ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.83 by jsr166, Mon Aug 22 03:42:10 2005 UTC vs.
Revision 1.149 by dl, Thu Dec 13 20:34:05 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 > import java.util.concurrent.ForkJoinPool;
9 > import java.util.concurrent.CountedCompleter;
10 >
11 > import java.util.Comparator;
12 > import java.util.Arrays;
13 > import java.util.Map;
14 > import java.util.Set;
15 > import java.util.Collection;
16 > import java.util.AbstractMap;
17 > import java.util.AbstractSet;
18 > import java.util.AbstractCollection;
19 > import java.util.Hashtable;
20 > import java.util.HashMap;
21 > import java.util.Iterator;
22 > import java.util.Enumeration;
23 > import java.util.ConcurrentModificationException;
24 > import java.util.NoSuchElementException;
25 > import java.util.concurrent.ConcurrentMap;
26 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 > import java.util.concurrent.atomic.AtomicInteger;
28 > import java.util.concurrent.atomic.AtomicReference;
29   import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
30  
31   /**
32   * A hash table supporting full concurrency of retrievals and
33 < * adjustable expected concurrency for updates. This class obeys the
33 > * high expected concurrency for updates. This class obeys the
34   * same functional specification as {@link java.util.Hashtable}, and
35   * includes versions of methods corresponding to each method of
36 < * <tt>Hashtable</tt>. However, even though all operations are
36 > * {@code Hashtable}. However, even though all operations are
37   * thread-safe, retrieval operations do <em>not</em> entail locking,
38   * and there is <em>not</em> any support for locking the entire table
39   * in a way that prevents all access.  This class is fully
40 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
40 > * interoperable with {@code Hashtable} in programs that rely on its
41   * thread safety but not on its synchronization details.
42   *
43 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
44 < * block, so may overlap with update operations (including
45 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
46 < * of the most recently <em>completed</em> update operations holding
47 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
48 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
49 < * removal of only some entries.  Similarly, Iterators and
50 < * Enumerations return elements reflecting the state of the hash table
51 < * at some point at or since the creation of the iterator/enumeration.
52 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
53 < * However, iterators are designed to be used by only one thread at a time.
54 < *
55 < * <p> The allowed concurrency among update operations is guided by
56 < * the optional <tt>concurrencyLevel</tt> constructor argument
57 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
58 < * table is internally partitioned to try to permit the indicated
59 < * number of concurrent updates without contention. Because placement
60 < * in hash tables is essentially random, the actual concurrency will
61 < * vary.  Ideally, you should choose a value to accommodate as many
62 < * threads as will ever concurrently modify the table. Using a
63 < * significantly higher value than you need can waste space and time,
64 < * and a significantly lower value can lead to thread contention. But
65 < * overestimates and underestimates within an order of magnitude do
66 < * not usually have much noticeable impact. A value of one is
67 < * appropriate when it is known that only one thread will modify and
68 < * all others will only read. Also, resizing this or any other kind of
69 < * hash table is a relatively slow operation, so, when possible, it is
70 < * a good idea to provide estimates of expected table sizes in
71 < * constructors.
43 > * <p>Retrieval operations (including {@code get}) generally do not
44 > * block, so may overlap with update operations (including {@code put}
45 > * and {@code remove}). Retrievals reflect the results of the most
46 > * recently <em>completed</em> update operations holding upon their
47 > * onset. (More formally, an update operation for a given key bears a
48 > * <em>happens-before</em> relation with any (non-null) retrieval for
49 > * that key reporting the updated value.)  For aggregate operations
50 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
51 > * reflect insertion or removal of only some entries.  Similarly,
52 > * Iterators and Enumerations return elements reflecting the state of
53 > * the hash table at some point at or since the creation of the
54 > * iterator/enumeration.  They do <em>not</em> throw {@link
55 > * ConcurrentModificationException}.  However, iterators are designed
56 > * to be used by only one thread at a time.  Bear in mind that the
57 > * results of aggregate status methods including {@code size}, {@code
58 > * isEmpty}, and {@code containsValue} are typically useful only when
59 > * a map is not undergoing concurrent updates in other threads.
60 > * Otherwise the results of these methods reflect transient states
61 > * that may be adequate for monitoring or estimation purposes, but not
62 > * for program control.
63 > *
64 > * <p>The table is dynamically expanded when there are too many
65 > * collisions (i.e., keys that have distinct hash codes but fall into
66 > * the same slot modulo the table size), with the expected average
67 > * effect of maintaining roughly two bins per mapping (corresponding
68 > * to a 0.75 load factor threshold for resizing). There may be much
69 > * variance around this average as mappings are added and removed, but
70 > * overall, this maintains a commonly accepted time/space tradeoff for
71 > * hash tables.  However, resizing this or any other kind of hash
72 > * table may be a relatively slow operation. When possible, it is a
73 > * good idea to provide a size estimate as an optional {@code
74 > * initialCapacity} constructor argument. An additional optional
75 > * {@code loadFactor} constructor argument provides a further means of
76 > * customizing initial table capacity by specifying the table density
77 > * to be used in calculating the amount of space to allocate for the
78 > * given number of elements.  Also, for compatibility with previous
79 > * versions of this class, constructors may optionally specify an
80 > * expected {@code concurrencyLevel} as an additional hint for
81 > * internal sizing.  Note that using many keys with exactly the same
82 > * {@code hashCode()} is a sure way to slow down performance of any
83 > * hash table.
84 > *
85 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
86 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
87 > * (using {@link #keySet(Object)} when only keys are of interest, and the
88 > * mapped values are (perhaps transiently) not used or all take the
89 > * same mapping value.
90 > *
91 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
92 > * form of histogram or multiset) by using {@link LongAdder} values
93 > * and initializing via {@link #computeIfAbsent}. For example, to add
94 > * a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you
95 > * can use {@code freqs.computeIfAbsent(k -> new
96 > * LongAdder()).increment();}
97   *
98   * <p>This class and its views and iterators implement all of the
99   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
100   * interfaces.
101   *
102 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
103 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
102 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
103 > * does <em>not</em> allow {@code null} to be used as a key or value.
104 > *
105 > * <p>ConcurrentHashMaps support parallel operations using the {@link
106 > * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
107 > * are available in class {@link ForkJoinTasks}). These operations are
108 > * designed to be safely, and often sensibly, applied even with maps
109 > * that are being concurrently updated by other threads; for example,
110 > * when computing a snapshot summary of the values in a shared
111 > * registry.  There are three kinds of operation, each with four
112 > * forms, accepting functions with Keys, Values, Entries, and (Key,
113 > * Value) arguments and/or return values. (The first three forms are
114 > * also available via the {@link #keySet()}, {@link #values()} and
115 > * {@link #entrySet()} views). Because the elements of a
116 > * ConcurrentHashMap are not ordered in any particular way, and may be
117 > * processed in different orders in different parallel executions, the
118 > * correctness of supplied functions should not depend on any
119 > * ordering, or on any other objects or values that may transiently
120 > * change while computation is in progress; and except for forEach
121 > * actions, should ideally be side-effect-free.
122 > *
123 > * <ul>
124 > * <li> forEach: Perform a given action on each element.
125 > * A variant form applies a given transformation on each element
126 > * before performing the action.</li>
127 > *
128 > * <li> search: Return the first available non-null result of
129 > * applying a given function on each element; skipping further
130 > * search when a result is found.</li>
131 > *
132 > * <li> reduce: Accumulate each element.  The supplied reduction
133 > * function cannot rely on ordering (more formally, it should be
134 > * both associative and commutative).  There are five variants:
135 > *
136 > * <ul>
137 > *
138 > * <li> Plain reductions. (There is not a form of this method for
139 > * (key, value) function arguments since there is no corresponding
140 > * return type.)</li>
141 > *
142 > * <li> Mapped reductions that accumulate the results of a given
143 > * function applied to each element.</li>
144 > *
145 > * <li> Reductions to scalar doubles, longs, and ints, using a
146 > * given basis value.</li>
147 > *
148 > * </li>
149 > * </ul>
150 > * </ul>
151 > *
152 > * <p>The concurrency properties of bulk operations follow
153 > * from those of ConcurrentHashMap: Any non-null result returned
154 > * from {@code get(key)} and related access methods bears a
155 > * happens-before relation with the associated insertion or
156 > * update.  The result of any bulk operation reflects the
157 > * composition of these per-element relations (but is not
158 > * necessarily atomic with respect to the map as a whole unless it
159 > * is somehow known to be quiescent).  Conversely, because keys
160 > * and values in the map are never null, null serves as a reliable
161 > * atomic indicator of the current lack of any result.  To
162 > * maintain this property, null serves as an implicit basis for
163 > * all non-scalar reduction operations. For the double, long, and
164 > * int versions, the basis should be one that, when combined with
165 > * any other value, returns that other value (more formally, it
166 > * should be the identity element for the reduction). Most common
167 > * reductions have these properties; for example, computing a sum
168 > * with basis 0 or a minimum with basis MAX_VALUE.
169 > *
170 > * <p>Search and transformation functions provided as arguments
171 > * should similarly return null to indicate the lack of any result
172 > * (in which case it is not used). In the case of mapped
173 > * reductions, this also enables transformations to serve as
174 > * filters, returning null (or, in the case of primitive
175 > * specializations, the identity basis) if the element should not
176 > * be combined. You can create compound transformations and
177 > * filterings by composing them yourself under this "null means
178 > * there is nothing there now" rule before using them in search or
179 > * reduce operations.
180 > *
181 > * <p>Methods accepting and/or returning Entry arguments maintain
182 > * key-value associations. They may be useful for example when
183 > * finding the key for the greatest value. Note that "plain" Entry
184 > * arguments can be supplied using {@code new
185 > * AbstractMap.SimpleEntry(k,v)}.
186 > *
187 > * <p>Bulk operations may complete abruptly, throwing an
188 > * exception encountered in the application of a supplied
189 > * function. Bear in mind when handling such exceptions that other
190 > * concurrently executing functions could also have thrown
191 > * exceptions, or would have done so if the first exception had
192 > * not occurred.
193 > *
194 > * <p>Parallel speedups for bulk operations compared to sequential
195 > * processing are common but not guaranteed.  Operations involving
196 > * brief functions on small maps may execute more slowly than
197 > * sequential loops if the underlying work to parallelize the
198 > * computation is more expensive than the computation itself.
199 > * Similarly, parallelization may not lead to much actual parallelism
200 > * if all processors are busy performing unrelated tasks.
201 > *
202 > * <p>All arguments to all task methods must be non-null.
203 > *
204 > * <p><em>jsr166e note: During transition, this class
205 > * uses nested functional interfaces with different names but the
206 > * same forms as those expected for JDK8.</em>
207   *
208   * <p>This class is a member of the
209 < * <a href="{@docRoot}/../guide/collections/index.html">
209 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210   * Java Collections Framework</a>.
211   *
212   * @since 1.5
# Line 70 | Line 214 | import java.io.ObjectOutputStream;
214   * @param <K> the type of keys maintained by this map
215   * @param <V> the type of mapped values
216   */
217 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
218 <        implements ConcurrentMap<K, V>, Serializable {
217 > public class ConcurrentHashMap<K, V>
218 >    implements ConcurrentMap<K, V>, Serializable {
219      private static final long serialVersionUID = 7249069246763182397L;
220  
221 +    /**
222 +     * A partitionable iterator. A Spliterator can be traversed
223 +     * directly, but can also be partitioned (before traversal) by
224 +     * creating another Spliterator that covers a non-overlapping
225 +     * portion of the elements, and so may be amenable to parallel
226 +     * execution.
227 +     *
228 +     * <p>This interface exports a subset of expected JDK8
229 +     * functionality.
230 +     *
231 +     * <p>Sample usage: Here is one (of the several) ways to compute
232 +     * the sum of the values held in a map using the ForkJoin
233 +     * framework. As illustrated here, Spliterators are well suited to
234 +     * designs in which a task repeatedly splits off half its work
235 +     * into forked subtasks until small enough to process directly,
236 +     * and then joins these subtasks. Variants of this style can also
237 +     * be used in completion-based designs.
238 +     *
239 +     * <pre>
240 +     * {@code ConcurrentHashMap<String, Long> m = ...
241 +     * // split as if have 8 * parallelism, for load balance
242 +     * int n = m.size();
243 +     * int p = aForkJoinPool.getParallelism() * 8;
244 +     * int split = (n < p)? n : p;
245 +     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
246 +     * // ...
247 +     * static class SumValues extends RecursiveTask<Long> {
248 +     *   final Spliterator<Long> s;
249 +     *   final int split;             // split while > 1
250 +     *   final SumValues nextJoin;    // records forked subtasks to join
251 +     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
252 +     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
253 +     *   }
254 +     *   public Long compute() {
255 +     *     long sum = 0;
256 +     *     SumValues subtasks = null; // fork subtasks
257 +     *     for (int s = split >>> 1; s > 0; s >>>= 1)
258 +     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
259 +     *     while (s.hasNext())        // directly process remaining elements
260 +     *       sum += s.next();
261 +     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
262 +     *       sum += t.join();         // collect subtask results
263 +     *     return sum;
264 +     *   }
265 +     * }
266 +     * }</pre>
267 +     */
268 +    public static interface Spliterator<T> extends Iterator<T> {
269 +        /**
270 +         * Returns a Spliterator covering approximately half of the
271 +         * elements, guaranteed not to overlap with those subsequently
272 +         * returned by this Spliterator.  After invoking this method,
273 +         * the current Spliterator will <em>not</em> produce any of
274 +         * the elements of the returned Spliterator, but the two
275 +         * Spliterators together will produce all of the elements that
276 +         * would have been produced by this Spliterator had this
277 +         * method not been called. The exact number of elements
278 +         * produced by the returned Spliterator is not guaranteed, and
279 +         * may be zero (i.e., with {@code hasNext()} reporting {@code
280 +         * false}) if this Spliterator cannot be further split.
281 +         *
282 +         * @return a Spliterator covering approximately half of the
283 +         * elements
284 +         * @throws IllegalStateException if this Spliterator has
285 +         * already commenced traversing elements
286 +         */
287 +        Spliterator<T> split();
288 +    }
289 +
290      /*
291 <     * The basic strategy is to subdivide the table among Segments,
292 <     * each of which itself is a concurrently readable hash table.
291 >     * Overview:
292 >     *
293 >     * The primary design goal of this hash table is to maintain
294 >     * concurrent readability (typically method get(), but also
295 >     * iterators and related methods) while minimizing update
296 >     * contention. Secondary goals are to keep space consumption about
297 >     * the same or better than java.util.HashMap, and to support high
298 >     * initial insertion rates on an empty table by many threads.
299 >     *
300 >     * Each key-value mapping is held in a Node.  Because Node fields
301 >     * can contain special values, they are defined using plain Object
302 >     * types. Similarly in turn, all internal methods that use them
303 >     * work off Object types. And similarly, so do the internal
304 >     * methods of auxiliary iterator and view classes. This also
305 >     * allows many of the public methods to be factored into a smaller
306 >     * number of internal methods (although sadly not so for the five
307 >     * variants of put-related operations). The validation-based
308 >     * approach explained below leads to a lot of code sprawl because
309 >     * retry-control precludes factoring into smaller methods.
310 >     *
311 >     * The table is lazily initialized to a power-of-two size upon the
312 >     * first insertion.  Each bin in the table normally contains a
313 >     * list of Nodes (most often, the list has only zero or one Node).
314 >     * Table accesses require volatile/atomic reads, writes, and
315 >     * CASes.  Because there is no other way to arrange this without
316 >     * adding further indirections, we use intrinsics
317 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
318 >     * are always accurately traversable under volatile reads, so long
319 >     * as lookups check hash code and non-nullness of value before
320 >     * checking key equality.
321 >     *
322 >     * We use the top (sign) bit of Node hash fields for control
323 >     * purposes -- it is available anyway because of addressing
324 >     * constraints.  Nodes with negative hash fields are forwarding
325 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
326 >     * of each normal Node's hash field contain a transformation of
327 >     * the key's hash code.
328 >     *
329 >     * Insertion (via put or its variants) of the first node in an
330 >     * empty bin is performed by just CASing it to the bin.  This is
331 >     * by far the most common case for put operations under most
332 >     * key/hash distributions.  Other update operations (insert,
333 >     * delete, and replace) require locks.  We do not want to waste
334 >     * the space required to associate a distinct lock object with
335 >     * each bin, so instead use the first node of a bin list itself as
336 >     * a lock. Locking support for these locks relies on builtin
337 >     * "synchronized" monitors.
338 >     *
339 >     * Using the first node of a list as a lock does not by itself
340 >     * suffice though: When a node is locked, any update must first
341 >     * validate that it is still the first node after locking it, and
342 >     * retry if not. Because new nodes are always appended to lists,
343 >     * once a node is first in a bin, it remains first until deleted
344 >     * or the bin becomes invalidated (upon resizing).  However,
345 >     * operations that only conditionally update may inspect nodes
346 >     * until the point of update. This is a converse of sorts to the
347 >     * lazy locking technique described by Herlihy & Shavit.
348 >     *
349 >     * The main disadvantage of per-bin locks is that other update
350 >     * operations on other nodes in a bin list protected by the same
351 >     * lock can stall, for example when user equals() or mapping
352 >     * functions take a long time.  However, statistically, under
353 >     * random hash codes, this is not a common problem.  Ideally, the
354 >     * frequency of nodes in bins follows a Poisson distribution
355 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
356 >     * parameter of about 0.5 on average, given the resizing threshold
357 >     * of 0.75, although with a large variance because of resizing
358 >     * granularity. Ignoring variance, the expected occurrences of
359 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
360 >     * first values are:
361 >     *
362 >     * 0:    0.60653066
363 >     * 1:    0.30326533
364 >     * 2:    0.07581633
365 >     * 3:    0.01263606
366 >     * 4:    0.00157952
367 >     * 5:    0.00015795
368 >     * 6:    0.00001316
369 >     * 7:    0.00000094
370 >     * 8:    0.00000006
371 >     * more: less than 1 in ten million
372 >     *
373 >     * Lock contention probability for two threads accessing distinct
374 >     * elements is roughly 1 / (8 * #elements) under random hashes.
375 >     *
376 >     * Actual hash code distributions encountered in practice
377 >     * sometimes deviate significantly from uniform randomness.  This
378 >     * includes the case when N > (1<<30), so some keys MUST collide.
379 >     * Similarly for dumb or hostile usages in which multiple keys are
380 >     * designed to have identical hash codes. Also, although we guard
381 >     * against the worst effects of this (see method spread), sets of
382 >     * hashes may differ only in bits that do not impact their bin
383 >     * index for a given power-of-two mask.  So we use a secondary
384 >     * strategy that applies when the number of nodes in a bin exceeds
385 >     * a threshold, and at least one of the keys implements
386 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
387 >     * (a specialized form of red-black trees), bounding search time
388 >     * to O(log N).  Each search step in a TreeBin is around twice as
389 >     * slow as in a regular list, but given that N cannot exceed
390 >     * (1<<64) (before running out of addresses) this bounds search
391 >     * steps, lock hold times, etc, to reasonable constants (roughly
392 >     * 100 nodes inspected per operation worst case) so long as keys
393 >     * are Comparable (which is very common -- String, Long, etc).
394 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
395 >     * traversal pointers as regular nodes, so can be traversed in
396 >     * iterators in the same way.
397 >     *
398 >     * The table is resized when occupancy exceeds a percentage
399 >     * threshold (nominally, 0.75, but see below).  Any thread
400 >     * noticing an overfull bin may assist in resizing after the
401 >     * initiating thread allocates and sets up the replacement
402 >     * array. However, rather than stalling, these other threads may
403 >     * proceed with insertions etc.  The use of TreeBins shields us
404 >     * from the worst case effects of overfilling while resizes are in
405 >     * progress.  Resizing proceeds by transferring bins, one by one,
406 >     * from the table to the next table. To enable concurrency, the
407 >     * next table must be (incrementally) prefilled with place-holders
408 >     * serving as reverse forwarders to the old table.  Because we are
409 >     * using power-of-two expansion, the elements from each bin must
410 >     * either stay at same index, or move with a power of two
411 >     * offset. We eliminate unnecessary node creation by catching
412 >     * cases where old nodes can be reused because their next fields
413 >     * won't change.  On average, only about one-sixth of them need
414 >     * cloning when a table doubles. The nodes they replace will be
415 >     * garbage collectable as soon as they are no longer referenced by
416 >     * any reader thread that may be in the midst of concurrently
417 >     * traversing table.  Upon transfer, the old table bin contains
418 >     * only a special forwarding node (with hash field "MOVED") that
419 >     * contains the next table as its key. On encountering a
420 >     * forwarding node, access and update operations restart, using
421 >     * the new table.
422 >     *
423 >     * Each bin transfer requires its bin lock, which can stall
424 >     * waiting for locks while resizing. However, because other
425 >     * threads can join in and help resize rather than contend for
426 >     * locks, average aggregate waits become shorter as resizing
427 >     * progresses.  The transfer operation must also ensure that all
428 >     * accessible bins in both the old and new table are usable by any
429 >     * traversal.  This is arranged by proceeding from the last bin
430 >     * (table.length - 1) up towards the first.  Upon seeing a
431 >     * forwarding node, traversals (see class Traverser) arrange to
432 >     * move to the new table without revisiting nodes.  However, to
433 >     * ensure that no intervening nodes are skipped, bin splitting can
434 >     * only begin after the associated reverse-forwarders are in
435 >     * place.
436 >     *
437 >     * The traversal scheme also applies to partial traversals of
438 >     * ranges of bins (via an alternate Traverser constructor)
439 >     * to support partitioned aggregate operations.  Also, read-only
440 >     * operations give up if ever forwarded to a null table, which
441 >     * provides support for shutdown-style clearing, which is also not
442 >     * currently implemented.
443 >     *
444 >     * Lazy table initialization minimizes footprint until first use,
445 >     * and also avoids resizings when the first operation is from a
446 >     * putAll, constructor with map argument, or deserialization.
447 >     * These cases attempt to override the initial capacity settings,
448 >     * but harmlessly fail to take effect in cases of races.
449 >     *
450 >     * The element count is maintained using a specialization of
451 >     * LongAdder. We need to incorporate a specialization rather than
452 >     * just use a LongAdder in order to access implicit
453 >     * contention-sensing that leads to creation of multiple
454 >     * CounterCells.  The counter mechanics avoid contention on
455 >     * updates but can encounter cache thrashing if read too
456 >     * frequently during concurrent access. To avoid reading so often,
457 >     * resizing under contention is attempted only upon adding to a
458 >     * bin already holding two or more nodes. Under uniform hash
459 >     * distributions, the probability of this occurring at threshold
460 >     * is around 13%, meaning that only about 1 in 8 puts check
461 >     * threshold (and after resizing, many fewer do so). The bulk
462 >     * putAll operation further reduces contention by only committing
463 >     * count updates upon these size checks.
464 >     *
465 >     * Maintaining API and serialization compatibility with previous
466 >     * versions of this class introduces several oddities. Mainly: We
467 >     * leave untouched but unused constructor arguments refering to
468 >     * concurrencyLevel. We accept a loadFactor constructor argument,
469 >     * but apply it only to initial table capacity (which is the only
470 >     * time that we can guarantee to honor it.) We also declare an
471 >     * unused "Segment" class that is instantiated in minimal form
472 >     * only when serializing.
473       */
474  
475      /* ---------------- Constants -------------- */
476  
477      /**
478 <     * The default initial capacity for this table,
479 <     * used when not otherwise specified in a constructor.
478 >     * The largest possible table capacity.  This value must be
479 >     * exactly 1<<30 to stay within Java array allocation and indexing
480 >     * bounds for power of two table sizes, and is further required
481 >     * because the top two bits of 32bit hash fields are used for
482 >     * control purposes.
483 >     */
484 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
485 >
486 >    /**
487 >     * The default initial table capacity.  Must be a power of 2
488 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
489 >     */
490 >    private static final int DEFAULT_CAPACITY = 16;
491 >
492 >    /**
493 >     * The largest possible (non-power of two) array size.
494 >     * Needed by toArray and related methods.
495 >     */
496 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
497 >
498 >    /**
499 >     * The default concurrency level for this table. Unused but
500 >     * defined for compatibility with previous versions of this class.
501       */
502 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
502 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
503  
504      /**
505 <     * The default load factor for this table, used when not
506 <     * otherwise specified in a constructor.
505 >     * The load factor for this table. Overrides of this value in
506 >     * constructors affect only the initial table capacity.  The
507 >     * actual floating point value isn't normally used -- it is
508 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
509 >     * the associated resizing threshold.
510       */
511 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
511 >    private static final float LOAD_FACTOR = 0.75f;
512  
513      /**
514 <     * The default concurrency level for this table, used when not
515 <     * otherwise specified in a constructor.
514 >     * The bin count threshold for using a tree rather than list for a
515 >     * bin.  The value reflects the approximate break-even point for
516 >     * using tree-based operations.
517       */
518 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
518 >    private static final int TREE_THRESHOLD = 8;
519  
520      /**
521 <     * The maximum capacity, used if a higher value is implicitly
522 <     * specified by either of the constructors with arguments.  MUST
523 <     * be a power of two <= 1<<30 to ensure that entries are indexable
524 <     * using ints.
521 >     * Minimum number of rebinnings per transfer step. Ranges are
522 >     * subdivided to allow multiple resizer threads.  This value
523 >     * serves as a lower bound to avoid resizers encountering
524 >     * excessive memory contention.  The value should be at least
525 >     * DEFAULT_CAPACITY.
526       */
527 <    static final int MAXIMUM_CAPACITY = 1 << 30;
527 >    private static final int MIN_TRANSFER_STRIDE = 16;
528 >
529 >    /*
530 >     * Encodings for Node hash fields. See above for explanation.
531 >     */
532 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
533 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
534 >
535 >    /** Number of CPUS, to place bounds on some sizings */
536 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
537 >
538 >    /* ---------------- Counters -------------- */
539 >
540 >    // Adapted from LongAdder and Striped64.
541 >    // See their internal docs for explanation.
542 >
543 >    // A padded cell for distributing counts
544 >    static final class CounterCell {
545 >        volatile long p0, p1, p2, p3, p4, p5, p6;
546 >        volatile long value;
547 >        volatile long q0, q1, q2, q3, q4, q5, q6;
548 >        CounterCell(long x) { value = x; }
549 >    }
550  
551      /**
552 <     * The maximum number of segments to allow; used to bound
553 <     * constructor arguments.
552 >     * Holder for the thread-local hash code determining which
553 >     * CounterCell to use. The code is initialized via the
554 >     * counterHashCodeGenerator, but may be moved upon collisions.
555       */
556 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
556 >    static final class CounterHashCode {
557 >        int code;
558 >    }
559  
560      /**
561 <     * Number of unsynchronized retries in size and containsValue
118 <     * methods before resorting to locking. This is used to avoid
119 <     * unbounded retries if tables undergo continuous modification
120 <     * which would make it impossible to obtain an accurate result.
561 >     * Generates initial value for per-thread CounterHashCodes
562       */
563 <    static final int RETRIES_BEFORE_LOCK = 2;
563 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
564 >
565 >    /**
566 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
567 >     * for explanation.
568 >     */
569 >    static final int SEED_INCREMENT = 0x61c88647;
570 >
571 >    /**
572 >     * Per-thread counter hash codes. Shared across all instances
573 >     */
574 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
575 >        new ThreadLocal<CounterHashCode>();
576  
577      /* ---------------- Fields -------------- */
578  
579      /**
580 <     * Mask value for indexing into segments. The upper bits of a
581 <     * key's hash code are used to choose the segment.
580 >     * The array of bins. Lazily initialized upon first insertion.
581 >     * Size is always a power of two. Accessed directly by iterators.
582       */
583 <    final int segmentMask;
583 >    transient volatile Node[] table;
584  
585      /**
586 <     * Shift value for indexing within segments.
586 >     * The next table to use; non-null only while resizing.
587       */
588 <    final int segmentShift;
588 >    private transient volatile Node[] nextTable;
589  
590      /**
591 <     * The segments, each of which is a specialized hash table
591 >     * Base counter value, used mainly when there is no contention,
592 >     * but also as a fallback during table initialization
593 >     * races. Updated via CAS.
594       */
595 <    final Segment<K,V>[] segments;
595 >    private transient volatile long baseCount;
596  
597 <    transient Set<K> keySet;
598 <    transient Set<Map.Entry<K,V>> entrySet;
599 <    transient Collection<V> values;
597 >    /**
598 >     * Table initialization and resizing control.  When negative, the
599 >     * table is being initialized or resized: -1 for initialization,
600 >     * else -(1 + the number of active resizing threads).  Otherwise,
601 >     * when table is null, holds the initial table size to use upon
602 >     * creation, or 0 for default. After initialization, holds the
603 >     * next element count value upon which to resize the table.
604 >     */
605 >    private transient volatile int sizeCtl;
606  
607 <    /* ---------------- Small Utilities -------------- */
607 >    /**
608 >     * The next table index (plus one) to split while resizing.
609 >     */
610 >    private transient volatile int transferIndex;
611  
612      /**
613 <     * Returns a hash code for non-null Object x.
150 <     * Uses the same hash code spreader as most other java.util hash tables.
151 <     * @param x the object serving as a key
152 <     * @return the hash code
613 >     * The least available table index to split while resizing.
614       */
615 <    static int hash(Object x) {
155 <        int h = x.hashCode();
156 <        h += ~(h << 9);
157 <        h ^=  (h >>> 14);
158 <        h +=  (h << 4);
159 <        h ^=  (h >>> 10);
160 <        return h;
161 <    }
615 >    private transient volatile int transferOrigin;
616  
617      /**
618 <     * Returns the segment that should be used for key with given hash
165 <     * @param hash the hash code for the key
166 <     * @return the segment
618 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
619       */
620 <    final Segment<K,V> segmentFor(int hash) {
621 <        return segments[(hash >>> segmentShift) & segmentMask];
620 >    private transient volatile int counterBusy;
621 >
622 >    /**
623 >     * Table of counter cells. When non-null, size is a power of 2.
624 >     */
625 >    private transient volatile CounterCell[] counterCells;
626 >
627 >    // views
628 >    private transient KeySetView<K,V> keySet;
629 >    private transient ValuesView<K,V> values;
630 >    private transient EntrySetView<K,V> entrySet;
631 >
632 >    /** For serialization compatibility. Null unless serialized; see below */
633 >    private Segment<K,V>[] segments;
634 >
635 >    /* ---------------- Table element access -------------- */
636 >
637 >    /*
638 >     * Volatile access methods are used for table elements as well as
639 >     * elements of in-progress next table while resizing.  Uses are
640 >     * null checked by callers, and implicitly bounds-checked, relying
641 >     * on the invariants that tab arrays have non-zero size, and all
642 >     * indices are masked with (tab.length - 1) which is never
643 >     * negative and always less than length. Note that, to be correct
644 >     * wrt arbitrary concurrency errors by users, bounds checks must
645 >     * operate on local variables, which accounts for some odd-looking
646 >     * inline assignments below.
647 >     */
648 >
649 >    static final Node tabAt(Node[] tab, int i) { // used by Traverser
650 >        return (Node)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
651      }
652  
653 <    /* ---------------- Inner Classes -------------- */
653 >    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
654 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655 >    }
656 >
657 >    private static final void setTabAt(Node[] tab, int i, Node v) {
658 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
659 >    }
660 >
661 >    /* ---------------- Nodes -------------- */
662  
663      /**
664 <     * ConcurrentHashMap list entry. Note that this is never exported
665 <     * out as a user-visible Map.Entry.
666 <     *
667 <     * Because the value field is volatile, not final, it is legal wrt
668 <     * the Java Memory Model for an unsynchronized reader to see null
669 <     * instead of initial value when read via a data race.  Although a
670 <     * reordering leading to this is not likely to ever actually
671 <     * occur, the Segment.readValueUnderLock method is used as a
183 <     * backup in case a null (pre-initialized) value is ever seen in
184 <     * an unsynchronized access method.
664 >     * Key-value entry. Note that this is never exported out as a
665 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
666 >     * field of MOVED are special, and do not contain user keys or
667 >     * values.  Otherwise, keys are never null, and null val fields
668 >     * indicate that a node is in the process of being deleted or
669 >     * created. For purposes of read-only access, a key may be read
670 >     * before a val, but can only be used after checking val to be
671 >     * non-null.
672       */
673 <    static final class HashEntry<K,V> {
187 <        final K key;
673 >    static class Node {
674          final int hash;
675 <        volatile V value;
676 <        final HashEntry<K,V> next;
675 >        final Object key;
676 >        volatile Object val;
677 >        volatile Node next;
678  
679 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 <            this.key = key;
679 >        Node(int hash, Object key, Object val, Node next) {
680              this.hash = hash;
681 +            this.key = key;
682 +            this.val = val;
683              this.next = next;
196            this.value = value;
684          }
198
199        @SuppressWarnings("unchecked")
200        static final <K,V> HashEntry<K,V>[] newArray(int i) {
201            return new HashEntry[i];
202        }
685      }
686  
687 +    /* ---------------- TreeBins -------------- */
688 +
689      /**
690 <     * Segments are specialized versions of hash tables.  This
691 <     * subclasses from ReentrantLock opportunistically, just to
692 <     * simplify some locking and avoid separate construction.
693 <     */
694 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
695 <        /*
696 <         * Segments maintain a table of entry lists that are ALWAYS
697 <         * kept in a consistent state, so can be read without locking.
698 <         * Next fields of nodes are immutable (final).  All list
699 <         * additions are performed at the front of each bin. This
700 <         * makes it easy to check changes, and also fast to traverse.
701 <         * When nodes would otherwise be changed, new nodes are
702 <         * created to replace them. This works well for hash tables
703 <         * since the bin lists tend to be short. (The average length
220 <         * is less than two for the default load factor threshold.)
221 <         *
222 <         * Read operations can thus proceed without locking, but rely
223 <         * on selected uses of volatiles to ensure that completed
224 <         * write operations performed by other threads are
225 <         * noticed. For most purposes, the "count" field, tracking the
226 <         * number of elements, serves as that volatile variable
227 <         * ensuring visibility.  This is convenient because this field
228 <         * needs to be read in many read operations anyway:
229 <         *
230 <         *   - All (unsynchronized) read operations must first read the
231 <         *     "count" field, and should not look at table entries if
232 <         *     it is 0.
233 <         *
234 <         *   - All (synchronized) write operations should write to
235 <         *     the "count" field after structurally changing any bin.
236 <         *     The operations must not take any action that could even
237 <         *     momentarily cause a concurrent read operation to see
238 <         *     inconsistent data. This is made easier by the nature of
239 <         *     the read operations in Map. For example, no operation
240 <         *     can reveal that the table has grown but the threshold
241 <         *     has not yet been updated, so there are no atomicity
242 <         *     requirements for this with respect to reads.
243 <         *
244 <         * As a guide, all critical volatile reads and writes to the
245 <         * count field are marked in code comments.
246 <         */
690 >     * Nodes for use in TreeBins
691 >     */
692 >    static final class TreeNode extends Node {
693 >        TreeNode parent;  // red-black tree links
694 >        TreeNode left;
695 >        TreeNode right;
696 >        TreeNode prev;    // needed to unlink next upon deletion
697 >        boolean red;
698 >
699 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
700 >            super(hash, key, val, next);
701 >            this.parent = parent;
702 >        }
703 >    }
704  
705 +    /**
706 +     * A specialized form of red-black tree for use in bins
707 +     * whose size exceeds a threshold.
708 +     *
709 +     * TreeBins use a special form of comparison for search and
710 +     * related operations (which is the main reason we cannot use
711 +     * existing collections such as TreeMaps). TreeBins contain
712 +     * Comparable elements, but may contain others, as well as
713 +     * elements that are Comparable but not necessarily Comparable<T>
714 +     * for the same T, so we cannot invoke compareTo among them. To
715 +     * handle this, the tree is ordered primarily by hash value, then
716 +     * by getClass().getName() order, and then by Comparator order
717 +     * among elements of the same class.  On lookup at a node, if
718 +     * elements are not comparable or compare as 0, both left and
719 +     * right children may need to be searched in the case of tied hash
720 +     * values. (This corresponds to the full list search that would be
721 +     * necessary if all elements were non-Comparable and had tied
722 +     * hashes.)  The red-black balancing code is updated from
723 +     * pre-jdk-collections
724 +     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
725 +     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
726 +     * Algorithms" (CLR).
727 +     *
728 +     * TreeBins also maintain a separate locking discipline than
729 +     * regular bins. Because they are forwarded via special MOVED
730 +     * nodes at bin heads (which can never change once established),
731 +     * we cannot use those nodes as locks. Instead, TreeBin
732 +     * extends AbstractQueuedSynchronizer to support a simple form of
733 +     * read-write lock. For update operations and table validation,
734 +     * the exclusive form of lock behaves in the same way as bin-head
735 +     * locks. However, lookups use shared read-lock mechanics to allow
736 +     * multiple readers in the absence of writers.  Additionally,
737 +     * these lookups do not ever block: While the lock is not
738 +     * available, they proceed along the slow traversal path (via
739 +     * next-pointers) until the lock becomes available or the list is
740 +     * exhausted, whichever comes first. (These cases are not fast,
741 +     * but maximize aggregate expected throughput.)  The AQS mechanics
742 +     * for doing this are straightforward.  The lock state is held as
743 +     * AQS getState().  Read counts are negative; the write count (1)
744 +     * is positive.  There are no signalling preferences among readers
745 +     * and writers. Since we don't need to export full Lock API, we
746 +     * just override the minimal AQS methods and use them directly.
747 +     */
748 +    static final class TreeBin extends AbstractQueuedSynchronizer {
749          private static final long serialVersionUID = 2249069246763182397L;
750 +        transient TreeNode root;  // root of tree
751 +        transient TreeNode first; // head of next-pointer list
752  
753 <        /**
754 <         * The number of elements in this segment's region.
755 <         */
756 <        transient volatile int count;
753 >        /* AQS overrides */
754 >        public final boolean isHeldExclusively() { return getState() > 0; }
755 >        public final boolean tryAcquire(int ignore) {
756 >            if (compareAndSetState(0, 1)) {
757 >                setExclusiveOwnerThread(Thread.currentThread());
758 >                return true;
759 >            }
760 >            return false;
761 >        }
762 >        public final boolean tryRelease(int ignore) {
763 >            setExclusiveOwnerThread(null);
764 >            setState(0);
765 >            return true;
766 >        }
767 >        public final int tryAcquireShared(int ignore) {
768 >            for (int c;;) {
769 >                if ((c = getState()) > 0)
770 >                    return -1;
771 >                if (compareAndSetState(c, c -1))
772 >                    return 1;
773 >            }
774 >        }
775 >        public final boolean tryReleaseShared(int ignore) {
776 >            int c;
777 >            do {} while (!compareAndSetState(c = getState(), c + 1));
778 >            return c == -1;
779 >        }
780 >
781 >        /** From CLR */
782 >        private void rotateLeft(TreeNode p) {
783 >            if (p != null) {
784 >                TreeNode r = p.right, pp, rl;
785 >                if ((rl = p.right = r.left) != null)
786 >                    rl.parent = p;
787 >                if ((pp = r.parent = p.parent) == null)
788 >                    root = r;
789 >                else if (pp.left == p)
790 >                    pp.left = r;
791 >                else
792 >                    pp.right = r;
793 >                r.left = p;
794 >                p.parent = r;
795 >            }
796 >        }
797  
798 <        /**
799 <         * Number of updates that alter the size of the table. This is
800 <         * used during bulk-read methods to make sure they see a
801 <         * consistent snapshot: If modCounts change during a traversal
802 <         * of segments computing size or checking containsValue, then
803 <         * we might have an inconsistent view of state so (usually)
804 <         * must retry.
805 <         */
806 <        transient int modCount;
798 >        /** From CLR */
799 >        private void rotateRight(TreeNode p) {
800 >            if (p != null) {
801 >                TreeNode l = p.left, pp, lr;
802 >                if ((lr = p.left = l.right) != null)
803 >                    lr.parent = p;
804 >                if ((pp = l.parent = p.parent) == null)
805 >                    root = l;
806 >                else if (pp.right == p)
807 >                    pp.right = l;
808 >                else
809 >                    pp.left = l;
810 >                l.right = p;
811 >                p.parent = l;
812 >            }
813 >        }
814  
815          /**
816 <         * The table is rehashed when its size exceeds this threshold.
817 <         * (The value of this field is always <tt>(int)(capacity *
268 <         * loadFactor)</tt>.)
816 >         * Returns the TreeNode (or null if not found) for the given key
817 >         * starting at given root.
818           */
819 <        transient int threshold;
819 >        @SuppressWarnings("unchecked") final TreeNode getTreeNode
820 >            (int h, Object k, TreeNode p) {
821 >            Class<?> c = k.getClass();
822 >            while (p != null) {
823 >                int dir, ph;  Object pk; Class<?> pc;
824 >                if ((ph = p.hash) == h) {
825 >                    if ((pk = p.key) == k || k.equals(pk))
826 >                        return p;
827 >                    if (c != (pc = pk.getClass()) ||
828 >                        !(k instanceof Comparable) ||
829 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
830 >                        if ((dir = (c == pc) ? 0 :
831 >                             c.getName().compareTo(pc.getName())) == 0) {
832 >                            TreeNode r = null, pl, pr; // check both sides
833 >                            if ((pr = p.right) != null && h >= pr.hash &&
834 >                                (r = getTreeNode(h, k, pr)) != null)
835 >                                return r;
836 >                            else if ((pl = p.left) != null && h <= pl.hash)
837 >                                dir = -1;
838 >                            else // nothing there
839 >                                return null;
840 >                        }
841 >                    }
842 >                }
843 >                else
844 >                    dir = (h < ph) ? -1 : 1;
845 >                p = (dir > 0) ? p.right : p.left;
846 >            }
847 >            return null;
848 >        }
849  
850          /**
851 <         * The per-segment table.
851 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
852 >         * read-lock to call getTreeNode, but during failure to get
853 >         * lock, searches along next links.
854           */
855 <        transient volatile HashEntry<K,V>[] table;
855 >        final Object getValue(int h, Object k) {
856 >            Node r = null;
857 >            int c = getState(); // Must read lock state first
858 >            for (Node e = first; e != null; e = e.next) {
859 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
860 >                    try {
861 >                        r = getTreeNode(h, k, root);
862 >                    } finally {
863 >                        releaseShared(0);
864 >                    }
865 >                    break;
866 >                }
867 >                else if (e.hash == h && k.equals(e.key)) {
868 >                    r = e;
869 >                    break;
870 >                }
871 >                else
872 >                    c = getState();
873 >            }
874 >            return r == null ? null : r.val;
875 >        }
876  
877          /**
878 <         * The load factor for the hash table.  Even though this value
879 <         * is same for all segments, it is replicated to avoid needing
280 <         * links to outer object.
281 <         * @serial
878 >         * Finds or adds a node.
879 >         * @return null if added
880           */
881 <        final float loadFactor;
882 <
883 <        Segment(int initialCapacity, float lf) {
884 <            loadFactor = lf;
885 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
886 <        }
881 >        @SuppressWarnings("unchecked") final TreeNode putTreeNode
882 >            (int h, Object k, Object v) {
883 >            Class<?> c = k.getClass();
884 >            TreeNode pp = root, p = null;
885 >            int dir = 0;
886 >            while (pp != null) { // find existing node or leaf to insert at
887 >                int ph;  Object pk; Class<?> pc;
888 >                p = pp;
889 >                if ((ph = p.hash) == h) {
890 >                    if ((pk = p.key) == k || k.equals(pk))
891 >                        return p;
892 >                    if (c != (pc = pk.getClass()) ||
893 >                        !(k instanceof Comparable) ||
894 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
895 >                        TreeNode s = null, r = null, pr;
896 >                        if ((dir = (c == pc) ? 0 :
897 >                             c.getName().compareTo(pc.getName())) == 0) {
898 >                            if ((pr = p.right) != null && h >= pr.hash &&
899 >                                (r = getTreeNode(h, k, pr)) != null)
900 >                                return r;
901 >                            else // continue left
902 >                                dir = -1;
903 >                        }
904 >                        else if ((pr = p.right) != null && h >= pr.hash)
905 >                            s = pr;
906 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
907 >                            return r;
908 >                    }
909 >                }
910 >                else
911 >                    dir = (h < ph) ? -1 : 1;
912 >                pp = (dir > 0) ? p.right : p.left;
913 >            }
914  
915 <        @SuppressWarnings("unchecked")
916 <        static final <K,V> Segment<K,V>[] newArray(int i) {
917 <            return new Segment[i];
915 >            TreeNode f = first;
916 >            TreeNode x = first = new TreeNode(h, k, v, f, p);
917 >            if (p == null)
918 >                root = x;
919 >            else { // attach and rebalance; adapted from CLR
920 >                TreeNode xp, xpp;
921 >                if (f != null)
922 >                    f.prev = x;
923 >                if (dir <= 0)
924 >                    p.left = x;
925 >                else
926 >                    p.right = x;
927 >                x.red = true;
928 >                while (x != null && (xp = x.parent) != null && xp.red &&
929 >                       (xpp = xp.parent) != null) {
930 >                    TreeNode xppl = xpp.left;
931 >                    if (xp == xppl) {
932 >                        TreeNode y = xpp.right;
933 >                        if (y != null && y.red) {
934 >                            y.red = false;
935 >                            xp.red = false;
936 >                            xpp.red = true;
937 >                            x = xpp;
938 >                        }
939 >                        else {
940 >                            if (x == xp.right) {
941 >                                rotateLeft(x = xp);
942 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
943 >                            }
944 >                            if (xp != null) {
945 >                                xp.red = false;
946 >                                if (xpp != null) {
947 >                                    xpp.red = true;
948 >                                    rotateRight(xpp);
949 >                                }
950 >                            }
951 >                        }
952 >                    }
953 >                    else {
954 >                        TreeNode y = xppl;
955 >                        if (y != null && y.red) {
956 >                            y.red = false;
957 >                            xp.red = false;
958 >                            xpp.red = true;
959 >                            x = xpp;
960 >                        }
961 >                        else {
962 >                            if (x == xp.left) {
963 >                                rotateRight(x = xp);
964 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
965 >                            }
966 >                            if (xp != null) {
967 >                                xp.red = false;
968 >                                if (xpp != null) {
969 >                                    xpp.red = true;
970 >                                    rotateLeft(xpp);
971 >                                }
972 >                            }
973 >                        }
974 >                    }
975 >                }
976 >                TreeNode r = root;
977 >                if (r != null && r.red)
978 >                    r.red = false;
979 >            }
980 >            return null;
981          }
982  
983          /**
984 <         * Sets table to new HashEntry array.
985 <         * Call only while holding lock or in constructor.
984 >         * Removes the given node, that must be present before this
985 >         * call.  This is messier than typical red-black deletion code
986 >         * because we cannot swap the contents of an interior node
987 >         * with a leaf successor that is pinned by "next" pointers
988 >         * that are accessible independently of lock. So instead we
989 >         * swap the tree linkages.
990           */
991 <        void setTable(HashEntry<K,V>[] newTable) {
992 <            threshold = (int)(newTable.length * loadFactor);
993 <            table = newTable;
991 >        final void deleteTreeNode(TreeNode p) {
992 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
993 >            TreeNode pred = p.prev;
994 >            if (pred == null)
995 >                first = next;
996 >            else
997 >                pred.next = next;
998 >            if (next != null)
999 >                next.prev = pred;
1000 >            TreeNode replacement;
1001 >            TreeNode pl = p.left;
1002 >            TreeNode pr = p.right;
1003 >            if (pl != null && pr != null) {
1004 >                TreeNode s = pr, sl;
1005 >                while ((sl = s.left) != null) // find successor
1006 >                    s = sl;
1007 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1008 >                TreeNode sr = s.right;
1009 >                TreeNode pp = p.parent;
1010 >                if (s == pr) { // p was s's direct parent
1011 >                    p.parent = s;
1012 >                    s.right = p;
1013 >                }
1014 >                else {
1015 >                    TreeNode sp = s.parent;
1016 >                    if ((p.parent = sp) != null) {
1017 >                        if (s == sp.left)
1018 >                            sp.left = p;
1019 >                        else
1020 >                            sp.right = p;
1021 >                    }
1022 >                    if ((s.right = pr) != null)
1023 >                        pr.parent = s;
1024 >                }
1025 >                p.left = null;
1026 >                if ((p.right = sr) != null)
1027 >                    sr.parent = p;
1028 >                if ((s.left = pl) != null)
1029 >                    pl.parent = s;
1030 >                if ((s.parent = pp) == null)
1031 >                    root = s;
1032 >                else if (p == pp.left)
1033 >                    pp.left = s;
1034 >                else
1035 >                    pp.right = s;
1036 >                replacement = sr;
1037 >            }
1038 >            else
1039 >                replacement = (pl != null) ? pl : pr;
1040 >            TreeNode pp = p.parent;
1041 >            if (replacement == null) {
1042 >                if (pp == null) {
1043 >                    root = null;
1044 >                    return;
1045 >                }
1046 >                replacement = p;
1047 >            }
1048 >            else {
1049 >                replacement.parent = pp;
1050 >                if (pp == null)
1051 >                    root = replacement;
1052 >                else if (p == pp.left)
1053 >                    pp.left = replacement;
1054 >                else
1055 >                    pp.right = replacement;
1056 >                p.left = p.right = p.parent = null;
1057 >            }
1058 >            if (!p.red) { // rebalance, from CLR
1059 >                TreeNode x = replacement;
1060 >                while (x != null) {
1061 >                    TreeNode xp, xpl;
1062 >                    if (x.red || (xp = x.parent) == null) {
1063 >                        x.red = false;
1064 >                        break;
1065 >                    }
1066 >                    if (x == (xpl = xp.left)) {
1067 >                        TreeNode sib = xp.right;
1068 >                        if (sib != null && sib.red) {
1069 >                            sib.red = false;
1070 >                            xp.red = true;
1071 >                            rotateLeft(xp);
1072 >                            sib = (xp = x.parent) == null ? null : xp.right;
1073 >                        }
1074 >                        if (sib == null)
1075 >                            x = xp;
1076 >                        else {
1077 >                            TreeNode sl = sib.left, sr = sib.right;
1078 >                            if ((sr == null || !sr.red) &&
1079 >                                (sl == null || !sl.red)) {
1080 >                                sib.red = true;
1081 >                                x = xp;
1082 >                            }
1083 >                            else {
1084 >                                if (sr == null || !sr.red) {
1085 >                                    if (sl != null)
1086 >                                        sl.red = false;
1087 >                                    sib.red = true;
1088 >                                    rotateRight(sib);
1089 >                                    sib = (xp = x.parent) == null ?
1090 >                                        null : xp.right;
1091 >                                }
1092 >                                if (sib != null) {
1093 >                                    sib.red = (xp == null) ? false : xp.red;
1094 >                                    if ((sr = sib.right) != null)
1095 >                                        sr.red = false;
1096 >                                }
1097 >                                if (xp != null) {
1098 >                                    xp.red = false;
1099 >                                    rotateLeft(xp);
1100 >                                }
1101 >                                x = root;
1102 >                            }
1103 >                        }
1104 >                    }
1105 >                    else { // symmetric
1106 >                        TreeNode sib = xpl;
1107 >                        if (sib != null && sib.red) {
1108 >                            sib.red = false;
1109 >                            xp.red = true;
1110 >                            rotateRight(xp);
1111 >                            sib = (xp = x.parent) == null ? null : xp.left;
1112 >                        }
1113 >                        if (sib == null)
1114 >                            x = xp;
1115 >                        else {
1116 >                            TreeNode sl = sib.left, sr = sib.right;
1117 >                            if ((sl == null || !sl.red) &&
1118 >                                (sr == null || !sr.red)) {
1119 >                                sib.red = true;
1120 >                                x = xp;
1121 >                            }
1122 >                            else {
1123 >                                if (sl == null || !sl.red) {
1124 >                                    if (sr != null)
1125 >                                        sr.red = false;
1126 >                                    sib.red = true;
1127 >                                    rotateLeft(sib);
1128 >                                    sib = (xp = x.parent) == null ?
1129 >                                        null : xp.left;
1130 >                                }
1131 >                                if (sib != null) {
1132 >                                    sib.red = (xp == null) ? false : xp.red;
1133 >                                    if ((sl = sib.left) != null)
1134 >                                        sl.red = false;
1135 >                                }
1136 >                                if (xp != null) {
1137 >                                    xp.red = false;
1138 >                                    rotateRight(xp);
1139 >                                }
1140 >                                x = root;
1141 >                            }
1142 >                        }
1143 >                    }
1144 >                }
1145 >            }
1146 >            if (p == replacement && (pp = p.parent) != null) {
1147 >                if (p == pp.left) // detach pointers
1148 >                    pp.left = null;
1149 >                else if (p == pp.right)
1150 >                    pp.right = null;
1151 >                p.parent = null;
1152 >            }
1153          }
1154 +    }
1155  
1156 <        /**
1157 <         * Returns properly casted first entry of bin for given hash.
1158 <         */
1159 <        HashEntry<K,V> getFirst(int hash) {
1160 <            HashEntry<K,V>[] tab = table;
1161 <            return tab[hash & (tab.length - 1)];
1156 >    /* ---------------- Collision reduction methods -------------- */
1157 >
1158 >    /**
1159 >     * Spreads higher bits to lower, and also forces top bit to 0.
1160 >     * Because the table uses power-of-two masking, sets of hashes
1161 >     * that vary only in bits above the current mask will always
1162 >     * collide. (Among known examples are sets of Float keys holding
1163 >     * consecutive whole numbers in small tables.)  To counter this,
1164 >     * we apply a transform that spreads the impact of higher bits
1165 >     * downward. There is a tradeoff between speed, utility, and
1166 >     * quality of bit-spreading. Because many common sets of hashes
1167 >     * are already reasonably distributed across bits (so don't benefit
1168 >     * from spreading), and because we use trees to handle large sets
1169 >     * of collisions in bins, we don't need excessively high quality.
1170 >     */
1171 >    private static final int spread(int h) {
1172 >        h ^= (h >>> 18) ^ (h >>> 12);
1173 >        return (h ^ (h >>> 10)) & HASH_BITS;
1174 >    }
1175 >
1176 >    /**
1177 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1178 >     * only when locked.
1179 >     */
1180 >    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1181 >        if (key instanceof Comparable) {
1182 >            TreeBin t = new TreeBin();
1183 >            for (Node e = tabAt(tab, index); e != null; e = e.next)
1184 >                t.putTreeNode(e.hash, e.key, e.val);
1185 >            setTabAt(tab, index, new Node(MOVED, t, null, null));
1186          }
1187 +    }
1188  
1189 <        /**
1190 <         * Reads value field of an entry under lock. Called if value
1191 <         * field ever appears to be null. This is possible only if a
1192 <         * compiler happens to reorder a HashEntry initialization with
1193 <         * its table assignment, which is legal under memory model
1194 <         * but is not known to ever occur.
1195 <         */
1196 <        V readValueUnderLock(HashEntry<K,V> e) {
1197 <            lock();
1198 <            try {
1199 <                return e.value;
1200 <            } finally {
1201 <                unlock();
1189 >    /* ---------------- Internal access and update methods -------------- */
1190 >
1191 >    /** Implementation for get and containsKey */
1192 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1193 >        int h = spread(k.hashCode());
1194 >        retry: for (Node[] tab = table; tab != null;) {
1195 >            Node e; Object ek, ev; int eh;      // locals to read fields once
1196 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1197 >                if ((eh = e.hash) < 0) {
1198 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1199 >                        return (V)((TreeBin)ek).getValue(h, k);
1200 >                    else {                        // restart with new table
1201 >                        tab = (Node[])ek;
1202 >                        continue retry;
1203 >                    }
1204 >                }
1205 >                else if (eh == h && (ev = e.val) != null &&
1206 >                         ((ek = e.key) == k || k.equals(ek)))
1207 >                    return (V)ev;
1208              }
1209 +            break;
1210          }
1211 +        return null;
1212 +    }
1213  
1214 <        /* Specialized implementations of map methods */
1215 <
1216 <        V get(Object key, int hash) {
1217 <            if (count != 0) { // read-volatile
1218 <                HashEntry<K,V> e = getFirst(hash);
1219 <                while (e != null) {
1220 <                    if (e.hash == hash && key.equals(e.key)) {
1221 <                        V v = e.value;
1222 <                        if (v != null)
1223 <                            return v;
1224 <                        return readValueUnderLock(e); // recheck
1214 >    /**
1215 >     * Implementation for the four public remove/replace methods:
1216 >     * Replaces node value with v, conditional upon match of cv if
1217 >     * non-null.  If resulting value is null, delete.
1218 >     */
1219 >    @SuppressWarnings("unchecked") private final V internalReplace
1220 >        (Object k, V v, Object cv) {
1221 >        int h = spread(k.hashCode());
1222 >        Object oldVal = null;
1223 >        for (Node[] tab = table;;) {
1224 >            Node f; int i, fh; Object fk;
1225 >            if (tab == null ||
1226 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1227 >                break;
1228 >            else if ((fh = f.hash) < 0) {
1229 >                if ((fk = f.key) instanceof TreeBin) {
1230 >                    TreeBin t = (TreeBin)fk;
1231 >                    boolean validated = false;
1232 >                    boolean deleted = false;
1233 >                    t.acquire(0);
1234 >                    try {
1235 >                        if (tabAt(tab, i) == f) {
1236 >                            validated = true;
1237 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1238 >                            if (p != null) {
1239 >                                Object pv = p.val;
1240 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1241 >                                    oldVal = pv;
1242 >                                    if ((p.val = v) == null) {
1243 >                                        deleted = true;
1244 >                                        t.deleteTreeNode(p);
1245 >                                    }
1246 >                                }
1247 >                            }
1248 >                        }
1249 >                    } finally {
1250 >                        t.release(0);
1251 >                    }
1252 >                    if (validated) {
1253 >                        if (deleted)
1254 >                            addCount(-1L, -1);
1255 >                        break;
1256                      }
1257 <                    e = e.next;
1257 >                }
1258 >                else
1259 >                    tab = (Node[])fk;
1260 >            }
1261 >            else if (fh != h && f.next == null) // precheck
1262 >                break;                          // rules out possible existence
1263 >            else {
1264 >                boolean validated = false;
1265 >                boolean deleted = false;
1266 >                synchronized(f) {
1267 >                    if (tabAt(tab, i) == f) {
1268 >                        validated = true;
1269 >                        for (Node e = f, pred = null;;) {
1270 >                            Object ek, ev;
1271 >                            if (e.hash == h &&
1272 >                                ((ev = e.val) != null) &&
1273 >                                ((ek = e.key) == k || k.equals(ek))) {
1274 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1275 >                                    oldVal = ev;
1276 >                                    if ((e.val = v) == null) {
1277 >                                        deleted = true;
1278 >                                        Node en = e.next;
1279 >                                        if (pred != null)
1280 >                                            pred.next = en;
1281 >                                        else
1282 >                                            setTabAt(tab, i, en);
1283 >                                    }
1284 >                                }
1285 >                                break;
1286 >                            }
1287 >                            pred = e;
1288 >                            if ((e = e.next) == null)
1289 >                                break;
1290 >                        }
1291 >                    }
1292 >                }
1293 >                if (validated) {
1294 >                    if (deleted)
1295 >                        addCount(-1L, -1);
1296 >                    break;
1297                  }
1298              }
343            return null;
1299          }
1300 +        return (V)oldVal;
1301 +    }
1302  
1303 <        boolean containsKey(Object key, int hash) {
1304 <            if (count != 0) { // read-volatile
1305 <                HashEntry<K,V> e = getFirst(hash);
1306 <                while (e != null) {
1307 <                    if (e.hash == hash && key.equals(e.key))
1308 <                        return true;
1309 <                    e = e.next;
1303 >    /*
1304 >     * Internal versions of insertion methods
1305 >     * All have the same basic structure as the first (internalPut):
1306 >     *  1. If table uninitialized, create
1307 >     *  2. If bin empty, try to CAS new node
1308 >     *  3. If bin stale, use new table
1309 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1310 >     *  5. Lock and validate; if valid, scan and add or update
1311 >     *
1312 >     * The putAll method differs mainly in attempting to pre-allocate
1313 >     * enough table space, and also more lazily performs count updates
1314 >     * and checks.
1315 >     *
1316 >     * Most of the function-accepting methods can't be factored nicely
1317 >     * because they require different functional forms, so instead
1318 >     * sprawl out similar mechanics.
1319 >     */
1320 >
1321 >    /** Implementation for put and putIfAbsent */
1322 >    @SuppressWarnings("unchecked") private final V internalPut
1323 >        (K k, V v, boolean onlyIfAbsent) {
1324 >        if (k == null || v == null) throw new NullPointerException();
1325 >        int h = spread(k.hashCode());
1326 >        int len = 0;
1327 >        for (Node[] tab = table;;) {
1328 >            int i, fh; Node f; Object fk, fv;
1329 >            if (tab == null)
1330 >                tab = initTable();
1331 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1332 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1333 >                    break;                   // no lock when adding to empty bin
1334 >            }
1335 >            else if ((fh = f.hash) < 0) {
1336 >                if ((fk = f.key) instanceof TreeBin) {
1337 >                    TreeBin t = (TreeBin)fk;
1338 >                    Object oldVal = null;
1339 >                    t.acquire(0);
1340 >                    try {
1341 >                        if (tabAt(tab, i) == f) {
1342 >                            len = 2;
1343 >                            TreeNode p = t.putTreeNode(h, k, v);
1344 >                            if (p != null) {
1345 >                                oldVal = p.val;
1346 >                                if (!onlyIfAbsent)
1347 >                                    p.val = v;
1348 >                            }
1349 >                        }
1350 >                    } finally {
1351 >                        t.release(0);
1352 >                    }
1353 >                    if (len != 0) {
1354 >                        if (oldVal != null)
1355 >                            return (V)oldVal;
1356 >                        break;
1357 >                    }
1358 >                }
1359 >                else
1360 >                    tab = (Node[])fk;
1361 >            }
1362 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1363 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1364 >                return (V)fv;
1365 >            else {
1366 >                Object oldVal = null;
1367 >                synchronized(f) {
1368 >                    if (tabAt(tab, i) == f) {
1369 >                        len = 1;
1370 >                        for (Node e = f;; ++len) {
1371 >                            Object ek, ev;
1372 >                            if (e.hash == h &&
1373 >                                (ev = e.val) != null &&
1374 >                                ((ek = e.key) == k || k.equals(ek))) {
1375 >                                oldVal = ev;
1376 >                                if (!onlyIfAbsent)
1377 >                                    e.val = v;
1378 >                                break;
1379 >                            }
1380 >                            Node last = e;
1381 >                            if ((e = e.next) == null) {
1382 >                                last.next = new Node(h, k, v, null);
1383 >                                if (len >= TREE_THRESHOLD)
1384 >                                    replaceWithTreeBin(tab, i, k);
1385 >                                break;
1386 >                            }
1387 >                        }
1388 >                    }
1389 >                }
1390 >                if (len != 0) {
1391 >                    if (oldVal != null)
1392 >                        return (V)oldVal;
1393 >                    break;
1394                  }
1395              }
355            return false;
1396          }
1397 +        addCount(1L, len);
1398 +        return null;
1399 +    }
1400  
1401 <        boolean containsValue(Object value) {
1402 <            if (count != 0) { // read-volatile
1403 <                HashEntry<K,V>[] tab = table;
1404 <                int len = tab.length;
1405 <                for (int i = 0 ; i < len; i++) {
1406 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1407 <                        V v = e.value;
1408 <                        if (v == null) // recheck
1409 <                            v = readValueUnderLock(e);
1410 <                        if (value.equals(v))
1411 <                            return true;
1401 >    /** Implementation for computeIfAbsent */
1402 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1403 >        (K k, Fun<? super K, ?> mf) {
1404 >        if (k == null || mf == null)
1405 >            throw new NullPointerException();
1406 >        int h = spread(k.hashCode());
1407 >        Object val = null;
1408 >        int len = 0;
1409 >        for (Node[] tab = table;;) {
1410 >            Node f; int i; Object fk;
1411 >            if (tab == null)
1412 >                tab = initTable();
1413 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1414 >                Node node = new Node(h, k, null, null);
1415 >                synchronized(node) {
1416 >                    if (casTabAt(tab, i, null, node)) {
1417 >                        len = 1;
1418 >                        try {
1419 >                            if ((val = mf.apply(k)) != null)
1420 >                                node.val = val;
1421 >                        } finally {
1422 >                            if (val == null)
1423 >                                setTabAt(tab, i, null);
1424 >                        }
1425                      }
1426                  }
1427 +                if (len != 0)
1428 +                    break;
1429 +            }
1430 +            else if (f.hash < 0) {
1431 +                if ((fk = f.key) instanceof TreeBin) {
1432 +                    TreeBin t = (TreeBin)fk;
1433 +                    boolean added = false;
1434 +                    t.acquire(0);
1435 +                    try {
1436 +                        if (tabAt(tab, i) == f) {
1437 +                            len = 1;
1438 +                            TreeNode p = t.getTreeNode(h, k, t.root);
1439 +                            if (p != null)
1440 +                                val = p.val;
1441 +                            else if ((val = mf.apply(k)) != null) {
1442 +                                added = true;
1443 +                                len = 2;
1444 +                                t.putTreeNode(h, k, val);
1445 +                            }
1446 +                        }
1447 +                    } finally {
1448 +                        t.release(0);
1449 +                    }
1450 +                    if (len != 0) {
1451 +                        if (!added)
1452 +                            return (V)val;
1453 +                        break;
1454 +                    }
1455 +                }
1456 +                else
1457 +                    tab = (Node[])fk;
1458 +            }
1459 +            else {
1460 +                for (Node e = f; e != null; e = e.next) { // prescan
1461 +                    Object ek, ev;
1462 +                    if (e.hash == h && (ev = e.val) != null &&
1463 +                        ((ek = e.key) == k || k.equals(ek)))
1464 +                        return (V)ev;
1465 +                }
1466 +                boolean added = false;
1467 +                synchronized(f) {
1468 +                    if (tabAt(tab, i) == f) {
1469 +                        len = 1;
1470 +                        for (Node e = f;; ++len) {
1471 +                            Object ek, ev;
1472 +                            if (e.hash == h &&
1473 +                                (ev = e.val) != null &&
1474 +                                ((ek = e.key) == k || k.equals(ek))) {
1475 +                                val = ev;
1476 +                                break;
1477 +                            }
1478 +                            Node last = e;
1479 +                            if ((e = e.next) == null) {
1480 +                                if ((val = mf.apply(k)) != null) {
1481 +                                    added = true;
1482 +                                    last.next = new Node(h, k, val, null);
1483 +                                    if (len >= TREE_THRESHOLD)
1484 +                                        replaceWithTreeBin(tab, i, k);
1485 +                                }
1486 +                                break;
1487 +                            }
1488 +                        }
1489 +                    }
1490 +                }
1491 +                if (len != 0) {
1492 +                    if (!added)
1493 +                        return (V)val;
1494 +                    break;
1495 +                }
1496              }
372            return false;
1497          }
1498 +        if (val != null)
1499 +            addCount(1L, len);
1500 +        return (V)val;
1501 +    }
1502  
1503 <        boolean replace(K key, int hash, V oldValue, V newValue) {
1504 <            lock();
1505 <            try {
1506 <                HashEntry<K,V> e = getFirst(hash);
1507 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1508 <                    e = e.next;
1503 >    /** Implementation for compute */
1504 >    @SuppressWarnings("unchecked") private final V internalCompute
1505 >        (K k, boolean onlyIfPresent,
1506 >         BiFun<? super K, ? super V, ? extends V> mf) {
1507 >        if (k == null || mf == null)
1508 >            throw new NullPointerException();
1509 >        int h = spread(k.hashCode());
1510 >        Object val = null;
1511 >        int delta = 0;
1512 >        int len = 0;
1513 >        for (Node[] tab = table;;) {
1514 >            Node f; int i, fh; Object fk;
1515 >            if (tab == null)
1516 >                tab = initTable();
1517 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1518 >                if (onlyIfPresent)
1519 >                    break;
1520 >                Node node = new Node(h, k, null, null);
1521 >                synchronized(node) {
1522 >                    if (casTabAt(tab, i, null, node)) {
1523 >                        try {
1524 >                            len = 1;
1525 >                            if ((val = mf.apply(k, null)) != null) {
1526 >                                node.val = val;
1527 >                                delta = 1;
1528 >                            }
1529 >                        } finally {
1530 >                            if (delta == 0)
1531 >                                setTabAt(tab, i, null);
1532 >                        }
1533 >                    }
1534 >                }
1535 >                if (len != 0)
1536 >                    break;
1537 >            }
1538 >            else if ((fh = f.hash) < 0) {
1539 >                if ((fk = f.key) instanceof TreeBin) {
1540 >                    TreeBin t = (TreeBin)fk;
1541 >                    t.acquire(0);
1542 >                    try {
1543 >                        if (tabAt(tab, i) == f) {
1544 >                            len = 1;
1545 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1546 >                            if (p == null && onlyIfPresent)
1547 >                                break;
1548 >                            Object pv = (p == null) ? null : p.val;
1549 >                            if ((val = mf.apply(k, (V)pv)) != null) {
1550 >                                if (p != null)
1551 >                                    p.val = val;
1552 >                                else {
1553 >                                    len = 2;
1554 >                                    delta = 1;
1555 >                                    t.putTreeNode(h, k, val);
1556 >                                }
1557 >                            }
1558 >                            else if (p != null) {
1559 >                                delta = -1;
1560 >                                t.deleteTreeNode(p);
1561 >                            }
1562 >                        }
1563 >                    } finally {
1564 >                        t.release(0);
1565 >                    }
1566 >                    if (len != 0)
1567 >                        break;
1568 >                }
1569 >                else
1570 >                    tab = (Node[])fk;
1571 >            }
1572 >            else {
1573 >                synchronized(f) {
1574 >                    if (tabAt(tab, i) == f) {
1575 >                        len = 1;
1576 >                        for (Node e = f, pred = null;; ++len) {
1577 >                            Object ek, ev;
1578 >                            if (e.hash == h &&
1579 >                                (ev = e.val) != null &&
1580 >                                ((ek = e.key) == k || k.equals(ek))) {
1581 >                                val = mf.apply(k, (V)ev);
1582 >                                if (val != null)
1583 >                                    e.val = val;
1584 >                                else {
1585 >                                    delta = -1;
1586 >                                    Node en = e.next;
1587 >                                    if (pred != null)
1588 >                                        pred.next = en;
1589 >                                    else
1590 >                                        setTabAt(tab, i, en);
1591 >                                }
1592 >                                break;
1593 >                            }
1594 >                            pred = e;
1595 >                            if ((e = e.next) == null) {
1596 >                                if (!onlyIfPresent &&
1597 >                                    (val = mf.apply(k, null)) != null) {
1598 >                                    pred.next = new Node(h, k, val, null);
1599 >                                    delta = 1;
1600 >                                    if (len >= TREE_THRESHOLD)
1601 >                                        replaceWithTreeBin(tab, i, k);
1602 >                                }
1603 >                                break;
1604 >                            }
1605 >                        }
1606 >                    }
1607 >                }
1608 >                if (len != 0)
1609 >                    break;
1610 >            }
1611 >        }
1612 >        if (delta != 0)
1613 >            addCount((long)delta, len);
1614 >        return (V)val;
1615 >    }
1616  
1617 <                boolean replaced = false;
1618 <                if (e != null && oldValue.equals(e.value)) {
1619 <                    replaced = true;
1620 <                    e.value = newValue;
1617 >    /** Implementation for merge */
1618 >    @SuppressWarnings("unchecked") private final V internalMerge
1619 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1620 >        if (k == null || v == null || mf == null)
1621 >            throw new NullPointerException();
1622 >        int h = spread(k.hashCode());
1623 >        Object val = null;
1624 >        int delta = 0;
1625 >        int len = 0;
1626 >        for (Node[] tab = table;;) {
1627 >            int i; Node f; Object fk, fv;
1628 >            if (tab == null)
1629 >                tab = initTable();
1630 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1631 >                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1632 >                    delta = 1;
1633 >                    val = v;
1634 >                    break;
1635                  }
1636 <                return replaced;
1637 <            } finally {
1638 <                unlock();
1636 >            }
1637 >            else if (f.hash < 0) {
1638 >                if ((fk = f.key) instanceof TreeBin) {
1639 >                    TreeBin t = (TreeBin)fk;
1640 >                    t.acquire(0);
1641 >                    try {
1642 >                        if (tabAt(tab, i) == f) {
1643 >                            len = 1;
1644 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1645 >                            val = (p == null) ? v : mf.apply((V)p.val, v);
1646 >                            if (val != null) {
1647 >                                if (p != null)
1648 >                                    p.val = val;
1649 >                                else {
1650 >                                    len = 2;
1651 >                                    delta = 1;
1652 >                                    t.putTreeNode(h, k, val);
1653 >                                }
1654 >                            }
1655 >                            else if (p != null) {
1656 >                                delta = -1;
1657 >                                t.deleteTreeNode(p);
1658 >                            }
1659 >                        }
1660 >                    } finally {
1661 >                        t.release(0);
1662 >                    }
1663 >                    if (len != 0)
1664 >                        break;
1665 >                }
1666 >                else
1667 >                    tab = (Node[])fk;
1668 >            }
1669 >            else {
1670 >                synchronized(f) {
1671 >                    if (tabAt(tab, i) == f) {
1672 >                        len = 1;
1673 >                        for (Node e = f, pred = null;; ++len) {
1674 >                            Object ek, ev;
1675 >                            if (e.hash == h &&
1676 >                                (ev = e.val) != null &&
1677 >                                ((ek = e.key) == k || k.equals(ek))) {
1678 >                                val = mf.apply((V)ev, v);
1679 >                                if (val != null)
1680 >                                    e.val = val;
1681 >                                else {
1682 >                                    delta = -1;
1683 >                                    Node en = e.next;
1684 >                                    if (pred != null)
1685 >                                        pred.next = en;
1686 >                                    else
1687 >                                        setTabAt(tab, i, en);
1688 >                                }
1689 >                                break;
1690 >                            }
1691 >                            pred = e;
1692 >                            if ((e = e.next) == null) {
1693 >                                val = v;
1694 >                                pred.next = new Node(h, k, val, null);
1695 >                                delta = 1;
1696 >                                if (len >= TREE_THRESHOLD)
1697 >                                    replaceWithTreeBin(tab, i, k);
1698 >                                break;
1699 >                            }
1700 >                        }
1701 >                    }
1702 >                }
1703 >                if (len != 0)
1704 >                    break;
1705              }
1706          }
1707 +        if (delta != 0)
1708 +            addCount((long)delta, len);
1709 +        return (V)val;
1710 +    }
1711  
1712 <        V replace(K key, int hash, V newValue) {
1713 <            lock();
1714 <            try {
1715 <                HashEntry<K,V> e = getFirst(hash);
1716 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1717 <                    e = e.next;
1712 >    /** Implementation for putAll */
1713 >    private final void internalPutAll(Map<?, ?> m) {
1714 >        tryPresize(m.size());
1715 >        long delta = 0L;     // number of uncommitted additions
1716 >        boolean npe = false; // to throw exception on exit for nulls
1717 >        try {                // to clean up counts on other exceptions
1718 >            for (Map.Entry<?, ?> entry : m.entrySet()) {
1719 >                Object k, v;
1720 >                if (entry == null || (k = entry.getKey()) == null ||
1721 >                    (v = entry.getValue()) == null) {
1722 >                    npe = true;
1723 >                    break;
1724 >                }
1725 >                int h = spread(k.hashCode());
1726 >                for (Node[] tab = table;;) {
1727 >                    int i; Node f; int fh; Object fk;
1728 >                    if (tab == null)
1729 >                        tab = initTable();
1730 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1731 >                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1732 >                            ++delta;
1733 >                            break;
1734 >                        }
1735 >                    }
1736 >                    else if ((fh = f.hash) < 0) {
1737 >                        if ((fk = f.key) instanceof TreeBin) {
1738 >                            TreeBin t = (TreeBin)fk;
1739 >                            boolean validated = false;
1740 >                            t.acquire(0);
1741 >                            try {
1742 >                                if (tabAt(tab, i) == f) {
1743 >                                    validated = true;
1744 >                                    TreeNode p = t.getTreeNode(h, k, t.root);
1745 >                                    if (p != null)
1746 >                                        p.val = v;
1747 >                                    else {
1748 >                                        t.putTreeNode(h, k, v);
1749 >                                        ++delta;
1750 >                                    }
1751 >                                }
1752 >                            } finally {
1753 >                                t.release(0);
1754 >                            }
1755 >                            if (validated)
1756 >                                break;
1757 >                        }
1758 >                        else
1759 >                            tab = (Node[])fk;
1760 >                    }
1761 >                    else {
1762 >                        int len = 0;
1763 >                        synchronized(f) {
1764 >                            if (tabAt(tab, i) == f) {
1765 >                                len = 1;
1766 >                                for (Node e = f;; ++len) {
1767 >                                    Object ek, ev;
1768 >                                    if (e.hash == h &&
1769 >                                        (ev = e.val) != null &&
1770 >                                        ((ek = e.key) == k || k.equals(ek))) {
1771 >                                        e.val = v;
1772 >                                        break;
1773 >                                    }
1774 >                                    Node last = e;
1775 >                                    if ((e = e.next) == null) {
1776 >                                        ++delta;
1777 >                                        last.next = new Node(h, k, v, null);
1778 >                                        if (len >= TREE_THRESHOLD)
1779 >                                            replaceWithTreeBin(tab, i, k);
1780 >                                        break;
1781 >                                    }
1782 >                                }
1783 >                            }
1784 >                        }
1785 >                        if (len != 0) {
1786 >                            if (len > 1)
1787 >                                addCount(delta, len);
1788 >                            break;
1789 >                        }
1790 >                    }
1791 >                }
1792 >            }
1793 >        } finally {
1794 >            if (delta != 0L)
1795 >                addCount(delta, 2);
1796 >        }
1797 >        if (npe)
1798 >            throw new NullPointerException();
1799 >    }
1800  
1801 <                V oldValue = null;
1802 <                if (e != null) {
1803 <                    oldValue = e.value;
1804 <                    e.value = newValue;
1801 >    /**
1802 >     * Implementation for clear. Steps through each bin, removing all
1803 >     * nodes.
1804 >     */
1805 >    private final void internalClear() {
1806 >        long delta = 0L; // negative number of deletions
1807 >        int i = 0;
1808 >        Node[] tab = table;
1809 >        while (tab != null && i < tab.length) {
1810 >            Node f = tabAt(tab, i);
1811 >            if (f == null)
1812 >                ++i;
1813 >            else if (f.hash < 0) {
1814 >                Object fk;
1815 >                if ((fk = f.key) instanceof TreeBin) {
1816 >                    TreeBin t = (TreeBin)fk;
1817 >                    t.acquire(0);
1818 >                    try {
1819 >                        if (tabAt(tab, i) == f) {
1820 >                            for (Node p = t.first; p != null; p = p.next) {
1821 >                                if (p.val != null) { // (currently always true)
1822 >                                    p.val = null;
1823 >                                    --delta;
1824 >                                }
1825 >                            }
1826 >                            t.first = null;
1827 >                            t.root = null;
1828 >                            ++i;
1829 >                        }
1830 >                    } finally {
1831 >                        t.release(0);
1832 >                    }
1833 >                }
1834 >                else
1835 >                    tab = (Node[])fk;
1836 >            }
1837 >            else {
1838 >                synchronized(f) {
1839 >                    if (tabAt(tab, i) == f) {
1840 >                        for (Node e = f; e != null; e = e.next) {
1841 >                            if (e.val != null) {  // (currently always true)
1842 >                                e.val = null;
1843 >                                --delta;
1844 >                            }
1845 >                        }
1846 >                        setTabAt(tab, i, null);
1847 >                        ++i;
1848 >                    }
1849                  }
405                return oldValue;
406            } finally {
407                unlock();
1850              }
1851          }
1852 +        if (delta != 0L)
1853 +            addCount(delta, -1);
1854 +    }
1855  
1856 +    /* ---------------- Table Initialization and Resizing -------------- */
1857  
1858 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
1859 <            lock();
1860 <            try {
1861 <                int c = count;
1862 <                if (c++ > threshold) // ensure capacity
1863 <                    rehash();
1864 <                HashEntry<K,V>[] tab = table;
1865 <                int index = hash & (tab.length - 1);
1866 <                HashEntry<K,V> first = tab[index];
1867 <                HashEntry<K,V> e = first;
1868 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1869 <                    e = e.next;
1858 >    /**
1859 >     * Returns a power of two table size for the given desired capacity.
1860 >     * See Hackers Delight, sec 3.2
1861 >     */
1862 >    private static final int tableSizeFor(int c) {
1863 >        int n = c - 1;
1864 >        n |= n >>> 1;
1865 >        n |= n >>> 2;
1866 >        n |= n >>> 4;
1867 >        n |= n >>> 8;
1868 >        n |= n >>> 16;
1869 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1870 >    }
1871  
1872 <                V oldValue;
1873 <                if (e != null) {
1874 <                    oldValue = e.value;
1875 <                    if (!onlyIfAbsent)
1876 <                        e.value = value;
1877 <                }
1878 <                else {
1879 <                    oldValue = null;
1880 <                    ++modCount;
1881 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
1882 <                    count = c; // write-volatile
1872 >    /**
1873 >     * Initializes table, using the size recorded in sizeCtl.
1874 >     */
1875 >    private final Node[] initTable() {
1876 >        Node[] tab; int sc;
1877 >        while ((tab = table) == null) {
1878 >            if ((sc = sizeCtl) < 0)
1879 >                Thread.yield(); // lost initialization race; just spin
1880 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1881 >                try {
1882 >                    if ((tab = table) == null) {
1883 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1884 >                        tab = table = new Node[n];
1885 >                        sc = n - (n >>> 2);
1886 >                    }
1887 >                } finally {
1888 >                    sizeCtl = sc;
1889                  }
1890 <                return oldValue;
438 <            } finally {
439 <                unlock();
1890 >                break;
1891              }
1892          }
1893 +        return tab;
1894 +    }
1895  
1896 <        void rehash() {
1897 <            HashEntry<K,V>[] oldTable = table;
1898 <            int oldCapacity = oldTable.length;
1899 <            if (oldCapacity >= MAXIMUM_CAPACITY)
1896 >    /**
1897 >     * Adds to count, and if table is too small and not already
1898 >     * resizing, initiates transfer. If already resizing, helps
1899 >     * perform transfer if work is available.  Rechecks occupancy
1900 >     * after a transfer to see if another resize is already needed
1901 >     * because resizings are lagging additions.
1902 >     *
1903 >     * @param x the count to add
1904 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1905 >     */
1906 >    private final void addCount(long x, int check) {
1907 >        CounterCell[] as; long b, s;
1908 >        if ((as = counterCells) != null ||
1909 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1910 >            CounterHashCode hc; CounterCell a; long v; int m;
1911 >            boolean uncontended = true;
1912 >            if ((hc = threadCounterHashCode.get()) == null ||
1913 >                as == null || (m = as.length - 1) < 0 ||
1914 >                (a = as[m & hc.code]) == null ||
1915 >                !(uncontended =
1916 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1917 >                fullAddCount(x, hc, uncontended);
1918                  return;
1919 +            }
1920 +            if (check <= 1)
1921 +                return;
1922 +            s = sumCount();
1923 +        }
1924 +        if (check >= 0) {
1925 +            Node[] tab, nt; int sc;
1926 +            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1927 +                   tab.length < MAXIMUM_CAPACITY) {
1928 +                if (sc < 0) {
1929 +                    if (sc == -1 || transferIndex <= transferOrigin ||
1930 +                        (nt = nextTable) == null)
1931 +                        break;
1932 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1933 +                        transfer(tab, nt);
1934 +                }
1935 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1936 +                    transfer(tab, null);
1937 +                s = sumCount();
1938 +            }
1939 +        }
1940 +    }
1941  
1942 <            /*
1943 <             * Reclassify nodes in each list to new Map.  Because we are
1944 <             * using power-of-two expansion, the elements from each bin
1945 <             * must either stay at same index, or move with a power of two
1946 <             * offset. We eliminate unnecessary node creation by catching
1947 <             * cases where old nodes can be reused because their next
1948 <             * fields won't change. Statistically, at the default
1949 <             * threshold, only about one-sixth of them need cloning when
1950 <             * a table doubles. The nodes they replace will be garbage
1951 <             * collectable as soon as they are no longer referenced by any
1952 <             * reader thread that may be in the midst of traversing table
1953 <             * right now.
1954 <             */
1955 <
1956 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
1957 <            threshold = (int)(newTable.length * loadFactor);
1958 <            int sizeMask = newTable.length - 1;
1959 <            for (int i = 0; i < oldCapacity ; i++) {
1960 <                // We need to guarantee that any existing reads of old Map can
1961 <                //  proceed. So we cannot yet null out each bin.
1962 <                HashEntry<K,V> e = oldTable[i];
1963 <
1964 <                if (e != null) {
1965 <                    HashEntry<K,V> next = e.next;
1966 <                    int idx = e.hash & sizeMask;
1967 <
1968 <                    //  Single node on list
1969 <                    if (next == null)
1970 <                        newTable[idx] = e;
1942 >    /**
1943 >     * Tries to presize table to accommodate the given number of elements.
1944 >     *
1945 >     * @param size number of elements (doesn't need to be perfectly accurate)
1946 >     */
1947 >    private final void tryPresize(int size) {
1948 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1949 >            tableSizeFor(size + (size >>> 1) + 1);
1950 >        int sc;
1951 >        while ((sc = sizeCtl) >= 0) {
1952 >            Node[] tab = table; int n;
1953 >            if (tab == null || (n = tab.length) == 0) {
1954 >                n = (sc > c) ? sc : c;
1955 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1956 >                    try {
1957 >                        if (table == tab) {
1958 >                            table = new Node[n];
1959 >                            sc = n - (n >>> 2);
1960 >                        }
1961 >                    } finally {
1962 >                        sizeCtl = sc;
1963 >                    }
1964 >                }
1965 >            }
1966 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1967 >                break;
1968 >            else if (tab == table &&
1969 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1970 >                transfer(tab, null);
1971 >        }
1972 >    }
1973  
1974 <                    else {
1975 <                        // Reuse trailing consecutive sequence at same slot
1976 <                        HashEntry<K,V> lastRun = e;
1977 <                        int lastIdx = idx;
1978 <                        for (HashEntry<K,V> last = next;
1979 <                             last != null;
1980 <                             last = last.next) {
1981 <                            int k = last.hash & sizeMask;
1982 <                            if (k != lastIdx) {
1983 <                                lastIdx = k;
1984 <                                lastRun = last;
1974 >    /*
1975 >     * Moves and/or copies the nodes in each bin to new table. See
1976 >     * above for explanation.
1977 >     */
1978 >    private final void transfer(Node[] tab, Node[] nextTab) {
1979 >        int n = tab.length, stride;
1980 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1981 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1982 >        if (nextTab == null) {            // initiating
1983 >            try {
1984 >                nextTab = new Node[n << 1];
1985 >            } catch(Throwable ex) {       // try to cope with OOME
1986 >                sizeCtl = Integer.MAX_VALUE;
1987 >                return;
1988 >            }
1989 >            nextTable = nextTab;
1990 >            transferOrigin = n;
1991 >            transferIndex = n;
1992 >            Node rev = new Node(MOVED, tab, null, null);
1993 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
1994 >                int nextk = k > stride? k - stride : 0;
1995 >                for (int m = nextk; m < k; ++m)
1996 >                    nextTab[m] = rev;
1997 >                for (int m = n + nextk; m < n + k; ++m)
1998 >                    nextTab[m] = rev;
1999 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2000 >            }
2001 >        }
2002 >        int nextn = nextTab.length;
2003 >        Node fwd = new Node(MOVED, nextTab, null, null);
2004 >        boolean advance = true;
2005 >        for (int i = 0, bound = 0;;) {
2006 >            int nextIndex, nextBound; Node f; Object fk;
2007 >            while (advance) {
2008 >                if (--i >= bound)
2009 >                    advance = false;
2010 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2011 >                    i = -1;
2012 >                    advance = false;
2013 >                }
2014 >                else if (U.compareAndSwapInt
2015 >                         (this, TRANSFERINDEX, nextIndex,
2016 >                          nextBound = (nextIndex > stride?
2017 >                                       nextIndex - stride : 0))) {
2018 >                    bound = nextBound;
2019 >                    i = nextIndex - 1;
2020 >                    advance = false;
2021 >                }
2022 >            }
2023 >            if (i < 0 || i >= n || i + n >= nextn) {
2024 >                for (int sc;;) {
2025 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2026 >                        if (sc == -1) {
2027 >                            nextTable = null;
2028 >                            table = nextTab;
2029 >                            sizeCtl = (n << 1) - (n >>> 1);
2030 >                        }
2031 >                        return;
2032 >                    }
2033 >                }
2034 >            }
2035 >            else if ((f = tabAt(tab, i)) == null) {
2036 >                if (casTabAt(tab, i, null, fwd)) {
2037 >                    setTabAt(nextTab, i, null);
2038 >                    setTabAt(nextTab, i + n, null);
2039 >                    advance = true;
2040 >                }
2041 >            }
2042 >            else if (f.hash >= 0) {
2043 >                synchronized(f) {
2044 >                    if (tabAt(tab, i) == f) {
2045 >                        int runBit = f.hash & n;
2046 >                        Node lastRun = f, lo = null, hi = null;
2047 >                        for (Node p = f.next; p != null; p = p.next) {
2048 >                            int b = p.hash & n;
2049 >                            if (b != runBit) {
2050 >                                runBit = b;
2051 >                                lastRun = p;
2052                              }
2053                          }
2054 <                        newTable[lastIdx] = lastRun;
2055 <
2056 <                        // Clone all remaining nodes
2057 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
2058 <                            int k = p.hash & sizeMask;
2059 <                            HashEntry<K,V> n = newTable[k];
2060 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
2061 <                                                             n, p.value);
2054 >                        if (runBit == 0)
2055 >                            lo = lastRun;
2056 >                        else
2057 >                            hi = lastRun;
2058 >                        for (Node p = f; p != lastRun; p = p.next) {
2059 >                            int ph = p.hash;
2060 >                            Object pk = p.key, pv = p.val;
2061 >                            if ((ph & n) == 0)
2062 >                                lo = new Node(ph, pk, pv, lo);
2063 >                            else
2064 >                                hi = new Node(ph, pk, pv, hi);
2065 >                        }
2066 >                        setTabAt(nextTab, i, lo);
2067 >                        setTabAt(nextTab, i + n, hi);
2068 >                        setTabAt(tab, i, fwd);
2069 >                        advance = true;
2070 >                    }
2071 >                }
2072 >            }
2073 >            else if ((fk = f.key) instanceof TreeBin) {
2074 >                TreeBin t = (TreeBin)fk;
2075 >                t.acquire(0);
2076 >                try {
2077 >                    if (tabAt(tab, i) == f) {
2078 >                        TreeBin lt = new TreeBin();
2079 >                        TreeBin ht = new TreeBin();
2080 >                        int lc = 0, hc = 0;
2081 >                        for (Node e = t.first; e != null; e = e.next) {
2082 >                            int h = e.hash;
2083 >                            Object k = e.key, v = e.val;
2084 >                            if ((h & n) == 0) {
2085 >                                ++lc;
2086 >                                lt.putTreeNode(h, k, v);
2087 >                            }
2088 >                            else {
2089 >                                ++hc;
2090 >                                ht.putTreeNode(h, k, v);
2091 >                            }
2092 >                        }
2093 >                        Node ln, hn; // throw away trees if too small
2094 >                        if (lc < TREE_THRESHOLD) {
2095 >                            ln = null;
2096 >                            for (Node p = lt.first; p != null; p = p.next)
2097 >                                ln = new Node(p.hash, p.key, p.val, ln);
2098                          }
2099 +                        else
2100 +                            ln = new Node(MOVED, lt, null, null);
2101 +                        setTabAt(nextTab, i, ln);
2102 +                        if (hc < TREE_THRESHOLD) {
2103 +                            hn = null;
2104 +                            for (Node p = ht.first; p != null; p = p.next)
2105 +                                hn = new Node(p.hash, p.key, p.val, hn);
2106 +                        }
2107 +                        else
2108 +                            hn = new Node(MOVED, ht, null, null);
2109 +                        setTabAt(nextTab, i + n, hn);
2110 +                        setTabAt(tab, i, fwd);
2111 +                        advance = true;
2112                      }
2113 +                } finally {
2114 +                    t.release(0);
2115                  }
2116              }
2117 <            table = newTable;
2117 >            else
2118 >                advance = true; // already processed
2119          }
2120 +    }
2121  
2122 <        /**
508 <         * Remove; match on key only if value null, else match both.
509 <         */
510 <        V remove(Object key, int hash, Object value) {
511 <            lock();
512 <            try {
513 <                int c = count - 1;
514 <                HashEntry<K,V>[] tab = table;
515 <                int index = hash & (tab.length - 1);
516 <                HashEntry<K,V> first = tab[index];
517 <                HashEntry<K,V> e = first;
518 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
519 <                    e = e.next;
2122 >    /* ---------------- Counter support -------------- */
2123  
2124 <                V oldValue = null;
2125 <                if (e != null) {
2126 <                    V v = e.value;
2127 <                    if (value == null || value.equals(v)) {
2128 <                        oldValue = v;
2129 <                        // All entries following removed node can stay
2130 <                        // in list, but all preceding ones need to be
528 <                        // cloned.
529 <                        ++modCount;
530 <                        HashEntry<K,V> newFirst = e.next;
531 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
532 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
533 <                                                          newFirst, p.value);
534 <                        tab[index] = newFirst;
535 <                        count = c; // write-volatile
536 <                    }
537 <                }
538 <                return oldValue;
539 <            } finally {
540 <                unlock();
2124 >    final long sumCount() {
2125 >        CounterCell[] as = counterCells; CounterCell a;
2126 >        long sum = baseCount;
2127 >        if (as != null) {
2128 >            for (int i = 0; i < as.length; ++i) {
2129 >                if ((a = as[i]) != null)
2130 >                    sum += a.value;
2131              }
2132          }
2133 +        return sum;
2134 +    }
2135  
2136 <        void clear() {
2137 <            if (count != 0) {
2138 <                lock();
2139 <                try {
2140 <                    HashEntry<K,V>[] tab = table;
2141 <                    for (int i = 0; i < tab.length ; i++)
2142 <                        tab[i] = null;
2143 <                    ++modCount;
2144 <                    count = 0; // write-volatile
2136 >    // See LongAdder version for explanation
2137 >    private final void fullAddCount(long x, CounterHashCode hc,
2138 >                                    boolean wasUncontended) {
2139 >        int h;
2140 >        if (hc == null) {
2141 >            hc = new CounterHashCode();
2142 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2143 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2144 >            threadCounterHashCode.set(hc);
2145 >        }
2146 >        else
2147 >            h = hc.code;
2148 >        boolean collide = false;                // True if last slot nonempty
2149 >        for (;;) {
2150 >            CounterCell[] as; CounterCell a; int n; long v;
2151 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2152 >                if ((a = as[(n - 1) & h]) == null) {
2153 >                    if (counterBusy == 0) {            // Try to attach new Cell
2154 >                        CounterCell r = new CounterCell(x); // Optimistic create
2155 >                        if (counterBusy == 0 &&
2156 >                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2157 >                            boolean created = false;
2158 >                            try {               // Recheck under lock
2159 >                                CounterCell[] rs; int m, j;
2160 >                                if ((rs = counterCells) != null &&
2161 >                                    (m = rs.length) > 0 &&
2162 >                                    rs[j = (m - 1) & h] == null) {
2163 >                                    rs[j] = r;
2164 >                                    created = true;
2165 >                                }
2166 >                            } finally {
2167 >                                counterBusy = 0;
2168 >                            }
2169 >                            if (created)
2170 >                                break;
2171 >                            continue;           // Slot is now non-empty
2172 >                        }
2173 >                    }
2174 >                    collide = false;
2175 >                }
2176 >                else if (!wasUncontended)       // CAS already known to fail
2177 >                    wasUncontended = true;      // Continue after rehash
2178 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2179 >                    break;
2180 >                else if (counterCells != as || n >= NCPU)
2181 >                    collide = false;            // At max size or stale
2182 >                else if (!collide)
2183 >                    collide = true;
2184 >                else if (counterBusy == 0 &&
2185 >                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2186 >                    try {
2187 >                        if (counterCells == as) {// Expand table unless stale
2188 >                            CounterCell[] rs = new CounterCell[n << 1];
2189 >                            for (int i = 0; i < n; ++i)
2190 >                                rs[i] = as[i];
2191 >                            counterCells = rs;
2192 >                        }
2193 >                    } finally {
2194 >                        counterBusy = 0;
2195 >                    }
2196 >                    collide = false;
2197 >                    continue;                   // Retry with expanded table
2198 >                }
2199 >                h ^= h << 13;                   // Rehash
2200 >                h ^= h >>> 17;
2201 >                h ^= h << 5;
2202 >            }
2203 >            else if (counterBusy == 0 && counterCells == as &&
2204 >                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2205 >                boolean init = false;
2206 >                try {                           // Initialize table
2207 >                    if (counterCells == as) {
2208 >                        CounterCell[] rs = new CounterCell[2];
2209 >                        rs[h & 1] = new CounterCell(x);
2210 >                        counterCells = rs;
2211 >                        init = true;
2212 >                    }
2213                  } finally {
2214 <                    unlock();
2214 >                    counterBusy = 0;
2215                  }
2216 +                if (init)
2217 +                    break;
2218              }
2219 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2220 +                break;                          // Fall back on using base
2221          }
2222 +        hc.code = h;                            // Record index for next time
2223      }
2224  
2225 +    /* ----------------Table Traversal -------------- */
2226 +
2227 +    /**
2228 +     * Encapsulates traversal for methods such as containsValue; also
2229 +     * serves as a base class for other iterators and bulk tasks.
2230 +     *
2231 +     * At each step, the iterator snapshots the key ("nextKey") and
2232 +     * value ("nextVal") of a valid node (i.e., one that, at point of
2233 +     * snapshot, has a non-null user value). Because val fields can
2234 +     * change (including to null, indicating deletion), field nextVal
2235 +     * might not be accurate at point of use, but still maintains the
2236 +     * weak consistency property of holding a value that was once
2237 +     * valid. To support iterator.remove, the nextKey field is not
2238 +     * updated (nulled out) when the iterator cannot advance.
2239 +     *
2240 +     * Internal traversals directly access these fields, as in:
2241 +     * {@code while (it.advance() != null) { process(it.nextKey); }}
2242 +     *
2243 +     * Exported iterators must track whether the iterator has advanced
2244 +     * (in hasNext vs next) (by setting/checking/nulling field
2245 +     * nextVal), and then extract key, value, or key-value pairs as
2246 +     * return values of next().
2247 +     *
2248 +     * The iterator visits once each still-valid node that was
2249 +     * reachable upon iterator construction. It might miss some that
2250 +     * were added to a bin after the bin was visited, which is OK wrt
2251 +     * consistency guarantees. Maintaining this property in the face
2252 +     * of possible ongoing resizes requires a fair amount of
2253 +     * bookkeeping state that is difficult to optimize away amidst
2254 +     * volatile accesses.  Even so, traversal maintains reasonable
2255 +     * throughput.
2256 +     *
2257 +     * Normally, iteration proceeds bin-by-bin traversing lists.
2258 +     * However, if the table has been resized, then all future steps
2259 +     * must traverse both the bin at the current index as well as at
2260 +     * (index + baseSize); and so on for further resizings. To
2261 +     * paranoically cope with potential sharing by users of iterators
2262 +     * across threads, iteration terminates if a bounds checks fails
2263 +     * for a table read.
2264 +     *
2265 +     * This class extends CountedCompleter to streamline parallel
2266 +     * iteration in bulk operations. This adds only a few fields of
2267 +     * space overhead, which is small enough in cases where it is not
2268 +     * needed to not worry about it.  Because CountedCompleter is
2269 +     * Serializable, but iterators need not be, we need to add warning
2270 +     * suppressions.
2271 +     */
2272 +    @SuppressWarnings("serial") static class Traverser<K,V,R>
2273 +        extends CountedCompleter<R> {
2274 +        final ConcurrentHashMap<K, V> map;
2275 +        Node next;           // the next entry to use
2276 +        Object nextKey;      // cached key field of next
2277 +        Object nextVal;      // cached val field of next
2278 +        Node[] tab;          // current table; updated if resized
2279 +        int index;           // index of bin to use next
2280 +        int baseIndex;       // current index of initial table
2281 +        int baseLimit;       // index bound for initial table
2282 +        int baseSize;        // initial table size
2283 +        int batch;           // split control
2284 +
2285 +        /** Creates iterator for all entries in the table. */
2286 +        Traverser(ConcurrentHashMap<K, V> map) {
2287 +            this.map = map;
2288 +        }
2289 +
2290 +        /** Creates iterator for split() methods and task constructors */
2291 +        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2292 +            super(it);
2293 +            this.batch = batch;
2294 +            if ((this.map = map) != null && it != null) { // split parent
2295 +                Node[] t;
2296 +                if ((t = it.tab) == null &&
2297 +                    (t = it.tab = map.table) != null)
2298 +                    it.baseLimit = it.baseSize = t.length;
2299 +                this.tab = t;
2300 +                this.baseSize = it.baseSize;
2301 +                int hi = this.baseLimit = it.baseLimit;
2302 +                it.baseLimit = this.index = this.baseIndex =
2303 +                    (hi + it.baseIndex + 1) >>> 1;
2304 +            }
2305 +        }
2306 +
2307 +        /**
2308 +         * Advances next; returns nextVal or null if terminated.
2309 +         * See above for explanation.
2310 +         */
2311 +        final Object advance() {
2312 +            Node e = next;
2313 +            Object ev = null;
2314 +            outer: do {
2315 +                if (e != null)                  // advance past used/skipped node
2316 +                    e = e.next;
2317 +                while (e == null) {             // get to next non-null bin
2318 +                    ConcurrentHashMap<K, V> m;
2319 +                    Node[] t; int b, i, n; Object ek; // checks must use locals
2320 +                    if ((t = tab) != null)
2321 +                        n = t.length;
2322 +                    else if ((m = map) != null && (t = tab = m.table) != null)
2323 +                        n = baseLimit = baseSize = t.length;
2324 +                    else
2325 +                        break outer;
2326 +                    if ((b = baseIndex) >= baseLimit ||
2327 +                        (i = index) < 0 || i >= n)
2328 +                        break outer;
2329 +                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2330 +                        if ((ek = e.key) instanceof TreeBin)
2331 +                            e = ((TreeBin)ek).first;
2332 +                        else {
2333 +                            tab = (Node[])ek;
2334 +                            continue;           // restarts due to null val
2335 +                        }
2336 +                    }                           // visit upper slots if present
2337 +                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2338 +                }
2339 +                nextKey = e.key;
2340 +            } while ((ev = e.val) == null);    // skip deleted or special nodes
2341 +            next = e;
2342 +            return nextVal = ev;
2343 +        }
2344 +
2345 +        public final void remove() {
2346 +            Object k = nextKey;
2347 +            if (k == null && (advance() == null || (k = nextKey) == null))
2348 +                throw new IllegalStateException();
2349 +            map.internalReplace(k, null, null);
2350 +        }
2351 +
2352 +        public final boolean hasNext() {
2353 +            return nextVal != null || advance() != null;
2354 +        }
2355 +
2356 +        public final boolean hasMoreElements() { return hasNext(); }
2357 +
2358 +        public void compute() { } // default no-op CountedCompleter body
2359 +
2360 +        /**
2361 +         * Returns a batch value > 0 if this task should (and must) be
2362 +         * split, if so, adding to pending count, and in any case
2363 +         * updating batch value. The initial batch value is approx
2364 +         * exp2 of the number of times (minus one) to split task by
2365 +         * two before executing leaf action. This value is faster to
2366 +         * compute and more convenient to use as a guide to splitting
2367 +         * than is the depth, since it is used while dividing by two
2368 +         * anyway.
2369 +         */
2370 +        final int preSplit() {
2371 +            ConcurrentHashMap<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2372 +            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2373 +                if ((t = tab) == null && (t = tab = m.table) != null)
2374 +                    baseLimit = baseSize = t.length;
2375 +                if (t != null) {
2376 +                    long n = m.sumCount();
2377 +                    int par = ((pool = getPool()) == null) ?
2378 +                        ForkJoinPool.getCommonPoolParallelism() :
2379 +                        pool.getParallelism();
2380 +                    int sp = par << 3; // slack of 8
2381 +                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2382 +                }
2383 +            }
2384 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2385 +            if ((batch = b) > 0)
2386 +                addToPendingCount(1);
2387 +            return b;
2388 +        }
2389  
2390 +    }
2391  
2392      /* ---------------- Public operations -------------- */
2393  
2394      /**
2395 <     * Creates a new, empty map with the specified initial
2396 <     * capacity, load factor and concurrency level.
2395 >     * Creates a new, empty map with the default initial table size (16).
2396 >     */
2397 >    public ConcurrentHashMap() {
2398 >    }
2399 >
2400 >    /**
2401 >     * Creates a new, empty map with an initial table size
2402 >     * accommodating the specified number of elements without the need
2403 >     * to dynamically resize.
2404       *
2405 <     * @param initialCapacity the initial capacity. The implementation
2406 <     * performs internal sizing to accommodate this many elements.
2407 <     * @param loadFactor  the load factor threshold, used to control resizing.
2408 <     * Resizing may be performed when the average number of elements per
572 <     * bin exceeds this threshold.
573 <     * @param concurrencyLevel the estimated number of concurrently
574 <     * updating threads. The implementation performs internal sizing
575 <     * to try to accommodate this many threads.
576 <     * @throws IllegalArgumentException if the initial capacity is
577 <     * negative or the load factor or concurrencyLevel are
578 <     * nonpositive.
2405 >     * @param initialCapacity The implementation performs internal
2406 >     * sizing to accommodate this many elements.
2407 >     * @throws IllegalArgumentException if the initial capacity of
2408 >     * elements is negative
2409       */
2410 <    public ConcurrentHashMap(int initialCapacity,
2411 <                             float loadFactor, int concurrencyLevel) {
582 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
2410 >    public ConcurrentHashMap(int initialCapacity) {
2411 >        if (initialCapacity < 0)
2412              throw new IllegalArgumentException();
2413 +        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2414 +                   MAXIMUM_CAPACITY :
2415 +                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2416 +        this.sizeCtl = cap;
2417 +    }
2418  
2419 <        if (concurrencyLevel > MAX_SEGMENTS)
2420 <            concurrencyLevel = MAX_SEGMENTS;
2421 <
2422 <        // Find power-of-two sizes best matching arguments
2423 <        int sshift = 0;
2424 <        int ssize = 1;
2425 <        while (ssize < concurrencyLevel) {
2426 <            ++sshift;
593 <            ssize <<= 1;
594 <        }
595 <        segmentShift = 32 - sshift;
596 <        segmentMask = ssize - 1;
597 <        this.segments = Segment.newArray(ssize);
598 <
599 <        if (initialCapacity > MAXIMUM_CAPACITY)
600 <            initialCapacity = MAXIMUM_CAPACITY;
601 <        int c = initialCapacity / ssize;
602 <        if (c * ssize < initialCapacity)
603 <            ++c;
604 <        int cap = 1;
605 <        while (cap < c)
606 <            cap <<= 1;
607 <
608 <        for (int i = 0; i < this.segments.length; ++i)
609 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
2419 >    /**
2420 >     * Creates a new map with the same mappings as the given map.
2421 >     *
2422 >     * @param m the map
2423 >     */
2424 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2425 >        this.sizeCtl = DEFAULT_CAPACITY;
2426 >        internalPutAll(m);
2427      }
2428  
2429      /**
2430 <     * Creates a new, empty map with the specified initial capacity
2431 <     * and load factor and with the default concurrencyLevel (16).
2430 >     * Creates a new, empty map with an initial table size based on
2431 >     * the given number of elements ({@code initialCapacity}) and
2432 >     * initial table density ({@code loadFactor}).
2433       *
2434 <     * @param initialCapacity The implementation performs internal
2435 <     * sizing to accommodate this many elements.
2436 <     * @param loadFactor  the load factor threshold, used to control resizing.
2437 <     * Resizing may be performed when the average number of elements per
2438 <     * bin exceeds this threshold.
2434 >     * @param initialCapacity the initial capacity. The implementation
2435 >     * performs internal sizing to accommodate this many elements,
2436 >     * given the specified load factor.
2437 >     * @param loadFactor the load factor (table density) for
2438 >     * establishing the initial table size
2439       * @throws IllegalArgumentException if the initial capacity of
2440       * elements is negative or the load factor is nonpositive
2441       *
2442       * @since 1.6
2443       */
2444      public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2445 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2445 >        this(initialCapacity, loadFactor, 1);
2446      }
2447  
2448      /**
2449 <     * Creates a new, empty map with the specified initial capacity,
2450 <     * and with default load factor (0.75) and concurrencyLevel (16).
2449 >     * Creates a new, empty map with an initial table size based on
2450 >     * the given number of elements ({@code initialCapacity}), table
2451 >     * density ({@code loadFactor}), and number of concurrently
2452 >     * updating threads ({@code concurrencyLevel}).
2453       *
2454       * @param initialCapacity the initial capacity. The implementation
2455 <     * performs internal sizing to accommodate this many elements.
2456 <     * @throws IllegalArgumentException if the initial capacity of
2457 <     * elements is negative.
2455 >     * performs internal sizing to accommodate this many elements,
2456 >     * given the specified load factor.
2457 >     * @param loadFactor the load factor (table density) for
2458 >     * establishing the initial table size
2459 >     * @param concurrencyLevel the estimated number of concurrently
2460 >     * updating threads. The implementation may use this value as
2461 >     * a sizing hint.
2462 >     * @throws IllegalArgumentException if the initial capacity is
2463 >     * negative or the load factor or concurrencyLevel are
2464 >     * nonpositive
2465       */
2466 <    public ConcurrentHashMap(int initialCapacity) {
2467 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2466 >    public ConcurrentHashMap(int initialCapacity,
2467 >                               float loadFactor, int concurrencyLevel) {
2468 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2469 >            throw new IllegalArgumentException();
2470 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2471 >            initialCapacity = concurrencyLevel;   // as estimated threads
2472 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2473 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2474 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2475 >        this.sizeCtl = cap;
2476      }
2477  
2478      /**
2479 <     * Creates a new, empty map with a default initial capacity (16),
2480 <     * load factor (0.75) and concurrencyLevel (16).
2479 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2480 >     * from the given type to {@code Boolean.TRUE}.
2481 >     *
2482 >     * @return the new set
2483       */
2484 <    public ConcurrentHashMap() {
2485 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2484 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2485 >        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2486 >                                      Boolean.TRUE);
2487      }
2488  
2489      /**
2490 <     * Creates a new map with the same mappings as the given map.
2491 <     * The map is created with a capacity of 1.5 times the number
654 <     * of mappings in the given map or 16 (whichever is greater),
655 <     * and a default load factor (0.75) and concurrencyLevel (16).
2490 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2491 >     * from the given type to {@code Boolean.TRUE}.
2492       *
2493 <     * @param m the map
2493 >     * @param initialCapacity The implementation performs internal
2494 >     * sizing to accommodate this many elements.
2495 >     * @throws IllegalArgumentException if the initial capacity of
2496 >     * elements is negative
2497 >     * @return the new set
2498       */
2499 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2500 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
2501 <                      DEFAULT_INITIAL_CAPACITY),
662 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
663 <        putAll(m);
2499 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2500 >        return new KeySetView<K,Boolean>
2501 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2502      }
2503  
2504      /**
2505 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
668 <     *
669 <     * @return <tt>true</tt> if this map contains no key-value mappings
2505 >     * {@inheritDoc}
2506       */
2507      public boolean isEmpty() {
2508 <        final Segment<K,V>[] segments = this.segments;
673 <        /*
674 <         * We keep track of per-segment modCounts to avoid ABA
675 <         * problems in which an element in one segment was added and
676 <         * in another removed during traversal, in which case the
677 <         * table was never actually empty at any point. Note the
678 <         * similar use of modCounts in the size() and containsValue()
679 <         * methods, which are the only other methods also susceptible
680 <         * to ABA problems.
681 <         */
682 <        int[] mc = new int[segments.length];
683 <        int mcsum = 0;
684 <        for (int i = 0; i < segments.length; ++i) {
685 <            if (segments[i].count != 0)
686 <                return false;
687 <            else
688 <                mcsum += mc[i] = segments[i].modCount;
689 <        }
690 <        // If mcsum happens to be zero, then we know we got a snapshot
691 <        // before any modifications at all were made.  This is
692 <        // probably common enough to bother tracking.
693 <        if (mcsum != 0) {
694 <            for (int i = 0; i < segments.length; ++i) {
695 <                if (segments[i].count != 0 ||
696 <                    mc[i] != segments[i].modCount)
697 <                    return false;
698 <            }
699 <        }
700 <        return true;
2508 >        return sumCount() <= 0L; // ignore transient negative values
2509      }
2510  
2511      /**
2512 <     * Returns the number of key-value mappings in this map.  If the
705 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
706 <     * <tt>Integer.MAX_VALUE</tt>.
707 <     *
708 <     * @return the number of key-value mappings in this map
2512 >     * {@inheritDoc}
2513       */
2514      public int size() {
2515 <        final Segment<K,V>[] segments = this.segments;
2516 <        long sum = 0;
2517 <        long check = 0;
2518 <        int[] mc = new int[segments.length];
715 <        // Try a few times to get accurate count. On failure due to
716 <        // continuous async changes in table, resort to locking.
717 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
718 <            check = 0;
719 <            sum = 0;
720 <            int mcsum = 0;
721 <            for (int i = 0; i < segments.length; ++i) {
722 <                sum += segments[i].count;
723 <                mcsum += mc[i] = segments[i].modCount;
724 <            }
725 <            if (mcsum != 0) {
726 <                for (int i = 0; i < segments.length; ++i) {
727 <                    check += segments[i].count;
728 <                    if (mc[i] != segments[i].modCount) {
729 <                        check = -1; // force retry
730 <                        break;
731 <                    }
732 <                }
733 <            }
734 <            if (check == sum)
735 <                break;
736 <        }
737 <        if (check != sum) { // Resort to locking all segments
738 <            sum = 0;
739 <            for (int i = 0; i < segments.length; ++i)
740 <                segments[i].lock();
741 <            for (int i = 0; i < segments.length; ++i)
742 <                sum += segments[i].count;
743 <            for (int i = 0; i < segments.length; ++i)
744 <                segments[i].unlock();
745 <        }
746 <        if (sum > Integer.MAX_VALUE)
747 <            return Integer.MAX_VALUE;
748 <        else
749 <            return (int)sum;
2515 >        long n = sumCount();
2516 >        return ((n < 0L) ? 0 :
2517 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2518 >                (int)n);
2519      }
2520  
2521      /**
2522 <     * Returns the value to which this map maps the specified key, or
2523 <     * <tt>null</tt> if the map contains no mapping for the key.
2522 >     * Returns the number of mappings. This method should be used
2523 >     * instead of {@link #size} because a ConcurrentHashMap may
2524 >     * contain more mappings than can be represented as an int. The
2525 >     * value returned is an estimate; the actual count may differ if
2526 >     * there are concurrent insertions or removals.
2527 >     *
2528 >     * @return the number of mappings
2529 >     */
2530 >    public long mappingCount() {
2531 >        long n = sumCount();
2532 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2533 >    }
2534 >
2535 >    /**
2536 >     * Returns the value to which the specified key is mapped,
2537 >     * or {@code null} if this map contains no mapping for the key.
2538 >     *
2539 >     * <p>More formally, if this map contains a mapping from a key
2540 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2541 >     * then this method returns {@code v}; otherwise it returns
2542 >     * {@code null}.  (There can be at most one such mapping.)
2543       *
756     * @param key key whose associated value is to be returned
757     * @return the value to which this map maps the specified key, or
758     *         <tt>null</tt> if the map contains no mapping for the key
2544       * @throws NullPointerException if the specified key is null
2545       */
2546      public V get(Object key) {
2547 <        int hash = hash(key); // throws NullPointerException if key null
2548 <        return segmentFor(hash).get(key, hash);
2547 >        return internalGet(key);
2548 >    }
2549 >
2550 >    /**
2551 >     * Returns the value to which the specified key is mapped,
2552 >     * or the given defaultValue if this map contains no mapping for the key.
2553 >     *
2554 >     * @param key the key
2555 >     * @param defaultValue the value to return if this map contains
2556 >     * no mapping for the given key
2557 >     * @return the mapping for the key, if present; else the defaultValue
2558 >     * @throws NullPointerException if the specified key is null
2559 >     */
2560 >    public V getValueOrDefault(Object key, V defaultValue) {
2561 >        V v;
2562 >        return (v = internalGet(key)) == null ? defaultValue : v;
2563      }
2564  
2565      /**
2566       * Tests if the specified object is a key in this table.
2567       *
2568       * @param  key   possible key
2569 <     * @return <tt>true</tt> if and only if the specified object
2569 >     * @return {@code true} if and only if the specified object
2570       *         is a key in this table, as determined by the
2571 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
2571 >     *         {@code equals} method; {@code false} otherwise
2572       * @throws NullPointerException if the specified key is null
2573       */
2574      public boolean containsKey(Object key) {
2575 <        int hash = hash(key); // throws NullPointerException if key null
777 <        return segmentFor(hash).containsKey(key, hash);
2575 >        return internalGet(key) != null;
2576      }
2577  
2578      /**
2579 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2580 <     * specified value. Note: This method requires a full internal
2581 <     * traversal of the hash table, and so is much slower than
784 <     * method <tt>containsKey</tt>.
2579 >     * Returns {@code true} if this map maps one or more keys to the
2580 >     * specified value. Note: This method may require a full traversal
2581 >     * of the map, and is much slower than method {@code containsKey}.
2582       *
2583       * @param value value whose presence in this map is to be tested
2584 <     * @return <tt>true</tt> if this map maps one or more keys to the
2584 >     * @return {@code true} if this map maps one or more keys to the
2585       *         specified value
2586       * @throws NullPointerException if the specified value is null
2587       */
2588      public boolean containsValue(Object value) {
2589          if (value == null)
2590              throw new NullPointerException();
2591 <
2592 <        // See explanation of modCount use above
2593 <
2594 <        final Segment<K,V>[] segments = this.segments;
2595 <        int[] mc = new int[segments.length];
799 <
800 <        // Try a few times without locking
801 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
802 <            int sum = 0;
803 <            int mcsum = 0;
804 <            for (int i = 0; i < segments.length; ++i) {
805 <                int c = segments[i].count;
806 <                mcsum += mc[i] = segments[i].modCount;
807 <                if (segments[i].containsValue(value))
808 <                    return true;
809 <            }
810 <            boolean cleanSweep = true;
811 <            if (mcsum != 0) {
812 <                for (int i = 0; i < segments.length; ++i) {
813 <                    int c = segments[i].count;
814 <                    if (mc[i] != segments[i].modCount) {
815 <                        cleanSweep = false;
816 <                        break;
817 <                    }
818 <                }
819 <            }
820 <            if (cleanSweep)
821 <                return false;
822 <        }
823 <        // Resort to locking all segments
824 <        for (int i = 0; i < segments.length; ++i)
825 <            segments[i].lock();
826 <        boolean found = false;
827 <        try {
828 <            for (int i = 0; i < segments.length; ++i) {
829 <                if (segments[i].containsValue(value)) {
830 <                    found = true;
831 <                    break;
832 <                }
833 <            }
834 <        } finally {
835 <            for (int i = 0; i < segments.length; ++i)
836 <                segments[i].unlock();
2591 >        Object v;
2592 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2593 >        while ((v = it.advance()) != null) {
2594 >            if (v == value || value.equals(v))
2595 >                return true;
2596          }
2597 <        return found;
2597 >        return false;
2598      }
2599  
2600      /**
# Line 845 | Line 2604 | public class ConcurrentHashMap<K, V> ext
2604       * full compatibility with class {@link java.util.Hashtable},
2605       * which supported this method prior to introduction of the
2606       * Java Collections framework.
2607 <
2607 >     *
2608       * @param  value a value to search for
2609 <     * @return <tt>true</tt> if and only if some key maps to the
2610 <     *         <tt>value</tt> argument in this table as
2611 <     *         determined by the <tt>equals</tt> method;
2612 <     *         <tt>false</tt> otherwise
2609 >     * @return {@code true} if and only if some key maps to the
2610 >     *         {@code value} argument in this table as
2611 >     *         determined by the {@code equals} method;
2612 >     *         {@code false} otherwise
2613       * @throws NullPointerException if the specified value is null
2614       */
2615      public boolean contains(Object value) {
# Line 861 | Line 2620 | public class ConcurrentHashMap<K, V> ext
2620       * Maps the specified key to the specified value in this table.
2621       * Neither the key nor the value can be null.
2622       *
2623 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
2623 >     * <p>The value can be retrieved by calling the {@code get} method
2624       * with a key that is equal to the original key.
2625       *
2626       * @param key key with which the specified value is to be associated
2627       * @param value value to be associated with the specified key
2628 <     * @return the previous value associated with <tt>key</tt>, or
2629 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2628 >     * @return the previous value associated with {@code key}, or
2629 >     *         {@code null} if there was no mapping for {@code key}
2630       * @throws NullPointerException if the specified key or value is null
2631       */
2632      public V put(K key, V value) {
2633 <        if (value == null)
875 <            throw new NullPointerException();
876 <        int hash = hash(key);
877 <        return segmentFor(hash).put(key, hash, value, false);
2633 >        return internalPut(key, value, false);
2634      }
2635  
2636      /**
2637       * {@inheritDoc}
2638       *
2639       * @return the previous value associated with the specified key,
2640 <     *         or <tt>null</tt> if there was no mapping for the key
2640 >     *         or {@code null} if there was no mapping for the key
2641       * @throws NullPointerException if the specified key or value is null
2642       */
2643      public V putIfAbsent(K key, V value) {
2644 <        if (value == null)
889 <            throw new NullPointerException();
890 <        int hash = hash(key);
891 <        return segmentFor(hash).put(key, hash, value, true);
2644 >        return internalPut(key, value, true);
2645      }
2646  
2647      /**
# Line 899 | Line 2652 | public class ConcurrentHashMap<K, V> ext
2652       * @param m mappings to be stored in this map
2653       */
2654      public void putAll(Map<? extends K, ? extends V> m) {
2655 <        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) m.entrySet().iterator(); it.hasNext(); ) {
2656 <            Entry<? extends K, ? extends V> e = it.next();
2657 <            put(e.getKey(), e.getValue());
2658 <        }
2655 >        internalPutAll(m);
2656 >    }
2657 >
2658 >    /**
2659 >     * If the specified key is not already associated with a value,
2660 >     * computes its value using the given mappingFunction and enters
2661 >     * it into the map unless null.  This is equivalent to
2662 >     * <pre> {@code
2663 >     * if (map.containsKey(key))
2664 >     *   return map.get(key);
2665 >     * value = mappingFunction.apply(key);
2666 >     * if (value != null)
2667 >     *   map.put(key, value);
2668 >     * return value;}</pre>
2669 >     *
2670 >     * except that the action is performed atomically.  If the
2671 >     * function returns {@code null} no mapping is recorded. If the
2672 >     * function itself throws an (unchecked) exception, the exception
2673 >     * is rethrown to its caller, and no mapping is recorded.  Some
2674 >     * attempted update operations on this map by other threads may be
2675 >     * blocked while computation is in progress, so the computation
2676 >     * should be short and simple, and must not attempt to update any
2677 >     * other mappings of this Map. The most appropriate usage is to
2678 >     * construct a new object serving as an initial mapped value, or
2679 >     * memoized result, as in:
2680 >     *
2681 >     *  <pre> {@code
2682 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2683 >     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2684 >     *
2685 >     * @param key key with which the specified value is to be associated
2686 >     * @param mappingFunction the function to compute a value
2687 >     * @return the current (existing or computed) value associated with
2688 >     *         the specified key, or null if the computed value is null
2689 >     * @throws NullPointerException if the specified key or mappingFunction
2690 >     *         is null
2691 >     * @throws IllegalStateException if the computation detectably
2692 >     *         attempts a recursive update to this map that would
2693 >     *         otherwise never complete
2694 >     * @throws RuntimeException or Error if the mappingFunction does so,
2695 >     *         in which case the mapping is left unestablished
2696 >     */
2697 >    public V computeIfAbsent
2698 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2699 >        return internalComputeIfAbsent(key, mappingFunction);
2700 >    }
2701 >
2702 >    /**
2703 >     * If the given key is present, computes a new mapping value given a key and
2704 >     * its current mapped value. This is equivalent to
2705 >     *  <pre> {@code
2706 >     *   if (map.containsKey(key)) {
2707 >     *     value = remappingFunction.apply(key, map.get(key));
2708 >     *     if (value != null)
2709 >     *       map.put(key, value);
2710 >     *     else
2711 >     *       map.remove(key);
2712 >     *   }
2713 >     * }</pre>
2714 >     *
2715 >     * except that the action is performed atomically.  If the
2716 >     * function returns {@code null}, the mapping is removed.  If the
2717 >     * function itself throws an (unchecked) exception, the exception
2718 >     * is rethrown to its caller, and the current mapping is left
2719 >     * unchanged.  Some attempted update operations on this map by
2720 >     * other threads may be blocked while computation is in progress,
2721 >     * so the computation should be short and simple, and must not
2722 >     * attempt to update any other mappings of this Map. For example,
2723 >     * to either create or append new messages to a value mapping:
2724 >     *
2725 >     * @param key key with which the specified value is to be associated
2726 >     * @param remappingFunction the function to compute a value
2727 >     * @return the new value associated with the specified key, or null if none
2728 >     * @throws NullPointerException if the specified key or remappingFunction
2729 >     *         is null
2730 >     * @throws IllegalStateException if the computation detectably
2731 >     *         attempts a recursive update to this map that would
2732 >     *         otherwise never complete
2733 >     * @throws RuntimeException or Error if the remappingFunction does so,
2734 >     *         in which case the mapping is unchanged
2735 >     */
2736 >    public V computeIfPresent
2737 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2738 >        return internalCompute(key, true, remappingFunction);
2739 >    }
2740 >
2741 >    /**
2742 >     * Computes a new mapping value given a key and
2743 >     * its current mapped value (or {@code null} if there is no current
2744 >     * mapping). This is equivalent to
2745 >     *  <pre> {@code
2746 >     *   value = remappingFunction.apply(key, map.get(key));
2747 >     *   if (value != null)
2748 >     *     map.put(key, value);
2749 >     *   else
2750 >     *     map.remove(key);
2751 >     * }</pre>
2752 >     *
2753 >     * except that the action is performed atomically.  If the
2754 >     * function returns {@code null}, the mapping is removed.  If the
2755 >     * function itself throws an (unchecked) exception, the exception
2756 >     * is rethrown to its caller, and the current mapping is left
2757 >     * unchanged.  Some attempted update operations on this map by
2758 >     * other threads may be blocked while computation is in progress,
2759 >     * so the computation should be short and simple, and must not
2760 >     * attempt to update any other mappings of this Map. For example,
2761 >     * to either create or append new messages to a value mapping:
2762 >     *
2763 >     * <pre> {@code
2764 >     * Map<Key, String> map = ...;
2765 >     * final String msg = ...;
2766 >     * map.compute(key, new BiFun<Key, String, String>() {
2767 >     *   public String apply(Key k, String v) {
2768 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2769 >     *
2770 >     * @param key key with which the specified value is to be associated
2771 >     * @param remappingFunction the function to compute a value
2772 >     * @return the new value associated with the specified key, or null if none
2773 >     * @throws NullPointerException if the specified key or remappingFunction
2774 >     *         is null
2775 >     * @throws IllegalStateException if the computation detectably
2776 >     *         attempts a recursive update to this map that would
2777 >     *         otherwise never complete
2778 >     * @throws RuntimeException or Error if the remappingFunction does so,
2779 >     *         in which case the mapping is unchanged
2780 >     */
2781 >    public V compute
2782 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2783 >        return internalCompute(key, false, remappingFunction);
2784 >    }
2785 >
2786 >    /**
2787 >     * If the specified key is not already associated
2788 >     * with a value, associate it with the given value.
2789 >     * Otherwise, replace the value with the results of
2790 >     * the given remapping function. This is equivalent to:
2791 >     *  <pre> {@code
2792 >     *   if (!map.containsKey(key))
2793 >     *     map.put(value);
2794 >     *   else {
2795 >     *     newValue = remappingFunction.apply(map.get(key), value);
2796 >     *     if (value != null)
2797 >     *       map.put(key, value);
2798 >     *     else
2799 >     *       map.remove(key);
2800 >     *   }
2801 >     * }</pre>
2802 >     * except that the action is performed atomically.  If the
2803 >     * function returns {@code null}, the mapping is removed.  If the
2804 >     * function itself throws an (unchecked) exception, the exception
2805 >     * is rethrown to its caller, and the current mapping is left
2806 >     * unchanged.  Some attempted update operations on this map by
2807 >     * other threads may be blocked while computation is in progress,
2808 >     * so the computation should be short and simple, and must not
2809 >     * attempt to update any other mappings of this Map.
2810 >     */
2811 >    public V merge
2812 >        (K key, V value,
2813 >         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2814 >        return internalMerge(key, value, remappingFunction);
2815      }
2816  
2817      /**
# Line 910 | Line 2819 | public class ConcurrentHashMap<K, V> ext
2819       * This method does nothing if the key is not in the map.
2820       *
2821       * @param  key the key that needs to be removed
2822 <     * @return the previous value associated with <tt>key</tt>, or
2823 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
2822 >     * @return the previous value associated with {@code key}, or
2823 >     *         {@code null} if there was no mapping for {@code key}
2824       * @throws NullPointerException if the specified key is null
2825       */
2826      public V remove(Object key) {
2827 <        int hash = hash(key);
919 <        return segmentFor(hash).remove(key, hash, null);
2827 >        return internalReplace(key, null, null);
2828      }
2829  
2830      /**
# Line 925 | Line 2833 | public class ConcurrentHashMap<K, V> ext
2833       * @throws NullPointerException if the specified key is null
2834       */
2835      public boolean remove(Object key, Object value) {
2836 <        if (value == null)
929 <            return false;
930 <        int hash = hash(key);
931 <        return segmentFor(hash).remove(key, hash, value) != null;
2836 >        return value != null && internalReplace(key, null, value) != null;
2837      }
2838  
2839      /**
# Line 937 | Line 2842 | public class ConcurrentHashMap<K, V> ext
2842       * @throws NullPointerException if any of the arguments are null
2843       */
2844      public boolean replace(K key, V oldValue, V newValue) {
2845 <        if (oldValue == null || newValue == null)
2845 >        if (key == null || oldValue == null || newValue == null)
2846              throw new NullPointerException();
2847 <        int hash = hash(key);
943 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
2847 >        return internalReplace(key, newValue, oldValue) != null;
2848      }
2849  
2850      /**
2851       * {@inheritDoc}
2852       *
2853       * @return the previous value associated with the specified key,
2854 <     *         or <tt>null</tt> if there was no mapping for the key
2854 >     *         or {@code null} if there was no mapping for the key
2855       * @throws NullPointerException if the specified key or value is null
2856       */
2857      public V replace(K key, V value) {
2858 <        if (value == null)
2858 >        if (key == null || value == null)
2859              throw new NullPointerException();
2860 <        int hash = hash(key);
957 <        return segmentFor(hash).replace(key, hash, value);
2860 >        return internalReplace(key, value, null);
2861      }
2862  
2863      /**
2864       * Removes all of the mappings from this map.
2865       */
2866      public void clear() {
2867 <        for (int i = 0; i < segments.length; ++i)
965 <            segments[i].clear();
2867 >        internalClear();
2868      }
2869  
2870      /**
2871       * Returns a {@link Set} view of the keys contained in this map.
2872       * The set is backed by the map, so changes to the map are
2873 <     * reflected in the set, and vice-versa.  The set supports element
972 <     * removal, which removes the corresponding mapping from this map,
973 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
974 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
975 <     * operations.  It does not support the <tt>add</tt> or
976 <     * <tt>addAll</tt> operations.
2873 >     * reflected in the set, and vice-versa.
2874       *
2875 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
979 <     * that will never throw {@link ConcurrentModificationException},
980 <     * and guarantees to traverse elements as they existed upon
981 <     * construction of the iterator, and may (but is not guaranteed to)
982 <     * reflect any modifications subsequent to construction.
2875 >     * @return the set view
2876       */
2877 <    public Set<K> keySet() {
2878 <        Set<K> ks = keySet;
2879 <        return (ks != null) ? ks : (keySet = new KeySet());
2877 >    public KeySetView<K,V> keySet() {
2878 >        KeySetView<K,V> ks = keySet;
2879 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2880 >    }
2881 >
2882 >    /**
2883 >     * Returns a {@link Set} view of the keys in this map, using the
2884 >     * given common mapped value for any additions (i.e., {@link
2885 >     * Collection#add} and {@link Collection#addAll}). This is of
2886 >     * course only appropriate if it is acceptable to use the same
2887 >     * value for all additions from this view.
2888 >     *
2889 >     * @param mappedValue the mapped value to use for any
2890 >     * additions.
2891 >     * @return the set view
2892 >     * @throws NullPointerException if the mappedValue is null
2893 >     */
2894 >    public KeySetView<K,V> keySet(V mappedValue) {
2895 >        if (mappedValue == null)
2896 >            throw new NullPointerException();
2897 >        return new KeySetView<K,V>(this, mappedValue);
2898      }
2899  
2900      /**
2901       * Returns a {@link Collection} view of the values contained in this map.
2902       * The collection is backed by the map, so changes to the map are
2903 <     * reflected in the collection, and vice-versa.  The collection
993 <     * supports element removal, which removes the corresponding
994 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
995 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
996 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
997 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
998 <     *
999 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1000 <     * that will never throw {@link ConcurrentModificationException},
1001 <     * and guarantees to traverse elements as they existed upon
1002 <     * construction of the iterator, and may (but is not guaranteed to)
1003 <     * reflect any modifications subsequent to construction.
2903 >     * reflected in the collection, and vice-versa.
2904       */
2905 <    public Collection<V> values() {
2906 <        Collection<V> vs = values;
2907 <        return (vs != null) ? vs : (values = new Values());
2905 >    public ValuesView<K,V> values() {
2906 >        ValuesView<K,V> vs = values;
2907 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2908      }
2909  
2910      /**
# Line 1012 | Line 2912 | public class ConcurrentHashMap<K, V> ext
2912       * The set is backed by the map, so changes to the map are
2913       * reflected in the set, and vice-versa.  The set supports element
2914       * removal, which removes the corresponding mapping from the map,
2915 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2916 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2917 <     * operations.  It does not support the <tt>add</tt> or
2918 <     * <tt>addAll</tt> operations.
2915 >     * via the {@code Iterator.remove}, {@code Set.remove},
2916 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2917 >     * operations.  It does not support the {@code add} or
2918 >     * {@code addAll} operations.
2919       *
2920 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2920 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2921       * that will never throw {@link ConcurrentModificationException},
2922       * and guarantees to traverse elements as they existed upon
2923       * construction of the iterator, and may (but is not guaranteed to)
2924       * reflect any modifications subsequent to construction.
2925       */
2926      public Set<Map.Entry<K,V>> entrySet() {
2927 <        Set<Map.Entry<K,V>> es = entrySet;
2928 <        return (es != null) ? es : (entrySet = new EntrySet());
2927 >        EntrySetView<K,V> es = entrySet;
2928 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2929      }
2930  
2931      /**
2932       * Returns an enumeration of the keys in this table.
2933       *
2934       * @return an enumeration of the keys in this table
2935 <     * @see #keySet
2935 >     * @see #keySet()
2936       */
2937      public Enumeration<K> keys() {
2938 <        return new KeyIterator();
2938 >        return new KeyIterator<K,V>(this);
2939      }
2940  
2941      /**
2942       * Returns an enumeration of the values in this table.
2943       *
2944       * @return an enumeration of the values in this table
2945 <     * @see #values
2945 >     * @see #values()
2946       */
2947      public Enumeration<V> elements() {
2948 <        return new ValueIterator();
2948 >        return new ValueIterator<K,V>(this);
2949      }
2950  
2951 <    /* ---------------- Iterator Support -------------- */
2952 <
2953 <    abstract class HashIterator {
2954 <        int nextSegmentIndex;
2955 <        int nextTableIndex;
2956 <        HashEntry<K,V>[] currentTable;
2957 <        HashEntry<K, V> nextEntry;
2958 <        HashEntry<K, V> lastReturned;
2951 >    /**
2952 >     * Returns a partitionable iterator of the keys in this map.
2953 >     *
2954 >     * @return a partitionable iterator of the keys in this map
2955 >     */
2956 >    public Spliterator<K> keySpliterator() {
2957 >        return new KeyIterator<K,V>(this);
2958 >    }
2959  
2960 <        HashIterator() {
2961 <            nextSegmentIndex = segments.length - 1;
2962 <            nextTableIndex = -1;
2963 <            advance();
2964 <        }
2960 >    /**
2961 >     * Returns a partitionable iterator of the values in this map.
2962 >     *
2963 >     * @return a partitionable iterator of the values in this map
2964 >     */
2965 >    public Spliterator<V> valueSpliterator() {
2966 >        return new ValueIterator<K,V>(this);
2967 >    }
2968  
2969 <        public boolean hasMoreElements() { return hasNext(); }
2969 >    /**
2970 >     * Returns a partitionable iterator of the entries in this map.
2971 >     *
2972 >     * @return a partitionable iterator of the entries in this map
2973 >     */
2974 >    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2975 >        return new EntryIterator<K,V>(this);
2976 >    }
2977  
2978 <        final void advance() {
2979 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
2980 <                return;
2978 >    /**
2979 >     * Returns the hash code value for this {@link Map}, i.e.,
2980 >     * the sum of, for each key-value pair in the map,
2981 >     * {@code key.hashCode() ^ value.hashCode()}.
2982 >     *
2983 >     * @return the hash code value for this map
2984 >     */
2985 >    public int hashCode() {
2986 >        int h = 0;
2987 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2988 >        Object v;
2989 >        while ((v = it.advance()) != null) {
2990 >            h += it.nextKey.hashCode() ^ v.hashCode();
2991 >        }
2992 >        return h;
2993 >    }
2994  
2995 <            while (nextTableIndex >= 0) {
2996 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
2997 <                    return;
2995 >    /**
2996 >     * Returns a string representation of this map.  The string
2997 >     * representation consists of a list of key-value mappings (in no
2998 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
2999 >     * mappings are separated by the characters {@code ", "} (comma
3000 >     * and space).  Each key-value mapping is rendered as the key
3001 >     * followed by an equals sign ("{@code =}") followed by the
3002 >     * associated value.
3003 >     *
3004 >     * @return a string representation of this map
3005 >     */
3006 >    public String toString() {
3007 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3008 >        StringBuilder sb = new StringBuilder();
3009 >        sb.append('{');
3010 >        Object v;
3011 >        if ((v = it.advance()) != null) {
3012 >            for (;;) {
3013 >                Object k = it.nextKey;
3014 >                sb.append(k == this ? "(this Map)" : k);
3015 >                sb.append('=');
3016 >                sb.append(v == this ? "(this Map)" : v);
3017 >                if ((v = it.advance()) == null)
3018 >                    break;
3019 >                sb.append(',').append(' ');
3020              }
3021 +        }
3022 +        return sb.append('}').toString();
3023 +    }
3024  
3025 <            while (nextSegmentIndex >= 0) {
3026 <                Segment<K,V> seg = segments[nextSegmentIndex--];
3027 <                if (seg.count != 0) {
3028 <                    currentTable = seg.table;
3029 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
3030 <                        if ( (nextEntry = currentTable[j]) != null) {
3031 <                            nextTableIndex = j - 1;
3032 <                            return;
3033 <                        }
3034 <                    }
3035 <                }
3025 >    /**
3026 >     * Compares the specified object with this map for equality.
3027 >     * Returns {@code true} if the given object is a map with the same
3028 >     * mappings as this map.  This operation may return misleading
3029 >     * results if either map is concurrently modified during execution
3030 >     * of this method.
3031 >     *
3032 >     * @param o object to be compared for equality with this map
3033 >     * @return {@code true} if the specified object is equal to this map
3034 >     */
3035 >    public boolean equals(Object o) {
3036 >        if (o != this) {
3037 >            if (!(o instanceof Map))
3038 >                return false;
3039 >            Map<?,?> m = (Map<?,?>) o;
3040 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3041 >            Object val;
3042 >            while ((val = it.advance()) != null) {
3043 >                Object v = m.get(it.nextKey);
3044 >                if (v == null || (v != val && !v.equals(val)))
3045 >                    return false;
3046 >            }
3047 >            for (Map.Entry<?,?> e : m.entrySet()) {
3048 >                Object mk, mv, v;
3049 >                if ((mk = e.getKey()) == null ||
3050 >                    (mv = e.getValue()) == null ||
3051 >                    (v = internalGet(mk)) == null ||
3052 >                    (mv != v && !mv.equals(v)))
3053 >                    return false;
3054              }
3055          }
3056 +        return true;
3057 +    }
3058  
3059 <        public boolean hasNext() { return nextEntry != null; }
3059 >    /* ----------------Iterators -------------- */
3060  
3061 <        HashEntry<K,V> nextEntry() {
3062 <            if (nextEntry == null)
3061 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3062 >        extends Traverser<K,V,Object>
3063 >        implements Spliterator<K>, Enumeration<K> {
3064 >        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3065 >        KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3066 >            super(map, it, -1);
3067 >        }
3068 >        public KeyIterator<K,V> split() {
3069 >            if (nextKey != null)
3070 >                throw new IllegalStateException();
3071 >            return new KeyIterator<K,V>(map, this);
3072 >        }
3073 >        @SuppressWarnings("unchecked") public final K next() {
3074 >            if (nextVal == null && advance() == null)
3075                  throw new NoSuchElementException();
3076 <            lastReturned = nextEntry;
3077 <            advance();
3078 <            return lastReturned;
3076 >            Object k = nextKey;
3077 >            nextVal = null;
3078 >            return (K) k;
3079          }
3080  
3081 <        public void remove() {
3082 <            if (lastReturned == null)
3081 >        public final K nextElement() { return next(); }
3082 >    }
3083 >
3084 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3085 >        extends Traverser<K,V,Object>
3086 >        implements Spliterator<V>, Enumeration<V> {
3087 >        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3088 >        ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3089 >            super(map, it, -1);
3090 >        }
3091 >        public ValueIterator<K,V> split() {
3092 >            if (nextKey != null)
3093                  throw new IllegalStateException();
3094 <            ConcurrentHashMap.this.remove(lastReturned.key);
1105 <            lastReturned = null;
3094 >            return new ValueIterator<K,V>(map, this);
3095          }
1107    }
3096  
3097 <    final class KeyIterator
3098 <        extends HashIterator
3099 <        implements Iterator<K>, Enumeration<K>
3100 <    {
3101 <        public K next()        { return super.nextEntry().key; }
3102 <        public K nextElement() { return super.nextEntry().key; }
3097 >        @SuppressWarnings("unchecked") public final V next() {
3098 >            Object v;
3099 >            if ((v = nextVal) == null && (v = advance()) == null)
3100 >                throw new NoSuchElementException();
3101 >            nextVal = null;
3102 >            return (V) v;
3103 >        }
3104 >
3105 >        public final V nextElement() { return next(); }
3106      }
3107  
3108 <    final class ValueIterator
3109 <        extends HashIterator
3110 <        implements Iterator<V>, Enumeration<V>
3111 <    {
3112 <        public V next()        { return super.nextEntry().value; }
3113 <        public V nextElement() { return super.nextEntry().value; }
3108 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3109 >        extends Traverser<K,V,Object>
3110 >        implements Spliterator<Map.Entry<K,V>> {
3111 >        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3112 >        EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3113 >            super(map, it, -1);
3114 >        }
3115 >        public EntryIterator<K,V> split() {
3116 >            if (nextKey != null)
3117 >                throw new IllegalStateException();
3118 >            return new EntryIterator<K,V>(map, this);
3119 >        }
3120 >
3121 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3122 >            Object v;
3123 >            if ((v = nextVal) == null && (v = advance()) == null)
3124 >                throw new NoSuchElementException();
3125 >            Object k = nextKey;
3126 >            nextVal = null;
3127 >            return new MapEntry<K,V>((K)k, (V)v, map);
3128 >        }
3129      }
3130  
3131      /**
3132 <     * Custom Entry class used by EntryIterator.next(), that relays
1127 <     * setValue changes to the underlying map.
3132 >     * Exported Entry for iterators
3133       */
3134 <    final class WriteThroughEntry
3135 <        extends AbstractMap.SimpleEntry<K,V>
3136 <    {
3137 <        WriteThroughEntry(K k, V v) {
3138 <            super(k,v);
3134 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3135 >        final K key; // non-null
3136 >        V val;       // non-null
3137 >        final ConcurrentHashMap<K, V> map;
3138 >        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3139 >            this.key = key;
3140 >            this.val = val;
3141 >            this.map = map;
3142 >        }
3143 >        public final K getKey()       { return key; }
3144 >        public final V getValue()     { return val; }
3145 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3146 >        public final String toString(){ return key + "=" + val; }
3147 >
3148 >        public final boolean equals(Object o) {
3149 >            Object k, v; Map.Entry<?,?> e;
3150 >            return ((o instanceof Map.Entry) &&
3151 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3152 >                    (v = e.getValue()) != null &&
3153 >                    (k == key || k.equals(key)) &&
3154 >                    (v == val || v.equals(val)));
3155          }
3156  
3157          /**
3158 <         * Set our entry's value and write through to the map. The
3159 <         * value to return is somewhat arbitrary here. Since a
3160 <         * WriteThroughEntry does not necessarily track asynchronous
3161 <         * changes, the most recent "previous" value could be
3162 <         * different from what we return (or could even have been
3163 <         * removed in which case the put will re-establish). We do not
1143 <         * and cannot guarantee more.
3158 >         * Sets our entry's value and writes through to the map. The
3159 >         * value to return is somewhat arbitrary here. Since we do not
3160 >         * necessarily track asynchronous changes, the most recent
3161 >         * "previous" value could be different from what we return (or
3162 >         * could even have been removed in which case the put will
3163 >         * re-establish). We do not and cannot guarantee more.
3164           */
3165 <        public V setValue(V value) {
3165 >        public final V setValue(V value) {
3166              if (value == null) throw new NullPointerException();
3167 <            V v = super.setValue(value);
3168 <            ConcurrentHashMap.this.put(getKey(), value);
3167 >            V v = val;
3168 >            val = value;
3169 >            map.put(key, value);
3170              return v;
3171          }
3172      }
3173  
3174 <    final class EntryIterator
3175 <        extends HashIterator
3176 <        implements Iterator<Entry<K,V>>
3177 <    {
3178 <        public Map.Entry<K,V> next() {
3179 <            HashEntry<K,V> e = super.nextEntry();
3180 <            return new WriteThroughEntry(e.key, e.value);
3174 >    /**
3175 >     * Returns exportable snapshot entry for the given key and value
3176 >     * when write-through can't or shouldn't be used.
3177 >     */
3178 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3179 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3180 >    }
3181 >
3182 >    /* ---------------- Serialization Support -------------- */
3183 >
3184 >    /**
3185 >     * Stripped-down version of helper class used in previous version,
3186 >     * declared for the sake of serialization compatibility
3187 >     */
3188 >    static class Segment<K,V> implements Serializable {
3189 >        private static final long serialVersionUID = 2249069246763182397L;
3190 >        final float loadFactor;
3191 >        Segment(float lf) { this.loadFactor = lf; }
3192 >    }
3193 >
3194 >    /**
3195 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3196 >     * stream (i.e., serializes it).
3197 >     * @param s the stream
3198 >     * @serialData
3199 >     * the key (Object) and value (Object)
3200 >     * for each key-value mapping, followed by a null pair.
3201 >     * The key-value mappings are emitted in no particular order.
3202 >     */
3203 >    @SuppressWarnings("unchecked") private void writeObject
3204 >        (java.io.ObjectOutputStream s)
3205 >        throws java.io.IOException {
3206 >        if (segments == null) { // for serialization compatibility
3207 >            segments = (Segment<K,V>[])
3208 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3209 >            for (int i = 0; i < segments.length; ++i)
3210 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3211          }
3212 +        s.defaultWriteObject();
3213 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3214 +        Object v;
3215 +        while ((v = it.advance()) != null) {
3216 +            s.writeObject(it.nextKey);
3217 +            s.writeObject(v);
3218 +        }
3219 +        s.writeObject(null);
3220 +        s.writeObject(null);
3221 +        segments = null; // throw away
3222      }
3223  
3224 <    final class KeySet extends AbstractSet<K> {
3225 <        public Iterator<K> iterator() {
3226 <            return new KeyIterator();
3224 >    /**
3225 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3226 >     * @param s the stream
3227 >     */
3228 >    @SuppressWarnings("unchecked") private void readObject
3229 >        (java.io.ObjectInputStream s)
3230 >        throws java.io.IOException, ClassNotFoundException {
3231 >        s.defaultReadObject();
3232 >        this.segments = null; // unneeded
3233 >
3234 >        // Create all nodes, then place in table once size is known
3235 >        long size = 0L;
3236 >        Node p = null;
3237 >        for (;;) {
3238 >            K k = (K) s.readObject();
3239 >            V v = (V) s.readObject();
3240 >            if (k != null && v != null) {
3241 >                int h = spread(k.hashCode());
3242 >                p = new Node(h, k, v, p);
3243 >                ++size;
3244 >            }
3245 >            else
3246 >                break;
3247          }
3248 <        public int size() {
3249 <            return ConcurrentHashMap.this.size();
3248 >        if (p != null) {
3249 >            boolean init = false;
3250 >            int n;
3251 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3252 >                n = MAXIMUM_CAPACITY;
3253 >            else {
3254 >                int sz = (int)size;
3255 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3256 >            }
3257 >            int sc = sizeCtl;
3258 >            boolean collide = false;
3259 >            if (n > sc &&
3260 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3261 >                try {
3262 >                    if (table == null) {
3263 >                        init = true;
3264 >                        Node[] tab = new Node[n];
3265 >                        int mask = n - 1;
3266 >                        while (p != null) {
3267 >                            int j = p.hash & mask;
3268 >                            Node next = p.next;
3269 >                            Node q = p.next = tabAt(tab, j);
3270 >                            setTabAt(tab, j, p);
3271 >                            if (!collide && q != null && q.hash == p.hash)
3272 >                                collide = true;
3273 >                            p = next;
3274 >                        }
3275 >                        table = tab;
3276 >                        addCount(size, -1);
3277 >                        sc = n - (n >>> 2);
3278 >                    }
3279 >                } finally {
3280 >                    sizeCtl = sc;
3281 >                }
3282 >                if (collide) { // rescan and convert to TreeBins
3283 >                    Node[] tab = table;
3284 >                    for (int i = 0; i < tab.length; ++i) {
3285 >                        int c = 0;
3286 >                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3287 >                            if (++c > TREE_THRESHOLD &&
3288 >                                (e.key instanceof Comparable)) {
3289 >                                replaceWithTreeBin(tab, i, e.key);
3290 >                                break;
3291 >                            }
3292 >                        }
3293 >                    }
3294 >                }
3295 >            }
3296 >            if (!init) { // Can only happen if unsafely published.
3297 >                while (p != null) {
3298 >                    internalPut((K)p.key, (V)p.val, false);
3299 >                    p = p.next;
3300 >                }
3301 >            }
3302          }
3303 <        public boolean contains(Object o) {
3304 <            return ConcurrentHashMap.this.containsKey(o);
3303 >    }
3304 >
3305 >    // -------------------------------------------------------
3306 >
3307 >    // Sams
3308 >    /** Interface describing a void action of one argument */
3309 >    public interface Action<A> { void apply(A a); }
3310 >    /** Interface describing a void action of two arguments */
3311 >    public interface BiAction<A,B> { void apply(A a, B b); }
3312 >    /** Interface describing a function of one argument */
3313 >    public interface Fun<A,T> { T apply(A a); }
3314 >    /** Interface describing a function of two arguments */
3315 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
3316 >    /** Interface describing a function of no arguments */
3317 >    public interface Generator<T> { T apply(); }
3318 >    /** Interface describing a function mapping its argument to a double */
3319 >    public interface ObjectToDouble<A> { double apply(A a); }
3320 >    /** Interface describing a function mapping its argument to a long */
3321 >    public interface ObjectToLong<A> { long apply(A a); }
3322 >    /** Interface describing a function mapping its argument to an int */
3323 >    public interface ObjectToInt<A> {int apply(A a); }
3324 >    /** Interface describing a function mapping two arguments to a double */
3325 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3326 >    /** Interface describing a function mapping two arguments to a long */
3327 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3328 >    /** Interface describing a function mapping two arguments to an int */
3329 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3330 >    /** Interface describing a function mapping a double to a double */
3331 >    public interface DoubleToDouble { double apply(double a); }
3332 >    /** Interface describing a function mapping a long to a long */
3333 >    public interface LongToLong { long apply(long a); }
3334 >    /** Interface describing a function mapping an int to an int */
3335 >    public interface IntToInt { int apply(int a); }
3336 >    /** Interface describing a function mapping two doubles to a double */
3337 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3338 >    /** Interface describing a function mapping two longs to a long */
3339 >    public interface LongByLongToLong { long apply(long a, long b); }
3340 >    /** Interface describing a function mapping two ints to an int */
3341 >    public interface IntByIntToInt { int apply(int a, int b); }
3342 >
3343 >
3344 >    // -------------------------------------------------------
3345 >
3346 >    /**
3347 >     * Performs the given action for each (key, value).
3348 >     *
3349 >     * @param action the action
3350 >     */
3351 >    public void forEach(BiAction<K,V> action) {
3352 >        ForkJoinTasks.forEach
3353 >            (this, action).invoke();
3354 >    }
3355 >
3356 >    /**
3357 >     * Performs the given action for each non-null transformation
3358 >     * of each (key, value).
3359 >     *
3360 >     * @param transformer a function returning the transformation
3361 >     * for an element, or null of there is no transformation (in
3362 >     * which case the action is not applied).
3363 >     * @param action the action
3364 >     */
3365 >    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3366 >                            Action<U> action) {
3367 >        ForkJoinTasks.forEach
3368 >            (this, transformer, action).invoke();
3369 >    }
3370 >
3371 >    /**
3372 >     * Returns a non-null result from applying the given search
3373 >     * function on each (key, value), or null if none.  Upon
3374 >     * success, further element processing is suppressed and the
3375 >     * results of any other parallel invocations of the search
3376 >     * function are ignored.
3377 >     *
3378 >     * @param searchFunction a function returning a non-null
3379 >     * result on success, else null
3380 >     * @return a non-null result from applying the given search
3381 >     * function on each (key, value), or null if none
3382 >     */
3383 >    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3384 >        return ForkJoinTasks.search
3385 >            (this, searchFunction).invoke();
3386 >    }
3387 >
3388 >    /**
3389 >     * Returns the result of accumulating the given transformation
3390 >     * of all (key, value) pairs using the given reducer to
3391 >     * combine values, or null if none.
3392 >     *
3393 >     * @param transformer a function returning the transformation
3394 >     * for an element, or null of there is no transformation (in
3395 >     * which case it is not combined).
3396 >     * @param reducer a commutative associative combining function
3397 >     * @return the result of accumulating the given transformation
3398 >     * of all (key, value) pairs
3399 >     */
3400 >    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3401 >                        BiFun<? super U, ? super U, ? extends U> reducer) {
3402 >        return ForkJoinTasks.reduce
3403 >            (this, transformer, reducer).invoke();
3404 >    }
3405 >
3406 >    /**
3407 >     * Returns the result of accumulating the given transformation
3408 >     * of all (key, value) pairs using the given reducer to
3409 >     * combine values, and the given basis as an identity value.
3410 >     *
3411 >     * @param transformer a function returning the transformation
3412 >     * for an element
3413 >     * @param basis the identity (initial default value) for the reduction
3414 >     * @param reducer a commutative associative combining function
3415 >     * @return the result of accumulating the given transformation
3416 >     * of all (key, value) pairs
3417 >     */
3418 >    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3419 >                                 double basis,
3420 >                                 DoubleByDoubleToDouble reducer) {
3421 >        return ForkJoinTasks.reduceToDouble
3422 >            (this, transformer, basis, reducer).invoke();
3423 >    }
3424 >
3425 >    /**
3426 >     * Returns the result of accumulating the given transformation
3427 >     * of all (key, value) pairs using the given reducer to
3428 >     * combine values, and the given basis as an identity value.
3429 >     *
3430 >     * @param transformer a function returning the transformation
3431 >     * for an element
3432 >     * @param basis the identity (initial default value) for the reduction
3433 >     * @param reducer a commutative associative combining function
3434 >     * @return the result of accumulating the given transformation
3435 >     * of all (key, value) pairs
3436 >     */
3437 >    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3438 >                             long basis,
3439 >                             LongByLongToLong reducer) {
3440 >        return ForkJoinTasks.reduceToLong
3441 >            (this, transformer, basis, reducer).invoke();
3442 >    }
3443 >
3444 >    /**
3445 >     * Returns the result of accumulating the given transformation
3446 >     * of all (key, value) pairs using the given reducer to
3447 >     * combine values, and the given basis as an identity value.
3448 >     *
3449 >     * @param transformer a function returning the transformation
3450 >     * for an element
3451 >     * @param basis the identity (initial default value) for the reduction
3452 >     * @param reducer a commutative associative combining function
3453 >     * @return the result of accumulating the given transformation
3454 >     * of all (key, value) pairs
3455 >     */
3456 >    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3457 >                           int basis,
3458 >                           IntByIntToInt reducer) {
3459 >        return ForkJoinTasks.reduceToInt
3460 >            (this, transformer, basis, reducer).invoke();
3461 >    }
3462 >
3463 >    /**
3464 >     * Performs the given action for each key.
3465 >     *
3466 >     * @param action the action
3467 >     */
3468 >    public void forEachKey(Action<K> action) {
3469 >        ForkJoinTasks.forEachKey
3470 >            (this, action).invoke();
3471 >    }
3472 >
3473 >    /**
3474 >     * Performs the given action for each non-null transformation
3475 >     * of each key.
3476 >     *
3477 >     * @param transformer a function returning the transformation
3478 >     * for an element, or null of there is no transformation (in
3479 >     * which case the action is not applied).
3480 >     * @param action the action
3481 >     */
3482 >    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3483 >                               Action<U> action) {
3484 >        ForkJoinTasks.forEachKey
3485 >            (this, transformer, action).invoke();
3486 >    }
3487 >
3488 >    /**
3489 >     * Returns a non-null result from applying the given search
3490 >     * function on each key, or null if none. Upon success,
3491 >     * further element processing is suppressed and the results of
3492 >     * any other parallel invocations of the search function are
3493 >     * ignored.
3494 >     *
3495 >     * @param searchFunction a function returning a non-null
3496 >     * result on success, else null
3497 >     * @return a non-null result from applying the given search
3498 >     * function on each key, or null if none
3499 >     */
3500 >    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3501 >        return ForkJoinTasks.searchKeys
3502 >            (this, searchFunction).invoke();
3503 >    }
3504 >
3505 >    /**
3506 >     * Returns the result of accumulating all keys using the given
3507 >     * reducer to combine values, or null if none.
3508 >     *
3509 >     * @param reducer a commutative associative combining function
3510 >     * @return the result of accumulating all keys using the given
3511 >     * reducer to combine values, or null if none
3512 >     */
3513 >    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3514 >        return ForkJoinTasks.reduceKeys
3515 >            (this, reducer).invoke();
3516 >    }
3517 >
3518 >    /**
3519 >     * Returns the result of accumulating the given transformation
3520 >     * of all keys using the given reducer to combine values, or
3521 >     * null if none.
3522 >     *
3523 >     * @param transformer a function returning the transformation
3524 >     * for an element, or null of there is no transformation (in
3525 >     * which case it is not combined).
3526 >     * @param reducer a commutative associative combining function
3527 >     * @return the result of accumulating the given transformation
3528 >     * of all keys
3529 >     */
3530 >    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3531 >                            BiFun<? super U, ? super U, ? extends U> reducer) {
3532 >        return ForkJoinTasks.reduceKeys
3533 >            (this, transformer, reducer).invoke();
3534 >    }
3535 >
3536 >    /**
3537 >     * Returns the result of accumulating the given transformation
3538 >     * of all keys using the given reducer to combine values, and
3539 >     * the given basis as an identity value.
3540 >     *
3541 >     * @param transformer a function returning the transformation
3542 >     * for an element
3543 >     * @param basis the identity (initial default value) for the reduction
3544 >     * @param reducer a commutative associative combining function
3545 >     * @return  the result of accumulating the given transformation
3546 >     * of all keys
3547 >     */
3548 >    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3549 >                                     double basis,
3550 >                                     DoubleByDoubleToDouble reducer) {
3551 >        return ForkJoinTasks.reduceKeysToDouble
3552 >            (this, transformer, basis, reducer).invoke();
3553 >    }
3554 >
3555 >    /**
3556 >     * Returns the result of accumulating the given transformation
3557 >     * of all keys using the given reducer to combine values, and
3558 >     * the given basis as an identity value.
3559 >     *
3560 >     * @param transformer a function returning the transformation
3561 >     * for an element
3562 >     * @param basis the identity (initial default value) for the reduction
3563 >     * @param reducer a commutative associative combining function
3564 >     * @return the result of accumulating the given transformation
3565 >     * of all keys
3566 >     */
3567 >    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3568 >                                 long basis,
3569 >                                 LongByLongToLong reducer) {
3570 >        return ForkJoinTasks.reduceKeysToLong
3571 >            (this, transformer, basis, reducer).invoke();
3572 >    }
3573 >
3574 >    /**
3575 >     * Returns the result of accumulating the given transformation
3576 >     * of all keys using the given reducer to combine values, and
3577 >     * the given basis as an identity value.
3578 >     *
3579 >     * @param transformer a function returning the transformation
3580 >     * for an element
3581 >     * @param basis the identity (initial default value) for the reduction
3582 >     * @param reducer a commutative associative combining function
3583 >     * @return the result of accumulating the given transformation
3584 >     * of all keys
3585 >     */
3586 >    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3587 >                               int basis,
3588 >                               IntByIntToInt reducer) {
3589 >        return ForkJoinTasks.reduceKeysToInt
3590 >            (this, transformer, basis, reducer).invoke();
3591 >    }
3592 >
3593 >    /**
3594 >     * Performs the given action for each value.
3595 >     *
3596 >     * @param action the action
3597 >     */
3598 >    public void forEachValue(Action<V> action) {
3599 >        ForkJoinTasks.forEachValue
3600 >            (this, action).invoke();
3601 >    }
3602 >
3603 >    /**
3604 >     * Performs the given action for each non-null transformation
3605 >     * of each value.
3606 >     *
3607 >     * @param transformer a function returning the transformation
3608 >     * for an element, or null of there is no transformation (in
3609 >     * which case the action is not applied).
3610 >     */
3611 >    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3612 >                                 Action<U> action) {
3613 >        ForkJoinTasks.forEachValue
3614 >            (this, transformer, action).invoke();
3615 >    }
3616 >
3617 >    /**
3618 >     * Returns a non-null result from applying the given search
3619 >     * function on each value, or null if none.  Upon success,
3620 >     * further element processing is suppressed and the results of
3621 >     * any other parallel invocations of the search function are
3622 >     * ignored.
3623 >     *
3624 >     * @param searchFunction a function returning a non-null
3625 >     * result on success, else null
3626 >     * @return a non-null result from applying the given search
3627 >     * function on each value, or null if none
3628 >     *
3629 >     */
3630 >    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3631 >        return ForkJoinTasks.searchValues
3632 >            (this, searchFunction).invoke();
3633 >    }
3634 >
3635 >    /**
3636 >     * Returns the result of accumulating all values using the
3637 >     * given reducer to combine values, or null if none.
3638 >     *
3639 >     * @param reducer a commutative associative combining function
3640 >     * @return  the result of accumulating all values
3641 >     */
3642 >    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3643 >        return ForkJoinTasks.reduceValues
3644 >            (this, reducer).invoke();
3645 >    }
3646 >
3647 >    /**
3648 >     * Returns the result of accumulating the given transformation
3649 >     * of all values using the given reducer to combine values, or
3650 >     * null if none.
3651 >     *
3652 >     * @param transformer a function returning the transformation
3653 >     * for an element, or null of there is no transformation (in
3654 >     * which case it is not combined).
3655 >     * @param reducer a commutative associative combining function
3656 >     * @return the result of accumulating the given transformation
3657 >     * of all values
3658 >     */
3659 >    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3660 >                              BiFun<? super U, ? super U, ? extends U> reducer) {
3661 >        return ForkJoinTasks.reduceValues
3662 >            (this, transformer, reducer).invoke();
3663 >    }
3664 >
3665 >    /**
3666 >     * Returns the result of accumulating the given transformation
3667 >     * of all values using the given reducer to combine values,
3668 >     * and the given basis as an identity value.
3669 >     *
3670 >     * @param transformer a function returning the transformation
3671 >     * for an element
3672 >     * @param basis the identity (initial default value) for the reduction
3673 >     * @param reducer a commutative associative combining function
3674 >     * @return the result of accumulating the given transformation
3675 >     * of all values
3676 >     */
3677 >    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3678 >                                       double basis,
3679 >                                       DoubleByDoubleToDouble reducer) {
3680 >        return ForkJoinTasks.reduceValuesToDouble
3681 >            (this, transformer, basis, reducer).invoke();
3682 >    }
3683 >
3684 >    /**
3685 >     * Returns the result of accumulating the given transformation
3686 >     * of all values using the given reducer to combine values,
3687 >     * and the given basis as an identity value.
3688 >     *
3689 >     * @param transformer a function returning the transformation
3690 >     * for an element
3691 >     * @param basis the identity (initial default value) for the reduction
3692 >     * @param reducer a commutative associative combining function
3693 >     * @return the result of accumulating the given transformation
3694 >     * of all values
3695 >     */
3696 >    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3697 >                                   long basis,
3698 >                                   LongByLongToLong reducer) {
3699 >        return ForkJoinTasks.reduceValuesToLong
3700 >            (this, transformer, basis, reducer).invoke();
3701 >    }
3702 >
3703 >    /**
3704 >     * Returns the result of accumulating the given transformation
3705 >     * of all values using the given reducer to combine values,
3706 >     * and the given basis as an identity value.
3707 >     *
3708 >     * @param transformer a function returning the transformation
3709 >     * for an element
3710 >     * @param basis the identity (initial default value) for the reduction
3711 >     * @param reducer a commutative associative combining function
3712 >     * @return the result of accumulating the given transformation
3713 >     * of all values
3714 >     */
3715 >    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3716 >                                 int basis,
3717 >                                 IntByIntToInt reducer) {
3718 >        return ForkJoinTasks.reduceValuesToInt
3719 >            (this, transformer, basis, reducer).invoke();
3720 >    }
3721 >
3722 >    /**
3723 >     * Performs the given action for each entry.
3724 >     *
3725 >     * @param action the action
3726 >     */
3727 >    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3728 >        ForkJoinTasks.forEachEntry
3729 >            (this, action).invoke();
3730 >    }
3731 >
3732 >    /**
3733 >     * Performs the given action for each non-null transformation
3734 >     * of each entry.
3735 >     *
3736 >     * @param transformer a function returning the transformation
3737 >     * for an element, or null of there is no transformation (in
3738 >     * which case the action is not applied).
3739 >     * @param action the action
3740 >     */
3741 >    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3742 >                                 Action<U> action) {
3743 >        ForkJoinTasks.forEachEntry
3744 >            (this, transformer, action).invoke();
3745 >    }
3746 >
3747 >    /**
3748 >     * Returns a non-null result from applying the given search
3749 >     * function on each entry, or null if none.  Upon success,
3750 >     * further element processing is suppressed and the results of
3751 >     * any other parallel invocations of the search function are
3752 >     * ignored.
3753 >     *
3754 >     * @param searchFunction a function returning a non-null
3755 >     * result on success, else null
3756 >     * @return a non-null result from applying the given search
3757 >     * function on each entry, or null if none
3758 >     */
3759 >    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3760 >        return ForkJoinTasks.searchEntries
3761 >            (this, searchFunction).invoke();
3762 >    }
3763 >
3764 >    /**
3765 >     * Returns the result of accumulating all entries using the
3766 >     * given reducer to combine values, or null if none.
3767 >     *
3768 >     * @param reducer a commutative associative combining function
3769 >     * @return the result of accumulating all entries
3770 >     */
3771 >    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3772 >        return ForkJoinTasks.reduceEntries
3773 >            (this, reducer).invoke();
3774 >    }
3775 >
3776 >    /**
3777 >     * Returns the result of accumulating the given transformation
3778 >     * of all entries using the given reducer to combine values,
3779 >     * or null if none.
3780 >     *
3781 >     * @param transformer a function returning the transformation
3782 >     * for an element, or null of there is no transformation (in
3783 >     * which case it is not combined).
3784 >     * @param reducer a commutative associative combining function
3785 >     * @return the result of accumulating the given transformation
3786 >     * of all entries
3787 >     */
3788 >    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3789 >                               BiFun<? super U, ? super U, ? extends U> reducer) {
3790 >        return ForkJoinTasks.reduceEntries
3791 >            (this, transformer, reducer).invoke();
3792 >    }
3793 >
3794 >    /**
3795 >     * Returns the result of accumulating the given transformation
3796 >     * of all entries using the given reducer to combine values,
3797 >     * and the given basis as an identity value.
3798 >     *
3799 >     * @param transformer a function returning the transformation
3800 >     * for an element
3801 >     * @param basis the identity (initial default value) for the reduction
3802 >     * @param reducer a commutative associative combining function
3803 >     * @return the result of accumulating the given transformation
3804 >     * of all entries
3805 >     */
3806 >    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3807 >                                        double basis,
3808 >                                        DoubleByDoubleToDouble reducer) {
3809 >        return ForkJoinTasks.reduceEntriesToDouble
3810 >            (this, transformer, basis, reducer).invoke();
3811 >    }
3812 >
3813 >    /**
3814 >     * Returns the result of accumulating the given transformation
3815 >     * of all entries using the given reducer to combine values,
3816 >     * and the given basis as an identity value.
3817 >     *
3818 >     * @param transformer a function returning the transformation
3819 >     * for an element
3820 >     * @param basis the identity (initial default value) for the reduction
3821 >     * @param reducer a commutative associative combining function
3822 >     * @return  the result of accumulating the given transformation
3823 >     * of all entries
3824 >     */
3825 >    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3826 >                                    long basis,
3827 >                                    LongByLongToLong reducer) {
3828 >        return ForkJoinTasks.reduceEntriesToLong
3829 >            (this, transformer, basis, reducer).invoke();
3830 >    }
3831 >
3832 >    /**
3833 >     * Returns the result of accumulating the given transformation
3834 >     * of all entries using the given reducer to combine values,
3835 >     * and the given basis as an identity value.
3836 >     *
3837 >     * @param transformer a function returning the transformation
3838 >     * for an element
3839 >     * @param basis the identity (initial default value) for the reduction
3840 >     * @param reducer a commutative associative combining function
3841 >     * @return the result of accumulating the given transformation
3842 >     * of all entries
3843 >     */
3844 >    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3845 >                                  int basis,
3846 >                                  IntByIntToInt reducer) {
3847 >        return ForkJoinTasks.reduceEntriesToInt
3848 >            (this, transformer, basis, reducer).invoke();
3849 >    }
3850 >
3851 >    /* ----------------Views -------------- */
3852 >
3853 >    /**
3854 >     * Base class for views.
3855 >     */
3856 >    static abstract class CHMView<K, V> {
3857 >        final ConcurrentHashMap<K, V> map;
3858 >        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
3859 >
3860 >        /**
3861 >         * Returns the map backing this view.
3862 >         *
3863 >         * @return the map backing this view
3864 >         */
3865 >        public ConcurrentHashMap<K,V> getMap() { return map; }
3866 >
3867 >        public final int size()                 { return map.size(); }
3868 >        public final boolean isEmpty()          { return map.isEmpty(); }
3869 >        public final void clear()               { map.clear(); }
3870 >
3871 >        // implementations below rely on concrete classes supplying these
3872 >        abstract public Iterator<?> iterator();
3873 >        abstract public boolean contains(Object o);
3874 >        abstract public boolean remove(Object o);
3875 >
3876 >        private static final String oomeMsg = "Required array size too large";
3877 >
3878 >        public final Object[] toArray() {
3879 >            long sz = map.mappingCount();
3880 >            if (sz > (long)(MAX_ARRAY_SIZE))
3881 >                throw new OutOfMemoryError(oomeMsg);
3882 >            int n = (int)sz;
3883 >            Object[] r = new Object[n];
3884 >            int i = 0;
3885 >            Iterator<?> it = iterator();
3886 >            while (it.hasNext()) {
3887 >                if (i == n) {
3888 >                    if (n >= MAX_ARRAY_SIZE)
3889 >                        throw new OutOfMemoryError(oomeMsg);
3890 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3891 >                        n = MAX_ARRAY_SIZE;
3892 >                    else
3893 >                        n += (n >>> 1) + 1;
3894 >                    r = Arrays.copyOf(r, n);
3895 >                }
3896 >                r[i++] = it.next();
3897 >            }
3898 >            return (i == n) ? r : Arrays.copyOf(r, i);
3899 >        }
3900 >
3901 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3902 >            long sz = map.mappingCount();
3903 >            if (sz > (long)(MAX_ARRAY_SIZE))
3904 >                throw new OutOfMemoryError(oomeMsg);
3905 >            int m = (int)sz;
3906 >            T[] r = (a.length >= m) ? a :
3907 >                (T[])java.lang.reflect.Array
3908 >                .newInstance(a.getClass().getComponentType(), m);
3909 >            int n = r.length;
3910 >            int i = 0;
3911 >            Iterator<?> it = iterator();
3912 >            while (it.hasNext()) {
3913 >                if (i == n) {
3914 >                    if (n >= MAX_ARRAY_SIZE)
3915 >                        throw new OutOfMemoryError(oomeMsg);
3916 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3917 >                        n = MAX_ARRAY_SIZE;
3918 >                    else
3919 >                        n += (n >>> 1) + 1;
3920 >                    r = Arrays.copyOf(r, n);
3921 >                }
3922 >                r[i++] = (T)it.next();
3923 >            }
3924 >            if (a == r && i < n) {
3925 >                r[i] = null; // null-terminate
3926 >                return r;
3927 >            }
3928 >            return (i == n) ? r : Arrays.copyOf(r, i);
3929 >        }
3930 >
3931 >        public final int hashCode() {
3932 >            int h = 0;
3933 >            for (Iterator<?> it = iterator(); it.hasNext();)
3934 >                h += it.next().hashCode();
3935 >            return h;
3936 >        }
3937 >
3938 >        public final String toString() {
3939 >            StringBuilder sb = new StringBuilder();
3940 >            sb.append('[');
3941 >            Iterator<?> it = iterator();
3942 >            if (it.hasNext()) {
3943 >                for (;;) {
3944 >                    Object e = it.next();
3945 >                    sb.append(e == this ? "(this Collection)" : e);
3946 >                    if (!it.hasNext())
3947 >                        break;
3948 >                    sb.append(',').append(' ');
3949 >                }
3950 >            }
3951 >            return sb.append(']').toString();
3952 >        }
3953 >
3954 >        public final boolean containsAll(Collection<?> c) {
3955 >            if (c != this) {
3956 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3957 >                    Object e = it.next();
3958 >                    if (e == null || !contains(e))
3959 >                        return false;
3960 >                }
3961 >            }
3962 >            return true;
3963 >        }
3964 >
3965 >        public final boolean removeAll(Collection<?> c) {
3966 >            boolean modified = false;
3967 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3968 >                if (c.contains(it.next())) {
3969 >                    it.remove();
3970 >                    modified = true;
3971 >                }
3972 >            }
3973 >            return modified;
3974 >        }
3975 >
3976 >        public final boolean retainAll(Collection<?> c) {
3977 >            boolean modified = false;
3978 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3979 >                if (!c.contains(it.next())) {
3980 >                    it.remove();
3981 >                    modified = true;
3982 >                }
3983 >            }
3984 >            return modified;
3985 >        }
3986 >
3987 >    }
3988 >
3989 >    /**
3990 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
3991 >     * which additions may optionally be enabled by mapping to a
3992 >     * common value.  This class cannot be directly instantiated. See
3993 >     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
3994 >     * {@link #newKeySet(int)}.
3995 >     */
3996 >    public static class KeySetView<K,V> extends CHMView<K,V>
3997 >        implements Set<K>, java.io.Serializable {
3998 >        private static final long serialVersionUID = 7249069246763182397L;
3999 >        private final V value;
4000 >        KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
4001 >            super(map);
4002 >            this.value = value;
4003 >        }
4004 >
4005 >        /**
4006 >         * Returns the default mapped value for additions,
4007 >         * or {@code null} if additions are not supported.
4008 >         *
4009 >         * @return the default mapped value for additions, or {@code null}
4010 >         * if not supported.
4011 >         */
4012 >        public V getMappedValue() { return value; }
4013 >
4014 >        // implement Set API
4015 >
4016 >        public boolean contains(Object o) { return map.containsKey(o); }
4017 >        public boolean remove(Object o)   { return map.remove(o) != null; }
4018 >
4019 >        /**
4020 >         * Returns a "weakly consistent" iterator that will never
4021 >         * throw {@link ConcurrentModificationException}, and
4022 >         * guarantees to traverse elements as they existed upon
4023 >         * construction of the iterator, and may (but is not
4024 >         * guaranteed to) reflect any modifications subsequent to
4025 >         * construction.
4026 >         *
4027 >         * @return an iterator over the keys of this map
4028 >         */
4029 >        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4030 >        public boolean add(K e) {
4031 >            V v;
4032 >            if ((v = value) == null)
4033 >                throw new UnsupportedOperationException();
4034 >            if (e == null)
4035 >                throw new NullPointerException();
4036 >            return map.internalPut(e, v, true) == null;
4037 >        }
4038 >        public boolean addAll(Collection<? extends K> c) {
4039 >            boolean added = false;
4040 >            V v;
4041 >            if ((v = value) == null)
4042 >                throw new UnsupportedOperationException();
4043 >            for (K e : c) {
4044 >                if (e == null)
4045 >                    throw new NullPointerException();
4046 >                if (map.internalPut(e, v, true) == null)
4047 >                    added = true;
4048 >            }
4049 >            return added;
4050          }
4051 <        public boolean remove(Object o) {
4052 <            return ConcurrentHashMap.this.remove(o) != null;
4051 >        public boolean equals(Object o) {
4052 >            Set<?> c;
4053 >            return ((o instanceof Set) &&
4054 >                    ((c = (Set<?>)o) == this ||
4055 >                     (containsAll(c) && c.containsAll(this))));
4056          }
4057 <        public void clear() {
4058 <            ConcurrentHashMap.this.clear();
4057 >
4058 >        /**
4059 >         * Performs the given action for each key.
4060 >         *
4061 >         * @param action the action
4062 >         */
4063 >        public void forEach(Action<K> action) {
4064 >            ForkJoinTasks.forEachKey
4065 >                (map, action).invoke();
4066          }
4067 <        public Object[] toArray() {
4068 <            Collection<K> c = new ArrayList<K>(size());
4069 <            for (K k : this)
4070 <                c.add(k);
4071 <            return c.toArray();
4067 >
4068 >        /**
4069 >         * Performs the given action for each non-null transformation
4070 >         * of each key.
4071 >         *
4072 >         * @param transformer a function returning the transformation
4073 >         * for an element, or null of there is no transformation (in
4074 >         * which case the action is not applied).
4075 >         * @param action the action
4076 >         */
4077 >        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4078 >                                Action<U> action) {
4079 >            ForkJoinTasks.forEachKey
4080 >                (map, transformer, action).invoke();
4081          }
4082 <        public <T> T[] toArray(T[] a) {
4083 <            Collection<K> c = new ArrayList<K>();
4084 <            for (K k : this)
4085 <                c.add(k);
4086 <            return c.toArray(a);
4082 >
4083 >        /**
4084 >         * Returns a non-null result from applying the given search
4085 >         * function on each key, or null if none. Upon success,
4086 >         * further element processing is suppressed and the results of
4087 >         * any other parallel invocations of the search function are
4088 >         * ignored.
4089 >         *
4090 >         * @param searchFunction a function returning a non-null
4091 >         * result on success, else null
4092 >         * @return a non-null result from applying the given search
4093 >         * function on each key, or null if none
4094 >         */
4095 >        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4096 >            return ForkJoinTasks.searchKeys
4097 >                (map, searchFunction).invoke();
4098 >        }
4099 >
4100 >        /**
4101 >         * Returns the result of accumulating all keys using the given
4102 >         * reducer to combine values, or null if none.
4103 >         *
4104 >         * @param reducer a commutative associative combining function
4105 >         * @return the result of accumulating all keys using the given
4106 >         * reducer to combine values, or null if none
4107 >         */
4108 >        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4109 >            return ForkJoinTasks.reduceKeys
4110 >                (map, reducer).invoke();
4111 >        }
4112 >
4113 >        /**
4114 >         * Returns the result of accumulating the given transformation
4115 >         * of all keys using the given reducer to combine values, and
4116 >         * the given basis as an identity value.
4117 >         *
4118 >         * @param transformer a function returning the transformation
4119 >         * for an element
4120 >         * @param basis the identity (initial default value) for the reduction
4121 >         * @param reducer a commutative associative combining function
4122 >         * @return  the result of accumulating the given transformation
4123 >         * of all keys
4124 >         */
4125 >        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4126 >                                     double basis,
4127 >                                     DoubleByDoubleToDouble reducer) {
4128 >            return ForkJoinTasks.reduceKeysToDouble
4129 >                (map, transformer, basis, reducer).invoke();
4130 >        }
4131 >
4132 >        /**
4133 >         * Returns the result of accumulating the given transformation
4134 >         * of all keys using the given reducer to combine values, and
4135 >         * the given basis as an identity value.
4136 >         *
4137 >         * @param transformer a function returning the transformation
4138 >         * for an element
4139 >         * @param basis the identity (initial default value) for the reduction
4140 >         * @param reducer a commutative associative combining function
4141 >         * @return the result of accumulating the given transformation
4142 >         * of all keys
4143 >         */
4144 >        public long reduceToLong(ObjectToLong<? super K> transformer,
4145 >                                 long basis,
4146 >                                 LongByLongToLong reducer) {
4147 >            return ForkJoinTasks.reduceKeysToLong
4148 >                (map, transformer, basis, reducer).invoke();
4149 >        }
4150 >
4151 >        /**
4152 >         * Returns the result of accumulating the given transformation
4153 >         * of all keys using the given reducer to combine values, and
4154 >         * the given basis as an identity value.
4155 >         *
4156 >         * @param transformer a function returning the transformation
4157 >         * for an element
4158 >         * @param basis the identity (initial default value) for the reduction
4159 >         * @param reducer a commutative associative combining function
4160 >         * @return the result of accumulating the given transformation
4161 >         * of all keys
4162 >         */
4163 >        public int reduceToInt(ObjectToInt<? super K> transformer,
4164 >                               int basis,
4165 >                               IntByIntToInt reducer) {
4166 >            return ForkJoinTasks.reduceKeysToInt
4167 >                (map, transformer, basis, reducer).invoke();
4168          }
4169 +
4170      }
4171  
4172 <    final class Values extends AbstractCollection<V> {
4173 <        public Iterator<V> iterator() {
4174 <            return new ValueIterator();
4172 >    /**
4173 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4174 >     * values, in which additions are disabled. This class cannot be
4175 >     * directly instantiated. See {@link #values},
4176 >     *
4177 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4178 >     * that will never throw {@link ConcurrentModificationException},
4179 >     * and guarantees to traverse elements as they existed upon
4180 >     * construction of the iterator, and may (but is not guaranteed to)
4181 >     * reflect any modifications subsequent to construction.
4182 >     */
4183 >    public static final class ValuesView<K,V> extends CHMView<K,V>
4184 >        implements Collection<V> {
4185 >        ValuesView(ConcurrentHashMap<K, V> map)   { super(map); }
4186 >        public final boolean contains(Object o) { return map.containsValue(o); }
4187 >        public final boolean remove(Object o) {
4188 >            if (o != null) {
4189 >                Iterator<V> it = new ValueIterator<K,V>(map);
4190 >                while (it.hasNext()) {
4191 >                    if (o.equals(it.next())) {
4192 >                        it.remove();
4193 >                        return true;
4194 >                    }
4195 >                }
4196 >            }
4197 >            return false;
4198 >        }
4199 >
4200 >        /**
4201 >         * Returns a "weakly consistent" iterator that will never
4202 >         * throw {@link ConcurrentModificationException}, and
4203 >         * guarantees to traverse elements as they existed upon
4204 >         * construction of the iterator, and may (but is not
4205 >         * guaranteed to) reflect any modifications subsequent to
4206 >         * construction.
4207 >         *
4208 >         * @return an iterator over the values of this map
4209 >         */
4210 >        public final Iterator<V> iterator() {
4211 >            return new ValueIterator<K,V>(map);
4212          }
4213 <        public int size() {
4214 <            return ConcurrentHashMap.this.size();
4213 >        public final boolean add(V e) {
4214 >            throw new UnsupportedOperationException();
4215          }
4216 <        public boolean contains(Object o) {
4217 <            return ConcurrentHashMap.this.containsValue(o);
4216 >        public final boolean addAll(Collection<? extends V> c) {
4217 >            throw new UnsupportedOperationException();
4218 >        }
4219 >
4220 >        /**
4221 >         * Performs the given action for each value.
4222 >         *
4223 >         * @param action the action
4224 >         */
4225 >        public void forEach(Action<V> action) {
4226 >            ForkJoinTasks.forEachValue
4227 >                (map, action).invoke();
4228 >        }
4229 >
4230 >        /**
4231 >         * Performs the given action for each non-null transformation
4232 >         * of each value.
4233 >         *
4234 >         * @param transformer a function returning the transformation
4235 >         * for an element, or null of there is no transformation (in
4236 >         * which case the action is not applied).
4237 >         */
4238 >        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4239 >                                     Action<U> action) {
4240 >            ForkJoinTasks.forEachValue
4241 >                (map, transformer, action).invoke();
4242 >        }
4243 >
4244 >        /**
4245 >         * Returns a non-null result from applying the given search
4246 >         * function on each value, or null if none.  Upon success,
4247 >         * further element processing is suppressed and the results of
4248 >         * any other parallel invocations of the search function are
4249 >         * ignored.
4250 >         *
4251 >         * @param searchFunction a function returning a non-null
4252 >         * result on success, else null
4253 >         * @return a non-null result from applying the given search
4254 >         * function on each value, or null if none
4255 >         *
4256 >         */
4257 >        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4258 >            return ForkJoinTasks.searchValues
4259 >                (map, searchFunction).invoke();
4260 >        }
4261 >
4262 >        /**
4263 >         * Returns the result of accumulating all values using the
4264 >         * given reducer to combine values, or null if none.
4265 >         *
4266 >         * @param reducer a commutative associative combining function
4267 >         * @return  the result of accumulating all values
4268 >         */
4269 >        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4270 >            return ForkJoinTasks.reduceValues
4271 >                (map, reducer).invoke();
4272 >        }
4273 >
4274 >        /**
4275 >         * Returns the result of accumulating the given transformation
4276 >         * of all values using the given reducer to combine values, or
4277 >         * null if none.
4278 >         *
4279 >         * @param transformer a function returning the transformation
4280 >         * for an element, or null of there is no transformation (in
4281 >         * which case it is not combined).
4282 >         * @param reducer a commutative associative combining function
4283 >         * @return the result of accumulating the given transformation
4284 >         * of all values
4285 >         */
4286 >        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4287 >                            BiFun<? super U, ? super U, ? extends U> reducer) {
4288 >            return ForkJoinTasks.reduceValues
4289 >                (map, transformer, reducer).invoke();
4290          }
4291 <        public void clear() {
4292 <            ConcurrentHashMap.this.clear();
4291 >
4292 >        /**
4293 >         * Returns the result of accumulating the given transformation
4294 >         * of all values using the given reducer to combine values,
4295 >         * and the given basis as an identity value.
4296 >         *
4297 >         * @param transformer a function returning the transformation
4298 >         * for an element
4299 >         * @param basis the identity (initial default value) for the reduction
4300 >         * @param reducer a commutative associative combining function
4301 >         * @return the result of accumulating the given transformation
4302 >         * of all values
4303 >         */
4304 >        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4305 >                                     double basis,
4306 >                                     DoubleByDoubleToDouble reducer) {
4307 >            return ForkJoinTasks.reduceValuesToDouble
4308 >                (map, transformer, basis, reducer).invoke();
4309          }
4310 <        public Object[] toArray() {
4311 <            Collection<V> c = new ArrayList<V>(size());
4312 <            for (V v : this)
4313 <                c.add(v);
4314 <            return c.toArray();
4310 >
4311 >        /**
4312 >         * Returns the result of accumulating the given transformation
4313 >         * of all values using the given reducer to combine values,
4314 >         * and the given basis as an identity value.
4315 >         *
4316 >         * @param transformer a function returning the transformation
4317 >         * for an element
4318 >         * @param basis the identity (initial default value) for the reduction
4319 >         * @param reducer a commutative associative combining function
4320 >         * @return the result of accumulating the given transformation
4321 >         * of all values
4322 >         */
4323 >        public long reduceToLong(ObjectToLong<? super V> transformer,
4324 >                                 long basis,
4325 >                                 LongByLongToLong reducer) {
4326 >            return ForkJoinTasks.reduceValuesToLong
4327 >                (map, transformer, basis, reducer).invoke();
4328          }
4329 <        public <T> T[] toArray(T[] a) {
4330 <            Collection<V> c = new ArrayList<V>(size());
4331 <            for (V v : this)
4332 <                c.add(v);
4333 <            return c.toArray(a);
4329 >
4330 >        /**
4331 >         * Returns the result of accumulating the given transformation
4332 >         * of all values using the given reducer to combine values,
4333 >         * and the given basis as an identity value.
4334 >         *
4335 >         * @param transformer a function returning the transformation
4336 >         * for an element
4337 >         * @param basis the identity (initial default value) for the reduction
4338 >         * @param reducer a commutative associative combining function
4339 >         * @return the result of accumulating the given transformation
4340 >         * of all values
4341 >         */
4342 >        public int reduceToInt(ObjectToInt<? super V> transformer,
4343 >                               int basis,
4344 >                               IntByIntToInt reducer) {
4345 >            return ForkJoinTasks.reduceValuesToInt
4346 >                (map, transformer, basis, reducer).invoke();
4347          }
4348 +
4349      }
4350  
4351 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4352 <        public Iterator<Map.Entry<K,V>> iterator() {
4353 <            return new EntryIterator();
4351 >    /**
4352 >     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4353 >     * entries.  This class cannot be directly instantiated. See
4354 >     * {@link #entrySet}.
4355 >     */
4356 >    public static final class EntrySetView<K,V> extends CHMView<K,V>
4357 >        implements Set<Map.Entry<K,V>> {
4358 >        EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4359 >        public final boolean contains(Object o) {
4360 >            Object k, v, r; Map.Entry<?,?> e;
4361 >            return ((o instanceof Map.Entry) &&
4362 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4363 >                    (r = map.get(k)) != null &&
4364 >                    (v = e.getValue()) != null &&
4365 >                    (v == r || v.equals(r)));
4366 >        }
4367 >        public final boolean remove(Object o) {
4368 >            Object k, v; Map.Entry<?,?> e;
4369 >            return ((o instanceof Map.Entry) &&
4370 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4371 >                    (v = e.getValue()) != null &&
4372 >                    map.remove(k, v));
4373          }
4374 <        public boolean contains(Object o) {
4375 <            if (!(o instanceof Map.Entry))
4376 <                return false;
4377 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4378 <            V v = ConcurrentHashMap.this.get(e.getKey());
4379 <            return v != null && v.equals(e.getValue());
4374 >
4375 >        /**
4376 >         * Returns a "weakly consistent" iterator that will never
4377 >         * throw {@link ConcurrentModificationException}, and
4378 >         * guarantees to traverse elements as they existed upon
4379 >         * construction of the iterator, and may (but is not
4380 >         * guaranteed to) reflect any modifications subsequent to
4381 >         * construction.
4382 >         *
4383 >         * @return an iterator over the entries of this map
4384 >         */
4385 >        public final Iterator<Map.Entry<K,V>> iterator() {
4386 >            return new EntryIterator<K,V>(map);
4387          }
4388 <        public boolean remove(Object o) {
4389 <            if (!(o instanceof Map.Entry))
4390 <                return false;
4391 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4392 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4388 >
4389 >        public final boolean add(Entry<K,V> e) {
4390 >            K key = e.getKey();
4391 >            V value = e.getValue();
4392 >            if (key == null || value == null)
4393 >                throw new NullPointerException();
4394 >            return map.internalPut(key, value, false) == null;
4395 >        }
4396 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4397 >            boolean added = false;
4398 >            for (Entry<K,V> e : c) {
4399 >                if (add(e))
4400 >                    added = true;
4401 >            }
4402 >            return added;
4403 >        }
4404 >        public boolean equals(Object o) {
4405 >            Set<?> c;
4406 >            return ((o instanceof Set) &&
4407 >                    ((c = (Set<?>)o) == this ||
4408 >                     (containsAll(c) && c.containsAll(this))));
4409 >        }
4410 >
4411 >        /**
4412 >         * Performs the given action for each entry.
4413 >         *
4414 >         * @param action the action
4415 >         */
4416 >        public void forEach(Action<Map.Entry<K,V>> action) {
4417 >            ForkJoinTasks.forEachEntry
4418 >                (map, action).invoke();
4419 >        }
4420 >
4421 >        /**
4422 >         * Performs the given action for each non-null transformation
4423 >         * of each entry.
4424 >         *
4425 >         * @param transformer a function returning the transformation
4426 >         * for an element, or null of there is no transformation (in
4427 >         * which case the action is not applied).
4428 >         * @param action the action
4429 >         */
4430 >        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4431 >                                Action<U> action) {
4432 >            ForkJoinTasks.forEachEntry
4433 >                (map, transformer, action).invoke();
4434 >        }
4435 >
4436 >        /**
4437 >         * Returns a non-null result from applying the given search
4438 >         * function on each entry, or null if none.  Upon success,
4439 >         * further element processing is suppressed and the results of
4440 >         * any other parallel invocations of the search function are
4441 >         * ignored.
4442 >         *
4443 >         * @param searchFunction a function returning a non-null
4444 >         * result on success, else null
4445 >         * @return a non-null result from applying the given search
4446 >         * function on each entry, or null if none
4447 >         */
4448 >        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4449 >            return ForkJoinTasks.searchEntries
4450 >                (map, searchFunction).invoke();
4451 >        }
4452 >
4453 >        /**
4454 >         * Returns the result of accumulating all entries using the
4455 >         * given reducer to combine values, or null if none.
4456 >         *
4457 >         * @param reducer a commutative associative combining function
4458 >         * @return the result of accumulating all entries
4459 >         */
4460 >        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4461 >            return ForkJoinTasks.reduceEntries
4462 >                (map, reducer).invoke();
4463          }
4464 <        public int size() {
4465 <            return ConcurrentHashMap.this.size();
4464 >
4465 >        /**
4466 >         * Returns the result of accumulating the given transformation
4467 >         * of all entries using the given reducer to combine values,
4468 >         * or null if none.
4469 >         *
4470 >         * @param transformer a function returning the transformation
4471 >         * for an element, or null of there is no transformation (in
4472 >         * which case it is not combined).
4473 >         * @param reducer a commutative associative combining function
4474 >         * @return the result of accumulating the given transformation
4475 >         * of all entries
4476 >         */
4477 >        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4478 >                            BiFun<? super U, ? super U, ? extends U> reducer) {
4479 >            return ForkJoinTasks.reduceEntries
4480 >                (map, transformer, reducer).invoke();
4481 >        }
4482 >
4483 >        /**
4484 >         * Returns the result of accumulating the given transformation
4485 >         * of all entries using the given reducer to combine values,
4486 >         * and the given basis as an identity value.
4487 >         *
4488 >         * @param transformer a function returning the transformation
4489 >         * for an element
4490 >         * @param basis the identity (initial default value) for the reduction
4491 >         * @param reducer a commutative associative combining function
4492 >         * @return the result of accumulating the given transformation
4493 >         * of all entries
4494 >         */
4495 >        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4496 >                                     double basis,
4497 >                                     DoubleByDoubleToDouble reducer) {
4498 >            return ForkJoinTasks.reduceEntriesToDouble
4499 >                (map, transformer, basis, reducer).invoke();
4500          }
4501 <        public void clear() {
4502 <            ConcurrentHashMap.this.clear();
4501 >
4502 >        /**
4503 >         * Returns the result of accumulating the given transformation
4504 >         * of all entries using the given reducer to combine values,
4505 >         * and the given basis as an identity value.
4506 >         *
4507 >         * @param transformer a function returning the transformation
4508 >         * for an element
4509 >         * @param basis the identity (initial default value) for the reduction
4510 >         * @param reducer a commutative associative combining function
4511 >         * @return  the result of accumulating the given transformation
4512 >         * of all entries
4513 >         */
4514 >        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4515 >                                 long basis,
4516 >                                 LongByLongToLong reducer) {
4517 >            return ForkJoinTasks.reduceEntriesToLong
4518 >                (map, transformer, basis, reducer).invoke();
4519          }
4520 <        public Object[] toArray() {
4521 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4522 <            for (Map.Entry<K,V> e : this)
4523 <                c.add(e);
4524 <            return c.toArray();
4525 <        }
4526 <        public <T> T[] toArray(T[] a) {
4527 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4528 <            for (Map.Entry<K,V> e : this)
4529 <                c.add(e);
4530 <            return c.toArray(a);
4520 >
4521 >        /**
4522 >         * Returns the result of accumulating the given transformation
4523 >         * of all entries using the given reducer to combine values,
4524 >         * and the given basis as an identity value.
4525 >         *
4526 >         * @param transformer a function returning the transformation
4527 >         * for an element
4528 >         * @param basis the identity (initial default value) for the reduction
4529 >         * @param reducer a commutative associative combining function
4530 >         * @return the result of accumulating the given transformation
4531 >         * of all entries
4532 >         */
4533 >        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4534 >                               int basis,
4535 >                               IntByIntToInt reducer) {
4536 >            return ForkJoinTasks.reduceEntriesToInt
4537 >                (map, transformer, basis, reducer).invoke();
4538          }
4539  
4540      }
4541  
4542 <    /* ---------------- Serialization Support -------------- */
4542 >    // ---------------------------------------------------------------------
4543  
4544      /**
4545 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
4546 <     * stream (i.e., serialize it).
4547 <     * @param s the stream
4548 <     * @serialData
4549 <     * the key (Object) and value (Object)
4550 <     * for each key-value mapping, followed by a null pair.
4551 <     * The key-value mappings are emitted in no particular order.
4545 >     * Predefined tasks for performing bulk parallel operations on
4546 >     * ConcurrentHashMaps. These tasks follow the forms and rules used
4547 >     * for bulk operations. Each method has the same name, but returns
4548 >     * a task rather than invoking it. These methods may be useful in
4549 >     * custom applications such as submitting a task without waiting
4550 >     * for completion, using a custom pool, or combining with other
4551 >     * tasks.
4552       */
4553 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
4554 <        s.defaultWriteObject();
4553 >    public static class ForkJoinTasks {
4554 >        private ForkJoinTasks() {}
4555  
4556 <        for (int k = 0; k < segments.length; ++k) {
4557 <            Segment<K,V> seg = segments[k];
4558 <            seg.lock();
4559 <            try {
4560 <                HashEntry<K,V>[] tab = seg.table;
4561 <                for (int i = 0; i < tab.length; ++i) {
4562 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
4563 <                        s.writeObject(e.key);
4564 <                        s.writeObject(e.value);
4556 >        /**
4557 >         * Returns a task that when invoked, performs the given
4558 >         * action for each (key, value)
4559 >         *
4560 >         * @param map the map
4561 >         * @param action the action
4562 >         * @return the task
4563 >         */
4564 >        public static <K,V> ForkJoinTask<Void> forEach
4565 >            (ConcurrentHashMap<K,V> map,
4566 >             BiAction<K,V> action) {
4567 >            if (action == null) throw new NullPointerException();
4568 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4569 >        }
4570 >
4571 >        /**
4572 >         * Returns a task that when invoked, performs the given
4573 >         * action for each non-null transformation of each (key, value)
4574 >         *
4575 >         * @param map the map
4576 >         * @param transformer a function returning the transformation
4577 >         * for an element, or null if there is no transformation (in
4578 >         * which case the action is not applied)
4579 >         * @param action the action
4580 >         * @return the task
4581 >         */
4582 >        public static <K,V,U> ForkJoinTask<Void> forEach
4583 >            (ConcurrentHashMap<K,V> map,
4584 >             BiFun<? super K, ? super V, ? extends U> transformer,
4585 >             Action<U> action) {
4586 >            if (transformer == null || action == null)
4587 >                throw new NullPointerException();
4588 >            return new ForEachTransformedMappingTask<K,V,U>
4589 >                (map, null, -1, transformer, action);
4590 >        }
4591 >
4592 >        /**
4593 >         * Returns a task that when invoked, returns a non-null result
4594 >         * from applying the given search function on each (key,
4595 >         * value), or null if none. Upon success, further element
4596 >         * processing is suppressed and the results of any other
4597 >         * parallel invocations of the search function are ignored.
4598 >         *
4599 >         * @param map the map
4600 >         * @param searchFunction a function returning a non-null
4601 >         * result on success, else null
4602 >         * @return the task
4603 >         */
4604 >        public static <K,V,U> ForkJoinTask<U> search
4605 >            (ConcurrentHashMap<K,V> map,
4606 >             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4607 >            if (searchFunction == null) throw new NullPointerException();
4608 >            return new SearchMappingsTask<K,V,U>
4609 >                (map, null, -1, searchFunction,
4610 >                 new AtomicReference<U>());
4611 >        }
4612 >
4613 >        /**
4614 >         * Returns a task that when invoked, returns the result of
4615 >         * accumulating the given transformation of all (key, value) pairs
4616 >         * using the given reducer to combine values, or null if none.
4617 >         *
4618 >         * @param map the map
4619 >         * @param transformer a function returning the transformation
4620 >         * for an element, or null if there is no transformation (in
4621 >         * which case it is not combined).
4622 >         * @param reducer a commutative associative combining function
4623 >         * @return the task
4624 >         */
4625 >        public static <K,V,U> ForkJoinTask<U> reduce
4626 >            (ConcurrentHashMap<K,V> map,
4627 >             BiFun<? super K, ? super V, ? extends U> transformer,
4628 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4629 >            if (transformer == null || reducer == null)
4630 >                throw new NullPointerException();
4631 >            return new MapReduceMappingsTask<K,V,U>
4632 >                (map, null, -1, null, transformer, reducer);
4633 >        }
4634 >
4635 >        /**
4636 >         * Returns a task that when invoked, returns the result of
4637 >         * accumulating the given transformation of all (key, value) pairs
4638 >         * using the given reducer to combine values, and the given
4639 >         * basis as an identity value.
4640 >         *
4641 >         * @param map the map
4642 >         * @param transformer a function returning the transformation
4643 >         * for an element
4644 >         * @param basis the identity (initial default value) for the reduction
4645 >         * @param reducer a commutative associative combining function
4646 >         * @return the task
4647 >         */
4648 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
4649 >            (ConcurrentHashMap<K,V> map,
4650 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
4651 >             double basis,
4652 >             DoubleByDoubleToDouble reducer) {
4653 >            if (transformer == null || reducer == null)
4654 >                throw new NullPointerException();
4655 >            return new MapReduceMappingsToDoubleTask<K,V>
4656 >                (map, null, -1, null, transformer, basis, reducer);
4657 >        }
4658 >
4659 >        /**
4660 >         * Returns a task that when invoked, returns the result of
4661 >         * accumulating the given transformation of all (key, value) pairs
4662 >         * using the given reducer to combine values, and the given
4663 >         * basis as an identity value.
4664 >         *
4665 >         * @param map the map
4666 >         * @param transformer a function returning the transformation
4667 >         * for an element
4668 >         * @param basis the identity (initial default value) for the reduction
4669 >         * @param reducer a commutative associative combining function
4670 >         * @return the task
4671 >         */
4672 >        public static <K,V> ForkJoinTask<Long> reduceToLong
4673 >            (ConcurrentHashMap<K,V> map,
4674 >             ObjectByObjectToLong<? super K, ? super V> transformer,
4675 >             long basis,
4676 >             LongByLongToLong reducer) {
4677 >            if (transformer == null || reducer == null)
4678 >                throw new NullPointerException();
4679 >            return new MapReduceMappingsToLongTask<K,V>
4680 >                (map, null, -1, null, transformer, basis, reducer);
4681 >        }
4682 >
4683 >        /**
4684 >         * Returns a task that when invoked, returns the result of
4685 >         * accumulating the given transformation of all (key, value) pairs
4686 >         * using the given reducer to combine values, and the given
4687 >         * basis as an identity value.
4688 >         *
4689 >         * @param transformer a function returning the transformation
4690 >         * for an element
4691 >         * @param basis the identity (initial default value) for the reduction
4692 >         * @param reducer a commutative associative combining function
4693 >         * @return the task
4694 >         */
4695 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
4696 >            (ConcurrentHashMap<K,V> map,
4697 >             ObjectByObjectToInt<? super K, ? super V> transformer,
4698 >             int basis,
4699 >             IntByIntToInt reducer) {
4700 >            if (transformer == null || reducer == null)
4701 >                throw new NullPointerException();
4702 >            return new MapReduceMappingsToIntTask<K,V>
4703 >                (map, null, -1, null, transformer, basis, reducer);
4704 >        }
4705 >
4706 >        /**
4707 >         * Returns a task that when invoked, performs the given action
4708 >         * for each key.
4709 >         *
4710 >         * @param map the map
4711 >         * @param action the action
4712 >         * @return the task
4713 >         */
4714 >        public static <K,V> ForkJoinTask<Void> forEachKey
4715 >            (ConcurrentHashMap<K,V> map,
4716 >             Action<K> action) {
4717 >            if (action == null) throw new NullPointerException();
4718 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
4719 >        }
4720 >
4721 >        /**
4722 >         * Returns a task that when invoked, performs the given action
4723 >         * for each non-null transformation of each key.
4724 >         *
4725 >         * @param map the map
4726 >         * @param transformer a function returning the transformation
4727 >         * for an element, or null if there is no transformation (in
4728 >         * which case the action is not applied)
4729 >         * @param action the action
4730 >         * @return the task
4731 >         */
4732 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
4733 >            (ConcurrentHashMap<K,V> map,
4734 >             Fun<? super K, ? extends U> transformer,
4735 >             Action<U> action) {
4736 >            if (transformer == null || action == null)
4737 >                throw new NullPointerException();
4738 >            return new ForEachTransformedKeyTask<K,V,U>
4739 >                (map, null, -1, transformer, action);
4740 >        }
4741 >
4742 >        /**
4743 >         * Returns a task that when invoked, returns a non-null result
4744 >         * from applying the given search function on each key, or
4745 >         * null if none.  Upon success, further element processing is
4746 >         * suppressed and the results of any other parallel
4747 >         * invocations of the search function are ignored.
4748 >         *
4749 >         * @param map the map
4750 >         * @param searchFunction a function returning a non-null
4751 >         * result on success, else null
4752 >         * @return the task
4753 >         */
4754 >        public static <K,V,U> ForkJoinTask<U> searchKeys
4755 >            (ConcurrentHashMap<K,V> map,
4756 >             Fun<? super K, ? extends U> searchFunction) {
4757 >            if (searchFunction == null) throw new NullPointerException();
4758 >            return new SearchKeysTask<K,V,U>
4759 >                (map, null, -1, searchFunction,
4760 >                 new AtomicReference<U>());
4761 >        }
4762 >
4763 >        /**
4764 >         * Returns a task that when invoked, returns the result of
4765 >         * accumulating all keys using the given reducer to combine
4766 >         * values, or null if none.
4767 >         *
4768 >         * @param map the map
4769 >         * @param reducer a commutative associative combining function
4770 >         * @return the task
4771 >         */
4772 >        public static <K,V> ForkJoinTask<K> reduceKeys
4773 >            (ConcurrentHashMap<K,V> map,
4774 >             BiFun<? super K, ? super K, ? extends K> reducer) {
4775 >            if (reducer == null) throw new NullPointerException();
4776 >            return new ReduceKeysTask<K,V>
4777 >                (map, null, -1, null, reducer);
4778 >        }
4779 >
4780 >        /**
4781 >         * Returns a task that when invoked, returns the result of
4782 >         * accumulating the given transformation of all keys using the given
4783 >         * reducer to combine values, or null if none.
4784 >         *
4785 >         * @param map the map
4786 >         * @param transformer a function returning the transformation
4787 >         * for an element, or null if there is no transformation (in
4788 >         * which case it is not combined).
4789 >         * @param reducer a commutative associative combining function
4790 >         * @return the task
4791 >         */
4792 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
4793 >            (ConcurrentHashMap<K,V> map,
4794 >             Fun<? super K, ? extends U> transformer,
4795 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4796 >            if (transformer == null || reducer == null)
4797 >                throw new NullPointerException();
4798 >            return new MapReduceKeysTask<K,V,U>
4799 >                (map, null, -1, null, transformer, reducer);
4800 >        }
4801 >
4802 >        /**
4803 >         * Returns a task that when invoked, returns the result of
4804 >         * accumulating the given transformation of all keys using the given
4805 >         * reducer to combine values, and the given basis as an
4806 >         * identity value.
4807 >         *
4808 >         * @param map the map
4809 >         * @param transformer a function returning the transformation
4810 >         * for an element
4811 >         * @param basis the identity (initial default value) for the reduction
4812 >         * @param reducer a commutative associative combining function
4813 >         * @return the task
4814 >         */
4815 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4816 >            (ConcurrentHashMap<K,V> map,
4817 >             ObjectToDouble<? super K> transformer,
4818 >             double basis,
4819 >             DoubleByDoubleToDouble reducer) {
4820 >            if (transformer == null || reducer == null)
4821 >                throw new NullPointerException();
4822 >            return new MapReduceKeysToDoubleTask<K,V>
4823 >                (map, null, -1, null, transformer, basis, reducer);
4824 >        }
4825 >
4826 >        /**
4827 >         * Returns a task that when invoked, returns the result of
4828 >         * accumulating the given transformation of all keys using the given
4829 >         * reducer to combine values, and the given basis as an
4830 >         * identity value.
4831 >         *
4832 >         * @param map the map
4833 >         * @param transformer a function returning the transformation
4834 >         * for an element
4835 >         * @param basis the identity (initial default value) for the reduction
4836 >         * @param reducer a commutative associative combining function
4837 >         * @return the task
4838 >         */
4839 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4840 >            (ConcurrentHashMap<K,V> map,
4841 >             ObjectToLong<? super K> transformer,
4842 >             long basis,
4843 >             LongByLongToLong reducer) {
4844 >            if (transformer == null || reducer == null)
4845 >                throw new NullPointerException();
4846 >            return new MapReduceKeysToLongTask<K,V>
4847 >                (map, null, -1, null, transformer, basis, reducer);
4848 >        }
4849 >
4850 >        /**
4851 >         * Returns a task that when invoked, returns the result of
4852 >         * accumulating the given transformation of all keys using the given
4853 >         * reducer to combine values, and the given basis as an
4854 >         * identity value.
4855 >         *
4856 >         * @param map the map
4857 >         * @param transformer a function returning the transformation
4858 >         * for an element
4859 >         * @param basis the identity (initial default value) for the reduction
4860 >         * @param reducer a commutative associative combining function
4861 >         * @return the task
4862 >         */
4863 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4864 >            (ConcurrentHashMap<K,V> map,
4865 >             ObjectToInt<? super K> transformer,
4866 >             int basis,
4867 >             IntByIntToInt reducer) {
4868 >            if (transformer == null || reducer == null)
4869 >                throw new NullPointerException();
4870 >            return new MapReduceKeysToIntTask<K,V>
4871 >                (map, null, -1, null, transformer, basis, reducer);
4872 >        }
4873 >
4874 >        /**
4875 >         * Returns a task that when invoked, performs the given action
4876 >         * for each value.
4877 >         *
4878 >         * @param map the map
4879 >         * @param action the action
4880 >         */
4881 >        public static <K,V> ForkJoinTask<Void> forEachValue
4882 >            (ConcurrentHashMap<K,V> map,
4883 >             Action<V> action) {
4884 >            if (action == null) throw new NullPointerException();
4885 >            return new ForEachValueTask<K,V>(map, null, -1, action);
4886 >        }
4887 >
4888 >        /**
4889 >         * Returns a task that when invoked, performs the given action
4890 >         * for each non-null transformation of each value.
4891 >         *
4892 >         * @param map the map
4893 >         * @param transformer a function returning the transformation
4894 >         * for an element, or null if there is no transformation (in
4895 >         * which case the action is not applied)
4896 >         * @param action the action
4897 >         */
4898 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
4899 >            (ConcurrentHashMap<K,V> map,
4900 >             Fun<? super V, ? extends U> transformer,
4901 >             Action<U> action) {
4902 >            if (transformer == null || action == null)
4903 >                throw new NullPointerException();
4904 >            return new ForEachTransformedValueTask<K,V,U>
4905 >                (map, null, -1, transformer, action);
4906 >        }
4907 >
4908 >        /**
4909 >         * Returns a task that when invoked, returns a non-null result
4910 >         * from applying the given search function on each value, or
4911 >         * null if none.  Upon success, further element processing is
4912 >         * suppressed and the results of any other parallel
4913 >         * invocations of the search function are ignored.
4914 >         *
4915 >         * @param map the map
4916 >         * @param searchFunction a function returning a non-null
4917 >         * result on success, else null
4918 >         * @return the task
4919 >         */
4920 >        public static <K,V,U> ForkJoinTask<U> searchValues
4921 >            (ConcurrentHashMap<K,V> map,
4922 >             Fun<? super V, ? extends U> searchFunction) {
4923 >            if (searchFunction == null) throw new NullPointerException();
4924 >            return new SearchValuesTask<K,V,U>
4925 >                (map, null, -1, searchFunction,
4926 >                 new AtomicReference<U>());
4927 >        }
4928 >
4929 >        /**
4930 >         * Returns a task that when invoked, returns the result of
4931 >         * accumulating all values using the given reducer to combine
4932 >         * values, or null if none.
4933 >         *
4934 >         * @param map the map
4935 >         * @param reducer a commutative associative combining function
4936 >         * @return the task
4937 >         */
4938 >        public static <K,V> ForkJoinTask<V> reduceValues
4939 >            (ConcurrentHashMap<K,V> map,
4940 >             BiFun<? super V, ? super V, ? extends V> reducer) {
4941 >            if (reducer == null) throw new NullPointerException();
4942 >            return new ReduceValuesTask<K,V>
4943 >                (map, null, -1, null, reducer);
4944 >        }
4945 >
4946 >        /**
4947 >         * Returns a task that when invoked, returns the result of
4948 >         * accumulating the given transformation of all values using the
4949 >         * given reducer to combine values, or null if none.
4950 >         *
4951 >         * @param map the map
4952 >         * @param transformer a function returning the transformation
4953 >         * for an element, or null if there is no transformation (in
4954 >         * which case it is not combined).
4955 >         * @param reducer a commutative associative combining function
4956 >         * @return the task
4957 >         */
4958 >        public static <K,V,U> ForkJoinTask<U> reduceValues
4959 >            (ConcurrentHashMap<K,V> map,
4960 >             Fun<? super V, ? extends U> transformer,
4961 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4962 >            if (transformer == null || reducer == null)
4963 >                throw new NullPointerException();
4964 >            return new MapReduceValuesTask<K,V,U>
4965 >                (map, null, -1, null, transformer, reducer);
4966 >        }
4967 >
4968 >        /**
4969 >         * Returns a task that when invoked, returns the result of
4970 >         * accumulating the given transformation of all values using the
4971 >         * given reducer to combine values, and the given basis as an
4972 >         * identity value.
4973 >         *
4974 >         * @param map the map
4975 >         * @param transformer a function returning the transformation
4976 >         * for an element
4977 >         * @param basis the identity (initial default value) for the reduction
4978 >         * @param reducer a commutative associative combining function
4979 >         * @return the task
4980 >         */
4981 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4982 >            (ConcurrentHashMap<K,V> map,
4983 >             ObjectToDouble<? super V> transformer,
4984 >             double basis,
4985 >             DoubleByDoubleToDouble reducer) {
4986 >            if (transformer == null || reducer == null)
4987 >                throw new NullPointerException();
4988 >            return new MapReduceValuesToDoubleTask<K,V>
4989 >                (map, null, -1, null, transformer, basis, reducer);
4990 >        }
4991 >
4992 >        /**
4993 >         * Returns a task that when invoked, returns the result of
4994 >         * accumulating the given transformation of all values using the
4995 >         * given reducer to combine values, and the given basis as an
4996 >         * identity value.
4997 >         *
4998 >         * @param map the map
4999 >         * @param transformer a function returning the transformation
5000 >         * for an element
5001 >         * @param basis the identity (initial default value) for the reduction
5002 >         * @param reducer a commutative associative combining function
5003 >         * @return the task
5004 >         */
5005 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5006 >            (ConcurrentHashMap<K,V> map,
5007 >             ObjectToLong<? super V> transformer,
5008 >             long basis,
5009 >             LongByLongToLong reducer) {
5010 >            if (transformer == null || reducer == null)
5011 >                throw new NullPointerException();
5012 >            return new MapReduceValuesToLongTask<K,V>
5013 >                (map, null, -1, null, transformer, basis, reducer);
5014 >        }
5015 >
5016 >        /**
5017 >         * Returns a task that when invoked, returns the result of
5018 >         * accumulating the given transformation of all values using the
5019 >         * given reducer to combine values, and the given basis as an
5020 >         * identity value.
5021 >         *
5022 >         * @param map the map
5023 >         * @param transformer a function returning the transformation
5024 >         * for an element
5025 >         * @param basis the identity (initial default value) for the reduction
5026 >         * @param reducer a commutative associative combining function
5027 >         * @return the task
5028 >         */
5029 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5030 >            (ConcurrentHashMap<K,V> map,
5031 >             ObjectToInt<? super V> transformer,
5032 >             int basis,
5033 >             IntByIntToInt reducer) {
5034 >            if (transformer == null || reducer == null)
5035 >                throw new NullPointerException();
5036 >            return new MapReduceValuesToIntTask<K,V>
5037 >                (map, null, -1, null, transformer, basis, reducer);
5038 >        }
5039 >
5040 >        /**
5041 >         * Returns a task that when invoked, perform the given action
5042 >         * for each entry.
5043 >         *
5044 >         * @param map the map
5045 >         * @param action the action
5046 >         */
5047 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5048 >            (ConcurrentHashMap<K,V> map,
5049 >             Action<Map.Entry<K,V>> action) {
5050 >            if (action == null) throw new NullPointerException();
5051 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5052 >        }
5053 >
5054 >        /**
5055 >         * Returns a task that when invoked, perform the given action
5056 >         * for each non-null transformation of each entry.
5057 >         *
5058 >         * @param map the map
5059 >         * @param transformer a function returning the transformation
5060 >         * for an element, or null if there is no transformation (in
5061 >         * which case the action is not applied)
5062 >         * @param action the action
5063 >         */
5064 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5065 >            (ConcurrentHashMap<K,V> map,
5066 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5067 >             Action<U> action) {
5068 >            if (transformer == null || action == null)
5069 >                throw new NullPointerException();
5070 >            return new ForEachTransformedEntryTask<K,V,U>
5071 >                (map, null, -1, transformer, action);
5072 >        }
5073 >
5074 >        /**
5075 >         * Returns a task that when invoked, returns a non-null result
5076 >         * from applying the given search function on each entry, or
5077 >         * null if none.  Upon success, further element processing is
5078 >         * suppressed and the results of any other parallel
5079 >         * invocations of the search function are ignored.
5080 >         *
5081 >         * @param map the map
5082 >         * @param searchFunction a function returning a non-null
5083 >         * result on success, else null
5084 >         * @return the task
5085 >         */
5086 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5087 >            (ConcurrentHashMap<K,V> map,
5088 >             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5089 >            if (searchFunction == null) throw new NullPointerException();
5090 >            return new SearchEntriesTask<K,V,U>
5091 >                (map, null, -1, searchFunction,
5092 >                 new AtomicReference<U>());
5093 >        }
5094 >
5095 >        /**
5096 >         * Returns a task that when invoked, returns the result of
5097 >         * accumulating all entries using the given reducer to combine
5098 >         * values, or null if none.
5099 >         *
5100 >         * @param map the map
5101 >         * @param reducer a commutative associative combining function
5102 >         * @return the task
5103 >         */
5104 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5105 >            (ConcurrentHashMap<K,V> map,
5106 >             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5107 >            if (reducer == null) throw new NullPointerException();
5108 >            return new ReduceEntriesTask<K,V>
5109 >                (map, null, -1, null, reducer);
5110 >        }
5111 >
5112 >        /**
5113 >         * Returns a task that when invoked, returns the result of
5114 >         * accumulating the given transformation of all entries using the
5115 >         * given reducer to combine values, or null if none.
5116 >         *
5117 >         * @param map the map
5118 >         * @param transformer a function returning the transformation
5119 >         * for an element, or null if there is no transformation (in
5120 >         * which case it is not combined).
5121 >         * @param reducer a commutative associative combining function
5122 >         * @return the task
5123 >         */
5124 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5125 >            (ConcurrentHashMap<K,V> map,
5126 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5127 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5128 >            if (transformer == null || reducer == null)
5129 >                throw new NullPointerException();
5130 >            return new MapReduceEntriesTask<K,V,U>
5131 >                (map, null, -1, null, transformer, reducer);
5132 >        }
5133 >
5134 >        /**
5135 >         * Returns a task that when invoked, returns the result of
5136 >         * accumulating the given transformation of all entries using the
5137 >         * given reducer to combine values, and the given basis as an
5138 >         * identity value.
5139 >         *
5140 >         * @param map the map
5141 >         * @param transformer a function returning the transformation
5142 >         * for an element
5143 >         * @param basis the identity (initial default value) for the reduction
5144 >         * @param reducer a commutative associative combining function
5145 >         * @return the task
5146 >         */
5147 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5148 >            (ConcurrentHashMap<K,V> map,
5149 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5150 >             double basis,
5151 >             DoubleByDoubleToDouble reducer) {
5152 >            if (transformer == null || reducer == null)
5153 >                throw new NullPointerException();
5154 >            return new MapReduceEntriesToDoubleTask<K,V>
5155 >                (map, null, -1, null, transformer, basis, reducer);
5156 >        }
5157 >
5158 >        /**
5159 >         * Returns a task that when invoked, returns the result of
5160 >         * accumulating the given transformation of all entries using the
5161 >         * given reducer to combine values, and the given basis as an
5162 >         * identity value.
5163 >         *
5164 >         * @param map the map
5165 >         * @param transformer a function returning the transformation
5166 >         * for an element
5167 >         * @param basis the identity (initial default value) for the reduction
5168 >         * @param reducer a commutative associative combining function
5169 >         * @return the task
5170 >         */
5171 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5172 >            (ConcurrentHashMap<K,V> map,
5173 >             ObjectToLong<Map.Entry<K,V>> transformer,
5174 >             long basis,
5175 >             LongByLongToLong reducer) {
5176 >            if (transformer == null || reducer == null)
5177 >                throw new NullPointerException();
5178 >            return new MapReduceEntriesToLongTask<K,V>
5179 >                (map, null, -1, null, transformer, basis, reducer);
5180 >        }
5181 >
5182 >        /**
5183 >         * Returns a task that when invoked, returns the result of
5184 >         * accumulating the given transformation of all entries using the
5185 >         * given reducer to combine values, and the given basis as an
5186 >         * identity value.
5187 >         *
5188 >         * @param map the map
5189 >         * @param transformer a function returning the transformation
5190 >         * for an element
5191 >         * @param basis the identity (initial default value) for the reduction
5192 >         * @param reducer a commutative associative combining function
5193 >         * @return the task
5194 >         */
5195 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5196 >            (ConcurrentHashMap<K,V> map,
5197 >             ObjectToInt<Map.Entry<K,V>> transformer,
5198 >             int basis,
5199 >             IntByIntToInt reducer) {
5200 >            if (transformer == null || reducer == null)
5201 >                throw new NullPointerException();
5202 >            return new MapReduceEntriesToIntTask<K,V>
5203 >                (map, null, -1, null, transformer, basis, reducer);
5204 >        }
5205 >    }
5206 >
5207 >    // -------------------------------------------------------
5208 >
5209 >    /*
5210 >     * Task classes. Coded in a regular but ugly format/style to
5211 >     * simplify checks that each variant differs in the right way from
5212 >     * others. The null screenings exist because compilers cannot tell
5213 >     * that we've already null-checked task arguments, so we force
5214 >     * simplest hoisted bypass to help avoid convoluted traps.
5215 >     */
5216 >
5217 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5218 >        extends Traverser<K,V,Void> {
5219 >        final Action<K> action;
5220 >        ForEachKeyTask
5221 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5222 >             Action<K> action) {
5223 >            super(m, p, b);
5224 >            this.action = action;
5225 >        }
5226 >        @SuppressWarnings("unchecked") public final void compute() {
5227 >            final Action<K> action;
5228 >            if ((action = this.action) != null) {
5229 >                for (int b; (b = preSplit()) > 0;)
5230 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5231 >                while (advance() != null)
5232 >                    action.apply((K)nextKey);
5233 >                propagateCompletion();
5234 >            }
5235 >        }
5236 >    }
5237 >
5238 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5239 >        extends Traverser<K,V,Void> {
5240 >        final Action<V> action;
5241 >        ForEachValueTask
5242 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5243 >             Action<V> action) {
5244 >            super(m, p, b);
5245 >            this.action = action;
5246 >        }
5247 >        @SuppressWarnings("unchecked") public final void compute() {
5248 >            final Action<V> action;
5249 >            if ((action = this.action) != null) {
5250 >                for (int b; (b = preSplit()) > 0;)
5251 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5252 >                Object v;
5253 >                while ((v = advance()) != null)
5254 >                    action.apply((V)v);
5255 >                propagateCompletion();
5256 >            }
5257 >        }
5258 >    }
5259 >
5260 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5261 >        extends Traverser<K,V,Void> {
5262 >        final Action<Entry<K,V>> action;
5263 >        ForEachEntryTask
5264 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5265 >             Action<Entry<K,V>> action) {
5266 >            super(m, p, b);
5267 >            this.action = action;
5268 >        }
5269 >        @SuppressWarnings("unchecked") public final void compute() {
5270 >            final Action<Entry<K,V>> action;
5271 >            if ((action = this.action) != null) {
5272 >                for (int b; (b = preSplit()) > 0;)
5273 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5274 >                Object v;
5275 >                while ((v = advance()) != null)
5276 >                    action.apply(entryFor((K)nextKey, (V)v));
5277 >                propagateCompletion();
5278 >            }
5279 >        }
5280 >    }
5281 >
5282 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5283 >        extends Traverser<K,V,Void> {
5284 >        final BiAction<K,V> action;
5285 >        ForEachMappingTask
5286 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5287 >             BiAction<K,V> action) {
5288 >            super(m, p, b);
5289 >            this.action = action;
5290 >        }
5291 >        @SuppressWarnings("unchecked") public final void compute() {
5292 >            final BiAction<K,V> action;
5293 >            if ((action = this.action) != null) {
5294 >                for (int b; (b = preSplit()) > 0;)
5295 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5296 >                Object v;
5297 >                while ((v = advance()) != null)
5298 >                    action.apply((K)nextKey, (V)v);
5299 >                propagateCompletion();
5300 >            }
5301 >        }
5302 >    }
5303 >
5304 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5305 >        extends Traverser<K,V,Void> {
5306 >        final Fun<? super K, ? extends U> transformer;
5307 >        final Action<U> action;
5308 >        ForEachTransformedKeyTask
5309 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5310 >             Fun<? super K, ? extends U> transformer, Action<U> action) {
5311 >            super(m, p, b);
5312 >            this.transformer = transformer; this.action = action;
5313 >        }
5314 >        @SuppressWarnings("unchecked") public final void compute() {
5315 >            final Fun<? super K, ? extends U> transformer;
5316 >            final Action<U> action;
5317 >            if ((transformer = this.transformer) != null &&
5318 >                (action = this.action) != null) {
5319 >                for (int b; (b = preSplit()) > 0;)
5320 >                    new ForEachTransformedKeyTask<K,V,U>
5321 >                        (map, this, b, transformer, action).fork();
5322 >                U u;
5323 >                while (advance() != null) {
5324 >                    if ((u = transformer.apply((K)nextKey)) != null)
5325 >                        action.apply(u);
5326 >                }
5327 >                propagateCompletion();
5328 >            }
5329 >        }
5330 >    }
5331 >
5332 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5333 >        extends Traverser<K,V,Void> {
5334 >        final Fun<? super V, ? extends U> transformer;
5335 >        final Action<U> action;
5336 >        ForEachTransformedValueTask
5337 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5338 >             Fun<? super V, ? extends U> transformer, Action<U> action) {
5339 >            super(m, p, b);
5340 >            this.transformer = transformer; this.action = action;
5341 >        }
5342 >        @SuppressWarnings("unchecked") public final void compute() {
5343 >            final Fun<? super V, ? extends U> transformer;
5344 >            final Action<U> action;
5345 >            if ((transformer = this.transformer) != null &&
5346 >                (action = this.action) != null) {
5347 >                for (int b; (b = preSplit()) > 0;)
5348 >                    new ForEachTransformedValueTask<K,V,U>
5349 >                        (map, this, b, transformer, action).fork();
5350 >                Object v; U u;
5351 >                while ((v = advance()) != null) {
5352 >                    if ((u = transformer.apply((V)v)) != null)
5353 >                        action.apply(u);
5354 >                }
5355 >                propagateCompletion();
5356 >            }
5357 >        }
5358 >    }
5359 >
5360 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5361 >        extends Traverser<K,V,Void> {
5362 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5363 >        final Action<U> action;
5364 >        ForEachTransformedEntryTask
5365 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5366 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5367 >            super(m, p, b);
5368 >            this.transformer = transformer; this.action = action;
5369 >        }
5370 >        @SuppressWarnings("unchecked") public final void compute() {
5371 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5372 >            final Action<U> action;
5373 >            if ((transformer = this.transformer) != null &&
5374 >                (action = this.action) != null) {
5375 >                for (int b; (b = preSplit()) > 0;)
5376 >                    new ForEachTransformedEntryTask<K,V,U>
5377 >                        (map, this, b, transformer, action).fork();
5378 >                Object v; U u;
5379 >                while ((v = advance()) != null) {
5380 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5381 >                                                        (V)v))) != null)
5382 >                        action.apply(u);
5383 >                }
5384 >                propagateCompletion();
5385 >            }
5386 >        }
5387 >    }
5388 >
5389 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5390 >        extends Traverser<K,V,Void> {
5391 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5392 >        final Action<U> action;
5393 >        ForEachTransformedMappingTask
5394 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5395 >             BiFun<? super K, ? super V, ? extends U> transformer,
5396 >             Action<U> action) {
5397 >            super(m, p, b);
5398 >            this.transformer = transformer; this.action = action;
5399 >        }
5400 >        @SuppressWarnings("unchecked") public final void compute() {
5401 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5402 >            final Action<U> action;
5403 >            if ((transformer = this.transformer) != null &&
5404 >                (action = this.action) != null) {
5405 >                for (int b; (b = preSplit()) > 0;)
5406 >                    new ForEachTransformedMappingTask<K,V,U>
5407 >                        (map, this, b, transformer, action).fork();
5408 >                Object v; U u;
5409 >                while ((v = advance()) != null) {
5410 >                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5411 >                        action.apply(u);
5412 >                }
5413 >                propagateCompletion();
5414 >            }
5415 >        }
5416 >    }
5417 >
5418 >    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5419 >        extends Traverser<K,V,U> {
5420 >        final Fun<? super K, ? extends U> searchFunction;
5421 >        final AtomicReference<U> result;
5422 >        SearchKeysTask
5423 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5424 >             Fun<? super K, ? extends U> searchFunction,
5425 >             AtomicReference<U> result) {
5426 >            super(m, p, b);
5427 >            this.searchFunction = searchFunction; this.result = result;
5428 >        }
5429 >        public final U getRawResult() { return result.get(); }
5430 >        @SuppressWarnings("unchecked") public final void compute() {
5431 >            final Fun<? super K, ? extends U> searchFunction;
5432 >            final AtomicReference<U> result;
5433 >            if ((searchFunction = this.searchFunction) != null &&
5434 >                (result = this.result) != null) {
5435 >                for (int b;;) {
5436 >                    if (result.get() != null)
5437 >                        return;
5438 >                    if ((b = preSplit()) <= 0)
5439 >                        break;
5440 >                    new SearchKeysTask<K,V,U>
5441 >                        (map, this, b, searchFunction, result).fork();
5442 >                }
5443 >                while (result.get() == null) {
5444 >                    U u;
5445 >                    if (advance() == null) {
5446 >                        propagateCompletion();
5447 >                        break;
5448 >                    }
5449 >                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5450 >                        if (result.compareAndSet(null, u))
5451 >                            quietlyCompleteRoot();
5452 >                        break;
5453                      }
5454                  }
1283            } finally {
1284                seg.unlock();
5455              }
5456          }
1287        s.writeObject(null);
1288        s.writeObject(null);
5457      }
5458  
5459 <    /**
5460 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
5461 <     * stream (i.e., deserialize it).
5462 <     * @param s the stream
5463 <     */
5464 <    private void readObject(java.io.ObjectInputStream s)
5465 <        throws IOException, ClassNotFoundException  {
5466 <        s.defaultReadObject();
5459 >    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5460 >        extends Traverser<K,V,U> {
5461 >        final Fun<? super V, ? extends U> searchFunction;
5462 >        final AtomicReference<U> result;
5463 >        SearchValuesTask
5464 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5465 >             Fun<? super V, ? extends U> searchFunction,
5466 >             AtomicReference<U> result) {
5467 >            super(m, p, b);
5468 >            this.searchFunction = searchFunction; this.result = result;
5469 >        }
5470 >        public final U getRawResult() { return result.get(); }
5471 >        @SuppressWarnings("unchecked") public final void compute() {
5472 >            final Fun<? super V, ? extends U> searchFunction;
5473 >            final AtomicReference<U> result;
5474 >            if ((searchFunction = this.searchFunction) != null &&
5475 >                (result = this.result) != null) {
5476 >                for (int b;;) {
5477 >                    if (result.get() != null)
5478 >                        return;
5479 >                    if ((b = preSplit()) <= 0)
5480 >                        break;
5481 >                    new SearchValuesTask<K,V,U>
5482 >                        (map, this, b, searchFunction, result).fork();
5483 >                }
5484 >                while (result.get() == null) {
5485 >                    Object v; U u;
5486 >                    if ((v = advance()) == null) {
5487 >                        propagateCompletion();
5488 >                        break;
5489 >                    }
5490 >                    if ((u = searchFunction.apply((V)v)) != null) {
5491 >                        if (result.compareAndSet(null, u))
5492 >                            quietlyCompleteRoot();
5493 >                        break;
5494 >                    }
5495 >                }
5496 >            }
5497 >        }
5498 >    }
5499  
5500 <        // Initialize each segment to be minimally sized, and let grow.
5501 <        for (int i = 0; i < segments.length; ++i) {
5502 <            segments[i].setTable(new HashEntry[1]);
5500 >    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5501 >        extends Traverser<K,V,U> {
5502 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5503 >        final AtomicReference<U> result;
5504 >        SearchEntriesTask
5505 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5506 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5507 >             AtomicReference<U> result) {
5508 >            super(m, p, b);
5509 >            this.searchFunction = searchFunction; this.result = result;
5510 >        }
5511 >        public final U getRawResult() { return result.get(); }
5512 >        @SuppressWarnings("unchecked") public final void compute() {
5513 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5514 >            final AtomicReference<U> result;
5515 >            if ((searchFunction = this.searchFunction) != null &&
5516 >                (result = this.result) != null) {
5517 >                for (int b;;) {
5518 >                    if (result.get() != null)
5519 >                        return;
5520 >                    if ((b = preSplit()) <= 0)
5521 >                        break;
5522 >                    new SearchEntriesTask<K,V,U>
5523 >                        (map, this, b, searchFunction, result).fork();
5524 >                }
5525 >                while (result.get() == null) {
5526 >                    Object v; U u;
5527 >                    if ((v = advance()) == null) {
5528 >                        propagateCompletion();
5529 >                        break;
5530 >                    }
5531 >                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5532 >                                                           (V)v))) != null) {
5533 >                        if (result.compareAndSet(null, u))
5534 >                            quietlyCompleteRoot();
5535 >                        return;
5536 >                    }
5537 >                }
5538 >            }
5539          }
5540 +    }
5541  
5542 <        // Read the keys and values, and put the mappings in the table
5543 <        for (;;) {
5544 <            K key = (K) s.readObject();
5545 <            V value = (V) s.readObject();
5546 <            if (key == null)
5547 <                break;
5548 <            put(key, value);
5542 >    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5543 >        extends Traverser<K,V,U> {
5544 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5545 >        final AtomicReference<U> result;
5546 >        SearchMappingsTask
5547 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5548 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5549 >             AtomicReference<U> result) {
5550 >            super(m, p, b);
5551 >            this.searchFunction = searchFunction; this.result = result;
5552 >        }
5553 >        public final U getRawResult() { return result.get(); }
5554 >        @SuppressWarnings("unchecked") public final void compute() {
5555 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5556 >            final AtomicReference<U> result;
5557 >            if ((searchFunction = this.searchFunction) != null &&
5558 >                (result = this.result) != null) {
5559 >                for (int b;;) {
5560 >                    if (result.get() != null)
5561 >                        return;
5562 >                    if ((b = preSplit()) <= 0)
5563 >                        break;
5564 >                    new SearchMappingsTask<K,V,U>
5565 >                        (map, this, b, searchFunction, result).fork();
5566 >                }
5567 >                while (result.get() == null) {
5568 >                    Object v; U u;
5569 >                    if ((v = advance()) == null) {
5570 >                        propagateCompletion();
5571 >                        break;
5572 >                    }
5573 >                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5574 >                        if (result.compareAndSet(null, u))
5575 >                            quietlyCompleteRoot();
5576 >                        break;
5577 >                    }
5578 >                }
5579 >            }
5580 >        }
5581 >    }
5582 >
5583 >    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5584 >        extends Traverser<K,V,K> {
5585 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5586 >        K result;
5587 >        ReduceKeysTask<K,V> rights, nextRight;
5588 >        ReduceKeysTask
5589 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5590 >             ReduceKeysTask<K,V> nextRight,
5591 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5592 >            super(m, p, b); this.nextRight = nextRight;
5593 >            this.reducer = reducer;
5594 >        }
5595 >        public final K getRawResult() { return result; }
5596 >        @SuppressWarnings("unchecked") public final void compute() {
5597 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5598 >            if ((reducer = this.reducer) != null) {
5599 >                for (int b; (b = preSplit()) > 0;)
5600 >                    (rights = new ReduceKeysTask<K,V>
5601 >                     (map, this, b, rights, reducer)).fork();
5602 >                K r = null;
5603 >                while (advance() != null) {
5604 >                    K u = (K)nextKey;
5605 >                    r = (r == null) ? u : reducer.apply(r, u);
5606 >                }
5607 >                result = r;
5608 >                CountedCompleter<?> c;
5609 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5610 >                    ReduceKeysTask<K,V>
5611 >                        t = (ReduceKeysTask<K,V>)c,
5612 >                        s = t.rights;
5613 >                    while (s != null) {
5614 >                        K tr, sr;
5615 >                        if ((sr = s.result) != null)
5616 >                            t.result = (((tr = t.result) == null) ? sr :
5617 >                                        reducer.apply(tr, sr));
5618 >                        s = t.rights = s.nextRight;
5619 >                    }
5620 >                }
5621 >            }
5622 >        }
5623 >    }
5624 >
5625 >    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5626 >        extends Traverser<K,V,V> {
5627 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5628 >        V result;
5629 >        ReduceValuesTask<K,V> rights, nextRight;
5630 >        ReduceValuesTask
5631 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5632 >             ReduceValuesTask<K,V> nextRight,
5633 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5634 >            super(m, p, b); this.nextRight = nextRight;
5635 >            this.reducer = reducer;
5636 >        }
5637 >        public final V getRawResult() { return result; }
5638 >        @SuppressWarnings("unchecked") public final void compute() {
5639 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5640 >            if ((reducer = this.reducer) != null) {
5641 >                for (int b; (b = preSplit()) > 0;)
5642 >                    (rights = new ReduceValuesTask<K,V>
5643 >                     (map, this, b, rights, reducer)).fork();
5644 >                V r = null;
5645 >                Object v;
5646 >                while ((v = advance()) != null) {
5647 >                    V u = (V)v;
5648 >                    r = (r == null) ? u : reducer.apply(r, u);
5649 >                }
5650 >                result = r;
5651 >                CountedCompleter<?> c;
5652 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5653 >                    ReduceValuesTask<K,V>
5654 >                        t = (ReduceValuesTask<K,V>)c,
5655 >                        s = t.rights;
5656 >                    while (s != null) {
5657 >                        V tr, sr;
5658 >                        if ((sr = s.result) != null)
5659 >                            t.result = (((tr = t.result) == null) ? sr :
5660 >                                        reducer.apply(tr, sr));
5661 >                        s = t.rights = s.nextRight;
5662 >                    }
5663 >                }
5664 >            }
5665 >        }
5666 >    }
5667 >
5668 >    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5669 >        extends Traverser<K,V,Map.Entry<K,V>> {
5670 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5671 >        Map.Entry<K,V> result;
5672 >        ReduceEntriesTask<K,V> rights, nextRight;
5673 >        ReduceEntriesTask
5674 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5675 >             ReduceEntriesTask<K,V> nextRight,
5676 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5677 >            super(m, p, b); this.nextRight = nextRight;
5678 >            this.reducer = reducer;
5679 >        }
5680 >        public final Map.Entry<K,V> getRawResult() { return result; }
5681 >        @SuppressWarnings("unchecked") public final void compute() {
5682 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5683 >            if ((reducer = this.reducer) != null) {
5684 >                for (int b; (b = preSplit()) > 0;)
5685 >                    (rights = new ReduceEntriesTask<K,V>
5686 >                     (map, this, b, rights, reducer)).fork();
5687 >                Map.Entry<K,V> r = null;
5688 >                Object v;
5689 >                while ((v = advance()) != null) {
5690 >                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5691 >                    r = (r == null) ? u : reducer.apply(r, u);
5692 >                }
5693 >                result = r;
5694 >                CountedCompleter<?> c;
5695 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5696 >                    ReduceEntriesTask<K,V>
5697 >                        t = (ReduceEntriesTask<K,V>)c,
5698 >                        s = t.rights;
5699 >                    while (s != null) {
5700 >                        Map.Entry<K,V> tr, sr;
5701 >                        if ((sr = s.result) != null)
5702 >                            t.result = (((tr = t.result) == null) ? sr :
5703 >                                        reducer.apply(tr, sr));
5704 >                        s = t.rights = s.nextRight;
5705 >                    }
5706 >                }
5707 >            }
5708 >        }
5709 >    }
5710 >
5711 >    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5712 >        extends Traverser<K,V,U> {
5713 >        final Fun<? super K, ? extends U> transformer;
5714 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5715 >        U result;
5716 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5717 >        MapReduceKeysTask
5718 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5719 >             MapReduceKeysTask<K,V,U> nextRight,
5720 >             Fun<? super K, ? extends U> transformer,
5721 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5722 >            super(m, p, b); this.nextRight = nextRight;
5723 >            this.transformer = transformer;
5724 >            this.reducer = reducer;
5725 >        }
5726 >        public final U getRawResult() { return result; }
5727 >        @SuppressWarnings("unchecked") public final void compute() {
5728 >            final Fun<? super K, ? extends U> transformer;
5729 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5730 >            if ((transformer = this.transformer) != null &&
5731 >                (reducer = this.reducer) != null) {
5732 >                for (int b; (b = preSplit()) > 0;)
5733 >                    (rights = new MapReduceKeysTask<K,V,U>
5734 >                     (map, this, b, rights, transformer, reducer)).fork();
5735 >                U r = null, u;
5736 >                while (advance() != null) {
5737 >                    if ((u = transformer.apply((K)nextKey)) != null)
5738 >                        r = (r == null) ? u : reducer.apply(r, u);
5739 >                }
5740 >                result = r;
5741 >                CountedCompleter<?> c;
5742 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5743 >                    MapReduceKeysTask<K,V,U>
5744 >                        t = (MapReduceKeysTask<K,V,U>)c,
5745 >                        s = t.rights;
5746 >                    while (s != null) {
5747 >                        U tr, sr;
5748 >                        if ((sr = s.result) != null)
5749 >                            t.result = (((tr = t.result) == null) ? sr :
5750 >                                        reducer.apply(tr, sr));
5751 >                        s = t.rights = s.nextRight;
5752 >                    }
5753 >                }
5754 >            }
5755 >        }
5756 >    }
5757 >
5758 >    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5759 >        extends Traverser<K,V,U> {
5760 >        final Fun<? super V, ? extends U> transformer;
5761 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5762 >        U result;
5763 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5764 >        MapReduceValuesTask
5765 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5766 >             MapReduceValuesTask<K,V,U> nextRight,
5767 >             Fun<? super V, ? extends U> transformer,
5768 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5769 >            super(m, p, b); this.nextRight = nextRight;
5770 >            this.transformer = transformer;
5771 >            this.reducer = reducer;
5772 >        }
5773 >        public final U getRawResult() { return result; }
5774 >        @SuppressWarnings("unchecked") public final void compute() {
5775 >            final Fun<? super V, ? extends U> transformer;
5776 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5777 >            if ((transformer = this.transformer) != null &&
5778 >                (reducer = this.reducer) != null) {
5779 >                for (int b; (b = preSplit()) > 0;)
5780 >                    (rights = new MapReduceValuesTask<K,V,U>
5781 >                     (map, this, b, rights, transformer, reducer)).fork();
5782 >                U r = null, u;
5783 >                Object v;
5784 >                while ((v = advance()) != null) {
5785 >                    if ((u = transformer.apply((V)v)) != null)
5786 >                        r = (r == null) ? u : reducer.apply(r, u);
5787 >                }
5788 >                result = r;
5789 >                CountedCompleter<?> c;
5790 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5791 >                    MapReduceValuesTask<K,V,U>
5792 >                        t = (MapReduceValuesTask<K,V,U>)c,
5793 >                        s = t.rights;
5794 >                    while (s != null) {
5795 >                        U tr, sr;
5796 >                        if ((sr = s.result) != null)
5797 >                            t.result = (((tr = t.result) == null) ? sr :
5798 >                                        reducer.apply(tr, sr));
5799 >                        s = t.rights = s.nextRight;
5800 >                    }
5801 >                }
5802 >            }
5803 >        }
5804 >    }
5805 >
5806 >    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5807 >        extends Traverser<K,V,U> {
5808 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5809 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5810 >        U result;
5811 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5812 >        MapReduceEntriesTask
5813 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5814 >             MapReduceEntriesTask<K,V,U> nextRight,
5815 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5816 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5817 >            super(m, p, b); this.nextRight = nextRight;
5818 >            this.transformer = transformer;
5819 >            this.reducer = reducer;
5820 >        }
5821 >        public final U getRawResult() { return result; }
5822 >        @SuppressWarnings("unchecked") public final void compute() {
5823 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5824 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5825 >            if ((transformer = this.transformer) != null &&
5826 >                (reducer = this.reducer) != null) {
5827 >                for (int b; (b = preSplit()) > 0;)
5828 >                    (rights = new MapReduceEntriesTask<K,V,U>
5829 >                     (map, this, b, rights, transformer, reducer)).fork();
5830 >                U r = null, u;
5831 >                Object v;
5832 >                while ((v = advance()) != null) {
5833 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5834 >                                                        (V)v))) != null)
5835 >                        r = (r == null) ? u : reducer.apply(r, u);
5836 >                }
5837 >                result = r;
5838 >                CountedCompleter<?> c;
5839 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5840 >                    MapReduceEntriesTask<K,V,U>
5841 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5842 >                        s = t.rights;
5843 >                    while (s != null) {
5844 >                        U tr, sr;
5845 >                        if ((sr = s.result) != null)
5846 >                            t.result = (((tr = t.result) == null) ? sr :
5847 >                                        reducer.apply(tr, sr));
5848 >                        s = t.rights = s.nextRight;
5849 >                    }
5850 >                }
5851 >            }
5852 >        }
5853 >    }
5854 >
5855 >    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5856 >        extends Traverser<K,V,U> {
5857 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5858 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5859 >        U result;
5860 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5861 >        MapReduceMappingsTask
5862 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5863 >             MapReduceMappingsTask<K,V,U> nextRight,
5864 >             BiFun<? super K, ? super V, ? extends U> transformer,
5865 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5866 >            super(m, p, b); this.nextRight = nextRight;
5867 >            this.transformer = transformer;
5868 >            this.reducer = reducer;
5869 >        }
5870 >        public final U getRawResult() { return result; }
5871 >        @SuppressWarnings("unchecked") public final void compute() {
5872 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5873 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5874 >            if ((transformer = this.transformer) != null &&
5875 >                (reducer = this.reducer) != null) {
5876 >                for (int b; (b = preSplit()) > 0;)
5877 >                    (rights = new MapReduceMappingsTask<K,V,U>
5878 >                     (map, this, b, rights, transformer, reducer)).fork();
5879 >                U r = null, u;
5880 >                Object v;
5881 >                while ((v = advance()) != null) {
5882 >                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5883 >                        r = (r == null) ? u : reducer.apply(r, u);
5884 >                }
5885 >                result = r;
5886 >                CountedCompleter<?> c;
5887 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5888 >                    MapReduceMappingsTask<K,V,U>
5889 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5890 >                        s = t.rights;
5891 >                    while (s != null) {
5892 >                        U tr, sr;
5893 >                        if ((sr = s.result) != null)
5894 >                            t.result = (((tr = t.result) == null) ? sr :
5895 >                                        reducer.apply(tr, sr));
5896 >                        s = t.rights = s.nextRight;
5897 >                    }
5898 >                }
5899 >            }
5900 >        }
5901 >    }
5902 >
5903 >    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5904 >        extends Traverser<K,V,Double> {
5905 >        final ObjectToDouble<? super K> transformer;
5906 >        final DoubleByDoubleToDouble reducer;
5907 >        final double basis;
5908 >        double result;
5909 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5910 >        MapReduceKeysToDoubleTask
5911 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5912 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5913 >             ObjectToDouble<? super K> transformer,
5914 >             double basis,
5915 >             DoubleByDoubleToDouble reducer) {
5916 >            super(m, p, b); this.nextRight = nextRight;
5917 >            this.transformer = transformer;
5918 >            this.basis = basis; this.reducer = reducer;
5919 >        }
5920 >        public final Double getRawResult() { return result; }
5921 >        @SuppressWarnings("unchecked") public final void compute() {
5922 >            final ObjectToDouble<? super K> transformer;
5923 >            final DoubleByDoubleToDouble reducer;
5924 >            if ((transformer = this.transformer) != null &&
5925 >                (reducer = this.reducer) != null) {
5926 >                double r = this.basis;
5927 >                for (int b; (b = preSplit()) > 0;)
5928 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5929 >                     (map, this, b, rights, transformer, r, reducer)).fork();
5930 >                while (advance() != null)
5931 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
5932 >                result = r;
5933 >                CountedCompleter<?> c;
5934 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5935 >                    MapReduceKeysToDoubleTask<K,V>
5936 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5937 >                        s = t.rights;
5938 >                    while (s != null) {
5939 >                        t.result = reducer.apply(t.result, s.result);
5940 >                        s = t.rights = s.nextRight;
5941 >                    }
5942 >                }
5943 >            }
5944 >        }
5945 >    }
5946 >
5947 >    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5948 >        extends Traverser<K,V,Double> {
5949 >        final ObjectToDouble<? super V> transformer;
5950 >        final DoubleByDoubleToDouble reducer;
5951 >        final double basis;
5952 >        double result;
5953 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5954 >        MapReduceValuesToDoubleTask
5955 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5956 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5957 >             ObjectToDouble<? super V> transformer,
5958 >             double basis,
5959 >             DoubleByDoubleToDouble reducer) {
5960 >            super(m, p, b); this.nextRight = nextRight;
5961 >            this.transformer = transformer;
5962 >            this.basis = basis; this.reducer = reducer;
5963 >        }
5964 >        public final Double getRawResult() { return result; }
5965 >        @SuppressWarnings("unchecked") public final void compute() {
5966 >            final ObjectToDouble<? super V> transformer;
5967 >            final DoubleByDoubleToDouble reducer;
5968 >            if ((transformer = this.transformer) != null &&
5969 >                (reducer = this.reducer) != null) {
5970 >                double r = this.basis;
5971 >                for (int b; (b = preSplit()) > 0;)
5972 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5973 >                     (map, this, b, rights, transformer, r, reducer)).fork();
5974 >                Object v;
5975 >                while ((v = advance()) != null)
5976 >                    r = reducer.apply(r, transformer.apply((V)v));
5977 >                result = r;
5978 >                CountedCompleter<?> c;
5979 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5980 >                    MapReduceValuesToDoubleTask<K,V>
5981 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5982 >                        s = t.rights;
5983 >                    while (s != null) {
5984 >                        t.result = reducer.apply(t.result, s.result);
5985 >                        s = t.rights = s.nextRight;
5986 >                    }
5987 >                }
5988 >            }
5989 >        }
5990 >    }
5991 >
5992 >    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5993 >        extends Traverser<K,V,Double> {
5994 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5995 >        final DoubleByDoubleToDouble reducer;
5996 >        final double basis;
5997 >        double result;
5998 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5999 >        MapReduceEntriesToDoubleTask
6000 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6001 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
6002 >             ObjectToDouble<Map.Entry<K,V>> transformer,
6003 >             double basis,
6004 >             DoubleByDoubleToDouble reducer) {
6005 >            super(m, p, b); this.nextRight = nextRight;
6006 >            this.transformer = transformer;
6007 >            this.basis = basis; this.reducer = reducer;
6008 >        }
6009 >        public final Double getRawResult() { return result; }
6010 >        @SuppressWarnings("unchecked") public final void compute() {
6011 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
6012 >            final DoubleByDoubleToDouble reducer;
6013 >            if ((transformer = this.transformer) != null &&
6014 >                (reducer = this.reducer) != null) {
6015 >                double r = this.basis;
6016 >                for (int b; (b = preSplit()) > 0;)
6017 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6018 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6019 >                Object v;
6020 >                while ((v = advance()) != null)
6021 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6022 >                                                                    (V)v)));
6023 >                result = r;
6024 >                CountedCompleter<?> c;
6025 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6026 >                    MapReduceEntriesToDoubleTask<K,V>
6027 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6028 >                        s = t.rights;
6029 >                    while (s != null) {
6030 >                        t.result = reducer.apply(t.result, s.result);
6031 >                        s = t.rights = s.nextRight;
6032 >                    }
6033 >                }
6034 >            }
6035 >        }
6036 >    }
6037 >
6038 >    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6039 >        extends Traverser<K,V,Double> {
6040 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6041 >        final DoubleByDoubleToDouble reducer;
6042 >        final double basis;
6043 >        double result;
6044 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6045 >        MapReduceMappingsToDoubleTask
6046 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6047 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
6048 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
6049 >             double basis,
6050 >             DoubleByDoubleToDouble reducer) {
6051 >            super(m, p, b); this.nextRight = nextRight;
6052 >            this.transformer = transformer;
6053 >            this.basis = basis; this.reducer = reducer;
6054 >        }
6055 >        public final Double getRawResult() { return result; }
6056 >        @SuppressWarnings("unchecked") public final void compute() {
6057 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
6058 >            final DoubleByDoubleToDouble reducer;
6059 >            if ((transformer = this.transformer) != null &&
6060 >                (reducer = this.reducer) != null) {
6061 >                double r = this.basis;
6062 >                for (int b; (b = preSplit()) > 0;)
6063 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6064 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6065 >                Object v;
6066 >                while ((v = advance()) != null)
6067 >                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6068 >                result = r;
6069 >                CountedCompleter<?> c;
6070 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6071 >                    MapReduceMappingsToDoubleTask<K,V>
6072 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6073 >                        s = t.rights;
6074 >                    while (s != null) {
6075 >                        t.result = reducer.apply(t.result, s.result);
6076 >                        s = t.rights = s.nextRight;
6077 >                    }
6078 >                }
6079 >            }
6080 >        }
6081 >    }
6082 >
6083 >    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6084 >        extends Traverser<K,V,Long> {
6085 >        final ObjectToLong<? super K> transformer;
6086 >        final LongByLongToLong reducer;
6087 >        final long basis;
6088 >        long result;
6089 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
6090 >        MapReduceKeysToLongTask
6091 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6092 >             MapReduceKeysToLongTask<K,V> nextRight,
6093 >             ObjectToLong<? super K> transformer,
6094 >             long basis,
6095 >             LongByLongToLong reducer) {
6096 >            super(m, p, b); this.nextRight = nextRight;
6097 >            this.transformer = transformer;
6098 >            this.basis = basis; this.reducer = reducer;
6099 >        }
6100 >        public final Long getRawResult() { return result; }
6101 >        @SuppressWarnings("unchecked") public final void compute() {
6102 >            final ObjectToLong<? super K> transformer;
6103 >            final LongByLongToLong reducer;
6104 >            if ((transformer = this.transformer) != null &&
6105 >                (reducer = this.reducer) != null) {
6106 >                long r = this.basis;
6107 >                for (int b; (b = preSplit()) > 0;)
6108 >                    (rights = new MapReduceKeysToLongTask<K,V>
6109 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6110 >                while (advance() != null)
6111 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6112 >                result = r;
6113 >                CountedCompleter<?> c;
6114 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6115 >                    MapReduceKeysToLongTask<K,V>
6116 >                        t = (MapReduceKeysToLongTask<K,V>)c,
6117 >                        s = t.rights;
6118 >                    while (s != null) {
6119 >                        t.result = reducer.apply(t.result, s.result);
6120 >                        s = t.rights = s.nextRight;
6121 >                    }
6122 >                }
6123 >            }
6124 >        }
6125 >    }
6126 >
6127 >    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6128 >        extends Traverser<K,V,Long> {
6129 >        final ObjectToLong<? super V> transformer;
6130 >        final LongByLongToLong reducer;
6131 >        final long basis;
6132 >        long result;
6133 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
6134 >        MapReduceValuesToLongTask
6135 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6136 >             MapReduceValuesToLongTask<K,V> nextRight,
6137 >             ObjectToLong<? super V> transformer,
6138 >             long basis,
6139 >             LongByLongToLong reducer) {
6140 >            super(m, p, b); this.nextRight = nextRight;
6141 >            this.transformer = transformer;
6142 >            this.basis = basis; this.reducer = reducer;
6143 >        }
6144 >        public final Long getRawResult() { return result; }
6145 >        @SuppressWarnings("unchecked") public final void compute() {
6146 >            final ObjectToLong<? super V> transformer;
6147 >            final LongByLongToLong reducer;
6148 >            if ((transformer = this.transformer) != null &&
6149 >                (reducer = this.reducer) != null) {
6150 >                long r = this.basis;
6151 >                for (int b; (b = preSplit()) > 0;)
6152 >                    (rights = new MapReduceValuesToLongTask<K,V>
6153 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6154 >                Object v;
6155 >                while ((v = advance()) != null)
6156 >                    r = reducer.apply(r, transformer.apply((V)v));
6157 >                result = r;
6158 >                CountedCompleter<?> c;
6159 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6160 >                    MapReduceValuesToLongTask<K,V>
6161 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6162 >                        s = t.rights;
6163 >                    while (s != null) {
6164 >                        t.result = reducer.apply(t.result, s.result);
6165 >                        s = t.rights = s.nextRight;
6166 >                    }
6167 >                }
6168 >            }
6169 >        }
6170 >    }
6171 >
6172 >    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6173 >        extends Traverser<K,V,Long> {
6174 >        final ObjectToLong<Map.Entry<K,V>> transformer;
6175 >        final LongByLongToLong reducer;
6176 >        final long basis;
6177 >        long result;
6178 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6179 >        MapReduceEntriesToLongTask
6180 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6181 >             MapReduceEntriesToLongTask<K,V> nextRight,
6182 >             ObjectToLong<Map.Entry<K,V>> transformer,
6183 >             long basis,
6184 >             LongByLongToLong reducer) {
6185 >            super(m, p, b); this.nextRight = nextRight;
6186 >            this.transformer = transformer;
6187 >            this.basis = basis; this.reducer = reducer;
6188 >        }
6189 >        public final Long getRawResult() { return result; }
6190 >        @SuppressWarnings("unchecked") public final void compute() {
6191 >            final ObjectToLong<Map.Entry<K,V>> transformer;
6192 >            final LongByLongToLong reducer;
6193 >            if ((transformer = this.transformer) != null &&
6194 >                (reducer = this.reducer) != null) {
6195 >                long r = this.basis;
6196 >                for (int b; (b = preSplit()) > 0;)
6197 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6198 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6199 >                Object v;
6200 >                while ((v = advance()) != null)
6201 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6202 >                                                                    (V)v)));
6203 >                result = r;
6204 >                CountedCompleter<?> c;
6205 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6206 >                    MapReduceEntriesToLongTask<K,V>
6207 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6208 >                        s = t.rights;
6209 >                    while (s != null) {
6210 >                        t.result = reducer.apply(t.result, s.result);
6211 >                        s = t.rights = s.nextRight;
6212 >                    }
6213 >                }
6214 >            }
6215 >        }
6216 >    }
6217 >
6218 >    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6219 >        extends Traverser<K,V,Long> {
6220 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
6221 >        final LongByLongToLong reducer;
6222 >        final long basis;
6223 >        long result;
6224 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6225 >        MapReduceMappingsToLongTask
6226 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6227 >             MapReduceMappingsToLongTask<K,V> nextRight,
6228 >             ObjectByObjectToLong<? super K, ? super V> transformer,
6229 >             long basis,
6230 >             LongByLongToLong reducer) {
6231 >            super(m, p, b); this.nextRight = nextRight;
6232 >            this.transformer = transformer;
6233 >            this.basis = basis; this.reducer = reducer;
6234 >        }
6235 >        public final Long getRawResult() { return result; }
6236 >        @SuppressWarnings("unchecked") public final void compute() {
6237 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
6238 >            final LongByLongToLong reducer;
6239 >            if ((transformer = this.transformer) != null &&
6240 >                (reducer = this.reducer) != null) {
6241 >                long r = this.basis;
6242 >                for (int b; (b = preSplit()) > 0;)
6243 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6244 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6245 >                Object v;
6246 >                while ((v = advance()) != null)
6247 >                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6248 >                result = r;
6249 >                CountedCompleter<?> c;
6250 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6251 >                    MapReduceMappingsToLongTask<K,V>
6252 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6253 >                        s = t.rights;
6254 >                    while (s != null) {
6255 >                        t.result = reducer.apply(t.result, s.result);
6256 >                        s = t.rights = s.nextRight;
6257 >                    }
6258 >                }
6259 >            }
6260 >        }
6261 >    }
6262 >
6263 >    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6264 >        extends Traverser<K,V,Integer> {
6265 >        final ObjectToInt<? super K> transformer;
6266 >        final IntByIntToInt reducer;
6267 >        final int basis;
6268 >        int result;
6269 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6270 >        MapReduceKeysToIntTask
6271 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6272 >             MapReduceKeysToIntTask<K,V> nextRight,
6273 >             ObjectToInt<? super K> transformer,
6274 >             int basis,
6275 >             IntByIntToInt reducer) {
6276 >            super(m, p, b); this.nextRight = nextRight;
6277 >            this.transformer = transformer;
6278 >            this.basis = basis; this.reducer = reducer;
6279 >        }
6280 >        public final Integer getRawResult() { return result; }
6281 >        @SuppressWarnings("unchecked") public final void compute() {
6282 >            final ObjectToInt<? super K> transformer;
6283 >            final IntByIntToInt reducer;
6284 >            if ((transformer = this.transformer) != null &&
6285 >                (reducer = this.reducer) != null) {
6286 >                int r = this.basis;
6287 >                for (int b; (b = preSplit()) > 0;)
6288 >                    (rights = new MapReduceKeysToIntTask<K,V>
6289 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6290 >                while (advance() != null)
6291 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6292 >                result = r;
6293 >                CountedCompleter<?> c;
6294 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6295 >                    MapReduceKeysToIntTask<K,V>
6296 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6297 >                        s = t.rights;
6298 >                    while (s != null) {
6299 >                        t.result = reducer.apply(t.result, s.result);
6300 >                        s = t.rights = s.nextRight;
6301 >                    }
6302 >                }
6303 >            }
6304 >        }
6305 >    }
6306 >
6307 >    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6308 >        extends Traverser<K,V,Integer> {
6309 >        final ObjectToInt<? super V> transformer;
6310 >        final IntByIntToInt reducer;
6311 >        final int basis;
6312 >        int result;
6313 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6314 >        MapReduceValuesToIntTask
6315 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6316 >             MapReduceValuesToIntTask<K,V> nextRight,
6317 >             ObjectToInt<? super V> transformer,
6318 >             int basis,
6319 >             IntByIntToInt reducer) {
6320 >            super(m, p, b); this.nextRight = nextRight;
6321 >            this.transformer = transformer;
6322 >            this.basis = basis; this.reducer = reducer;
6323 >        }
6324 >        public final Integer getRawResult() { return result; }
6325 >        @SuppressWarnings("unchecked") public final void compute() {
6326 >            final ObjectToInt<? super V> transformer;
6327 >            final IntByIntToInt reducer;
6328 >            if ((transformer = this.transformer) != null &&
6329 >                (reducer = this.reducer) != null) {
6330 >                int r = this.basis;
6331 >                for (int b; (b = preSplit()) > 0;)
6332 >                    (rights = new MapReduceValuesToIntTask<K,V>
6333 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6334 >                Object v;
6335 >                while ((v = advance()) != null)
6336 >                    r = reducer.apply(r, transformer.apply((V)v));
6337 >                result = r;
6338 >                CountedCompleter<?> c;
6339 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6340 >                    MapReduceValuesToIntTask<K,V>
6341 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6342 >                        s = t.rights;
6343 >                    while (s != null) {
6344 >                        t.result = reducer.apply(t.result, s.result);
6345 >                        s = t.rights = s.nextRight;
6346 >                    }
6347 >                }
6348 >            }
6349 >        }
6350 >    }
6351 >
6352 >    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6353 >        extends Traverser<K,V,Integer> {
6354 >        final ObjectToInt<Map.Entry<K,V>> transformer;
6355 >        final IntByIntToInt reducer;
6356 >        final int basis;
6357 >        int result;
6358 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6359 >        MapReduceEntriesToIntTask
6360 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6361 >             MapReduceEntriesToIntTask<K,V> nextRight,
6362 >             ObjectToInt<Map.Entry<K,V>> transformer,
6363 >             int basis,
6364 >             IntByIntToInt reducer) {
6365 >            super(m, p, b); this.nextRight = nextRight;
6366 >            this.transformer = transformer;
6367 >            this.basis = basis; this.reducer = reducer;
6368 >        }
6369 >        public final Integer getRawResult() { return result; }
6370 >        @SuppressWarnings("unchecked") public final void compute() {
6371 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6372 >            final IntByIntToInt reducer;
6373 >            if ((transformer = this.transformer) != null &&
6374 >                (reducer = this.reducer) != null) {
6375 >                int r = this.basis;
6376 >                for (int b; (b = preSplit()) > 0;)
6377 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6378 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6379 >                Object v;
6380 >                while ((v = advance()) != null)
6381 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6382 >                                                                    (V)v)));
6383 >                result = r;
6384 >                CountedCompleter<?> c;
6385 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6386 >                    MapReduceEntriesToIntTask<K,V>
6387 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6388 >                        s = t.rights;
6389 >                    while (s != null) {
6390 >                        t.result = reducer.apply(t.result, s.result);
6391 >                        s = t.rights = s.nextRight;
6392 >                    }
6393 >                }
6394 >            }
6395 >        }
6396 >    }
6397 >
6398 >    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6399 >        extends Traverser<K,V,Integer> {
6400 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6401 >        final IntByIntToInt reducer;
6402 >        final int basis;
6403 >        int result;
6404 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6405 >        MapReduceMappingsToIntTask
6406 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6407 >             MapReduceMappingsToIntTask<K,V> nextRight,
6408 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6409 >             int basis,
6410 >             IntByIntToInt reducer) {
6411 >            super(m, p, b); this.nextRight = nextRight;
6412 >            this.transformer = transformer;
6413 >            this.basis = basis; this.reducer = reducer;
6414 >        }
6415 >        public final Integer getRawResult() { return result; }
6416 >        @SuppressWarnings("unchecked") public final void compute() {
6417 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6418 >            final IntByIntToInt reducer;
6419 >            if ((transformer = this.transformer) != null &&
6420 >                (reducer = this.reducer) != null) {
6421 >                int r = this.basis;
6422 >                for (int b; (b = preSplit()) > 0;)
6423 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6424 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6425 >                Object v;
6426 >                while ((v = advance()) != null)
6427 >                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6428 >                result = r;
6429 >                CountedCompleter<?> c;
6430 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6431 >                    MapReduceMappingsToIntTask<K,V>
6432 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6433 >                        s = t.rights;
6434 >                    while (s != null) {
6435 >                        t.result = reducer.apply(t.result, s.result);
6436 >                        s = t.rights = s.nextRight;
6437 >                    }
6438 >                }
6439 >            }
6440 >        }
6441 >    }
6442 >
6443 >    // Unsafe mechanics
6444 >    private static final sun.misc.Unsafe U;
6445 >    private static final long SIZECTL;
6446 >    private static final long TRANSFERINDEX;
6447 >    private static final long TRANSFERORIGIN;
6448 >    private static final long BASECOUNT;
6449 >    private static final long COUNTERBUSY;
6450 >    private static final long CELLVALUE;
6451 >    private static final long ABASE;
6452 >    private static final int ASHIFT;
6453 >
6454 >    static {
6455 >        int ss;
6456 >        try {
6457 >            U = sun.misc.Unsafe.getUnsafe();
6458 >            Class<?> k = ConcurrentHashMap.class;
6459 >            SIZECTL = U.objectFieldOffset
6460 >                (k.getDeclaredField("sizeCtl"));
6461 >            TRANSFERINDEX = U.objectFieldOffset
6462 >                (k.getDeclaredField("transferIndex"));
6463 >            TRANSFERORIGIN = U.objectFieldOffset
6464 >                (k.getDeclaredField("transferOrigin"));
6465 >            BASECOUNT = U.objectFieldOffset
6466 >                (k.getDeclaredField("baseCount"));
6467 >            COUNTERBUSY = U.objectFieldOffset
6468 >                (k.getDeclaredField("counterBusy"));
6469 >            Class<?> ck = CounterCell.class;
6470 >            CELLVALUE = U.objectFieldOffset
6471 >                (ck.getDeclaredField("value"));
6472 >            Class<?> sc = Node[].class;
6473 >            ABASE = U.arrayBaseOffset(sc);
6474 >            ss = U.arrayIndexScale(sc);
6475 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6476 >        } catch (Exception e) {
6477 >            throw new Error(e);
6478          }
6479 +        if ((ss & (ss-1)) != 0)
6480 +            throw new Error("data type scale not a power of two");
6481      }
6482   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines