
1563 +                }
1564 +                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1565 +                    Object oldVal = null;
1566 +                    try {
1567 +                        if (tabAt(tab, i) == f) {
1568 +                            count = 1;
1569 +                            for (Node e = f;; ++count) {
1570 +                                Object ek, ev;
1571 +                                if ((e.hash & HASH_BITS) == h &&
1572 +                                    (ev = e.val) != null &&
1573 +                                    ((ek = e.key) == k || k.equals(ek))) {
1574 +                                    oldVal = ev;
1575 +                                    break;
1576 +                                }
1577 +                                Node last = e;
1578 +                                if ((e = e.next) == null) {
1579 +                                    last.next = new Node(h, k, v, null);
1580 +                                    if (count >= TREE_THRESHOLD)
1581 +                                        replaceWithTreeBin(tab, i, k);
1582 +                                    break;
1583 +                                }
1584 +                            }
1585 +                        }
1586 +                    } finally {
1587 +                        if (!f.casHash(fh | LOCKED, fh)) {
1588 +                            f.hash = fh;
1589 +                            synchronized (f) { f.notifyAll(); };
1590 +                        }
1591 +                    }
1592 +                    if (count != 0) {
1593 +                        if (oldVal != null)
1594 +                            return oldVal;
1595 +                        if (tab.length <= 64)
1596 +                            count = 2;
1597 +                        break;
1598 +                    }
1599 +                }
1600 +            }
1601 +        }
1602 +        counter.add(1L);
1603 +        if (count > 1)
1604 +            checkForResize();
1605 +        return null;
1606 +    }
1607  
1608 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
1609 <            lock();
1610 <            try {
1611 <                int c = count;
1612 <                if (c++ > threshold) // ensure capacity
1613 <                    rehash();
1614 <                HashEntry<K,V>[] tab = table;
1615 <                int index = hash & (tab.length - 1);
1616 <                HashEntry<K,V> first = tab[index];
1617 <                HashEntry<K,V> e = first;
1618 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1619 <                    e = e.next;
1620 <
1621 <                V oldValue;
1622 <                if (e != null) {
1623 <                    oldValue = e.value;
1624 <                    if (!onlyIfAbsent)
1625 <                        e.value = value;
1608 >    /** Implementation for computeIfAbsent */
1609 >    private final Object internalComputeIfAbsent(K k,
1610 >                                                 Fun<? super K, ?> mf) {
1611 >        int h = spread(k.hashCode());
1612 >        Object val = null;
1613 >        int count = 0;
1614 >        for (Node[] tab = table;;) {
1615 >            Node f; int i, fh; Object fk, fv;
1616 >            if (tab == null)
1617 >                tab = initTable();
1618 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1619 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1620 >                if (casTabAt(tab, i, null, node)) {
1621 >                    count = 1;
1622 >                    try {
1623 >                        if ((val = mf.apply(k)) != null)
1624 >                            node.val = val;
1625 >                    } finally {
1626 >                        if (val == null)
1627 >                            setTabAt(tab, i, null);
1628 >                        if (!node.casHash(fh, h)) {
1629 >                            node.hash = h;
1630 >                            synchronized (node) { node.notifyAll(); };
1631 >                        }
1632 >                    }
1633                  }
1634 <                else {
1635 <                    oldValue = null;
1636 <                    ++modCount;
1637 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
1638 <                    count = c; // write-volatile
1634 >                if (count != 0)
1635 >                    break;
1636 >            }
1637 >            else if ((fh = f.hash) == MOVED) {
1638 >                if ((fk = f.key) instanceof TreeBin) {
1639 >                    TreeBin t = (TreeBin)fk;
1640 >                    boolean added = false;
1641 >                    t.acquire(0);
1642 >                    try {
1643 >                        if (tabAt(tab, i) == f) {
1644 >                            count = 1;
1645 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1646 >                            if (p != null)
1647 >                                val = p.val;
1648 >                            else if ((val = mf.apply(k)) != null) {
1649 >                                added = true;
1650 >                                count = 2;
1651 >                                t.putTreeNode(h, k, val);
1652 >                            }
1653 >                        }
1654 >                    } finally {
1655 >                        t.release(0);
1656 >                    }
1657 >                    if (count != 0) {
1658 >                        if (!added)
1659 >                            return val;
1660 >                        break;
1661 >                    }
1662 >                }
1663 >                else
1664 >                    tab = (Node[])fk;
1665 >            }
1666 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1667 >                     ((fk = f.key) == k || k.equals(fk)))
1668 >                return fv;
1669 >            else {
1670 >                Node g = f.next;
1671 >                if (g != null) {
1672 >                    for (Node e = g;;) {
1673 >                        Object ek, ev;
1674 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1675 >                            ((ek = e.key) == k || k.equals(ek)))
1676 >                            return ev;
1677 >                        if ((e = e.next) == null) {
1678 >                            checkForResize();
1679 >                            break;
1680 >                        }
1681 >                    }
1682 >                }
1683 >                if (((fh = f.hash) & LOCKED) != 0) {
1684 >                    checkForResize();
1685 >                    f.tryAwaitLock(tab, i);
1686 >                }
1687 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1688 >                    boolean added = false;
1689 >                    try {
1690 >                        if (tabAt(tab, i) == f) {
1691 >                            count = 1;
1692 >                            for (Node e = f;; ++count) {
1693 >                                Object ek, ev;
1694 >                                if ((e.hash & HASH_BITS) == h &&
1695 >                                    (ev = e.val) != null &&
1696 >                                    ((ek = e.key) == k || k.equals(ek))) {
1697 >                                    val = ev;
1698 >                                    break;
1699 >                                }
1700 >                                Node last = e;
1701 >                                if ((e = e.next) == null) {
1702 >                                    if ((val = mf.apply(k)) != null) {
1703 >                                        added = true;
1704 >                                        last.next = new Node(h, k, val, null);
1705 >                                        if (count >= TREE_THRESHOLD)
1706 >                                            replaceWithTreeBin(tab, i, k);
1707 >                                    }
1708 >                                    break;
1709 >                                }
1710 >                            }
1711 >                        }
1712 >                    } finally {
1713 >                        if (!f.casHash(fh | LOCKED, fh)) {
1714 >                            f.hash = fh;
1715 >                            synchronized (f) { f.notifyAll(); };
1716 >                        }
1717 >                    }
1718 >                    if (count != 0) {
1719 >                        if (!added)
1720 >                            return val;
1721 >                        if (tab.length <= 64)
1722 >                            count = 2;
1723 >                        break;
1724 >                    }
1725                  }
437                return oldValue;
438            } finally {
439                unlock();
1726              }
1727          }
1728 +        if (val != null) {
1729 +            counter.add(1L);
1730 +            if (count > 1)
1731 +                checkForResize();
1732 +        }
1733 +        return val;
1734 +    }
1735  
1736 <        void rehash() {
1737 <            HashEntry<K,V>[] oldTable = table;
1738 <            int oldCapacity = oldTable.length;
1739 <            if (oldCapacity >= MAXIMUM_CAPACITY)
1740 <                return;
1741 <
1742 <            /*
1743 <             * Reclassify nodes in each list to new Map.  Because we are
1744 <             * using power-of-two expansion, the elements from each bin
1745 <             * must either stay at same index, or move with a power of two
1746 <             * offset. We eliminate unnecessary node creation by catching
1747 <             * cases where old nodes can be reused because their next
1748 <             * fields won't change. Statistically, at the default
1749 <             * threshold, only about one-sixth of them need cloning when
1750 <             * a table doubles. The nodes they replace will be garbage
1751 <             * collectable as soon as they are no longer referenced by any
1752 <             * reader thread that may be in the midst of traversing table
1753 <             * right now.
1754 <             */
1755 <
1756 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
1757 <            threshold = (int)(newTable.length * loadFactor);
1758 <            int sizeMask = newTable.length - 1;
1759 <            for (int i = 0; i < oldCapacity ; i++) {
1760 <                // We need to guarantee that any existing reads of old Map can
1761 <                //  proceed. So we cannot yet null out each bin.
1762 <                HashEntry<K,V> e = oldTable[i];
1763 <
1764 <                if (e != null) {
1765 <                    HashEntry<K,V> next = e.next;
1766 <                    int idx = e.hash & sizeMask;
1767 <
1768 <                    //  Single node on list
1769 <                    if (next == null)
1770 <                        newTable[idx] = e;
1736 >    /** Implementation for compute */
1737 >    @SuppressWarnings("unchecked") private final Object internalCompute
1738 >        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1739 >        int h = spread(k.hashCode());
1740 >        Object val = null;
1741 >        int delta = 0;
1742 >        int count = 0;
1743 >        for (Node[] tab = table;;) {
1744 >            Node f; int i, fh; Object fk;
1745 >            if (tab == null)
1746 >                tab = initTable();
1747 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1748 >                if (onlyIfPresent)
1749 >                    break;
1750 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1751 >                if (casTabAt(tab, i, null, node)) {
1752 >                    try {
1753 >                        count = 1;
1754 >                        if ((val = mf.apply(k, null)) != null) {
1755 >                            node.val = val;
1756 >                            delta = 1;
1757 >                        }
1758 >                    } finally {
1759 >                        if (delta == 0)
1760 >                            setTabAt(tab, i, null);
1761 >                        if (!node.casHash(fh, h)) {
1762 >                            node.hash = h;
1763 >                            synchronized (node) { node.notifyAll(); };
1764 >                        }
1765 >                    }
1766 >                }
1767 >                if (count != 0)
1768 >                    break;
1769 >            }
1770 >            else if ((fh = f.hash) == MOVED) {
1771 >                if ((fk = f.key) instanceof TreeBin) {
1772 >                    TreeBin t = (TreeBin)fk;
1773 >                    t.acquire(0);
1774 >                    try {
1775 >                        if (tabAt(tab, i) == f) {
1776 >                            count = 1;
1777 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1778 >                            Object pv = (p == null) ? null : p.val;
1779 >                            if ((val = mf.apply(k, (V)pv)) != null) {
1780 >                                if (p != null)
1781 >                                    p.val = val;
1782 >                                else {
1783 >                                    count = 2;
1784 >                                    delta = 1;
1785 >                                    t.putTreeNode(h, k, val);
1786 >                                }
1787 >                            }
1788 >                            else if (p != null) {
1789 >                                delta = -1;
1790 >                                t.deleteTreeNode(p);
1791 >                            }
1792 >                        }
1793 >                    } finally {
1794 >                        t.release(0);
1795 >                    }
1796 >                    if (count != 0)
1797 >                        break;
1798 >                }
1799 >                else
1800 >                    tab = (Node[])fk;
1801 >            }
1802 >            else if ((fh & LOCKED) != 0) {
1803 >                checkForResize();
1804 >                f.tryAwaitLock(tab, i);
1805 >            }
1806 >            else if (f.casHash(fh, fh | LOCKED)) {
1807 >                try {
1808 >                    if (tabAt(tab, i) == f) {
1809 >                        count = 1;
1810 >                        for (Node e = f, pred = null;; ++count) {
1811 >                            Object ek, ev;
1812 >                            if ((e.hash & HASH_BITS) == h &&
1813 >                                (ev = e.val) != null &&
1814 >                                ((ek = e.key) == k || k.equals(ek))) {
1815 >                                val = mf.apply(k, (V)ev);
1816 >                                if (val != null)
1817 >                                    e.val = val;
1818 >                                else {
1819 >                                    delta = -1;
1820 >                                    Node en = e.next;
1821 >                                    if (pred != null)
1822 >                                        pred.next = en;
1823 >                                    else
1824 >                                        setTabAt(tab, i, en);
1825 >                                }
1826 >                                break;
1827 >                            }
1828 >                            pred = e;
1829 >                            if ((e = e.next) == null) {
1830 >                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1831 >                                    pred.next = new Node(h, k, val, null);
1832 >                                    delta = 1;
1833 >                                    if (count >= TREE_THRESHOLD)
1834 >                                        replaceWithTreeBin(tab, i, k);
1835 >                                }
1836 >                                break;
1837 >                            }
1838 >                        }
1839 >                    }
1840 >                } finally {
1841 >                    if (!f.casHash(fh | LOCKED, fh)) {
1842 >                        f.hash = fh;
1843 >                        synchronized (f) { f.notifyAll(); };
1844 >                    }
1845 >                }
1846 >                if (count != 0) {
1847 >                    if (tab.length <= 64)
1848 >                        count = 2;
1849 >                    break;
1850 >                }
1851 >            }
1852 >        }
1853 >        if (delta != 0) {
1854 >            counter.add((long)delta);
1855 >            if (count > 1)
1856 >                checkForResize();
1857 >        }
1858 >        return val;
1859 >    }
1860  
1861 <                    else {
1862 <                        // Reuse trailing consecutive sequence at same slot
1863 <                        HashEntry<K,V> lastRun = e;
1864 <                        int lastIdx = idx;
1865 <                        for (HashEntry<K,V> last = next;
1866 <                             last != null;
1867 <                             last = last.next) {
1868 <                            int k = last.hash & sizeMask;
1869 <                            if (k != lastIdx) {
1870 <                                lastIdx = k;
1871 <                                lastRun = last;
1861 >    /** Implementation for merge */
1862 >    @SuppressWarnings("unchecked") private final Object internalMerge
1863 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1864 >        int h = spread(k.hashCode());
1865 >        Object val = null;
1866 >        int delta = 0;
1867 >        int count = 0;
1868 >        for (Node[] tab = table;;) {
1869 >            int i; Node f; int fh; Object fk, fv;
1870 >            if (tab == null)
1871 >                tab = initTable();
1872 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1873 >                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1874 >                    delta = 1;
1875 >                    val = v;
1876 >                    break;
1877 >                }
1878 >            }
1879 >            else if ((fh = f.hash) == MOVED) {
1880 >                if ((fk = f.key) instanceof TreeBin) {
1881 >                    TreeBin t = (TreeBin)fk;
1882 >                    t.acquire(0);
1883 >                    try {
1884 >                        if (tabAt(tab, i) == f) {
1885 >                            count = 1;
1886 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1887 >                            val = (p == null) ? v : mf.apply((V)p.val, v);
1888 >                            if (val != null) {
1889 >                                if (p != null)
1890 >                                    p.val = val;
1891 >                                else {
1892 >                                    count = 2;
1893 >                                    delta = 1;
1894 >                                    t.putTreeNode(h, k, val);
1895 >                                }
1896 >                            }
1897 >                            else if (p != null) {
1898 >                                delta = -1;
1899 >                                t.deleteTreeNode(p);
1900                              }
1901                          }
1902 <                        newTable[lastIdx] = lastRun;
1902 >                    } finally {
1903 >                        t.release(0);
1904 >                    }
1905 >                    if (count != 0)
1906 >                        break;
1907 >                }
1908 >                else
1909 >                    tab = (Node[])fk;
1910 >            }
1911 >            else if ((fh & LOCKED) != 0) {
1912 >                checkForResize();
1913 >                f.tryAwaitLock(tab, i);
1914 >            }
1915 >            else if (f.casHash(fh, fh | LOCKED)) {
1916 >                try {
1917 >                    if (tabAt(tab, i) == f) {
1918 >                        count = 1;
1919 >                        for (Node e = f, pred = null;; ++count) {
1920 >                            Object ek, ev;
1921 >                            if ((e.hash & HASH_BITS) == h &&
1922 >                                (ev = e.val) != null &&
1923 >                                ((ek = e.key) == k || k.equals(ek))) {
1924 >                                val = mf.apply(v, (V)ev);
1925 >                                if (val != null)
1926 >                                    e.val = val;
1927 >                                else {
1928 >                                    delta = -1;
1929 >                                    Node en = e.next;
1930 >                                    if (pred != null)
1931 >                                        pred.next = en;
1932 >                                    else
1933 >                                        setTabAt(tab, i, en);
1934 >                                }
1935 >                                break;
1936 >                            }
1937 >                            pred = e;
1938 >                            if ((e = e.next) == null) {
1939 >                                val = v;
1940 >                                pred.next = new Node(h, k, val, null);
1941 >                                delta = 1;
1942 >                                if (count >= TREE_THRESHOLD)
1943 >                                    replaceWithTreeBin(tab, i, k);
1944 >                                break;
1945 >                            }
1946 >                        }
1947 >                    }
1948 >                } finally {
1949 >                    if (!f.casHash(fh | LOCKED, fh)) {
1950 >                        f.hash = fh;
1951 >                        synchronized (f) { f.notifyAll(); };
1952 >                    }
1953 >                }
1954 >                if (count != 0) {
1955 >                    if (tab.length <= 64)
1956 >                        count = 2;
1957 >                    break;
1958 >                }
1959 >            }
1960 >        }
1961 >        if (delta != 0) {
1962 >            counter.add((long)delta);
1963 >            if (count > 1)
1964 >                checkForResize();
1965 >        }
1966 >        return val;
1967 >    }
1968  
1969 <                        // Clone all remaining nodes
1970 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1971 <                            int k = p.hash & sizeMask;
1972 <                            HashEntry<K,V> n = newTable[k];
1973 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
1974 <                                                             n, p.value);
1969 >    /** Implementation for putAll */
1970 >    private final void internalPutAll(Map<?, ?> m) {
1971 >        tryPresize(m.size());
1972 >        long delta = 0L;     // number of uncommitted additions
1973 >        boolean npe = false; // to throw exception on exit for nulls
1974 >        try {                // to clean up counts on other exceptions
1975 >            for (Map.Entry<?, ?> entry : m.entrySet()) {
1976 >                Object k, v;
1977 >                if (entry == null || (k = entry.getKey()) == null ||
1978 >                    (v = entry.getValue()) == null) {
1979 >                    npe = true;
1980 >                    break;
1981 >                }
1982 >                int h = spread(k.hashCode());
1983 >                for (Node[] tab = table;;) {
1984 >                    int i; Node f; int fh; Object fk;
1985 >                    if (tab == null)
1986 >                        tab = initTable();
1987 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1988 >                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1989 >                            ++delta;
1990 >                            break;
1991 >                        }
1992 >                    }
1993 >                    else if ((fh = f.hash) == MOVED) {
1994 >                        if ((fk = f.key) instanceof TreeBin) {
1995 >                            TreeBin t = (TreeBin)fk;
1996 >                            boolean validated = false;
1997 >                            t.acquire(0);
1998 >                            try {
1999 >                                if (tabAt(tab, i) == f) {
2000 >                                    validated = true;
2001 >                                    TreeNode p = t.getTreeNode(h, k, t.root);
2002 >                                    if (p != null)
2003 >                                        p.val = v;
2004 >                                    else {
2005 >                                        t.putTreeNode(h, k, v);
2006 >                                        ++delta;
2007 >                                    }
2008 >                                }
2009 >                            } finally {
2010 >                                t.release(0);
2011 >                            }
2012 >                            if (validated)
2013 >                                break;
2014 >                        }
2015 >                        else
2016 >                            tab = (Node[])fk;
2017 >                    }
2018 >                    else if ((fh & LOCKED) != 0) {
2019 >                        counter.add(delta);
2020 >                        delta = 0L;
2021 >                        checkForResize();
2022 >                        f.tryAwaitLock(tab, i);
2023 >                    }
2024 >                    else if (f.casHash(fh, fh | LOCKED)) {
2025 >                        int count = 0;
2026 >                        try {
2027 >                            if (tabAt(tab, i) == f) {
2028 >                                count = 1;
2029 >                                for (Node e = f;; ++count) {
2030 >                                    Object ek, ev;
2031 >                                    if ((e.hash & HASH_BITS) == h &&
2032 >                                        (ev = e.val) != null &&
2033 >                                        ((ek = e.key) == k || k.equals(ek))) {
2034 >                                        e.val = v;
2035 >                                        break;
2036 >                                    }
2037 >                                    Node last = e;
2038 >                                    if ((e = e.next) == null) {
2039 >                                        ++delta;
2040 >                                        last.next = new Node(h, k, v, null);
2041 >                                        if (count >= TREE_THRESHOLD)
2042 >                                            replaceWithTreeBin(tab, i, k);
2043 >                                        break;
2044 >                                    }
2045 >                                }
2046 >                            }
2047 >                        } finally {
2048 >                            if (!f.casHash(fh | LOCKED, fh)) {
2049 >                                f.hash = fh;
2050 >                                synchronized (f) { f.notifyAll(); };
2051 >                            }
2052 >                        }
2053 >                        if (count != 0) {
2054 >                            if (count > 1) {
2055 >                                counter.add(delta);
2056 >                                delta = 0L;
2057 >                                checkForResize();
2058 >                            }
2059 >                            break;
2060                          }
2061                      }
2062                  }
2063              }
2064 <            table = newTable;
2064 >        } finally {
2065 >            if (delta != 0)
2066 >                counter.add(delta);
2067          }
2068 +        if (npe)
2069 +            throw new NullPointerException();
2070 +    }
2071  
2072 <        /**
508 <         * Remove; match on key only if value null, else match both.
509 <         */
510 <        V remove(Object key, int hash, Object value) {
511 <            lock();
512 <            try {
513 <                int c = count - 1;
514 <                HashEntry<K,V>[] tab = table;
515 <                int index = hash & (tab.length - 1);
516 <                HashEntry<K,V> first = tab[index];
517 <                HashEntry<K,V> e = first;
518 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
519 <                    e = e.next;
2072 >    /* ---------------- Table Initialization and Resizing -------------- */
2073  
2074 <                V oldValue = null;
2075 <                if (e != null) {
2076 <                    V v = e.value;
2077 <                    if (value == null || value.equals(v)) {
2078 <                        oldValue = v;
2079 <                        // All entries following removed node can stay
2080 <                        // in list, but all preceding ones need to be
2081 <                        // cloned.
2082 <                        ++modCount;
2083 <                        HashEntry<K,V> newFirst = e.next;
2084 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
2085 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
2086 <                                                          newFirst, p.value);
2087 <                        tab[index] = newFirst;
2088 <                        count = c; // write-volatile
2074 >    /**
2075 >     * Returns a power of two table size for the given desired capacity.
2076 >     * See Hackers Delight, sec 3.2
2077 >     */
2078 >    private static final int tableSizeFor(int c) {
2079 >        int n = c - 1;
2080 >        n |= n >>> 1;
2081 >        n |= n >>> 2;
2082 >        n |= n >>> 4;
2083 >        n |= n >>> 8;
2084 >        n |= n >>> 16;
2085 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2086 >    }
2087 >
2088 >    /**
2089 >     * Initializes table, using the size recorded in sizeCtl.
2090 >     */
2091 >    private final Node[] initTable() {
2092 >        Node[] tab; int sc;
2093 >        while ((tab = table) == null) {
2094 >            if ((sc = sizeCtl) < 0)
2095 >                Thread.yield(); // lost initialization race; just spin
2096 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2097 >                try {
2098 >                    if ((tab = table) == null) {
2099 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2100 >                        tab = table = new Node[n];
2101 >                        sc = n - (n >>> 2);
2102                      }
2103 +                } finally {
2104 +                    sizeCtl = sc;
2105 +                }
2106 +                break;
2107 +            }
2108 +        }
2109 +        return tab;
2110 +    }
2111 +
2112 +    /**
2113 +     * If table is too small and not already resizing, creates next
2114 +     * table and transfers bins.  Rechecks occupancy after a transfer
2115 +     * to see if another resize is already needed because resizings
2116 +     * are lagging additions.
2117 +     */
2118 +    private final void checkForResize() {
2119 +        Node[] tab; int n, sc;
2120 +        while ((tab = table) != null &&
2121 +               (n = tab.length) < MAXIMUM_CAPACITY &&
2122 +               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2123 +               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2124 +            try {
2125 +                if (tab == table) {
2126 +                    table = rebuild(tab);
2127 +                    sc = (n << 1) - (n >>> 1);
2128                  }
538                return oldValue;
2129              } finally {
2130 <                unlock();
2130 >                sizeCtl = sc;
2131              }
2132          }
2133 +    }
2134  
2135 <        void clear() {
2136 <            if (count != 0) {
2137 <                lock();
2135 >    /**
2136 >     * Tries to presize table to accommodate the given number of elements.
2137 >     *
2138 >     * @param size number of elements (doesn't need to be perfectly accurate)
2139 >     */
2140 >    private final void tryPresize(int size) {
2141 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2142 >            tableSizeFor(size + (size >>> 1) + 1);
2143 >        int sc;
2144 >        while ((sc = sizeCtl) >= 0) {
2145 >            Node[] tab = table; int n;
2146 >            if (tab == null || (n = tab.length) == 0) {
2147 >                n = (sc > c) ? sc : c;
2148 >                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2149 >                    try {
2150 >                        if (table == tab) {
2151 >                            table = new Node[n];
2152 >                            sc = n - (n >>> 2);
2153 >                        }
2154 >                    } finally {
2155 >                        sizeCtl = sc;
2156 >                    }
2157 >                }
2158 >            }
2159 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2160 >                break;
2161 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2162                  try {
2163 <                    HashEntry<K,V>[] tab = table;
2164 <                    for (int i = 0; i < tab.length ; i++)
2165 <                        tab[i] = null;
2166 <                    ++modCount;
552 <                    count = 0; // write-volatile
2163 >                    if (table == tab) {
2164 >                        table = rebuild(tab);
2165 >                        sc = (n << 1) - (n >>> 1);
2166 >                    }
2167                  } finally {
2168 <                    unlock();
2168 >                    sizeCtl = sc;
2169                  }
2170              }
2171          }
2172      }
2173  
2174 +    /*
2175 +     * Moves and/or copies the nodes in each bin to new table. See
2176 +     * above for explanation.
2177 +     *
2178 +     * @return the new table
2179 +     */
2180 +    private static final Node[] rebuild(Node[] tab) {
2181 +        int n = tab.length;
2182 +        Node[] nextTab = new Node[n << 1];
2183 +        Node fwd = new Node(MOVED, nextTab, null, null);
2184 +        int[] buffer = null;       // holds bins to revisit; null until needed
2185 +        Node rev = null;           // reverse forwarder; null until needed
2186 +        int nbuffered = 0;         // the number of bins in buffer list
2187 +        int bufferIndex = 0;       // buffer index of current buffered bin
2188 +        int bin = n - 1;           // current non-buffered bin or -1 if none
2189 +
2190 +        for (int i = bin;;) {      // start upwards sweep
2191 +            int fh; Node f;
2192 +            if ((f = tabAt(tab, i)) == null) {
2193 +                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
2194 +                    if (!casTabAt(tab, i, f, fwd))
2195 +                        continue;
2196 +                }
2197 +                else {             // transiently use a locked forwarding node
2198 +                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2199 +                    if (!casTabAt(tab, i, f, g))
2200 +                        continue;
2201 +                    setTabAt(nextTab, i, null);
2202 +                    setTabAt(nextTab, i + n, null);
2203 +                    setTabAt(tab, i, fwd);
2204 +                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2205 +                        g.hash = MOVED;
2206 +                        synchronized (g) { g.notifyAll(); }
2207 +                    }
2208 +                }
2209 +            }
2210 +            else if ((fh = f.hash) == MOVED) {
2211 +                Object fk = f.key;
2212 +                if (fk instanceof TreeBin) {
2213 +                    TreeBin t = (TreeBin)fk;
2214 +                    boolean validated = false;
2215 +                    t.acquire(0);
2216 +                    try {
2217 +                        if (tabAt(tab, i) == f) {
2218 +                            validated = true;
2219 +                            splitTreeBin(nextTab, i, t);
2220 +                            setTabAt(tab, i, fwd);
2221 +                        }
2222 +                    } finally {
2223 +                        t.release(0);
2224 +                    }
2225 +                    if (!validated)
2226 +                        continue;
2227 +                }
2228 +            }
2229 +            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2230 +                boolean validated = false;
2231 +                try {              // split to lo and hi lists; copying as needed
2232 +                    if (tabAt(tab, i) == f) {
2233 +                        validated = true;
2234 +                        splitBin(nextTab, i, f);
2235 +                        setTabAt(tab, i, fwd);
2236 +                    }
2237 +                } finally {
2238 +                    if (!f.casHash(fh | LOCKED, fh)) {
2239 +                        f.hash = fh;
2240 +                        synchronized (f) { f.notifyAll(); };
2241 +                    }
2242 +                }
2243 +                if (!validated)
2244 +                    continue;
2245 +            }
2246 +            else {
2247 +                if (buffer == null) // initialize buffer for revisits
2248 +                    buffer = new int[TRANSFER_BUFFER_SIZE];
2249 +                if (bin < 0 && bufferIndex > 0) {
2250 +                    int j = buffer[--bufferIndex];
2251 +                    buffer[bufferIndex] = i;
2252 +                    i = j;         // swap with another bin
2253 +                    continue;
2254 +                }
2255 +                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2256 +                    f.tryAwaitLock(tab, i);
2257 +                    continue;      // no other options -- block
2258 +                }
2259 +                if (rev == null)   // initialize reverse-forwarder
2260 +                    rev = new Node(MOVED, tab, null, null);
2261 +                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2262 +                    continue;      // recheck before adding to list
2263 +                buffer[nbuffered++] = i;
2264 +                setTabAt(nextTab, i, rev);     // install place-holders
2265 +                setTabAt(nextTab, i + n, rev);
2266 +            }
2267  
2268 +            if (bin > 0)
2269 +                i = --bin;
2270 +            else if (buffer != null && nbuffered > 0) {
2271 +                bin = -1;
2272 +                i = buffer[bufferIndex = --nbuffered];
2273 +            }
2274 +            else
2275 +                return nextTab;
2276 +        }
2277 +    }
2278  
2279 <    /* ---------------- Public operations -------------- */
2279 >    /**
2280 >     * Splits a normal bin with list headed by e into lo and hi parts;
2281 >     * installs in given table.
2282 >     */
2283 >    private static void splitBin(Node[] nextTab, int i, Node e) {
2284 >        int bit = nextTab.length >>> 1; // bit to split on
2285 >        int runBit = e.hash & bit;
2286 >        Node lastRun = e, lo = null, hi = null;
2287 >        for (Node p = e.next; p != null; p = p.next) {
2288 >            int b = p.hash & bit;
2289 >            if (b != runBit) {
2290 >                runBit = b;
2291 >                lastRun = p;
2292 >            }
2293 >        }
2294 >        if (runBit == 0)
2295 >            lo = lastRun;
2296 >        else
2297 >            hi = lastRun;
2298 >        for (Node p = e; p != lastRun; p = p.next) {
2299 >            int ph = p.hash & HASH_BITS;
2300 >            Object pk = p.key, pv = p.val;
2301 >            if ((ph & bit) == 0)
2302 >                lo = new Node(ph, pk, pv, lo);
2303 >            else
2304 >                hi = new Node(ph, pk, pv, hi);
2305 >        }
2306 >        setTabAt(nextTab, i, lo);
2307 >        setTabAt(nextTab, i + bit, hi);
2308 >    }
2309  
2310      /**
2311 <     * Creates a new, empty map with the specified initial
566 <     * capacity, load factor and concurrency level.
567 <     *
568 <     * @param initialCapacity the initial capacity. The implementation
569 <     * performs internal sizing to accommodate this many elements.
570 <     * @param loadFactor  the load factor threshold, used to control resizing.
571 <     * Resizing may be performed when the average number of elements per
572 <     * bin exceeds this threshold.
573 <     * @param concurrencyLevel the estimated number of concurrently
574 <     * updating threads. The implementation performs internal sizing
575 <     * to try to accommodate this many threads.
576 <     * @throws IllegalArgumentException if the initial capacity is
577 <     * negative or the load factor or concurrencyLevel are
578 <     * nonpositive.
2311 >     * Splits a tree bin into lo and hi parts; installs in given table.
2312       */
2313 <    public ConcurrentHashMap(int initialCapacity,
2314 <                             float loadFactor, int concurrencyLevel) {
2315 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
2316 <            throw new IllegalArgumentException();
2313 >    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2314 >        int bit = nextTab.length >>> 1;
2315 >        TreeBin lt = new TreeBin();
2316 >        TreeBin ht = new TreeBin();
2317 >        int lc = 0, hc = 0;
2318 >        for (Node e = t.first; e != null; e = e.next) {
2319 >            int h = e.hash & HASH_BITS;
2320 >            Object k = e.key, v = e.val;
2321 >            if ((h & bit) == 0) {
2322 >                ++lc;
2323 >                lt.putTreeNode(h, k, v);
2324 >            }
2325 >            else {
2326 >                ++hc;
2327 >                ht.putTreeNode(h, k, v);
2328 >            }
2329 >        }
2330 >        Node ln, hn; // throw away trees if too small
2331 >        if (lc <= (TREE_THRESHOLD >>> 1)) {
2332 >            ln = null;
2333 >            for (Node p = lt.first; p != null; p = p.next)
2334 >                ln = new Node(p.hash, p.key, p.val, ln);
2335 >        }
2336 >        else
2337 >            ln = new Node(MOVED, lt, null, null);
2338 >        setTabAt(nextTab, i, ln);
2339 >        if (hc <= (TREE_THRESHOLD >>> 1)) {
2340 >            hn = null;
2341 >            for (Node p = ht.first; p != null; p = p.next)
2342 >                hn = new Node(p.hash, p.key, p.val, hn);
2343 >        }
2344 >        else
2345 >            hn = new Node(MOVED, ht, null, null);
2346 >        setTabAt(nextTab, i + bit, hn);
2347 >    }
2348  
2349 <        if (concurrencyLevel > MAX_SEGMENTS)
2350 <            concurrencyLevel = MAX_SEGMENTS;
2349 >    /**
2350 >     * Implementation for clear. Steps through each bin, removing all
2351 >     * nodes.
2352 >     */
2353 >    private final void internalClear() {
2354 >        long delta = 0L; // negative number of deletions
2355 >        int i = 0;
2356 >        Node[] tab = table;
2357 >        while (tab != null && i < tab.length) {
2358 >            int fh; Object fk;
2359 >            Node f = tabAt(tab, i);
2360 >            if (f == null)
2361 >                ++i;
2362 >            else if ((fh = f.hash) == MOVED) {
2363 >                if ((fk = f.key) instanceof TreeBin) {
2364 >                    TreeBin t = (TreeBin)fk;
2365 >                    t.acquire(0);
2366 >                    try {
2367 >                        if (tabAt(tab, i) == f) {
2368 >                            for (Node p = t.first; p != null; p = p.next) {
2369 >                                if (p.val != null) { // (currently always true)
2370 >                                    p.val = null;
2371 >                                    --delta;
2372 >                                }
2373 >                            }
2374 >                            t.first = null;
2375 >                            t.root = null;
2376 >                            ++i;
2377 >                        }
2378 >                    } finally {
2379 >                        t.release(0);
2380 >                    }
2381 >                }
2382 >                else
2383 >                    tab = (Node[])fk;
2384 >            }
2385 >            else if ((fh & LOCKED) != 0) {
2386 >                counter.add(delta); // opportunistically update count
2387 >                delta = 0L;
2388 >                f.tryAwaitLock(tab, i);
2389 >            }
2390 >            else if (f.casHash(fh, fh | LOCKED)) {
2391 >                try {
2392 >                    if (tabAt(tab, i) == f) {
2393 >                        for (Node e = f; e != null; e = e.next) {
2394 >                            if (e.val != null) {  // (currently always true)
2395 >                                e.val = null;
2396 >                                --delta;
2397 >                            }
2398 >                        }
2399 >                        setTabAt(tab, i, null);
2400 >                        ++i;
2401 >                    }
2402 >                } finally {
2403 >                    if (!f.casHash(fh | LOCKED, fh)) {
2404 >                        f.hash = fh;
2405 >                        synchronized (f) { f.notifyAll(); };
2406 >                    }
2407 >                }
2408 >            }
2409 >        }
2410 >        if (delta != 0)
2411 >            counter.add(delta);
2412 >    }
2413 >
2414 >    /* ----------------Table Traversal -------------- */
2415 >
2416 >    /**
2417 >     * Encapsulates traversal for methods such as containsValue; also
2418 >     * serves as a base class for other iterators and bulk tasks.
2419 >     *
2420 >     * At each step, the iterator snapshots the key ("nextKey") and
2421 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2422 >     * snapshot, has a non-null user value). Because val fields can
2423 >     * change (including to null, indicating deletion), field nextVal
2424 >     * might not be accurate at point of use, but still maintains the
2425 >     * weak consistency property of holding a value that was once
2426 >     * valid. To support iterator.remove, the nextKey field is not
2427 >     * updated (nulled out) when the iterator cannot advance.
2428 >     *
2429 >     * Internal traversals directly access these fields, as in:
2430 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2431 >     *
2432 >     * Exported iterators must track whether the iterator has advanced
2433 >     * (in hasNext vs next) (by setting/checking/nulling field
2434 >     * nextVal), and then extract key, value, or key-value pairs as
2435 >     * return values of next().
2436 >     *
2437 >     * The iterator visits once each still-valid node that was
2438 >     * reachable upon iterator construction. It might miss some that
2439 >     * were added to a bin after the bin was visited, which is OK wrt
2440 >     * consistency guarantees. Maintaining this property in the face
2441 >     * of possible ongoing resizes requires a fair amount of
2442 >     * bookkeeping state that is difficult to optimize away amidst
2443 >     * volatile accesses.  Even so, traversal maintains reasonable
2444 >     * throughput.
2445 >     *
2446 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2447 >     * However, if the table has been resized, then all future steps
2448 >     * must traverse both the bin at the current index as well as at
2449 >     * (index + baseSize); and so on for further resizings. To
2450 >     * paranoically cope with potential sharing by users of iterators
2451 >     * across threads, iteration terminates if a bounds checks fails
2452 >     * for a table read.
2453 >     *
2454 >     * This class extends ForkJoinTask to streamline parallel
2455 >     * iteration in bulk operations (see BulkTask). This adds only an
2456 >     * int of space overhead, which is close enough to negligible in
2457 >     * cases where it is not needed to not worry about it.  Because
2458 >     * ForkJoinTask is Serializable, but iterators need not be, we
2459 >     * need to add warning suppressions.
2460 >     */
2461 >    @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2462 >        final ConcurrentHashMap<K, V> map;
2463 >        Node next;           // the next entry to use
2464 >        Object nextKey;      // cached key field of next
2465 >        Object nextVal;      // cached val field of next
2466 >        Node[] tab;          // current table; updated if resized
2467 >        int index;           // index of bin to use next
2468 >        int baseIndex;       // current index of initial table
2469 >        int baseLimit;       // index bound for initial table
2470 >        int baseSize;        // initial table size
2471 >
2472 >        /** Creates iterator for all entries in the table. */
2473 >        Traverser(ConcurrentHashMap<K, V> map) {
2474 >            this.map = map;
2475 >        }
2476 >
2477 >        /** Creates iterator for split() methods */
2478 >        Traverser(Traverser<K,V,?> it) {
2479 >            ConcurrentHashMap<K, V> m; Node[] t;
2480 >            if ((m = this.map = it.map) == null)
2481 >                t = null;
2482 >            else if ((t = it.tab) == null && // force parent tab initialization
2483 >                     (t = it.tab = m.table) != null)
2484 >                it.baseLimit = it.baseSize = t.length;
2485 >            this.tab = t;
2486 >            this.baseSize = it.baseSize;
2487 >            it.baseLimit = this.index = this.baseIndex =
2488 >                ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2489 >        }
2490 >
2491 >        /**
2492 >         * Advances next; returns nextVal or null if terminated.
2493 >         * See above for explanation.
2494 >         */
2495 >        final Object advance() {
2496 >            Node e = next;
2497 >            Object ev = null;
2498 >            outer: do {
2499 >                if (e != null)                  // advance past used/skipped node
2500 >                    e = e.next;
2501 >                while (e == null) {             // get to next non-null bin
2502 >                    ConcurrentHashMap<K, V> m;
2503 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2504 >                    if ((t = tab) != null)
2505 >                        n = t.length;
2506 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2507 >                        n = baseLimit = baseSize = t.length;
2508 >                    else
2509 >                        break outer;
2510 >                    if ((b = baseIndex) >= baseLimit ||
2511 >                        (i = index) < 0 || i >= n)
2512 >                        break outer;
2513 >                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2514 >                        if ((ek = e.key) instanceof TreeBin)
2515 >                            e = ((TreeBin)ek).first;
2516 >                        else {
2517 >                            tab = (Node[])ek;
2518 >                            continue;           // restarts due to null val
2519 >                        }
2520 >                    }                           // visit upper slots if present
2521 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2522 >                }
2523 >                nextKey = e.key;
2524 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2525 >            next = e;
2526 >            return nextVal = ev;
2527 >        }
2528 >
2529 >        public final void remove() {
2530 >            Object k = nextKey;
2531 >            if (k == null && (advance() == null || (k = nextKey) == null))
2532 >                throw new IllegalStateException();
2533 >            map.internalReplace(k, null, null);
2534 >        }
2535  
2536 <        // Find power-of-two sizes best matching arguments
2537 <        int sshift = 0;
2538 <        int ssize = 1;
591 <        while (ssize < concurrencyLevel) {
592 <            ++sshift;
593 <            ssize <<= 1;
594 <        }
595 <        segmentShift = 32 - sshift;
596 <        segmentMask = ssize - 1;
597 <        this.segments = Segment.newArray(ssize);
598 <
599 <        if (initialCapacity > MAXIMUM_CAPACITY)
600 <            initialCapacity = MAXIMUM_CAPACITY;
601 <        int c = initialCapacity / ssize;
602 <        if (c * ssize < initialCapacity)
603 <            ++c;
604 <        int cap = 1;
605 <        while (cap < c)
606 <            cap <<= 1;
2536 >        public final boolean hasNext() {
2537 >            return nextVal != null || advance() != null;
2538 >        }
2539  
2540 <        for (int i = 0; i < this.segments.length; ++i)
2541 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
2540 >        public final boolean hasMoreElements() { return hasNext(); }
2541 >        public final void setRawResult(Object x) { }
2542 >        public R getRawResult() { return null; }
2543 >        public boolean exec() { return true; }
2544      }
2545  
2546 +    /* ---------------- Public operations -------------- */
2547 +
2548      /**
2549 <     * Creates a new, empty map with the specified initial capacity
2550 <     * and load factor and with the default concurrencyLevel (16).
2549 >     * Creates a new, empty map with the default initial table size (16).
2550 >     */
2551 >    public ConcurrentHashMap() {
2552 >        this.counter = new LongAdder();
2553 >    }
2554 >
2555 >    /**
2556 >     * Creates a new, empty map with an initial table size
2557 >     * accommodating the specified number of elements without the need
2558 >     * to dynamically resize.
2559       *
2560       * @param initialCapacity The implementation performs internal
2561       * sizing to accommodate this many elements.
2562 <     * @param loadFactor  the load factor threshold, used to control resizing.
2563 <     * Resizing may be performed when the average number of elements per
2564 <     * bin exceeds this threshold.
2562 >     * @throws IllegalArgumentException if the initial capacity of
2563 >     * elements is negative
2564 >     */
2565 >    public ConcurrentHashMap(int initialCapacity) {
2566 >        if (initialCapacity < 0)
2567 >            throw new IllegalArgumentException();
2568 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2569 >                   MAXIMUM_CAPACITY :
2570 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2571 >        this.counter = new LongAdder();
2572 >        this.sizeCtl = cap;
2573 >    }
2574 >
2575 >    /**
2576 >     * Creates a new map with the same mappings as the given map.
2577 >     *
2578 >     * @param m the map
2579 >     */
2580 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2581 >        this.counter = new LongAdder();
2582 >        this.sizeCtl = DEFAULT_CAPACITY;
2583 >        internalPutAll(m);
2584 >    }
2585 >
2586 >    /**
2587 >     * Creates a new, empty map with an initial table size based on
2588 >     * the given number of elements ({@code initialCapacity}) and
2589 >     * initial table density ({@code loadFactor}).
2590 >     *
2591 >     * @param initialCapacity the initial capacity. The implementation
2592 >     * performs internal sizing to accommodate this many elements,
2593 >     * given the specified load factor.
2594 >     * @param loadFactor the load factor (table density) for
2595 >     * establishing the initial table size
2596       * @throws IllegalArgumentException if the initial capacity of
2597       * elements is negative or the load factor is nonpositive
2598       *
2599       * @since 1.6
2600       */
2601      public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2602 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2602 >        this(initialCapacity, loadFactor, 1);
2603      }
2604  
2605      /**
2606 <     * Creates a new, empty map with the specified initial capacity,
2607 <     * and with default load factor (0.75) and concurrencyLevel (16).
2606 >     * Creates a new, empty map with an initial table size based on
2607 >     * the given number of elements ({@code initialCapacity}), table
2608 >     * density ({@code loadFactor}), and number of concurrently
2609 >     * updating threads ({@code concurrencyLevel}).
2610       *
2611       * @param initialCapacity the initial capacity. The implementation
2612 <     * performs internal sizing to accommodate this many elements.
2613 <     * @throws IllegalArgumentException if the initial capacity of
2614 <     * elements is negative.
2612 >     * performs internal sizing to accommodate this many elements,
2613 >     * given the specified load factor.
2614 >     * @param loadFactor the load factor (table density) for
2615 >     * establishing the initial table size
2616 >     * @param concurrencyLevel the estimated number of concurrently
2617 >     * updating threads. The implementation may use this value as
2618 >     * a sizing hint.
2619 >     * @throws IllegalArgumentException if the initial capacity is
2620 >     * negative or the load factor or concurrencyLevel are
2621 >     * nonpositive
2622       */
2623 <    public ConcurrentHashMap(int initialCapacity) {
2624 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2623 >    public ConcurrentHashMap(int initialCapacity,
2624 >                               float loadFactor, int concurrencyLevel) {
2625 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2626 >            throw new IllegalArgumentException();
2627 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2628 >            initialCapacity = concurrencyLevel;   // as estimated threads
2629 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2630 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2631 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2632 >        this.counter = new LongAdder();
2633 >        this.sizeCtl = cap;
2634      }
2635  
2636      /**
2637 <     * Creates a new, empty map with a default initial capacity (16),
2638 <     * load factor (0.75) and concurrencyLevel (16).
2637 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2638 >     * from the given type to {@code Boolean.TRUE}.
2639 >     *
2640 >     * @return the new set
2641       */
2642 <    public ConcurrentHashMap() {
2643 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2642 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2643 >        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2644 >                                      Boolean.TRUE);
2645      }
2646  
2647      /**
2648 <     * Creates a new map with the same mappings as the given map.
2649 <     * The map is created with a capacity of 1.5 times the number
654 <     * of mappings in the given map or 16 (whichever is greater),
655 <     * and a default load factor (0.75) and concurrencyLevel (16).
2648 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2649 >     * from the given type to {@code Boolean.TRUE}.
2650       *
2651 <     * @param m the map
2651 >     * @param initialCapacity The implementation performs internal
2652 >     * sizing to accommodate this many elements.
2653 >     * @throws IllegalArgumentException if the initial capacity of
2654 >     * elements is negative
2655 >     * @return the new set
2656       */
2657 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2658 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
2659 <                      DEFAULT_INITIAL_CAPACITY),
662 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
663 <        putAll(m);
2657 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2658 >        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(initialCapacity),
2659 >                                      Boolean.TRUE);
2660      }
2661  
2662      /**
2663 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
668 <     *
669 <     * @return <tt>true</tt> if this map contains no key-value mappings
2663 >     * {@inheritDoc}
2664       */
2665      public boolean isEmpty() {
2666 <        final Segment<K,V>[] segments = this.segments;
673 <        /*
674 <         * We keep track of per-segment modCounts to avoid ABA
675 <         * problems in which an element in one segment was added and
676 <         * in another removed during traversal, in which case the
677 <         * table was never actually empty at any point. Note the
678 <         * similar use of modCounts in the size() and containsValue()
679 <         * methods, which are the only other methods also susceptible
680 <         * to ABA problems.
681 <         */
682 <        int[] mc = new int[segments.length];
683 <        int mcsum = 0;
684 <        for (int i = 0; i < segments.length; ++i) {
685 <            if (segments[i].count != 0)
686 <                return false;
687 <            else
688 <                mcsum += mc[i] = segments[i].modCount;
689 <        }
690 <        // If mcsum happens to be zero, then we know we got a snapshot
691 <        // before any modifications at all were made.  This is
692 <        // probably common enough to bother tracking.
693 <        if (mcsum != 0) {
694 <            for (int i = 0; i < segments.length; ++i) {
695 <                if (segments[i].count != 0 ||
696 <                    mc[i] != segments[i].modCount)
697 <                    return false;
698 <            }
699 <        }
700 <        return true;
2666 >        return counter.sum() <= 0L; // ignore transient negative values
2667      }
2668  
2669      /**
2670 <     * Returns the number of key-value mappings in this map.  If the
705 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
706 <     * <tt>Integer.MAX_VALUE</tt>.
707 <     *
708 <     * @return the number of key-value mappings in this map
2670 >     * {@inheritDoc}
2671       */
2672      public int size() {
2673 <        final Segment<K,V>[] segments = this.segments;
2674 <        long sum = 0;
2675 <        long check = 0;
2676 <        int[] mc = new int[segments.length];
2677 <        // Try a few times to get accurate count. On failure due to
2678 <        // continuous async changes in table, resort to locking.
2679 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
2680 <            check = 0;
2681 <            sum = 0;
2682 <            int mcsum = 0;
2683 <            for (int i = 0; i < segments.length; ++i) {
2684 <                sum += segments[i].count;
2685 <                mcsum += mc[i] = segments[i].modCount;
2686 <            }
2687 <            if (mcsum != 0) {
2688 <                for (int i = 0; i < segments.length; ++i) {
2689 <                    check += segments[i].count;
2690 <                    if (mc[i] != segments[i].modCount) {
729 <                        check = -1; // force retry
730 <                        break;
731 <                    }
732 <                }
733 <            }
734 <            if (check == sum)
735 <                break;
736 <        }
737 <        if (check != sum) { // Resort to locking all segments
738 <            sum = 0;
739 <            for (int i = 0; i < segments.length; ++i)
740 <                segments[i].lock();
741 <            for (int i = 0; i < segments.length; ++i)
742 <                sum += segments[i].count;
743 <            for (int i = 0; i < segments.length; ++i)
744 <                segments[i].unlock();
745 <        }
746 <        if (sum > Integer.MAX_VALUE)
747 <            return Integer.MAX_VALUE;
748 <        else
749 <            return (int)sum;
2673 >        long n = counter.sum();
2674 >        return ((n < 0L) ? 0 :
2675 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2676 >                (int)n);
2677 >    }
2678 >
2679 >    /**
2680 >     * Returns the number of mappings. This method should be used
2681 >     * instead of {@link #size} because a ConcurrentHashMap may
2682 >     * contain more mappings than can be represented as an int. The
2683 >     * value returned is a snapshot; the actual count may differ if
2684 >     * there are ongoing concurrent insertions or removals.
2685 >     *
2686 >     * @return the number of mappings
2687 >     */
2688 >    public long mappingCount() {
2689 >        long n = counter.sum();
2690 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2691      }
2692  
2693      /**
2694 <     * Returns the value to which this map maps the specified key, or
2695 <     * <tt>null</tt> if the map contains no mapping for the key.
2694 >     * Returns the value to which the specified key is mapped,
2695 >     * or {@code null} if this map contains no mapping for the key.
2696 >     *
2697 >     * <p>More formally, if this map contains a mapping from a key
2698 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2699 >     * then this method returns {@code v}; otherwise it returns
2700 >     * {@code null}.  (There can be at most one such mapping.)
2701       *
756     * @param key key whose associated value is to be returned
757     * @return the value to which this map maps the specified key, or
758     *         <tt>null</tt> if the map contains no mapping for the key
2702       * @throws NullPointerException if the specified key is null
2703       */
2704 <    public V get(Object key) {
2705 <        int hash = hash(key); // throws NullPointerException if key null
2706 <        return segmentFor(hash).get(key, hash);
2704 >    @SuppressWarnings("unchecked") public V get(Object key) {
2705 >        if (key == null)
2706 >            throw new NullPointerException();
2707 >        return (V)internalGet(key);
2708 >    }
2709 >
2710 >    /**
2711 >     * Returns the value to which the specified key is mapped,
2712 >     * or the given defaultValue if this map contains no mapping for the key.
2713 >     *
2714 >     * @param key the key
2715 >     * @param defaultValue the value to return if this map contains
2716 >     * no mapping for the given key
2717 >     * @return the mapping for the key, if present; else the defaultValue
2718 >     * @throws NullPointerException if the specified key is null
2719 >     */
2720 >    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2721 >        if (key == null)
2722 >            throw new NullPointerException();
2723 >        V v = (V) internalGet(key);
2724 >        return v == null ? defaultValue : v;
2725      }
2726  
2727      /**
2728       * Tests if the specified object is a key in this table.
2729       *
2730       * @param  key   possible key
2731 <     * @return <tt>true</tt> if and only if the specified object
2731 >     * @return {@code true} if and only if the specified object
2732       *         is a key in this table, as determined by the
2733 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
2733 >     *         {@code equals} method; {@code false} otherwise
2734       * @throws NullPointerException if the specified key is null
2735       */
2736      public boolean containsKey(Object key) {
2737 <        int hash = hash(key); // throws NullPointerException if key null
2738 <        return segmentFor(hash).containsKey(key, hash);
2737 >        if (key == null)
2738 >            throw new NullPointerException();
2739 >        return internalGet(key) != null;
2740      }
2741  
2742      /**
2743 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2744 <     * specified value. Note: This method requires a full internal
2745 <     * traversal of the hash table, and so is much slower than
784 <     * method <tt>containsKey</tt>.
2743 >     * Returns {@code true} if this map maps one or more keys to the
2744 >     * specified value. Note: This method may require a full traversal
2745 >     * of the map, and is much slower than method {@code containsKey}.
2746       *
2747       * @param value value whose presence in this map is to be tested
2748 <     * @return <tt>true</tt> if this map maps one or more keys to the
2748 >     * @return {@code true} if this map maps one or more keys to the
2749       *         specified value
2750       * @throws NullPointerException if the specified value is null
2751       */
2752      public boolean containsValue(Object value) {
2753          if (value == null)
2754              throw new NullPointerException();
2755 <
2756 <        // See explanation of modCount use above
2757 <
2758 <        final Segment<K,V>[] segments = this.segments;
2759 <        int[] mc = new int[segments.length];
799 <
800 <        // Try a few times without locking
801 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
802 <            int sum = 0;
803 <            int mcsum = 0;
804 <            for (int i = 0; i < segments.length; ++i) {
805 <                int c = segments[i].count;
806 <                mcsum += mc[i] = segments[i].modCount;
807 <                if (segments[i].containsValue(value))
808 <                    return true;
809 <            }
810 <            boolean cleanSweep = true;
811 <            if (mcsum != 0) {
812 <                for (int i = 0; i < segments.length; ++i) {
813 <                    int c = segments[i].count;
814 <                    if (mc[i] != segments[i].modCount) {
815 <                        cleanSweep = false;
816 <                        break;
817 <                    }
818 <                }
819 <            }
820 <            if (cleanSweep)
821 <                return false;
822 <        }
823 <        // Resort to locking all segments
824 <        for (int i = 0; i < segments.length; ++i)
825 <            segments[i].lock();
826 <        boolean found = false;
827 <        try {
828 <            for (int i = 0; i < segments.length; ++i) {
829 <                if (segments[i].containsValue(value)) {
830 <                    found = true;
831 <                    break;
832 <                }
833 <            }
834 <        } finally {
835 <            for (int i = 0; i < segments.length; ++i)
836 <                segments[i].unlock();
2755 >        Object v;
2756 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2757 >        while ((v = it.advance()) != null) {
2758 >            if (v == value || value.equals(v))
2759 >                return true;
2760          }
2761 <        return found;
2761 >        return false;
2762      }
2763  
2764      /**
# Line 845 | Line 2768 | public class ConcurrentHashMap<K, V> ext
2768       * full compatibility with class {@link java.util.Hashtable},
2769       * which supported this method prior to introduction of the
2770       * Java Collections framework.
2771 <
2771 >     *
2772       * @param  value a value to search for
2773 <     * @return <tt>true</tt> if and only if some key maps to the
2774 <     *         <tt>value</tt> argument in this table as
2775 <     *         determined by the <tt>equals</tt> method;
2776 <     *         <tt>false</tt> otherwise
2773 >     * @return {@code true} if and only if some key maps to the
2774 >     *         {@code value} argument in this table as
2775 >     *         determined by the {@code equals} method;
2776 >     *         {@code false} otherwise
2777       * @throws NullPointerException if the specified value is null
2778       */
2779      public boolean contains(Object value) {
# Line 861 | Line 2784 | public class ConcurrentHashMap<K, V> ext
2784       * Maps the specified key to the specified value in this table.
2785       * Neither the key nor the value can be null.
2786       *
2787 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
2787 >     * <p> The value can be retrieved by calling the {@code get} method
2788       * with a key that is equal to the original key.
2789       *
2790       * @param key key with which the specified value is to be associated
2791       * @param value value to be associated with the specified key
2792 <     * @return the previous value associated with <tt>key</tt>, or
2793 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2792 >     * @return the previous value associated with {@code key}, or
2793 >     *         {@code null} if there was no mapping for {@code key}
2794       * @throws NullPointerException if the specified key or value is null
2795       */
2796 <    public V put(K key, V value) {
2797 <        if (value == null)
2796 >    @SuppressWarnings("unchecked") public V put(K key, V value) {
2797 >        if (key == null || value == null)
2798              throw new NullPointerException();
2799 <        int hash = hash(key);
877 <        return segmentFor(hash).put(key, hash, value, false);
2799 >        return (V)internalPut(key, value);
2800      }
2801  
2802      /**
2803       * {@inheritDoc}
2804       *
2805       * @return the previous value associated with the specified key,
2806 <     *         or <tt>null</tt> if there was no mapping for the key
2806 >     *         or {@code null} if there was no mapping for the key
2807       * @throws NullPointerException if the specified key or value is null
2808       */
2809 <    public V putIfAbsent(K key, V value) {
2810 <        if (value == null)
2809 >    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2810 >        if (key == null || value == null)
2811              throw new NullPointerException();
2812 <        int hash = hash(key);
891 <        return segmentFor(hash).put(key, hash, value, true);
2812 >        return (V)internalPutIfAbsent(key, value);
2813      }
2814  
2815      /**
# Line 899 | Line 2820 | public class ConcurrentHashMap<K, V> ext
2820       * @param m mappings to be stored in this map
2821       */
2822      public void putAll(Map<? extends K, ? extends V> m) {
2823 <        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) m.entrySet().iterator(); it.hasNext(); ) {
2824 <            Entry<? extends K, ? extends V> e = it.next();
2825 <            put(e.getKey(), e.getValue());
2826 <        }
2823 >        internalPutAll(m);
2824 >    }
2825 >
2826 >    /**
2827 >     * If the specified key is not already associated with a value,
2828 >     * computes its value using the given mappingFunction and enters
2829 >     * it into the map unless null.  This is equivalent to
2830 >     * <pre> {@code
2831 >     * if (map.containsKey(key))
2832 >     *   return map.get(key);
2833 >     * value = mappingFunction.apply(key);
2834 >     * if (value != null)
2835 >     *   map.put(key, value);
2836 >     * return value;}</pre>
2837 >     *
2838 >     * except that the action is performed atomically.  If the
2839 >     * function returns {@code null} no mapping is recorded. If the
2840 >     * function itself throws an (unchecked) exception, the exception
2841 >     * is rethrown to its caller, and no mapping is recorded.  Some
2842 >     * attempted update operations on this map by other threads may be
2843 >     * blocked while computation is in progress, so the computation
2844 >     * should be short and simple, and must not attempt to update any
2845 >     * other mappings of this Map. The most appropriate usage is to
2846 >     * construct a new object serving as an initial mapped value, or
2847 >     * memoized result, as in:
2848 >     *
2849 >     *  <pre> {@code
2850 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2851 >     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2852 >     *
2853 >     * @param key key with which the specified value is to be associated
2854 >     * @param mappingFunction the function to compute a value
2855 >     * @return the current (existing or computed) value associated with
2856 >     *         the specified key, or null if the computed value is null
2857 >     * @throws NullPointerException if the specified key or mappingFunction
2858 >     *         is null
2859 >     * @throws IllegalStateException if the computation detectably
2860 >     *         attempts a recursive update to this map that would
2861 >     *         otherwise never complete
2862 >     * @throws RuntimeException or Error if the mappingFunction does so,
2863 >     *         in which case the mapping is left unestablished
2864 >     */
2865 >    @SuppressWarnings("unchecked") public V computeIfAbsent
2866 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2867 >        if (key == null || mappingFunction == null)
2868 >            throw new NullPointerException();
2869 >        return (V)internalComputeIfAbsent(key, mappingFunction);
2870 >    }
2871 >
2872 >    /**
2873 >     * If the given key is present, computes a new mapping value given a key and
2874 >     * its current mapped value. This is equivalent to
2875 >     *  <pre> {@code
2876 >     *   if (map.containsKey(key)) {
2877 >     *     value = remappingFunction.apply(key, map.get(key));
2878 >     *     if (value != null)
2879 >     *       map.put(key, value);
2880 >     *     else
2881 >     *       map.remove(key);
2882 >     *   }
2883 >     * }</pre>
2884 >     *
2885 >     * except that the action is performed atomically.  If the
2886 >     * function returns {@code null}, the mapping is removed.  If the
2887 >     * function itself throws an (unchecked) exception, the exception
2888 >     * is rethrown to its caller, and the current mapping is left
2889 >     * unchanged.  Some attempted update operations on this map by
2890 >     * other threads may be blocked while computation is in progress,
2891 >     * so the computation should be short and simple, and must not
2892 >     * attempt to update any other mappings of this Map. For example,
2893 >     * to either create or append new messages to a value mapping:
2894 >     *
2895 >     * @param key key with which the specified value is to be associated
2896 >     * @param remappingFunction the function to compute a value
2897 >     * @return the new value associated with the specified key, or null if none
2898 >     * @throws NullPointerException if the specified key or remappingFunction
2899 >     *         is null
2900 >     * @throws IllegalStateException if the computation detectably
2901 >     *         attempts a recursive update to this map that would
2902 >     *         otherwise never complete
2903 >     * @throws RuntimeException or Error if the remappingFunction does so,
2904 >     *         in which case the mapping is unchanged
2905 >     */
2906 >    @SuppressWarnings("unchecked") public V computeIfPresent
2907 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2908 >        if (key == null || remappingFunction == null)
2909 >            throw new NullPointerException();
2910 >        return (V)internalCompute(key, true, remappingFunction);
2911 >    }
2912 >
2913 >    /**
2914 >     * Computes a new mapping value given a key and
2915 >     * its current mapped value (or {@code null} if there is no current
2916 >     * mapping). This is equivalent to
2917 >     *  <pre> {@code
2918 >     *   value = remappingFunction.apply(key, map.get(key));
2919 >     *   if (value != null)
2920 >     *     map.put(key, value);
2921 >     *   else
2922 >     *     map.remove(key);
2923 >     * }</pre>
2924 >     *
2925 >     * except that the action is performed atomically.  If the
2926 >     * function returns {@code null}, the mapping is removed.  If the
2927 >     * function itself throws an (unchecked) exception, the exception
2928 >     * is rethrown to its caller, and the current mapping is left
2929 >     * unchanged.  Some attempted update operations on this map by
2930 >     * other threads may be blocked while computation is in progress,
2931 >     * so the computation should be short and simple, and must not
2932 >     * attempt to update any other mappings of this Map. For example,
2933 >     * to either create or append new messages to a value mapping:
2934 >     *
2935 >     * <pre> {@code
2936 >     * Map<Key, String> map = ...;
2937 >     * final String msg = ...;
2938 >     * map.compute(key, new BiFun<Key, String, String>() {
2939 >     *   public String apply(Key k, String v) {
2940 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2941 >     *
2942 >     * @param key key with which the specified value is to be associated
2943 >     * @param remappingFunction the function to compute a value
2944 >     * @return the new value associated with the specified key, or null if none
2945 >     * @throws NullPointerException if the specified key or remappingFunction
2946 >     *         is null
2947 >     * @throws IllegalStateException if the computation detectably
2948 >     *         attempts a recursive update to this map that would
2949 >     *         otherwise never complete
2950 >     * @throws RuntimeException or Error if the remappingFunction does so,
2951 >     *         in which case the mapping is unchanged
2952 >     */
2953 >    @SuppressWarnings("unchecked") public V compute
2954 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2955 >        if (key == null || remappingFunction == null)
2956 >            throw new NullPointerException();
2957 >        return (V)internalCompute(key, false, remappingFunction);
2958 >    }
2959 >
2960 >    /**
2961 >     * If the specified key is not already associated
2962 >     * with a value, associate it with the given value.
2963 >     * Otherwise, replace the value with the results of
2964 >     * the given remapping function. This is equivalent to:
2965 >     *  <pre> {@code
2966 >     *   if (!map.containsKey(key))
2967 >     *     map.put(value);
2968 >     *   else {
2969 >     *     newValue = remappingFunction.apply(map.get(key), value);
2970 >     *     if (value != null)
2971 >     *       map.put(key, value);
2972 >     *     else
2973 >     *       map.remove(key);
2974 >     *   }
2975 >     * }</pre>
2976 >     * except that the action is performed atomically.  If the
2977 >     * function returns {@code null}, the mapping is removed.  If the
2978 >     * function itself throws an (unchecked) exception, the exception
2979 >     * is rethrown to its caller, and the current mapping is left
2980 >     * unchanged.  Some attempted update operations on this map by
2981 >     * other threads may be blocked while computation is in progress,
2982 >     * so the computation should be short and simple, and must not
2983 >     * attempt to update any other mappings of this Map.
2984 >     */
2985 >    @SuppressWarnings("unchecked") public V merge
2986 >        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2987 >        if (key == null || value == null || remappingFunction == null)
2988 >            throw new NullPointerException();
2989 >        return (V)internalMerge(key, value, remappingFunction);
2990      }
2991  
2992      /**
# Line 910 | Line 2994 | public class ConcurrentHashMap<K, V> ext
2994       * This method does nothing if the key is not in the map.
2995       *
2996       * @param  key the key that needs to be removed
2997 <     * @return the previous value associated with <tt>key</tt>, or
2998 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
2997 >     * @return the previous value associated with {@code key}, or
2998 >     *         {@code null} if there was no mapping for {@code key}
2999       * @throws NullPointerException if the specified key is null
3000       */
3001 <    public V remove(Object key) {
3002 <        int hash = hash(key);
3003 <        return segmentFor(hash).remove(key, hash, null);
3001 >    @SuppressWarnings("unchecked") public V remove(Object key) {
3002 >        if (key == null)
3003 >            throw new NullPointerException();
3004 >        return (V)internalReplace(key, null, null);
3005      }
3006  
3007      /**
# Line 925 | Line 3010 | public class ConcurrentHashMap<K, V> ext
3010       * @throws NullPointerException if the specified key is null
3011       */
3012      public boolean remove(Object key, Object value) {
3013 +        if (key == null)
3014 +            throw new NullPointerException();
3015          if (value == null)
3016              return false;
3017 <        int hash = hash(key);
931 <        return segmentFor(hash).remove(key, hash, value) != null;
3017 >        return internalReplace(key, null, value) != null;
3018      }
3019  
3020      /**
# Line 937 | Line 3023 | public class ConcurrentHashMap<K, V> ext
3023       * @throws NullPointerException if any of the arguments are null
3024       */
3025      public boolean replace(K key, V oldValue, V newValue) {
3026 <        if (oldValue == null || newValue == null)
3026 >        if (key == null || oldValue == null || newValue == null)
3027              throw new NullPointerException();
3028 <        int hash = hash(key);
943 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
3028 >        return internalReplace(key, newValue, oldValue) != null;
3029      }
3030  
3031      /**
3032       * {@inheritDoc}
3033       *
3034       * @return the previous value associated with the specified key,
3035 <     *         or <tt>null</tt> if there was no mapping for the key
3035 >     *         or {@code null} if there was no mapping for the key
3036       * @throws NullPointerException if the specified key or value is null
3037       */
3038 <    public V replace(K key, V value) {
3039 <        if (value == null)
3038 >    @SuppressWarnings("unchecked") public V replace(K key, V value) {
3039 >        if (key == null || value == null)
3040              throw new NullPointerException();
3041 <        int hash = hash(key);
957 <        return segmentFor(hash).replace(key, hash, value);
3041 >        return (V)internalReplace(key, value, null);
3042      }
3043  
3044      /**
3045       * Removes all of the mappings from this map.
3046       */
3047      public void clear() {
3048 <        for (int i = 0; i < segments.length; ++i)
965 <            segments[i].clear();
3048 >        internalClear();
3049      }
3050  
3051      /**
3052       * Returns a {@link Set} view of the keys contained in this map.
3053       * The set is backed by the map, so changes to the map are
3054 <     * reflected in the set, and vice-versa.  The set supports element
972 <     * removal, which removes the corresponding mapping from this map,
973 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
974 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
975 <     * operations.  It does not support the <tt>add</tt> or
976 <     * <tt>addAll</tt> operations.
3054 >     * reflected in the set, and vice-versa.
3055       *
3056 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
979 <     * that will never throw {@link ConcurrentModificationException},
980 <     * and guarantees to traverse elements as they existed upon
981 <     * construction of the iterator, and may (but is not guaranteed to)
982 <     * reflect any modifications subsequent to construction.
3056 >     * @return the set view
3057       */
3058 <    public Set<K> keySet() {
3059 <        Set<K> ks = keySet;
3060 <        return (ks != null) ? ks : (keySet = new KeySet());
3058 >    public KeySetView<K,V> keySet() {
3059 >        KeySetView<K,V> ks = keySet;
3060 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
3061 >    }
3062 >
3063 >    /**
3064 >     * Returns a {@link Set} view of the keys in this map, using the
3065 >     * given common mapped value for any additions (i.e., {@link
3066 >     * Collection#add} and {@link Collection#addAll}). This is of
3067 >     * course only appropriate if it is acceptable to use the same
3068 >     * value for all additions from this view.
3069 >     *
3070 >     * @param mappedValue the mapped value to use for any
3071 >     * additions.
3072 >     * @return the set view
3073 >     * @throws NullPointerException if the mappedValue is null
3074 >     */
3075 >    public KeySetView<K,V> keySet(V mappedValue) {
3076 >        if (mappedValue == null)
3077 >            throw new NullPointerException();
3078 >        return new KeySetView<K,V>(this, mappedValue);
3079      }
3080  
3081      /**
# Line 991 | Line 3083 | public class ConcurrentHashMap<K, V> ext
3083       * The collection is backed by the map, so changes to the map are
3084       * reflected in the collection, and vice-versa.  The collection
3085       * supports element removal, which removes the corresponding
3086 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
3087 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
3088 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
3089 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
3086 >     * mapping from this map, via the {@code Iterator.remove},
3087 >     * {@code Collection.remove}, {@code removeAll},
3088 >     * {@code retainAll}, and {@code clear} operations.  It does not
3089 >     * support the {@code add} or {@code addAll} operations.
3090       *
3091 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
3091 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3092       * that will never throw {@link ConcurrentModificationException},
3093       * and guarantees to traverse elements as they existed upon
3094       * construction of the iterator, and may (but is not guaranteed to)
3095       * reflect any modifications subsequent to construction.
3096       */
3097      public Collection<V> values() {
3098 <        Collection<V> vs = values;
3099 <        return (vs != null) ? vs : (values = new Values());
3098 >        Values<K,V> vs = values;
3099 >        return (vs != null) ? vs : (values = new Values<K,V>(this));
3100      }
3101  
3102      /**
# Line 1012 | Line 3104 | public class ConcurrentHashMap<K, V> ext
3104       * The set is backed by the map, so changes to the map are
3105       * reflected in the set, and vice-versa.  The set supports element
3106       * removal, which removes the corresponding mapping from the map,
3107 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
3108 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
3109 <     * operations.  It does not support the <tt>add</tt> or
3110 <     * <tt>addAll</tt> operations.
3107 >     * via the {@code Iterator.remove}, {@code Set.remove},
3108 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
3109 >     * operations.  It does not support the {@code add} or
3110 >     * {@code addAll} operations.
3111       *
3112 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
3112 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3113       * that will never throw {@link ConcurrentModificationException},
3114       * and guarantees to traverse elements as they existed upon
3115       * construction of the iterator, and may (but is not guaranteed to)
3116       * reflect any modifications subsequent to construction.
3117       */
3118      public Set<Map.Entry<K,V>> entrySet() {
3119 <        Set<Map.Entry<K,V>> es = entrySet;
3120 <        return (es != null) ? es : (entrySet = new EntrySet());
3119 >        EntrySet<K,V> es = entrySet;
3120 >        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
3121      }
3122  
3123      /**
3124       * Returns an enumeration of the keys in this table.
3125       *
3126       * @return an enumeration of the keys in this table
3127 <     * @see #keySet
3127 >     * @see #keySet()
3128       */
3129      public Enumeration<K> keys() {
3130 <        return new KeyIterator();
3130 >        return new KeyIterator<K,V>(this);
3131      }
3132  
3133      /**
3134       * Returns an enumeration of the values in this table.
3135       *
3136       * @return an enumeration of the values in this table
3137 <     * @see #values
3137 >     * @see #values()
3138       */
3139      public Enumeration<V> elements() {
3140 <        return new ValueIterator();
3140 >        return new ValueIterator<K,V>(this);
3141      }
3142  
3143 <    /* ---------------- Iterator Support -------------- */
3144 <
3145 <    abstract class HashIterator {
3146 <        int nextSegmentIndex;
3147 <        int nextTableIndex;
3148 <        HashEntry<K,V>[] currentTable;
3149 <        HashEntry<K, V> nextEntry;
3150 <        HashEntry<K, V> lastReturned;
3143 >    /**
3144 >     * Returns a partitionable iterator of the keys in this map.
3145 >     *
3146 >     * @return a partitionable iterator of the keys in this map
3147 >     */
3148 >    public Spliterator<K> keySpliterator() {
3149 >        return new KeyIterator<K,V>(this);
3150 >    }
3151  
3152 <        HashIterator() {
3153 <            nextSegmentIndex = segments.length - 1;
3154 <            nextTableIndex = -1;
3155 <            advance();
3156 <        }
3152 >    /**
3153 >     * Returns a partitionable iterator of the values in this map.
3154 >     *
3155 >     * @return a partitionable iterator of the values in this map
3156 >     */
3157 >    public Spliterator<V> valueSpliterator() {
3158 >        return new ValueIterator<K,V>(this);
3159 >    }
3160  
3161 <        public boolean hasMoreElements() { return hasNext(); }
3161 >    /**
3162 >     * Returns a partitionable iterator of the entries in this map.
3163 >     *
3164 >     * @return a partitionable iterator of the entries in this map
3165 >     */
3166 >    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3167 >        return new EntryIterator<K,V>(this);
3168 >    }
3169  
3170 <        final void advance() {
3171 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
3172 <                return;
3170 >    /**
3171 >     * Returns the hash code value for this {@link Map}, i.e.,
3172 >     * the sum of, for each key-value pair in the map,
3173 >     * {@code key.hashCode() ^ value.hashCode()}.
3174 >     *
3175 >     * @return the hash code value for this map
3176 >     */
3177 >    public int hashCode() {
3178 >        int h = 0;
3179 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3180 >        Object v;
3181 >        while ((v = it.advance()) != null) {
3182 >            h += it.nextKey.hashCode() ^ v.hashCode();
3183 >        }
3184 >        return h;
3185 >    }
3186  
3187 <            while (nextTableIndex >= 0) {
3188 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
3189 <                    return;
3187 >    /**
3188 >     * Returns a string representation of this map.  The string
3189 >     * representation consists of a list of key-value mappings (in no
3190 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3191 >     * mappings are separated by the characters {@code ", "} (comma
3192 >     * and space).  Each key-value mapping is rendered as the key
3193 >     * followed by an equals sign ("{@code =}") followed by the
3194 >     * associated value.
3195 >     *
3196 >     * @return a string representation of this map
3197 >     */
3198 >    public String toString() {
3199 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3200 >        StringBuilder sb = new StringBuilder();
3201 >        sb.append('{');
3202 >        Object v;
3203 >        if ((v = it.advance()) != null) {
3204 >            for (;;) {
3205 >                Object k = it.nextKey;
3206 >                sb.append(k == this ? "(this Map)" : k);
3207 >                sb.append('=');
3208 >                sb.append(v == this ? "(this Map)" : v);
3209 >                if ((v = it.advance()) == null)
3210 >                    break;
3211 >                sb.append(',').append(' ');
3212              }
3213 +        }
3214 +        return sb.append('}').toString();
3215 +    }
3216  
3217 <            while (nextSegmentIndex >= 0) {
3218 <                Segment<K,V> seg = segments[nextSegmentIndex--];
3219 <                if (seg.count != 0) {
3220 <                    currentTable = seg.table;
3221 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
3222 <                        if ( (nextEntry = currentTable[j]) != null) {
3223 <                            nextTableIndex = j - 1;
3224 <                            return;
3225 <                        }
3226 <                    }
3227 <                }
3217 >    /**
3218 >     * Compares the specified object with this map for equality.
3219 >     * Returns {@code true} if the given object is a map with the same
3220 >     * mappings as this map.  This operation may return misleading
3221 >     * results if either map is concurrently modified during execution
3222 >     * of this method.
3223 >     *
3224 >     * @param o object to be compared for equality with this map
3225 >     * @return {@code true} if the specified object is equal to this map
3226 >     */
3227 >    public boolean equals(Object o) {
3228 >        if (o != this) {
3229 >            if (!(o instanceof Map))
3230 >                return false;
3231 >            Map<?,?> m = (Map<?,?>) o;
3232 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3233 >            Object val;
3234 >            while ((val = it.advance()) != null) {
3235 >                Object v = m.get(it.nextKey);
3236 >                if (v == null || (v != val && !v.equals(val)))
3237 >                    return false;
3238 >            }
3239 >            for (Map.Entry<?,?> e : m.entrySet()) {
3240 >                Object mk, mv, v;
3241 >                if ((mk = e.getKey()) == null ||
3242 >                    (mv = e.getValue()) == null ||
3243 >                    (v = internalGet(mk)) == null ||
3244 >                    (mv != v && !mv.equals(v)))
3245 >                    return false;
3246              }
3247          }
3248 +        return true;
3249 +    }
3250  
3251 <        public boolean hasNext() { return nextEntry != null; }
3251 >    /* ----------------Iterators -------------- */
3252  
3253 <        HashEntry<K,V> nextEntry() {
3254 <            if (nextEntry == null)
3253 >    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3254 >        implements Spliterator<K>, Enumeration<K> {
3255 >        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3256 >        KeyIterator(Traverser<K,V,Object> it) {
3257 >            super(it);
3258 >        }
3259 >        public KeyIterator<K,V> split() {
3260 >            if (nextKey != null)
3261 >                throw new IllegalStateException();
3262 >            return new KeyIterator<K,V>(this);
3263 >        }
3264 >        @SuppressWarnings("unchecked") public final K next() {
3265 >            if (nextVal == null && advance() == null)
3266                  throw new NoSuchElementException();
3267 <            lastReturned = nextEntry;
3268 <            advance();
3269 <            return lastReturned;
3267 >            Object k = nextKey;
3268 >            nextVal = null;
3269 >            return (K) k;
3270          }
3271  
3272 <        public void remove() {
3273 <            if (lastReturned == null)
3272 >        public final K nextElement() { return next(); }
3273 >    }
3274 >
3275 >    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3276 >        implements Spliterator<V>, Enumeration<V> {
3277 >        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3278 >        ValueIterator(Traverser<K,V,Object> it) {
3279 >            super(it);
3280 >        }
3281 >        public ValueIterator<K,V> split() {
3282 >            if (nextKey != null)
3283                  throw new IllegalStateException();
3284 <            ConcurrentHashMap.this.remove(lastReturned.key);
1105 <            lastReturned = null;
3284 >            return new ValueIterator<K,V>(this);
3285          }
1107    }
3286  
3287 <    final class KeyIterator
3288 <        extends HashIterator
3289 <        implements Iterator<K>, Enumeration<K>
3290 <    {
3291 <        public K next()        { return super.nextEntry().key; }
3292 <        public K nextElement() { return super.nextEntry().key; }
3287 >        @SuppressWarnings("unchecked") public final V next() {
3288 >            Object v;
3289 >            if ((v = nextVal) == null && (v = advance()) == null)
3290 >                throw new NoSuchElementException();
3291 >            nextVal = null;
3292 >            return (V) v;
3293 >        }
3294 >
3295 >        public final V nextElement() { return next(); }
3296      }
3297  
3298 <    final class ValueIterator
3299 <        extends HashIterator
3300 <        implements Iterator<V>, Enumeration<V>
3301 <    {
3302 <        public V next()        { return super.nextEntry().value; }
3303 <        public V nextElement() { return super.nextEntry().value; }
3298 >    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3299 >        implements Spliterator<Map.Entry<K,V>> {
3300 >        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3301 >        EntryIterator(Traverser<K,V,Object> it) {
3302 >            super(it);
3303 >        }
3304 >        public EntryIterator<K,V> split() {
3305 >            if (nextKey != null)
3306 >                throw new IllegalStateException();
3307 >            return new EntryIterator<K,V>(this);
3308 >        }
3309 >
3310 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3311 >            Object v;
3312 >            if ((v = nextVal) == null && (v = advance()) == null)
3313 >                throw new NoSuchElementException();
3314 >            Object k = nextKey;
3315 >            nextVal = null;
3316 >            return new MapEntry<K,V>((K)k, (V)v, map);
3317 >        }
3318      }
3319  
3320      /**
3321 <     * Custom Entry class used by EntryIterator.next(), that relays
1127 <     * setValue changes to the underlying map.
3321 >     * Exported Entry for iterators
3322       */
3323 <    final class WriteThroughEntry
3324 <        extends AbstractMap.SimpleEntry<K,V>
3325 <    {
3326 <        WriteThroughEntry(K k, V v) {
3327 <            super(k,v);
3323 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3324 >        final K key; // non-null
3325 >        V val;       // non-null
3326 >        final ConcurrentHashMap<K, V> map;
3327 >        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3328 >            this.key = key;
3329 >            this.val = val;
3330 >            this.map = map;
3331 >        }
3332 >        public final K getKey()       { return key; }
3333 >        public final V getValue()     { return val; }
3334 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3335 >        public final String toString(){ return key + "=" + val; }
3336 >
3337 >        public final boolean equals(Object o) {
3338 >            Object k, v; Map.Entry<?,?> e;
3339 >            return ((o instanceof Map.Entry) &&
3340 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3341 >                    (v = e.getValue()) != null &&
3342 >                    (k == key || k.equals(key)) &&
3343 >                    (v == val || v.equals(val)));
3344          }
3345  
3346          /**
3347 <         * Set our entry's value and write through to the map. The
3348 <         * value to return is somewhat arbitrary here. Since a
3349 <         * WriteThroughEntry does not necessarily track asynchronous
3350 <         * changes, the most recent "previous" value could be
3351 <         * different from what we return (or could even have been
3352 <         * removed in which case the put will re-establish). We do not
1143 <         * and cannot guarantee more.
3347 >         * Sets our entry's value and writes through to the map. The
3348 >         * value to return is somewhat arbitrary here. Since we do not
3349 >         * necessarily track asynchronous changes, the most recent
3350 >         * "previous" value could be different from what we return (or
3351 >         * could even have been removed in which case the put will
3352 >         * re-establish). We do not and cannot guarantee more.
3353           */
3354 <        public V setValue(V value) {
3354 >        public final V setValue(V value) {
3355              if (value == null) throw new NullPointerException();
3356 <            V v = super.setValue(value);
3357 <            ConcurrentHashMap.this.put(getKey(), value);
3356 >            V v = val;
3357 >            val = value;
3358 >            map.put(key, value);
3359              return v;
3360          }
3361      }
3362  
3363 <    final class EntryIterator
3364 <        extends HashIterator
3365 <        implements Iterator<Entry<K,V>>
3366 <    {
3367 <        public Map.Entry<K,V> next() {
3368 <            HashEntry<K,V> e = super.nextEntry();
3369 <            return new WriteThroughEntry(e.key, e.value);
3363 >    /* ----------------Views -------------- */
3364 >
3365 >    /**
3366 >     * Base class for views.
3367 >     */
3368 >    static abstract class CHMView<K, V> {
3369 >        final ConcurrentHashMap<K, V> map;
3370 >        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
3371 >        public final int size()                 { return map.size(); }
3372 >        public final boolean isEmpty()          { return map.isEmpty(); }
3373 >        public final void clear()               { map.clear(); }
3374 >
3375 >        // implementations below rely on concrete classes supplying these
3376 >        abstract public Iterator<?> iterator();
3377 >        abstract public boolean contains(Object o);
3378 >        abstract public boolean remove(Object o);
3379 >
3380 >        private static final String oomeMsg = "Required array size too large";
3381 >
3382 >        public final Object[] toArray() {
3383 >            long sz = map.mappingCount();
3384 >            if (sz > (long)(MAX_ARRAY_SIZE))
3385 >                throw new OutOfMemoryError(oomeMsg);
3386 >            int n = (int)sz;
3387 >            Object[] r = new Object[n];
3388 >            int i = 0;
3389 >            Iterator<?> it = iterator();
3390 >            while (it.hasNext()) {
3391 >                if (i == n) {
3392 >                    if (n >= MAX_ARRAY_SIZE)
3393 >                        throw new OutOfMemoryError(oomeMsg);
3394 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3395 >                        n = MAX_ARRAY_SIZE;
3396 >                    else
3397 >                        n += (n >>> 1) + 1;
3398 >                    r = Arrays.copyOf(r, n);
3399 >                }
3400 >                r[i++] = it.next();
3401 >            }
3402 >            return (i == n) ? r : Arrays.copyOf(r, i);
3403 >        }
3404 >
3405 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3406 >            long sz = map.mappingCount();
3407 >            if (sz > (long)(MAX_ARRAY_SIZE))
3408 >                throw new OutOfMemoryError(oomeMsg);
3409 >            int m = (int)sz;
3410 >            T[] r = (a.length >= m) ? a :
3411 >                (T[])java.lang.reflect.Array
3412 >                .newInstance(a.getClass().getComponentType(), m);
3413 >            int n = r.length;
3414 >            int i = 0;
3415 >            Iterator<?> it = iterator();
3416 >            while (it.hasNext()) {
3417 >                if (i == n) {
3418 >                    if (n >= MAX_ARRAY_SIZE)
3419 >                        throw new OutOfMemoryError(oomeMsg);
3420 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3421 >                        n = MAX_ARRAY_SIZE;
3422 >                    else
3423 >                        n += (n >>> 1) + 1;
3424 >                    r = Arrays.copyOf(r, n);
3425 >                }
3426 >                r[i++] = (T)it.next();
3427 >            }
3428 >            if (a == r && i < n) {
3429 >                r[i] = null; // null-terminate
3430 >                return r;
3431 >            }
3432 >            return (i == n) ? r : Arrays.copyOf(r, i);
3433          }
3434 +
3435 +        public final int hashCode() {
3436 +            int h = 0;
3437 +            for (Iterator<?> it = iterator(); it.hasNext();)
3438 +                h += it.next().hashCode();
3439 +            return h;
3440 +        }
3441 +
3442 +        public final String toString() {
3443 +            StringBuilder sb = new StringBuilder();
3444 +            sb.append('[');
3445 +            Iterator<?> it = iterator();
3446 +            if (it.hasNext()) {
3447 +                for (;;) {
3448 +                    Object e = it.next();
3449 +                    sb.append(e == this ? "(this Collection)" : e);
3450 +                    if (!it.hasNext())
3451 +                        break;
3452 +                    sb.append(',').append(' ');
3453 +                }
3454 +            }
3455 +            return sb.append(']').toString();
3456 +        }
3457 +
3458 +        public final boolean containsAll(Collection<?> c) {
3459 +            if (c != this) {
3460 +                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3461 +                    Object e = it.next();
3462 +                    if (e == null || !contains(e))
3463 +                        return false;
3464 +                }
3465 +            }
3466 +            return true;
3467 +        }
3468 +
3469 +        public final boolean removeAll(Collection<?> c) {
3470 +            boolean modified = false;
3471 +            for (Iterator<?> it = iterator(); it.hasNext();) {
3472 +                if (c.contains(it.next())) {
3473 +                    it.remove();
3474 +                    modified = true;
3475 +                }
3476 +            }
3477 +            return modified;
3478 +        }
3479 +
3480 +        public final boolean retainAll(Collection<?> c) {
3481 +            boolean modified = false;
3482 +            for (Iterator<?> it = iterator(); it.hasNext();) {
3483 +                if (!c.contains(it.next())) {
3484 +                    it.remove();
3485 +                    modified = true;
3486 +                }
3487 +            }
3488 +            return modified;
3489 +        }
3490 +
3491      }
3492  
3493 <    final class KeySet extends AbstractSet<K> {
3494 <        public Iterator<K> iterator() {
3495 <            return new KeyIterator();
3493 >    static final class Values<K,V> extends CHMView<K,V>
3494 >        implements Collection<V> {
3495 >        Values(ConcurrentHashMap<K, V> map)   { super(map); }
3496 >        public final boolean contains(Object o) { return map.containsValue(o); }
3497 >        public final boolean remove(Object o) {
3498 >            if (o != null) {
3499 >                Iterator<V> it = new ValueIterator<K,V>(map);
3500 >                while (it.hasNext()) {
3501 >                    if (o.equals(it.next())) {
3502 >                        it.remove();
3503 >                        return true;
3504 >                    }
3505 >                }
3506 >            }
3507 >            return false;
3508          }
3509 <        public int size() {
3510 <            return ConcurrentHashMap.this.size();
3509 >        public final Iterator<V> iterator() {
3510 >            return new ValueIterator<K,V>(map);
3511          }
3512 <        public boolean contains(Object o) {
3513 <            return ConcurrentHashMap.this.containsKey(o);
3512 >        public final boolean add(V e) {
3513 >            throw new UnsupportedOperationException();
3514          }
3515 <        public boolean remove(Object o) {
3516 <            return ConcurrentHashMap.this.remove(o) != null;
3515 >        public final boolean addAll(Collection<? extends V> c) {
3516 >            throw new UnsupportedOperationException();
3517          }
3518 <        public void clear() {
3519 <            ConcurrentHashMap.this.clear();
3518 >
3519 >    }
3520 >
3521 >    static final class EntrySet<K,V> extends CHMView<K,V>
3522 >        implements Set<Map.Entry<K,V>> {
3523 >        EntrySet(ConcurrentHashMap<K, V> map) { super(map); }
3524 >        public final boolean contains(Object o) {
3525 >            Object k, v, r; Map.Entry<?,?> e;
3526 >            return ((o instanceof Map.Entry) &&
3527 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3528 >                    (r = map.get(k)) != null &&
3529 >                    (v = e.getValue()) != null &&
3530 >                    (v == r || v.equals(r)));
3531 >        }
3532 >        public final boolean remove(Object o) {
3533 >            Object k, v; Map.Entry<?,?> e;
3534 >            return ((o instanceof Map.Entry) &&
3535 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3536 >                    (v = e.getValue()) != null &&
3537 >                    map.remove(k, v));
3538 >        }
3539 >        public final Iterator<Map.Entry<K,V>> iterator() {
3540 >            return new EntryIterator<K,V>(map);
3541 >        }
3542 >        public final boolean add(Entry<K,V> e) {
3543 >            throw new UnsupportedOperationException();
3544 >        }
3545 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3546 >            throw new UnsupportedOperationException();
3547 >        }
3548 >        public boolean equals(Object o) {
3549 >            Set<?> c;
3550 >            return ((o instanceof Set) &&
3551 >                    ((c = (Set<?>)o) == this ||
3552 >                     (containsAll(c) && c.containsAll(this))));
3553          }
3554 <        public Object[] toArray() {
3555 <            Collection<K> c = new ArrayList<K>(size());
3556 <            for (K k : this)
3557 <                c.add(k);
3558 <            return c.toArray();
3554 >    }
3555 >
3556 >    /* ---------------- Serialization Support -------------- */
3557 >
3558 >    /**
3559 >     * Stripped-down version of helper class used in previous version,
3560 >     * declared for the sake of serialization compatibility
3561 >     */
3562 >    static class Segment<K,V> implements Serializable {
3563 >        private static final long serialVersionUID = 2249069246763182397L;
3564 >        final float loadFactor;
3565 >        Segment(float lf) { this.loadFactor = lf; }
3566 >    }
3567 >
3568 >    /**
3569 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3570 >     * stream (i.e., serializes it).
3571 >     * @param s the stream
3572 >     * @serialData
3573 >     * the key (Object) and value (Object)
3574 >     * for each key-value mapping, followed by a null pair.
3575 >     * The key-value mappings are emitted in no particular order.
3576 >     */
3577 >    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3578 >        throws java.io.IOException {
3579 >        if (segments == null) { // for serialization compatibility
3580 >            segments = (Segment<K,V>[])
3581 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3582 >            for (int i = 0; i < segments.length; ++i)
3583 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3584          }
3585 <        public <T> T[] toArray(T[] a) {
3586 <            Collection<K> c = new ArrayList<K>();
3587 <            for (K k : this)
3588 <                c.add(k);
3589 <            return c.toArray(a);
3585 >        s.defaultWriteObject();
3586 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3587 >        Object v;
3588 >        while ((v = it.advance()) != null) {
3589 >            s.writeObject(it.nextKey);
3590 >            s.writeObject(v);
3591          }
3592 +        s.writeObject(null);
3593 +        s.writeObject(null);
3594 +        segments = null; // throw away
3595      }
3596  
3597 <    final class Values extends AbstractCollection<V> {
3598 <        public Iterator<V> iterator() {
3599 <            return new ValueIterator();
3597 >    /**
3598 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3599 >     * @param s the stream
3600 >     */
3601 >    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3602 >        throws java.io.IOException, ClassNotFoundException {
3603 >        s.defaultReadObject();
3604 >        this.segments = null; // unneeded
3605 >        // initialize transient final field
3606 >        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3607 >
3608 >        // Create all nodes, then place in table once size is known
3609 >        long size = 0L;
3610 >        Node p = null;
3611 >        for (;;) {
3612 >            K k = (K) s.readObject();
3613 >            V v = (V) s.readObject();
3614 >            if (k != null && v != null) {
3615 >                int h = spread(k.hashCode());
3616 >                p = new Node(h, k, v, p);
3617 >                ++size;
3618 >            }
3619 >            else
3620 >                break;
3621          }
3622 <        public int size() {
3623 <            return ConcurrentHashMap.this.size();
3622 >        if (p != null) {
3623 >            boolean init = false;
3624 >            int n;
3625 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3626 >                n = MAXIMUM_CAPACITY;
3627 >            else {
3628 >                int sz = (int)size;
3629 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3630 >            }
3631 >            int sc = sizeCtl;
3632 >            boolean collide = false;
3633 >            if (n > sc &&
3634 >                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3635 >                try {
3636 >                    if (table == null) {
3637 >                        init = true;
3638 >                        Node[] tab = new Node[n];
3639 >                        int mask = n - 1;
3640 >                        while (p != null) {
3641 >                            int j = p.hash & mask;
3642 >                            Node next = p.next;
3643 >                            Node q = p.next = tabAt(tab, j);
3644 >                            setTabAt(tab, j, p);
3645 >                            if (!collide && q != null && q.hash == p.hash)
3646 >                                collide = true;
3647 >                            p = next;
3648 >                        }
3649 >                        table = tab;
3650 >                        counter.add(size);
3651 >                        sc = n - (n >>> 2);
3652 >                    }
3653 >                } finally {
3654 >                    sizeCtl = sc;
3655 >                }
3656 >                if (collide) { // rescan and convert to TreeBins
3657 >                    Node[] tab = table;
3658 >                    for (int i = 0; i < tab.length; ++i) {
3659 >                        int c = 0;
3660 >                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3661 >                            if (++c > TREE_THRESHOLD &&
3662 >                                (e.key instanceof Comparable)) {
3663 >                                replaceWithTreeBin(tab, i, e.key);
3664 >                                break;
3665 >                            }
3666 >                        }
3667 >                    }
3668 >                }
3669 >            }
3670 >            if (!init) { // Can only happen if unsafely published.
3671 >                while (p != null) {
3672 >                    internalPut(p.key, p.val);
3673 >                    p = p.next;
3674 >                }
3675 >            }
3676          }
3677 <        public boolean contains(Object o) {
3678 <            return ConcurrentHashMap.this.containsValue(o);
3677 >    }
3678 >
3679 >
3680 >    // -------------------------------------------------------
3681 >
3682 >    // Sams
3683 >    /** Interface describing a void action of one argument */
3684 >    public interface Action<A> { void apply(A a); }
3685 >    /** Interface describing a void action of two arguments */
3686 >    public interface BiAction<A,B> { void apply(A a, B b); }
3687 >    /** Interface describing a function of one argument */
3688 >    public interface Fun<A,T> { T apply(A a); }
3689 >    /** Interface describing a function of two arguments */
3690 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
3691 >    /** Interface describing a function of no arguments */
3692 >    public interface Generator<T> { T apply(); }
3693 >    /** Interface describing a function mapping its argument to a double */
3694 >    public interface ObjectToDouble<A> { double apply(A a); }
3695 >    /** Interface describing a function mapping its argument to a long */
3696 >    public interface ObjectToLong<A> { long apply(A a); }
3697 >    /** Interface describing a function mapping its argument to an int */
3698 >    public interface ObjectToInt<A> {int apply(A a); }
3699 >    /** Interface describing a function mapping two arguments to a double */
3700 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3701 >    /** Interface describing a function mapping two arguments to a long */
3702 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3703 >    /** Interface describing a function mapping two arguments to an int */
3704 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3705 >    /** Interface describing a function mapping a double to a double */
3706 >    public interface DoubleToDouble { double apply(double a); }
3707 >    /** Interface describing a function mapping a long to a long */
3708 >    public interface LongToLong { long apply(long a); }
3709 >    /** Interface describing a function mapping an int to an int */
3710 >    public interface IntToInt { int apply(int a); }
3711 >    /** Interface describing a function mapping two doubles to a double */
3712 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3713 >    /** Interface describing a function mapping two longs to a long */
3714 >    public interface LongByLongToLong { long apply(long a, long b); }
3715 >    /** Interface describing a function mapping two ints to an int */
3716 >    public interface IntByIntToInt { int apply(int a, int b); }
3717 >
3718 >
3719 >    // -------------------------------------------------------
3720 >
3721 >    /**
3722 >     * Performs the given action for each (key, value).
3723 >     *
3724 >     * @param action the action
3725 >     */
3726 >    public void forEach(BiAction<K,V> action) {
3727 >        ForkJoinTasks.forEach
3728 >            (this, action).invoke();
3729 >    }
3730 >
3731 >    /**
3732 >     * Performs the given action for each non-null transformation
3733 >     * of each (key, value).
3734 >     *
3735 >     * @param transformer a function returning the transformation
3736 >     * for an element, or null of there is no transformation (in
3737 >     * which case the action is not applied).
3738 >     * @param action the action
3739 >     */
3740 >    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3741 >                            Action<U> action) {
3742 >        ForkJoinTasks.forEach
3743 >            (this, transformer, action).invoke();
3744 >    }
3745 >
3746 >    /**
3747 >     * Returns a non-null result from applying the given search
3748 >     * function on each (key, value), or null if none.  Upon
3749 >     * success, further element processing is suppressed and the
3750 >     * results of any other parallel invocations of the search
3751 >     * function are ignored.
3752 >     *
3753 >     * @param searchFunction a function returning a non-null
3754 >     * result on success, else null
3755 >     * @return a non-null result from applying the given search
3756 >     * function on each (key, value), or null if none
3757 >     */
3758 >    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3759 >        return ForkJoinTasks.search
3760 >            (this, searchFunction).invoke();
3761 >    }
3762 >
3763 >    /**
3764 >     * Returns the result of accumulating the given transformation
3765 >     * of all (key, value) pairs using the given reducer to
3766 >     * combine values, or null if none.
3767 >     *
3768 >     * @param transformer a function returning the transformation
3769 >     * for an element, or null of there is no transformation (in
3770 >     * which case it is not combined).
3771 >     * @param reducer a commutative associative combining function
3772 >     * @return the result of accumulating the given transformation
3773 >     * of all (key, value) pairs
3774 >     */
3775 >    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3776 >                        BiFun<? super U, ? super U, ? extends U> reducer) {
3777 >        return ForkJoinTasks.reduce
3778 >            (this, transformer, reducer).invoke();
3779 >    }
3780 >
3781 >    /**
3782 >     * Returns the result of accumulating the given transformation
3783 >     * of all (key, value) pairs using the given reducer to
3784 >     * combine values, and the given basis as an identity value.
3785 >     *
3786 >     * @param transformer a function returning the transformation
3787 >     * for an element
3788 >     * @param basis the identity (initial default value) for the reduction
3789 >     * @param reducer a commutative associative combining function
3790 >     * @return the result of accumulating the given transformation
3791 >     * of all (key, value) pairs
3792 >     */
3793 >    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3794 >                                 double basis,
3795 >                                 DoubleByDoubleToDouble reducer) {
3796 >        return ForkJoinTasks.reduceToDouble
3797 >            (this, transformer, basis, reducer).invoke();
3798 >    }
3799 >
3800 >    /**
3801 >     * Returns the result of accumulating the given transformation
3802 >     * of all (key, value) pairs using the given reducer to
3803 >     * combine values, and the given basis as an identity value.
3804 >     *
3805 >     * @param transformer a function returning the transformation
3806 >     * for an element
3807 >     * @param basis the identity (initial default value) for the reduction
3808 >     * @param reducer a commutative associative combining function
3809 >     * @return the result of accumulating the given transformation
3810 >     * of all (key, value) pairs
3811 >     */
3812 >    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3813 >                             long basis,
3814 >                             LongByLongToLong reducer) {
3815 >        return ForkJoinTasks.reduceToLong
3816 >            (this, transformer, basis, reducer).invoke();
3817 >    }
3818 >
3819 >    /**
3820 >     * Returns the result of accumulating the given transformation
3821 >     * of all (key, value) pairs using the given reducer to
3822 >     * combine values, and the given basis as an identity value.
3823 >     *
3824 >     * @param transformer a function returning the transformation
3825 >     * for an element
3826 >     * @param basis the identity (initial default value) for the reduction
3827 >     * @param reducer a commutative associative combining function
3828 >     * @return the result of accumulating the given transformation
3829 >     * of all (key, value) pairs
3830 >     */
3831 >    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3832 >                           int basis,
3833 >                           IntByIntToInt reducer) {
3834 >        return ForkJoinTasks.reduceToInt
3835 >            (this, transformer, basis, reducer).invoke();
3836 >    }
3837 >
3838 >    /**
3839 >     * Performs the given action for each key.
3840 >     *
3841 >     * @param action the action
3842 >     */
3843 >    public void forEachKey(Action<K> action) {
3844 >        ForkJoinTasks.forEachKey
3845 >            (this, action).invoke();
3846 >    }
3847 >
3848 >    /**
3849 >     * Performs the given action for each non-null transformation
3850 >     * of each key.
3851 >     *
3852 >     * @param transformer a function returning the transformation
3853 >     * for an element, or null of there is no transformation (in
3854 >     * which case the action is not applied).
3855 >     * @param action the action
3856 >     */
3857 >    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3858 >                               Action<U> action) {
3859 >        ForkJoinTasks.forEachKey
3860 >            (this, transformer, action).invoke();
3861 >    }
3862 >
3863 >    /**
3864 >     * Returns a non-null result from applying the given search
3865 >     * function on each key, or null if none. Upon success,
3866 >     * further element processing is suppressed and the results of
3867 >     * any other parallel invocations of the search function are
3868 >     * ignored.
3869 >     *
3870 >     * @param searchFunction a function returning a non-null
3871 >     * result on success, else null
3872 >     * @return a non-null result from applying the given search
3873 >     * function on each key, or null if none
3874 >     */
3875 >    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3876 >        return ForkJoinTasks.searchKeys
3877 >            (this, searchFunction).invoke();
3878 >    }
3879 >
3880 >    /**
3881 >     * Returns the result of accumulating all keys using the given
3882 >     * reducer to combine values, or null if none.
3883 >     *
3884 >     * @param reducer a commutative associative combining function
3885 >     * @return the result of accumulating all keys using the given
3886 >     * reducer to combine values, or null if none
3887 >     */
3888 >    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3889 >        return ForkJoinTasks.reduceKeys
3890 >            (this, reducer).invoke();
3891 >    }
3892 >
3893 >    /**
3894 >     * Returns the result of accumulating the given transformation
3895 >     * of all keys using the given reducer to combine values, or
3896 >     * null if none.
3897 >     *
3898 >     * @param transformer a function returning the transformation
3899 >     * for an element, or null of there is no transformation (in
3900 >     * which case it is not combined).
3901 >     * @param reducer a commutative associative combining function
3902 >     * @return the result of accumulating the given transformation
3903 >     * of all keys
3904 >     */
3905 >    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3906 >                            BiFun<? super U, ? super U, ? extends U> reducer) {
3907 >        return ForkJoinTasks.reduceKeys
3908 >            (this, transformer, reducer).invoke();
3909 >    }
3910 >
3911 >    /**
3912 >     * Returns the result of accumulating the given transformation
3913 >     * of all keys using the given reducer to combine values, and
3914 >     * the given basis as an identity value.
3915 >     *
3916 >     * @param transformer a function returning the transformation
3917 >     * for an element
3918 >     * @param basis the identity (initial default value) for the reduction
3919 >     * @param reducer a commutative associative combining function
3920 >     * @return  the result of accumulating the given transformation
3921 >     * of all keys
3922 >     */
3923 >    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3924 >                                     double basis,
3925 >                                     DoubleByDoubleToDouble reducer) {
3926 >        return ForkJoinTasks.reduceKeysToDouble
3927 >            (this, transformer, basis, reducer).invoke();
3928 >    }
3929 >
3930 >    /**
3931 >     * Returns the result of accumulating the given transformation
3932 >     * of all keys using the given reducer to combine values, and
3933 >     * the given basis as an identity value.
3934 >     *
3935 >     * @param transformer a function returning the transformation
3936 >     * for an element
3937 >     * @param basis the identity (initial default value) for the reduction
3938 >     * @param reducer a commutative associative combining function
3939 >     * @return the result of accumulating the given transformation
3940 >     * of all keys
3941 >     */
3942 >    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3943 >                                 long basis,
3944 >                                 LongByLongToLong reducer) {
3945 >        return ForkJoinTasks.reduceKeysToLong
3946 >            (this, transformer, basis, reducer).invoke();
3947 >    }
3948 >
3949 >    /**
3950 >     * Returns the result of accumulating the given transformation
3951 >     * of all keys using the given reducer to combine values, and
3952 >     * the given basis as an identity value.
3953 >     *
3954 >     * @param transformer a function returning the transformation
3955 >     * for an element
3956 >     * @param basis the identity (initial default value) for the reduction
3957 >     * @param reducer a commutative associative combining function
3958 >     * @return the result of accumulating the given transformation
3959 >     * of all keys
3960 >     */
3961 >    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3962 >                               int basis,
3963 >                               IntByIntToInt reducer) {
3964 >        return ForkJoinTasks.reduceKeysToInt
3965 >            (this, transformer, basis, reducer).invoke();
3966 >    }
3967 >
3968 >    /**
3969 >     * Performs the given action for each value.
3970 >     *
3971 >     * @param action the action
3972 >     */
3973 >    public void forEachValue(Action<V> action) {
3974 >        ForkJoinTasks.forEachValue
3975 >            (this, action).invoke();
3976 >    }
3977 >
3978 >    /**
3979 >     * Performs the given action for each non-null transformation
3980 >     * of each value.
3981 >     *
3982 >     * @param transformer a function returning the transformation
3983 >     * for an element, or null of there is no transformation (in
3984 >     * which case the action is not applied).
3985 >     */
3986 >    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3987 >                                 Action<U> action) {
3988 >        ForkJoinTasks.forEachValue
3989 >            (this, transformer, action).invoke();
3990 >    }
3991 >
3992 >    /**
3993 >     * Returns a non-null result from applying the given search
3994 >     * function on each value, or null if none.  Upon success,
3995 >     * further element processing is suppressed and the results of
3996 >     * any other parallel invocations of the search function are
3997 >     * ignored.
3998 >     *
3999 >     * @param searchFunction a function returning a non-null
4000 >     * result on success, else null
4001 >     * @return a non-null result from applying the given search
4002 >     * function on each value, or null if none
4003 >     *
4004 >     */
4005 >    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
4006 >        return ForkJoinTasks.searchValues
4007 >            (this, searchFunction).invoke();
4008 >    }
4009 >
4010 >    /**
4011 >     * Returns the result of accumulating all values using the
4012 >     * given reducer to combine values, or null if none.
4013 >     *
4014 >     * @param reducer a commutative associative combining function
4015 >     * @return  the result of accumulating all values
4016 >     */
4017 >    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
4018 >        return ForkJoinTasks.reduceValues
4019 >            (this, reducer).invoke();
4020 >    }
4021 >
4022 >    /**
4023 >     * Returns the result of accumulating the given transformation
4024 >     * of all values using the given reducer to combine values, or
4025 >     * null if none.
4026 >     *
4027 >     * @param transformer a function returning the transformation
4028 >     * for an element, or null of there is no transformation (in
4029 >     * which case it is not combined).
4030 >     * @param reducer a commutative associative combining function
4031 >     * @return the result of accumulating the given transformation
4032 >     * of all values
4033 >     */
4034 >    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
4035 >                              BiFun<? super U, ? super U, ? extends U> reducer) {
4036 >        return ForkJoinTasks.reduceValues
4037 >            (this, transformer, reducer).invoke();
4038 >    }
4039 >
4040 >    /**
4041 >     * Returns the result of accumulating the given transformation
4042 >     * of all values using the given reducer to combine values,
4043 >     * and the given basis as an identity value.
4044 >     *
4045 >     * @param transformer a function returning the transformation
4046 >     * for an element
4047 >     * @param basis the identity (initial default value) for the reduction
4048 >     * @param reducer a commutative associative combining function
4049 >     * @return the result of accumulating the given transformation
4050 >     * of all values
4051 >     */
4052 >    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
4053 >                                       double basis,
4054 >                                       DoubleByDoubleToDouble reducer) {
4055 >        return ForkJoinTasks.reduceValuesToDouble
4056 >            (this, transformer, basis, reducer).invoke();
4057 >    }
4058 >
4059 >    /**
4060 >     * Returns the result of accumulating the given transformation
4061 >     * of all values using the given reducer to combine values,
4062 >     * and the given basis as an identity value.
4063 >     *
4064 >     * @param transformer a function returning the transformation
4065 >     * for an element
4066 >     * @param basis the identity (initial default value) for the reduction
4067 >     * @param reducer a commutative associative combining function
4068 >     * @return the result of accumulating the given transformation
4069 >     * of all values
4070 >     */
4071 >    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
4072 >                                   long basis,
4073 >                                   LongByLongToLong reducer) {
4074 >        return ForkJoinTasks.reduceValuesToLong
4075 >            (this, transformer, basis, reducer).invoke();
4076 >    }
4077 >
4078 >    /**
4079 >     * Returns the result of accumulating the given transformation
4080 >     * of all values using the given reducer to combine values,
4081 >     * and the given basis as an identity value.
4082 >     *
4083 >     * @param transformer a function returning the transformation
4084 >     * for an element
4085 >     * @param basis the identity (initial default value) for the reduction
4086 >     * @param reducer a commutative associative combining function
4087 >     * @return the result of accumulating the given transformation
4088 >     * of all values
4089 >     */
4090 >    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4091 >                                 int basis,
4092 >                                 IntByIntToInt reducer) {
4093 >        return ForkJoinTasks.reduceValuesToInt
4094 >            (this, transformer, basis, reducer).invoke();
4095 >    }
4096 >
4097 >    /**
4098 >     * Performs the given action for each entry.
4099 >     *
4100 >     * @param action the action
4101 >     */
4102 >    public void forEachEntry(Action<Map.Entry<K,V>> action) {
4103 >        ForkJoinTasks.forEachEntry
4104 >            (this, action).invoke();
4105 >    }
4106 >
4107 >    /**
4108 >     * Performs the given action for each non-null transformation
4109 >     * of each entry.
4110 >     *
4111 >     * @param transformer a function returning the transformation
4112 >     * for an element, or null of there is no transformation (in
4113 >     * which case the action is not applied).
4114 >     * @param action the action
4115 >     */
4116 >    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4117 >                                 Action<U> action) {
4118 >        ForkJoinTasks.forEachEntry
4119 >            (this, transformer, action).invoke();
4120 >    }
4121 >
4122 >    /**
4123 >     * Returns a non-null result from applying the given search
4124 >     * function on each entry, or null if none.  Upon success,
4125 >     * further element processing is suppressed and the results of
4126 >     * any other parallel invocations of the search function are
4127 >     * ignored.
4128 >     *
4129 >     * @param searchFunction a function returning a non-null
4130 >     * result on success, else null
4131 >     * @return a non-null result from applying the given search
4132 >     * function on each entry, or null if none
4133 >     */
4134 >    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4135 >        return ForkJoinTasks.searchEntries
4136 >            (this, searchFunction).invoke();
4137 >    }
4138 >
4139 >    /**
4140 >     * Returns the result of accumulating all entries using the
4141 >     * given reducer to combine values, or null if none.
4142 >     *
4143 >     * @param reducer a commutative associative combining function
4144 >     * @return the result of accumulating all entries
4145 >     */
4146 >    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4147 >        return ForkJoinTasks.reduceEntries
4148 >            (this, reducer).invoke();
4149 >    }
4150 >
4151 >    /**
4152 >     * Returns the result of accumulating the given transformation
4153 >     * of all entries using the given reducer to combine values,
4154 >     * or null if none.
4155 >     *
4156 >     * @param transformer a function returning the transformation
4157 >     * for an element, or null of there is no transformation (in
4158 >     * which case it is not combined).
4159 >     * @param reducer a commutative associative combining function
4160 >     * @return the result of accumulating the given transformation
4161 >     * of all entries
4162 >     */
4163 >    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4164 >                               BiFun<? super U, ? super U, ? extends U> reducer) {
4165 >        return ForkJoinTasks.reduceEntries
4166 >            (this, transformer, reducer).invoke();
4167 >    }
4168 >
4169 >    /**
4170 >     * Returns the result of accumulating the given transformation
4171 >     * of all entries using the given reducer to combine values,
4172 >     * and the given basis as an identity value.
4173 >     *
4174 >     * @param transformer a function returning the transformation
4175 >     * for an element
4176 >     * @param basis the identity (initial default value) for the reduction
4177 >     * @param reducer a commutative associative combining function
4178 >     * @return the result of accumulating the given transformation
4179 >     * of all entries
4180 >     */
4181 >    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4182 >                                        double basis,
4183 >                                        DoubleByDoubleToDouble reducer) {
4184 >        return ForkJoinTasks.reduceEntriesToDouble
4185 >            (this, transformer, basis, reducer).invoke();
4186 >    }
4187 >
4188 >    /**
4189 >     * Returns the result of accumulating the given transformation
4190 >     * of all entries using the given reducer to combine values,
4191 >     * and the given basis as an identity value.
4192 >     *
4193 >     * @param transformer a function returning the transformation
4194 >     * for an element
4195 >     * @param basis the identity (initial default value) for the reduction
4196 >     * @param reducer a commutative associative combining function
4197 >     * @return  the result of accumulating the given transformation
4198 >     * of all entries
4199 >     */
4200 >    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4201 >                                    long basis,
4202 >                                    LongByLongToLong reducer) {
4203 >        return ForkJoinTasks.reduceEntriesToLong
4204 >            (this, transformer, basis, reducer).invoke();
4205 >    }
4206 >
4207 >    /**
4208 >     * Returns the result of accumulating the given transformation
4209 >     * of all entries using the given reducer to combine values,
4210 >     * and the given basis as an identity value.
4211 >     *
4212 >     * @param transformer a function returning the transformation
4213 >     * for an element
4214 >     * @param basis the identity (initial default value) for the reduction
4215 >     * @param reducer a commutative associative combining function
4216 >     * @return the result of accumulating the given transformation
4217 >     * of all entries
4218 >     */
4219 >    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4220 >                                  int basis,
4221 >                                  IntByIntToInt reducer) {
4222 >        return ForkJoinTasks.reduceEntriesToInt
4223 >            (this, transformer, basis, reducer).invoke();
4224 >    }
4225 >
4226 >    // ---------------------------------------------------------------------
4227 >
4228 >    /**
4229 >     * Predefined tasks for performing bulk parallel operations on
4230 >     * ConcurrentHashMaps. These tasks follow the forms and rules used
4231 >     * for bulk operations. Each method has the same name, but returns
4232 >     * a task rather than invoking it. These methods may be useful in
4233 >     * custom applications such as submitting a task without waiting
4234 >     * for completion, using a custom pool, or combining with other
4235 >     * tasks.
4236 >     */
4237 >    public static class ForkJoinTasks {
4238 >        private ForkJoinTasks() {}
4239 >
4240 >        /**
4241 >         * Returns a task that when invoked, performs the given
4242 >         * action for each (key, value)
4243 >         *
4244 >         * @param map the map
4245 >         * @param action the action
4246 >         * @return the task
4247 >         */
4248 >        public static <K,V> ForkJoinTask<Void> forEach
4249 >            (ConcurrentHashMap<K,V> map,
4250 >             BiAction<K,V> action) {
4251 >            if (action == null) throw new NullPointerException();
4252 >            return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4253          }
4254 <        public void clear() {
4255 <            ConcurrentHashMap.this.clear();
4254 >
4255 >        /**
4256 >         * Returns a task that when invoked, performs the given
4257 >         * action for each non-null transformation of each (key, value)
4258 >         *
4259 >         * @param map the map
4260 >         * @param transformer a function returning the transformation
4261 >         * for an element, or null if there is no transformation (in
4262 >         * which case the action is not applied)
4263 >         * @param action the action
4264 >         * @return the task
4265 >         */
4266 >        public static <K,V,U> ForkJoinTask<Void> forEach
4267 >            (ConcurrentHashMap<K,V> map,
4268 >             BiFun<? super K, ? super V, ? extends U> transformer,
4269 >             Action<U> action) {
4270 >            if (transformer == null || action == null)
4271 >                throw new NullPointerException();
4272 >            return new ForEachTransformedMappingTask<K,V,U>
4273 >                (map, null, -1, null, transformer, action);
4274          }
4275 <        public Object[] toArray() {
4276 <            Collection<V> c = new ArrayList<V>(size());
4277 <            for (V v : this)
4278 <                c.add(v);
4279 <            return c.toArray();
4275 >
4276 >        /**
4277 >         * Returns a task that when invoked, returns a non-null result
4278 >         * from applying the given search function on each (key,
4279 >         * value), or null if none. Upon success, further element
4280 >         * processing is suppressed and the results of any other
4281 >         * parallel invocations of the search function are ignored.
4282 >         *
4283 >         * @param map the map
4284 >         * @param searchFunction a function returning a non-null
4285 >         * result on success, else null
4286 >         * @return the task
4287 >         */
4288 >        public static <K,V,U> ForkJoinTask<U> search
4289 >            (ConcurrentHashMap<K,V> map,
4290 >             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4291 >            if (searchFunction == null) throw new NullPointerException();
4292 >            return new SearchMappingsTask<K,V,U>
4293 >                (map, null, -1, null, searchFunction,
4294 >                 new AtomicReference<U>());
4295          }
4296 <        public <T> T[] toArray(T[] a) {
4297 <            Collection<V> c = new ArrayList<V>(size());
4298 <            for (V v : this)
4299 <                c.add(v);
4300 <            return c.toArray(a);
4296 >
4297 >        /**
4298 >         * Returns a task that when invoked, returns the result of
4299 >         * accumulating the given transformation of all (key, value) pairs
4300 >         * using the given reducer to combine values, or null if none.
4301 >         *
4302 >         * @param map the map
4303 >         * @param transformer a function returning the transformation
4304 >         * for an element, or null if there is no transformation (in
4305 >         * which case it is not combined).
4306 >         * @param reducer a commutative associative combining function
4307 >         * @return the task
4308 >         */
4309 >        public static <K,V,U> ForkJoinTask<U> reduce
4310 >            (ConcurrentHashMap<K,V> map,
4311 >             BiFun<? super K, ? super V, ? extends U> transformer,
4312 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4313 >            if (transformer == null || reducer == null)
4314 >                throw new NullPointerException();
4315 >            return new MapReduceMappingsTask<K,V,U>
4316 >                (map, null, -1, null, transformer, reducer);
4317          }
1218    }
4318  
4319 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4320 <        public Iterator<Map.Entry<K,V>> iterator() {
4321 <            return new EntryIterator();
4319 >        /**
4320 >         * Returns a task that when invoked, returns the result of
4321 >         * accumulating the given transformation of all (key, value) pairs
4322 >         * using the given reducer to combine values, and the given
4323 >         * basis as an identity value.
4324 >         *
4325 >         * @param map the map
4326 >         * @param transformer a function returning the transformation
4327 >         * for an element
4328 >         * @param basis the identity (initial default value) for the reduction
4329 >         * @param reducer a commutative associative combining function
4330 >         * @return the task
4331 >         */
4332 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
4333 >            (ConcurrentHashMap<K,V> map,
4334 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
4335 >             double basis,
4336 >             DoubleByDoubleToDouble reducer) {
4337 >            if (transformer == null || reducer == null)
4338 >                throw new NullPointerException();
4339 >            return new MapReduceMappingsToDoubleTask<K,V>
4340 >                (map, null, -1, null, transformer, basis, reducer);
4341          }
4342 <        public boolean contains(Object o) {
4343 <            if (!(o instanceof Map.Entry))
4344 <                return false;
4345 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4346 <            V v = ConcurrentHashMap.this.get(e.getKey());
4347 <            return v != null && v.equals(e.getValue());
4342 >
4343 >        /**
4344 >         * Returns a task that when invoked, returns the result of
4345 >         * accumulating the given transformation of all (key, value) pairs
4346 >         * using the given reducer to combine values, and the given
4347 >         * basis as an identity value.
4348 >         *
4349 >         * @param map the map
4350 >         * @param transformer a function returning the transformation
4351 >         * for an element
4352 >         * @param basis the identity (initial default value) for the reduction
4353 >         * @param reducer a commutative associative combining function
4354 >         * @return the task
4355 >         */
4356 >        public static <K,V> ForkJoinTask<Long> reduceToLong
4357 >            (ConcurrentHashMap<K,V> map,
4358 >             ObjectByObjectToLong<? super K, ? super V> transformer,
4359 >             long basis,
4360 >             LongByLongToLong reducer) {
4361 >            if (transformer == null || reducer == null)
4362 >                throw new NullPointerException();
4363 >            return new MapReduceMappingsToLongTask<K,V>
4364 >                (map, null, -1, null, transformer, basis, reducer);
4365          }
4366 <        public boolean remove(Object o) {
4367 <            if (!(o instanceof Map.Entry))
4368 <                return false;
4369 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4370 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4366 >
4367 >        /**
4368 >         * Returns a task that when invoked, returns the result of
4369 >         * accumulating the given transformation of all (key, value) pairs
4370 >         * using the given reducer to combine values, and the given
4371 >         * basis as an identity value.
4372 >         *
4373 >         * @param transformer a function returning the transformation
4374 >         * for an element
4375 >         * @param basis the identity (initial default value) for the reduction
4376 >         * @param reducer a commutative associative combining function
4377 >         * @return the task
4378 >         */
4379 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
4380 >            (ConcurrentHashMap<K,V> map,
4381 >             ObjectByObjectToInt<? super K, ? super V> transformer,
4382 >             int basis,
4383 >             IntByIntToInt reducer) {
4384 >            if (transformer == null || reducer == null)
4385 >                throw new NullPointerException();
4386 >            return new MapReduceMappingsToIntTask<K,V>
4387 >                (map, null, -1, null, transformer, basis, reducer);
4388 >        }
4389 >
4390 >        /**
4391 >         * Returns a task that when invoked, performs the given action
4392 >         * for each key.
4393 >         *
4394 >         * @param map the map
4395 >         * @param action the action
4396 >         * @return the task
4397 >         */
4398 >        public static <K,V> ForkJoinTask<Void> forEachKey
4399 >            (ConcurrentHashMap<K,V> map,
4400 >             Action<K> action) {
4401 >            if (action == null) throw new NullPointerException();
4402 >            return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4403 >        }
4404 >
4405 >        /**
4406 >         * Returns a task that when invoked, performs the given action
4407 >         * for each non-null transformation of each key.
4408 >         *
4409 >         * @param map the map
4410 >         * @param transformer a function returning the transformation
4411 >         * for an element, or null if there is no transformation (in
4412 >         * which case the action is not applied)
4413 >         * @param action the action
4414 >         * @return the task
4415 >         */
4416 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
4417 >            (ConcurrentHashMap<K,V> map,
4418 >             Fun<? super K, ? extends U> transformer,
4419 >             Action<U> action) {
4420 >            if (transformer == null || action == null)
4421 >                throw new NullPointerException();
4422 >            return new ForEachTransformedKeyTask<K,V,U>
4423 >                (map, null, -1, null, transformer, action);
4424 >        }
4425 >
4426 >        /**
4427 >         * Returns a task that when invoked, returns a non-null result
4428 >         * from applying the given search function on each key, or
4429 >         * null if none.  Upon success, further element processing is
4430 >         * suppressed and the results of any other parallel
4431 >         * invocations of the search function are ignored.
4432 >         *
4433 >         * @param map the map
4434 >         * @param searchFunction a function returning a non-null
4435 >         * result on success, else null
4436 >         * @return the task
4437 >         */
4438 >        public static <K,V,U> ForkJoinTask<U> searchKeys
4439 >            (ConcurrentHashMap<K,V> map,
4440 >             Fun<? super K, ? extends U> searchFunction) {
4441 >            if (searchFunction == null) throw new NullPointerException();
4442 >            return new SearchKeysTask<K,V,U>
4443 >                (map, null, -1, null, searchFunction,
4444 >                 new AtomicReference<U>());
4445 >        }
4446 >
4447 >        /**
4448 >         * Returns a task that when invoked, returns the result of
4449 >         * accumulating all keys using the given reducer to combine
4450 >         * values, or null if none.
4451 >         *
4452 >         * @param map the map
4453 >         * @param reducer a commutative associative combining function
4454 >         * @return the task
4455 >         */
4456 >        public static <K,V> ForkJoinTask<K> reduceKeys
4457 >            (ConcurrentHashMap<K,V> map,
4458 >             BiFun<? super K, ? super K, ? extends K> reducer) {
4459 >            if (reducer == null) throw new NullPointerException();
4460 >            return new ReduceKeysTask<K,V>
4461 >                (map, null, -1, null, reducer);
4462 >        }
4463 >
4464 >        /**
4465 >         * Returns a task that when invoked, returns the result of
4466 >         * accumulating the given transformation of all keys using the given
4467 >         * reducer to combine values, or null if none.
4468 >         *
4469 >         * @param map the map
4470 >         * @param transformer a function returning the transformation
4471 >         * for an element, or null if there is no transformation (in
4472 >         * which case it is not combined).
4473 >         * @param reducer a commutative associative combining function
4474 >         * @return the task
4475 >         */
4476 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
4477 >            (ConcurrentHashMap<K,V> map,
4478 >             Fun<? super K, ? extends U> transformer,
4479 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4480 >            if (transformer == null || reducer == null)
4481 >                throw new NullPointerException();
4482 >            return new MapReduceKeysTask<K,V,U>
4483 >                (map, null, -1, null, transformer, reducer);
4484 >        }
4485 >
4486 >        /**
4487 >         * Returns a task that when invoked, returns the result of
4488 >         * accumulating the given transformation of all keys using the given
4489 >         * reducer to combine values, and the given basis as an
4490 >         * identity value.
4491 >         *
4492 >         * @param map the map
4493 >         * @param transformer a function returning the transformation
4494 >         * for an element
4495 >         * @param basis the identity (initial default value) for the reduction
4496 >         * @param reducer a commutative associative combining function
4497 >         * @return the task
4498 >         */
4499 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4500 >            (ConcurrentHashMap<K,V> map,
4501 >             ObjectToDouble<? super K> transformer,
4502 >             double basis,
4503 >             DoubleByDoubleToDouble reducer) {
4504 >            if (transformer == null || reducer == null)
4505 >                throw new NullPointerException();
4506 >            return new MapReduceKeysToDoubleTask<K,V>
4507 >                (map, null, -1, null, transformer, basis, reducer);
4508 >        }
4509 >
4510 >        /**
4511 >         * Returns a task that when invoked, returns the result of
4512 >         * accumulating the given transformation of all keys using the given
4513 >         * reducer to combine values, and the given basis as an
4514 >         * identity value.
4515 >         *
4516 >         * @param map the map
4517 >         * @param transformer a function returning the transformation
4518 >         * for an element
4519 >         * @param basis the identity (initial default value) for the reduction
4520 >         * @param reducer a commutative associative combining function
4521 >         * @return the task
4522 >         */
4523 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4524 >            (ConcurrentHashMap<K,V> map,
4525 >             ObjectToLong<? super K> transformer,
4526 >             long basis,
4527 >             LongByLongToLong reducer) {
4528 >            if (transformer == null || reducer == null)
4529 >                throw new NullPointerException();
4530 >            return new MapReduceKeysToLongTask<K,V>
4531 >                (map, null, -1, null, transformer, basis, reducer);
4532 >        }
4533 >
4534 >        /**
4535 >         * Returns a task that when invoked, returns the result of
4536 >         * accumulating the given transformation of all keys using the given
4537 >         * reducer to combine values, and the given basis as an
4538 >         * identity value.
4539 >         *
4540 >         * @param map the map
4541 >         * @param transformer a function returning the transformation
4542 >         * for an element
4543 >         * @param basis the identity (initial default value) for the reduction
4544 >         * @param reducer a commutative associative combining function
4545 >         * @return the task
4546 >         */
4547 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4548 >            (ConcurrentHashMap<K,V> map,
4549 >             ObjectToInt<? super K> transformer,
4550 >             int basis,
4551 >             IntByIntToInt reducer) {
4552 >            if (transformer == null || reducer == null)
4553 >                throw new NullPointerException();
4554 >            return new MapReduceKeysToIntTask<K,V>
4555 >                (map, null, -1, null, transformer, basis, reducer);
4556 >        }
4557 >
4558 >        /**
4559 >         * Returns a task that when invoked, performs the given action
4560 >         * for each value.
4561 >         *
4562 >         * @param map the map
4563 >         * @param action the action
4564 >         */
4565 >        public static <K,V> ForkJoinTask<Void> forEachValue
4566 >            (ConcurrentHashMap<K,V> map,
4567 >             Action<V> action) {
4568 >            if (action == null) throw new NullPointerException();
4569 >            return new ForEachValueTask<K,V>(map, null, -1, null, action);
4570 >        }
4571 >
4572 >        /**
4573 >         * Returns a task that when invoked, performs the given action
4574 >         * for each non-null transformation of each value.
4575 >         *
4576 >         * @param map the map
4577 >         * @param transformer a function returning the transformation
4578 >         * for an element, or null if there is no transformation (in
4579 >         * which case the action is not applied)
4580 >         * @param action the action
4581 >         */
4582 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
4583 >            (ConcurrentHashMap<K,V> map,
4584 >             Fun<? super V, ? extends U> transformer,
4585 >             Action<U> action) {
4586 >            if (transformer == null || action == null)
4587 >                throw new NullPointerException();
4588 >            return new ForEachTransformedValueTask<K,V,U>
4589 >                (map, null, -1, null, transformer, action);
4590 >        }
4591 >
4592 >        /**
4593 >         * Returns a task that when invoked, returns a non-null result
4594 >         * from applying the given search function on each value, or
4595 >         * null if none.  Upon success, further element processing is
4596 >         * suppressed and the results of any other parallel
4597 >         * invocations of the search function are ignored.
4598 >         *
4599 >         * @param map the map
4600 >         * @param searchFunction a function returning a non-null
4601 >         * result on success, else null
4602 >         * @return the task
4603 >         */
4604 >        public static <K,V,U> ForkJoinTask<U> searchValues
4605 >            (ConcurrentHashMap<K,V> map,
4606 >             Fun<? super V, ? extends U> searchFunction) {
4607 >            if (searchFunction == null) throw new NullPointerException();
4608 >            return new SearchValuesTask<K,V,U>
4609 >                (map, null, -1, null, searchFunction,
4610 >                 new AtomicReference<U>());
4611 >        }
4612 >
4613 >        /**
4614 >         * Returns a task that when invoked, returns the result of
4615 >         * accumulating all values using the given reducer to combine
4616 >         * values, or null if none.
4617 >         *
4618 >         * @param map the map
4619 >         * @param reducer a commutative associative combining function
4620 >         * @return the task
4621 >         */
4622 >        public static <K,V> ForkJoinTask<V> reduceValues
4623 >            (ConcurrentHashMap<K,V> map,
4624 >             BiFun<? super V, ? super V, ? extends V> reducer) {
4625 >            if (reducer == null) throw new NullPointerException();
4626 >            return new ReduceValuesTask<K,V>
4627 >                (map, null, -1, null, reducer);
4628 >        }
4629 >
4630 >        /**
4631 >         * Returns a task that when invoked, returns the result of
4632 >         * accumulating the given transformation of all values using the
4633 >         * given reducer to combine values, or null if none.
4634 >         *
4635 >         * @param map the map
4636 >         * @param transformer a function returning the transformation
4637 >         * for an element, or null if there is no transformation (in
4638 >         * which case it is not combined).
4639 >         * @param reducer a commutative associative combining function
4640 >         * @return the task
4641 >         */
4642 >        public static <K,V,U> ForkJoinTask<U> reduceValues
4643 >            (ConcurrentHashMap<K,V> map,
4644 >             Fun<? super V, ? extends U> transformer,
4645 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4646 >            if (transformer == null || reducer == null)
4647 >                throw new NullPointerException();
4648 >            return new MapReduceValuesTask<K,V,U>
4649 >                (map, null, -1, null, transformer, reducer);
4650 >        }
4651 >
4652 >        /**
4653 >         * Returns a task that when invoked, returns the result of
4654 >         * accumulating the given transformation of all values using the
4655 >         * given reducer to combine values, and the given basis as an
4656 >         * identity value.
4657 >         *
4658 >         * @param map the map
4659 >         * @param transformer a function returning the transformation
4660 >         * for an element
4661 >         * @param basis the identity (initial default value) for the reduction
4662 >         * @param reducer a commutative associative combining function
4663 >         * @return the task
4664 >         */
4665 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4666 >            (ConcurrentHashMap<K,V> map,
4667 >             ObjectToDouble<? super V> transformer,
4668 >             double basis,
4669 >             DoubleByDoubleToDouble reducer) {
4670 >            if (transformer == null || reducer == null)
4671 >                throw new NullPointerException();
4672 >            return new MapReduceValuesToDoubleTask<K,V>
4673 >                (map, null, -1, null, transformer, basis, reducer);
4674 >        }
4675 >
4676 >        /**
4677 >         * Returns a task that when invoked, returns the result of
4678 >         * accumulating the given transformation of all values using the
4679 >         * given reducer to combine values, and the given basis as an
4680 >         * identity value.
4681 >         *
4682 >         * @param map the map
4683 >         * @param transformer a function returning the transformation
4684 >         * for an element
4685 >         * @param basis the identity (initial default value) for the reduction
4686 >         * @param reducer a commutative associative combining function
4687 >         * @return the task
4688 >         */
4689 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4690 >            (ConcurrentHashMap<K,V> map,
4691 >             ObjectToLong<? super V> transformer,
4692 >             long basis,
4693 >             LongByLongToLong reducer) {
4694 >            if (transformer == null || reducer == null)
4695 >                throw new NullPointerException();
4696 >            return new MapReduceValuesToLongTask<K,V>
4697 >                (map, null, -1, null, transformer, basis, reducer);
4698 >        }
4699 >
4700 >        /**
4701 >         * Returns a task that when invoked, returns the result of
4702 >         * accumulating the given transformation of all values using the
4703 >         * given reducer to combine values, and the given basis as an
4704 >         * identity value.
4705 >         *
4706 >         * @param map the map
4707 >         * @param transformer a function returning the transformation
4708 >         * for an element
4709 >         * @param basis the identity (initial default value) for the reduction
4710 >         * @param reducer a commutative associative combining function
4711 >         * @return the task
4712 >         */
4713 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4714 >            (ConcurrentHashMap<K,V> map,
4715 >             ObjectToInt<? super V> transformer,
4716 >             int basis,
4717 >             IntByIntToInt reducer) {
4718 >            if (transformer == null || reducer == null)
4719 >                throw new NullPointerException();
4720 >            return new MapReduceValuesToIntTask<K,V>
4721 >                (map, null, -1, null, transformer, basis, reducer);
4722 >        }
4723 >
4724 >        /**
4725 >         * Returns a task that when invoked, perform the given action
4726 >         * for each entry.
4727 >         *
4728 >         * @param map the map
4729 >         * @param action the action
4730 >         */
4731 >        public static <K,V> ForkJoinTask<Void> forEachEntry
4732 >            (ConcurrentHashMap<K,V> map,
4733 >             Action<Map.Entry<K,V>> action) {
4734 >            if (action == null) throw new NullPointerException();
4735 >            return new ForEachEntryTask<K,V>(map, null, -1, null, action);
4736 >        }
4737 >
4738 >        /**
4739 >         * Returns a task that when invoked, perform the given action
4740 >         * for each non-null transformation of each entry.
4741 >         *
4742 >         * @param map the map
4743 >         * @param transformer a function returning the transformation
4744 >         * for an element, or null if there is no transformation (in
4745 >         * which case the action is not applied)
4746 >         * @param action the action
4747 >         */
4748 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
4749 >            (ConcurrentHashMap<K,V> map,
4750 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
4751 >             Action<U> action) {
4752 >            if (transformer == null || action == null)
4753 >                throw new NullPointerException();
4754 >            return new ForEachTransformedEntryTask<K,V,U>
4755 >                (map, null, -1, null, transformer, action);
4756 >        }
4757 >
4758 >        /**
4759 >         * Returns a task that when invoked, returns a non-null result
4760 >         * from applying the given search function on each entry, or
4761 >         * null if none.  Upon success, further element processing is
4762 >         * suppressed and the results of any other parallel
4763 >         * invocations of the search function are ignored.
4764 >         *
4765 >         * @param map the map
4766 >         * @param searchFunction a function returning a non-null
4767 >         * result on success, else null
4768 >         * @return the task
4769 >         */
4770 >        public static <K,V,U> ForkJoinTask<U> searchEntries
4771 >            (ConcurrentHashMap<K,V> map,
4772 >             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4773 >            if (searchFunction == null) throw new NullPointerException();
4774 >            return new SearchEntriesTask<K,V,U>
4775 >                (map, null, -1, null, searchFunction,
4776 >                 new AtomicReference<U>());
4777          }
4778 <        public int size() {
4779 <            return ConcurrentHashMap.this.size();
4778 >
4779 >        /**
4780 >         * Returns a task that when invoked, returns the result of
4781 >         * accumulating all entries using the given reducer to combine
4782 >         * values, or null if none.
4783 >         *
4784 >         * @param map the map
4785 >         * @param reducer a commutative associative combining function
4786 >         * @return the task
4787 >         */
4788 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4789 >            (ConcurrentHashMap<K,V> map,
4790 >             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4791 >            if (reducer == null) throw new NullPointerException();
4792 >            return new ReduceEntriesTask<K,V>
4793 >                (map, null, -1, null, reducer);
4794          }
4795 <        public void clear() {
4796 <            ConcurrentHashMap.this.clear();
4795 >
4796 >        /**
4797 >         * Returns a task that when invoked, returns the result of
4798 >         * accumulating the given transformation of all entries using the
4799 >         * given reducer to combine values, or null if none.
4800 >         *
4801 >         * @param map the map
4802 >         * @param transformer a function returning the transformation
4803 >         * for an element, or null if there is no transformation (in
4804 >         * which case it is not combined).
4805 >         * @param reducer a commutative associative combining function
4806 >         * @return the task
4807 >         */
4808 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
4809 >            (ConcurrentHashMap<K,V> map,
4810 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
4811 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4812 >            if (transformer == null || reducer == null)
4813 >                throw new NullPointerException();
4814 >            return new MapReduceEntriesTask<K,V,U>
4815 >                (map, null, -1, null, transformer, reducer);
4816          }
4817 <        public Object[] toArray() {
4818 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4819 <            for (Map.Entry<K,V> e : this)
4820 <                c.add(e);
4821 <            return c.toArray();
4822 <        }
4823 <        public <T> T[] toArray(T[] a) {
4824 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4825 <            for (Map.Entry<K,V> e : this)
4826 <                c.add(e);
4827 <            return c.toArray(a);
4817 >
4818 >        /**
4819 >         * Returns a task that when invoked, returns the result of
4820 >         * accumulating the given transformation of all entries using the
4821 >         * given reducer to combine values, and the given basis as an
4822 >         * identity value.
4823 >         *
4824 >         * @param map the map
4825 >         * @param transformer a function returning the transformation
4826 >         * for an element
4827 >         * @param basis the identity (initial default value) for the reduction
4828 >         * @param reducer a commutative associative combining function
4829 >         * @return the task
4830 >         */
4831 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4832 >            (ConcurrentHashMap<K,V> map,
4833 >             ObjectToDouble<Map.Entry<K,V>> transformer,
4834 >             double basis,
4835 >             DoubleByDoubleToDouble reducer) {
4836 >            if (transformer == null || reducer == null)
4837 >                throw new NullPointerException();
4838 >            return new MapReduceEntriesToDoubleTask<K,V>
4839 >                (map, null, -1, null, transformer, basis, reducer);
4840 >        }
4841 >
4842 >        /**
4843 >         * Returns a task that when invoked, returns the result of
4844 >         * accumulating the given transformation of all entries using the
4845 >         * given reducer to combine values, and the given basis as an
4846 >         * identity value.
4847 >         *
4848 >         * @param map the map
4849 >         * @param transformer a function returning the transformation
4850 >         * for an element
4851 >         * @param basis the identity (initial default value) for the reduction
4852 >         * @param reducer a commutative associative combining function
4853 >         * @return the task
4854 >         */
4855 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4856 >            (ConcurrentHashMap<K,V> map,
4857 >             ObjectToLong<Map.Entry<K,V>> transformer,
4858 >             long basis,
4859 >             LongByLongToLong reducer) {
4860 >            if (transformer == null || reducer == null)
4861 >                throw new NullPointerException();
4862 >            return new MapReduceEntriesToLongTask<K,V>
4863 >                (map, null, -1, null, transformer, basis, reducer);
4864          }
4865  
4866 +        /**
4867 +         * Returns a task that when invoked, returns the result of
4868 +         * accumulating the given transformation of all entries using the
4869 +         * given reducer to combine values, and the given basis as an
4870 +         * identity value.
4871 +         *
4872 +         * @param map the map
4873 +         * @param transformer a function returning the transformation
4874 +         * for an element
4875 +         * @param basis the identity (initial default value) for the reduction
4876 +         * @param reducer a commutative associative combining function
4877 +         * @return the task
4878 +         */
4879 +        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4880 +            (ConcurrentHashMap<K,V> map,
4881 +             ObjectToInt<Map.Entry<K,V>> transformer,
4882 +             int basis,
4883 +             IntByIntToInt reducer) {
4884 +            if (transformer == null || reducer == null)
4885 +                throw new NullPointerException();
4886 +            return new MapReduceEntriesToIntTask<K,V>
4887 +                (map, null, -1, null, transformer, basis, reducer);
4888 +        }
4889      }
4890  
4891 <    /* ---------------- Serialization Support -------------- */
4891 >    // -------------------------------------------------------
4892  
4893      /**
4894 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
4895 <     * stream (i.e., serialize it).
4896 <     * @param s the stream
4897 <     * @serialData
4898 <     * the key (Object) and value (Object)
4899 <     * for each key-value mapping, followed by a null pair.
4900 <     * The key-value mappings are emitted in no particular order.
4901 <     */
4902 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
4903 <        s.defaultWriteObject();
4894 >     * Base for FJ tasks for bulk operations. This adds a variant of
4895 >     * CountedCompleters and some split and merge bookkeeping to
4896 >     * iterator functionality. The forEach and reduce methods are
4897 >     * similar to those illustrated in CountedCompleter documentation,
4898 >     * except that bottom-up reduction completions perform them within
4899 >     * their compute methods. The search methods are like forEach
4900 >     * except they continually poll for success and exit early.  Also,
4901 >     * exceptions are handled in a simpler manner, by just trying to
4902 >     * complete root task exceptionally.
4903 >     */
4904 >    @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4905 >        final BulkTask<K,V,?> parent;  // completion target
4906 >        int batch;                     // split control; -1 for unknown
4907 >        int pending;                   // completion control
4908 >
4909 >        BulkTask(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
4910 >                 int batch) {
4911 >            super(map);
4912 >            this.parent = parent;
4913 >            this.batch = batch;
4914 >            if (parent != null && map != null) { // split parent
4915 >                Node[] t;
4916 >                if ((t = parent.tab) == null &&
4917 >                    (t = parent.tab = map.table) != null)
4918 >                    parent.baseLimit = parent.baseSize = t.length;
4919 >                this.tab = t;
4920 >                this.baseSize = parent.baseSize;
4921 >                int hi = this.baseLimit = parent.baseLimit;
4922 >                parent.baseLimit = this.index = this.baseIndex =
4923 >                    (hi + parent.baseIndex + 1) >>> 1;
4924 >            }
4925 >        }
4926  
4927 <        for (int k = 0; k < segments.length; ++k) {
4928 <            Segment<K,V> seg = segments[k];
4929 <            seg.lock();
4930 <            try {
4931 <                HashEntry<K,V>[] tab = seg.table;
4932 <                for (int i = 0; i < tab.length; ++i) {
4933 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
4934 <                        s.writeObject(e.key);
4935 <                        s.writeObject(e.value);
4936 <                    }
4927 >        /**
4928 >         * Forces root task to complete.
4929 >         * @param ex if null, complete normally, else exceptionally
4930 >         * @return false to simplify use
4931 >         */
4932 >        final boolean tryCompleteComputation(Throwable ex) {
4933 >            for (BulkTask<K,V,?> a = this;;) {
4934 >                BulkTask<K,V,?> p = a.parent;
4935 >                if (p == null) {
4936 >                    if (ex != null)
4937 >                        a.completeExceptionally(ex);
4938 >                    else
4939 >                        a.quietlyComplete();
4940 >                    return false;
4941                  }
4942 <            } finally {
4943 <                seg.unlock();
4942 >                a = p;
4943 >            }
4944 >        }
4945 >
4946 >        /**
4947 >         * Version of tryCompleteComputation for function screening checks
4948 >         */
4949 >        final boolean abortOnNullFunction() {
4950 >            return tryCompleteComputation(new Error("Unexpected null function"));
4951 >        }
4952 >
4953 >        // utilities
4954 >
4955 >        /** CompareAndSet pending count */
4956 >        final boolean casPending(int cmp, int val) {
4957 >            return U.compareAndSwapInt(this, PENDING, cmp, val);
4958 >        }
4959 >
4960 >        /**
4961 >         * Returns approx exp2 of the number of times (minus one) to
4962 >         * split task by two before executing leaf action. This value
4963 >         * is faster to compute and more convenient to use as a guide
4964 >         * to splitting than is the depth, since it is used while
4965 >         * dividing by two anyway.
4966 >         */
4967 >        final int batch() {
4968 >            ConcurrentHashMap<K, V> m; int b; Node[] t;  ForkJoinPool pool;
4969 >            if ((b = batch) < 0 && (m = map) != null) { // force initialization
4970 >                if ((t = tab) == null && (t = tab = m.table) != null)
4971 >                    baseLimit = baseSize = t.length;
4972 >                if (t != null) {
4973 >                    long n = m.counter.sum();
4974 >                    int par = ((pool = getPool()) == null) ?
4975 >                        ForkJoinPool.getCommonPoolParallelism() :
4976 >                        pool.getParallelism();
4977 >                    int sp = par << 3; // slack of 8
4978 >                    b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4979 >                }
4980 >            }
4981 >            return b;
4982 >        }
4983 >
4984 >        /**
4985 >         * Returns exportable snapshot entry.
4986 >         */
4987 >        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4988 >            return new AbstractMap.SimpleEntry<K,V>(k, v);
4989 >        }
4990 >
4991 >        // Unsafe mechanics
4992 >        private static final sun.misc.Unsafe U;
4993 >        private static final long PENDING;
4994 >        static {
4995 >            try {
4996 >                U = sun.misc.Unsafe.getUnsafe();
4997 >                PENDING = U.objectFieldOffset
4998 >                    (BulkTask.class.getDeclaredField("pending"));
4999 >            } catch (Exception e) {
5000 >                throw new Error(e);
5001              }
5002          }
1287        s.writeObject(null);
1288        s.writeObject(null);
5003      }
5004  
5005      /**
5006 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1293 <     * stream (i.e., deserialize it).
1294 <     * @param s the stream
5006 >     * Base class for non-reductive actions
5007       */
5008 <    private void readObject(java.io.ObjectInputStream s)
5009 <        throws IOException, ClassNotFoundException  {
5010 <        s.defaultReadObject();
5008 >    @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
5009 >        BulkAction<K,V,?> nextTask;
5010 >        BulkAction(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
5011 >                   int batch, BulkAction<K,V,?> nextTask) {
5012 >            super(map, parent, batch);
5013 >            this.nextTask = nextTask;
5014 >        }
5015 >
5016 >        /**
5017 >         * Try to complete task and upward parents. Upon hitting
5018 >         * non-completed parent, if a non-FJ task, try to help out the
5019 >         * computation.
5020 >         */
5021 >        final void tryComplete(BulkAction<K,V,?> subtasks) {
5022 >            BulkTask<K,V,?> a = this, s = a;
5023 >            for (int c;;) {
5024 >                if ((c = a.pending) == 0) {
5025 >                    if ((a = (s = a).parent) == null) {
5026 >                        s.quietlyComplete();
5027 >                        break;
5028 >                    }
5029 >                }
5030 >                else if (a.casPending(c, c - 1)) {
5031 >                    if (subtasks != null && !inForkJoinPool()) {
5032 >                        while ((s = a.parent) != null)
5033 >                            a = s;
5034 >                        while (!a.isDone()) {
5035 >                            BulkAction<K,V,?> next = subtasks.nextTask;
5036 >                            if (subtasks.tryUnfork())
5037 >                                subtasks.exec();
5038 >                            if ((subtasks = next) == null)
5039 >                                break;
5040 >                        }
5041 >                    }
5042 >                    break;
5043 >                }
5044 >            }
5045 >        }
5046 >
5047 >    }
5048  
5049 <        // Initialize each segment to be minimally sized, and let grow.
5050 <        for (int i = 0; i < segments.length; ++i) {
5051 <            segments[i].setTable(new HashEntry[1]);
5049 >    /*
5050 >     * Task classes. Coded in a regular but ugly format/style to
5051 >     * simplify checks that each variant differs in the right way from
5052 >     * others.
5053 >     */
5054 >
5055 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5056 >        extends BulkAction<K,V,Void> {
5057 >        final Action<K> action;
5058 >        ForEachKeyTask
5059 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5060 >             ForEachKeyTask<K,V> nextTask,
5061 >             Action<K> action) {
5062 >            super(m, p, b, nextTask);
5063 >            this.action = action;
5064 >        }
5065 >        @SuppressWarnings("unchecked") public final boolean exec() {
5066 >            final Action<K> action = this.action;
5067 >            if (action == null)
5068 >                return abortOnNullFunction();
5069 >            ForEachKeyTask<K,V> subtasks = null;
5070 >            try {
5071 >                int b = batch(), c;
5072 >                while (b > 1 && baseIndex != baseLimit) {
5073 >                    do {} while (!casPending(c = pending, c+1));
5074 >                    (subtasks = new ForEachKeyTask<K,V>
5075 >                     (map, this, b >>>= 1, subtasks, action)).fork();
5076 >                }
5077 >                while (advance() != null)
5078 >                    action.apply((K)nextKey);
5079 >            } catch (Throwable ex) {
5080 >                return tryCompleteComputation(ex);
5081 >            }
5082 >            tryComplete(subtasks);
5083 >            return false;
5084          }
5085 +    }
5086  
5087 <        // Read the keys and values, and put the mappings in the table
5088 <        for (;;) {
5089 <            K key = (K) s.readObject();
5090 <            V value = (V) s.readObject();
5091 <            if (key == null)
5092 <                break;
5093 <            put(key, value);
5087 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5088 >        extends BulkAction<K,V,Void> {
5089 >        final Action<V> action;
5090 >        ForEachValueTask
5091 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5092 >             ForEachValueTask<K,V> nextTask,
5093 >             Action<V> action) {
5094 >            super(m, p, b, nextTask);
5095 >            this.action = action;
5096 >        }
5097 >        @SuppressWarnings("unchecked") public final boolean exec() {
5098 >            final Action<V> action = this.action;
5099 >            if (action == null)
5100 >                return abortOnNullFunction();
5101 >            ForEachValueTask<K,V> subtasks = null;
5102 >            try {
5103 >                int b = batch(), c;
5104 >                while (b > 1 && baseIndex != baseLimit) {
5105 >                    do {} while (!casPending(c = pending, c+1));
5106 >                    (subtasks = new ForEachValueTask<K,V>
5107 >                     (map, this, b >>>= 1, subtasks, action)).fork();
5108 >                }
5109 >                Object v;
5110 >                while ((v = advance()) != null)
5111 >                    action.apply((V)v);
5112 >            } catch (Throwable ex) {
5113 >                return tryCompleteComputation(ex);
5114 >            }
5115 >            tryComplete(subtasks);
5116 >            return false;
5117 >        }
5118 >    }
5119 >
5120 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5121 >        extends BulkAction<K,V,Void> {
5122 >        final Action<Entry<K,V>> action;
5123 >        ForEachEntryTask
5124 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5125 >             ForEachEntryTask<K,V> nextTask,
5126 >             Action<Entry<K,V>> action) {
5127 >            super(m, p, b, nextTask);
5128 >            this.action = action;
5129 >        }
5130 >        @SuppressWarnings("unchecked") public final boolean exec() {
5131 >            final Action<Entry<K,V>> action = this.action;
5132 >            if (action == null)
5133 >                return abortOnNullFunction();
5134 >            ForEachEntryTask<K,V> subtasks = null;
5135 >            try {
5136 >                int b = batch(), c;
5137 >                while (b > 1 && baseIndex != baseLimit) {
5138 >                    do {} while (!casPending(c = pending, c+1));
5139 >                    (subtasks = new ForEachEntryTask<K,V>
5140 >                     (map, this, b >>>= 1, subtasks, action)).fork();
5141 >                }
5142 >                Object v;
5143 >                while ((v = advance()) != null)
5144 >                    action.apply(entryFor((K)nextKey, (V)v));
5145 >            } catch (Throwable ex) {
5146 >                return tryCompleteComputation(ex);
5147 >            }
5148 >            tryComplete(subtasks);
5149 >            return false;
5150 >        }
5151 >    }
5152 >
5153 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5154 >        extends BulkAction<K,V,Void> {
5155 >        final BiAction<K,V> action;
5156 >        ForEachMappingTask
5157 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5158 >             ForEachMappingTask<K,V> nextTask,
5159 >             BiAction<K,V> action) {
5160 >            super(m, p, b, nextTask);
5161 >            this.action = action;
5162 >        }
5163 >        @SuppressWarnings("unchecked") public final boolean exec() {
5164 >            final BiAction<K,V> action = this.action;
5165 >            if (action == null)
5166 >                return abortOnNullFunction();
5167 >            ForEachMappingTask<K,V> subtasks = null;
5168 >            try {
5169 >                int b = batch(), c;
5170 >                while (b > 1 && baseIndex != baseLimit) {
5171 >                    do {} while (!casPending(c = pending, c+1));
5172 >                    (subtasks = new ForEachMappingTask<K,V>
5173 >                     (map, this, b >>>= 1, subtasks, action)).fork();
5174 >                }
5175 >                Object v;
5176 >                while ((v = advance()) != null)
5177 >                    action.apply((K)nextKey, (V)v);
5178 >            } catch (Throwable ex) {
5179 >                return tryCompleteComputation(ex);
5180 >            }
5181 >            tryComplete(subtasks);
5182 >            return false;
5183 >        }
5184 >    }
5185 >
5186 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5187 >        extends BulkAction<K,V,Void> {
5188 >        final Fun<? super K, ? extends U> transformer;
5189 >        final Action<U> action;
5190 >        ForEachTransformedKeyTask
5191 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5192 >             ForEachTransformedKeyTask<K,V,U> nextTask,
5193 >             Fun<? super K, ? extends U> transformer,
5194 >             Action<U> action) {
5195 >            super(m, p, b, nextTask);
5196 >            this.transformer = transformer;
5197 >            this.action = action;
5198 >
5199 >        }
5200 >        @SuppressWarnings("unchecked") public final boolean exec() {
5201 >            final Fun<? super K, ? extends U> transformer =
5202 >                this.transformer;
5203 >            final Action<U> action = this.action;
5204 >            if (transformer == null || action == null)
5205 >                return abortOnNullFunction();
5206 >            ForEachTransformedKeyTask<K,V,U> subtasks = null;
5207 >            try {
5208 >                int b = batch(), c;
5209 >                while (b > 1 && baseIndex != baseLimit) {
5210 >                    do {} while (!casPending(c = pending, c+1));
5211 >                    (subtasks = new ForEachTransformedKeyTask<K,V,U>
5212 >                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5213 >                }
5214 >                U u;
5215 >                while (advance() != null) {
5216 >                    if ((u = transformer.apply((K)nextKey)) != null)
5217 >                        action.apply(u);
5218 >                }
5219 >            } catch (Throwable ex) {
5220 >                return tryCompleteComputation(ex);
5221 >            }
5222 >            tryComplete(subtasks);
5223 >            return false;
5224 >        }
5225 >    }
5226 >
5227 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5228 >        extends BulkAction<K,V,Void> {
5229 >        final Fun<? super V, ? extends U> transformer;
5230 >        final Action<U> action;
5231 >        ForEachTransformedValueTask
5232 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5233 >             ForEachTransformedValueTask<K,V,U> nextTask,
5234 >             Fun<? super V, ? extends U> transformer,
5235 >             Action<U> action) {
5236 >            super(m, p, b, nextTask);
5237 >            this.transformer = transformer;
5238 >            this.action = action;
5239 >
5240 >        }
5241 >        @SuppressWarnings("unchecked") public final boolean exec() {
5242 >            final Fun<? super V, ? extends U> transformer =
5243 >                this.transformer;
5244 >            final Action<U> action = this.action;
5245 >            if (transformer == null || action == null)
5246 >                return abortOnNullFunction();
5247 >            ForEachTransformedValueTask<K,V,U> subtasks = null;
5248 >            try {
5249 >                int b = batch(), c;
5250 >                while (b > 1 && baseIndex != baseLimit) {
5251 >                    do {} while (!casPending(c = pending, c+1));
5252 >                    (subtasks = new ForEachTransformedValueTask<K,V,U>
5253 >                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5254 >                }
5255 >                Object v; U u;
5256 >                while ((v = advance()) != null) {
5257 >                    if ((u = transformer.apply((V)v)) != null)
5258 >                        action.apply(u);
5259 >                }
5260 >            } catch (Throwable ex) {
5261 >                return tryCompleteComputation(ex);
5262 >            }
5263 >            tryComplete(subtasks);
5264 >            return false;
5265 >        }
5266 >    }
5267 >
5268 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5269 >        extends BulkAction<K,V,Void> {
5270 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5271 >        final Action<U> action;
5272 >        ForEachTransformedEntryTask
5273 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5274 >             ForEachTransformedEntryTask<K,V,U> nextTask,
5275 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5276 >             Action<U> action) {
5277 >            super(m, p, b, nextTask);
5278 >            this.transformer = transformer;
5279 >            this.action = action;
5280 >
5281 >        }
5282 >        @SuppressWarnings("unchecked") public final boolean exec() {
5283 >            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5284 >                this.transformer;
5285 >            final Action<U> action = this.action;
5286 >            if (transformer == null || action == null)
5287 >                return abortOnNullFunction();
5288 >            ForEachTransformedEntryTask<K,V,U> subtasks = null;
5289 >            try {
5290 >                int b = batch(), c;
5291 >                while (b > 1 && baseIndex != baseLimit) {
5292 >                    do {} while (!casPending(c = pending, c+1));
5293 >                    (subtasks = new ForEachTransformedEntryTask<K,V,U>
5294 >                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5295 >                }
5296 >                Object v; U u;
5297 >                while ((v = advance()) != null) {
5298 >                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5299 >                        action.apply(u);
5300 >                }
5301 >            } catch (Throwable ex) {
5302 >                return tryCompleteComputation(ex);
5303 >            }
5304 >            tryComplete(subtasks);
5305 >            return false;
5306 >        }
5307 >    }
5308 >
5309 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5310 >        extends BulkAction<K,V,Void> {
5311 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5312 >        final Action<U> action;
5313 >        ForEachTransformedMappingTask
5314 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5315 >             ForEachTransformedMappingTask<K,V,U> nextTask,
5316 >             BiFun<? super K, ? super V, ? extends U> transformer,
5317 >             Action<U> action) {
5318 >            super(m, p, b, nextTask);
5319 >            this.transformer = transformer;
5320 >            this.action = action;
5321 >
5322 >        }
5323 >        @SuppressWarnings("unchecked") public final boolean exec() {
5324 >            final BiFun<? super K, ? super V, ? extends U> transformer =
5325 >                this.transformer;
5326 >            final Action<U> action = this.action;
5327 >            if (transformer == null || action == null)
5328 >                return abortOnNullFunction();
5329 >            ForEachTransformedMappingTask<K,V,U> subtasks = null;
5330 >            try {
5331 >                int b = batch(), c;
5332 >                while (b > 1 && baseIndex != baseLimit) {
5333 >                    do {} while (!casPending(c = pending, c+1));
5334 >                    (subtasks = new ForEachTransformedMappingTask<K,V,U>
5335 >                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5336 >                }
5337 >                Object v; U u;
5338 >                while ((v = advance()) != null) {
5339 >                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5340 >                        action.apply(u);
5341 >                }
5342 >            } catch (Throwable ex) {
5343 >                return tryCompleteComputation(ex);
5344 >            }
5345 >            tryComplete(subtasks);
5346 >            return false;
5347 >        }
5348 >    }
5349 >
5350 >    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5351 >        extends BulkAction<K,V,U> {
5352 >        final Fun<? super K, ? extends U> searchFunction;
5353 >        final AtomicReference<U> result;
5354 >        SearchKeysTask
5355 >            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5356 >             SearchKeysTask<K,V,U> nextTask,
5357 >             Fun<? super K, ? extends U> searchFunction,
5358 >             AtomicReference<U> result) {
5359 >            super(m, p, b, nextTask);
5360 >            this.searchFunction = searchFunction; this.result = result;
5361 >        }
5362 >        @SuppressWarnings("unchecked") public final boolean exec() {
5363 >            AtomicReference<U> result = this.result;
5364 >            final Fun<? super K, ? extends U> searchFunction =
5365 >                this.searchFunction;
5366 >            if (searchFunction == null || result == null)
5367 >                return abortOnNullFunction();
5368 >            SearchKeysTask<K,V,U> subtasks = null;
5369 >            try {
5370 >                int b = batch(), c;
5371 >                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5372 >                    do {} while (!casPending(c = pending, c+1));
5373 >                    (subtasks = new SearchKeysTask<K,V,U>
5374 >                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5375 >                }
5376 >                U u;
5377 >                while (result.get() == null && advance() != null) {
5378 >                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5379 >                        if (result.compareAndSet(null, u))
5380 >                            tryCompleteComputation(null);
5381 >                        break;
5382 >                    }
5383 >                }
5384 >            } catch (Throwable ex) {
5385 >                return tryCompleteComputation(ex);
5386 >            }
5387 >            tryComplete(subtasks);
5388 >            return false;
5389          }
5390 +        public final U getRawResult() { return result.get(); }
5391 +    }
5392 +
5393 +    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5394 +        extends BulkAction<K,V,U> {
5395 +        final Fun<? super V, ? extends U> searchFunction;
5396 +        final AtomicReference<U> result;
5397 +        SearchValuesTask
5398 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5399 +             SearchValuesTask<K,V,U> nextTask,
5400 +             Fun<? super V, ? extends U> searchFunction,
5401 +             AtomicReference<U> result) {
5402 +            super(m, p, b, nextTask);
5403 +            this.searchFunction = searchFunction; this.result = result;
5404 +        }
5405 +        @SuppressWarnings("unchecked") public final boolean exec() {
5406 +            AtomicReference<U> result = this.result;
5407 +            final Fun<? super V, ? extends U> searchFunction =
5408 +                this.searchFunction;
5409 +            if (searchFunction == null || result == null)
5410 +                return abortOnNullFunction();
5411 +            SearchValuesTask<K,V,U> subtasks = null;
5412 +            try {
5413 +                int b = batch(), c;
5414 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5415 +                    do {} while (!casPending(c = pending, c+1));
5416 +                    (subtasks = new SearchValuesTask<K,V,U>
5417 +                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5418 +                }
5419 +                Object v; U u;
5420 +                while (result.get() == null && (v = advance()) != null) {
5421 +                    if ((u = searchFunction.apply((V)v)) != null) {
5422 +                        if (result.compareAndSet(null, u))
5423 +                            tryCompleteComputation(null);
5424 +                        break;
5425 +                    }
5426 +                }
5427 +            } catch (Throwable ex) {
5428 +                return tryCompleteComputation(ex);
5429 +            }
5430 +            tryComplete(subtasks);
5431 +            return false;
5432 +        }
5433 +        public final U getRawResult() { return result.get(); }
5434 +    }
5435 +
5436 +    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5437 +        extends BulkAction<K,V,U> {
5438 +        final Fun<Entry<K,V>, ? extends U> searchFunction;
5439 +        final AtomicReference<U> result;
5440 +        SearchEntriesTask
5441 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5442 +             SearchEntriesTask<K,V,U> nextTask,
5443 +             Fun<Entry<K,V>, ? extends U> searchFunction,
5444 +             AtomicReference<U> result) {
5445 +            super(m, p, b, nextTask);
5446 +            this.searchFunction = searchFunction; this.result = result;
5447 +        }
5448 +        @SuppressWarnings("unchecked") public final boolean exec() {
5449 +            AtomicReference<U> result = this.result;
5450 +            final Fun<Entry<K,V>, ? extends U> searchFunction =
5451 +                this.searchFunction;
5452 +            if (searchFunction == null || result == null)
5453 +                return abortOnNullFunction();
5454 +            SearchEntriesTask<K,V,U> subtasks = null;
5455 +            try {
5456 +                int b = batch(), c;
5457 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5458 +                    do {} while (!casPending(c = pending, c+1));
5459 +                    (subtasks = new SearchEntriesTask<K,V,U>
5460 +                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5461 +                }
5462 +                Object v; U u;
5463 +                while (result.get() == null && (v = advance()) != null) {
5464 +                    if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5465 +                        if (result.compareAndSet(null, u))
5466 +                            tryCompleteComputation(null);
5467 +                        break;
5468 +                    }
5469 +                }
5470 +            } catch (Throwable ex) {
5471 +                return tryCompleteComputation(ex);
5472 +            }
5473 +            tryComplete(subtasks);
5474 +            return false;
5475 +        }
5476 +        public final U getRawResult() { return result.get(); }
5477 +    }
5478 +
5479 +    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5480 +        extends BulkAction<K,V,U> {
5481 +        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5482 +        final AtomicReference<U> result;
5483 +        SearchMappingsTask
5484 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5485 +             SearchMappingsTask<K,V,U> nextTask,
5486 +             BiFun<? super K, ? super V, ? extends U> searchFunction,
5487 +             AtomicReference<U> result) {
5488 +            super(m, p, b, nextTask);
5489 +            this.searchFunction = searchFunction; this.result = result;
5490 +        }
5491 +        @SuppressWarnings("unchecked") public final boolean exec() {
5492 +            AtomicReference<U> result = this.result;
5493 +            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5494 +                this.searchFunction;
5495 +            if (searchFunction == null || result == null)
5496 +                return abortOnNullFunction();
5497 +            SearchMappingsTask<K,V,U> subtasks = null;
5498 +            try {
5499 +                int b = batch(), c;
5500 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5501 +                    do {} while (!casPending(c = pending, c+1));
5502 +                    (subtasks = new SearchMappingsTask<K,V,U>
5503 +                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5504 +                }
5505 +                Object v; U u;
5506 +                while (result.get() == null && (v = advance()) != null) {
5507 +                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5508 +                        if (result.compareAndSet(null, u))
5509 +                            tryCompleteComputation(null);
5510 +                        break;
5511 +                    }
5512 +                }
5513 +            } catch (Throwable ex) {
5514 +                return tryCompleteComputation(ex);
5515 +            }
5516 +            tryComplete(subtasks);
5517 +            return false;
5518 +        }
5519 +        public final U getRawResult() { return result.get(); }
5520 +    }
5521 +
5522 +    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5523 +        extends BulkTask<K,V,K> {
5524 +        final BiFun<? super K, ? super K, ? extends K> reducer;
5525 +        K result;
5526 +        ReduceKeysTask<K,V> rights, nextRight;
5527 +        ReduceKeysTask
5528 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5529 +             ReduceKeysTask<K,V> nextRight,
5530 +             BiFun<? super K, ? super K, ? extends K> reducer) {
5531 +            super(m, p, b); this.nextRight = nextRight;
5532 +            this.reducer = reducer;
5533 +        }
5534 +        @SuppressWarnings("unchecked") public final boolean exec() {
5535 +            final BiFun<? super K, ? super K, ? extends K> reducer =
5536 +                this.reducer;
5537 +            if (reducer == null)
5538 +                return abortOnNullFunction();
5539 +            try {
5540 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5541 +                    do {} while (!casPending(c = pending, c+1));
5542 +                    (rights = new ReduceKeysTask<K,V>
5543 +                     (map, this, b >>>= 1, rights, reducer)).fork();
5544 +                }
5545 +                K r = null;
5546 +                while (advance() != null) {
5547 +                    K u = (K)nextKey;
5548 +                    r = (r == null) ? u : reducer.apply(r, u);
5549 +                }
5550 +                result = r;
5551 +                for (ReduceKeysTask<K,V> t = this, s;;) {
5552 +                    int c; BulkTask<K,V,?> par; K tr, sr;
5553 +                    if ((c = t.pending) == 0) {
5554 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5555 +                            if ((sr = s.result) != null)
5556 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5557 +                        }
5558 +                        if ((par = t.parent) == null ||
5559 +                            !(par instanceof ReduceKeysTask)) {
5560 +                            t.quietlyComplete();
5561 +                            break;
5562 +                        }
5563 +                        t = (ReduceKeysTask<K,V>)par;
5564 +                    }
5565 +                    else if (t.casPending(c, c - 1))
5566 +                        break;
5567 +                }
5568 +            } catch (Throwable ex) {
5569 +                return tryCompleteComputation(ex);
5570 +            }
5571 +            ReduceKeysTask<K,V> s = rights;
5572 +            if (s != null && !inForkJoinPool()) {
5573 +                do  {
5574 +                    if (s.tryUnfork())
5575 +                        s.exec();
5576 +                } while ((s = s.nextRight) != null);
5577 +            }
5578 +            return false;
5579 +        }
5580 +        public final K getRawResult() { return result; }
5581 +    }
5582 +
5583 +    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5584 +        extends BulkTask<K,V,V> {
5585 +        final BiFun<? super V, ? super V, ? extends V> reducer;
5586 +        V result;
5587 +        ReduceValuesTask<K,V> rights, nextRight;
5588 +        ReduceValuesTask
5589 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5590 +             ReduceValuesTask<K,V> nextRight,
5591 +             BiFun<? super V, ? super V, ? extends V> reducer) {
5592 +            super(m, p, b); this.nextRight = nextRight;
5593 +            this.reducer = reducer;
5594 +        }
5595 +        @SuppressWarnings("unchecked") public final boolean exec() {
5596 +            final BiFun<? super V, ? super V, ? extends V> reducer =
5597 +                this.reducer;
5598 +            if (reducer == null)
5599 +                return abortOnNullFunction();
5600 +            try {
5601 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5602 +                    do {} while (!casPending(c = pending, c+1));
5603 +                    (rights = new ReduceValuesTask<K,V>
5604 +                     (map, this, b >>>= 1, rights, reducer)).fork();
5605 +                }
5606 +                V r = null;
5607 +                Object v;
5608 +                while ((v = advance()) != null) {
5609 +                    V u = (V)v;
5610 +                    r = (r == null) ? u : reducer.apply(r, u);
5611 +                }
5612 +                result = r;
5613 +                for (ReduceValuesTask<K,V> t = this, s;;) {
5614 +                    int c; BulkTask<K,V,?> par; V tr, sr;
5615 +                    if ((c = t.pending) == 0) {
5616 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5617 +                            if ((sr = s.result) != null)
5618 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5619 +                        }
5620 +                        if ((par = t.parent) == null ||
5621 +                            !(par instanceof ReduceValuesTask)) {
5622 +                            t.quietlyComplete();
5623 +                            break;
5624 +                        }
5625 +                        t = (ReduceValuesTask<K,V>)par;
5626 +                    }
5627 +                    else if (t.casPending(c, c - 1))
5628 +                        break;
5629 +                }
5630 +            } catch (Throwable ex) {
5631 +                return tryCompleteComputation(ex);
5632 +            }
5633 +            ReduceValuesTask<K,V> s = rights;
5634 +            if (s != null && !inForkJoinPool()) {
5635 +                do  {
5636 +                    if (s.tryUnfork())
5637 +                        s.exec();
5638 +                } while ((s = s.nextRight) != null);
5639 +            }
5640 +            return false;
5641 +        }
5642 +        public final V getRawResult() { return result; }
5643 +    }
5644 +
5645 +    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5646 +        extends BulkTask<K,V,Map.Entry<K,V>> {
5647 +        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5648 +        Map.Entry<K,V> result;
5649 +        ReduceEntriesTask<K,V> rights, nextRight;
5650 +        ReduceEntriesTask
5651 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5652 +             ReduceEntriesTask<K,V> nextRight,
5653 +             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5654 +            super(m, p, b); this.nextRight = nextRight;
5655 +            this.reducer = reducer;
5656 +        }
5657 +        @SuppressWarnings("unchecked") public final boolean exec() {
5658 +            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5659 +                this.reducer;
5660 +            if (reducer == null)
5661 +                return abortOnNullFunction();
5662 +            try {
5663 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5664 +                    do {} while (!casPending(c = pending, c+1));
5665 +                    (rights = new ReduceEntriesTask<K,V>
5666 +                     (map, this, b >>>= 1, rights, reducer)).fork();
5667 +                }
5668 +                Map.Entry<K,V> r = null;
5669 +                Object v;
5670 +                while ((v = advance()) != null) {
5671 +                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5672 +                    r = (r == null) ? u : reducer.apply(r, u);
5673 +                }
5674 +                result = r;
5675 +                for (ReduceEntriesTask<K,V> t = this, s;;) {
5676 +                    int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5677 +                    if ((c = t.pending) == 0) {
5678 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5679 +                            if ((sr = s.result) != null)
5680 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5681 +                        }
5682 +                        if ((par = t.parent) == null ||
5683 +                            !(par instanceof ReduceEntriesTask)) {
5684 +                            t.quietlyComplete();
5685 +                            break;
5686 +                        }
5687 +                        t = (ReduceEntriesTask<K,V>)par;
5688 +                    }
5689 +                    else if (t.casPending(c, c - 1))
5690 +                        break;
5691 +                }
5692 +            } catch (Throwable ex) {
5693 +                return tryCompleteComputation(ex);
5694 +            }
5695 +            ReduceEntriesTask<K,V> s = rights;
5696 +            if (s != null && !inForkJoinPool()) {
5697 +                do  {
5698 +                    if (s.tryUnfork())
5699 +                        s.exec();
5700 +                } while ((s = s.nextRight) != null);
5701 +            }
5702 +            return false;
5703 +        }
5704 +        public final Map.Entry<K,V> getRawResult() { return result; }
5705 +    }
5706 +
5707 +    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5708 +        extends BulkTask<K,V,U> {
5709 +        final Fun<? super K, ? extends U> transformer;
5710 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5711 +        U result;
5712 +        MapReduceKeysTask<K,V,U> rights, nextRight;
5713 +        MapReduceKeysTask
5714 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5715 +             MapReduceKeysTask<K,V,U> nextRight,
5716 +             Fun<? super K, ? extends U> transformer,
5717 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5718 +            super(m, p, b); this.nextRight = nextRight;
5719 +            this.transformer = transformer;
5720 +            this.reducer = reducer;
5721 +        }
5722 +        @SuppressWarnings("unchecked") public final boolean exec() {
5723 +            final Fun<? super K, ? extends U> transformer =
5724 +                this.transformer;
5725 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5726 +                this.reducer;
5727 +            if (transformer == null || reducer == null)
5728 +                return abortOnNullFunction();
5729 +            try {
5730 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5731 +                    do {} while (!casPending(c = pending, c+1));
5732 +                    (rights = new MapReduceKeysTask<K,V,U>
5733 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5734 +                }
5735 +                U r = null, u;
5736 +                while (advance() != null) {
5737 +                    if ((u = transformer.apply((K)nextKey)) != null)
5738 +                        r = (r == null) ? u : reducer.apply(r, u);
5739 +                }
5740 +                result = r;
5741 +                for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5742 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5743 +                    if ((c = t.pending) == 0) {
5744 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5745 +                            if ((sr = s.result) != null)
5746 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5747 +                        }
5748 +                        if ((par = t.parent) == null ||
5749 +                            !(par instanceof MapReduceKeysTask)) {
5750 +                            t.quietlyComplete();
5751 +                            break;
5752 +                        }
5753 +                        t = (MapReduceKeysTask<K,V,U>)par;
5754 +                    }
5755 +                    else if (t.casPending(c, c - 1))
5756 +                        break;
5757 +                }
5758 +            } catch (Throwable ex) {
5759 +                return tryCompleteComputation(ex);
5760 +            }
5761 +            MapReduceKeysTask<K,V,U> s = rights;
5762 +            if (s != null && !inForkJoinPool()) {
5763 +                do  {
5764 +                    if (s.tryUnfork())
5765 +                        s.exec();
5766 +                } while ((s = s.nextRight) != null);
5767 +            }
5768 +            return false;
5769 +        }
5770 +        public final U getRawResult() { return result; }
5771 +    }
5772 +
5773 +    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5774 +        extends BulkTask<K,V,U> {
5775 +        final Fun<? super V, ? extends U> transformer;
5776 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5777 +        U result;
5778 +        MapReduceValuesTask<K,V,U> rights, nextRight;
5779 +        MapReduceValuesTask
5780 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5781 +             MapReduceValuesTask<K,V,U> nextRight,
5782 +             Fun<? super V, ? extends U> transformer,
5783 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5784 +            super(m, p, b); this.nextRight = nextRight;
5785 +            this.transformer = transformer;
5786 +            this.reducer = reducer;
5787 +        }
5788 +        @SuppressWarnings("unchecked") public final boolean exec() {
5789 +            final Fun<? super V, ? extends U> transformer =
5790 +                this.transformer;
5791 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5792 +                this.reducer;
5793 +            if (transformer == null || reducer == null)
5794 +                return abortOnNullFunction();
5795 +            try {
5796 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5797 +                    do {} while (!casPending(c = pending, c+1));
5798 +                    (rights = new MapReduceValuesTask<K,V,U>
5799 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5800 +                }
5801 +                U r = null, u;
5802 +                Object v;
5803 +                while ((v = advance()) != null) {
5804 +                    if ((u = transformer.apply((V)v)) != null)
5805 +                        r = (r == null) ? u : reducer.apply(r, u);
5806 +                }
5807 +                result = r;
5808 +                for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5809 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5810 +                    if ((c = t.pending) == 0) {
5811 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5812 +                            if ((sr = s.result) != null)
5813 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5814 +                        }
5815 +                        if ((par = t.parent) == null ||
5816 +                            !(par instanceof MapReduceValuesTask)) {
5817 +                            t.quietlyComplete();
5818 +                            break;
5819 +                        }
5820 +                        t = (MapReduceValuesTask<K,V,U>)par;
5821 +                    }
5822 +                    else if (t.casPending(c, c - 1))
5823 +                        break;
5824 +                }
5825 +            } catch (Throwable ex) {
5826 +                return tryCompleteComputation(ex);
5827 +            }
5828 +            MapReduceValuesTask<K,V,U> s = rights;
5829 +            if (s != null && !inForkJoinPool()) {
5830 +                do  {
5831 +                    if (s.tryUnfork())
5832 +                        s.exec();
5833 +                } while ((s = s.nextRight) != null);
5834 +            }
5835 +            return false;
5836 +        }
5837 +        public final U getRawResult() { return result; }
5838 +    }
5839 +
5840 +    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5841 +        extends BulkTask<K,V,U> {
5842 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5843 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5844 +        U result;
5845 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
5846 +        MapReduceEntriesTask
5847 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5848 +             MapReduceEntriesTask<K,V,U> nextRight,
5849 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5850 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5851 +            super(m, p, b); this.nextRight = nextRight;
5852 +            this.transformer = transformer;
5853 +            this.reducer = reducer;
5854 +        }
5855 +        @SuppressWarnings("unchecked") public final boolean exec() {
5856 +            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5857 +                this.transformer;
5858 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5859 +                this.reducer;
5860 +            if (transformer == null || reducer == null)
5861 +                return abortOnNullFunction();
5862 +            try {
5863 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5864 +                    do {} while (!casPending(c = pending, c+1));
5865 +                    (rights = new MapReduceEntriesTask<K,V,U>
5866 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5867 +                }
5868 +                U r = null, u;
5869 +                Object v;
5870 +                while ((v = advance()) != null) {
5871 +                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5872 +                        r = (r == null) ? u : reducer.apply(r, u);
5873 +                }
5874 +                result = r;
5875 +                for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5876 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5877 +                    if ((c = t.pending) == 0) {
5878 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5879 +                            if ((sr = s.result) != null)
5880 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5881 +                        }
5882 +                        if ((par = t.parent) == null ||
5883 +                            !(par instanceof MapReduceEntriesTask)) {
5884 +                            t.quietlyComplete();
5885 +                            break;
5886 +                        }
5887 +                        t = (MapReduceEntriesTask<K,V,U>)par;
5888 +                    }
5889 +                    else if (t.casPending(c, c - 1))
5890 +                        break;
5891 +                }
5892 +            } catch (Throwable ex) {
5893 +                return tryCompleteComputation(ex);
5894 +            }
5895 +            MapReduceEntriesTask<K,V,U> s = rights;
5896 +            if (s != null && !inForkJoinPool()) {
5897 +                do  {
5898 +                    if (s.tryUnfork())
5899 +                        s.exec();
5900 +                } while ((s = s.nextRight) != null);
5901 +            }
5902 +            return false;
5903 +        }
5904 +        public final U getRawResult() { return result; }
5905 +    }
5906 +
5907 +    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5908 +        extends BulkTask<K,V,U> {
5909 +        final BiFun<? super K, ? super V, ? extends U> transformer;
5910 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5911 +        U result;
5912 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
5913 +        MapReduceMappingsTask
5914 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5915 +             MapReduceMappingsTask<K,V,U> nextRight,
5916 +             BiFun<? super K, ? super V, ? extends U> transformer,
5917 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5918 +            super(m, p, b); this.nextRight = nextRight;
5919 +            this.transformer = transformer;
5920 +            this.reducer = reducer;
5921 +        }
5922 +        @SuppressWarnings("unchecked") public final boolean exec() {
5923 +            final BiFun<? super K, ? super V, ? extends U> transformer =
5924 +                this.transformer;
5925 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5926 +                this.reducer;
5927 +            if (transformer == null || reducer == null)
5928 +                return abortOnNullFunction();
5929 +            try {
5930 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5931 +                    do {} while (!casPending(c = pending, c+1));
5932 +                    (rights = new MapReduceMappingsTask<K,V,U>
5933 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5934 +                }
5935 +                U r = null, u;
5936 +                Object v;
5937 +                while ((v = advance()) != null) {
5938 +                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5939 +                        r = (r == null) ? u : reducer.apply(r, u);
5940 +                }
5941 +                result = r;
5942 +                for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5943 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5944 +                    if ((c = t.pending) == 0) {
5945 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5946 +                            if ((sr = s.result) != null)
5947 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5948 +                        }
5949 +                        if ((par = t.parent) == null ||
5950 +                            !(par instanceof MapReduceMappingsTask)) {
5951 +                            t.quietlyComplete();
5952 +                            break;
5953 +                        }
5954 +                        t = (MapReduceMappingsTask<K,V,U>)par;
5955 +                    }
5956 +                    else if (t.casPending(c, c - 1))
5957 +                        break;
5958 +                }
5959 +            } catch (Throwable ex) {
5960 +                return tryCompleteComputation(ex);
5961 +            }
5962 +            MapReduceMappingsTask<K,V,U> s = rights;
5963 +            if (s != null && !inForkJoinPool()) {
5964 +                do  {
5965 +                    if (s.tryUnfork())
5966 +                        s.exec();
5967 +                } while ((s = s.nextRight) != null);
5968 +            }
5969 +            return false;
5970 +        }
5971 +        public final U getRawResult() { return result; }
5972 +    }
5973 +
5974 +    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5975 +        extends BulkTask<K,V,Double> {
5976 +        final ObjectToDouble<? super K> transformer;
5977 +        final DoubleByDoubleToDouble reducer;
5978 +        final double basis;
5979 +        double result;
5980 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5981 +        MapReduceKeysToDoubleTask
5982 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5983 +             MapReduceKeysToDoubleTask<K,V> nextRight,
5984 +             ObjectToDouble<? super K> transformer,
5985 +             double basis,
5986 +             DoubleByDoubleToDouble reducer) {
5987 +            super(m, p, b); this.nextRight = nextRight;
5988 +            this.transformer = transformer;
5989 +            this.basis = basis; this.reducer = reducer;
5990 +        }
5991 +        @SuppressWarnings("unchecked") public final boolean exec() {
5992 +            final ObjectToDouble<? super K> transformer =
5993 +                this.transformer;
5994 +            final DoubleByDoubleToDouble reducer = this.reducer;
5995 +            if (transformer == null || reducer == null)
5996 +                return abortOnNullFunction();
5997 +            try {
5998 +                final double id = this.basis;
5999 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6000 +                    do {} while (!casPending(c = pending, c+1));
6001 +                    (rights = new MapReduceKeysToDoubleTask<K,V>
6002 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6003 +                }
6004 +                double r = id;
6005 +                while (advance() != null)
6006 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6007 +                result = r;
6008 +                for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
6009 +                    int c; BulkTask<K,V,?> par;
6010 +                    if ((c = t.pending) == 0) {
6011 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6012 +                            t.result = reducer.apply(t.result, s.result);
6013 +                        }
6014 +                        if ((par = t.parent) == null ||
6015 +                            !(par instanceof MapReduceKeysToDoubleTask)) {
6016 +                            t.quietlyComplete();
6017 +                            break;
6018 +                        }
6019 +                        t = (MapReduceKeysToDoubleTask<K,V>)par;
6020 +                    }
6021 +                    else if (t.casPending(c, c - 1))
6022 +                        break;
6023 +                }
6024 +            } catch (Throwable ex) {
6025 +                return tryCompleteComputation(ex);
6026 +            }
6027 +            MapReduceKeysToDoubleTask<K,V> s = rights;
6028 +            if (s != null && !inForkJoinPool()) {
6029 +                do  {
6030 +                    if (s.tryUnfork())
6031 +                        s.exec();
6032 +                } while ((s = s.nextRight) != null);
6033 +            }
6034 +            return false;
6035 +        }
6036 +        public final Double getRawResult() { return result; }
6037 +    }
6038 +
6039 +    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6040 +        extends BulkTask<K,V,Double> {
6041 +        final ObjectToDouble<? super V> transformer;
6042 +        final DoubleByDoubleToDouble reducer;
6043 +        final double basis;
6044 +        double result;
6045 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6046 +        MapReduceValuesToDoubleTask
6047 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6048 +             MapReduceValuesToDoubleTask<K,V> nextRight,
6049 +             ObjectToDouble<? super V> transformer,
6050 +             double basis,
6051 +             DoubleByDoubleToDouble reducer) {
6052 +            super(m, p, b); this.nextRight = nextRight;
6053 +            this.transformer = transformer;
6054 +            this.basis = basis; this.reducer = reducer;
6055 +        }
6056 +        @SuppressWarnings("unchecked") public final boolean exec() {
6057 +            final ObjectToDouble<? super V> transformer =
6058 +                this.transformer;
6059 +            final DoubleByDoubleToDouble reducer = this.reducer;
6060 +            if (transformer == null || reducer == null)
6061 +                return abortOnNullFunction();
6062 +            try {
6063 +                final double id = this.basis;
6064 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6065 +                    do {} while (!casPending(c = pending, c+1));
6066 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
6067 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6068 +                }
6069 +                double r = id;
6070 +                Object v;
6071 +                while ((v = advance()) != null)
6072 +                    r = reducer.apply(r, transformer.apply((V)v));
6073 +                result = r;
6074 +                for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
6075 +                    int c; BulkTask<K,V,?> par;
6076 +                    if ((c = t.pending) == 0) {
6077 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6078 +                            t.result = reducer.apply(t.result, s.result);
6079 +                        }
6080 +                        if ((par = t.parent) == null ||
6081 +                            !(par instanceof MapReduceValuesToDoubleTask)) {
6082 +                            t.quietlyComplete();
6083 +                            break;
6084 +                        }
6085 +                        t = (MapReduceValuesToDoubleTask<K,V>)par;
6086 +                    }
6087 +                    else if (t.casPending(c, c - 1))
6088 +                        break;
6089 +                }
6090 +            } catch (Throwable ex) {
6091 +                return tryCompleteComputation(ex);
6092 +            }
6093 +            MapReduceValuesToDoubleTask<K,V> s = rights;
6094 +            if (s != null && !inForkJoinPool()) {
6095 +                do  {
6096 +                    if (s.tryUnfork())
6097 +                        s.exec();
6098 +                } while ((s = s.nextRight) != null);
6099 +            }
6100 +            return false;
6101 +        }
6102 +        public final Double getRawResult() { return result; }
6103 +    }
6104 +
6105 +    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6106 +        extends BulkTask<K,V,Double> {
6107 +        final ObjectToDouble<Map.Entry<K,V>> transformer;
6108 +        final DoubleByDoubleToDouble reducer;
6109 +        final double basis;
6110 +        double result;
6111 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6112 +        MapReduceEntriesToDoubleTask
6113 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6114 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
6115 +             ObjectToDouble<Map.Entry<K,V>> transformer,
6116 +             double basis,
6117 +             DoubleByDoubleToDouble reducer) {
6118 +            super(m, p, b); this.nextRight = nextRight;
6119 +            this.transformer = transformer;
6120 +            this.basis = basis; this.reducer = reducer;
6121 +        }
6122 +        @SuppressWarnings("unchecked") public final boolean exec() {
6123 +            final ObjectToDouble<Map.Entry<K,V>> transformer =
6124 +                this.transformer;
6125 +            final DoubleByDoubleToDouble reducer = this.reducer;
6126 +            if (transformer == null || reducer == null)
6127 +                return abortOnNullFunction();
6128 +            try {
6129 +                final double id = this.basis;
6130 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6131 +                    do {} while (!casPending(c = pending, c+1));
6132 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6133 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6134 +                }
6135 +                double r = id;
6136 +                Object v;
6137 +                while ((v = advance()) != null)
6138 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6139 +                result = r;
6140 +                for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
6141 +                    int c; BulkTask<K,V,?> par;
6142 +                    if ((c = t.pending) == 0) {
6143 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6144 +                            t.result = reducer.apply(t.result, s.result);
6145 +                        }
6146 +                        if ((par = t.parent) == null ||
6147 +                            !(par instanceof MapReduceEntriesToDoubleTask)) {
6148 +                            t.quietlyComplete();
6149 +                            break;
6150 +                        }
6151 +                        t = (MapReduceEntriesToDoubleTask<K,V>)par;
6152 +                    }
6153 +                    else if (t.casPending(c, c - 1))
6154 +                        break;
6155 +                }
6156 +            } catch (Throwable ex) {
6157 +                return tryCompleteComputation(ex);
6158 +            }
6159 +            MapReduceEntriesToDoubleTask<K,V> s = rights;
6160 +            if (s != null && !inForkJoinPool()) {
6161 +                do  {
6162 +                    if (s.tryUnfork())
6163 +                        s.exec();
6164 +                } while ((s = s.nextRight) != null);
6165 +            }
6166 +            return false;
6167 +        }
6168 +        public final Double getRawResult() { return result; }
6169 +    }
6170 +
6171 +    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6172 +        extends BulkTask<K,V,Double> {
6173 +        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6174 +        final DoubleByDoubleToDouble reducer;
6175 +        final double basis;
6176 +        double result;
6177 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6178 +        MapReduceMappingsToDoubleTask
6179 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6180 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
6181 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
6182 +             double basis,
6183 +             DoubleByDoubleToDouble reducer) {
6184 +            super(m, p, b); this.nextRight = nextRight;
6185 +            this.transformer = transformer;
6186 +            this.basis = basis; this.reducer = reducer;
6187 +        }
6188 +        @SuppressWarnings("unchecked") public final boolean exec() {
6189 +            final ObjectByObjectToDouble<? super K, ? super V> transformer =
6190 +                this.transformer;
6191 +            final DoubleByDoubleToDouble reducer = this.reducer;
6192 +            if (transformer == null || reducer == null)
6193 +                return abortOnNullFunction();
6194 +            try {
6195 +                final double id = this.basis;
6196 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6197 +                    do {} while (!casPending(c = pending, c+1));
6198 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6199 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6200 +                }
6201 +                double r = id;
6202 +                Object v;
6203 +                while ((v = advance()) != null)
6204 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6205 +                result = r;
6206 +                for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6207 +                    int c; BulkTask<K,V,?> par;
6208 +                    if ((c = t.pending) == 0) {
6209 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6210 +                            t.result = reducer.apply(t.result, s.result);
6211 +                        }
6212 +                        if ((par = t.parent) == null ||
6213 +                            !(par instanceof MapReduceMappingsToDoubleTask)) {
6214 +                            t.quietlyComplete();
6215 +                            break;
6216 +                        }
6217 +                        t = (MapReduceMappingsToDoubleTask<K,V>)par;
6218 +                    }
6219 +                    else if (t.casPending(c, c - 1))
6220 +                        break;
6221 +                }
6222 +            } catch (Throwable ex) {
6223 +                return tryCompleteComputation(ex);
6224 +            }
6225 +            MapReduceMappingsToDoubleTask<K,V> s = rights;
6226 +            if (s != null && !inForkJoinPool()) {
6227 +                do  {
6228 +                    if (s.tryUnfork())
6229 +                        s.exec();
6230 +                } while ((s = s.nextRight) != null);
6231 +            }
6232 +            return false;
6233 +        }
6234 +        public final Double getRawResult() { return result; }
6235 +    }
6236 +
6237 +    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6238 +        extends BulkTask<K,V,Long> {
6239 +        final ObjectToLong<? super K> transformer;
6240 +        final LongByLongToLong reducer;
6241 +        final long basis;
6242 +        long result;
6243 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
6244 +        MapReduceKeysToLongTask
6245 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6246 +             MapReduceKeysToLongTask<K,V> nextRight,
6247 +             ObjectToLong<? super K> transformer,
6248 +             long basis,
6249 +             LongByLongToLong reducer) {
6250 +            super(m, p, b); this.nextRight = nextRight;
6251 +            this.transformer = transformer;
6252 +            this.basis = basis; this.reducer = reducer;
6253 +        }
6254 +        @SuppressWarnings("unchecked") public final boolean exec() {
6255 +            final ObjectToLong<? super K> transformer =
6256 +                this.transformer;
6257 +            final LongByLongToLong reducer = this.reducer;
6258 +            if (transformer == null || reducer == null)
6259 +                return abortOnNullFunction();
6260 +            try {
6261 +                final long id = this.basis;
6262 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6263 +                    do {} while (!casPending(c = pending, c+1));
6264 +                    (rights = new MapReduceKeysToLongTask<K,V>
6265 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6266 +                }
6267 +                long r = id;
6268 +                while (advance() != null)
6269 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6270 +                result = r;
6271 +                for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6272 +                    int c; BulkTask<K,V,?> par;
6273 +                    if ((c = t.pending) == 0) {
6274 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6275 +                            t.result = reducer.apply(t.result, s.result);
6276 +                        }
6277 +                        if ((par = t.parent) == null ||
6278 +                            !(par instanceof MapReduceKeysToLongTask)) {
6279 +                            t.quietlyComplete();
6280 +                            break;
6281 +                        }
6282 +                        t = (MapReduceKeysToLongTask<K,V>)par;
6283 +                    }
6284 +                    else if (t.casPending(c, c - 1))
6285 +                        break;
6286 +                }
6287 +            } catch (Throwable ex) {
6288 +                return tryCompleteComputation(ex);
6289 +            }
6290 +            MapReduceKeysToLongTask<K,V> s = rights;
6291 +            if (s != null && !inForkJoinPool()) {
6292 +                do  {
6293 +                    if (s.tryUnfork())
6294 +                        s.exec();
6295 +                } while ((s = s.nextRight) != null);
6296 +            }
6297 +            return false;
6298 +        }
6299 +        public final Long getRawResult() { return result; }
6300 +    }
6301 +
6302 +    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6303 +        extends BulkTask<K,V,Long> {
6304 +        final ObjectToLong<? super V> transformer;
6305 +        final LongByLongToLong reducer;
6306 +        final long basis;
6307 +        long result;
6308 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
6309 +        MapReduceValuesToLongTask
6310 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6311 +             MapReduceValuesToLongTask<K,V> nextRight,
6312 +             ObjectToLong<? super V> transformer,
6313 +             long basis,
6314 +             LongByLongToLong reducer) {
6315 +            super(m, p, b); this.nextRight = nextRight;
6316 +            this.transformer = transformer;
6317 +            this.basis = basis; this.reducer = reducer;
6318 +        }
6319 +        @SuppressWarnings("unchecked") public final boolean exec() {
6320 +            final ObjectToLong<? super V> transformer =
6321 +                this.transformer;
6322 +            final LongByLongToLong reducer = this.reducer;
6323 +            if (transformer == null || reducer == null)
6324 +                return abortOnNullFunction();
6325 +            try {
6326 +                final long id = this.basis;
6327 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6328 +                    do {} while (!casPending(c = pending, c+1));
6329 +                    (rights = new MapReduceValuesToLongTask<K,V>
6330 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6331 +                }
6332 +                long r = id;
6333 +                Object v;
6334 +                while ((v = advance()) != null)
6335 +                    r = reducer.apply(r, transformer.apply((V)v));
6336 +                result = r;
6337 +                for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6338 +                    int c; BulkTask<K,V,?> par;
6339 +                    if ((c = t.pending) == 0) {
6340 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6341 +                            t.result = reducer.apply(t.result, s.result);
6342 +                        }
6343 +                        if ((par = t.parent) == null ||
6344 +                            !(par instanceof MapReduceValuesToLongTask)) {
6345 +                            t.quietlyComplete();
6346 +                            break;
6347 +                        }
6348 +                        t = (MapReduceValuesToLongTask<K,V>)par;
6349 +                    }
6350 +                    else if (t.casPending(c, c - 1))
6351 +                        break;
6352 +                }
6353 +            } catch (Throwable ex) {
6354 +                return tryCompleteComputation(ex);
6355 +            }
6356 +            MapReduceValuesToLongTask<K,V> s = rights;
6357 +            if (s != null && !inForkJoinPool()) {
6358 +                do  {
6359 +                    if (s.tryUnfork())
6360 +                        s.exec();
6361 +                } while ((s = s.nextRight) != null);
6362 +            }
6363 +            return false;
6364 +        }
6365 +        public final Long getRawResult() { return result; }
6366 +    }
6367 +
6368 +    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6369 +        extends BulkTask<K,V,Long> {
6370 +        final ObjectToLong<Map.Entry<K,V>> transformer;
6371 +        final LongByLongToLong reducer;
6372 +        final long basis;
6373 +        long result;
6374 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6375 +        MapReduceEntriesToLongTask
6376 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6377 +             MapReduceEntriesToLongTask<K,V> nextRight,
6378 +             ObjectToLong<Map.Entry<K,V>> transformer,
6379 +             long basis,
6380 +             LongByLongToLong reducer) {
6381 +            super(m, p, b); this.nextRight = nextRight;
6382 +            this.transformer = transformer;
6383 +            this.basis = basis; this.reducer = reducer;
6384 +        }
6385 +        @SuppressWarnings("unchecked") public final boolean exec() {
6386 +            final ObjectToLong<Map.Entry<K,V>> transformer =
6387 +                this.transformer;
6388 +            final LongByLongToLong reducer = this.reducer;
6389 +            if (transformer == null || reducer == null)
6390 +                return abortOnNullFunction();
6391 +            try {
6392 +                final long id = this.basis;
6393 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6394 +                    do {} while (!casPending(c = pending, c+1));
6395 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6396 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6397 +                }
6398 +                long r = id;
6399 +                Object v;
6400 +                while ((v = advance()) != null)
6401 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6402 +                result = r;
6403 +                for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6404 +                    int c; BulkTask<K,V,?> par;
6405 +                    if ((c = t.pending) == 0) {
6406 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6407 +                            t.result = reducer.apply(t.result, s.result);
6408 +                        }
6409 +                        if ((par = t.parent) == null ||
6410 +                            !(par instanceof MapReduceEntriesToLongTask)) {
6411 +                            t.quietlyComplete();
6412 +                            break;
6413 +                        }
6414 +                        t = (MapReduceEntriesToLongTask<K,V>)par;
6415 +                    }
6416 +                    else if (t.casPending(c, c - 1))
6417 +                        break;
6418 +                }
6419 +            } catch (Throwable ex) {
6420 +                return tryCompleteComputation(ex);
6421 +            }
6422 +            MapReduceEntriesToLongTask<K,V> s = rights;
6423 +            if (s != null && !inForkJoinPool()) {
6424 +                do  {
6425 +                    if (s.tryUnfork())
6426 +                        s.exec();
6427 +                } while ((s = s.nextRight) != null);
6428 +            }
6429 +            return false;
6430 +        }
6431 +        public final Long getRawResult() { return result; }
6432 +    }
6433 +
6434 +    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6435 +        extends BulkTask<K,V,Long> {
6436 +        final ObjectByObjectToLong<? super K, ? super V> transformer;
6437 +        final LongByLongToLong reducer;
6438 +        final long basis;
6439 +        long result;
6440 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6441 +        MapReduceMappingsToLongTask
6442 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6443 +             MapReduceMappingsToLongTask<K,V> nextRight,
6444 +             ObjectByObjectToLong<? super K, ? super V> transformer,
6445 +             long basis,
6446 +             LongByLongToLong reducer) {
6447 +            super(m, p, b); this.nextRight = nextRight;
6448 +            this.transformer = transformer;
6449 +            this.basis = basis; this.reducer = reducer;
6450 +        }
6451 +        @SuppressWarnings("unchecked") public final boolean exec() {
6452 +            final ObjectByObjectToLong<? super K, ? super V> transformer =
6453 +                this.transformer;
6454 +            final LongByLongToLong reducer = this.reducer;
6455 +            if (transformer == null || reducer == null)
6456 +                return abortOnNullFunction();
6457 +            try {
6458 +                final long id = this.basis;
6459 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6460 +                    do {} while (!casPending(c = pending, c+1));
6461 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6462 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6463 +                }
6464 +                long r = id;
6465 +                Object v;
6466 +                while ((v = advance()) != null)
6467 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6468 +                result = r;
6469 +                for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6470 +                    int c; BulkTask<K,V,?> par;
6471 +                    if ((c = t.pending) == 0) {
6472 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6473 +                            t.result = reducer.apply(t.result, s.result);
6474 +                        }
6475 +                        if ((par = t.parent) == null ||
6476 +                            !(par instanceof MapReduceMappingsToLongTask)) {
6477 +                            t.quietlyComplete();
6478 +                            break;
6479 +                        }
6480 +                        t = (MapReduceMappingsToLongTask<K,V>)par;
6481 +                    }
6482 +                    else if (t.casPending(c, c - 1))
6483 +                        break;
6484 +                }
6485 +            } catch (Throwable ex) {
6486 +                return tryCompleteComputation(ex);
6487 +            }
6488 +            MapReduceMappingsToLongTask<K,V> s = rights;
6489 +            if (s != null && !inForkJoinPool()) {
6490 +                do  {
6491 +                    if (s.tryUnfork())
6492 +                        s.exec();
6493 +                } while ((s = s.nextRight) != null);
6494 +            }
6495 +            return false;
6496 +        }
6497 +        public final Long getRawResult() { return result; }
6498 +    }
6499 +
6500 +    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6501 +        extends BulkTask<K,V,Integer> {
6502 +        final ObjectToInt<? super K> transformer;
6503 +        final IntByIntToInt reducer;
6504 +        final int basis;
6505 +        int result;
6506 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6507 +        MapReduceKeysToIntTask
6508 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6509 +             MapReduceKeysToIntTask<K,V> nextRight,
6510 +             ObjectToInt<? super K> transformer,
6511 +             int basis,
6512 +             IntByIntToInt reducer) {
6513 +            super(m, p, b); this.nextRight = nextRight;
6514 +            this.transformer = transformer;
6515 +            this.basis = basis; this.reducer = reducer;
6516 +        }
6517 +        @SuppressWarnings("unchecked") public final boolean exec() {
6518 +            final ObjectToInt<? super K> transformer =
6519 +                this.transformer;
6520 +            final IntByIntToInt reducer = this.reducer;
6521 +            if (transformer == null || reducer == null)
6522 +                return abortOnNullFunction();
6523 +            try {
6524 +                final int id = this.basis;
6525 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6526 +                    do {} while (!casPending(c = pending, c+1));
6527 +                    (rights = new MapReduceKeysToIntTask<K,V>
6528 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6529 +                }
6530 +                int r = id;
6531 +                while (advance() != null)
6532 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6533 +                result = r;
6534 +                for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6535 +                    int c; BulkTask<K,V,?> par;
6536 +                    if ((c = t.pending) == 0) {
6537 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6538 +                            t.result = reducer.apply(t.result, s.result);
6539 +                        }
6540 +                        if ((par = t.parent) == null ||
6541 +                            !(par instanceof MapReduceKeysToIntTask)) {
6542 +                            t.quietlyComplete();
6543 +                            break;
6544 +                        }
6545 +                        t = (MapReduceKeysToIntTask<K,V>)par;
6546 +                    }
6547 +                    else if (t.casPending(c, c - 1))
6548 +                        break;
6549 +                }
6550 +            } catch (Throwable ex) {
6551 +                return tryCompleteComputation(ex);
6552 +            }
6553 +            MapReduceKeysToIntTask<K,V> s = rights;
6554 +            if (s != null && !inForkJoinPool()) {
6555 +                do  {
6556 +                    if (s.tryUnfork())
6557 +                        s.exec();
6558 +                } while ((s = s.nextRight) != null);
6559 +            }
6560 +            return false;
6561 +        }
6562 +        public final Integer getRawResult() { return result; }
6563 +    }
6564 +
6565 +    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6566 +        extends BulkTask<K,V,Integer> {
6567 +        final ObjectToInt<? super V> transformer;
6568 +        final IntByIntToInt reducer;
6569 +        final int basis;
6570 +        int result;
6571 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6572 +        MapReduceValuesToIntTask
6573 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6574 +             MapReduceValuesToIntTask<K,V> nextRight,
6575 +             ObjectToInt<? super V> transformer,
6576 +             int basis,
6577 +             IntByIntToInt reducer) {
6578 +            super(m, p, b); this.nextRight = nextRight;
6579 +            this.transformer = transformer;
6580 +            this.basis = basis; this.reducer = reducer;
6581 +        }
6582 +        @SuppressWarnings("unchecked") public final boolean exec() {
6583 +            final ObjectToInt<? super V> transformer =
6584 +                this.transformer;
6585 +            final IntByIntToInt reducer = this.reducer;
6586 +            if (transformer == null || reducer == null)
6587 +                return abortOnNullFunction();
6588 +            try {
6589 +                final int id = this.basis;
6590 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6591 +                    do {} while (!casPending(c = pending, c+1));
6592 +                    (rights = new MapReduceValuesToIntTask<K,V>
6593 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6594 +                }
6595 +                int r = id;
6596 +                Object v;
6597 +                while ((v = advance()) != null)
6598 +                    r = reducer.apply(r, transformer.apply((V)v));
6599 +                result = r;
6600 +                for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
6601 +                    int c; BulkTask<K,V,?> par;
6602 +                    if ((c = t.pending) == 0) {
6603 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6604 +                            t.result = reducer.apply(t.result, s.result);
6605 +                        }
6606 +                        if ((par = t.parent) == null ||
6607 +                            !(par instanceof MapReduceValuesToIntTask)) {
6608 +                            t.quietlyComplete();
6609 +                            break;
6610 +                        }
6611 +                        t = (MapReduceValuesToIntTask<K,V>)par;
6612 +                    }
6613 +                    else if (t.casPending(c, c - 1))
6614 +                        break;
6615 +                }
6616 +            } catch (Throwable ex) {
6617 +                return tryCompleteComputation(ex);
6618 +            }
6619 +            MapReduceValuesToIntTask<K,V> s = rights;
6620 +            if (s != null && !inForkJoinPool()) {
6621 +                do  {
6622 +                    if (s.tryUnfork())
6623 +                        s.exec();
6624 +                } while ((s = s.nextRight) != null);
6625 +            }
6626 +            return false;
6627 +        }
6628 +        public final Integer getRawResult() { return result; }
6629 +    }
6630 +
6631 +    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6632 +        extends BulkTask<K,V,Integer> {
6633 +        final ObjectToInt<Map.Entry<K,V>> transformer;
6634 +        final IntByIntToInt reducer;
6635 +        final int basis;
6636 +        int result;
6637 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6638 +        MapReduceEntriesToIntTask
6639 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6640 +             MapReduceEntriesToIntTask<K,V> nextRight,
6641 +             ObjectToInt<Map.Entry<K,V>> transformer,
6642 +             int basis,
6643 +             IntByIntToInt reducer) {
6644 +            super(m, p, b); this.nextRight = nextRight;
6645 +            this.transformer = transformer;
6646 +            this.basis = basis; this.reducer = reducer;
6647 +        }
6648 +        @SuppressWarnings("unchecked") public final boolean exec() {
6649 +            final ObjectToInt<Map.Entry<K,V>> transformer =
6650 +                this.transformer;
6651 +            final IntByIntToInt reducer = this.reducer;
6652 +            if (transformer == null || reducer == null)
6653 +                return abortOnNullFunction();
6654 +            try {
6655 +                final int id = this.basis;
6656 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6657 +                    do {} while (!casPending(c = pending, c+1));
6658 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6659 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6660 +                }
6661 +                int r = id;
6662 +                Object v;
6663 +                while ((v = advance()) != null)
6664 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6665 +                result = r;
6666 +                for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6667 +                    int c; BulkTask<K,V,?> par;
6668 +                    if ((c = t.pending) == 0) {
6669 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6670 +                            t.result = reducer.apply(t.result, s.result);
6671 +                        }
6672 +                        if ((par = t.parent) == null ||
6673 +                            !(par instanceof MapReduceEntriesToIntTask)) {
6674 +                            t.quietlyComplete();
6675 +                            break;
6676 +                        }
6677 +                        t = (MapReduceEntriesToIntTask<K,V>)par;
6678 +                    }
6679 +                    else if (t.casPending(c, c - 1))
6680 +                        break;
6681 +                }
6682 +            } catch (Throwable ex) {
6683 +                return tryCompleteComputation(ex);
6684 +            }
6685 +            MapReduceEntriesToIntTask<K,V> s = rights;
6686 +            if (s != null && !inForkJoinPool()) {
6687 +                do  {
6688 +                    if (s.tryUnfork())
6689 +                        s.exec();
6690 +                } while ((s = s.nextRight) != null);
6691 +            }
6692 +            return false;
6693 +        }
6694 +        public final Integer getRawResult() { return result; }
6695 +    }
6696 +
6697 +    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6698 +        extends BulkTask<K,V,Integer> {
6699 +        final ObjectByObjectToInt<? super K, ? super V> transformer;
6700 +        final IntByIntToInt reducer;
6701 +        final int basis;
6702 +        int result;
6703 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6704 +        MapReduceMappingsToIntTask
6705 +            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6706 +             MapReduceMappingsToIntTask<K,V> rights,
6707 +             ObjectByObjectToInt<? super K, ? super V> transformer,
6708 +             int basis,
6709 +             IntByIntToInt reducer) {
6710 +            super(m, p, b); this.nextRight = nextRight;
6711 +            this.transformer = transformer;
6712 +            this.basis = basis; this.reducer = reducer;
6713 +        }
6714 +        @SuppressWarnings("unchecked") public final boolean exec() {
6715 +            final ObjectByObjectToInt<? super K, ? super V> transformer =
6716 +                this.transformer;
6717 +            final IntByIntToInt reducer = this.reducer;
6718 +            if (transformer == null || reducer == null)
6719 +                return abortOnNullFunction();
6720 +            try {
6721 +                final int id = this.basis;
6722 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6723 +                    do {} while (!casPending(c = pending, c+1));
6724 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6725 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6726 +                }
6727 +                int r = id;
6728 +                Object v;
6729 +                while ((v = advance()) != null)
6730 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6731 +                result = r;
6732 +                for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6733 +                    int c; BulkTask<K,V,?> par;
6734 +                    if ((c = t.pending) == 0) {
6735 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6736 +                            t.result = reducer.apply(t.result, s.result);
6737 +                        }
6738 +                        if ((par = t.parent) == null ||
6739 +                            !(par instanceof MapReduceMappingsToIntTask)) {
6740 +                            t.quietlyComplete();
6741 +                            break;
6742 +                        }
6743 +                        t = (MapReduceMappingsToIntTask<K,V>)par;
6744 +                    }
6745 +                    else if (t.casPending(c, c - 1))
6746 +                        break;
6747 +                }
6748 +            } catch (Throwable ex) {
6749 +                return tryCompleteComputation(ex);
6750 +            }
6751 +            MapReduceMappingsToIntTask<K,V> s = rights;
6752 +            if (s != null && !inForkJoinPool()) {
6753 +                do  {
6754 +                    if (s.tryUnfork())
6755 +                        s.exec();
6756 +                } while ((s = s.nextRight) != null);
6757 +            }
6758 +            return false;
6759 +        }
6760 +        public final Integer getRawResult() { return result; }
6761 +    }
6762 +
6763 +    // Unsafe mechanics
6764 +    private static final sun.misc.Unsafe UNSAFE;
6765 +    private static final long counterOffset;
6766 +    private static final long sizeCtlOffset;
6767 +    private static final long ABASE;
6768 +    private static final int ASHIFT;
6769 +
6770 +    static {
6771 +        int ss;
6772 +        try {
6773 +            UNSAFE = sun.misc.Unsafe.getUnsafe();
6774 +            Class<?> k = ConcurrentHashMap.class;
6775 +            counterOffset = UNSAFE.objectFieldOffset
6776 +                (k.getDeclaredField("counter"));
6777 +            sizeCtlOffset = UNSAFE.objectFieldOffset
6778 +                (k.getDeclaredField("sizeCtl"));
6779 +            Class<?> sc = Node[].class;
6780 +            ABASE = UNSAFE.arrayBaseOffset(sc);
6781 +            ss = UNSAFE.arrayIndexScale(sc);
6782 +        } catch (Exception e) {
6783 +            throw new Error(e);
6784 +        }
6785 +        if ((ss & (ss-1)) != 0)
6786 +            throw new Error("data type scale not a power of two");
6787 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6788      }
6789   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines