ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.89 by dl, Tue Jun 6 11:17:58 2006 UTC vs.
Revision 1.179 by jsr166, Mon Feb 11 16:49:08 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 > import java.util.concurrent.ForkJoinPool;
9 > import java.util.concurrent.CountedCompleter;
10 > import java.util.function.*;
11 > import java.util.Spliterator;
12 > import java.util.stream.Stream;
13 > import java.util.stream.Streams;
14 >
15 > import java.util.Comparator;
16 > import java.util.Arrays;
17 > import java.util.Map;
18 > import java.util.Set;
19 > import java.util.Collection;
20 > import java.util.AbstractMap;
21 > import java.util.AbstractSet;
22 > import java.util.AbstractCollection;
23 > import java.util.Hashtable;
24 > import java.util.HashMap;
25 > import java.util.Iterator;
26 > import java.util.Enumeration;
27 > import java.util.ConcurrentModificationException;
28 > import java.util.NoSuchElementException;
29 > import java.util.concurrent.ConcurrentMap;
30 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 > import java.util.concurrent.atomic.AtomicInteger;
32 > import java.util.concurrent.atomic.AtomicReference;
33   import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
34  
35   /**
36   * A hash table supporting full concurrency of retrievals and
37 < * adjustable expected concurrency for updates. This class obeys the
37 > * high expected concurrency for updates. This class obeys the
38   * same functional specification as {@link java.util.Hashtable}, and
39   * includes versions of methods corresponding to each method of
40 < * <tt>Hashtable</tt>. However, even though all operations are
40 > * {@code Hashtable}. However, even though all operations are
41   * thread-safe, retrieval operations do <em>not</em> entail locking,
42   * and there is <em>not</em> any support for locking the entire table
43   * in a way that prevents all access.  This class is fully
44 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
44 > * interoperable with {@code Hashtable} in programs that rely on its
45   * thread safety but not on its synchronization details.
46   *
47 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
48 < * block, so may overlap with update operations (including
49 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
50 < * of the most recently <em>completed</em> update operations holding
51 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
52 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
53 < * removal of only some entries.  Similarly, Iterators and
54 < * Enumerations return elements reflecting the state of the hash table
55 < * at some point at or since the creation of the iterator/enumeration.
56 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
57 < * However, iterators are designed to be used by only one thread at a time.
58 < *
59 < * <p> The allowed concurrency among update operations is guided by
60 < * the optional <tt>concurrencyLevel</tt> constructor argument
61 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
62 < * table is internally partitioned to try to permit the indicated
63 < * number of concurrent updates without contention. Because placement
64 < * in hash tables is essentially random, the actual concurrency will
65 < * vary.  Ideally, you should choose a value to accommodate as many
66 < * threads as will ever concurrently modify the table. Using a
67 < * significantly higher value than you need can waste space and time,
68 < * and a significantly lower value can lead to thread contention. But
69 < * overestimates and underestimates within an order of magnitude do
70 < * not usually have much noticeable impact. A value of one is
71 < * appropriate when it is known that only one thread will modify and
72 < * all others will only read. Also, resizing this or any other kind of
73 < * hash table is a relatively slow operation, so, when possible, it is
74 < * a good idea to provide estimates of expected table sizes in
75 < * constructors.
47 > * <p>Retrieval operations (including {@code get}) generally do not
48 > * block, so may overlap with update operations (including {@code put}
49 > * and {@code remove}). Retrievals reflect the results of the most
50 > * recently <em>completed</em> update operations holding upon their
51 > * onset. (More formally, an update operation for a given key bears a
52 > * <em>happens-before</em> relation with any (non-null) retrieval for
53 > * that key reporting the updated value.)  For aggregate operations
54 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
55 > * reflect insertion or removal of only some entries.  Similarly,
56 > * Iterators and Enumerations return elements reflecting the state of
57 > * the hash table at some point at or since the creation of the
58 > * iterator/enumeration.  They do <em>not</em> throw {@link
59 > * ConcurrentModificationException}.  However, iterators are designed
60 > * to be used by only one thread at a time.  Bear in mind that the
61 > * results of aggregate status methods including {@code size}, {@code
62 > * isEmpty}, and {@code containsValue} are typically useful only when
63 > * a map is not undergoing concurrent updates in other threads.
64 > * Otherwise the results of these methods reflect transient states
65 > * that may be adequate for monitoring or estimation purposes, but not
66 > * for program control.
67 > *
68 > * <p>The table is dynamically expanded when there are too many
69 > * collisions (i.e., keys that have distinct hash codes but fall into
70 > * the same slot modulo the table size), with the expected average
71 > * effect of maintaining roughly two bins per mapping (corresponding
72 > * to a 0.75 load factor threshold for resizing). There may be much
73 > * variance around this average as mappings are added and removed, but
74 > * overall, this maintains a commonly accepted time/space tradeoff for
75 > * hash tables.  However, resizing this or any other kind of hash
76 > * table may be a relatively slow operation. When possible, it is a
77 > * good idea to provide a size estimate as an optional {@code
78 > * initialCapacity} constructor argument. An additional optional
79 > * {@code loadFactor} constructor argument provides a further means of
80 > * customizing initial table capacity by specifying the table density
81 > * to be used in calculating the amount of space to allocate for the
82 > * given number of elements.  Also, for compatibility with previous
83 > * versions of this class, constructors may optionally specify an
84 > * expected {@code concurrencyLevel} as an additional hint for
85 > * internal sizing.  Note that using many keys with exactly the same
86 > * {@code hashCode()} is a sure way to slow down performance of any
87 > * hash table.
88 > *
89 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91 > * (using {@link #keySet(Object)} when only keys are of interest, and the
92 > * mapped values are (perhaps transiently) not used or all take the
93 > * same mapping value.
94 > *
95 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 > * form of histogram or multiset) by using {@link
97 > * java.util.concurrent.atomic.LongAdder} values and initializing via
98 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100 > * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101   *
102   * <p>This class and its views and iterators implement all of the
103   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104   * interfaces.
105   *
106 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
107 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
106 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 > * does <em>not</em> allow {@code null} to be used as a key or value.
108 > *
109 > * <p>ConcurrentHashMaps support sequential and parallel operations
110 > * bulk operations. (Parallel forms use the {@link
111 > * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 > * contexts are available in class {@link ForkJoinTasks}. These
113 > * operations are designed to be safely, and often sensibly, applied
114 > * even with maps that are being concurrently updated by other
115 > * threads; for example, when computing a snapshot summary of the
116 > * values in a shared registry.  There are three kinds of operation,
117 > * each with four forms, accepting functions with Keys, Values,
118 > * Entries, and (Key, Value) arguments and/or return values. Because
119 > * the elements of a ConcurrentHashMap are not ordered in any
120 > * particular way, and may be processed in different orders in
121 > * different parallel executions, the correctness of supplied
122 > * functions should not depend on any ordering, or on any other
123 > * objects or values that may transiently change while computation is
124 > * in progress; and except for forEach actions, should ideally be
125 > * side-effect-free.
126 > *
127 > * <ul>
128 > * <li> forEach: Perform a given action on each element.
129 > * A variant form applies a given transformation on each element
130 > * before performing the action.</li>
131 > *
132 > * <li> search: Return the first available non-null result of
133 > * applying a given function on each element; skipping further
134 > * search when a result is found.</li>
135 > *
136 > * <li> reduce: Accumulate each element.  The supplied reduction
137 > * function cannot rely on ordering (more formally, it should be
138 > * both associative and commutative).  There are five variants:
139 > *
140 > * <ul>
141 > *
142 > * <li> Plain reductions. (There is not a form of this method for
143 > * (key, value) function arguments since there is no corresponding
144 > * return type.)</li>
145 > *
146 > * <li> Mapped reductions that accumulate the results of a given
147 > * function applied to each element.</li>
148 > *
149 > * <li> Reductions to scalar doubles, longs, and ints, using a
150 > * given basis value.</li>
151 > *
152 > * </ul>
153 > * </li>
154 > * </ul>
155 > *
156 > * <p>The concurrency properties of bulk operations follow
157 > * from those of ConcurrentHashMap: Any non-null result returned
158 > * from {@code get(key)} and related access methods bears a
159 > * happens-before relation with the associated insertion or
160 > * update.  The result of any bulk operation reflects the
161 > * composition of these per-element relations (but is not
162 > * necessarily atomic with respect to the map as a whole unless it
163 > * is somehow known to be quiescent).  Conversely, because keys
164 > * and values in the map are never null, null serves as a reliable
165 > * atomic indicator of the current lack of any result.  To
166 > * maintain this property, null serves as an implicit basis for
167 > * all non-scalar reduction operations. For the double, long, and
168 > * int versions, the basis should be one that, when combined with
169 > * any other value, returns that other value (more formally, it
170 > * should be the identity element for the reduction). Most common
171 > * reductions have these properties; for example, computing a sum
172 > * with basis 0 or a minimum with basis MAX_VALUE.
173 > *
174 > * <p>Search and transformation functions provided as arguments
175 > * should similarly return null to indicate the lack of any result
176 > * (in which case it is not used). In the case of mapped
177 > * reductions, this also enables transformations to serve as
178 > * filters, returning null (or, in the case of primitive
179 > * specializations, the identity basis) if the element should not
180 > * be combined. You can create compound transformations and
181 > * filterings by composing them yourself under this "null means
182 > * there is nothing there now" rule before using them in search or
183 > * reduce operations.
184 > *
185 > * <p>Methods accepting and/or returning Entry arguments maintain
186 > * key-value associations. They may be useful for example when
187 > * finding the key for the greatest value. Note that "plain" Entry
188 > * arguments can be supplied using {@code new
189 > * AbstractMap.SimpleEntry(k,v)}.
190 > *
191 > * <p>Bulk operations may complete abruptly, throwing an
192 > * exception encountered in the application of a supplied
193 > * function. Bear in mind when handling such exceptions that other
194 > * concurrently executing functions could also have thrown
195 > * exceptions, or would have done so if the first exception had
196 > * not occurred.
197 > *
198 > * <p>Speedups for parallel compared to sequential forms are common
199 > * but not guaranteed.  Parallel operations involving brief functions
200 > * on small maps may execute more slowly than sequential forms if the
201 > * underlying work to parallelize the computation is more expensive
202 > * than the computation itself.  Similarly, parallelization may not
203 > * lead to much actual parallelism if all processors are busy
204 > * performing unrelated tasks.
205 > *
206 > * <p>All arguments to all task methods must be non-null.
207   *
208   * <p>This class is a member of the
209   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 214 | import java.io.ObjectOutputStream;
214   * @param <K> the type of keys maintained by this map
215   * @param <V> the type of mapped values
216   */
217 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
218 <        implements ConcurrentMap<K, V>, Serializable {
217 > public class ConcurrentHashMap<K, V>
218 >    implements ConcurrentMap<K, V>, Serializable {
219      private static final long serialVersionUID = 7249069246763182397L;
220  
221      /*
222 <     * The basic strategy is to subdivide the table among Segments,
223 <     * each of which itself is a concurrently readable hash table.
222 >     * Overview:
223 >     *
224 >     * The primary design goal of this hash table is to maintain
225 >     * concurrent readability (typically method get(), but also
226 >     * iterators and related methods) while minimizing update
227 >     * contention. Secondary goals are to keep space consumption about
228 >     * the same or better than java.util.HashMap, and to support high
229 >     * initial insertion rates on an empty table by many threads.
230 >     *
231 >     * Each key-value mapping is held in a Node.  Because Node key
232 >     * fields can contain special values, they are defined using plain
233 >     * Object types (not type "K"). This leads to a lot of explicit
234 >     * casting (and many explicit warning suppressions to tell
235 >     * compilers not to complain about it). It also allows some of the
236 >     * public methods to be factored into a smaller number of internal
237 >     * methods (although sadly not so for the five variants of
238 >     * put-related operations). The validation-based approach
239 >     * explained below leads to a lot of code sprawl because
240 >     * retry-control precludes factoring into smaller methods.
241 >     *
242 >     * The table is lazily initialized to a power-of-two size upon the
243 >     * first insertion.  Each bin in the table normally contains a
244 >     * list of Nodes (most often, the list has only zero or one Node).
245 >     * Table accesses require volatile/atomic reads, writes, and
246 >     * CASes.  Because there is no other way to arrange this without
247 >     * adding further indirections, we use intrinsics
248 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
249 >     * are always accurately traversable under volatile reads, so long
250 >     * as lookups check hash code and non-nullness of value before
251 >     * checking key equality.
252 >     *
253 >     * We use the top (sign) bit of Node hash fields for control
254 >     * purposes -- it is available anyway because of addressing
255 >     * constraints.  Nodes with negative hash fields are forwarding
256 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
257 >     * of each normal Node's hash field contain a transformation of
258 >     * the key's hash code.
259 >     *
260 >     * Insertion (via put or its variants) of the first node in an
261 >     * empty bin is performed by just CASing it to the bin.  This is
262 >     * by far the most common case for put operations under most
263 >     * key/hash distributions.  Other update operations (insert,
264 >     * delete, and replace) require locks.  We do not want to waste
265 >     * the space required to associate a distinct lock object with
266 >     * each bin, so instead use the first node of a bin list itself as
267 >     * a lock. Locking support for these locks relies on builtin
268 >     * "synchronized" monitors.
269 >     *
270 >     * Using the first node of a list as a lock does not by itself
271 >     * suffice though: When a node is locked, any update must first
272 >     * validate that it is still the first node after locking it, and
273 >     * retry if not. Because new nodes are always appended to lists,
274 >     * once a node is first in a bin, it remains first until deleted
275 >     * or the bin becomes invalidated (upon resizing).  However,
276 >     * operations that only conditionally update may inspect nodes
277 >     * until the point of update. This is a converse of sorts to the
278 >     * lazy locking technique described by Herlihy & Shavit.
279 >     *
280 >     * The main disadvantage of per-bin locks is that other update
281 >     * operations on other nodes in a bin list protected by the same
282 >     * lock can stall, for example when user equals() or mapping
283 >     * functions take a long time.  However, statistically, under
284 >     * random hash codes, this is not a common problem.  Ideally, the
285 >     * frequency of nodes in bins follows a Poisson distribution
286 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287 >     * parameter of about 0.5 on average, given the resizing threshold
288 >     * of 0.75, although with a large variance because of resizing
289 >     * granularity. Ignoring variance, the expected occurrences of
290 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291 >     * first values are:
292 >     *
293 >     * 0:    0.60653066
294 >     * 1:    0.30326533
295 >     * 2:    0.07581633
296 >     * 3:    0.01263606
297 >     * 4:    0.00157952
298 >     * 5:    0.00015795
299 >     * 6:    0.00001316
300 >     * 7:    0.00000094
301 >     * 8:    0.00000006
302 >     * more: less than 1 in ten million
303 >     *
304 >     * Lock contention probability for two threads accessing distinct
305 >     * elements is roughly 1 / (8 * #elements) under random hashes.
306 >     *
307 >     * Actual hash code distributions encountered in practice
308 >     * sometimes deviate significantly from uniform randomness.  This
309 >     * includes the case when N > (1<<30), so some keys MUST collide.
310 >     * Similarly for dumb or hostile usages in which multiple keys are
311 >     * designed to have identical hash codes. Also, although we guard
312 >     * against the worst effects of this (see method spread), sets of
313 >     * hashes may differ only in bits that do not impact their bin
314 >     * index for a given power-of-two mask.  So we use a secondary
315 >     * strategy that applies when the number of nodes in a bin exceeds
316 >     * a threshold, and at least one of the keys implements
317 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
318 >     * (a specialized form of red-black trees), bounding search time
319 >     * to O(log N).  Each search step in a TreeBin is around twice as
320 >     * slow as in a regular list, but given that N cannot exceed
321 >     * (1<<64) (before running out of addresses) this bounds search
322 >     * steps, lock hold times, etc, to reasonable constants (roughly
323 >     * 100 nodes inspected per operation worst case) so long as keys
324 >     * are Comparable (which is very common -- String, Long, etc).
325 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
326 >     * traversal pointers as regular nodes, so can be traversed in
327 >     * iterators in the same way.
328 >     *
329 >     * The table is resized when occupancy exceeds a percentage
330 >     * threshold (nominally, 0.75, but see below).  Any thread
331 >     * noticing an overfull bin may assist in resizing after the
332 >     * initiating thread allocates and sets up the replacement
333 >     * array. However, rather than stalling, these other threads may
334 >     * proceed with insertions etc.  The use of TreeBins shields us
335 >     * from the worst case effects of overfilling while resizes are in
336 >     * progress.  Resizing proceeds by transferring bins, one by one,
337 >     * from the table to the next table. To enable concurrency, the
338 >     * next table must be (incrementally) prefilled with place-holders
339 >     * serving as reverse forwarders to the old table.  Because we are
340 >     * using power-of-two expansion, the elements from each bin must
341 >     * either stay at same index, or move with a power of two
342 >     * offset. We eliminate unnecessary node creation by catching
343 >     * cases where old nodes can be reused because their next fields
344 >     * won't change.  On average, only about one-sixth of them need
345 >     * cloning when a table doubles. The nodes they replace will be
346 >     * garbage collectable as soon as they are no longer referenced by
347 >     * any reader thread that may be in the midst of concurrently
348 >     * traversing table.  Upon transfer, the old table bin contains
349 >     * only a special forwarding node (with hash field "MOVED") that
350 >     * contains the next table as its key. On encountering a
351 >     * forwarding node, access and update operations restart, using
352 >     * the new table.
353 >     *
354 >     * Each bin transfer requires its bin lock, which can stall
355 >     * waiting for locks while resizing. However, because other
356 >     * threads can join in and help resize rather than contend for
357 >     * locks, average aggregate waits become shorter as resizing
358 >     * progresses.  The transfer operation must also ensure that all
359 >     * accessible bins in both the old and new table are usable by any
360 >     * traversal.  This is arranged by proceeding from the last bin
361 >     * (table.length - 1) up towards the first.  Upon seeing a
362 >     * forwarding node, traversals (see class Traverser) arrange to
363 >     * move to the new table without revisiting nodes.  However, to
364 >     * ensure that no intervening nodes are skipped, bin splitting can
365 >     * only begin after the associated reverse-forwarders are in
366 >     * place.
367 >     *
368 >     * The traversal scheme also applies to partial traversals of
369 >     * ranges of bins (via an alternate Traverser constructor)
370 >     * to support partitioned aggregate operations.  Also, read-only
371 >     * operations give up if ever forwarded to a null table, which
372 >     * provides support for shutdown-style clearing, which is also not
373 >     * currently implemented.
374 >     *
375 >     * Lazy table initialization minimizes footprint until first use,
376 >     * and also avoids resizings when the first operation is from a
377 >     * putAll, constructor with map argument, or deserialization.
378 >     * These cases attempt to override the initial capacity settings,
379 >     * but harmlessly fail to take effect in cases of races.
380 >     *
381 >     * The element count is maintained using a specialization of
382 >     * LongAdder. We need to incorporate a specialization rather than
383 >     * just use a LongAdder in order to access implicit
384 >     * contention-sensing that leads to creation of multiple
385 >     * Cells.  The counter mechanics avoid contention on
386 >     * updates but can encounter cache thrashing if read too
387 >     * frequently during concurrent access. To avoid reading so often,
388 >     * resizing under contention is attempted only upon adding to a
389 >     * bin already holding two or more nodes. Under uniform hash
390 >     * distributions, the probability of this occurring at threshold
391 >     * is around 13%, meaning that only about 1 in 8 puts check
392 >     * threshold (and after resizing, many fewer do so). The bulk
393 >     * putAll operation further reduces contention by only committing
394 >     * count updates upon these size checks.
395 >     *
396 >     * Maintaining API and serialization compatibility with previous
397 >     * versions of this class introduces several oddities. Mainly: We
398 >     * leave untouched but unused constructor arguments refering to
399 >     * concurrencyLevel. We accept a loadFactor constructor argument,
400 >     * but apply it only to initial table capacity (which is the only
401 >     * time that we can guarantee to honor it.) We also declare an
402 >     * unused "Segment" class that is instantiated in minimal form
403 >     * only when serializing.
404       */
405  
406      /* ---------------- Constants -------------- */
407  
408      /**
409 <     * The default initial capacity for this table,
410 <     * used when not otherwise specified in a constructor.
409 >     * The largest possible table capacity.  This value must be
410 >     * exactly 1<<30 to stay within Java array allocation and indexing
411 >     * bounds for power of two table sizes, and is further required
412 >     * because the top two bits of 32bit hash fields are used for
413 >     * control purposes.
414       */
415 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
415 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
416  
417      /**
418 <     * The default load factor for this table, used when not
419 <     * otherwise specified in a constructor.
418 >     * The default initial table capacity.  Must be a power of 2
419 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420       */
421 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
421 >    private static final int DEFAULT_CAPACITY = 16;
422  
423      /**
424 <     * The default concurrency level for this table, used when not
425 <     * otherwise specified in a constructor.
424 >     * The largest possible (non-power of two) array size.
425 >     * Needed by toArray and related methods.
426       */
427 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
427 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428  
429      /**
430 <     * The maximum capacity, used if a higher value is implicitly
431 <     * specified by either of the constructors with arguments.  MUST
105 <     * be a power of two <= 1<<30 to ensure that entries are indexable
106 <     * using ints.
430 >     * The default concurrency level for this table. Unused but
431 >     * defined for compatibility with previous versions of this class.
432       */
433 <    static final int MAXIMUM_CAPACITY = 1 << 30;
433 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434  
435      /**
436 <     * The maximum number of segments to allow; used to bound
437 <     * constructor arguments.
436 >     * The load factor for this table. Overrides of this value in
437 >     * constructors affect only the initial table capacity.  The
438 >     * actual floating point value isn't normally used -- it is
439 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
440 >     * the associated resizing threshold.
441       */
442 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
442 >    private static final float LOAD_FACTOR = 0.75f;
443  
444      /**
445 <     * Number of unsynchronized retries in size and containsValue
446 <     * methods before resorting to locking. This is used to avoid
447 <     * unbounded retries if tables undergo continuous modification
120 <     * which would make it impossible to obtain an accurate result.
445 >     * The bin count threshold for using a tree rather than list for a
446 >     * bin.  The value reflects the approximate break-even point for
447 >     * using tree-based operations.
448       */
449 <    static final int RETRIES_BEFORE_LOCK = 2;
449 >    private static final int TREE_THRESHOLD = 8;
450 >
451 >    /**
452 >     * Minimum number of rebinnings per transfer step. Ranges are
453 >     * subdivided to allow multiple resizer threads.  This value
454 >     * serves as a lower bound to avoid resizers encountering
455 >     * excessive memory contention.  The value should be at least
456 >     * DEFAULT_CAPACITY.
457 >     */
458 >    private static final int MIN_TRANSFER_STRIDE = 16;
459 >
460 >    /*
461 >     * Encodings for Node hash fields. See above for explanation.
462 >     */
463 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
464 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465 >
466 >    /** Number of CPUS, to place bounds on some sizings */
467 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
468 >
469 >    /* ---------------- Counters -------------- */
470 >
471 >    // Adapted from LongAdder and Striped64.
472 >    // See their internal docs for explanation.
473 >
474 >    // A padded cell for distributing counts
475 >    static final class Cell {
476 >        volatile long p0, p1, p2, p3, p4, p5, p6;
477 >        volatile long value;
478 >        volatile long q0, q1, q2, q3, q4, q5, q6;
479 >        Cell(long x) { value = x; }
480 >    }
481  
482      /* ---------------- Fields -------------- */
483  
484      /**
485 <     * Mask value for indexing into segments. The upper bits of a
486 <     * key's hash code are used to choose the segment.
485 >     * The array of bins. Lazily initialized upon first insertion.
486 >     * Size is always a power of two. Accessed directly by iterators.
487       */
488 <    final int segmentMask;
488 >    transient volatile Node<V>[] table;
489  
490      /**
491 <     * Shift value for indexing within segments.
491 >     * The next table to use; non-null only while resizing.
492       */
493 <    final int segmentShift;
493 >    private transient volatile Node<V>[] nextTable;
494  
495      /**
496 <     * The segments, each of which is a specialized hash table
496 >     * Base counter value, used mainly when there is no contention,
497 >     * but also as a fallback during table initialization
498 >     * races. Updated via CAS.
499       */
500 <    final Segment<K,V>[] segments;
500 >    private transient volatile long baseCount;
501  
502 <    transient Set<K> keySet;
503 <    transient Set<Map.Entry<K,V>> entrySet;
504 <    transient Collection<V> values;
502 >    /**
503 >     * Table initialization and resizing control.  When negative, the
504 >     * table is being initialized or resized: -1 for initialization,
505 >     * else -(1 + the number of active resizing threads).  Otherwise,
506 >     * when table is null, holds the initial table size to use upon
507 >     * creation, or 0 for default. After initialization, holds the
508 >     * next element count value upon which to resize the table.
509 >     */
510 >    private transient volatile int sizeCtl;
511  
512 <    /* ---------------- Small Utilities -------------- */
512 >    /**
513 >     * The next table index (plus one) to split while resizing.
514 >     */
515 >    private transient volatile int transferIndex;
516  
517      /**
518 <     * Applies a supplemental hash function to a given hashCode, which
150 <     * defends against poor quality hash functions.  This is critical
151 <     * because HashMap uses power-of two length hash tables, that
152 <     * otherwise encounter collisions for hashCodes that do not differ
153 <     * in lower bits.
518 >     * The least available table index to split while resizing.
519       */
520 <    static int hash(int h) {
156 <        // This function ensures that hashCodes that differ only by
157 <        // constant multiples at each bit position have a bounded
158 <        // number of collisions (approximately 8 at default load factor).
159 <        h ^= (h >>> 20) ^ (h >>> 12);
160 <        return h ^ (h >>> 7) ^ (h >>> 4);
161 <    }
520 >    private transient volatile int transferOrigin;
521  
522      /**
523 <     * Returns the segment that should be used for key with given hash
524 <     * @param hash the hash code for the key
525 <     * @return the segment
523 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 >     */
525 >    private transient volatile int cellsBusy;
526 >
527 >    /**
528 >     * Table of counter cells. When non-null, size is a power of 2.
529 >     */
530 >    private transient volatile Cell[] counterCells;
531 >
532 >    // views
533 >    private transient KeySetView<K,V> keySet;
534 >    private transient ValuesView<K,V> values;
535 >    private transient EntrySetView<K,V> entrySet;
536 >
537 >    /** For serialization compatibility. Null unless serialized; see below */
538 >    private Segment<K,V>[] segments;
539 >
540 >    /* ---------------- Table element access -------------- */
541 >
542 >    /*
543 >     * Volatile access methods are used for table elements as well as
544 >     * elements of in-progress next table while resizing.  Uses are
545 >     * null checked by callers, and implicitly bounds-checked, relying
546 >     * on the invariants that tab arrays have non-zero size, and all
547 >     * indices are masked with (tab.length - 1) which is never
548 >     * negative and always less than length. Note that, to be correct
549 >     * wrt arbitrary concurrency errors by users, bounds checks must
550 >     * operate on local variables, which accounts for some odd-looking
551 >     * inline assignments below.
552       */
553 <    final Segment<K,V> segmentFor(int hash) {
554 <        return segments[(hash >>> segmentShift) & segmentMask];
553 >
554 >    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 >        (Node<V>[] tab, int i) { // used by Traverser
556 >        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557      }
558  
559 <    /* ---------------- Inner Classes -------------- */
559 >    private static final <V> boolean casTabAt
560 >        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 >    }
563 >
564 >    private static final <V> void setTabAt
565 >        (Node<V>[] tab, int i, Node<V> v) {
566 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 >    }
568 >
569 >    /* ---------------- Nodes -------------- */
570  
571      /**
572 <     * ConcurrentHashMap list entry. Note that this is never exported
573 <     * out as a user-visible Map.Entry.
574 <     *
575 <     * Because the value field is volatile, not final, it is legal wrt
576 <     * the Java Memory Model for an unsynchronized reader to see null
577 <     * instead of initial value when read via a data race.  Although a
578 <     * reordering leading to this is not likely to ever actually
579 <     * occur, the Segment.readValueUnderLock method is used as a
183 <     * backup in case a null (pre-initialized) value is ever seen in
184 <     * an unsynchronized access method.
572 >     * Key-value entry. Note that this is never exported out as a
573 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574 >     * field of MOVED are special, and do not contain user keys or
575 >     * values.  Otherwise, keys are never null, and null val fields
576 >     * indicate that a node is in the process of being deleted or
577 >     * created. For purposes of read-only access, a key may be read
578 >     * before a val, but can only be used after checking val to be
579 >     * non-null.
580       */
581 <    static final class HashEntry<K,V> {
187 <        final K key;
581 >    static class Node<V> {
582          final int hash;
583 <        volatile V value;
584 <        final HashEntry<K,V> next;
583 >        final Object key;
584 >        volatile V val;
585 >        volatile Node<V> next;
586  
587 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 <            this.key = key;
587 >        Node(int hash, Object key, V val, Node<V> next) {
588              this.hash = hash;
589 +            this.key = key;
590 +            this.val = val;
591              this.next = next;
196            this.value = value;
592          }
198
199        @SuppressWarnings("unchecked")
200        static final <K,V> HashEntry<K,V>[] newArray(int i) {
201            return new HashEntry[i];
202        }
593      }
594  
595 +    /* ---------------- TreeBins -------------- */
596 +
597      /**
598 <     * Segments are specialized versions of hash tables.  This
599 <     * subclasses from ReentrantLock opportunistically, just to
600 <     * simplify some locking and avoid separate construction.
601 <     */
602 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
603 <        /*
604 <         * Segments maintain a table of entry lists that are ALWAYS
605 <         * kept in a consistent state, so can be read without locking.
606 <         * Next fields of nodes are immutable (final).  All list
607 <         * additions are performed at the front of each bin. This
608 <         * makes it easy to check changes, and also fast to traverse.
609 <         * When nodes would otherwise be changed, new nodes are
610 <         * created to replace them. This works well for hash tables
611 <         * since the bin lists tend to be short. (The average length
220 <         * is less than two for the default load factor threshold.)
221 <         *
222 <         * Read operations can thus proceed without locking, but rely
223 <         * on selected uses of volatiles to ensure that completed
224 <         * write operations performed by other threads are
225 <         * noticed. For most purposes, the "count" field, tracking the
226 <         * number of elements, serves as that volatile variable
227 <         * ensuring visibility.  This is convenient because this field
228 <         * needs to be read in many read operations anyway:
229 <         *
230 <         *   - All (unsynchronized) read operations must first read the
231 <         *     "count" field, and should not look at table entries if
232 <         *     it is 0.
233 <         *
234 <         *   - All (synchronized) write operations should write to
235 <         *     the "count" field after structurally changing any bin.
236 <         *     The operations must not take any action that could even
237 <         *     momentarily cause a concurrent read operation to see
238 <         *     inconsistent data. This is made easier by the nature of
239 <         *     the read operations in Map. For example, no operation
240 <         *     can reveal that the table has grown but the threshold
241 <         *     has not yet been updated, so there are no atomicity
242 <         *     requirements for this with respect to reads.
243 <         *
244 <         * As a guide, all critical volatile reads and writes to the
245 <         * count field are marked in code comments.
246 <         */
598 >     * Nodes for use in TreeBins
599 >     */
600 >    static final class TreeNode<V> extends Node<V> {
601 >        TreeNode<V> parent;  // red-black tree links
602 >        TreeNode<V> left;
603 >        TreeNode<V> right;
604 >        TreeNode<V> prev;    // needed to unlink next upon deletion
605 >        boolean red;
606 >
607 >        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 >            super(hash, key, val, next);
609 >            this.parent = parent;
610 >        }
611 >    }
612  
613 +    /**
614 +     * A specialized form of red-black tree for use in bins
615 +     * whose size exceeds a threshold.
616 +     *
617 +     * TreeBins use a special form of comparison for search and
618 +     * related operations (which is the main reason we cannot use
619 +     * existing collections such as TreeMaps). TreeBins contain
620 +     * Comparable elements, but may contain others, as well as
621 +     * elements that are Comparable but not necessarily Comparable<T>
622 +     * for the same T, so we cannot invoke compareTo among them. To
623 +     * handle this, the tree is ordered primarily by hash value, then
624 +     * by getClass().getName() order, and then by Comparator order
625 +     * among elements of the same class.  On lookup at a node, if
626 +     * elements are not comparable or compare as 0, both left and
627 +     * right children may need to be searched in the case of tied hash
628 +     * values. (This corresponds to the full list search that would be
629 +     * necessary if all elements were non-Comparable and had tied
630 +     * hashes.)  The red-black balancing code is updated from
631 +     * pre-jdk-collections
632 +     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 +     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 +     * Algorithms" (CLR).
635 +     *
636 +     * TreeBins also maintain a separate locking discipline than
637 +     * regular bins. Because they are forwarded via special MOVED
638 +     * nodes at bin heads (which can never change once established),
639 +     * we cannot use those nodes as locks. Instead, TreeBin
640 +     * extends AbstractQueuedSynchronizer to support a simple form of
641 +     * read-write lock. For update operations and table validation,
642 +     * the exclusive form of lock behaves in the same way as bin-head
643 +     * locks. However, lookups use shared read-lock mechanics to allow
644 +     * multiple readers in the absence of writers.  Additionally,
645 +     * these lookups do not ever block: While the lock is not
646 +     * available, they proceed along the slow traversal path (via
647 +     * next-pointers) until the lock becomes available or the list is
648 +     * exhausted, whichever comes first. (These cases are not fast,
649 +     * but maximize aggregate expected throughput.)  The AQS mechanics
650 +     * for doing this are straightforward.  The lock state is held as
651 +     * AQS getState().  Read counts are negative; the write count (1)
652 +     * is positive.  There are no signalling preferences among readers
653 +     * and writers. Since we don't need to export full Lock API, we
654 +     * just override the minimal AQS methods and use them directly.
655 +     */
656 +    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657          private static final long serialVersionUID = 2249069246763182397L;
658 +        transient TreeNode<V> root;  // root of tree
659 +        transient TreeNode<V> first; // head of next-pointer list
660  
661 <        /**
662 <         * The number of elements in this segment's region.
663 <         */
664 <        transient volatile int count;
661 >        /* AQS overrides */
662 >        public final boolean isHeldExclusively() { return getState() > 0; }
663 >        public final boolean tryAcquire(int ignore) {
664 >            if (compareAndSetState(0, 1)) {
665 >                setExclusiveOwnerThread(Thread.currentThread());
666 >                return true;
667 >            }
668 >            return false;
669 >        }
670 >        public final boolean tryRelease(int ignore) {
671 >            setExclusiveOwnerThread(null);
672 >            setState(0);
673 >            return true;
674 >        }
675 >        public final int tryAcquireShared(int ignore) {
676 >            for (int c;;) {
677 >                if ((c = getState()) > 0)
678 >                    return -1;
679 >                if (compareAndSetState(c, c -1))
680 >                    return 1;
681 >            }
682 >        }
683 >        public final boolean tryReleaseShared(int ignore) {
684 >            int c;
685 >            do {} while (!compareAndSetState(c = getState(), c + 1));
686 >            return c == -1;
687 >        }
688 >
689 >        /** From CLR */
690 >        private void rotateLeft(TreeNode<V> p) {
691 >            if (p != null) {
692 >                TreeNode<V> r = p.right, pp, rl;
693 >                if ((rl = p.right = r.left) != null)
694 >                    rl.parent = p;
695 >                if ((pp = r.parent = p.parent) == null)
696 >                    root = r;
697 >                else if (pp.left == p)
698 >                    pp.left = r;
699 >                else
700 >                    pp.right = r;
701 >                r.left = p;
702 >                p.parent = r;
703 >            }
704 >        }
705  
706 <        /**
707 <         * Number of updates that alter the size of the table. This is
708 <         * used during bulk-read methods to make sure they see a
709 <         * consistent snapshot: If modCounts change during a traversal
710 <         * of segments computing size or checking containsValue, then
711 <         * we might have an inconsistent view of state so (usually)
712 <         * must retry.
713 <         */
714 <        transient int modCount;
706 >        /** From CLR */
707 >        private void rotateRight(TreeNode<V> p) {
708 >            if (p != null) {
709 >                TreeNode<V> l = p.left, pp, lr;
710 >                if ((lr = p.left = l.right) != null)
711 >                    lr.parent = p;
712 >                if ((pp = l.parent = p.parent) == null)
713 >                    root = l;
714 >                else if (pp.right == p)
715 >                    pp.right = l;
716 >                else
717 >                    pp.left = l;
718 >                l.right = p;
719 >                p.parent = l;
720 >            }
721 >        }
722  
723          /**
724 <         * The table is rehashed when its size exceeds this threshold.
725 <         * (The value of this field is always <tt>(int)(capacity *
268 <         * loadFactor)</tt>.)
724 >         * Returns the TreeNode (or null if not found) for the given key
725 >         * starting at given root.
726           */
727 <        transient int threshold;
727 >        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 >            (int h, Object k, TreeNode<V> p) {
729 >            Class<?> c = k.getClass();
730 >            while (p != null) {
731 >                int dir, ph;  Object pk; Class<?> pc;
732 >                if ((ph = p.hash) == h) {
733 >                    if ((pk = p.key) == k || k.equals(pk))
734 >                        return p;
735 >                    if (c != (pc = pk.getClass()) ||
736 >                        !(k instanceof Comparable) ||
737 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 >                        if ((dir = (c == pc) ? 0 :
739 >                             c.getName().compareTo(pc.getName())) == 0) {
740 >                            TreeNode<V> r = null, pl, pr; // check both sides
741 >                            if ((pr = p.right) != null && h >= pr.hash &&
742 >                                (r = getTreeNode(h, k, pr)) != null)
743 >                                return r;
744 >                            else if ((pl = p.left) != null && h <= pl.hash)
745 >                                dir = -1;
746 >                            else // nothing there
747 >                                return null;
748 >                        }
749 >                    }
750 >                }
751 >                else
752 >                    dir = (h < ph) ? -1 : 1;
753 >                p = (dir > 0) ? p.right : p.left;
754 >            }
755 >            return null;
756 >        }
757  
758          /**
759 <         * The per-segment table.
759 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760 >         * read-lock to call getTreeNode, but during failure to get
761 >         * lock, searches along next links.
762           */
763 <        transient volatile HashEntry<K,V>[] table;
763 >        final V getValue(int h, Object k) {
764 >            Node<V> r = null;
765 >            int c = getState(); // Must read lock state first
766 >            for (Node<V> e = first; e != null; e = e.next) {
767 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
768 >                    try {
769 >                        r = getTreeNode(h, k, root);
770 >                    } finally {
771 >                        releaseShared(0);
772 >                    }
773 >                    break;
774 >                }
775 >                else if (e.hash == h && k.equals(e.key)) {
776 >                    r = e;
777 >                    break;
778 >                }
779 >                else
780 >                    c = getState();
781 >            }
782 >            return r == null ? null : r.val;
783 >        }
784  
785          /**
786 <         * The load factor for the hash table.  Even though this value
787 <         * is same for all segments, it is replicated to avoid needing
280 <         * links to outer object.
281 <         * @serial
786 >         * Finds or adds a node.
787 >         * @return null if added
788           */
789 <        final float loadFactor;
790 <
791 <        Segment(int initialCapacity, float lf) {
792 <            loadFactor = lf;
793 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
794 <        }
789 >        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 >            (int h, Object k, V v) {
791 >            Class<?> c = k.getClass();
792 >            TreeNode<V> pp = root, p = null;
793 >            int dir = 0;
794 >            while (pp != null) { // find existing node or leaf to insert at
795 >                int ph;  Object pk; Class<?> pc;
796 >                p = pp;
797 >                if ((ph = p.hash) == h) {
798 >                    if ((pk = p.key) == k || k.equals(pk))
799 >                        return p;
800 >                    if (c != (pc = pk.getClass()) ||
801 >                        !(k instanceof Comparable) ||
802 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 >                        TreeNode<V> s = null, r = null, pr;
804 >                        if ((dir = (c == pc) ? 0 :
805 >                             c.getName().compareTo(pc.getName())) == 0) {
806 >                            if ((pr = p.right) != null && h >= pr.hash &&
807 >                                (r = getTreeNode(h, k, pr)) != null)
808 >                                return r;
809 >                            else // continue left
810 >                                dir = -1;
811 >                        }
812 >                        else if ((pr = p.right) != null && h >= pr.hash)
813 >                            s = pr;
814 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
815 >                            return r;
816 >                    }
817 >                }
818 >                else
819 >                    dir = (h < ph) ? -1 : 1;
820 >                pp = (dir > 0) ? p.right : p.left;
821 >            }
822  
823 <        @SuppressWarnings("unchecked")
824 <        static final <K,V> Segment<K,V>[] newArray(int i) {
825 <            return new Segment[i];
823 >            TreeNode<V> f = first;
824 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 >            if (p == null)
826 >                root = x;
827 >            else { // attach and rebalance; adapted from CLR
828 >                TreeNode<V> xp, xpp;
829 >                if (f != null)
830 >                    f.prev = x;
831 >                if (dir <= 0)
832 >                    p.left = x;
833 >                else
834 >                    p.right = x;
835 >                x.red = true;
836 >                while (x != null && (xp = x.parent) != null && xp.red &&
837 >                       (xpp = xp.parent) != null) {
838 >                    TreeNode<V> xppl = xpp.left;
839 >                    if (xp == xppl) {
840 >                        TreeNode<V> y = xpp.right;
841 >                        if (y != null && y.red) {
842 >                            y.red = false;
843 >                            xp.red = false;
844 >                            xpp.red = true;
845 >                            x = xpp;
846 >                        }
847 >                        else {
848 >                            if (x == xp.right) {
849 >                                rotateLeft(x = xp);
850 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
851 >                            }
852 >                            if (xp != null) {
853 >                                xp.red = false;
854 >                                if (xpp != null) {
855 >                                    xpp.red = true;
856 >                                    rotateRight(xpp);
857 >                                }
858 >                            }
859 >                        }
860 >                    }
861 >                    else {
862 >                        TreeNode<V> y = xppl;
863 >                        if (y != null && y.red) {
864 >                            y.red = false;
865 >                            xp.red = false;
866 >                            xpp.red = true;
867 >                            x = xpp;
868 >                        }
869 >                        else {
870 >                            if (x == xp.left) {
871 >                                rotateRight(x = xp);
872 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
873 >                            }
874 >                            if (xp != null) {
875 >                                xp.red = false;
876 >                                if (xpp != null) {
877 >                                    xpp.red = true;
878 >                                    rotateLeft(xpp);
879 >                                }
880 >                            }
881 >                        }
882 >                    }
883 >                }
884 >                TreeNode<V> r = root;
885 >                if (r != null && r.red)
886 >                    r.red = false;
887 >            }
888 >            return null;
889          }
890  
891          /**
892 <         * Sets table to new HashEntry array.
893 <         * Call only while holding lock or in constructor.
892 >         * Removes the given node, that must be present before this
893 >         * call.  This is messier than typical red-black deletion code
894 >         * because we cannot swap the contents of an interior node
895 >         * with a leaf successor that is pinned by "next" pointers
896 >         * that are accessible independently of lock. So instead we
897 >         * swap the tree linkages.
898           */
899 <        void setTable(HashEntry<K,V>[] newTable) {
900 <            threshold = (int)(newTable.length * loadFactor);
901 <            table = newTable;
899 >        final void deleteTreeNode(TreeNode<V> p) {
900 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 >            TreeNode<V> pred = p.prev;
902 >            if (pred == null)
903 >                first = next;
904 >            else
905 >                pred.next = next;
906 >            if (next != null)
907 >                next.prev = pred;
908 >            TreeNode<V> replacement;
909 >            TreeNode<V> pl = p.left;
910 >            TreeNode<V> pr = p.right;
911 >            if (pl != null && pr != null) {
912 >                TreeNode<V> s = pr, sl;
913 >                while ((sl = s.left) != null) // find successor
914 >                    s = sl;
915 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 >                TreeNode<V> sr = s.right;
917 >                TreeNode<V> pp = p.parent;
918 >                if (s == pr) { // p was s's direct parent
919 >                    p.parent = s;
920 >                    s.right = p;
921 >                }
922 >                else {
923 >                    TreeNode<V> sp = s.parent;
924 >                    if ((p.parent = sp) != null) {
925 >                        if (s == sp.left)
926 >                            sp.left = p;
927 >                        else
928 >                            sp.right = p;
929 >                    }
930 >                    if ((s.right = pr) != null)
931 >                        pr.parent = s;
932 >                }
933 >                p.left = null;
934 >                if ((p.right = sr) != null)
935 >                    sr.parent = p;
936 >                if ((s.left = pl) != null)
937 >                    pl.parent = s;
938 >                if ((s.parent = pp) == null)
939 >                    root = s;
940 >                else if (p == pp.left)
941 >                    pp.left = s;
942 >                else
943 >                    pp.right = s;
944 >                replacement = sr;
945 >            }
946 >            else
947 >                replacement = (pl != null) ? pl : pr;
948 >            TreeNode<V> pp = p.parent;
949 >            if (replacement == null) {
950 >                if (pp == null) {
951 >                    root = null;
952 >                    return;
953 >                }
954 >                replacement = p;
955 >            }
956 >            else {
957 >                replacement.parent = pp;
958 >                if (pp == null)
959 >                    root = replacement;
960 >                else if (p == pp.left)
961 >                    pp.left = replacement;
962 >                else
963 >                    pp.right = replacement;
964 >                p.left = p.right = p.parent = null;
965 >            }
966 >            if (!p.red) { // rebalance, from CLR
967 >                TreeNode<V> x = replacement;
968 >                while (x != null) {
969 >                    TreeNode<V> xp, xpl;
970 >                    if (x.red || (xp = x.parent) == null) {
971 >                        x.red = false;
972 >                        break;
973 >                    }
974 >                    if (x == (xpl = xp.left)) {
975 >                        TreeNode<V> sib = xp.right;
976 >                        if (sib != null && sib.red) {
977 >                            sib.red = false;
978 >                            xp.red = true;
979 >                            rotateLeft(xp);
980 >                            sib = (xp = x.parent) == null ? null : xp.right;
981 >                        }
982 >                        if (sib == null)
983 >                            x = xp;
984 >                        else {
985 >                            TreeNode<V> sl = sib.left, sr = sib.right;
986 >                            if ((sr == null || !sr.red) &&
987 >                                (sl == null || !sl.red)) {
988 >                                sib.red = true;
989 >                                x = xp;
990 >                            }
991 >                            else {
992 >                                if (sr == null || !sr.red) {
993 >                                    if (sl != null)
994 >                                        sl.red = false;
995 >                                    sib.red = true;
996 >                                    rotateRight(sib);
997 >                                    sib = (xp = x.parent) == null ?
998 >                                        null : xp.right;
999 >                                }
1000 >                                if (sib != null) {
1001 >                                    sib.red = (xp == null) ? false : xp.red;
1002 >                                    if ((sr = sib.right) != null)
1003 >                                        sr.red = false;
1004 >                                }
1005 >                                if (xp != null) {
1006 >                                    xp.red = false;
1007 >                                    rotateLeft(xp);
1008 >                                }
1009 >                                x = root;
1010 >                            }
1011 >                        }
1012 >                    }
1013 >                    else { // symmetric
1014 >                        TreeNode<V> sib = xpl;
1015 >                        if (sib != null && sib.red) {
1016 >                            sib.red = false;
1017 >                            xp.red = true;
1018 >                            rotateRight(xp);
1019 >                            sib = (xp = x.parent) == null ? null : xp.left;
1020 >                        }
1021 >                        if (sib == null)
1022 >                            x = xp;
1023 >                        else {
1024 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1025 >                            if ((sl == null || !sl.red) &&
1026 >                                (sr == null || !sr.red)) {
1027 >                                sib.red = true;
1028 >                                x = xp;
1029 >                            }
1030 >                            else {
1031 >                                if (sl == null || !sl.red) {
1032 >                                    if (sr != null)
1033 >                                        sr.red = false;
1034 >                                    sib.red = true;
1035 >                                    rotateLeft(sib);
1036 >                                    sib = (xp = x.parent) == null ?
1037 >                                        null : xp.left;
1038 >                                }
1039 >                                if (sib != null) {
1040 >                                    sib.red = (xp == null) ? false : xp.red;
1041 >                                    if ((sl = sib.left) != null)
1042 >                                        sl.red = false;
1043 >                                }
1044 >                                if (xp != null) {
1045 >                                    xp.red = false;
1046 >                                    rotateRight(xp);
1047 >                                }
1048 >                                x = root;
1049 >                            }
1050 >                        }
1051 >                    }
1052 >                }
1053 >            }
1054 >            if (p == replacement && (pp = p.parent) != null) {
1055 >                if (p == pp.left) // detach pointers
1056 >                    pp.left = null;
1057 >                else if (p == pp.right)
1058 >                    pp.right = null;
1059 >                p.parent = null;
1060 >            }
1061          }
1062 +    }
1063  
1064 <        /**
1065 <         * Returns properly casted first entry of bin for given hash.
1066 <         */
1067 <        HashEntry<K,V> getFirst(int hash) {
1068 <            HashEntry<K,V>[] tab = table;
1069 <            return tab[hash & (tab.length - 1)];
1064 >    /* ---------------- Collision reduction methods -------------- */
1065 >
1066 >    /**
1067 >     * Spreads higher bits to lower, and also forces top bit to 0.
1068 >     * Because the table uses power-of-two masking, sets of hashes
1069 >     * that vary only in bits above the current mask will always
1070 >     * collide. (Among known examples are sets of Float keys holding
1071 >     * consecutive whole numbers in small tables.)  To counter this,
1072 >     * we apply a transform that spreads the impact of higher bits
1073 >     * downward. There is a tradeoff between speed, utility, and
1074 >     * quality of bit-spreading. Because many common sets of hashes
1075 >     * are already reasonably distributed across bits (so don't benefit
1076 >     * from spreading), and because we use trees to handle large sets
1077 >     * of collisions in bins, we don't need excessively high quality.
1078 >     */
1079 >    private static final int spread(int h) {
1080 >        h ^= (h >>> 18) ^ (h >>> 12);
1081 >        return (h ^ (h >>> 10)) & HASH_BITS;
1082 >    }
1083 >
1084 >    /**
1085 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1086 >     * only when locked.
1087 >     */
1088 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 >        if (key instanceof Comparable) {
1090 >            TreeBin<V> t = new TreeBin<V>();
1091 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 >                t.putTreeNode(e.hash, e.key, e.val);
1093 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094          }
1095 +    }
1096  
1097 <        /**
1098 <         * Reads value field of an entry under lock. Called if value
1099 <         * field ever appears to be null. This is possible only if a
1100 <         * compiler happens to reorder a HashEntry initialization with
1101 <         * its table assignment, which is legal under memory model
1102 <         * but is not known to ever occur.
1103 <         */
1104 <        V readValueUnderLock(HashEntry<K,V> e) {
1105 <            lock();
1106 <            try {
1107 <                return e.value;
1108 <            } finally {
1109 <                unlock();
1097 >    /* ---------------- Internal access and update methods -------------- */
1098 >
1099 >    /** Implementation for get and containsKey */
1100 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 >        int h = spread(k.hashCode());
1102 >        retry: for (Node<V>[] tab = table; tab != null;) {
1103 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 >                if ((eh = e.hash) < 0) {
1106 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1107 >                        return ((TreeBin<V>)ek).getValue(h, k);
1108 >                    else {                      // restart with new table
1109 >                        tab = (Node<V>[])ek;
1110 >                        continue retry;
1111 >                    }
1112 >                }
1113 >                else if (eh == h && (ev = e.val) != null &&
1114 >                         ((ek = e.key) == k || k.equals(ek)))
1115 >                    return ev;
1116              }
1117 +            break;
1118          }
1119 +        return null;
1120 +    }
1121  
1122 <        /* Specialized implementations of map methods */
1123 <
1124 <        V get(Object key, int hash) {
1125 <            if (count != 0) { // read-volatile
1126 <                HashEntry<K,V> e = getFirst(hash);
1127 <                while (e != null) {
1128 <                    if (e.hash == hash && key.equals(e.key)) {
1129 <                        V v = e.value;
1130 <                        if (v != null)
1131 <                            return v;
1132 <                        return readValueUnderLock(e); // recheck
1122 >    /**
1123 >     * Implementation for the four public remove/replace methods:
1124 >     * Replaces node value with v, conditional upon match of cv if
1125 >     * non-null.  If resulting value is null, delete.
1126 >     */
1127 >    @SuppressWarnings("unchecked") private final V internalReplace
1128 >        (Object k, V v, Object cv) {
1129 >        int h = spread(k.hashCode());
1130 >        V oldVal = null;
1131 >        for (Node<V>[] tab = table;;) {
1132 >            Node<V> f; int i, fh; Object fk;
1133 >            if (tab == null ||
1134 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135 >                break;
1136 >            else if ((fh = f.hash) < 0) {
1137 >                if ((fk = f.key) instanceof TreeBin) {
1138 >                    TreeBin<V> t = (TreeBin<V>)fk;
1139 >                    boolean validated = false;
1140 >                    boolean deleted = false;
1141 >                    t.acquire(0);
1142 >                    try {
1143 >                        if (tabAt(tab, i) == f) {
1144 >                            validated = true;
1145 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 >                            if (p != null) {
1147 >                                V pv = p.val;
1148 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1149 >                                    oldVal = pv;
1150 >                                    if ((p.val = v) == null) {
1151 >                                        deleted = true;
1152 >                                        t.deleteTreeNode(p);
1153 >                                    }
1154 >                                }
1155 >                            }
1156 >                        }
1157 >                    } finally {
1158 >                        t.release(0);
1159 >                    }
1160 >                    if (validated) {
1161 >                        if (deleted)
1162 >                            addCount(-1L, -1);
1163 >                        break;
1164                      }
1165 <                    e = e.next;
1165 >                }
1166 >                else
1167 >                    tab = (Node<V>[])fk;
1168 >            }
1169 >            else if (fh != h && f.next == null) // precheck
1170 >                break;                          // rules out possible existence
1171 >            else {
1172 >                boolean validated = false;
1173 >                boolean deleted = false;
1174 >                synchronized (f) {
1175 >                    if (tabAt(tab, i) == f) {
1176 >                        validated = true;
1177 >                        for (Node<V> e = f, pred = null;;) {
1178 >                            Object ek; V ev;
1179 >                            if (e.hash == h &&
1180 >                                ((ev = e.val) != null) &&
1181 >                                ((ek = e.key) == k || k.equals(ek))) {
1182 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1183 >                                    oldVal = ev;
1184 >                                    if ((e.val = v) == null) {
1185 >                                        deleted = true;
1186 >                                        Node<V> en = e.next;
1187 >                                        if (pred != null)
1188 >                                            pred.next = en;
1189 >                                        else
1190 >                                            setTabAt(tab, i, en);
1191 >                                    }
1192 >                                }
1193 >                                break;
1194 >                            }
1195 >                            pred = e;
1196 >                            if ((e = e.next) == null)
1197 >                                break;
1198 >                        }
1199 >                    }
1200 >                }
1201 >                if (validated) {
1202 >                    if (deleted)
1203 >                        addCount(-1L, -1);
1204 >                    break;
1205                  }
1206              }
343            return null;
1207          }
1208 +        return oldVal;
1209 +    }
1210  
1211 <        boolean containsKey(Object key, int hash) {
1212 <            if (count != 0) { // read-volatile
1213 <                HashEntry<K,V> e = getFirst(hash);
1214 <                while (e != null) {
1215 <                    if (e.hash == hash && key.equals(e.key))
1216 <                        return true;
1217 <                    e = e.next;
1211 >    /*
1212 >     * Internal versions of insertion methods
1213 >     * All have the same basic structure as the first (internalPut):
1214 >     *  1. If table uninitialized, create
1215 >     *  2. If bin empty, try to CAS new node
1216 >     *  3. If bin stale, use new table
1217 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218 >     *  5. Lock and validate; if valid, scan and add or update
1219 >     *
1220 >     * The putAll method differs mainly in attempting to pre-allocate
1221 >     * enough table space, and also more lazily performs count updates
1222 >     * and checks.
1223 >     *
1224 >     * Most of the function-accepting methods can't be factored nicely
1225 >     * because they require different functional forms, so instead
1226 >     * sprawl out similar mechanics.
1227 >     */
1228 >
1229 >    /** Implementation for put and putIfAbsent */
1230 >    @SuppressWarnings("unchecked") private final V internalPut
1231 >        (K k, V v, boolean onlyIfAbsent) {
1232 >        if (k == null || v == null) throw new NullPointerException();
1233 >        int h = spread(k.hashCode());
1234 >        int len = 0;
1235 >        for (Node<V>[] tab = table;;) {
1236 >            int i, fh; Node<V> f; Object fk; V fv;
1237 >            if (tab == null)
1238 >                tab = initTable();
1239 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 >                    break;                   // no lock when adding to empty bin
1242 >            }
1243 >            else if ((fh = f.hash) < 0) {
1244 >                if ((fk = f.key) instanceof TreeBin) {
1245 >                    TreeBin<V> t = (TreeBin<V>)fk;
1246 >                    V oldVal = null;
1247 >                    t.acquire(0);
1248 >                    try {
1249 >                        if (tabAt(tab, i) == f) {
1250 >                            len = 2;
1251 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1252 >                            if (p != null) {
1253 >                                oldVal = p.val;
1254 >                                if (!onlyIfAbsent)
1255 >                                    p.val = v;
1256 >                            }
1257 >                        }
1258 >                    } finally {
1259 >                        t.release(0);
1260 >                    }
1261 >                    if (len != 0) {
1262 >                        if (oldVal != null)
1263 >                            return oldVal;
1264 >                        break;
1265 >                    }
1266 >                }
1267 >                else
1268 >                    tab = (Node<V>[])fk;
1269 >            }
1270 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 >                return fv;
1273 >            else {
1274 >                V oldVal = null;
1275 >                synchronized (f) {
1276 >                    if (tabAt(tab, i) == f) {
1277 >                        len = 1;
1278 >                        for (Node<V> e = f;; ++len) {
1279 >                            Object ek; V ev;
1280 >                            if (e.hash == h &&
1281 >                                (ev = e.val) != null &&
1282 >                                ((ek = e.key) == k || k.equals(ek))) {
1283 >                                oldVal = ev;
1284 >                                if (!onlyIfAbsent)
1285 >                                    e.val = v;
1286 >                                break;
1287 >                            }
1288 >                            Node<V> last = e;
1289 >                            if ((e = e.next) == null) {
1290 >                                last.next = new Node<V>(h, k, v, null);
1291 >                                if (len >= TREE_THRESHOLD)
1292 >                                    replaceWithTreeBin(tab, i, k);
1293 >                                break;
1294 >                            }
1295 >                        }
1296 >                    }
1297 >                }
1298 >                if (len != 0) {
1299 >                    if (oldVal != null)
1300 >                        return oldVal;
1301 >                    break;
1302                  }
1303              }
355            return false;
1304          }
1305 +        addCount(1L, len);
1306 +        return null;
1307 +    }
1308  
1309 <        boolean containsValue(Object value) {
1310 <            if (count != 0) { // read-volatile
1311 <                HashEntry<K,V>[] tab = table;
1312 <                int len = tab.length;
1313 <                for (int i = 0 ; i < len; i++) {
1314 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1315 <                        V v = e.value;
1316 <                        if (v == null) // recheck
1317 <                            v = readValueUnderLock(e);
1318 <                        if (value.equals(v))
1319 <                            return true;
1309 >    /** Implementation for computeIfAbsent */
1310 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 >        (K k, Function<? super K, ? extends V> mf) {
1312 >        if (k == null || mf == null)
1313 >            throw new NullPointerException();
1314 >        int h = spread(k.hashCode());
1315 >        V val = null;
1316 >        int len = 0;
1317 >        for (Node<V>[] tab = table;;) {
1318 >            Node<V> f; int i; Object fk;
1319 >            if (tab == null)
1320 >                tab = initTable();
1321 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 >                Node<V> node = new Node<V>(h, k, null, null);
1323 >                synchronized (node) {
1324 >                    if (casTabAt(tab, i, null, node)) {
1325 >                        len = 1;
1326 >                        try {
1327 >                            if ((val = mf.apply(k)) != null)
1328 >                                node.val = val;
1329 >                        } finally {
1330 >                            if (val == null)
1331 >                                setTabAt(tab, i, null);
1332 >                        }
1333                      }
1334                  }
1335 +                if (len != 0)
1336 +                    break;
1337 +            }
1338 +            else if (f.hash < 0) {
1339 +                if ((fk = f.key) instanceof TreeBin) {
1340 +                    TreeBin<V> t = (TreeBin<V>)fk;
1341 +                    boolean added = false;
1342 +                    t.acquire(0);
1343 +                    try {
1344 +                        if (tabAt(tab, i) == f) {
1345 +                            len = 1;
1346 +                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 +                            if (p != null)
1348 +                                val = p.val;
1349 +                            else if ((val = mf.apply(k)) != null) {
1350 +                                added = true;
1351 +                                len = 2;
1352 +                                t.putTreeNode(h, k, val);
1353 +                            }
1354 +                        }
1355 +                    } finally {
1356 +                        t.release(0);
1357 +                    }
1358 +                    if (len != 0) {
1359 +                        if (!added)
1360 +                            return val;
1361 +                        break;
1362 +                    }
1363 +                }
1364 +                else
1365 +                    tab = (Node<V>[])fk;
1366 +            }
1367 +            else {
1368 +                for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 +                    Object ek; V ev;
1370 +                    if (e.hash == h && (ev = e.val) != null &&
1371 +                        ((ek = e.key) == k || k.equals(ek)))
1372 +                        return ev;
1373 +                }
1374 +                boolean added = false;
1375 +                synchronized (f) {
1376 +                    if (tabAt(tab, i) == f) {
1377 +                        len = 1;
1378 +                        for (Node<V> e = f;; ++len) {
1379 +                            Object ek; V ev;
1380 +                            if (e.hash == h &&
1381 +                                (ev = e.val) != null &&
1382 +                                ((ek = e.key) == k || k.equals(ek))) {
1383 +                                val = ev;
1384 +                                break;
1385 +                            }
1386 +                            Node<V> last = e;
1387 +                            if ((e = e.next) == null) {
1388 +                                if ((val = mf.apply(k)) != null) {
1389 +                                    added = true;
1390 +                                    last.next = new Node<V>(h, k, val, null);
1391 +                                    if (len >= TREE_THRESHOLD)
1392 +                                        replaceWithTreeBin(tab, i, k);
1393 +                                }
1394 +                                break;
1395 +                            }
1396 +                        }
1397 +                    }
1398 +                }
1399 +                if (len != 0) {
1400 +                    if (!added)
1401 +                        return val;
1402 +                    break;
1403 +                }
1404              }
372            return false;
1405          }
1406 +        if (val != null)
1407 +            addCount(1L, len);
1408 +        return val;
1409 +    }
1410  
1411 <        boolean replace(K key, int hash, V oldValue, V newValue) {
1412 <            lock();
1413 <            try {
1414 <                HashEntry<K,V> e = getFirst(hash);
1415 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1416 <                    e = e.next;
1411 >    /** Implementation for compute */
1412 >    @SuppressWarnings("unchecked") private final V internalCompute
1413 >        (K k, boolean onlyIfPresent,
1414 >         BiFunction<? super K, ? super V, ? extends V> mf) {
1415 >        if (k == null || mf == null)
1416 >            throw new NullPointerException();
1417 >        int h = spread(k.hashCode());
1418 >        V val = null;
1419 >        int delta = 0;
1420 >        int len = 0;
1421 >        for (Node<V>[] tab = table;;) {
1422 >            Node<V> f; int i, fh; Object fk;
1423 >            if (tab == null)
1424 >                tab = initTable();
1425 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426 >                if (onlyIfPresent)
1427 >                    break;
1428 >                Node<V> node = new Node<V>(h, k, null, null);
1429 >                synchronized (node) {
1430 >                    if (casTabAt(tab, i, null, node)) {
1431 >                        try {
1432 >                            len = 1;
1433 >                            if ((val = mf.apply(k, null)) != null) {
1434 >                                node.val = val;
1435 >                                delta = 1;
1436 >                            }
1437 >                        } finally {
1438 >                            if (delta == 0)
1439 >                                setTabAt(tab, i, null);
1440 >                        }
1441 >                    }
1442 >                }
1443 >                if (len != 0)
1444 >                    break;
1445 >            }
1446 >            else if ((fh = f.hash) < 0) {
1447 >                if ((fk = f.key) instanceof TreeBin) {
1448 >                    TreeBin<V> t = (TreeBin<V>)fk;
1449 >                    t.acquire(0);
1450 >                    try {
1451 >                        if (tabAt(tab, i) == f) {
1452 >                            len = 1;
1453 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 >                            if (p == null && onlyIfPresent)
1455 >                                break;
1456 >                            V pv = (p == null) ? null : p.val;
1457 >                            if ((val = mf.apply(k, pv)) != null) {
1458 >                                if (p != null)
1459 >                                    p.val = val;
1460 >                                else {
1461 >                                    len = 2;
1462 >                                    delta = 1;
1463 >                                    t.putTreeNode(h, k, val);
1464 >                                }
1465 >                            }
1466 >                            else if (p != null) {
1467 >                                delta = -1;
1468 >                                t.deleteTreeNode(p);
1469 >                            }
1470 >                        }
1471 >                    } finally {
1472 >                        t.release(0);
1473 >                    }
1474 >                    if (len != 0)
1475 >                        break;
1476 >                }
1477 >                else
1478 >                    tab = (Node<V>[])fk;
1479 >            }
1480 >            else {
1481 >                synchronized (f) {
1482 >                    if (tabAt(tab, i) == f) {
1483 >                        len = 1;
1484 >                        for (Node<V> e = f, pred = null;; ++len) {
1485 >                            Object ek; V ev;
1486 >                            if (e.hash == h &&
1487 >                                (ev = e.val) != null &&
1488 >                                ((ek = e.key) == k || k.equals(ek))) {
1489 >                                val = mf.apply(k, ev);
1490 >                                if (val != null)
1491 >                                    e.val = val;
1492 >                                else {
1493 >                                    delta = -1;
1494 >                                    Node<V> en = e.next;
1495 >                                    if (pred != null)
1496 >                                        pred.next = en;
1497 >                                    else
1498 >                                        setTabAt(tab, i, en);
1499 >                                }
1500 >                                break;
1501 >                            }
1502 >                            pred = e;
1503 >                            if ((e = e.next) == null) {
1504 >                                if (!onlyIfPresent &&
1505 >                                    (val = mf.apply(k, null)) != null) {
1506 >                                    pred.next = new Node<V>(h, k, val, null);
1507 >                                    delta = 1;
1508 >                                    if (len >= TREE_THRESHOLD)
1509 >                                        replaceWithTreeBin(tab, i, k);
1510 >                                }
1511 >                                break;
1512 >                            }
1513 >                        }
1514 >                    }
1515 >                }
1516 >                if (len != 0)
1517 >                    break;
1518 >            }
1519 >        }
1520 >        if (delta != 0)
1521 >            addCount((long)delta, len);
1522 >        return val;
1523 >    }
1524  
1525 <                boolean replaced = false;
1526 <                if (e != null && oldValue.equals(e.value)) {
1527 <                    replaced = true;
1528 <                    e.value = newValue;
1525 >    /** Implementation for merge */
1526 >    @SuppressWarnings("unchecked") private final V internalMerge
1527 >        (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 >        if (k == null || v == null || mf == null)
1529 >            throw new NullPointerException();
1530 >        int h = spread(k.hashCode());
1531 >        V val = null;
1532 >        int delta = 0;
1533 >        int len = 0;
1534 >        for (Node<V>[] tab = table;;) {
1535 >            int i; Node<V> f; Object fk; V fv;
1536 >            if (tab == null)
1537 >                tab = initTable();
1538 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 >                    delta = 1;
1541 >                    val = v;
1542 >                    break;
1543 >                }
1544 >            }
1545 >            else if (f.hash < 0) {
1546 >                if ((fk = f.key) instanceof TreeBin) {
1547 >                    TreeBin<V> t = (TreeBin<V>)fk;
1548 >                    t.acquire(0);
1549 >                    try {
1550 >                        if (tabAt(tab, i) == f) {
1551 >                            len = 1;
1552 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 >                            val = (p == null) ? v : mf.apply(p.val, v);
1554 >                            if (val != null) {
1555 >                                if (p != null)
1556 >                                    p.val = val;
1557 >                                else {
1558 >                                    len = 2;
1559 >                                    delta = 1;
1560 >                                    t.putTreeNode(h, k, val);
1561 >                                }
1562 >                            }
1563 >                            else if (p != null) {
1564 >                                delta = -1;
1565 >                                t.deleteTreeNode(p);
1566 >                            }
1567 >                        }
1568 >                    } finally {
1569 >                        t.release(0);
1570 >                    }
1571 >                    if (len != 0)
1572 >                        break;
1573                  }
1574 <                return replaced;
1575 <            } finally {
1576 <                unlock();
1574 >                else
1575 >                    tab = (Node<V>[])fk;
1576 >            }
1577 >            else {
1578 >                synchronized (f) {
1579 >                    if (tabAt(tab, i) == f) {
1580 >                        len = 1;
1581 >                        for (Node<V> e = f, pred = null;; ++len) {
1582 >                            Object ek; V ev;
1583 >                            if (e.hash == h &&
1584 >                                (ev = e.val) != null &&
1585 >                                ((ek = e.key) == k || k.equals(ek))) {
1586 >                                val = mf.apply(ev, v);
1587 >                                if (val != null)
1588 >                                    e.val = val;
1589 >                                else {
1590 >                                    delta = -1;
1591 >                                    Node<V> en = e.next;
1592 >                                    if (pred != null)
1593 >                                        pred.next = en;
1594 >                                    else
1595 >                                        setTabAt(tab, i, en);
1596 >                                }
1597 >                                break;
1598 >                            }
1599 >                            pred = e;
1600 >                            if ((e = e.next) == null) {
1601 >                                val = v;
1602 >                                pred.next = new Node<V>(h, k, val, null);
1603 >                                delta = 1;
1604 >                                if (len >= TREE_THRESHOLD)
1605 >                                    replaceWithTreeBin(tab, i, k);
1606 >                                break;
1607 >                            }
1608 >                        }
1609 >                    }
1610 >                }
1611 >                if (len != 0)
1612 >                    break;
1613              }
1614          }
1615 +        if (delta != 0)
1616 +            addCount((long)delta, len);
1617 +        return val;
1618 +    }
1619  
1620 <        V replace(K key, int hash, V newValue) {
1621 <            lock();
1622 <            try {
1623 <                HashEntry<K,V> e = getFirst(hash);
1624 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1625 <                    e = e.next;
1620 >    /** Implementation for putAll */
1621 >    @SuppressWarnings("unchecked") private final void internalPutAll
1622 >        (Map<? extends K, ? extends V> m) {
1623 >        tryPresize(m.size());
1624 >        long delta = 0L;     // number of uncommitted additions
1625 >        boolean npe = false; // to throw exception on exit for nulls
1626 >        try {                // to clean up counts on other exceptions
1627 >            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 >                Object k; V v;
1629 >                if (entry == null || (k = entry.getKey()) == null ||
1630 >                    (v = entry.getValue()) == null) {
1631 >                    npe = true;
1632 >                    break;
1633 >                }
1634 >                int h = spread(k.hashCode());
1635 >                for (Node<V>[] tab = table;;) {
1636 >                    int i; Node<V> f; int fh; Object fk;
1637 >                    if (tab == null)
1638 >                        tab = initTable();
1639 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 >                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 >                            ++delta;
1642 >                            break;
1643 >                        }
1644 >                    }
1645 >                    else if ((fh = f.hash) < 0) {
1646 >                        if ((fk = f.key) instanceof TreeBin) {
1647 >                            TreeBin<V> t = (TreeBin<V>)fk;
1648 >                            boolean validated = false;
1649 >                            t.acquire(0);
1650 >                            try {
1651 >                                if (tabAt(tab, i) == f) {
1652 >                                    validated = true;
1653 >                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 >                                    if (p != null)
1655 >                                        p.val = v;
1656 >                                    else {
1657 >                                        t.putTreeNode(h, k, v);
1658 >                                        ++delta;
1659 >                                    }
1660 >                                }
1661 >                            } finally {
1662 >                                t.release(0);
1663 >                            }
1664 >                            if (validated)
1665 >                                break;
1666 >                        }
1667 >                        else
1668 >                            tab = (Node<V>[])fk;
1669 >                    }
1670 >                    else {
1671 >                        int len = 0;
1672 >                        synchronized (f) {
1673 >                            if (tabAt(tab, i) == f) {
1674 >                                len = 1;
1675 >                                for (Node<V> e = f;; ++len) {
1676 >                                    Object ek; V ev;
1677 >                                    if (e.hash == h &&
1678 >                                        (ev = e.val) != null &&
1679 >                                        ((ek = e.key) == k || k.equals(ek))) {
1680 >                                        e.val = v;
1681 >                                        break;
1682 >                                    }
1683 >                                    Node<V> last = e;
1684 >                                    if ((e = e.next) == null) {
1685 >                                        ++delta;
1686 >                                        last.next = new Node<V>(h, k, v, null);
1687 >                                        if (len >= TREE_THRESHOLD)
1688 >                                            replaceWithTreeBin(tab, i, k);
1689 >                                        break;
1690 >                                    }
1691 >                                }
1692 >                            }
1693 >                        }
1694 >                        if (len != 0) {
1695 >                            if (len > 1) {
1696 >                                addCount(delta, len);
1697 >                                delta = 0L;
1698 >                            }
1699 >                            break;
1700 >                        }
1701 >                    }
1702 >                }
1703 >            }
1704 >        } finally {
1705 >            if (delta != 0L)
1706 >                addCount(delta, 2);
1707 >        }
1708 >        if (npe)
1709 >            throw new NullPointerException();
1710 >    }
1711  
1712 <                V oldValue = null;
1713 <                if (e != null) {
1714 <                    oldValue = e.value;
1715 <                    e.value = newValue;
1712 >    /**
1713 >     * Implementation for clear. Steps through each bin, removing all
1714 >     * nodes.
1715 >     */
1716 >    @SuppressWarnings("unchecked") private final void internalClear() {
1717 >        long delta = 0L; // negative number of deletions
1718 >        int i = 0;
1719 >        Node<V>[] tab = table;
1720 >        while (tab != null && i < tab.length) {
1721 >            Node<V> f = tabAt(tab, i);
1722 >            if (f == null)
1723 >                ++i;
1724 >            else if (f.hash < 0) {
1725 >                Object fk;
1726 >                if ((fk = f.key) instanceof TreeBin) {
1727 >                    TreeBin<V> t = (TreeBin<V>)fk;
1728 >                    t.acquire(0);
1729 >                    try {
1730 >                        if (tabAt(tab, i) == f) {
1731 >                            for (Node<V> p = t.first; p != null; p = p.next) {
1732 >                                if (p.val != null) { // (currently always true)
1733 >                                    p.val = null;
1734 >                                    --delta;
1735 >                                }
1736 >                            }
1737 >                            t.first = null;
1738 >                            t.root = null;
1739 >                            ++i;
1740 >                        }
1741 >                    } finally {
1742 >                        t.release(0);
1743 >                    }
1744 >                }
1745 >                else
1746 >                    tab = (Node<V>[])fk;
1747 >            }
1748 >            else {
1749 >                synchronized (f) {
1750 >                    if (tabAt(tab, i) == f) {
1751 >                        for (Node<V> e = f; e != null; e = e.next) {
1752 >                            if (e.val != null) {  // (currently always true)
1753 >                                e.val = null;
1754 >                                --delta;
1755 >                            }
1756 >                        }
1757 >                        setTabAt(tab, i, null);
1758 >                        ++i;
1759 >                    }
1760                  }
405                return oldValue;
406            } finally {
407                unlock();
1761              }
1762          }
1763 +        if (delta != 0L)
1764 +            addCount(delta, -1);
1765 +    }
1766  
1767 +    /* ---------------- Table Initialization and Resizing -------------- */
1768  
1769 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
1770 <            lock();
1771 <            try {
1772 <                int c = count;
1773 <                if (c++ > threshold) // ensure capacity
1774 <                    rehash();
1775 <                HashEntry<K,V>[] tab = table;
1776 <                int index = hash & (tab.length - 1);
1777 <                HashEntry<K,V> first = tab[index];
1778 <                HashEntry<K,V> e = first;
1779 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1780 <                    e = e.next;
1769 >    /**
1770 >     * Returns a power of two table size for the given desired capacity.
1771 >     * See Hackers Delight, sec 3.2
1772 >     */
1773 >    private static final int tableSizeFor(int c) {
1774 >        int n = c - 1;
1775 >        n |= n >>> 1;
1776 >        n |= n >>> 2;
1777 >        n |= n >>> 4;
1778 >        n |= n >>> 8;
1779 >        n |= n >>> 16;
1780 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 >    }
1782  
1783 <                V oldValue;
1784 <                if (e != null) {
1785 <                    oldValue = e.value;
1786 <                    if (!onlyIfAbsent)
1787 <                        e.value = value;
1788 <                }
1789 <                else {
1790 <                    oldValue = null;
1791 <                    ++modCount;
1792 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
1793 <                    count = c; // write-volatile
1783 >    /**
1784 >     * Initializes table, using the size recorded in sizeCtl.
1785 >     */
1786 >    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787 >        Node<V>[] tab; int sc;
1788 >        while ((tab = table) == null) {
1789 >            if ((sc = sizeCtl) < 0)
1790 >                Thread.yield(); // lost initialization race; just spin
1791 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 >                try {
1793 >                    if ((tab = table) == null) {
1794 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 >                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796 >                        table = tab = (Node<V>[])tb;
1797 >                        sc = n - (n >>> 2);
1798 >                    }
1799 >                } finally {
1800 >                    sizeCtl = sc;
1801                  }
1802 <                return oldValue;
438 <            } finally {
439 <                unlock();
1802 >                break;
1803              }
1804          }
1805 +        return tab;
1806 +    }
1807  
1808 <        void rehash() {
1809 <            HashEntry<K,V>[] oldTable = table;
1810 <            int oldCapacity = oldTable.length;
1811 <            if (oldCapacity >= MAXIMUM_CAPACITY)
1808 >    /**
1809 >     * Adds to count, and if table is too small and not already
1810 >     * resizing, initiates transfer. If already resizing, helps
1811 >     * perform transfer if work is available.  Rechecks occupancy
1812 >     * after a transfer to see if another resize is already needed
1813 >     * because resizings are lagging additions.
1814 >     *
1815 >     * @param x the count to add
1816 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817 >     */
1818 >    private final void addCount(long x, int check) {
1819 >        Cell[] as; long b, s;
1820 >        if ((as = counterCells) != null ||
1821 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 >            Cell a; long v; int m;
1823 >            boolean uncontended = true;
1824 >            if (as == null || (m = as.length - 1) < 0 ||
1825 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 >                !(uncontended =
1827 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 >                fullAddCount(x, uncontended);
1829                  return;
1830 +            }
1831 +            if (check <= 1)
1832 +                return;
1833 +            s = sumCount();
1834 +        }
1835 +        if (check >= 0) {
1836 +            Node<V>[] tab, nt; int sc;
1837 +            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838 +                   tab.length < MAXIMUM_CAPACITY) {
1839 +                if (sc < 0) {
1840 +                    if (sc == -1 || transferIndex <= transferOrigin ||
1841 +                        (nt = nextTable) == null)
1842 +                        break;
1843 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844 +                        transfer(tab, nt);
1845 +                }
1846 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847 +                    transfer(tab, null);
1848 +                s = sumCount();
1849 +            }
1850 +        }
1851 +    }
1852  
1853 <            /*
1854 <             * Reclassify nodes in each list to new Map.  Because we are
1855 <             * using power-of-two expansion, the elements from each bin
1856 <             * must either stay at same index, or move with a power of two
1857 <             * offset. We eliminate unnecessary node creation by catching
1858 <             * cases where old nodes can be reused because their next
1859 <             * fields won't change. Statistically, at the default
1860 <             * threshold, only about one-sixth of them need cloning when
1861 <             * a table doubles. The nodes they replace will be garbage
1862 <             * collectable as soon as they are no longer referenced by any
1863 <             * reader thread that may be in the midst of traversing table
1864 <             * right now.
1865 <             */
1866 <
1867 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
1868 <            threshold = (int)(newTable.length * loadFactor);
1869 <            int sizeMask = newTable.length - 1;
1870 <            for (int i = 0; i < oldCapacity ; i++) {
1871 <                // We need to guarantee that any existing reads of old Map can
1872 <                //  proceed. So we cannot yet null out each bin.
1873 <                HashEntry<K,V> e = oldTable[i];
1874 <
1875 <                if (e != null) {
1876 <                    HashEntry<K,V> next = e.next;
1877 <                    int idx = e.hash & sizeMask;
1878 <
1879 <                    //  Single node on list
1880 <                    if (next == null)
1881 <                        newTable[idx] = e;
1853 >    /**
1854 >     * Tries to presize table to accommodate the given number of elements.
1855 >     *
1856 >     * @param size number of elements (doesn't need to be perfectly accurate)
1857 >     */
1858 >    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860 >            tableSizeFor(size + (size >>> 1) + 1);
1861 >        int sc;
1862 >        while ((sc = sizeCtl) >= 0) {
1863 >            Node<V>[] tab = table; int n;
1864 >            if (tab == null || (n = tab.length) == 0) {
1865 >                n = (sc > c) ? sc : c;
1866 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 >                    try {
1868 >                        if (table == tab) {
1869 >                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870 >                            table = (Node<V>[])tb;
1871 >                            sc = n - (n >>> 2);
1872 >                        }
1873 >                    } finally {
1874 >                        sizeCtl = sc;
1875 >                    }
1876 >                }
1877 >            }
1878 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879 >                break;
1880 >            else if (tab == table &&
1881 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882 >                transfer(tab, null);
1883 >        }
1884 >    }
1885  
1886 <                    else {
1887 <                        // Reuse trailing consecutive sequence at same slot
1888 <                        HashEntry<K,V> lastRun = e;
1889 <                        int lastIdx = idx;
1890 <                        for (HashEntry<K,V> last = next;
1891 <                             last != null;
1892 <                             last = last.next) {
1893 <                            int k = last.hash & sizeMask;
1894 <                            if (k != lastIdx) {
1895 <                                lastIdx = k;
1896 <                                lastRun = last;
1886 >    /**
1887 >     * Moves and/or copies the nodes in each bin to new table. See
1888 >     * above for explanation.
1889 >     */
1890 >    @SuppressWarnings("unchecked") private final void transfer
1891 >        (Node<V>[] tab, Node<V>[] nextTab) {
1892 >        int n = tab.length, stride;
1893 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1895 >        if (nextTab == null) {            // initiating
1896 >            try {
1897 >                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898 >                nextTab = (Node<V>[])tb;
1899 >            } catch (Throwable ex) {      // try to cope with OOME
1900 >                sizeCtl = Integer.MAX_VALUE;
1901 >                return;
1902 >            }
1903 >            nextTable = nextTab;
1904 >            transferOrigin = n;
1905 >            transferIndex = n;
1906 >            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
1908 >                int nextk = (k > stride) ? k - stride : 0;
1909 >                for (int m = nextk; m < k; ++m)
1910 >                    nextTab[m] = rev;
1911 >                for (int m = n + nextk; m < n + k; ++m)
1912 >                    nextTab[m] = rev;
1913 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914 >            }
1915 >        }
1916 >        int nextn = nextTab.length;
1917 >        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 >        boolean advance = true;
1919 >        for (int i = 0, bound = 0;;) {
1920 >            int nextIndex, nextBound; Node<V> f; Object fk;
1921 >            while (advance) {
1922 >                if (--i >= bound)
1923 >                    advance = false;
1924 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
1925 >                    i = -1;
1926 >                    advance = false;
1927 >                }
1928 >                else if (U.compareAndSwapInt
1929 >                         (this, TRANSFERINDEX, nextIndex,
1930 >                          nextBound = (nextIndex > stride ?
1931 >                                       nextIndex - stride : 0))) {
1932 >                    bound = nextBound;
1933 >                    i = nextIndex - 1;
1934 >                    advance = false;
1935 >                }
1936 >            }
1937 >            if (i < 0 || i >= n || i + n >= nextn) {
1938 >                for (int sc;;) {
1939 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940 >                        if (sc == -1) {
1941 >                            nextTable = null;
1942 >                            table = nextTab;
1943 >                            sizeCtl = (n << 1) - (n >>> 1);
1944 >                        }
1945 >                        return;
1946 >                    }
1947 >                }
1948 >            }
1949 >            else if ((f = tabAt(tab, i)) == null) {
1950 >                if (casTabAt(tab, i, null, fwd)) {
1951 >                    setTabAt(nextTab, i, null);
1952 >                    setTabAt(nextTab, i + n, null);
1953 >                    advance = true;
1954 >                }
1955 >            }
1956 >            else if (f.hash >= 0) {
1957 >                synchronized (f) {
1958 >                    if (tabAt(tab, i) == f) {
1959 >                        int runBit = f.hash & n;
1960 >                        Node<V> lastRun = f, lo = null, hi = null;
1961 >                        for (Node<V> p = f.next; p != null; p = p.next) {
1962 >                            int b = p.hash & n;
1963 >                            if (b != runBit) {
1964 >                                runBit = b;
1965 >                                lastRun = p;
1966                              }
1967                          }
1968 <                        newTable[lastIdx] = lastRun;
1969 <
1970 <                        // Clone all remaining nodes
1971 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1972 <                            int k = p.hash & sizeMask;
1973 <                            HashEntry<K,V> n = newTable[k];
1974 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
1975 <                                                             n, p.value);
1968 >                        if (runBit == 0)
1969 >                            lo = lastRun;
1970 >                        else
1971 >                            hi = lastRun;
1972 >                        for (Node<V> p = f; p != lastRun; p = p.next) {
1973 >                            int ph = p.hash;
1974 >                            Object pk = p.key; V pv = p.val;
1975 >                            if ((ph & n) == 0)
1976 >                                lo = new Node<V>(ph, pk, pv, lo);
1977 >                            else
1978 >                                hi = new Node<V>(ph, pk, pv, hi);
1979                          }
1980 +                        setTabAt(nextTab, i, lo);
1981 +                        setTabAt(nextTab, i + n, hi);
1982 +                        setTabAt(tab, i, fwd);
1983 +                        advance = true;
1984                      }
1985                  }
1986              }
1987 <            table = newTable;
1987 >            else if ((fk = f.key) instanceof TreeBin) {
1988 >                TreeBin<V> t = (TreeBin<V>)fk;
1989 >                t.acquire(0);
1990 >                try {
1991 >                    if (tabAt(tab, i) == f) {
1992 >                        TreeBin<V> lt = new TreeBin<V>();
1993 >                        TreeBin<V> ht = new TreeBin<V>();
1994 >                        int lc = 0, hc = 0;
1995 >                        for (Node<V> e = t.first; e != null; e = e.next) {
1996 >                            int h = e.hash;
1997 >                            Object k = e.key; V v = e.val;
1998 >                            if ((h & n) == 0) {
1999 >                                ++lc;
2000 >                                lt.putTreeNode(h, k, v);
2001 >                            }
2002 >                            else {
2003 >                                ++hc;
2004 >                                ht.putTreeNode(h, k, v);
2005 >                            }
2006 >                        }
2007 >                        Node<V> ln, hn; // throw away trees if too small
2008 >                        if (lc < TREE_THRESHOLD) {
2009 >                            ln = null;
2010 >                            for (Node<V> p = lt.first; p != null; p = p.next)
2011 >                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 >                        }
2013 >                        else
2014 >                            ln = new Node<V>(MOVED, lt, null, null);
2015 >                        setTabAt(nextTab, i, ln);
2016 >                        if (hc < TREE_THRESHOLD) {
2017 >                            hn = null;
2018 >                            for (Node<V> p = ht.first; p != null; p = p.next)
2019 >                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 >                        }
2021 >                        else
2022 >                            hn = new Node<V>(MOVED, ht, null, null);
2023 >                        setTabAt(nextTab, i + n, hn);
2024 >                        setTabAt(tab, i, fwd);
2025 >                        advance = true;
2026 >                    }
2027 >                } finally {
2028 >                    t.release(0);
2029 >                }
2030 >            }
2031 >            else
2032 >                advance = true; // already processed
2033          }
2034 +    }
2035  
2036 <        /**
508 <         * Remove; match on key only if value null, else match both.
509 <         */
510 <        V remove(Object key, int hash, Object value) {
511 <            lock();
512 <            try {
513 <                int c = count - 1;
514 <                HashEntry<K,V>[] tab = table;
515 <                int index = hash & (tab.length - 1);
516 <                HashEntry<K,V> first = tab[index];
517 <                HashEntry<K,V> e = first;
518 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
519 <                    e = e.next;
2036 >    /* ---------------- Counter support -------------- */
2037  
2038 <                V oldValue = null;
2039 <                if (e != null) {
2040 <                    V v = e.value;
2041 <                    if (value == null || value.equals(v)) {
2042 <                        oldValue = v;
2043 <                        // All entries following removed node can stay
2044 <                        // in list, but all preceding ones need to be
528 <                        // cloned.
529 <                        ++modCount;
530 <                        HashEntry<K,V> newFirst = e.next;
531 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
532 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
533 <                                                          newFirst, p.value);
534 <                        tab[index] = newFirst;
535 <                        count = c; // write-volatile
536 <                    }
537 <                }
538 <                return oldValue;
539 <            } finally {
540 <                unlock();
2038 >    final long sumCount() {
2039 >        Cell[] as = counterCells; Cell a;
2040 >        long sum = baseCount;
2041 >        if (as != null) {
2042 >            for (int i = 0; i < as.length; ++i) {
2043 >                if ((a = as[i]) != null)
2044 >                    sum += a.value;
2045              }
2046          }
2047 +        return sum;
2048 +    }
2049  
2050 <        void clear() {
2051 <            if (count != 0) {
2052 <                lock();
2053 <                try {
2054 <                    HashEntry<K,V>[] tab = table;
2055 <                    for (int i = 0; i < tab.length ; i++)
2056 <                        tab[i] = null;
2057 <                    ++modCount;
2058 <                    count = 0; // write-volatile
2050 >    // See LongAdder version for explanation
2051 >    private final void fullAddCount(long x, boolean wasUncontended) {
2052 >        int h;
2053 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054 >            ThreadLocalRandom.localInit();      // force initialization
2055 >            h = ThreadLocalRandom.getProbe();
2056 >            wasUncontended = true;
2057 >        }
2058 >        boolean collide = false;                // True if last slot nonempty
2059 >        for (;;) {
2060 >            Cell[] as; Cell a; int n; long v;
2061 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2062 >                if ((a = as[(n - 1) & h]) == null) {
2063 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2064 >                        Cell r = new Cell(x); // Optimistic create
2065 >                        if (cellsBusy == 0 &&
2066 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 >                            boolean created = false;
2068 >                            try {               // Recheck under lock
2069 >                                Cell[] rs; int m, j;
2070 >                                if ((rs = counterCells) != null &&
2071 >                                    (m = rs.length) > 0 &&
2072 >                                    rs[j = (m - 1) & h] == null) {
2073 >                                    rs[j] = r;
2074 >                                    created = true;
2075 >                                }
2076 >                            } finally {
2077 >                                cellsBusy = 0;
2078 >                            }
2079 >                            if (created)
2080 >                                break;
2081 >                            continue;           // Slot is now non-empty
2082 >                        }
2083 >                    }
2084 >                    collide = false;
2085 >                }
2086 >                else if (!wasUncontended)       // CAS already known to fail
2087 >                    wasUncontended = true;      // Continue after rehash
2088 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089 >                    break;
2090 >                else if (counterCells != as || n >= NCPU)
2091 >                    collide = false;            // At max size or stale
2092 >                else if (!collide)
2093 >                    collide = true;
2094 >                else if (cellsBusy == 0 &&
2095 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 >                    try {
2097 >                        if (counterCells == as) {// Expand table unless stale
2098 >                            Cell[] rs = new Cell[n << 1];
2099 >                            for (int i = 0; i < n; ++i)
2100 >                                rs[i] = as[i];
2101 >                            counterCells = rs;
2102 >                        }
2103 >                    } finally {
2104 >                        cellsBusy = 0;
2105 >                    }
2106 >                    collide = false;
2107 >                    continue;                   // Retry with expanded table
2108 >                }
2109 >                h = ThreadLocalRandom.advanceProbe(h);
2110 >            }
2111 >            else if (cellsBusy == 0 && counterCells == as &&
2112 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 >                boolean init = false;
2114 >                try {                           // Initialize table
2115 >                    if (counterCells == as) {
2116 >                        Cell[] rs = new Cell[2];
2117 >                        rs[h & 1] = new Cell(x);
2118 >                        counterCells = rs;
2119 >                        init = true;
2120 >                    }
2121                  } finally {
2122 <                    unlock();
2122 >                    cellsBusy = 0;
2123                  }
2124 +                if (init)
2125 +                    break;
2126              }
2127 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128 +                break;                          // Fall back on using base
2129          }
2130      }
2131  
2132 +    /* ----------------Table Traversal -------------- */
2133  
2134 +    /**
2135 +     * Encapsulates traversal for methods such as containsValue; also
2136 +     * serves as a base class for other iterators and bulk tasks.
2137 +     *
2138 +     * At each step, the iterator snapshots the key ("nextKey") and
2139 +     * value ("nextVal") of a valid node (i.e., one that, at point of
2140 +     * snapshot, has a non-null user value). Because val fields can
2141 +     * change (including to null, indicating deletion), field nextVal
2142 +     * might not be accurate at point of use, but still maintains the
2143 +     * weak consistency property of holding a value that was once
2144 +     * valid. To support iterator.remove, the nextKey field is not
2145 +     * updated (nulled out) when the iterator cannot advance.
2146 +     *
2147 +     * Internal traversals directly access these fields, as in:
2148 +     * {@code while (it.advance() != null) { process(it.nextKey); }}
2149 +     *
2150 +     * Exported iterators must track whether the iterator has advanced
2151 +     * (in hasNext vs next) (by setting/checking/nulling field
2152 +     * nextVal), and then extract key, value, or key-value pairs as
2153 +     * return values of next().
2154 +     *
2155 +     * The iterator visits once each still-valid node that was
2156 +     * reachable upon iterator construction. It might miss some that
2157 +     * were added to a bin after the bin was visited, which is OK wrt
2158 +     * consistency guarantees. Maintaining this property in the face
2159 +     * of possible ongoing resizes requires a fair amount of
2160 +     * bookkeeping state that is difficult to optimize away amidst
2161 +     * volatile accesses.  Even so, traversal maintains reasonable
2162 +     * throughput.
2163 +     *
2164 +     * Normally, iteration proceeds bin-by-bin traversing lists.
2165 +     * However, if the table has been resized, then all future steps
2166 +     * must traverse both the bin at the current index as well as at
2167 +     * (index + baseSize); and so on for further resizings. To
2168 +     * paranoically cope with potential sharing by users of iterators
2169 +     * across threads, iteration terminates if a bounds checks fails
2170 +     * for a table read.
2171 +     *
2172 +     * This class supports both Spliterator-based traversal and
2173 +     * CountedCompleter-based bulk tasks. The same "batch" field is
2174 +     * used, but in slightly different ways, in the two cases.  For
2175 +     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176 +     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177 +     * size that halves down to zero for leaf tasks, that is only
2178 +     * computed upon execution of the task. (Tasks can be submitted to
2179 +     * any pool, of any size, so we don't know scale factors until
2180 +     * running.)
2181 +     *
2182 +     * This class extends CountedCompleter to streamline parallel
2183 +     * iteration in bulk operations. This adds only a few fields of
2184 +     * space overhead, which is small enough in cases where it is not
2185 +     * needed to not worry about it.  Because CountedCompleter is
2186 +     * Serializable, but iterators need not be, we need to add warning
2187 +     * suppressions.
2188 +     */
2189 +    @SuppressWarnings("serial") static class Traverser<K,V,R>
2190 +        extends CountedCompleter<R> {
2191 +        final ConcurrentHashMap<K, V> map;
2192 +        Node<V> next;        // the next entry to use
2193 +        K nextKey;           // cached key field of next
2194 +        V nextVal;           // cached val field of next
2195 +        Node<V>[] tab;       // current table; updated if resized
2196 +        int index;           // index of bin to use next
2197 +        int baseIndex;       // current index of initial table
2198 +        int baseLimit;       // index bound for initial table
2199 +        int baseSize;        // initial table size
2200 +        int batch;           // split control
2201 +        /** Creates iterator for all entries in the table. */
2202 +        Traverser(ConcurrentHashMap<K, V> map) {
2203 +            this.map = map;
2204 +            Node<V>[] t;
2205 +            if ((t = tab = map.table) != null)
2206 +                baseLimit = baseSize = t.length;
2207 +        }
2208 +
2209 +        /** Task constructor */
2210 +        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211 +            super(it);
2212 +            this.map = map;
2213 +            this.batch = batch; // -1 if unknown
2214 +            if (it == null) {
2215 +                Node<V>[] t;
2216 +                if ((t = tab = map.table) != null)
2217 +                    baseLimit = baseSize = t.length;
2218 +            }
2219 +            else { // split parent
2220 +                this.tab = it.tab;
2221 +                this.baseSize = it.baseSize;
2222 +                int hi = this.baseLimit = it.baseLimit;
2223 +                it.baseLimit = this.index = this.baseIndex =
2224 +                    (hi + it.baseIndex + 1) >>> 1;
2225 +            }
2226 +        }
2227 +
2228 +        /** Spliterator constructor */
2229 +        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230 +            super(it);
2231 +            this.map = map;
2232 +            if (it == null) {
2233 +                Node<V>[] t;
2234 +                if ((t = tab = map.table) != null)
2235 +                    baseLimit = baseSize = t.length;
2236 +                long n = map.sumCount();
2237 +                batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 +                         (int)n);
2239 +            }
2240 +            else {
2241 +                this.tab = it.tab;
2242 +                this.baseSize = it.baseSize;
2243 +                int hi = this.baseLimit = it.baseLimit;
2244 +                it.baseLimit = this.index = this.baseIndex =
2245 +                    (hi + it.baseIndex + 1) >>> 1;
2246 +                this.batch = it.batch >>>= 1;
2247 +            }
2248 +        }
2249 +
2250 +        /**
2251 +         * Advances next; returns nextVal or null if terminated.
2252 +         * See above for explanation.
2253 +         */
2254 +        @SuppressWarnings("unchecked") final V advance() {
2255 +            Node<V> e = next;
2256 +            V ev = null;
2257 +            outer: do {
2258 +                if (e != null)                  // advance past used/skipped node
2259 +                    e = e.next;
2260 +                while (e == null) {             // get to next non-null bin
2261 +                    ConcurrentHashMap<K, V> m;
2262 +                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2263 +                    if ((t = tab) != null)
2264 +                        n = t.length;
2265 +                    else if ((m = map) != null && (t = tab = m.table) != null)
2266 +                        n = baseLimit = baseSize = t.length;
2267 +                    else
2268 +                        break outer;
2269 +                    if ((b = baseIndex) >= baseLimit ||
2270 +                        (i = index) < 0 || i >= n)
2271 +                        break outer;
2272 +                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 +                        if ((ek = e.key) instanceof TreeBin)
2274 +                            e = ((TreeBin<V>)ek).first;
2275 +                        else {
2276 +                            tab = (Node<V>[])ek;
2277 +                            continue;           // restarts due to null val
2278 +                        }
2279 +                    }                           // visit upper slots if present
2280 +                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281 +                }
2282 +                nextKey = (K)e.key;
2283 +            } while ((ev = e.val) == null);    // skip deleted or special nodes
2284 +            next = e;
2285 +            return nextVal = ev;
2286 +        }
2287 +
2288 +        public final void remove() {
2289 +            K k = nextKey;
2290 +            if (k == null && (advance() == null || (k = nextKey) == null))
2291 +                throw new IllegalStateException();
2292 +            map.internalReplace(k, null, null);
2293 +        }
2294 +
2295 +        public final boolean hasNext() {
2296 +            return nextVal != null || advance() != null;
2297 +        }
2298 +
2299 +        public final boolean hasMoreElements() { return hasNext(); }
2300 +
2301 +        public void compute() { } // default no-op CountedCompleter body
2302 +
2303 +        /**
2304 +         * Returns a batch value > 0 if this task should (and must) be
2305 +         * split, if so, adding to pending count, and in any case
2306 +         * updating batch value. The initial batch value is approx
2307 +         * exp2 of the number of times (minus one) to split task by
2308 +         * two before executing leaf action. This value is faster to
2309 +         * compute and more convenient to use as a guide to splitting
2310 +         * than is the depth, since it is used while dividing by two
2311 +         * anyway.
2312 +         */
2313 +        final int preSplit() {
2314 +            int b;  ForkJoinPool pool;
2315 +            if ((b = batch) < 0) { // force initialization
2316 +                int sp = (((pool = getPool()) == null) ?
2317 +                          ForkJoinPool.getCommonPoolParallelism() :
2318 +                          pool.getParallelism()) << 3; // slack of 8
2319 +                long n = map.sumCount();
2320 +                b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 +            }
2322 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 +            if ((batch = b) > 0)
2324 +                addToPendingCount(1);
2325 +            return b;
2326 +        }
2327 +
2328 +        // spliterator support
2329 +
2330 +        public boolean hasExactSize() {
2331 +            return false;
2332 +        }
2333 +
2334 +        public boolean hasExactSplits() {
2335 +            return false;
2336 +        }
2337 +
2338 +        public long estimateSize() {
2339 +            return batch;
2340 +        }
2341 +    }
2342  
2343      /* ---------------- Public operations -------------- */
2344  
2345      /**
2346 <     * Creates a new, empty map with the specified initial
2347 <     * capacity, load factor and concurrency level.
2346 >     * Creates a new, empty map with the default initial table size (16).
2347 >     */
2348 >    public ConcurrentHashMap() {
2349 >    }
2350 >
2351 >    /**
2352 >     * Creates a new, empty map with an initial table size
2353 >     * accommodating the specified number of elements without the need
2354 >     * to dynamically resize.
2355       *
2356 <     * @param initialCapacity the initial capacity. The implementation
2357 <     * performs internal sizing to accommodate this many elements.
2358 <     * @param loadFactor  the load factor threshold, used to control resizing.
2359 <     * Resizing may be performed when the average number of elements per
572 <     * bin exceeds this threshold.
573 <     * @param concurrencyLevel the estimated number of concurrently
574 <     * updating threads. The implementation performs internal sizing
575 <     * to try to accommodate this many threads.
576 <     * @throws IllegalArgumentException if the initial capacity is
577 <     * negative or the load factor or concurrencyLevel are
578 <     * nonpositive.
2356 >     * @param initialCapacity The implementation performs internal
2357 >     * sizing to accommodate this many elements.
2358 >     * @throws IllegalArgumentException if the initial capacity of
2359 >     * elements is negative
2360       */
2361 <    public ConcurrentHashMap(int initialCapacity,
2362 <                             float loadFactor, int concurrencyLevel) {
582 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
2361 >    public ConcurrentHashMap(int initialCapacity) {
2362 >        if (initialCapacity < 0)
2363              throw new IllegalArgumentException();
2364 +        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365 +                   MAXIMUM_CAPACITY :
2366 +                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2367 +        this.sizeCtl = cap;
2368 +    }
2369  
2370 <        if (concurrencyLevel > MAX_SEGMENTS)
2371 <            concurrencyLevel = MAX_SEGMENTS;
2372 <
2373 <        // Find power-of-two sizes best matching arguments
2374 <        int sshift = 0;
2375 <        int ssize = 1;
2376 <        while (ssize < concurrencyLevel) {
2377 <            ++sshift;
593 <            ssize <<= 1;
594 <        }
595 <        segmentShift = 32 - sshift;
596 <        segmentMask = ssize - 1;
597 <        this.segments = Segment.newArray(ssize);
598 <
599 <        if (initialCapacity > MAXIMUM_CAPACITY)
600 <            initialCapacity = MAXIMUM_CAPACITY;
601 <        int c = initialCapacity / ssize;
602 <        if (c * ssize < initialCapacity)
603 <            ++c;
604 <        int cap = 1;
605 <        while (cap < c)
606 <            cap <<= 1;
607 <
608 <        for (int i = 0; i < this.segments.length; ++i)
609 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
2370 >    /**
2371 >     * Creates a new map with the same mappings as the given map.
2372 >     *
2373 >     * @param m the map
2374 >     */
2375 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2376 >        this.sizeCtl = DEFAULT_CAPACITY;
2377 >        internalPutAll(m);
2378      }
2379  
2380      /**
2381 <     * Creates a new, empty map with the specified initial capacity
2382 <     * and load factor and with the default concurrencyLevel (16).
2381 >     * Creates a new, empty map with an initial table size based on
2382 >     * the given number of elements ({@code initialCapacity}) and
2383 >     * initial table density ({@code loadFactor}).
2384       *
2385 <     * @param initialCapacity The implementation performs internal
2386 <     * sizing to accommodate this many elements.
2387 <     * @param loadFactor  the load factor threshold, used to control resizing.
2388 <     * Resizing may be performed when the average number of elements per
2389 <     * bin exceeds this threshold.
2385 >     * @param initialCapacity the initial capacity. The implementation
2386 >     * performs internal sizing to accommodate this many elements,
2387 >     * given the specified load factor.
2388 >     * @param loadFactor the load factor (table density) for
2389 >     * establishing the initial table size
2390       * @throws IllegalArgumentException if the initial capacity of
2391       * elements is negative or the load factor is nonpositive
2392       *
2393       * @since 1.6
2394       */
2395      public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2396 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2396 >        this(initialCapacity, loadFactor, 1);
2397      }
2398  
2399      /**
2400 <     * Creates a new, empty map with the specified initial capacity,
2401 <     * and with default load factor (0.75) and concurrencyLevel (16).
2400 >     * Creates a new, empty map with an initial table size based on
2401 >     * the given number of elements ({@code initialCapacity}), table
2402 >     * density ({@code loadFactor}), and number of concurrently
2403 >     * updating threads ({@code concurrencyLevel}).
2404       *
2405       * @param initialCapacity the initial capacity. The implementation
2406 <     * performs internal sizing to accommodate this many elements.
2407 <     * @throws IllegalArgumentException if the initial capacity of
2408 <     * elements is negative.
2406 >     * performs internal sizing to accommodate this many elements,
2407 >     * given the specified load factor.
2408 >     * @param loadFactor the load factor (table density) for
2409 >     * establishing the initial table size
2410 >     * @param concurrencyLevel the estimated number of concurrently
2411 >     * updating threads. The implementation may use this value as
2412 >     * a sizing hint.
2413 >     * @throws IllegalArgumentException if the initial capacity is
2414 >     * negative or the load factor or concurrencyLevel are
2415 >     * nonpositive
2416       */
2417 <    public ConcurrentHashMap(int initialCapacity) {
2418 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2417 >    public ConcurrentHashMap(int initialCapacity,
2418 >                               float loadFactor, int concurrencyLevel) {
2419 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2420 >            throw new IllegalArgumentException();
2421 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2422 >            initialCapacity = concurrencyLevel;   // as estimated threads
2423 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2426 >        this.sizeCtl = cap;
2427      }
2428  
2429      /**
2430 <     * Creates a new, empty map with a default initial capacity (16),
2431 <     * load factor (0.75) and concurrencyLevel (16).
2430 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2431 >     * from the given type to {@code Boolean.TRUE}.
2432 >     *
2433 >     * @return the new set
2434       */
2435 <    public ConcurrentHashMap() {
2436 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2435 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2436 >        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2437 >                                      Boolean.TRUE);
2438      }
2439  
2440      /**
2441 <     * Creates a new map with the same mappings as the given map.
2442 <     * The map is created with a capacity of 1.5 times the number
654 <     * of mappings in the given map or 16 (whichever is greater),
655 <     * and a default load factor (0.75) and concurrencyLevel (16).
2441 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2442 >     * from the given type to {@code Boolean.TRUE}.
2443       *
2444 <     * @param m the map
2444 >     * @param initialCapacity The implementation performs internal
2445 >     * sizing to accommodate this many elements.
2446 >     * @throws IllegalArgumentException if the initial capacity of
2447 >     * elements is negative
2448 >     * @return the new set
2449       */
2450 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2451 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
2452 <                      DEFAULT_INITIAL_CAPACITY),
662 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
663 <        putAll(m);
2450 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 >        return new KeySetView<K,Boolean>
2452 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453      }
2454  
2455      /**
2456 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
668 <     *
669 <     * @return <tt>true</tt> if this map contains no key-value mappings
2456 >     * {@inheritDoc}
2457       */
2458      public boolean isEmpty() {
2459 <        final Segment<K,V>[] segments = this.segments;
673 <        /*
674 <         * We keep track of per-segment modCounts to avoid ABA
675 <         * problems in which an element in one segment was added and
676 <         * in another removed during traversal, in which case the
677 <         * table was never actually empty at any point. Note the
678 <         * similar use of modCounts in the size() and containsValue()
679 <         * methods, which are the only other methods also susceptible
680 <         * to ABA problems.
681 <         */
682 <        int[] mc = new int[segments.length];
683 <        int mcsum = 0;
684 <        for (int i = 0; i < segments.length; ++i) {
685 <            if (segments[i].count != 0)
686 <                return false;
687 <            else
688 <                mcsum += mc[i] = segments[i].modCount;
689 <        }
690 <        // If mcsum happens to be zero, then we know we got a snapshot
691 <        // before any modifications at all were made.  This is
692 <        // probably common enough to bother tracking.
693 <        if (mcsum != 0) {
694 <            for (int i = 0; i < segments.length; ++i) {
695 <                if (segments[i].count != 0 ||
696 <                    mc[i] != segments[i].modCount)
697 <                    return false;
698 <            }
699 <        }
700 <        return true;
2459 >        return sumCount() <= 0L; // ignore transient negative values
2460      }
2461  
2462      /**
2463 <     * Returns the number of key-value mappings in this map.  If the
705 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
706 <     * <tt>Integer.MAX_VALUE</tt>.
707 <     *
708 <     * @return the number of key-value mappings in this map
2463 >     * {@inheritDoc}
2464       */
2465      public int size() {
2466 <        final Segment<K,V>[] segments = this.segments;
2467 <        long sum = 0;
2468 <        long check = 0;
2469 <        int[] mc = new int[segments.length];
2470 <        // Try a few times to get accurate count. On failure due to
2471 <        // continuous async changes in table, resort to locking.
2472 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
2473 <            check = 0;
2474 <            sum = 0;
2475 <            int mcsum = 0;
2476 <            for (int i = 0; i < segments.length; ++i) {
2477 <                sum += segments[i].count;
2478 <                mcsum += mc[i] = segments[i].modCount;
2479 <            }
2480 <            if (mcsum != 0) {
2481 <                for (int i = 0; i < segments.length; ++i) {
2482 <                    check += segments[i].count;
2483 <                    if (mc[i] != segments[i].modCount) {
729 <                        check = -1; // force retry
730 <                        break;
731 <                    }
732 <                }
733 <            }
734 <            if (check == sum)
735 <                break;
736 <        }
737 <        if (check != sum) { // Resort to locking all segments
738 <            sum = 0;
739 <            for (int i = 0; i < segments.length; ++i)
740 <                segments[i].lock();
741 <            for (int i = 0; i < segments.length; ++i)
742 <                sum += segments[i].count;
743 <            for (int i = 0; i < segments.length; ++i)
744 <                segments[i].unlock();
745 <        }
746 <        if (sum > Integer.MAX_VALUE)
747 <            return Integer.MAX_VALUE;
748 <        else
749 <            return (int)sum;
2466 >        long n = sumCount();
2467 >        return ((n < 0L) ? 0 :
2468 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469 >                (int)n);
2470 >    }
2471 >
2472 >    /**
2473 >     * Returns the number of mappings. This method should be used
2474 >     * instead of {@link #size} because a ConcurrentHashMap may
2475 >     * contain more mappings than can be represented as an int. The
2476 >     * value returned is an estimate; the actual count may differ if
2477 >     * there are concurrent insertions or removals.
2478 >     *
2479 >     * @return the number of mappings
2480 >     */
2481 >    public long mappingCount() {
2482 >        long n = sumCount();
2483 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2484      }
2485  
2486      /**
# Line 761 | Line 2495 | public class ConcurrentHashMap<K, V> ext
2495       * @throws NullPointerException if the specified key is null
2496       */
2497      public V get(Object key) {
2498 <        int hash = hash(key.hashCode());
2499 <        return segmentFor(hash).get(key, hash);
2498 >        return internalGet(key);
2499 >    }
2500 >
2501 >    /**
2502 >     * Returns the value to which the specified key is mapped,
2503 >     * or the given defaultValue if this map contains no mapping for the key.
2504 >     *
2505 >     * @param key the key
2506 >     * @param defaultValue the value to return if this map contains
2507 >     * no mapping for the given key
2508 >     * @return the mapping for the key, if present; else the defaultValue
2509 >     * @throws NullPointerException if the specified key is null
2510 >     */
2511 >    public V getValueOrDefault(Object key, V defaultValue) {
2512 >        V v;
2513 >        return (v = internalGet(key)) == null ? defaultValue : v;
2514      }
2515  
2516      /**
2517       * Tests if the specified object is a key in this table.
2518       *
2519       * @param  key   possible key
2520 <     * @return <tt>true</tt> if and only if the specified object
2520 >     * @return {@code true} if and only if the specified object
2521       *         is a key in this table, as determined by the
2522 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
2522 >     *         {@code equals} method; {@code false} otherwise
2523       * @throws NullPointerException if the specified key is null
2524       */
2525      public boolean containsKey(Object key) {
2526 <        int hash = hash(key.hashCode());
779 <        return segmentFor(hash).containsKey(key, hash);
2526 >        return internalGet(key) != null;
2527      }
2528  
2529      /**
2530 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2531 <     * specified value. Note: This method requires a full internal
2532 <     * traversal of the hash table, and so is much slower than
786 <     * method <tt>containsKey</tt>.
2530 >     * Returns {@code true} if this map maps one or more keys to the
2531 >     * specified value. Note: This method may require a full traversal
2532 >     * of the map, and is much slower than method {@code containsKey}.
2533       *
2534       * @param value value whose presence in this map is to be tested
2535 <     * @return <tt>true</tt> if this map maps one or more keys to the
2535 >     * @return {@code true} if this map maps one or more keys to the
2536       *         specified value
2537       * @throws NullPointerException if the specified value is null
2538       */
2539      public boolean containsValue(Object value) {
2540          if (value == null)
2541              throw new NullPointerException();
2542 <
2543 <        // See explanation of modCount use above
2544 <
2545 <        final Segment<K,V>[] segments = this.segments;
2546 <        int[] mc = new int[segments.length];
801 <
802 <        // Try a few times without locking
803 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
804 <            int sum = 0;
805 <            int mcsum = 0;
806 <            for (int i = 0; i < segments.length; ++i) {
807 <                int c = segments[i].count;
808 <                mcsum += mc[i] = segments[i].modCount;
809 <                if (segments[i].containsValue(value))
810 <                    return true;
811 <            }
812 <            boolean cleanSweep = true;
813 <            if (mcsum != 0) {
814 <                for (int i = 0; i < segments.length; ++i) {
815 <                    int c = segments[i].count;
816 <                    if (mc[i] != segments[i].modCount) {
817 <                        cleanSweep = false;
818 <                        break;
819 <                    }
820 <                }
821 <            }
822 <            if (cleanSweep)
823 <                return false;
2542 >        V v;
2543 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544 >        while ((v = it.advance()) != null) {
2545 >            if (v == value || value.equals(v))
2546 >                return true;
2547          }
2548 <        // Resort to locking all segments
826 <        for (int i = 0; i < segments.length; ++i)
827 <            segments[i].lock();
828 <        boolean found = false;
829 <        try {
830 <            for (int i = 0; i < segments.length; ++i) {
831 <                if (segments[i].containsValue(value)) {
832 <                    found = true;
833 <                    break;
834 <                }
835 <            }
836 <        } finally {
837 <            for (int i = 0; i < segments.length; ++i)
838 <                segments[i].unlock();
839 <        }
840 <        return found;
2548 >        return false;
2549      }
2550  
2551      /**
2552       * Legacy method testing if some key maps into the specified value
2553       * in this table.  This method is identical in functionality to
2554 <     * {@link #containsValue}, and exists solely to ensure
2554 >     * {@link #containsValue(Object)}, and exists solely to ensure
2555       * full compatibility with class {@link java.util.Hashtable},
2556       * which supported this method prior to introduction of the
2557       * Java Collections framework.
2558 <
2558 >     *
2559       * @param  value a value to search for
2560 <     * @return <tt>true</tt> if and only if some key maps to the
2561 <     *         <tt>value</tt> argument in this table as
2562 <     *         determined by the <tt>equals</tt> method;
2563 <     *         <tt>false</tt> otherwise
2560 >     * @return {@code true} if and only if some key maps to the
2561 >     *         {@code value} argument in this table as
2562 >     *         determined by the {@code equals} method;
2563 >     *         {@code false} otherwise
2564       * @throws NullPointerException if the specified value is null
2565       */
2566 <    public boolean contains(Object value) {
2566 >    @Deprecated public boolean contains(Object value) {
2567          return containsValue(value);
2568      }
2569  
# Line 863 | Line 2571 | public class ConcurrentHashMap<K, V> ext
2571       * Maps the specified key to the specified value in this table.
2572       * Neither the key nor the value can be null.
2573       *
2574 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
2574 >     * <p>The value can be retrieved by calling the {@code get} method
2575       * with a key that is equal to the original key.
2576       *
2577       * @param key key with which the specified value is to be associated
2578       * @param value value to be associated with the specified key
2579 <     * @return the previous value associated with <tt>key</tt>, or
2580 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2579 >     * @return the previous value associated with {@code key}, or
2580 >     *         {@code null} if there was no mapping for {@code key}
2581       * @throws NullPointerException if the specified key or value is null
2582       */
2583      public V put(K key, V value) {
2584 <        if (value == null)
877 <            throw new NullPointerException();
878 <        int hash = hash(key.hashCode());
879 <        return segmentFor(hash).put(key, hash, value, false);
2584 >        return internalPut(key, value, false);
2585      }
2586  
2587      /**
2588       * {@inheritDoc}
2589       *
2590       * @return the previous value associated with the specified key,
2591 <     *         or <tt>null</tt> if there was no mapping for the key
2591 >     *         or {@code null} if there was no mapping for the key
2592       * @throws NullPointerException if the specified key or value is null
2593       */
2594      public V putIfAbsent(K key, V value) {
2595 <        if (value == null)
891 <            throw new NullPointerException();
892 <        int hash = hash(key.hashCode());
893 <        return segmentFor(hash).put(key, hash, value, true);
2595 >        return internalPut(key, value, true);
2596      }
2597  
2598      /**
# Line 901 | Line 2603 | public class ConcurrentHashMap<K, V> ext
2603       * @param m mappings to be stored in this map
2604       */
2605      public void putAll(Map<? extends K, ? extends V> m) {
2606 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
2607 <            put(e.getKey(), e.getValue());
2606 >        internalPutAll(m);
2607 >    }
2608 >
2609 >    /**
2610 >     * If the specified key is not already associated with a value (or
2611 >     * is mapped to {@code null}), attempts to compute its value using
2612 >     * the given mapping function and enters it into this map unless
2613 >     * {@code null}. The entire method invocation is performed
2614 >     * atomically, so the function is applied at most once per key.
2615 >     * Some attempted update operations on this map by other threads
2616 >     * may be blocked while computation is in progress, so the
2617 >     * computation should be short and simple, and must not attempt to
2618 >     * update any other mappings of this Map.
2619 >     *
2620 >     * @param key key with which the specified value is to be associated
2621 >     * @param mappingFunction the function to compute a value
2622 >     * @return the current (existing or computed) value associated with
2623 >     *         the specified key, or null if the computed value is null
2624 >     * @throws NullPointerException if the specified key or mappingFunction
2625 >     *         is null
2626 >     * @throws IllegalStateException if the computation detectably
2627 >     *         attempts a recursive update to this map that would
2628 >     *         otherwise never complete
2629 >     * @throws RuntimeException or Error if the mappingFunction does so,
2630 >     *         in which case the mapping is left unestablished
2631 >     */
2632 >    public V computeIfAbsent
2633 >        (K key, Function<? super K, ? extends V> mappingFunction) {
2634 >        return internalComputeIfAbsent(key, mappingFunction);
2635 >    }
2636 >
2637 >    /**
2638 >     * If the value for the specified key is present and non-null,
2639 >     * attempts to compute a new mapping given the key and its current
2640 >     * mapped value.  The entire method invocation is performed
2641 >     * atomically.  Some attempted update operations on this map by
2642 >     * other threads may be blocked while computation is in progress,
2643 >     * so the computation should be short and simple, and must not
2644 >     * attempt to update any other mappings of this Map.
2645 >     *
2646 >     * @param key key with which the specified value is to be associated
2647 >     * @param remappingFunction the function to compute a value
2648 >     * @return the new value associated with the specified key, or null if none
2649 >     * @throws NullPointerException if the specified key or remappingFunction
2650 >     *         is null
2651 >     * @throws IllegalStateException if the computation detectably
2652 >     *         attempts a recursive update to this map that would
2653 >     *         otherwise never complete
2654 >     * @throws RuntimeException or Error if the remappingFunction does so,
2655 >     *         in which case the mapping is unchanged
2656 >     */
2657 >    public V computeIfPresent
2658 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 >        return internalCompute(key, true, remappingFunction);
2660 >    }
2661 >
2662 >    /**
2663 >     * Attempts to compute a mapping for the specified key and its
2664 >     * current mapped value (or {@code null} if there is no current
2665 >     * mapping). The entire method invocation is performed atomically.
2666 >     * Some attempted update operations on this map by other threads
2667 >     * may be blocked while computation is in progress, so the
2668 >     * computation should be short and simple, and must not attempt to
2669 >     * update any other mappings of this Map.
2670 >     *
2671 >     * @param key key with which the specified value is to be associated
2672 >     * @param remappingFunction the function to compute a value
2673 >     * @return the new value associated with the specified key, or null if none
2674 >     * @throws NullPointerException if the specified key or remappingFunction
2675 >     *         is null
2676 >     * @throws IllegalStateException if the computation detectably
2677 >     *         attempts a recursive update to this map that would
2678 >     *         otherwise never complete
2679 >     * @throws RuntimeException or Error if the remappingFunction does so,
2680 >     *         in which case the mapping is unchanged
2681 >     */
2682 >    public V compute
2683 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 >        return internalCompute(key, false, remappingFunction);
2685 >    }
2686 >
2687 >    /**
2688 >     * If the specified key is not already associated with a
2689 >     * (non-null) value, associates it with the given value.
2690 >     * Otherwise, replaces the value with the results of the given
2691 >     * remapping function, or removes if {@code null}. The entire
2692 >     * method invocation is performed atomically.  Some attempted
2693 >     * update operations on this map by other threads may be blocked
2694 >     * while computation is in progress, so the computation should be
2695 >     * short and simple, and must not attempt to update any other
2696 >     * mappings of this Map.
2697 >     *
2698 >     * @param key key with which the specified value is to be associated
2699 >     * @param value the value to use if absent
2700 >     * @param remappingFunction the function to recompute a value if present
2701 >     * @return the new value associated with the specified key, or null if none
2702 >     * @throws NullPointerException if the specified key or the
2703 >     *         remappingFunction is null
2704 >     * @throws RuntimeException or Error if the remappingFunction does so,
2705 >     *         in which case the mapping is unchanged
2706 >     */
2707 >    public V merge
2708 >        (K key, V value,
2709 >         BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 >        return internalMerge(key, value, remappingFunction);
2711      }
2712  
2713      /**
# Line 910 | Line 2715 | public class ConcurrentHashMap<K, V> ext
2715       * This method does nothing if the key is not in the map.
2716       *
2717       * @param  key the key that needs to be removed
2718 <     * @return the previous value associated with <tt>key</tt>, or
2719 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2718 >     * @return the previous value associated with {@code key}, or
2719 >     *         {@code null} if there was no mapping for {@code key}
2720       * @throws NullPointerException if the specified key is null
2721       */
2722      public V remove(Object key) {
2723 <        int hash = hash(key.hashCode());
919 <        return segmentFor(hash).remove(key, hash, null);
2723 >        return internalReplace(key, null, null);
2724      }
2725  
2726      /**
# Line 925 | Line 2729 | public class ConcurrentHashMap<K, V> ext
2729       * @throws NullPointerException if the specified key is null
2730       */
2731      public boolean remove(Object key, Object value) {
2732 <        int hash = hash(key.hashCode());
2733 <        if (value == null)
2734 <            return false;
931 <        return segmentFor(hash).remove(key, hash, value) != null;
2732 >        if (key == null)
2733 >            throw new NullPointerException();
2734 >        return value != null && internalReplace(key, null, value) != null;
2735      }
2736  
2737      /**
# Line 937 | Line 2740 | public class ConcurrentHashMap<K, V> ext
2740       * @throws NullPointerException if any of the arguments are null
2741       */
2742      public boolean replace(K key, V oldValue, V newValue) {
2743 <        if (oldValue == null || newValue == null)
2743 >        if (key == null || oldValue == null || newValue == null)
2744              throw new NullPointerException();
2745 <        int hash = hash(key.hashCode());
943 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
2745 >        return internalReplace(key, newValue, oldValue) != null;
2746      }
2747  
2748      /**
2749       * {@inheritDoc}
2750       *
2751       * @return the previous value associated with the specified key,
2752 <     *         or <tt>null</tt> if there was no mapping for the key
2752 >     *         or {@code null} if there was no mapping for the key
2753       * @throws NullPointerException if the specified key or value is null
2754       */
2755      public V replace(K key, V value) {
2756 <        if (value == null)
2756 >        if (key == null || value == null)
2757              throw new NullPointerException();
2758 <        int hash = hash(key.hashCode());
957 <        return segmentFor(hash).replace(key, hash, value);
2758 >        return internalReplace(key, value, null);
2759      }
2760  
2761      /**
2762       * Removes all of the mappings from this map.
2763       */
2764      public void clear() {
2765 <        for (int i = 0; i < segments.length; ++i)
965 <            segments[i].clear();
2765 >        internalClear();
2766      }
2767  
2768      /**
2769       * Returns a {@link Set} view of the keys contained in this map.
2770       * The set is backed by the map, so changes to the map are
2771 <     * reflected in the set, and vice-versa.  The set supports element
972 <     * removal, which removes the corresponding mapping from this map,
973 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
974 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
975 <     * operations.  It does not support the <tt>add</tt> or
976 <     * <tt>addAll</tt> operations.
2771 >     * reflected in the set, and vice-versa.
2772       *
2773 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
979 <     * that will never throw {@link ConcurrentModificationException},
980 <     * and guarantees to traverse elements as they existed upon
981 <     * construction of the iterator, and may (but is not guaranteed to)
982 <     * reflect any modifications subsequent to construction.
2773 >     * @return the set view
2774       */
2775 <    public Set<K> keySet() {
2776 <        Set<K> ks = keySet;
2777 <        return (ks != null) ? ks : (keySet = new KeySet());
2775 >    public KeySetView<K,V> keySet() {
2776 >        KeySetView<K,V> ks = keySet;
2777 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2778 >    }
2779 >
2780 >    /**
2781 >     * Returns a {@link Set} view of the keys in this map, using the
2782 >     * given common mapped value for any additions (i.e., {@link
2783 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2784 >     * This is of course only appropriate if it is acceptable to use
2785 >     * the same value for all additions from this view.
2786 >     *
2787 >     * @param mappedValue the mapped value to use for any additions
2788 >     * @return the set view
2789 >     * @throws NullPointerException if the mappedValue is null
2790 >     */
2791 >    public KeySetView<K,V> keySet(V mappedValue) {
2792 >        if (mappedValue == null)
2793 >            throw new NullPointerException();
2794 >        return new KeySetView<K,V>(this, mappedValue);
2795      }
2796  
2797      /**
2798       * Returns a {@link Collection} view of the values contained in this map.
2799       * The collection is backed by the map, so changes to the map are
2800 <     * reflected in the collection, and vice-versa.  The collection
993 <     * supports element removal, which removes the corresponding
994 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
995 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
996 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
997 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
998 <     *
999 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1000 <     * that will never throw {@link ConcurrentModificationException},
1001 <     * and guarantees to traverse elements as they existed upon
1002 <     * construction of the iterator, and may (but is not guaranteed to)
1003 <     * reflect any modifications subsequent to construction.
2800 >     * reflected in the collection, and vice-versa.
2801       */
2802 <    public Collection<V> values() {
2803 <        Collection<V> vs = values;
2804 <        return (vs != null) ? vs : (values = new Values());
2802 >    public ValuesView<K,V> values() {
2803 >        ValuesView<K,V> vs = values;
2804 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2805      }
2806  
2807      /**
# Line 1012 | Line 2809 | public class ConcurrentHashMap<K, V> ext
2809       * The set is backed by the map, so changes to the map are
2810       * reflected in the set, and vice-versa.  The set supports element
2811       * removal, which removes the corresponding mapping from the map,
2812 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2813 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2814 <     * operations.  It does not support the <tt>add</tt> or
2815 <     * <tt>addAll</tt> operations.
2812 >     * via the {@code Iterator.remove}, {@code Set.remove},
2813 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2814 >     * operations.  It does not support the {@code add} or
2815 >     * {@code addAll} operations.
2816       *
2817 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2817 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2818       * that will never throw {@link ConcurrentModificationException},
2819       * and guarantees to traverse elements as they existed upon
2820       * construction of the iterator, and may (but is not guaranteed to)
2821       * reflect any modifications subsequent to construction.
2822       */
2823      public Set<Map.Entry<K,V>> entrySet() {
2824 <        Set<Map.Entry<K,V>> es = entrySet;
2825 <        return (es != null) ? es : (entrySet = new EntrySet());
2824 >        EntrySetView<K,V> es = entrySet;
2825 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2826      }
2827  
2828      /**
2829       * Returns an enumeration of the keys in this table.
2830       *
2831       * @return an enumeration of the keys in this table
2832 <     * @see #keySet
2832 >     * @see #keySet()
2833       */
2834      public Enumeration<K> keys() {
2835 <        return new KeyIterator();
2835 >        return new KeyIterator<K,V>(this);
2836      }
2837  
2838      /**
2839       * Returns an enumeration of the values in this table.
2840       *
2841       * @return an enumeration of the values in this table
2842 <     * @see #values
2842 >     * @see #values()
2843       */
2844      public Enumeration<V> elements() {
2845 <        return new ValueIterator();
2845 >        return new ValueIterator<K,V>(this);
2846      }
2847  
2848 <    /* ---------------- Iterator Support -------------- */
2848 >    /**
2849 >     * Returns the hash code value for this {@link Map}, i.e.,
2850 >     * the sum of, for each key-value pair in the map,
2851 >     * {@code key.hashCode() ^ value.hashCode()}.
2852 >     *
2853 >     * @return the hash code value for this map
2854 >     */
2855 >    public int hashCode() {
2856 >        int h = 0;
2857 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2858 >        V v;
2859 >        while ((v = it.advance()) != null) {
2860 >            h += it.nextKey.hashCode() ^ v.hashCode();
2861 >        }
2862 >        return h;
2863 >    }
2864  
2865 <    abstract class HashIterator {
2866 <        int nextSegmentIndex;
2867 <        int nextTableIndex;
2868 <        HashEntry<K,V>[] currentTable;
2869 <        HashEntry<K, V> nextEntry;
2870 <        HashEntry<K, V> lastReturned;
2865 >    /**
2866 >     * Returns a string representation of this map.  The string
2867 >     * representation consists of a list of key-value mappings (in no
2868 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
2869 >     * mappings are separated by the characters {@code ", "} (comma
2870 >     * and space).  Each key-value mapping is rendered as the key
2871 >     * followed by an equals sign ("{@code =}") followed by the
2872 >     * associated value.
2873 >     *
2874 >     * @return a string representation of this map
2875 >     */
2876 >    public String toString() {
2877 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2878 >        StringBuilder sb = new StringBuilder();
2879 >        sb.append('{');
2880 >        V v;
2881 >        if ((v = it.advance()) != null) {
2882 >            for (;;) {
2883 >                K k = it.nextKey;
2884 >                sb.append(k == this ? "(this Map)" : k);
2885 >                sb.append('=');
2886 >                sb.append(v == this ? "(this Map)" : v);
2887 >                if ((v = it.advance()) == null)
2888 >                    break;
2889 >                sb.append(',').append(' ');
2890 >            }
2891 >        }
2892 >        return sb.append('}').toString();
2893 >    }
2894  
2895 <        HashIterator() {
2896 <            nextSegmentIndex = segments.length - 1;
2897 <            nextTableIndex = -1;
2898 <            advance();
2895 >    /**
2896 >     * Compares the specified object with this map for equality.
2897 >     * Returns {@code true} if the given object is a map with the same
2898 >     * mappings as this map.  This operation may return misleading
2899 >     * results if either map is concurrently modified during execution
2900 >     * of this method.
2901 >     *
2902 >     * @param o object to be compared for equality with this map
2903 >     * @return {@code true} if the specified object is equal to this map
2904 >     */
2905 >    public boolean equals(Object o) {
2906 >        if (o != this) {
2907 >            if (!(o instanceof Map))
2908 >                return false;
2909 >            Map<?,?> m = (Map<?,?>) o;
2910 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2911 >            V val;
2912 >            while ((val = it.advance()) != null) {
2913 >                Object v = m.get(it.nextKey);
2914 >                if (v == null || (v != val && !v.equals(val)))
2915 >                    return false;
2916 >            }
2917 >            for (Map.Entry<?,?> e : m.entrySet()) {
2918 >                Object mk, mv, v;
2919 >                if ((mk = e.getKey()) == null ||
2920 >                    (mv = e.getValue()) == null ||
2921 >                    (v = internalGet(mk)) == null ||
2922 >                    (mv != v && !mv.equals(v)))
2923 >                    return false;
2924 >            }
2925          }
2926 +        return true;
2927 +    }
2928  
2929 <        public boolean hasMoreElements() { return hasNext(); }
2929 >    /* ----------------Iterators -------------- */
2930  
2931 <        final void advance() {
2932 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
2933 <                return;
2931 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
2932 >        extends Traverser<K,V,Object>
2933 >        implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2934 >        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2935 >        KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2936 >            super(map, it);
2937 >        }
2938 >        public KeyIterator<K,V> trySplit() {
2939 >            if (tab != null && baseIndex == baseLimit)
2940 >                return null;
2941 >            return new KeyIterator<K,V>(map, this);
2942 >        }
2943 >        public final K next() {
2944 >            if (nextVal == null && advance() == null)
2945 >                throw new NoSuchElementException();
2946 >            K k = nextKey;
2947 >            nextVal = null;
2948 >            return k;
2949 >        }
2950  
2951 <            while (nextTableIndex >= 0) {
1073 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
1074 <                    return;
1075 <            }
2951 >        public final K nextElement() { return next(); }
2952  
2953 <            while (nextSegmentIndex >= 0) {
2954 <                Segment<K,V> seg = segments[nextSegmentIndex--];
2955 <                if (seg.count != 0) {
2956 <                    currentTable = seg.table;
2957 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
2958 <                        if ( (nextEntry = currentTable[j]) != null) {
1083 <                            nextTableIndex = j - 1;
1084 <                            return;
1085 <                        }
1086 <                    }
1087 <                }
1088 <            }
2953 >        public Iterator<K> iterator() { return this; }
2954 >
2955 >        public void forEach(Consumer<? super K> action) {
2956 >            if (action == null) throw new NullPointerException();
2957 >            while (advance() != null)
2958 >                action.accept(nextKey);
2959          }
2960  
2961 <        public boolean hasNext() { return nextEntry != null; }
2961 >        public boolean tryAdvance(Consumer<? super K> block) {
2962 >            if (block == null) throw new NullPointerException();
2963 >            if (advance() == null)
2964 >                return false;
2965 >            block.accept(nextKey);
2966 >            return true;
2967 >        }
2968 >    }
2969  
2970 <        HashEntry<K,V> nextEntry() {
2971 <            if (nextEntry == null)
2970 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
2971 >        extends Traverser<K,V,Object>
2972 >        implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2973 >        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2974 >        ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2975 >            super(map, it);
2976 >        }
2977 >        public ValueIterator<K,V> trySplit() {
2978 >            if (tab != null && baseIndex == baseLimit)
2979 >                return null;
2980 >            return new ValueIterator<K,V>(map, this);
2981 >        }
2982 >
2983 >        public final V next() {
2984 >            V v;
2985 >            if ((v = nextVal) == null && (v = advance()) == null)
2986                  throw new NoSuchElementException();
2987 <            lastReturned = nextEntry;
2988 <            advance();
1098 <            return lastReturned;
2987 >            nextVal = null;
2988 >            return v;
2989          }
2990  
2991 <        public void remove() {
2992 <            if (lastReturned == null)
2993 <                throw new IllegalStateException();
2994 <            ConcurrentHashMap.this.remove(lastReturned.key);
2995 <            lastReturned = null;
2991 >        public final V nextElement() { return next(); }
2992 >
2993 >        public Iterator<V> iterator() { return this; }
2994 >
2995 >        public void forEach(Consumer<? super V> action) {
2996 >            if (action == null) throw new NullPointerException();
2997 >            V v;
2998 >            while ((v = advance()) != null)
2999 >                action.accept(v);
3000 >        }
3001 >
3002 >        public boolean tryAdvance(Consumer<? super V> block) {
3003 >            V v;
3004 >            if (block == null) throw new NullPointerException();
3005 >            if ((v = advance()) == null)
3006 >                return false;
3007 >            block.accept(v);
3008 >            return true;
3009          }
1107    }
3010  
1109    final class KeyIterator
1110        extends HashIterator
1111        implements Iterator<K>, Enumeration<K>
1112    {
1113        public K next()        { return super.nextEntry().key; }
1114        public K nextElement() { return super.nextEntry().key; }
3011      }
3012  
3013 <    final class ValueIterator
3014 <        extends HashIterator
3015 <        implements Iterator<V>, Enumeration<V>
3016 <    {
3017 <        public V next()        { return super.nextEntry().value; }
3018 <        public V nextElement() { return super.nextEntry().value; }
3013 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3014 >        extends Traverser<K,V,Object>
3015 >        implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3016 >        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3017 >        EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3018 >            super(map, it);
3019 >        }
3020 >        public EntryIterator<K,V> trySplit() {
3021 >            if (tab != null && baseIndex == baseLimit)
3022 >                return null;
3023 >            return new EntryIterator<K,V>(map, this);
3024 >        }
3025 >
3026 >        public final Map.Entry<K,V> next() {
3027 >            V v;
3028 >            if ((v = nextVal) == null && (v = advance()) == null)
3029 >                throw new NoSuchElementException();
3030 >            K k = nextKey;
3031 >            nextVal = null;
3032 >            return new MapEntry<K,V>(k, v, map);
3033 >        }
3034 >
3035 >        public Iterator<Map.Entry<K,V>> iterator() { return this; }
3036 >
3037 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3038 >            if (action == null) throw new NullPointerException();
3039 >            V v;
3040 >            while ((v = advance()) != null)
3041 >                action.accept(entryFor(nextKey, v));
3042 >        }
3043 >
3044 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3045 >            V v;
3046 >            if (block == null) throw new NullPointerException();
3047 >            if ((v = advance()) == null)
3048 >                return false;
3049 >            block.accept(entryFor(nextKey, v));
3050 >            return true;
3051 >        }
3052 >
3053      }
3054  
3055      /**
3056 <     * Custom Entry class used by EntryIterator.next(), that relays
1127 <     * setValue changes to the underlying map.
3056 >     * Exported Entry for iterators
3057       */
3058 <    final class WriteThroughEntry
3059 <        extends AbstractMap.SimpleEntry<K,V>
3060 <    {
3061 <        WriteThroughEntry(K k, V v) {
3062 <            super(k,v);
3058 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3059 >        final K key; // non-null
3060 >        V val;       // non-null
3061 >        final ConcurrentHashMap<K, V> map;
3062 >        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3063 >            this.key = key;
3064 >            this.val = val;
3065 >            this.map = map;
3066 >        }
3067 >        public final K getKey()       { return key; }
3068 >        public final V getValue()     { return val; }
3069 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3070 >        public final String toString(){ return key + "=" + val; }
3071 >
3072 >        public final boolean equals(Object o) {
3073 >            Object k, v; Map.Entry<?,?> e;
3074 >            return ((o instanceof Map.Entry) &&
3075 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3076 >                    (v = e.getValue()) != null &&
3077 >                    (k == key || k.equals(key)) &&
3078 >                    (v == val || v.equals(val)));
3079          }
3080  
3081          /**
3082 <         * Set our entry's value and write through to the map. The
3083 <         * value to return is somewhat arbitrary here. Since a
3084 <         * WriteThroughEntry does not necessarily track asynchronous
3085 <         * changes, the most recent "previous" value could be
3086 <         * different from what we return (or could even have been
3087 <         * removed in which case the put will re-establish). We do not
1143 <         * and cannot guarantee more.
3082 >         * Sets our entry's value and writes through to the map. The
3083 >         * value to return is somewhat arbitrary here. Since we do not
3084 >         * necessarily track asynchronous changes, the most recent
3085 >         * "previous" value could be different from what we return (or
3086 >         * could even have been removed in which case the put will
3087 >         * re-establish). We do not and cannot guarantee more.
3088           */
3089 <        public V setValue(V value) {
3089 >        public final V setValue(V value) {
3090              if (value == null) throw new NullPointerException();
3091 <            V v = super.setValue(value);
3092 <            ConcurrentHashMap.this.put(getKey(), value);
3091 >            V v = val;
3092 >            val = value;
3093 >            map.put(key, value);
3094              return v;
3095          }
3096      }
3097  
3098 <    final class EntryIterator
3099 <        extends HashIterator
3100 <        implements Iterator<Entry<K,V>>
3101 <    {
3102 <        public Map.Entry<K,V> next() {
3103 <            HashEntry<K,V> e = super.nextEntry();
3104 <            return new WriteThroughEntry(e.key, e.value);
3098 >    /**
3099 >     * Returns exportable snapshot entry for the given key and value
3100 >     * when write-through can't or shouldn't be used.
3101 >     */
3102 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3103 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3104 >    }
3105 >
3106 >    /* ---------------- Serialization Support -------------- */
3107 >
3108 >    /**
3109 >     * Stripped-down version of helper class used in previous version,
3110 >     * declared for the sake of serialization compatibility
3111 >     */
3112 >    static class Segment<K,V> implements Serializable {
3113 >        private static final long serialVersionUID = 2249069246763182397L;
3114 >        final float loadFactor;
3115 >        Segment(float lf) { this.loadFactor = lf; }
3116 >    }
3117 >
3118 >    /**
3119 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3120 >     * stream (i.e., serializes it).
3121 >     * @param s the stream
3122 >     * @serialData
3123 >     * the key (Object) and value (Object)
3124 >     * for each key-value mapping, followed by a null pair.
3125 >     * The key-value mappings are emitted in no particular order.
3126 >     */
3127 >    @SuppressWarnings("unchecked") private void writeObject
3128 >        (java.io.ObjectOutputStream s)
3129 >        throws java.io.IOException {
3130 >        if (segments == null) { // for serialization compatibility
3131 >            segments = (Segment<K,V>[])
3132 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3133 >            for (int i = 0; i < segments.length; ++i)
3134 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3135          }
3136 +        s.defaultWriteObject();
3137 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3138 +        V v;
3139 +        while ((v = it.advance()) != null) {
3140 +            s.writeObject(it.nextKey);
3141 +            s.writeObject(v);
3142 +        }
3143 +        s.writeObject(null);
3144 +        s.writeObject(null);
3145 +        segments = null; // throw away
3146      }
3147  
3148 <    final class KeySet extends AbstractSet<K> {
3149 <        public Iterator<K> iterator() {
3150 <            return new KeyIterator();
3148 >    /**
3149 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3150 >     * @param s the stream
3151 >     */
3152 >    @SuppressWarnings("unchecked") private void readObject
3153 >        (java.io.ObjectInputStream s)
3154 >        throws java.io.IOException, ClassNotFoundException {
3155 >        s.defaultReadObject();
3156 >        this.segments = null; // unneeded
3157 >
3158 >        // Create all nodes, then place in table once size is known
3159 >        long size = 0L;
3160 >        Node<V> p = null;
3161 >        for (;;) {
3162 >            K k = (K) s.readObject();
3163 >            V v = (V) s.readObject();
3164 >            if (k != null && v != null) {
3165 >                int h = spread(k.hashCode());
3166 >                p = new Node<V>(h, k, v, p);
3167 >                ++size;
3168 >            }
3169 >            else
3170 >                break;
3171          }
3172 <        public int size() {
3173 <            return ConcurrentHashMap.this.size();
3172 >        if (p != null) {
3173 >            boolean init = false;
3174 >            int n;
3175 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3176 >                n = MAXIMUM_CAPACITY;
3177 >            else {
3178 >                int sz = (int)size;
3179 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3180 >            }
3181 >            int sc = sizeCtl;
3182 >            boolean collide = false;
3183 >            if (n > sc &&
3184 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3185 >                try {
3186 >                    if (table == null) {
3187 >                        init = true;
3188 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3189 >                        Node<V>[] tab = (Node<V>[])rt;
3190 >                        int mask = n - 1;
3191 >                        while (p != null) {
3192 >                            int j = p.hash & mask;
3193 >                            Node<V> next = p.next;
3194 >                            Node<V> q = p.next = tabAt(tab, j);
3195 >                            setTabAt(tab, j, p);
3196 >                            if (!collide && q != null && q.hash == p.hash)
3197 >                                collide = true;
3198 >                            p = next;
3199 >                        }
3200 >                        table = tab;
3201 >                        addCount(size, -1);
3202 >                        sc = n - (n >>> 2);
3203 >                    }
3204 >                } finally {
3205 >                    sizeCtl = sc;
3206 >                }
3207 >                if (collide) { // rescan and convert to TreeBins
3208 >                    Node<V>[] tab = table;
3209 >                    for (int i = 0; i < tab.length; ++i) {
3210 >                        int c = 0;
3211 >                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3212 >                            if (++c > TREE_THRESHOLD &&
3213 >                                (e.key instanceof Comparable)) {
3214 >                                replaceWithTreeBin(tab, i, e.key);
3215 >                                break;
3216 >                            }
3217 >                        }
3218 >                    }
3219 >                }
3220 >            }
3221 >            if (!init) { // Can only happen if unsafely published.
3222 >                while (p != null) {
3223 >                    internalPut((K)p.key, p.val, false);
3224 >                    p = p.next;
3225 >                }
3226 >            }
3227          }
3228 <        public boolean contains(Object o) {
3229 <            return ConcurrentHashMap.this.containsKey(o);
3228 >    }
3229 >
3230 >    // -------------------------------------------------------
3231 >
3232 >    // Sequential bulk operations
3233 >
3234 >    /**
3235 >     * Performs the given action for each (key, value).
3236 >     *
3237 >     * @param action the action
3238 >     */
3239 >    public void forEachSequentially
3240 >        (BiConsumer<? super K, ? super V> action) {
3241 >        if (action == null) throw new NullPointerException();
3242 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3243 >        V v;
3244 >        while ((v = it.advance()) != null)
3245 >            action.accept(it.nextKey, v);
3246 >    }
3247 >
3248 >    /**
3249 >     * Performs the given action for each non-null transformation
3250 >     * of each (key, value).
3251 >     *
3252 >     * @param transformer a function returning the transformation
3253 >     * for an element, or null if there is no transformation (in
3254 >     * which case the action is not applied)
3255 >     * @param action the action
3256 >     */
3257 >    public <U> void forEachSequentially
3258 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3259 >         Consumer<? super U> action) {
3260 >        if (transformer == null || action == null)
3261 >            throw new NullPointerException();
3262 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3263 >        V v; U u;
3264 >        while ((v = it.advance()) != null) {
3265 >            if ((u = transformer.apply(it.nextKey, v)) != null)
3266 >                action.accept(u);
3267          }
3268 <        public boolean remove(Object o) {
3269 <            return ConcurrentHashMap.this.remove(o) != null;
3268 >    }
3269 >
3270 >    /**
3271 >     * Returns a non-null result from applying the given search
3272 >     * function on each (key, value), or null if none.
3273 >     *
3274 >     * @param searchFunction a function returning a non-null
3275 >     * result on success, else null
3276 >     * @return a non-null result from applying the given search
3277 >     * function on each (key, value), or null if none
3278 >     */
3279 >    public <U> U searchSequentially
3280 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3281 >        if (searchFunction == null) throw new NullPointerException();
3282 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3283 >        V v; U u;
3284 >        while ((v = it.advance()) != null) {
3285 >            if ((u = searchFunction.apply(it.nextKey, v)) != null)
3286 >                return u;
3287          }
3288 <        public void clear() {
3289 <            ConcurrentHashMap.this.clear();
3288 >        return null;
3289 >    }
3290 >
3291 >    /**
3292 >     * Returns the result of accumulating the given transformation
3293 >     * of all (key, value) pairs using the given reducer to
3294 >     * combine values, or null if none.
3295 >     *
3296 >     * @param transformer a function returning the transformation
3297 >     * for an element, or null if there is no transformation (in
3298 >     * which case it is not combined)
3299 >     * @param reducer a commutative associative combining function
3300 >     * @return the result of accumulating the given transformation
3301 >     * of all (key, value) pairs
3302 >     */
3303 >    public <U> U reduceSequentially
3304 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3305 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3306 >        if (transformer == null || reducer == null)
3307 >            throw new NullPointerException();
3308 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3309 >        U r = null, u; V v;
3310 >        while ((v = it.advance()) != null) {
3311 >            if ((u = transformer.apply(it.nextKey, v)) != null)
3312 >                r = (r == null) ? u : reducer.apply(r, u);
3313          }
3314 +        return r;
3315      }
3316  
3317 <    final class Values extends AbstractCollection<V> {
3318 <        public Iterator<V> iterator() {
3319 <            return new ValueIterator();
3317 >    /**
3318 >     * Returns the result of accumulating the given transformation
3319 >     * of all (key, value) pairs using the given reducer to
3320 >     * combine values, and the given basis as an identity value.
3321 >     *
3322 >     * @param transformer a function returning the transformation
3323 >     * for an element
3324 >     * @param basis the identity (initial default value) for the reduction
3325 >     * @param reducer a commutative associative combining function
3326 >     * @return the result of accumulating the given transformation
3327 >     * of all (key, value) pairs
3328 >     */
3329 >    public double reduceToDoubleSequentially
3330 >        (ToDoubleBiFunction<? super K, ? super V> transformer,
3331 >         double basis,
3332 >         DoubleBinaryOperator reducer) {
3333 >        if (transformer == null || reducer == null)
3334 >            throw new NullPointerException();
3335 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3336 >        double r = basis; V v;
3337 >        while ((v = it.advance()) != null)
3338 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3339 >        return r;
3340 >    }
3341 >
3342 >    /**
3343 >     * Returns the result of accumulating the given transformation
3344 >     * of all (key, value) pairs using the given reducer to
3345 >     * combine values, and the given basis as an identity value.
3346 >     *
3347 >     * @param transformer a function returning the transformation
3348 >     * for an element
3349 >     * @param basis the identity (initial default value) for the reduction
3350 >     * @param reducer a commutative associative combining function
3351 >     * @return the result of accumulating the given transformation
3352 >     * of all (key, value) pairs
3353 >     */
3354 >    public long reduceToLongSequentially
3355 >        (ToLongBiFunction<? super K, ? super V> transformer,
3356 >         long basis,
3357 >         LongBinaryOperator reducer) {
3358 >        if (transformer == null || reducer == null)
3359 >            throw new NullPointerException();
3360 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3361 >        long r = basis; V v;
3362 >        while ((v = it.advance()) != null)
3363 >            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3364 >        return r;
3365 >    }
3366 >
3367 >    /**
3368 >     * Returns the result of accumulating the given transformation
3369 >     * of all (key, value) pairs using the given reducer to
3370 >     * combine values, and the given basis as an identity value.
3371 >     *
3372 >     * @param transformer a function returning the transformation
3373 >     * for an element
3374 >     * @param basis the identity (initial default value) for the reduction
3375 >     * @param reducer a commutative associative combining function
3376 >     * @return the result of accumulating the given transformation
3377 >     * of all (key, value) pairs
3378 >     */
3379 >    public int reduceToIntSequentially
3380 >        (ToIntBiFunction<? super K, ? super V> transformer,
3381 >         int basis,
3382 >         IntBinaryOperator reducer) {
3383 >        if (transformer == null || reducer == null)
3384 >            throw new NullPointerException();
3385 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3386 >        int r = basis; V v;
3387 >        while ((v = it.advance()) != null)
3388 >            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3389 >        return r;
3390 >    }
3391 >
3392 >    /**
3393 >     * Performs the given action for each key.
3394 >     *
3395 >     * @param action the action
3396 >     */
3397 >    public void forEachKeySequentially
3398 >        (Consumer<? super K> action) {
3399 >        if (action == null) throw new NullPointerException();
3400 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3401 >        while (it.advance() != null)
3402 >            action.accept(it.nextKey);
3403 >    }
3404 >
3405 >    /**
3406 >     * Performs the given action for each non-null transformation
3407 >     * of each key.
3408 >     *
3409 >     * @param transformer a function returning the transformation
3410 >     * for an element, or null if there is no transformation (in
3411 >     * which case the action is not applied)
3412 >     * @param action the action
3413 >     */
3414 >    public <U> void forEachKeySequentially
3415 >        (Function<? super K, ? extends U> transformer,
3416 >         Consumer<? super U> action) {
3417 >        if (transformer == null || action == null)
3418 >            throw new NullPointerException();
3419 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3420 >        U u;
3421 >        while (it.advance() != null) {
3422 >            if ((u = transformer.apply(it.nextKey)) != null)
3423 >                action.accept(u);
3424          }
3425 <        public int size() {
3426 <            return ConcurrentHashMap.this.size();
3425 >        ForkJoinTasks.forEachKey
3426 >            (this, transformer, action).invoke();
3427 >    }
3428 >
3429 >    /**
3430 >     * Returns a non-null result from applying the given search
3431 >     * function on each key, or null if none.
3432 >     *
3433 >     * @param searchFunction a function returning a non-null
3434 >     * result on success, else null
3435 >     * @return a non-null result from applying the given search
3436 >     * function on each key, or null if none
3437 >     */
3438 >    public <U> U searchKeysSequentially
3439 >        (Function<? super K, ? extends U> searchFunction) {
3440 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3441 >        U u;
3442 >        while (it.advance() != null) {
3443 >            if ((u = searchFunction.apply(it.nextKey)) != null)
3444 >                return u;
3445          }
3446 <        public boolean contains(Object o) {
3447 <            return ConcurrentHashMap.this.containsValue(o);
3446 >        return null;
3447 >    }
3448 >
3449 >    /**
3450 >     * Returns the result of accumulating all keys using the given
3451 >     * reducer to combine values, or null if none.
3452 >     *
3453 >     * @param reducer a commutative associative combining function
3454 >     * @return the result of accumulating all keys using the given
3455 >     * reducer to combine values, or null if none
3456 >     */
3457 >    public K reduceKeysSequentially
3458 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
3459 >        if (reducer == null) throw new NullPointerException();
3460 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3461 >        K r = null;
3462 >        while (it.advance() != null) {
3463 >            K u = it.nextKey;
3464 >            r = (r == null) ? u : reducer.apply(r, u);
3465          }
3466 <        public void clear() {
3467 <            ConcurrentHashMap.this.clear();
3466 >        return r;
3467 >    }
3468 >
3469 >    /**
3470 >     * Returns the result of accumulating the given transformation
3471 >     * of all keys using the given reducer to combine values, or
3472 >     * null if none.
3473 >     *
3474 >     * @param transformer a function returning the transformation
3475 >     * for an element, or null if there is no transformation (in
3476 >     * which case it is not combined)
3477 >     * @param reducer a commutative associative combining function
3478 >     * @return the result of accumulating the given transformation
3479 >     * of all keys
3480 >     */
3481 >    public <U> U reduceKeysSequentially
3482 >        (Function<? super K, ? extends U> transformer,
3483 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3484 >        if (transformer == null || reducer == null)
3485 >            throw new NullPointerException();
3486 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3487 >        U r = null, u;
3488 >        while (it.advance() != null) {
3489 >            if ((u = transformer.apply(it.nextKey)) != null)
3490 >                r = (r == null) ? u : reducer.apply(r, u);
3491          }
3492 +        return r;
3493      }
3494  
3495 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3496 <        public Iterator<Map.Entry<K,V>> iterator() {
3497 <            return new EntryIterator();
3495 >    /**
3496 >     * Returns the result of accumulating the given transformation
3497 >     * of all keys using the given reducer to combine values, and
3498 >     * the given basis as an identity value.
3499 >     *
3500 >     * @param transformer a function returning the transformation
3501 >     * for an element
3502 >     * @param basis the identity (initial default value) for the reduction
3503 >     * @param reducer a commutative associative combining function
3504 >     * @return the result of accumulating the given transformation
3505 >     * of all keys
3506 >     */
3507 >    public double reduceKeysToDoubleSequentially
3508 >        (ToDoubleFunction<? super K> transformer,
3509 >         double basis,
3510 >         DoubleBinaryOperator reducer) {
3511 >        if (transformer == null || reducer == null)
3512 >            throw new NullPointerException();
3513 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3514 >        double r = basis;
3515 >        while (it.advance() != null)
3516 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3517 >        return r;
3518 >    }
3519 >
3520 >    /**
3521 >     * Returns the result of accumulating the given transformation
3522 >     * of all keys using the given reducer to combine values, and
3523 >     * the given basis as an identity value.
3524 >     *
3525 >     * @param transformer a function returning the transformation
3526 >     * for an element
3527 >     * @param basis the identity (initial default value) for the reduction
3528 >     * @param reducer a commutative associative combining function
3529 >     * @return the result of accumulating the given transformation
3530 >     * of all keys
3531 >     */
3532 >    public long reduceKeysToLongSequentially
3533 >        (ToLongFunction<? super K> transformer,
3534 >         long basis,
3535 >         LongBinaryOperator reducer) {
3536 >        if (transformer == null || reducer == null)
3537 >            throw new NullPointerException();
3538 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3539 >        long r = basis;
3540 >        while (it.advance() != null)
3541 >            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3542 >        return r;
3543 >    }
3544 >
3545 >    /**
3546 >     * Returns the result of accumulating the given transformation
3547 >     * of all keys using the given reducer to combine values, and
3548 >     * the given basis as an identity value.
3549 >     *
3550 >     * @param transformer a function returning the transformation
3551 >     * for an element
3552 >     * @param basis the identity (initial default value) for the reduction
3553 >     * @param reducer a commutative associative combining function
3554 >     * @return the result of accumulating the given transformation
3555 >     * of all keys
3556 >     */
3557 >    public int reduceKeysToIntSequentially
3558 >        (ToIntFunction<? super K> transformer,
3559 >         int basis,
3560 >         IntBinaryOperator reducer) {
3561 >        if (transformer == null || reducer == null)
3562 >            throw new NullPointerException();
3563 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3564 >        int r = basis;
3565 >        while (it.advance() != null)
3566 >            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3567 >        return r;
3568 >    }
3569 >
3570 >    /**
3571 >     * Performs the given action for each value.
3572 >     *
3573 >     * @param action the action
3574 >     */
3575 >    public void forEachValueSequentially(Consumer<? super V> action) {
3576 >        if (action == null) throw new NullPointerException();
3577 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3578 >        V v;
3579 >        while ((v = it.advance()) != null)
3580 >            action.accept(v);
3581 >    }
3582 >
3583 >    /**
3584 >     * Performs the given action for each non-null transformation
3585 >     * of each value.
3586 >     *
3587 >     * @param transformer a function returning the transformation
3588 >     * for an element, or null if there is no transformation (in
3589 >     * which case the action is not applied)
3590 >     * @param action the action
3591 >     */
3592 >    public <U> void forEachValueSequentially
3593 >        (Function<? super V, ? extends U> transformer,
3594 >         Consumer<? super U> action) {
3595 >        if (transformer == null || action == null)
3596 >            throw new NullPointerException();
3597 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3598 >        V v; U u;
3599 >        while ((v = it.advance()) != null) {
3600 >            if ((u = transformer.apply(v)) != null)
3601 >                action.accept(u);
3602          }
3603 <        public boolean contains(Object o) {
3604 <            if (!(o instanceof Map.Entry))
3605 <                return false;
3606 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3607 <            V v = ConcurrentHashMap.this.get(e.getKey());
3608 <            return v != null && v.equals(e.getValue());
3603 >    }
3604 >
3605 >    /**
3606 >     * Returns a non-null result from applying the given search
3607 >     * function on each value, or null if none.
3608 >     *
3609 >     * @param searchFunction a function returning a non-null
3610 >     * result on success, else null
3611 >     * @return a non-null result from applying the given search
3612 >     * function on each value, or null if none
3613 >     */
3614 >    public <U> U searchValuesSequentially
3615 >        (Function<? super V, ? extends U> searchFunction) {
3616 >        if (searchFunction == null) throw new NullPointerException();
3617 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3618 >        V v; U u;
3619 >        while ((v = it.advance()) != null) {
3620 >            if ((u = searchFunction.apply(v)) != null)
3621 >                return u;
3622          }
3623 <        public boolean remove(Object o) {
3624 <            if (!(o instanceof Map.Entry))
3625 <                return false;
3626 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3627 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
3623 >        return null;
3624 >    }
3625 >
3626 >    /**
3627 >     * Returns the result of accumulating all values using the
3628 >     * given reducer to combine values, or null if none.
3629 >     *
3630 >     * @param reducer a commutative associative combining function
3631 >     * @return the result of accumulating all values
3632 >     */
3633 >    public V reduceValuesSequentially
3634 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
3635 >        if (reducer == null) throw new NullPointerException();
3636 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637 >        V r = null; V v;
3638 >        while ((v = it.advance()) != null)
3639 >            r = (r == null) ? v : reducer.apply(r, v);
3640 >        return r;
3641 >    }
3642 >
3643 >    /**
3644 >     * Returns the result of accumulating the given transformation
3645 >     * of all values using the given reducer to combine values, or
3646 >     * null if none.
3647 >     *
3648 >     * @param transformer a function returning the transformation
3649 >     * for an element, or null if there is no transformation (in
3650 >     * which case it is not combined)
3651 >     * @param reducer a commutative associative combining function
3652 >     * @return the result of accumulating the given transformation
3653 >     * of all values
3654 >     */
3655 >    public <U> U reduceValuesSequentially
3656 >        (Function<? super V, ? extends U> transformer,
3657 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3658 >        if (transformer == null || reducer == null)
3659 >            throw new NullPointerException();
3660 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3661 >        U r = null, u; V v;
3662 >        while ((v = it.advance()) != null) {
3663 >            if ((u = transformer.apply(v)) != null)
3664 >                r = (r == null) ? u : reducer.apply(r, u);
3665          }
3666 <        public int size() {
3667 <            return ConcurrentHashMap.this.size();
3666 >        return r;
3667 >    }
3668 >
3669 >    /**
3670 >     * Returns the result of accumulating the given transformation
3671 >     * of all values using the given reducer to combine values,
3672 >     * and the given basis as an identity value.
3673 >     *
3674 >     * @param transformer a function returning the transformation
3675 >     * for an element
3676 >     * @param basis the identity (initial default value) for the reduction
3677 >     * @param reducer a commutative associative combining function
3678 >     * @return the result of accumulating the given transformation
3679 >     * of all values
3680 >     */
3681 >    public double reduceValuesToDoubleSequentially
3682 >        (ToDoubleFunction<? super V> transformer,
3683 >         double basis,
3684 >         DoubleBinaryOperator reducer) {
3685 >        if (transformer == null || reducer == null)
3686 >            throw new NullPointerException();
3687 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3688 >        double r = basis; V v;
3689 >        while ((v = it.advance()) != null)
3690 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3691 >        return r;
3692 >    }
3693 >
3694 >    /**
3695 >     * Returns the result of accumulating the given transformation
3696 >     * of all values using the given reducer to combine values,
3697 >     * and the given basis as an identity value.
3698 >     *
3699 >     * @param transformer a function returning the transformation
3700 >     * for an element
3701 >     * @param basis the identity (initial default value) for the reduction
3702 >     * @param reducer a commutative associative combining function
3703 >     * @return the result of accumulating the given transformation
3704 >     * of all values
3705 >     */
3706 >    public long reduceValuesToLongSequentially
3707 >        (ToLongFunction<? super V> transformer,
3708 >         long basis,
3709 >         LongBinaryOperator reducer) {
3710 >        if (transformer == null || reducer == null)
3711 >            throw new NullPointerException();
3712 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3713 >        long r = basis; V v;
3714 >        while ((v = it.advance()) != null)
3715 >            r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3716 >        return r;
3717 >    }
3718 >
3719 >    /**
3720 >     * Returns the result of accumulating the given transformation
3721 >     * of all values using the given reducer to combine values,
3722 >     * and the given basis as an identity value.
3723 >     *
3724 >     * @param transformer a function returning the transformation
3725 >     * for an element
3726 >     * @param basis the identity (initial default value) for the reduction
3727 >     * @param reducer a commutative associative combining function
3728 >     * @return the result of accumulating the given transformation
3729 >     * of all values
3730 >     */
3731 >    public int reduceValuesToIntSequentially
3732 >        (ToIntFunction<? super V> transformer,
3733 >         int basis,
3734 >         IntBinaryOperator reducer) {
3735 >        if (transformer == null || reducer == null)
3736 >            throw new NullPointerException();
3737 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738 >        int r = basis; V v;
3739 >        while ((v = it.advance()) != null)
3740 >            r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3741 >        return r;
3742 >    }
3743 >
3744 >    /**
3745 >     * Performs the given action for each entry.
3746 >     *
3747 >     * @param action the action
3748 >     */
3749 >    public void forEachEntrySequentially
3750 >        (Consumer<? super Map.Entry<K,V>> action) {
3751 >        if (action == null) throw new NullPointerException();
3752 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3753 >        V v;
3754 >        while ((v = it.advance()) != null)
3755 >            action.accept(entryFor(it.nextKey, v));
3756 >    }
3757 >
3758 >    /**
3759 >     * Performs the given action for each non-null transformation
3760 >     * of each entry.
3761 >     *
3762 >     * @param transformer a function returning the transformation
3763 >     * for an element, or null if there is no transformation (in
3764 >     * which case the action is not applied)
3765 >     * @param action the action
3766 >     */
3767 >    public <U> void forEachEntrySequentially
3768 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3769 >         Consumer<? super U> action) {
3770 >        if (transformer == null || action == null)
3771 >            throw new NullPointerException();
3772 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3773 >        V v; U u;
3774 >        while ((v = it.advance()) != null) {
3775 >            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3776 >                action.accept(u);
3777          }
3778 <        public void clear() {
3779 <            ConcurrentHashMap.this.clear();
3778 >    }
3779 >
3780 >    /**
3781 >     * Returns a non-null result from applying the given search
3782 >     * function on each entry, or null if none.
3783 >     *
3784 >     * @param searchFunction a function returning a non-null
3785 >     * result on success, else null
3786 >     * @return a non-null result from applying the given search
3787 >     * function on each entry, or null if none
3788 >     */
3789 >    public <U> U searchEntriesSequentially
3790 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3791 >        if (searchFunction == null) throw new NullPointerException();
3792 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3793 >        V v; U u;
3794 >        while ((v = it.advance()) != null) {
3795 >            if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3796 >                return u;
3797          }
3798 +        return null;
3799      }
3800  
3801 <    /* ---------------- Serialization Support -------------- */
3801 >    /**
3802 >     * Returns the result of accumulating all entries using the
3803 >     * given reducer to combine values, or null if none.
3804 >     *
3805 >     * @param reducer a commutative associative combining function
3806 >     * @return the result of accumulating all entries
3807 >     */
3808 >    public Map.Entry<K,V> reduceEntriesSequentially
3809 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3810 >        if (reducer == null) throw new NullPointerException();
3811 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3812 >        Map.Entry<K,V> r = null; V v;
3813 >        while ((v = it.advance()) != null) {
3814 >            Map.Entry<K,V> u = entryFor(it.nextKey, v);
3815 >            r = (r == null) ? u : reducer.apply(r, u);
3816 >        }
3817 >        return r;
3818 >    }
3819  
3820      /**
3821 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
3822 <     * stream (i.e., serialize it).
3823 <     * @param s the stream
3824 <     * @serialData
3825 <     * the key (Object) and value (Object)
3826 <     * for each key-value mapping, followed by a null pair.
3827 <     * The key-value mappings are emitted in no particular order.
3821 >     * Returns the result of accumulating the given transformation
3822 >     * of all entries using the given reducer to combine values,
3823 >     * or null if none.
3824 >     *
3825 >     * @param transformer a function returning the transformation
3826 >     * for an element, or null if there is no transformation (in
3827 >     * which case it is not combined)
3828 >     * @param reducer a commutative associative combining function
3829 >     * @return the result of accumulating the given transformation
3830 >     * of all entries
3831 >     */
3832 >    public <U> U reduceEntriesSequentially
3833 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3834 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3835 >        if (transformer == null || reducer == null)
3836 >            throw new NullPointerException();
3837 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3838 >        U r = null, u; V v;
3839 >        while ((v = it.advance()) != null) {
3840 >            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3841 >                r = (r == null) ? u : reducer.apply(r, u);
3842 >        }
3843 >        return r;
3844 >    }
3845 >
3846 >    /**
3847 >     * Returns the result of accumulating the given transformation
3848 >     * of all entries using the given reducer to combine values,
3849 >     * and the given basis as an identity value.
3850 >     *
3851 >     * @param transformer a function returning the transformation
3852 >     * for an element
3853 >     * @param basis the identity (initial default value) for the reduction
3854 >     * @param reducer a commutative associative combining function
3855 >     * @return the result of accumulating the given transformation
3856 >     * of all entries
3857 >     */
3858 >    public double reduceEntriesToDoubleSequentially
3859 >        (ToDoubleFunction<Map.Entry<K,V>> transformer,
3860 >         double basis,
3861 >         DoubleBinaryOperator reducer) {
3862 >        if (transformer == null || reducer == null)
3863 >            throw new NullPointerException();
3864 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3865 >        double r = basis; V v;
3866 >        while ((v = it.advance()) != null)
3867 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3868 >        return r;
3869 >    }
3870 >
3871 >    /**
3872 >     * Returns the result of accumulating the given transformation
3873 >     * of all entries using the given reducer to combine values,
3874 >     * and the given basis as an identity value.
3875 >     *
3876 >     * @param transformer a function returning the transformation
3877 >     * for an element
3878 >     * @param basis the identity (initial default value) for the reduction
3879 >     * @param reducer a commutative associative combining function
3880 >     * @return the result of accumulating the given transformation
3881 >     * of all entries
3882 >     */
3883 >    public long reduceEntriesToLongSequentially
3884 >        (ToLongFunction<Map.Entry<K,V>> transformer,
3885 >         long basis,
3886 >         LongBinaryOperator reducer) {
3887 >        if (transformer == null || reducer == null)
3888 >            throw new NullPointerException();
3889 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3890 >        long r = basis; V v;
3891 >        while ((v = it.advance()) != null)
3892 >            r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3893 >        return r;
3894 >    }
3895 >
3896 >    /**
3897 >     * Returns the result of accumulating the given transformation
3898 >     * of all entries using the given reducer to combine values,
3899 >     * and the given basis as an identity value.
3900 >     *
3901 >     * @param transformer a function returning the transformation
3902 >     * for an element
3903 >     * @param basis the identity (initial default value) for the reduction
3904 >     * @param reducer a commutative associative combining function
3905 >     * @return the result of accumulating the given transformation
3906 >     * of all entries
3907 >     */
3908 >    public int reduceEntriesToIntSequentially
3909 >        (ToIntFunction<Map.Entry<K,V>> transformer,
3910 >         int basis,
3911 >         IntBinaryOperator reducer) {
3912 >        if (transformer == null || reducer == null)
3913 >            throw new NullPointerException();
3914 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3915 >        int r = basis; V v;
3916 >        while ((v = it.advance()) != null)
3917 >            r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3918 >        return r;
3919 >    }
3920 >
3921 >    // Parallel bulk operations
3922 >
3923 >    /**
3924 >     * Performs the given action for each (key, value).
3925 >     *
3926 >     * @param action the action
3927       */
3928 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
3929 <        s.defaultWriteObject();
3928 >    public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3929 >        ForkJoinTasks.forEach
3930 >            (this, action).invoke();
3931 >    }
3932  
3933 <        for (int k = 0; k < segments.length; ++k) {
3934 <            Segment<K,V> seg = segments[k];
3935 <            seg.lock();
3936 <            try {
3937 <                HashEntry<K,V>[] tab = seg.table;
3938 <                for (int i = 0; i < tab.length; ++i) {
3939 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
3940 <                        s.writeObject(e.key);
3941 <                        s.writeObject(e.value);
3933 >    /**
3934 >     * Performs the given action for each non-null transformation
3935 >     * of each (key, value).
3936 >     *
3937 >     * @param transformer a function returning the transformation
3938 >     * for an element, or null if there is no transformation (in
3939 >     * which case the action is not applied)
3940 >     * @param action the action
3941 >     */
3942 >    public <U> void forEachInParallel
3943 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3944 >                            Consumer<? super U> action) {
3945 >        ForkJoinTasks.forEach
3946 >            (this, transformer, action).invoke();
3947 >    }
3948 >
3949 >    /**
3950 >     * Returns a non-null result from applying the given search
3951 >     * function on each (key, value), or null if none.  Upon
3952 >     * success, further element processing is suppressed and the
3953 >     * results of any other parallel invocations of the search
3954 >     * function are ignored.
3955 >     *
3956 >     * @param searchFunction a function returning a non-null
3957 >     * result on success, else null
3958 >     * @return a non-null result from applying the given search
3959 >     * function on each (key, value), or null if none
3960 >     */
3961 >    public <U> U searchInParallel
3962 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3963 >        return ForkJoinTasks.search
3964 >            (this, searchFunction).invoke();
3965 >    }
3966 >
3967 >    /**
3968 >     * Returns the result of accumulating the given transformation
3969 >     * of all (key, value) pairs using the given reducer to
3970 >     * combine values, or null if none.
3971 >     *
3972 >     * @param transformer a function returning the transformation
3973 >     * for an element, or null if there is no transformation (in
3974 >     * which case it is not combined)
3975 >     * @param reducer a commutative associative combining function
3976 >     * @return the result of accumulating the given transformation
3977 >     * of all (key, value) pairs
3978 >     */
3979 >    public <U> U reduceInParallel
3980 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3981 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3982 >        return ForkJoinTasks.reduce
3983 >            (this, transformer, reducer).invoke();
3984 >    }
3985 >
3986 >    /**
3987 >     * Returns the result of accumulating the given transformation
3988 >     * of all (key, value) pairs using the given reducer to
3989 >     * combine values, and the given basis as an identity value.
3990 >     *
3991 >     * @param transformer a function returning the transformation
3992 >     * for an element
3993 >     * @param basis the identity (initial default value) for the reduction
3994 >     * @param reducer a commutative associative combining function
3995 >     * @return the result of accumulating the given transformation
3996 >     * of all (key, value) pairs
3997 >     */
3998 >    public double reduceToDoubleInParallel
3999 >        (ToDoubleBiFunction<? super K, ? super V> transformer,
4000 >         double basis,
4001 >         DoubleBinaryOperator reducer) {
4002 >        return ForkJoinTasks.reduceToDouble
4003 >            (this, transformer, basis, reducer).invoke();
4004 >    }
4005 >
4006 >    /**
4007 >     * Returns the result of accumulating the given transformation
4008 >     * of all (key, value) pairs using the given reducer to
4009 >     * combine values, and the given basis as an identity value.
4010 >     *
4011 >     * @param transformer a function returning the transformation
4012 >     * for an element
4013 >     * @param basis the identity (initial default value) for the reduction
4014 >     * @param reducer a commutative associative combining function
4015 >     * @return the result of accumulating the given transformation
4016 >     * of all (key, value) pairs
4017 >     */
4018 >    public long reduceToLongInParallel
4019 >        (ToLongBiFunction<? super K, ? super V> transformer,
4020 >         long basis,
4021 >         LongBinaryOperator reducer) {
4022 >        return ForkJoinTasks.reduceToLong
4023 >            (this, transformer, basis, reducer).invoke();
4024 >    }
4025 >
4026 >    /**
4027 >     * Returns the result of accumulating the given transformation
4028 >     * of all (key, value) pairs using the given reducer to
4029 >     * combine values, and the given basis as an identity value.
4030 >     *
4031 >     * @param transformer a function returning the transformation
4032 >     * for an element
4033 >     * @param basis the identity (initial default value) for the reduction
4034 >     * @param reducer a commutative associative combining function
4035 >     * @return the result of accumulating the given transformation
4036 >     * of all (key, value) pairs
4037 >     */
4038 >    public int reduceToIntInParallel
4039 >        (ToIntBiFunction<? super K, ? super V> transformer,
4040 >         int basis,
4041 >         IntBinaryOperator reducer) {
4042 >        return ForkJoinTasks.reduceToInt
4043 >            (this, transformer, basis, reducer).invoke();
4044 >    }
4045 >
4046 >    /**
4047 >     * Performs the given action for each key.
4048 >     *
4049 >     * @param action the action
4050 >     */
4051 >    public void forEachKeyInParallel(Consumer<? super K> action) {
4052 >        ForkJoinTasks.forEachKey
4053 >            (this, action).invoke();
4054 >    }
4055 >
4056 >    /**
4057 >     * Performs the given action for each non-null transformation
4058 >     * of each key.
4059 >     *
4060 >     * @param transformer a function returning the transformation
4061 >     * for an element, or null if there is no transformation (in
4062 >     * which case the action is not applied)
4063 >     * @param action the action
4064 >     */
4065 >    public <U> void forEachKeyInParallel
4066 >        (Function<? super K, ? extends U> transformer,
4067 >         Consumer<? super U> action) {
4068 >        ForkJoinTasks.forEachKey
4069 >            (this, transformer, action).invoke();
4070 >    }
4071 >
4072 >    /**
4073 >     * Returns a non-null result from applying the given search
4074 >     * function on each key, or null if none. Upon success,
4075 >     * further element processing is suppressed and the results of
4076 >     * any other parallel invocations of the search function are
4077 >     * ignored.
4078 >     *
4079 >     * @param searchFunction a function returning a non-null
4080 >     * result on success, else null
4081 >     * @return a non-null result from applying the given search
4082 >     * function on each key, or null if none
4083 >     */
4084 >    public <U> U searchKeysInParallel
4085 >        (Function<? super K, ? extends U> searchFunction) {
4086 >        return ForkJoinTasks.searchKeys
4087 >            (this, searchFunction).invoke();
4088 >    }
4089 >
4090 >    /**
4091 >     * Returns the result of accumulating all keys using the given
4092 >     * reducer to combine values, or null if none.
4093 >     *
4094 >     * @param reducer a commutative associative combining function
4095 >     * @return the result of accumulating all keys using the given
4096 >     * reducer to combine values, or null if none
4097 >     */
4098 >    public K reduceKeysInParallel
4099 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
4100 >        return ForkJoinTasks.reduceKeys
4101 >            (this, reducer).invoke();
4102 >    }
4103 >
4104 >    /**
4105 >     * Returns the result of accumulating the given transformation
4106 >     * of all keys using the given reducer to combine values, or
4107 >     * null if none.
4108 >     *
4109 >     * @param transformer a function returning the transformation
4110 >     * for an element, or null if there is no transformation (in
4111 >     * which case it is not combined)
4112 >     * @param reducer a commutative associative combining function
4113 >     * @return the result of accumulating the given transformation
4114 >     * of all keys
4115 >     */
4116 >    public <U> U reduceKeysInParallel
4117 >        (Function<? super K, ? extends U> transformer,
4118 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4119 >        return ForkJoinTasks.reduceKeys
4120 >            (this, transformer, reducer).invoke();
4121 >    }
4122 >
4123 >    /**
4124 >     * Returns the result of accumulating the given transformation
4125 >     * of all keys using the given reducer to combine values, and
4126 >     * the given basis as an identity value.
4127 >     *
4128 >     * @param transformer a function returning the transformation
4129 >     * for an element
4130 >     * @param basis the identity (initial default value) for the reduction
4131 >     * @param reducer a commutative associative combining function
4132 >     * @return the result of accumulating the given transformation
4133 >     * of all keys
4134 >     */
4135 >    public double reduceKeysToDoubleInParallel
4136 >        (ToDoubleFunction<? super K> transformer,
4137 >         double basis,
4138 >         DoubleBinaryOperator reducer) {
4139 >        return ForkJoinTasks.reduceKeysToDouble
4140 >            (this, transformer, basis, reducer).invoke();
4141 >    }
4142 >
4143 >    /**
4144 >     * Returns the result of accumulating the given transformation
4145 >     * of all keys using the given reducer to combine values, and
4146 >     * the given basis as an identity value.
4147 >     *
4148 >     * @param transformer a function returning the transformation
4149 >     * for an element
4150 >     * @param basis the identity (initial default value) for the reduction
4151 >     * @param reducer a commutative associative combining function
4152 >     * @return the result of accumulating the given transformation
4153 >     * of all keys
4154 >     */
4155 >    public long reduceKeysToLongInParallel
4156 >        (ToLongFunction<? super K> transformer,
4157 >         long basis,
4158 >         LongBinaryOperator reducer) {
4159 >        return ForkJoinTasks.reduceKeysToLong
4160 >            (this, transformer, basis, reducer).invoke();
4161 >    }
4162 >
4163 >    /**
4164 >     * Returns the result of accumulating the given transformation
4165 >     * of all keys using the given reducer to combine values, and
4166 >     * the given basis as an identity value.
4167 >     *
4168 >     * @param transformer a function returning the transformation
4169 >     * for an element
4170 >     * @param basis the identity (initial default value) for the reduction
4171 >     * @param reducer a commutative associative combining function
4172 >     * @return the result of accumulating the given transformation
4173 >     * of all keys
4174 >     */
4175 >    public int reduceKeysToIntInParallel
4176 >        (ToIntFunction<? super K> transformer,
4177 >         int basis,
4178 >         IntBinaryOperator reducer) {
4179 >        return ForkJoinTasks.reduceKeysToInt
4180 >            (this, transformer, basis, reducer).invoke();
4181 >    }
4182 >
4183 >    /**
4184 >     * Performs the given action for each value.
4185 >     *
4186 >     * @param action the action
4187 >     */
4188 >    public void forEachValueInParallel(Consumer<? super V> action) {
4189 >        ForkJoinTasks.forEachValue
4190 >            (this, action).invoke();
4191 >    }
4192 >
4193 >    /**
4194 >     * Performs the given action for each non-null transformation
4195 >     * of each value.
4196 >     *
4197 >     * @param transformer a function returning the transformation
4198 >     * for an element, or null if there is no transformation (in
4199 >     * which case the action is not applied)
4200 >     * @param action the action
4201 >     */
4202 >    public <U> void forEachValueInParallel
4203 >        (Function<? super V, ? extends U> transformer,
4204 >         Consumer<? super U> action) {
4205 >        ForkJoinTasks.forEachValue
4206 >            (this, transformer, action).invoke();
4207 >    }
4208 >
4209 >    /**
4210 >     * Returns a non-null result from applying the given search
4211 >     * function on each value, or null if none.  Upon success,
4212 >     * further element processing is suppressed and the results of
4213 >     * any other parallel invocations of the search function are
4214 >     * ignored.
4215 >     *
4216 >     * @param searchFunction a function returning a non-null
4217 >     * result on success, else null
4218 >     * @return a non-null result from applying the given search
4219 >     * function on each value, or null if none
4220 >     */
4221 >    public <U> U searchValuesInParallel
4222 >        (Function<? super V, ? extends U> searchFunction) {
4223 >        return ForkJoinTasks.searchValues
4224 >            (this, searchFunction).invoke();
4225 >    }
4226 >
4227 >    /**
4228 >     * Returns the result of accumulating all values using the
4229 >     * given reducer to combine values, or null if none.
4230 >     *
4231 >     * @param reducer a commutative associative combining function
4232 >     * @return the result of accumulating all values
4233 >     */
4234 >    public V reduceValuesInParallel
4235 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
4236 >        return ForkJoinTasks.reduceValues
4237 >            (this, reducer).invoke();
4238 >    }
4239 >
4240 >    /**
4241 >     * Returns the result of accumulating the given transformation
4242 >     * of all values using the given reducer to combine values, or
4243 >     * null if none.
4244 >     *
4245 >     * @param transformer a function returning the transformation
4246 >     * for an element, or null if there is no transformation (in
4247 >     * which case it is not combined)
4248 >     * @param reducer a commutative associative combining function
4249 >     * @return the result of accumulating the given transformation
4250 >     * of all values
4251 >     */
4252 >    public <U> U reduceValuesInParallel
4253 >        (Function<? super V, ? extends U> transformer,
4254 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4255 >        return ForkJoinTasks.reduceValues
4256 >            (this, transformer, reducer).invoke();
4257 >    }
4258 >
4259 >    /**
4260 >     * Returns the result of accumulating the given transformation
4261 >     * of all values using the given reducer to combine values,
4262 >     * and the given basis as an identity value.
4263 >     *
4264 >     * @param transformer a function returning the transformation
4265 >     * for an element
4266 >     * @param basis the identity (initial default value) for the reduction
4267 >     * @param reducer a commutative associative combining function
4268 >     * @return the result of accumulating the given transformation
4269 >     * of all values
4270 >     */
4271 >    public double reduceValuesToDoubleInParallel
4272 >        (ToDoubleFunction<? super V> transformer,
4273 >         double basis,
4274 >         DoubleBinaryOperator reducer) {
4275 >        return ForkJoinTasks.reduceValuesToDouble
4276 >            (this, transformer, basis, reducer).invoke();
4277 >    }
4278 >
4279 >    /**
4280 >     * Returns the result of accumulating the given transformation
4281 >     * of all values using the given reducer to combine values,
4282 >     * and the given basis as an identity value.
4283 >     *
4284 >     * @param transformer a function returning the transformation
4285 >     * for an element
4286 >     * @param basis the identity (initial default value) for the reduction
4287 >     * @param reducer a commutative associative combining function
4288 >     * @return the result of accumulating the given transformation
4289 >     * of all values
4290 >     */
4291 >    public long reduceValuesToLongInParallel
4292 >        (ToLongFunction<? super V> transformer,
4293 >         long basis,
4294 >         LongBinaryOperator reducer) {
4295 >        return ForkJoinTasks.reduceValuesToLong
4296 >            (this, transformer, basis, reducer).invoke();
4297 >    }
4298 >
4299 >    /**
4300 >     * Returns the result of accumulating the given transformation
4301 >     * of all values using the given reducer to combine values,
4302 >     * and the given basis as an identity value.
4303 >     *
4304 >     * @param transformer a function returning the transformation
4305 >     * for an element
4306 >     * @param basis the identity (initial default value) for the reduction
4307 >     * @param reducer a commutative associative combining function
4308 >     * @return the result of accumulating the given transformation
4309 >     * of all values
4310 >     */
4311 >    public int reduceValuesToIntInParallel
4312 >        (ToIntFunction<? super V> transformer,
4313 >         int basis,
4314 >         IntBinaryOperator reducer) {
4315 >        return ForkJoinTasks.reduceValuesToInt
4316 >            (this, transformer, basis, reducer).invoke();
4317 >    }
4318 >
4319 >    /**
4320 >     * Performs the given action for each entry.
4321 >     *
4322 >     * @param action the action
4323 >     */
4324 >    public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4325 >        ForkJoinTasks.forEachEntry
4326 >            (this, action).invoke();
4327 >    }
4328 >
4329 >    /**
4330 >     * Performs the given action for each non-null transformation
4331 >     * of each entry.
4332 >     *
4333 >     * @param transformer a function returning the transformation
4334 >     * for an element, or null if there is no transformation (in
4335 >     * which case the action is not applied)
4336 >     * @param action the action
4337 >     */
4338 >    public <U> void forEachEntryInParallel
4339 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4340 >         Consumer<? super U> action) {
4341 >        ForkJoinTasks.forEachEntry
4342 >            (this, transformer, action).invoke();
4343 >    }
4344 >
4345 >    /**
4346 >     * Returns a non-null result from applying the given search
4347 >     * function on each entry, or null if none.  Upon success,
4348 >     * further element processing is suppressed and the results of
4349 >     * any other parallel invocations of the search function are
4350 >     * ignored.
4351 >     *
4352 >     * @param searchFunction a function returning a non-null
4353 >     * result on success, else null
4354 >     * @return a non-null result from applying the given search
4355 >     * function on each entry, or null if none
4356 >     */
4357 >    public <U> U searchEntriesInParallel
4358 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4359 >        return ForkJoinTasks.searchEntries
4360 >            (this, searchFunction).invoke();
4361 >    }
4362 >
4363 >    /**
4364 >     * Returns the result of accumulating all entries using the
4365 >     * given reducer to combine values, or null if none.
4366 >     *
4367 >     * @param reducer a commutative associative combining function
4368 >     * @return the result of accumulating all entries
4369 >     */
4370 >    public Map.Entry<K,V> reduceEntriesInParallel
4371 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4372 >        return ForkJoinTasks.reduceEntries
4373 >            (this, reducer).invoke();
4374 >    }
4375 >
4376 >    /**
4377 >     * Returns the result of accumulating the given transformation
4378 >     * of all entries using the given reducer to combine values,
4379 >     * or null if none.
4380 >     *
4381 >     * @param transformer a function returning the transformation
4382 >     * for an element, or null if there is no transformation (in
4383 >     * which case it is not combined)
4384 >     * @param reducer a commutative associative combining function
4385 >     * @return the result of accumulating the given transformation
4386 >     * of all entries
4387 >     */
4388 >    public <U> U reduceEntriesInParallel
4389 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4390 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4391 >        return ForkJoinTasks.reduceEntries
4392 >            (this, transformer, reducer).invoke();
4393 >    }
4394 >
4395 >    /**
4396 >     * Returns the result of accumulating the given transformation
4397 >     * of all entries using the given reducer to combine values,
4398 >     * and the given basis as an identity value.
4399 >     *
4400 >     * @param transformer a function returning the transformation
4401 >     * for an element
4402 >     * @param basis the identity (initial default value) for the reduction
4403 >     * @param reducer a commutative associative combining function
4404 >     * @return the result of accumulating the given transformation
4405 >     * of all entries
4406 >     */
4407 >    public double reduceEntriesToDoubleInParallel
4408 >        (ToDoubleFunction<Map.Entry<K,V>> transformer,
4409 >         double basis,
4410 >         DoubleBinaryOperator reducer) {
4411 >        return ForkJoinTasks.reduceEntriesToDouble
4412 >            (this, transformer, basis, reducer).invoke();
4413 >    }
4414 >
4415 >    /**
4416 >     * Returns the result of accumulating the given transformation
4417 >     * of all entries using the given reducer to combine values,
4418 >     * and the given basis as an identity value.
4419 >     *
4420 >     * @param transformer a function returning the transformation
4421 >     * for an element
4422 >     * @param basis the identity (initial default value) for the reduction
4423 >     * @param reducer a commutative associative combining function
4424 >     * @return the result of accumulating the given transformation
4425 >     * of all entries
4426 >     */
4427 >    public long reduceEntriesToLongInParallel
4428 >        (ToLongFunction<Map.Entry<K,V>> transformer,
4429 >         long basis,
4430 >         LongBinaryOperator reducer) {
4431 >        return ForkJoinTasks.reduceEntriesToLong
4432 >            (this, transformer, basis, reducer).invoke();
4433 >    }
4434 >
4435 >    /**
4436 >     * Returns the result of accumulating the given transformation
4437 >     * of all entries using the given reducer to combine values,
4438 >     * and the given basis as an identity value.
4439 >     *
4440 >     * @param transformer a function returning the transformation
4441 >     * for an element
4442 >     * @param basis the identity (initial default value) for the reduction
4443 >     * @param reducer a commutative associative combining function
4444 >     * @return the result of accumulating the given transformation
4445 >     * of all entries
4446 >     */
4447 >    public int reduceEntriesToIntInParallel
4448 >        (ToIntFunction<Map.Entry<K,V>> transformer,
4449 >         int basis,
4450 >         IntBinaryOperator reducer) {
4451 >        return ForkJoinTasks.reduceEntriesToInt
4452 >            (this, transformer, basis, reducer).invoke();
4453 >    }
4454 >
4455 >
4456 >    /* ----------------Views -------------- */
4457 >
4458 >    /**
4459 >     * Base class for views.
4460 >     */
4461 >    abstract static class CHMView<K, V> implements java.io.Serializable {
4462 >        private static final long serialVersionUID = 7249069246763182397L;
4463 >        final ConcurrentHashMap<K, V> map;
4464 >        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
4465 >
4466 >        /**
4467 >         * Returns the map backing this view.
4468 >         *
4469 >         * @return the map backing this view
4470 >         */
4471 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4472 >
4473 >        public final int size()                 { return map.size(); }
4474 >        public final boolean isEmpty()          { return map.isEmpty(); }
4475 >        public final void clear()               { map.clear(); }
4476 >
4477 >        // implementations below rely on concrete classes supplying these
4478 >        public abstract Iterator<?> iterator();
4479 >        public abstract boolean contains(Object o);
4480 >        public abstract boolean remove(Object o);
4481 >
4482 >        private static final String oomeMsg = "Required array size too large";
4483 >
4484 >        public final Object[] toArray() {
4485 >            long sz = map.mappingCount();
4486 >            if (sz > (long)(MAX_ARRAY_SIZE))
4487 >                throw new OutOfMemoryError(oomeMsg);
4488 >            int n = (int)sz;
4489 >            Object[] r = new Object[n];
4490 >            int i = 0;
4491 >            Iterator<?> it = iterator();
4492 >            while (it.hasNext()) {
4493 >                if (i == n) {
4494 >                    if (n >= MAX_ARRAY_SIZE)
4495 >                        throw new OutOfMemoryError(oomeMsg);
4496 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4497 >                        n = MAX_ARRAY_SIZE;
4498 >                    else
4499 >                        n += (n >>> 1) + 1;
4500 >                    r = Arrays.copyOf(r, n);
4501 >                }
4502 >                r[i++] = it.next();
4503 >            }
4504 >            return (i == n) ? r : Arrays.copyOf(r, i);
4505 >        }
4506 >
4507 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4508 >            long sz = map.mappingCount();
4509 >            if (sz > (long)(MAX_ARRAY_SIZE))
4510 >                throw new OutOfMemoryError(oomeMsg);
4511 >            int m = (int)sz;
4512 >            T[] r = (a.length >= m) ? a :
4513 >                (T[])java.lang.reflect.Array
4514 >                .newInstance(a.getClass().getComponentType(), m);
4515 >            int n = r.length;
4516 >            int i = 0;
4517 >            Iterator<?> it = iterator();
4518 >            while (it.hasNext()) {
4519 >                if (i == n) {
4520 >                    if (n >= MAX_ARRAY_SIZE)
4521 >                        throw new OutOfMemoryError(oomeMsg);
4522 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4523 >                        n = MAX_ARRAY_SIZE;
4524 >                    else
4525 >                        n += (n >>> 1) + 1;
4526 >                    r = Arrays.copyOf(r, n);
4527 >                }
4528 >                r[i++] = (T)it.next();
4529 >            }
4530 >            if (a == r && i < n) {
4531 >                r[i] = null; // null-terminate
4532 >                return r;
4533 >            }
4534 >            return (i == n) ? r : Arrays.copyOf(r, i);
4535 >        }
4536 >
4537 >        public final int hashCode() {
4538 >            int h = 0;
4539 >            for (Iterator<?> it = iterator(); it.hasNext();)
4540 >                h += it.next().hashCode();
4541 >            return h;
4542 >        }
4543 >
4544 >        public final String toString() {
4545 >            StringBuilder sb = new StringBuilder();
4546 >            sb.append('[');
4547 >            Iterator<?> it = iterator();
4548 >            if (it.hasNext()) {
4549 >                for (;;) {
4550 >                    Object e = it.next();
4551 >                    sb.append(e == this ? "(this Collection)" : e);
4552 >                    if (!it.hasNext())
4553 >                        break;
4554 >                    sb.append(',').append(' ');
4555 >                }
4556 >            }
4557 >            return sb.append(']').toString();
4558 >        }
4559 >
4560 >        public final boolean containsAll(Collection<?> c) {
4561 >            if (c != this) {
4562 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4563 >                    Object e = it.next();
4564 >                    if (e == null || !contains(e))
4565 >                        return false;
4566 >                }
4567 >            }
4568 >            return true;
4569 >        }
4570 >
4571 >        public final boolean removeAll(Collection<?> c) {
4572 >            boolean modified = false;
4573 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4574 >                if (c.contains(it.next())) {
4575 >                    it.remove();
4576 >                    modified = true;
4577 >                }
4578 >            }
4579 >            return modified;
4580 >        }
4581 >
4582 >        public final boolean retainAll(Collection<?> c) {
4583 >            boolean modified = false;
4584 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4585 >                if (!c.contains(it.next())) {
4586 >                    it.remove();
4587 >                    modified = true;
4588 >                }
4589 >            }
4590 >            return modified;
4591 >        }
4592 >
4593 >    }
4594 >
4595 >    /**
4596 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4597 >     * which additions may optionally be enabled by mapping to a
4598 >     * common value.  This class cannot be directly instantiated. See
4599 >     * {@link #keySet()}, {@link #keySet(Object)}, {@link #newKeySet()},
4600 >     * {@link #newKeySet(int)}.
4601 >     */
4602 >    public static class KeySetView<K,V> extends CHMView<K,V>
4603 >        implements Set<K>, java.io.Serializable {
4604 >        private static final long serialVersionUID = 7249069246763182397L;
4605 >        private final V value;
4606 >        KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
4607 >            super(map);
4608 >            this.value = value;
4609 >        }
4610 >
4611 >        /**
4612 >         * Returns the default mapped value for additions,
4613 >         * or {@code null} if additions are not supported.
4614 >         *
4615 >         * @return the default mapped value for additions, or {@code null}
4616 >         * if not supported
4617 >         */
4618 >        public V getMappedValue() { return value; }
4619 >
4620 >        // implement Set API
4621 >
4622 >        public boolean contains(Object o) { return map.containsKey(o); }
4623 >        public boolean remove(Object o)   { return map.remove(o) != null; }
4624 >
4625 >        /**
4626 >         * Returns a "weakly consistent" iterator that will never
4627 >         * throw {@link ConcurrentModificationException}, and
4628 >         * guarantees to traverse elements as they existed upon
4629 >         * construction of the iterator, and may (but is not
4630 >         * guaranteed to) reflect any modifications subsequent to
4631 >         * construction.
4632 >         *
4633 >         * @return an iterator over the keys of this map
4634 >         */
4635 >        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4636 >        public boolean add(K e) {
4637 >            V v;
4638 >            if ((v = value) == null)
4639 >                throw new UnsupportedOperationException();
4640 >            if (e == null)
4641 >                throw new NullPointerException();
4642 >            return map.internalPut(e, v, true) == null;
4643 >        }
4644 >        public boolean addAll(Collection<? extends K> c) {
4645 >            boolean added = false;
4646 >            V v;
4647 >            if ((v = value) == null)
4648 >                throw new UnsupportedOperationException();
4649 >            for (K e : c) {
4650 >                if (e == null)
4651 >                    throw new NullPointerException();
4652 >                if (map.internalPut(e, v, true) == null)
4653 >                    added = true;
4654 >            }
4655 >            return added;
4656 >        }
4657 >        public boolean equals(Object o) {
4658 >            Set<?> c;
4659 >            return ((o instanceof Set) &&
4660 >                    ((c = (Set<?>)o) == this ||
4661 >                     (containsAll(c) && c.containsAll(this))));
4662 >        }
4663 >
4664 >        public Stream<K> stream() {
4665 >            return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4666 >        }
4667 >        public Stream<K> parallelStream() {
4668 >            return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4669 >                                          0);
4670 >        }
4671 >    }
4672 >
4673 >    /**
4674 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4675 >     * values, in which additions are disabled. This class cannot be
4676 >     * directly instantiated. See {@link #values},
4677 >     *
4678 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4679 >     * that will never throw {@link ConcurrentModificationException},
4680 >     * and guarantees to traverse elements as they existed upon
4681 >     * construction of the iterator, and may (but is not guaranteed to)
4682 >     * reflect any modifications subsequent to construction.
4683 >     */
4684 >    public static final class ValuesView<K,V> extends CHMView<K,V>
4685 >        implements Collection<V> {
4686 >        private static final long serialVersionUID = 2249069246763182397L;
4687 >        ValuesView(ConcurrentHashMap<K, V> map)   { super(map); }
4688 >        public final boolean contains(Object o) { return map.containsValue(o); }
4689 >        public final boolean remove(Object o) {
4690 >            if (o != null) {
4691 >                Iterator<V> it = new ValueIterator<K,V>(map);
4692 >                while (it.hasNext()) {
4693 >                    if (o.equals(it.next())) {
4694 >                        it.remove();
4695 >                        return true;
4696                      }
4697                  }
1246            } finally {
1247                seg.unlock();
4698              }
4699 +            return false;
4700          }
4701 <        s.writeObject(null);
4702 <        s.writeObject(null);
4701 >
4702 >        /**
4703 >         * Returns a "weakly consistent" iterator that will never
4704 >         * throw {@link ConcurrentModificationException}, and
4705 >         * guarantees to traverse elements as they existed upon
4706 >         * construction of the iterator, and may (but is not
4707 >         * guaranteed to) reflect any modifications subsequent to
4708 >         * construction.
4709 >         *
4710 >         * @return an iterator over the values of this map
4711 >         */
4712 >        public final Iterator<V> iterator() {
4713 >            return new ValueIterator<K,V>(map);
4714 >        }
4715 >        public final boolean add(V e) {
4716 >            throw new UnsupportedOperationException();
4717 >        }
4718 >        public final boolean addAll(Collection<? extends V> c) {
4719 >            throw new UnsupportedOperationException();
4720 >        }
4721 >
4722 >        public Stream<V> stream() {
4723 >            return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4724 >        }
4725 >
4726 >        public Stream<V> parallelStream() {
4727 >            return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4728 >                                          0);
4729 >        }
4730 >
4731      }
4732  
4733      /**
4734 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
4735 <     * stream (i.e., deserialize it).
4736 <     * @param s the stream
4734 >     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4735 >     * entries.  This class cannot be directly instantiated. See
4736 >     * {@link #entrySet}.
4737       */
4738 <    private void readObject(java.io.ObjectInputStream s)
4739 <        throws IOException, ClassNotFoundException  {
4740 <        s.defaultReadObject();
4738 >    public static final class EntrySetView<K,V> extends CHMView<K,V>
4739 >        implements Set<Map.Entry<K,V>> {
4740 >        private static final long serialVersionUID = 2249069246763182397L;
4741 >        EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4742 >        public final boolean contains(Object o) {
4743 >            Object k, v, r; Map.Entry<?,?> e;
4744 >            return ((o instanceof Map.Entry) &&
4745 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4746 >                    (r = map.get(k)) != null &&
4747 >                    (v = e.getValue()) != null &&
4748 >                    (v == r || v.equals(r)));
4749 >        }
4750 >        public final boolean remove(Object o) {
4751 >            Object k, v; Map.Entry<?,?> e;
4752 >            return ((o instanceof Map.Entry) &&
4753 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4754 >                    (v = e.getValue()) != null &&
4755 >                    map.remove(k, v));
4756 >        }
4757 >
4758 >        /**
4759 >         * Returns a "weakly consistent" iterator that will never
4760 >         * throw {@link ConcurrentModificationException}, and
4761 >         * guarantees to traverse elements as they existed upon
4762 >         * construction of the iterator, and may (but is not
4763 >         * guaranteed to) reflect any modifications subsequent to
4764 >         * construction.
4765 >         *
4766 >         * @return an iterator over the entries of this map
4767 >         */
4768 >        public final Iterator<Map.Entry<K,V>> iterator() {
4769 >            return new EntryIterator<K,V>(map);
4770 >        }
4771  
4772 <        // Initialize each segment to be minimally sized, and let grow.
4773 <        for (int i = 0; i < segments.length; ++i) {
4774 <            segments[i].setTable(new HashEntry[1]);
4772 >        public final boolean add(Entry<K,V> e) {
4773 >            K key = e.getKey();
4774 >            V value = e.getValue();
4775 >            if (key == null || value == null)
4776 >                throw new NullPointerException();
4777 >            return map.internalPut(key, value, false) == null;
4778 >        }
4779 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4780 >            boolean added = false;
4781 >            for (Entry<K,V> e : c) {
4782 >                if (add(e))
4783 >                    added = true;
4784 >            }
4785 >            return added;
4786 >        }
4787 >        public boolean equals(Object o) {
4788 >            Set<?> c;
4789 >            return ((o instanceof Set) &&
4790 >                    ((c = (Set<?>)o) == this ||
4791 >                     (containsAll(c) && c.containsAll(this))));
4792          }
4793  
4794 <        // Read the keys and values, and put the mappings in the table
4795 <        for (;;) {
4796 <            K key = (K) s.readObject();
4797 <            V value = (V) s.readObject();
4798 <            if (key == null)
4799 <                break;
4800 <            put(key, value);
4794 >        public Stream<Map.Entry<K,V>> stream() {
4795 >            return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4796 >        }
4797 >
4798 >        public Stream<Map.Entry<K,V>> parallelStream() {
4799 >            return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4800 >                                          0);
4801 >        }
4802 >    }
4803 >
4804 >    // ---------------------------------------------------------------------
4805 >
4806 >    /**
4807 >     * Predefined tasks for performing bulk parallel operations on
4808 >     * ConcurrentHashMaps. These tasks follow the forms and rules used
4809 >     * for bulk operations. Each method has the same name, but returns
4810 >     * a task rather than invoking it. These methods may be useful in
4811 >     * custom applications such as submitting a task without waiting
4812 >     * for completion, using a custom pool, or combining with other
4813 >     * tasks.
4814 >     */
4815 >    public static class ForkJoinTasks {
4816 >        private ForkJoinTasks() {}
4817 >
4818 >        /**
4819 >         * Returns a task that when invoked, performs the given
4820 >         * action for each (key, value)
4821 >         *
4822 >         * @param map the map
4823 >         * @param action the action
4824 >         * @return the task
4825 >         */
4826 >        public static <K,V> ForkJoinTask<Void> forEach
4827 >            (ConcurrentHashMap<K,V> map,
4828 >             BiConsumer<? super K, ? super V> action) {
4829 >            if (action == null) throw new NullPointerException();
4830 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4831 >        }
4832 >
4833 >        /**
4834 >         * Returns a task that when invoked, performs the given
4835 >         * action for each non-null transformation of each (key, value)
4836 >         *
4837 >         * @param map the map
4838 >         * @param transformer a function returning the transformation
4839 >         * for an element, or null if there is no transformation (in
4840 >         * which case the action is not applied)
4841 >         * @param action the action
4842 >         * @return the task
4843 >         */
4844 >        public static <K,V,U> ForkJoinTask<Void> forEach
4845 >            (ConcurrentHashMap<K,V> map,
4846 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4847 >             Consumer<? super U> action) {
4848 >            if (transformer == null || action == null)
4849 >                throw new NullPointerException();
4850 >            return new ForEachTransformedMappingTask<K,V,U>
4851 >                (map, null, -1, transformer, action);
4852 >        }
4853 >
4854 >        /**
4855 >         * Returns a task that when invoked, returns a non-null result
4856 >         * from applying the given search function on each (key,
4857 >         * value), or null if none. Upon success, further element
4858 >         * processing is suppressed and the results of any other
4859 >         * parallel invocations of the search function are ignored.
4860 >         *
4861 >         * @param map the map
4862 >         * @param searchFunction a function returning a non-null
4863 >         * result on success, else null
4864 >         * @return the task
4865 >         */
4866 >        public static <K,V,U> ForkJoinTask<U> search
4867 >            (ConcurrentHashMap<K,V> map,
4868 >             BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4869 >            if (searchFunction == null) throw new NullPointerException();
4870 >            return new SearchMappingsTask<K,V,U>
4871 >                (map, null, -1, searchFunction,
4872 >                 new AtomicReference<U>());
4873 >        }
4874 >
4875 >        /**
4876 >         * Returns a task that when invoked, returns the result of
4877 >         * accumulating the given transformation of all (key, value) pairs
4878 >         * using the given reducer to combine values, or null if none.
4879 >         *
4880 >         * @param map the map
4881 >         * @param transformer a function returning the transformation
4882 >         * for an element, or null if there is no transformation (in
4883 >         * which case it is not combined)
4884 >         * @param reducer a commutative associative combining function
4885 >         * @return the task
4886 >         */
4887 >        public static <K,V,U> ForkJoinTask<U> reduce
4888 >            (ConcurrentHashMap<K,V> map,
4889 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4890 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
4891 >            if (transformer == null || reducer == null)
4892 >                throw new NullPointerException();
4893 >            return new MapReduceMappingsTask<K,V,U>
4894 >                (map, null, -1, null, transformer, reducer);
4895 >        }
4896 >
4897 >        /**
4898 >         * Returns a task that when invoked, returns the result of
4899 >         * accumulating the given transformation of all (key, value) pairs
4900 >         * using the given reducer to combine values, and the given
4901 >         * basis as an identity value.
4902 >         *
4903 >         * @param map the map
4904 >         * @param transformer a function returning the transformation
4905 >         * for an element
4906 >         * @param basis the identity (initial default value) for the reduction
4907 >         * @param reducer a commutative associative combining function
4908 >         * @return the task
4909 >         */
4910 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
4911 >            (ConcurrentHashMap<K,V> map,
4912 >             ToDoubleBiFunction<? super K, ? super V> transformer,
4913 >             double basis,
4914 >             DoubleBinaryOperator reducer) {
4915 >            if (transformer == null || reducer == null)
4916 >                throw new NullPointerException();
4917 >            return new MapReduceMappingsToDoubleTask<K,V>
4918 >                (map, null, -1, null, transformer, basis, reducer);
4919 >        }
4920 >
4921 >        /**
4922 >         * Returns a task that when invoked, returns the result of
4923 >         * accumulating the given transformation of all (key, value) pairs
4924 >         * using the given reducer to combine values, and the given
4925 >         * basis as an identity value.
4926 >         *
4927 >         * @param map the map
4928 >         * @param transformer a function returning the transformation
4929 >         * for an element
4930 >         * @param basis the identity (initial default value) for the reduction
4931 >         * @param reducer a commutative associative combining function
4932 >         * @return the task
4933 >         */
4934 >        public static <K,V> ForkJoinTask<Long> reduceToLong
4935 >            (ConcurrentHashMap<K,V> map,
4936 >             ToLongBiFunction<? super K, ? super V> transformer,
4937 >             long basis,
4938 >             LongBinaryOperator reducer) {
4939 >            if (transformer == null || reducer == null)
4940 >                throw new NullPointerException();
4941 >            return new MapReduceMappingsToLongTask<K,V>
4942 >                (map, null, -1, null, transformer, basis, reducer);
4943 >        }
4944 >
4945 >        /**
4946 >         * Returns a task that when invoked, returns the result of
4947 >         * accumulating the given transformation of all (key, value) pairs
4948 >         * using the given reducer to combine values, and the given
4949 >         * basis as an identity value.
4950 >         *
4951 >         * @param map the map
4952 >         * @param transformer a function returning the transformation
4953 >         * for an element
4954 >         * @param basis the identity (initial default value) for the reduction
4955 >         * @param reducer a commutative associative combining function
4956 >         * @return the task
4957 >         */
4958 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
4959 >            (ConcurrentHashMap<K,V> map,
4960 >             ToIntBiFunction<? super K, ? super V> transformer,
4961 >             int basis,
4962 >             IntBinaryOperator reducer) {
4963 >            if (transformer == null || reducer == null)
4964 >                throw new NullPointerException();
4965 >            return new MapReduceMappingsToIntTask<K,V>
4966 >                (map, null, -1, null, transformer, basis, reducer);
4967 >        }
4968 >
4969 >        /**
4970 >         * Returns a task that when invoked, performs the given action
4971 >         * for each key.
4972 >         *
4973 >         * @param map the map
4974 >         * @param action the action
4975 >         * @return the task
4976 >         */
4977 >        public static <K,V> ForkJoinTask<Void> forEachKey
4978 >            (ConcurrentHashMap<K,V> map,
4979 >             Consumer<? super K> action) {
4980 >            if (action == null) throw new NullPointerException();
4981 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
4982 >        }
4983 >
4984 >        /**
4985 >         * Returns a task that when invoked, performs the given action
4986 >         * for each non-null transformation of each key.
4987 >         *
4988 >         * @param map the map
4989 >         * @param transformer a function returning the transformation
4990 >         * for an element, or null if there is no transformation (in
4991 >         * which case the action is not applied)
4992 >         * @param action the action
4993 >         * @return the task
4994 >         */
4995 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
4996 >            (ConcurrentHashMap<K,V> map,
4997 >             Function<? super K, ? extends U> transformer,
4998 >             Consumer<? super U> action) {
4999 >            if (transformer == null || action == null)
5000 >                throw new NullPointerException();
5001 >            return new ForEachTransformedKeyTask<K,V,U>
5002 >                (map, null, -1, transformer, action);
5003 >        }
5004 >
5005 >        /**
5006 >         * Returns a task that when invoked, returns a non-null result
5007 >         * from applying the given search function on each key, or
5008 >         * null if none.  Upon success, further element processing is
5009 >         * suppressed and the results of any other parallel
5010 >         * invocations of the search function are ignored.
5011 >         *
5012 >         * @param map the map
5013 >         * @param searchFunction a function returning a non-null
5014 >         * result on success, else null
5015 >         * @return the task
5016 >         */
5017 >        public static <K,V,U> ForkJoinTask<U> searchKeys
5018 >            (ConcurrentHashMap<K,V> map,
5019 >             Function<? super K, ? extends U> searchFunction) {
5020 >            if (searchFunction == null) throw new NullPointerException();
5021 >            return new SearchKeysTask<K,V,U>
5022 >                (map, null, -1, searchFunction,
5023 >                 new AtomicReference<U>());
5024 >        }
5025 >
5026 >        /**
5027 >         * Returns a task that when invoked, returns the result of
5028 >         * accumulating all keys using the given reducer to combine
5029 >         * values, or null if none.
5030 >         *
5031 >         * @param map the map
5032 >         * @param reducer a commutative associative combining function
5033 >         * @return the task
5034 >         */
5035 >        public static <K,V> ForkJoinTask<K> reduceKeys
5036 >            (ConcurrentHashMap<K,V> map,
5037 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5038 >            if (reducer == null) throw new NullPointerException();
5039 >            return new ReduceKeysTask<K,V>
5040 >                (map, null, -1, null, reducer);
5041 >        }
5042 >
5043 >        /**
5044 >         * Returns a task that when invoked, returns the result of
5045 >         * accumulating the given transformation of all keys using the given
5046 >         * reducer to combine values, or null if none.
5047 >         *
5048 >         * @param map the map
5049 >         * @param transformer a function returning the transformation
5050 >         * for an element, or null if there is no transformation (in
5051 >         * which case it is not combined)
5052 >         * @param reducer a commutative associative combining function
5053 >         * @return the task
5054 >         */
5055 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
5056 >            (ConcurrentHashMap<K,V> map,
5057 >             Function<? super K, ? extends U> transformer,
5058 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5059 >            if (transformer == null || reducer == null)
5060 >                throw new NullPointerException();
5061 >            return new MapReduceKeysTask<K,V,U>
5062 >                (map, null, -1, null, transformer, reducer);
5063 >        }
5064 >
5065 >        /**
5066 >         * Returns a task that when invoked, returns the result of
5067 >         * accumulating the given transformation of all keys using the given
5068 >         * reducer to combine values, and the given basis as an
5069 >         * identity value.
5070 >         *
5071 >         * @param map the map
5072 >         * @param transformer a function returning the transformation
5073 >         * for an element
5074 >         * @param basis the identity (initial default value) for the reduction
5075 >         * @param reducer a commutative associative combining function
5076 >         * @return the task
5077 >         */
5078 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5079 >            (ConcurrentHashMap<K,V> map,
5080 >             ToDoubleFunction<? super K> transformer,
5081 >             double basis,
5082 >             DoubleBinaryOperator reducer) {
5083 >            if (transformer == null || reducer == null)
5084 >                throw new NullPointerException();
5085 >            return new MapReduceKeysToDoubleTask<K,V>
5086 >                (map, null, -1, null, transformer, basis, reducer);
5087 >        }
5088 >
5089 >        /**
5090 >         * Returns a task that when invoked, returns the result of
5091 >         * accumulating the given transformation of all keys using the given
5092 >         * reducer to combine values, and the given basis as an
5093 >         * identity value.
5094 >         *
5095 >         * @param map the map
5096 >         * @param transformer a function returning the transformation
5097 >         * for an element
5098 >         * @param basis the identity (initial default value) for the reduction
5099 >         * @param reducer a commutative associative combining function
5100 >         * @return the task
5101 >         */
5102 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5103 >            (ConcurrentHashMap<K,V> map,
5104 >             ToLongFunction<? super K> transformer,
5105 >             long basis,
5106 >             LongBinaryOperator reducer) {
5107 >            if (transformer == null || reducer == null)
5108 >                throw new NullPointerException();
5109 >            return new MapReduceKeysToLongTask<K,V>
5110 >                (map, null, -1, null, transformer, basis, reducer);
5111 >        }
5112 >
5113 >        /**
5114 >         * Returns a task that when invoked, returns the result of
5115 >         * accumulating the given transformation of all keys using the given
5116 >         * reducer to combine values, and the given basis as an
5117 >         * identity value.
5118 >         *
5119 >         * @param map the map
5120 >         * @param transformer a function returning the transformation
5121 >         * for an element
5122 >         * @param basis the identity (initial default value) for the reduction
5123 >         * @param reducer a commutative associative combining function
5124 >         * @return the task
5125 >         */
5126 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5127 >            (ConcurrentHashMap<K,V> map,
5128 >             ToIntFunction<? super K> transformer,
5129 >             int basis,
5130 >             IntBinaryOperator reducer) {
5131 >            if (transformer == null || reducer == null)
5132 >                throw new NullPointerException();
5133 >            return new MapReduceKeysToIntTask<K,V>
5134 >                (map, null, -1, null, transformer, basis, reducer);
5135 >        }
5136 >
5137 >        /**
5138 >         * Returns a task that when invoked, performs the given action
5139 >         * for each value.
5140 >         *
5141 >         * @param map the map
5142 >         * @param action the action
5143 >         * @return the task
5144 >         */
5145 >        public static <K,V> ForkJoinTask<Void> forEachValue
5146 >            (ConcurrentHashMap<K,V> map,
5147 >             Consumer<? super V> action) {
5148 >            if (action == null) throw new NullPointerException();
5149 >            return new ForEachValueTask<K,V>(map, null, -1, action);
5150 >        }
5151 >
5152 >        /**
5153 >         * Returns a task that when invoked, performs the given action
5154 >         * for each non-null transformation of each value.
5155 >         *
5156 >         * @param map the map
5157 >         * @param transformer a function returning the transformation
5158 >         * for an element, or null if there is no transformation (in
5159 >         * which case the action is not applied)
5160 >         * @param action the action
5161 >         * @return the task
5162 >         */
5163 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
5164 >            (ConcurrentHashMap<K,V> map,
5165 >             Function<? super V, ? extends U> transformer,
5166 >             Consumer<? super U> action) {
5167 >            if (transformer == null || action == null)
5168 >                throw new NullPointerException();
5169 >            return new ForEachTransformedValueTask<K,V,U>
5170 >                (map, null, -1, transformer, action);
5171 >        }
5172 >
5173 >        /**
5174 >         * Returns a task that when invoked, returns a non-null result
5175 >         * from applying the given search function on each value, or
5176 >         * null if none.  Upon success, further element processing is
5177 >         * suppressed and the results of any other parallel
5178 >         * invocations of the search function are ignored.
5179 >         *
5180 >         * @param map the map
5181 >         * @param searchFunction a function returning a non-null
5182 >         * result on success, else null
5183 >         * @return the task
5184 >         */
5185 >        public static <K,V,U> ForkJoinTask<U> searchValues
5186 >            (ConcurrentHashMap<K,V> map,
5187 >             Function<? super V, ? extends U> searchFunction) {
5188 >            if (searchFunction == null) throw new NullPointerException();
5189 >            return new SearchValuesTask<K,V,U>
5190 >                (map, null, -1, searchFunction,
5191 >                 new AtomicReference<U>());
5192 >        }
5193 >
5194 >        /**
5195 >         * Returns a task that when invoked, returns the result of
5196 >         * accumulating all values using the given reducer to combine
5197 >         * values, or null if none.
5198 >         *
5199 >         * @param map the map
5200 >         * @param reducer a commutative associative combining function
5201 >         * @return the task
5202 >         */
5203 >        public static <K,V> ForkJoinTask<V> reduceValues
5204 >            (ConcurrentHashMap<K,V> map,
5205 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5206 >            if (reducer == null) throw new NullPointerException();
5207 >            return new ReduceValuesTask<K,V>
5208 >                (map, null, -1, null, reducer);
5209 >        }
5210 >
5211 >        /**
5212 >         * Returns a task that when invoked, returns the result of
5213 >         * accumulating the given transformation of all values using the
5214 >         * given reducer to combine values, or null if none.
5215 >         *
5216 >         * @param map the map
5217 >         * @param transformer a function returning the transformation
5218 >         * for an element, or null if there is no transformation (in
5219 >         * which case it is not combined)
5220 >         * @param reducer a commutative associative combining function
5221 >         * @return the task
5222 >         */
5223 >        public static <K,V,U> ForkJoinTask<U> reduceValues
5224 >            (ConcurrentHashMap<K,V> map,
5225 >             Function<? super V, ? extends U> transformer,
5226 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5227 >            if (transformer == null || reducer == null)
5228 >                throw new NullPointerException();
5229 >            return new MapReduceValuesTask<K,V,U>
5230 >                (map, null, -1, null, transformer, reducer);
5231 >        }
5232 >
5233 >        /**
5234 >         * Returns a task that when invoked, returns the result of
5235 >         * accumulating the given transformation of all values using the
5236 >         * given reducer to combine values, and the given basis as an
5237 >         * identity value.
5238 >         *
5239 >         * @param map the map
5240 >         * @param transformer a function returning the transformation
5241 >         * for an element
5242 >         * @param basis the identity (initial default value) for the reduction
5243 >         * @param reducer a commutative associative combining function
5244 >         * @return the task
5245 >         */
5246 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5247 >            (ConcurrentHashMap<K,V> map,
5248 >             ToDoubleFunction<? super V> transformer,
5249 >             double basis,
5250 >             DoubleBinaryOperator reducer) {
5251 >            if (transformer == null || reducer == null)
5252 >                throw new NullPointerException();
5253 >            return new MapReduceValuesToDoubleTask<K,V>
5254 >                (map, null, -1, null, transformer, basis, reducer);
5255 >        }
5256 >
5257 >        /**
5258 >         * Returns a task that when invoked, returns the result of
5259 >         * accumulating the given transformation of all values using the
5260 >         * given reducer to combine values, and the given basis as an
5261 >         * identity value.
5262 >         *
5263 >         * @param map the map
5264 >         * @param transformer a function returning the transformation
5265 >         * for an element
5266 >         * @param basis the identity (initial default value) for the reduction
5267 >         * @param reducer a commutative associative combining function
5268 >         * @return the task
5269 >         */
5270 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5271 >            (ConcurrentHashMap<K,V> map,
5272 >             ToLongFunction<? super V> transformer,
5273 >             long basis,
5274 >             LongBinaryOperator reducer) {
5275 >            if (transformer == null || reducer == null)
5276 >                throw new NullPointerException();
5277 >            return new MapReduceValuesToLongTask<K,V>
5278 >                (map, null, -1, null, transformer, basis, reducer);
5279 >        }
5280 >
5281 >        /**
5282 >         * Returns a task that when invoked, returns the result of
5283 >         * accumulating the given transformation of all values using the
5284 >         * given reducer to combine values, and the given basis as an
5285 >         * identity value.
5286 >         *
5287 >         * @param map the map
5288 >         * @param transformer a function returning the transformation
5289 >         * for an element
5290 >         * @param basis the identity (initial default value) for the reduction
5291 >         * @param reducer a commutative associative combining function
5292 >         * @return the task
5293 >         */
5294 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5295 >            (ConcurrentHashMap<K,V> map,
5296 >             ToIntFunction<? super V> transformer,
5297 >             int basis,
5298 >             IntBinaryOperator reducer) {
5299 >            if (transformer == null || reducer == null)
5300 >                throw new NullPointerException();
5301 >            return new MapReduceValuesToIntTask<K,V>
5302 >                (map, null, -1, null, transformer, basis, reducer);
5303 >        }
5304 >
5305 >        /**
5306 >         * Returns a task that when invoked, perform the given action
5307 >         * for each entry.
5308 >         *
5309 >         * @param map the map
5310 >         * @param action the action
5311 >         * @return the task
5312 >         */
5313 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5314 >            (ConcurrentHashMap<K,V> map,
5315 >             Consumer<? super Map.Entry<K,V>> action) {
5316 >            if (action == null) throw new NullPointerException();
5317 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5318 >        }
5319 >
5320 >        /**
5321 >         * Returns a task that when invoked, perform the given action
5322 >         * for each non-null transformation of each entry.
5323 >         *
5324 >         * @param map the map
5325 >         * @param transformer a function returning the transformation
5326 >         * for an element, or null if there is no transformation (in
5327 >         * which case the action is not applied)
5328 >         * @param action the action
5329 >         * @return the task
5330 >         */
5331 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5332 >            (ConcurrentHashMap<K,V> map,
5333 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5334 >             Consumer<? super U> action) {
5335 >            if (transformer == null || action == null)
5336 >                throw new NullPointerException();
5337 >            return new ForEachTransformedEntryTask<K,V,U>
5338 >                (map, null, -1, transformer, action);
5339 >        }
5340 >
5341 >        /**
5342 >         * Returns a task that when invoked, returns a non-null result
5343 >         * from applying the given search function on each entry, or
5344 >         * null if none.  Upon success, further element processing is
5345 >         * suppressed and the results of any other parallel
5346 >         * invocations of the search function are ignored.
5347 >         *
5348 >         * @param map the map
5349 >         * @param searchFunction a function returning a non-null
5350 >         * result on success, else null
5351 >         * @return the task
5352 >         */
5353 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5354 >            (ConcurrentHashMap<K,V> map,
5355 >             Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5356 >            if (searchFunction == null) throw new NullPointerException();
5357 >            return new SearchEntriesTask<K,V,U>
5358 >                (map, null, -1, searchFunction,
5359 >                 new AtomicReference<U>());
5360 >        }
5361 >
5362 >        /**
5363 >         * Returns a task that when invoked, returns the result of
5364 >         * accumulating all entries using the given reducer to combine
5365 >         * values, or null if none.
5366 >         *
5367 >         * @param map the map
5368 >         * @param reducer a commutative associative combining function
5369 >         * @return the task
5370 >         */
5371 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5372 >            (ConcurrentHashMap<K,V> map,
5373 >             BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5374 >            if (reducer == null) throw new NullPointerException();
5375 >            return new ReduceEntriesTask<K,V>
5376 >                (map, null, -1, null, reducer);
5377 >        }
5378 >
5379 >        /**
5380 >         * Returns a task that when invoked, returns the result of
5381 >         * accumulating the given transformation of all entries using the
5382 >         * given reducer to combine values, or null if none.
5383 >         *
5384 >         * @param map the map
5385 >         * @param transformer a function returning the transformation
5386 >         * for an element, or null if there is no transformation (in
5387 >         * which case it is not combined)
5388 >         * @param reducer a commutative associative combining function
5389 >         * @return the task
5390 >         */
5391 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5392 >            (ConcurrentHashMap<K,V> map,
5393 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5394 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5395 >            if (transformer == null || reducer == null)
5396 >                throw new NullPointerException();
5397 >            return new MapReduceEntriesTask<K,V,U>
5398 >                (map, null, -1, null, transformer, reducer);
5399 >        }
5400 >
5401 >        /**
5402 >         * Returns a task that when invoked, returns the result of
5403 >         * accumulating the given transformation of all entries using the
5404 >         * given reducer to combine values, and the given basis as an
5405 >         * identity value.
5406 >         *
5407 >         * @param map the map
5408 >         * @param transformer a function returning the transformation
5409 >         * for an element
5410 >         * @param basis the identity (initial default value) for the reduction
5411 >         * @param reducer a commutative associative combining function
5412 >         * @return the task
5413 >         */
5414 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5415 >            (ConcurrentHashMap<K,V> map,
5416 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5417 >             double basis,
5418 >             DoubleBinaryOperator reducer) {
5419 >            if (transformer == null || reducer == null)
5420 >                throw new NullPointerException();
5421 >            return new MapReduceEntriesToDoubleTask<K,V>
5422 >                (map, null, -1, null, transformer, basis, reducer);
5423 >        }
5424 >
5425 >        /**
5426 >         * Returns a task that when invoked, returns the result of
5427 >         * accumulating the given transformation of all entries using the
5428 >         * given reducer to combine values, and the given basis as an
5429 >         * identity value.
5430 >         *
5431 >         * @param map the map
5432 >         * @param transformer a function returning the transformation
5433 >         * for an element
5434 >         * @param basis the identity (initial default value) for the reduction
5435 >         * @param reducer a commutative associative combining function
5436 >         * @return the task
5437 >         */
5438 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5439 >            (ConcurrentHashMap<K,V> map,
5440 >             ToLongFunction<Map.Entry<K,V>> transformer,
5441 >             long basis,
5442 >             LongBinaryOperator reducer) {
5443 >            if (transformer == null || reducer == null)
5444 >                throw new NullPointerException();
5445 >            return new MapReduceEntriesToLongTask<K,V>
5446 >                (map, null, -1, null, transformer, basis, reducer);
5447 >        }
5448 >
5449 >        /**
5450 >         * Returns a task that when invoked, returns the result of
5451 >         * accumulating the given transformation of all entries using the
5452 >         * given reducer to combine values, and the given basis as an
5453 >         * identity value.
5454 >         *
5455 >         * @param map the map
5456 >         * @param transformer a function returning the transformation
5457 >         * for an element
5458 >         * @param basis the identity (initial default value) for the reduction
5459 >         * @param reducer a commutative associative combining function
5460 >         * @return the task
5461 >         */
5462 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5463 >            (ConcurrentHashMap<K,V> map,
5464 >             ToIntFunction<Map.Entry<K,V>> transformer,
5465 >             int basis,
5466 >             IntBinaryOperator reducer) {
5467 >            if (transformer == null || reducer == null)
5468 >                throw new NullPointerException();
5469 >            return new MapReduceEntriesToIntTask<K,V>
5470 >                (map, null, -1, null, transformer, basis, reducer);
5471 >        }
5472 >    }
5473 >
5474 >    // -------------------------------------------------------
5475 >
5476 >    /*
5477 >     * Task classes. Coded in a regular but ugly format/style to
5478 >     * simplify checks that each variant differs in the right way from
5479 >     * others. The null screenings exist because compilers cannot tell
5480 >     * that we've already null-checked task arguments, so we force
5481 >     * simplest hoisted bypass to help avoid convoluted traps.
5482 >     */
5483 >
5484 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5485 >        extends Traverser<K,V,Void> {
5486 >        final Consumer<? super K> action;
5487 >        ForEachKeyTask
5488 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5489 >             Consumer<? super K> action) {
5490 >            super(m, p, b);
5491 >            this.action = action;
5492 >        }
5493 >        public final void compute() {
5494 >            final Consumer<? super K> action;
5495 >            if ((action = this.action) != null) {
5496 >                for (int b; (b = preSplit()) > 0;)
5497 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5498 >                while (advance() != null)
5499 >                    action.accept(nextKey);
5500 >                propagateCompletion();
5501 >            }
5502 >        }
5503 >    }
5504 >
5505 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5506 >        extends Traverser<K,V,Void> {
5507 >        final Consumer<? super V> action;
5508 >        ForEachValueTask
5509 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5510 >             Consumer<? super V> action) {
5511 >            super(m, p, b);
5512 >            this.action = action;
5513 >        }
5514 >        public final void compute() {
5515 >            final Consumer<? super V> action;
5516 >            if ((action = this.action) != null) {
5517 >                for (int b; (b = preSplit()) > 0;)
5518 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5519 >                V v;
5520 >                while ((v = advance()) != null)
5521 >                    action.accept(v);
5522 >                propagateCompletion();
5523 >            }
5524 >        }
5525 >    }
5526 >
5527 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5528 >        extends Traverser<K,V,Void> {
5529 >        final Consumer<? super Entry<K,V>> action;
5530 >        ForEachEntryTask
5531 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5532 >             Consumer<? super Entry<K,V>> action) {
5533 >            super(m, p, b);
5534 >            this.action = action;
5535 >        }
5536 >        public final void compute() {
5537 >            final Consumer<? super Entry<K,V>> action;
5538 >            if ((action = this.action) != null) {
5539 >                for (int b; (b = preSplit()) > 0;)
5540 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5541 >                V v;
5542 >                while ((v = advance()) != null)
5543 >                    action.accept(entryFor(nextKey, v));
5544 >                propagateCompletion();
5545 >            }
5546 >        }
5547 >    }
5548 >
5549 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5550 >        extends Traverser<K,V,Void> {
5551 >        final BiConsumer<? super K, ? super V> action;
5552 >        ForEachMappingTask
5553 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5554 >             BiConsumer<? super K,? super V> action) {
5555 >            super(m, p, b);
5556 >            this.action = action;
5557 >        }
5558 >        public final void compute() {
5559 >            final BiConsumer<? super K, ? super V> action;
5560 >            if ((action = this.action) != null) {
5561 >                for (int b; (b = preSplit()) > 0;)
5562 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5563 >                V v;
5564 >                while ((v = advance()) != null)
5565 >                    action.accept(nextKey, v);
5566 >                propagateCompletion();
5567 >            }
5568 >        }
5569 >    }
5570 >
5571 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5572 >        extends Traverser<K,V,Void> {
5573 >        final Function<? super K, ? extends U> transformer;
5574 >        final Consumer<? super U> action;
5575 >        ForEachTransformedKeyTask
5576 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5577 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5578 >            super(m, p, b);
5579 >            this.transformer = transformer; this.action = action;
5580 >        }
5581 >        public final void compute() {
5582 >            final Function<? super K, ? extends U> transformer;
5583 >            final Consumer<? super U> action;
5584 >            if ((transformer = this.transformer) != null &&
5585 >                (action = this.action) != null) {
5586 >                for (int b; (b = preSplit()) > 0;)
5587 >                    new ForEachTransformedKeyTask<K,V,U>
5588 >                        (map, this, b, transformer, action).fork();
5589 >                U u;
5590 >                while (advance() != null) {
5591 >                    if ((u = transformer.apply(nextKey)) != null)
5592 >                        action.accept(u);
5593 >                }
5594 >                propagateCompletion();
5595 >            }
5596 >        }
5597 >    }
5598 >
5599 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5600 >        extends Traverser<K,V,Void> {
5601 >        final Function<? super V, ? extends U> transformer;
5602 >        final Consumer<? super U> action;
5603 >        ForEachTransformedValueTask
5604 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5605 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5606 >            super(m, p, b);
5607 >            this.transformer = transformer; this.action = action;
5608 >        }
5609 >        public final void compute() {
5610 >            final Function<? super V, ? extends U> transformer;
5611 >            final Consumer<? super U> action;
5612 >            if ((transformer = this.transformer) != null &&
5613 >                (action = this.action) != null) {
5614 >                for (int b; (b = preSplit()) > 0;)
5615 >                    new ForEachTransformedValueTask<K,V,U>
5616 >                        (map, this, b, transformer, action).fork();
5617 >                V v; U u;
5618 >                while ((v = advance()) != null) {
5619 >                    if ((u = transformer.apply(v)) != null)
5620 >                        action.accept(u);
5621 >                }
5622 >                propagateCompletion();
5623 >            }
5624 >        }
5625 >    }
5626 >
5627 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5628 >        extends Traverser<K,V,Void> {
5629 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5630 >        final Consumer<? super U> action;
5631 >        ForEachTransformedEntryTask
5632 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5633 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5634 >            super(m, p, b);
5635 >            this.transformer = transformer; this.action = action;
5636 >        }
5637 >        public final void compute() {
5638 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5639 >            final Consumer<? super U> action;
5640 >            if ((transformer = this.transformer) != null &&
5641 >                (action = this.action) != null) {
5642 >                for (int b; (b = preSplit()) > 0;)
5643 >                    new ForEachTransformedEntryTask<K,V,U>
5644 >                        (map, this, b, transformer, action).fork();
5645 >                V v; U u;
5646 >                while ((v = advance()) != null) {
5647 >                    if ((u = transformer.apply(entryFor(nextKey,
5648 >                                                        v))) != null)
5649 >                        action.accept(u);
5650 >                }
5651 >                propagateCompletion();
5652 >            }
5653 >        }
5654 >    }
5655 >
5656 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5657 >        extends Traverser<K,V,Void> {
5658 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5659 >        final Consumer<? super U> action;
5660 >        ForEachTransformedMappingTask
5661 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5662 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5663 >             Consumer<? super U> action) {
5664 >            super(m, p, b);
5665 >            this.transformer = transformer; this.action = action;
5666 >        }
5667 >        public final void compute() {
5668 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5669 >            final Consumer<? super U> action;
5670 >            if ((transformer = this.transformer) != null &&
5671 >                (action = this.action) != null) {
5672 >                for (int b; (b = preSplit()) > 0;)
5673 >                    new ForEachTransformedMappingTask<K,V,U>
5674 >                        (map, this, b, transformer, action).fork();
5675 >                V v; U u;
5676 >                while ((v = advance()) != null) {
5677 >                    if ((u = transformer.apply(nextKey, v)) != null)
5678 >                        action.accept(u);
5679 >                }
5680 >                propagateCompletion();
5681 >            }
5682          }
5683      }
5684 +
5685 +    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5686 +        extends Traverser<K,V,U> {
5687 +        final Function<? super K, ? extends U> searchFunction;
5688 +        final AtomicReference<U> result;
5689 +        SearchKeysTask
5690 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5691 +             Function<? super K, ? extends U> searchFunction,
5692 +             AtomicReference<U> result) {
5693 +            super(m, p, b);
5694 +            this.searchFunction = searchFunction; this.result = result;
5695 +        }
5696 +        public final U getRawResult() { return result.get(); }
5697 +        public final void compute() {
5698 +            final Function<? super K, ? extends U> searchFunction;
5699 +            final AtomicReference<U> result;
5700 +            if ((searchFunction = this.searchFunction) != null &&
5701 +                (result = this.result) != null) {
5702 +                for (int b;;) {
5703 +                    if (result.get() != null)
5704 +                        return;
5705 +                    if ((b = preSplit()) <= 0)
5706 +                        break;
5707 +                    new SearchKeysTask<K,V,U>
5708 +                        (map, this, b, searchFunction, result).fork();
5709 +                }
5710 +                while (result.get() == null) {
5711 +                    U u;
5712 +                    if (advance() == null) {
5713 +                        propagateCompletion();
5714 +                        break;
5715 +                    }
5716 +                    if ((u = searchFunction.apply(nextKey)) != null) {
5717 +                        if (result.compareAndSet(null, u))
5718 +                            quietlyCompleteRoot();
5719 +                        break;
5720 +                    }
5721 +                }
5722 +            }
5723 +        }
5724 +    }
5725 +
5726 +    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5727 +        extends Traverser<K,V,U> {
5728 +        final Function<? super V, ? extends U> searchFunction;
5729 +        final AtomicReference<U> result;
5730 +        SearchValuesTask
5731 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5732 +             Function<? super V, ? extends U> searchFunction,
5733 +             AtomicReference<U> result) {
5734 +            super(m, p, b);
5735 +            this.searchFunction = searchFunction; this.result = result;
5736 +        }
5737 +        public final U getRawResult() { return result.get(); }
5738 +        public final void compute() {
5739 +            final Function<? super V, ? extends U> searchFunction;
5740 +            final AtomicReference<U> result;
5741 +            if ((searchFunction = this.searchFunction) != null &&
5742 +                (result = this.result) != null) {
5743 +                for (int b;;) {
5744 +                    if (result.get() != null)
5745 +                        return;
5746 +                    if ((b = preSplit()) <= 0)
5747 +                        break;
5748 +                    new SearchValuesTask<K,V,U>
5749 +                        (map, this, b, searchFunction, result).fork();
5750 +                }
5751 +                while (result.get() == null) {
5752 +                    V v; U u;
5753 +                    if ((v = advance()) == null) {
5754 +                        propagateCompletion();
5755 +                        break;
5756 +                    }
5757 +                    if ((u = searchFunction.apply(v)) != null) {
5758 +                        if (result.compareAndSet(null, u))
5759 +                            quietlyCompleteRoot();
5760 +                        break;
5761 +                    }
5762 +                }
5763 +            }
5764 +        }
5765 +    }
5766 +
5767 +    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5768 +        extends Traverser<K,V,U> {
5769 +        final Function<Entry<K,V>, ? extends U> searchFunction;
5770 +        final AtomicReference<U> result;
5771 +        SearchEntriesTask
5772 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5773 +             Function<Entry<K,V>, ? extends U> searchFunction,
5774 +             AtomicReference<U> result) {
5775 +            super(m, p, b);
5776 +            this.searchFunction = searchFunction; this.result = result;
5777 +        }
5778 +        public final U getRawResult() { return result.get(); }
5779 +        public final void compute() {
5780 +            final Function<Entry<K,V>, ? extends U> searchFunction;
5781 +            final AtomicReference<U> result;
5782 +            if ((searchFunction = this.searchFunction) != null &&
5783 +                (result = this.result) != null) {
5784 +                for (int b;;) {
5785 +                    if (result.get() != null)
5786 +                        return;
5787 +                    if ((b = preSplit()) <= 0)
5788 +                        break;
5789 +                    new SearchEntriesTask<K,V,U>
5790 +                        (map, this, b, searchFunction, result).fork();
5791 +                }
5792 +                while (result.get() == null) {
5793 +                    V v; U u;
5794 +                    if ((v = advance()) == null) {
5795 +                        propagateCompletion();
5796 +                        break;
5797 +                    }
5798 +                    if ((u = searchFunction.apply(entryFor(nextKey,
5799 +                                                           v))) != null) {
5800 +                        if (result.compareAndSet(null, u))
5801 +                            quietlyCompleteRoot();
5802 +                        return;
5803 +                    }
5804 +                }
5805 +            }
5806 +        }
5807 +    }
5808 +
5809 +    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5810 +        extends Traverser<K,V,U> {
5811 +        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5812 +        final AtomicReference<U> result;
5813 +        SearchMappingsTask
5814 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5815 +             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5816 +             AtomicReference<U> result) {
5817 +            super(m, p, b);
5818 +            this.searchFunction = searchFunction; this.result = result;
5819 +        }
5820 +        public final U getRawResult() { return result.get(); }
5821 +        public final void compute() {
5822 +            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5823 +            final AtomicReference<U> result;
5824 +            if ((searchFunction = this.searchFunction) != null &&
5825 +                (result = this.result) != null) {
5826 +                for (int b;;) {
5827 +                    if (result.get() != null)
5828 +                        return;
5829 +                    if ((b = preSplit()) <= 0)
5830 +                        break;
5831 +                    new SearchMappingsTask<K,V,U>
5832 +                        (map, this, b, searchFunction, result).fork();
5833 +                }
5834 +                while (result.get() == null) {
5835 +                    V v; U u;
5836 +                    if ((v = advance()) == null) {
5837 +                        propagateCompletion();
5838 +                        break;
5839 +                    }
5840 +                    if ((u = searchFunction.apply(nextKey, v)) != null) {
5841 +                        if (result.compareAndSet(null, u))
5842 +                            quietlyCompleteRoot();
5843 +                        break;
5844 +                    }
5845 +                }
5846 +            }
5847 +        }
5848 +    }
5849 +
5850 +    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5851 +        extends Traverser<K,V,K> {
5852 +        final BiFunction<? super K, ? super K, ? extends K> reducer;
5853 +        K result;
5854 +        ReduceKeysTask<K,V> rights, nextRight;
5855 +        ReduceKeysTask
5856 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5857 +             ReduceKeysTask<K,V> nextRight,
5858 +             BiFunction<? super K, ? super K, ? extends K> reducer) {
5859 +            super(m, p, b); this.nextRight = nextRight;
5860 +            this.reducer = reducer;
5861 +        }
5862 +        public final K getRawResult() { return result; }
5863 +        @SuppressWarnings("unchecked") public final void compute() {
5864 +            final BiFunction<? super K, ? super K, ? extends K> reducer;
5865 +            if ((reducer = this.reducer) != null) {
5866 +                for (int b; (b = preSplit()) > 0;)
5867 +                    (rights = new ReduceKeysTask<K,V>
5868 +                     (map, this, b, rights, reducer)).fork();
5869 +                K r = null;
5870 +                while (advance() != null) {
5871 +                    K u = nextKey;
5872 +                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5873 +                }
5874 +                result = r;
5875 +                CountedCompleter<?> c;
5876 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5877 +                    ReduceKeysTask<K,V>
5878 +                        t = (ReduceKeysTask<K,V>)c,
5879 +                        s = t.rights;
5880 +                    while (s != null) {
5881 +                        K tr, sr;
5882 +                        if ((sr = s.result) != null)
5883 +                            t.result = (((tr = t.result) == null) ? sr :
5884 +                                        reducer.apply(tr, sr));
5885 +                        s = t.rights = s.nextRight;
5886 +                    }
5887 +                }
5888 +            }
5889 +        }
5890 +    }
5891 +
5892 +    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5893 +        extends Traverser<K,V,V> {
5894 +        final BiFunction<? super V, ? super V, ? extends V> reducer;
5895 +        V result;
5896 +        ReduceValuesTask<K,V> rights, nextRight;
5897 +        ReduceValuesTask
5898 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5899 +             ReduceValuesTask<K,V> nextRight,
5900 +             BiFunction<? super V, ? super V, ? extends V> reducer) {
5901 +            super(m, p, b); this.nextRight = nextRight;
5902 +            this.reducer = reducer;
5903 +        }
5904 +        public final V getRawResult() { return result; }
5905 +        @SuppressWarnings("unchecked") public final void compute() {
5906 +            final BiFunction<? super V, ? super V, ? extends V> reducer;
5907 +            if ((reducer = this.reducer) != null) {
5908 +                for (int b; (b = preSplit()) > 0;)
5909 +                    (rights = new ReduceValuesTask<K,V>
5910 +                     (map, this, b, rights, reducer)).fork();
5911 +                V r = null, v;
5912 +                while ((v = advance()) != null)
5913 +                    r = (r == null) ? v : reducer.apply(r, v);
5914 +                result = r;
5915 +                CountedCompleter<?> c;
5916 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5917 +                    ReduceValuesTask<K,V>
5918 +                        t = (ReduceValuesTask<K,V>)c,
5919 +                        s = t.rights;
5920 +                    while (s != null) {
5921 +                        V tr, sr;
5922 +                        if ((sr = s.result) != null)
5923 +                            t.result = (((tr = t.result) == null) ? sr :
5924 +                                        reducer.apply(tr, sr));
5925 +                        s = t.rights = s.nextRight;
5926 +                    }
5927 +                }
5928 +            }
5929 +        }
5930 +    }
5931 +
5932 +    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5933 +        extends Traverser<K,V,Map.Entry<K,V>> {
5934 +        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5935 +        Map.Entry<K,V> result;
5936 +        ReduceEntriesTask<K,V> rights, nextRight;
5937 +        ReduceEntriesTask
5938 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5939 +             ReduceEntriesTask<K,V> nextRight,
5940 +             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5941 +            super(m, p, b); this.nextRight = nextRight;
5942 +            this.reducer = reducer;
5943 +        }
5944 +        public final Map.Entry<K,V> getRawResult() { return result; }
5945 +        @SuppressWarnings("unchecked") public final void compute() {
5946 +            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5947 +            if ((reducer = this.reducer) != null) {
5948 +                for (int b; (b = preSplit()) > 0;)
5949 +                    (rights = new ReduceEntriesTask<K,V>
5950 +                     (map, this, b, rights, reducer)).fork();
5951 +                Map.Entry<K,V> r = null;
5952 +                V v;
5953 +                while ((v = advance()) != null) {
5954 +                    Map.Entry<K,V> u = entryFor(nextKey, v);
5955 +                    r = (r == null) ? u : reducer.apply(r, u);
5956 +                }
5957 +                result = r;
5958 +                CountedCompleter<?> c;
5959 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5960 +                    ReduceEntriesTask<K,V>
5961 +                        t = (ReduceEntriesTask<K,V>)c,
5962 +                        s = t.rights;
5963 +                    while (s != null) {
5964 +                        Map.Entry<K,V> tr, sr;
5965 +                        if ((sr = s.result) != null)
5966 +                            t.result = (((tr = t.result) == null) ? sr :
5967 +                                        reducer.apply(tr, sr));
5968 +                        s = t.rights = s.nextRight;
5969 +                    }
5970 +                }
5971 +            }
5972 +        }
5973 +    }
5974 +
5975 +    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5976 +        extends Traverser<K,V,U> {
5977 +        final Function<? super K, ? extends U> transformer;
5978 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
5979 +        U result;
5980 +        MapReduceKeysTask<K,V,U> rights, nextRight;
5981 +        MapReduceKeysTask
5982 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5983 +             MapReduceKeysTask<K,V,U> nextRight,
5984 +             Function<? super K, ? extends U> transformer,
5985 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
5986 +            super(m, p, b); this.nextRight = nextRight;
5987 +            this.transformer = transformer;
5988 +            this.reducer = reducer;
5989 +        }
5990 +        public final U getRawResult() { return result; }
5991 +        @SuppressWarnings("unchecked") public final void compute() {
5992 +            final Function<? super K, ? extends U> transformer;
5993 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
5994 +            if ((transformer = this.transformer) != null &&
5995 +                (reducer = this.reducer) != null) {
5996 +                for (int b; (b = preSplit()) > 0;)
5997 +                    (rights = new MapReduceKeysTask<K,V,U>
5998 +                     (map, this, b, rights, transformer, reducer)).fork();
5999 +                U r = null, u;
6000 +                while (advance() != null) {
6001 +                    if ((u = transformer.apply(nextKey)) != null)
6002 +                        r = (r == null) ? u : reducer.apply(r, u);
6003 +                }
6004 +                result = r;
6005 +                CountedCompleter<?> c;
6006 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6007 +                    MapReduceKeysTask<K,V,U>
6008 +                        t = (MapReduceKeysTask<K,V,U>)c,
6009 +                        s = t.rights;
6010 +                    while (s != null) {
6011 +                        U tr, sr;
6012 +                        if ((sr = s.result) != null)
6013 +                            t.result = (((tr = t.result) == null) ? sr :
6014 +                                        reducer.apply(tr, sr));
6015 +                        s = t.rights = s.nextRight;
6016 +                    }
6017 +                }
6018 +            }
6019 +        }
6020 +    }
6021 +
6022 +    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6023 +        extends Traverser<K,V,U> {
6024 +        final Function<? super V, ? extends U> transformer;
6025 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
6026 +        U result;
6027 +        MapReduceValuesTask<K,V,U> rights, nextRight;
6028 +        MapReduceValuesTask
6029 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6030 +             MapReduceValuesTask<K,V,U> nextRight,
6031 +             Function<? super V, ? extends U> transformer,
6032 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
6033 +            super(m, p, b); this.nextRight = nextRight;
6034 +            this.transformer = transformer;
6035 +            this.reducer = reducer;
6036 +        }
6037 +        public final U getRawResult() { return result; }
6038 +        @SuppressWarnings("unchecked") public final void compute() {
6039 +            final Function<? super V, ? extends U> transformer;
6040 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
6041 +            if ((transformer = this.transformer) != null &&
6042 +                (reducer = this.reducer) != null) {
6043 +                for (int b; (b = preSplit()) > 0;)
6044 +                    (rights = new MapReduceValuesTask<K,V,U>
6045 +                     (map, this, b, rights, transformer, reducer)).fork();
6046 +                U r = null, u;
6047 +                V v;
6048 +                while ((v = advance()) != null) {
6049 +                    if ((u = transformer.apply(v)) != null)
6050 +                        r = (r == null) ? u : reducer.apply(r, u);
6051 +                }
6052 +                result = r;
6053 +                CountedCompleter<?> c;
6054 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6055 +                    MapReduceValuesTask<K,V,U>
6056 +                        t = (MapReduceValuesTask<K,V,U>)c,
6057 +                        s = t.rights;
6058 +                    while (s != null) {
6059 +                        U tr, sr;
6060 +                        if ((sr = s.result) != null)
6061 +                            t.result = (((tr = t.result) == null) ? sr :
6062 +                                        reducer.apply(tr, sr));
6063 +                        s = t.rights = s.nextRight;
6064 +                    }
6065 +                }
6066 +            }
6067 +        }
6068 +    }
6069 +
6070 +    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6071 +        extends Traverser<K,V,U> {
6072 +        final Function<Map.Entry<K,V>, ? extends U> transformer;
6073 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
6074 +        U result;
6075 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
6076 +        MapReduceEntriesTask
6077 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6078 +             MapReduceEntriesTask<K,V,U> nextRight,
6079 +             Function<Map.Entry<K,V>, ? extends U> transformer,
6080 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
6081 +            super(m, p, b); this.nextRight = nextRight;
6082 +            this.transformer = transformer;
6083 +            this.reducer = reducer;
6084 +        }
6085 +        public final U getRawResult() { return result; }
6086 +        @SuppressWarnings("unchecked") public final void compute() {
6087 +            final Function<Map.Entry<K,V>, ? extends U> transformer;
6088 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
6089 +            if ((transformer = this.transformer) != null &&
6090 +                (reducer = this.reducer) != null) {
6091 +                for (int b; (b = preSplit()) > 0;)
6092 +                    (rights = new MapReduceEntriesTask<K,V,U>
6093 +                     (map, this, b, rights, transformer, reducer)).fork();
6094 +                U r = null, u;
6095 +                V v;
6096 +                while ((v = advance()) != null) {
6097 +                    if ((u = transformer.apply(entryFor(nextKey,
6098 +                                                        v))) != null)
6099 +                        r = (r == null) ? u : reducer.apply(r, u);
6100 +                }
6101 +                result = r;
6102 +                CountedCompleter<?> c;
6103 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6104 +                    MapReduceEntriesTask<K,V,U>
6105 +                        t = (MapReduceEntriesTask<K,V,U>)c,
6106 +                        s = t.rights;
6107 +                    while (s != null) {
6108 +                        U tr, sr;
6109 +                        if ((sr = s.result) != null)
6110 +                            t.result = (((tr = t.result) == null) ? sr :
6111 +                                        reducer.apply(tr, sr));
6112 +                        s = t.rights = s.nextRight;
6113 +                    }
6114 +                }
6115 +            }
6116 +        }
6117 +    }
6118 +
6119 +    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6120 +        extends Traverser<K,V,U> {
6121 +        final BiFunction<? super K, ? super V, ? extends U> transformer;
6122 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
6123 +        U result;
6124 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
6125 +        MapReduceMappingsTask
6126 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6127 +             MapReduceMappingsTask<K,V,U> nextRight,
6128 +             BiFunction<? super K, ? super V, ? extends U> transformer,
6129 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
6130 +            super(m, p, b); this.nextRight = nextRight;
6131 +            this.transformer = transformer;
6132 +            this.reducer = reducer;
6133 +        }
6134 +        public final U getRawResult() { return result; }
6135 +        @SuppressWarnings("unchecked") public final void compute() {
6136 +            final BiFunction<? super K, ? super V, ? extends U> transformer;
6137 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
6138 +            if ((transformer = this.transformer) != null &&
6139 +                (reducer = this.reducer) != null) {
6140 +                for (int b; (b = preSplit()) > 0;)
6141 +                    (rights = new MapReduceMappingsTask<K,V,U>
6142 +                     (map, this, b, rights, transformer, reducer)).fork();
6143 +                U r = null, u;
6144 +                V v;
6145 +                while ((v = advance()) != null) {
6146 +                    if ((u = transformer.apply(nextKey, v)) != null)
6147 +                        r = (r == null) ? u : reducer.apply(r, u);
6148 +                }
6149 +                result = r;
6150 +                CountedCompleter<?> c;
6151 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6152 +                    MapReduceMappingsTask<K,V,U>
6153 +                        t = (MapReduceMappingsTask<K,V,U>)c,
6154 +                        s = t.rights;
6155 +                    while (s != null) {
6156 +                        U tr, sr;
6157 +                        if ((sr = s.result) != null)
6158 +                            t.result = (((tr = t.result) == null) ? sr :
6159 +                                        reducer.apply(tr, sr));
6160 +                        s = t.rights = s.nextRight;
6161 +                    }
6162 +                }
6163 +            }
6164 +        }
6165 +    }
6166 +
6167 +    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6168 +        extends Traverser<K,V,Double> {
6169 +        final ToDoubleFunction<? super K> transformer;
6170 +        final DoubleBinaryOperator reducer;
6171 +        final double basis;
6172 +        double result;
6173 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6174 +        MapReduceKeysToDoubleTask
6175 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6176 +             MapReduceKeysToDoubleTask<K,V> nextRight,
6177 +             ToDoubleFunction<? super K> transformer,
6178 +             double basis,
6179 +             DoubleBinaryOperator reducer) {
6180 +            super(m, p, b); this.nextRight = nextRight;
6181 +            this.transformer = transformer;
6182 +            this.basis = basis; this.reducer = reducer;
6183 +        }
6184 +        public final Double getRawResult() { return result; }
6185 +        @SuppressWarnings("unchecked") public final void compute() {
6186 +            final ToDoubleFunction<? super K> transformer;
6187 +            final DoubleBinaryOperator reducer;
6188 +            if ((transformer = this.transformer) != null &&
6189 +                (reducer = this.reducer) != null) {
6190 +                double r = this.basis;
6191 +                for (int b; (b = preSplit()) > 0;)
6192 +                    (rights = new MapReduceKeysToDoubleTask<K,V>
6193 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6194 +                while (advance() != null)
6195 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6196 +                result = r;
6197 +                CountedCompleter<?> c;
6198 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6199 +                    MapReduceKeysToDoubleTask<K,V>
6200 +                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6201 +                        s = t.rights;
6202 +                    while (s != null) {
6203 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6204 +                        s = t.rights = s.nextRight;
6205 +                    }
6206 +                }
6207 +            }
6208 +        }
6209 +    }
6210 +
6211 +    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6212 +        extends Traverser<K,V,Double> {
6213 +        final ToDoubleFunction<? super V> transformer;
6214 +        final DoubleBinaryOperator reducer;
6215 +        final double basis;
6216 +        double result;
6217 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6218 +        MapReduceValuesToDoubleTask
6219 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6220 +             MapReduceValuesToDoubleTask<K,V> nextRight,
6221 +             ToDoubleFunction<? super V> transformer,
6222 +             double basis,
6223 +             DoubleBinaryOperator reducer) {
6224 +            super(m, p, b); this.nextRight = nextRight;
6225 +            this.transformer = transformer;
6226 +            this.basis = basis; this.reducer = reducer;
6227 +        }
6228 +        public final Double getRawResult() { return result; }
6229 +        @SuppressWarnings("unchecked") public final void compute() {
6230 +            final ToDoubleFunction<? super V> transformer;
6231 +            final DoubleBinaryOperator reducer;
6232 +            if ((transformer = this.transformer) != null &&
6233 +                (reducer = this.reducer) != null) {
6234 +                double r = this.basis;
6235 +                for (int b; (b = preSplit()) > 0;)
6236 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
6237 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6238 +                V v;
6239 +                while ((v = advance()) != null)
6240 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6241 +                result = r;
6242 +                CountedCompleter<?> c;
6243 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6244 +                    MapReduceValuesToDoubleTask<K,V>
6245 +                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6246 +                        s = t.rights;
6247 +                    while (s != null) {
6248 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6249 +                        s = t.rights = s.nextRight;
6250 +                    }
6251 +                }
6252 +            }
6253 +        }
6254 +    }
6255 +
6256 +    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6257 +        extends Traverser<K,V,Double> {
6258 +        final ToDoubleFunction<Map.Entry<K,V>> transformer;
6259 +        final DoubleBinaryOperator reducer;
6260 +        final double basis;
6261 +        double result;
6262 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6263 +        MapReduceEntriesToDoubleTask
6264 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6265 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
6266 +             ToDoubleFunction<Map.Entry<K,V>> transformer,
6267 +             double basis,
6268 +             DoubleBinaryOperator reducer) {
6269 +            super(m, p, b); this.nextRight = nextRight;
6270 +            this.transformer = transformer;
6271 +            this.basis = basis; this.reducer = reducer;
6272 +        }
6273 +        public final Double getRawResult() { return result; }
6274 +        @SuppressWarnings("unchecked") public final void compute() {
6275 +            final ToDoubleFunction<Map.Entry<K,V>> transformer;
6276 +            final DoubleBinaryOperator reducer;
6277 +            if ((transformer = this.transformer) != null &&
6278 +                (reducer = this.reducer) != null) {
6279 +                double r = this.basis;
6280 +                for (int b; (b = preSplit()) > 0;)
6281 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6282 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6283 +                V v;
6284 +                while ((v = advance()) != null)
6285 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6286 +                                                                    v)));
6287 +                result = r;
6288 +                CountedCompleter<?> c;
6289 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6290 +                    MapReduceEntriesToDoubleTask<K,V>
6291 +                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6292 +                        s = t.rights;
6293 +                    while (s != null) {
6294 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6295 +                        s = t.rights = s.nextRight;
6296 +                    }
6297 +                }
6298 +            }
6299 +        }
6300 +    }
6301 +
6302 +    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6303 +        extends Traverser<K,V,Double> {
6304 +        final ToDoubleBiFunction<? super K, ? super V> transformer;
6305 +        final DoubleBinaryOperator reducer;
6306 +        final double basis;
6307 +        double result;
6308 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6309 +        MapReduceMappingsToDoubleTask
6310 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6311 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
6312 +             ToDoubleBiFunction<? super K, ? super V> transformer,
6313 +             double basis,
6314 +             DoubleBinaryOperator reducer) {
6315 +            super(m, p, b); this.nextRight = nextRight;
6316 +            this.transformer = transformer;
6317 +            this.basis = basis; this.reducer = reducer;
6318 +        }
6319 +        public final Double getRawResult() { return result; }
6320 +        @SuppressWarnings("unchecked") public final void compute() {
6321 +            final ToDoubleBiFunction<? super K, ? super V> transformer;
6322 +            final DoubleBinaryOperator reducer;
6323 +            if ((transformer = this.transformer) != null &&
6324 +                (reducer = this.reducer) != null) {
6325 +                double r = this.basis;
6326 +                for (int b; (b = preSplit()) > 0;)
6327 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6328 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6329 +                V v;
6330 +                while ((v = advance()) != null)
6331 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6332 +                result = r;
6333 +                CountedCompleter<?> c;
6334 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6335 +                    MapReduceMappingsToDoubleTask<K,V>
6336 +                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6337 +                        s = t.rights;
6338 +                    while (s != null) {
6339 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6340 +                        s = t.rights = s.nextRight;
6341 +                    }
6342 +                }
6343 +            }
6344 +        }
6345 +    }
6346 +
6347 +    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6348 +        extends Traverser<K,V,Long> {
6349 +        final ToLongFunction<? super K> transformer;
6350 +        final LongBinaryOperator reducer;
6351 +        final long basis;
6352 +        long result;
6353 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
6354 +        MapReduceKeysToLongTask
6355 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6356 +             MapReduceKeysToLongTask<K,V> nextRight,
6357 +             ToLongFunction<? super K> transformer,
6358 +             long basis,
6359 +             LongBinaryOperator reducer) {
6360 +            super(m, p, b); this.nextRight = nextRight;
6361 +            this.transformer = transformer;
6362 +            this.basis = basis; this.reducer = reducer;
6363 +        }
6364 +        public final Long getRawResult() { return result; }
6365 +        @SuppressWarnings("unchecked") public final void compute() {
6366 +            final ToLongFunction<? super K> transformer;
6367 +            final LongBinaryOperator reducer;
6368 +            if ((transformer = this.transformer) != null &&
6369 +                (reducer = this.reducer) != null) {
6370 +                long r = this.basis;
6371 +                for (int b; (b = preSplit()) > 0;)
6372 +                    (rights = new MapReduceKeysToLongTask<K,V>
6373 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6374 +                while (advance() != null)
6375 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6376 +                result = r;
6377 +                CountedCompleter<?> c;
6378 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6379 +                    MapReduceKeysToLongTask<K,V>
6380 +                        t = (MapReduceKeysToLongTask<K,V>)c,
6381 +                        s = t.rights;
6382 +                    while (s != null) {
6383 +                        t.result = reducer.applyAsLong(t.result, s.result);
6384 +                        s = t.rights = s.nextRight;
6385 +                    }
6386 +                }
6387 +            }
6388 +        }
6389 +    }
6390 +
6391 +    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6392 +        extends Traverser<K,V,Long> {
6393 +        final ToLongFunction<? super V> transformer;
6394 +        final LongBinaryOperator reducer;
6395 +        final long basis;
6396 +        long result;
6397 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
6398 +        MapReduceValuesToLongTask
6399 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6400 +             MapReduceValuesToLongTask<K,V> nextRight,
6401 +             ToLongFunction<? super V> transformer,
6402 +             long basis,
6403 +             LongBinaryOperator reducer) {
6404 +            super(m, p, b); this.nextRight = nextRight;
6405 +            this.transformer = transformer;
6406 +            this.basis = basis; this.reducer = reducer;
6407 +        }
6408 +        public final Long getRawResult() { return result; }
6409 +        @SuppressWarnings("unchecked") public final void compute() {
6410 +            final ToLongFunction<? super V> transformer;
6411 +            final LongBinaryOperator reducer;
6412 +            if ((transformer = this.transformer) != null &&
6413 +                (reducer = this.reducer) != null) {
6414 +                long r = this.basis;
6415 +                for (int b; (b = preSplit()) > 0;)
6416 +                    (rights = new MapReduceValuesToLongTask<K,V>
6417 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6418 +                V v;
6419 +                while ((v = advance()) != null)
6420 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6421 +                result = r;
6422 +                CountedCompleter<?> c;
6423 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6424 +                    MapReduceValuesToLongTask<K,V>
6425 +                        t = (MapReduceValuesToLongTask<K,V>)c,
6426 +                        s = t.rights;
6427 +                    while (s != null) {
6428 +                        t.result = reducer.applyAsLong(t.result, s.result);
6429 +                        s = t.rights = s.nextRight;
6430 +                    }
6431 +                }
6432 +            }
6433 +        }
6434 +    }
6435 +
6436 +    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6437 +        extends Traverser<K,V,Long> {
6438 +        final ToLongFunction<Map.Entry<K,V>> transformer;
6439 +        final LongBinaryOperator reducer;
6440 +        final long basis;
6441 +        long result;
6442 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6443 +        MapReduceEntriesToLongTask
6444 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6445 +             MapReduceEntriesToLongTask<K,V> nextRight,
6446 +             ToLongFunction<Map.Entry<K,V>> transformer,
6447 +             long basis,
6448 +             LongBinaryOperator reducer) {
6449 +            super(m, p, b); this.nextRight = nextRight;
6450 +            this.transformer = transformer;
6451 +            this.basis = basis; this.reducer = reducer;
6452 +        }
6453 +        public final Long getRawResult() { return result; }
6454 +        @SuppressWarnings("unchecked") public final void compute() {
6455 +            final ToLongFunction<Map.Entry<K,V>> transformer;
6456 +            final LongBinaryOperator reducer;
6457 +            if ((transformer = this.transformer) != null &&
6458 +                (reducer = this.reducer) != null) {
6459 +                long r = this.basis;
6460 +                for (int b; (b = preSplit()) > 0;)
6461 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6462 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6463 +                V v;
6464 +                while ((v = advance()) != null)
6465 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6466 +                result = r;
6467 +                CountedCompleter<?> c;
6468 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6469 +                    MapReduceEntriesToLongTask<K,V>
6470 +                        t = (MapReduceEntriesToLongTask<K,V>)c,
6471 +                        s = t.rights;
6472 +                    while (s != null) {
6473 +                        t.result = reducer.applyAsLong(t.result, s.result);
6474 +                        s = t.rights = s.nextRight;
6475 +                    }
6476 +                }
6477 +            }
6478 +        }
6479 +    }
6480 +
6481 +    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6482 +        extends Traverser<K,V,Long> {
6483 +        final ToLongBiFunction<? super K, ? super V> transformer;
6484 +        final LongBinaryOperator reducer;
6485 +        final long basis;
6486 +        long result;
6487 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6488 +        MapReduceMappingsToLongTask
6489 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6490 +             MapReduceMappingsToLongTask<K,V> nextRight,
6491 +             ToLongBiFunction<? super K, ? super V> transformer,
6492 +             long basis,
6493 +             LongBinaryOperator reducer) {
6494 +            super(m, p, b); this.nextRight = nextRight;
6495 +            this.transformer = transformer;
6496 +            this.basis = basis; this.reducer = reducer;
6497 +        }
6498 +        public final Long getRawResult() { return result; }
6499 +        @SuppressWarnings("unchecked") public final void compute() {
6500 +            final ToLongBiFunction<? super K, ? super V> transformer;
6501 +            final LongBinaryOperator reducer;
6502 +            if ((transformer = this.transformer) != null &&
6503 +                (reducer = this.reducer) != null) {
6504 +                long r = this.basis;
6505 +                for (int b; (b = preSplit()) > 0;)
6506 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6507 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6508 +                V v;
6509 +                while ((v = advance()) != null)
6510 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6511 +                result = r;
6512 +                CountedCompleter<?> c;
6513 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6514 +                    MapReduceMappingsToLongTask<K,V>
6515 +                        t = (MapReduceMappingsToLongTask<K,V>)c,
6516 +                        s = t.rights;
6517 +                    while (s != null) {
6518 +                        t.result = reducer.applyAsLong(t.result, s.result);
6519 +                        s = t.rights = s.nextRight;
6520 +                    }
6521 +                }
6522 +            }
6523 +        }
6524 +    }
6525 +
6526 +    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6527 +        extends Traverser<K,V,Integer> {
6528 +        final ToIntFunction<? super K> transformer;
6529 +        final IntBinaryOperator reducer;
6530 +        final int basis;
6531 +        int result;
6532 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6533 +        MapReduceKeysToIntTask
6534 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6535 +             MapReduceKeysToIntTask<K,V> nextRight,
6536 +             ToIntFunction<? super K> transformer,
6537 +             int basis,
6538 +             IntBinaryOperator reducer) {
6539 +            super(m, p, b); this.nextRight = nextRight;
6540 +            this.transformer = transformer;
6541 +            this.basis = basis; this.reducer = reducer;
6542 +        }
6543 +        public final Integer getRawResult() { return result; }
6544 +        @SuppressWarnings("unchecked") public final void compute() {
6545 +            final ToIntFunction<? super K> transformer;
6546 +            final IntBinaryOperator reducer;
6547 +            if ((transformer = this.transformer) != null &&
6548 +                (reducer = this.reducer) != null) {
6549 +                int r = this.basis;
6550 +                for (int b; (b = preSplit()) > 0;)
6551 +                    (rights = new MapReduceKeysToIntTask<K,V>
6552 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6553 +                while (advance() != null)
6554 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6555 +                result = r;
6556 +                CountedCompleter<?> c;
6557 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6558 +                    MapReduceKeysToIntTask<K,V>
6559 +                        t = (MapReduceKeysToIntTask<K,V>)c,
6560 +                        s = t.rights;
6561 +                    while (s != null) {
6562 +                        t.result = reducer.applyAsInt(t.result, s.result);
6563 +                        s = t.rights = s.nextRight;
6564 +                    }
6565 +                }
6566 +            }
6567 +        }
6568 +    }
6569 +
6570 +    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6571 +        extends Traverser<K,V,Integer> {
6572 +        final ToIntFunction<? super V> transformer;
6573 +        final IntBinaryOperator reducer;
6574 +        final int basis;
6575 +        int result;
6576 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6577 +        MapReduceValuesToIntTask
6578 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6579 +             MapReduceValuesToIntTask<K,V> nextRight,
6580 +             ToIntFunction<? super V> transformer,
6581 +             int basis,
6582 +             IntBinaryOperator reducer) {
6583 +            super(m, p, b); this.nextRight = nextRight;
6584 +            this.transformer = transformer;
6585 +            this.basis = basis; this.reducer = reducer;
6586 +        }
6587 +        public final Integer getRawResult() { return result; }
6588 +        @SuppressWarnings("unchecked") public final void compute() {
6589 +            final ToIntFunction<? super V> transformer;
6590 +            final IntBinaryOperator reducer;
6591 +            if ((transformer = this.transformer) != null &&
6592 +                (reducer = this.reducer) != null) {
6593 +                int r = this.basis;
6594 +                for (int b; (b = preSplit()) > 0;)
6595 +                    (rights = new MapReduceValuesToIntTask<K,V>
6596 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6597 +                V v;
6598 +                while ((v = advance()) != null)
6599 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6600 +                result = r;
6601 +                CountedCompleter<?> c;
6602 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6603 +                    MapReduceValuesToIntTask<K,V>
6604 +                        t = (MapReduceValuesToIntTask<K,V>)c,
6605 +                        s = t.rights;
6606 +                    while (s != null) {
6607 +                        t.result = reducer.applyAsInt(t.result, s.result);
6608 +                        s = t.rights = s.nextRight;
6609 +                    }
6610 +                }
6611 +            }
6612 +        }
6613 +    }
6614 +
6615 +    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6616 +        extends Traverser<K,V,Integer> {
6617 +        final ToIntFunction<Map.Entry<K,V>> transformer;
6618 +        final IntBinaryOperator reducer;
6619 +        final int basis;
6620 +        int result;
6621 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6622 +        MapReduceEntriesToIntTask
6623 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6624 +             MapReduceEntriesToIntTask<K,V> nextRight,
6625 +             ToIntFunction<Map.Entry<K,V>> transformer,
6626 +             int basis,
6627 +             IntBinaryOperator reducer) {
6628 +            super(m, p, b); this.nextRight = nextRight;
6629 +            this.transformer = transformer;
6630 +            this.basis = basis; this.reducer = reducer;
6631 +        }
6632 +        public final Integer getRawResult() { return result; }
6633 +        @SuppressWarnings("unchecked") public final void compute() {
6634 +            final ToIntFunction<Map.Entry<K,V>> transformer;
6635 +            final IntBinaryOperator reducer;
6636 +            if ((transformer = this.transformer) != null &&
6637 +                (reducer = this.reducer) != null) {
6638 +                int r = this.basis;
6639 +                for (int b; (b = preSplit()) > 0;)
6640 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6641 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6642 +                V v;
6643 +                while ((v = advance()) != null)
6644 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6645 +                                                                    v)));
6646 +                result = r;
6647 +                CountedCompleter<?> c;
6648 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6649 +                    MapReduceEntriesToIntTask<K,V>
6650 +                        t = (MapReduceEntriesToIntTask<K,V>)c,
6651 +                        s = t.rights;
6652 +                    while (s != null) {
6653 +                        t.result = reducer.applyAsInt(t.result, s.result);
6654 +                        s = t.rights = s.nextRight;
6655 +                    }
6656 +                }
6657 +            }
6658 +        }
6659 +    }
6660 +
6661 +    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6662 +        extends Traverser<K,V,Integer> {
6663 +        final ToIntBiFunction<? super K, ? super V> transformer;
6664 +        final IntBinaryOperator reducer;
6665 +        final int basis;
6666 +        int result;
6667 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6668 +        MapReduceMappingsToIntTask
6669 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6670 +             MapReduceMappingsToIntTask<K,V> nextRight,
6671 +             ToIntBiFunction<? super K, ? super V> transformer,
6672 +             int basis,
6673 +             IntBinaryOperator reducer) {
6674 +            super(m, p, b); this.nextRight = nextRight;
6675 +            this.transformer = transformer;
6676 +            this.basis = basis; this.reducer = reducer;
6677 +        }
6678 +        public final Integer getRawResult() { return result; }
6679 +        @SuppressWarnings("unchecked") public final void compute() {
6680 +            final ToIntBiFunction<? super K, ? super V> transformer;
6681 +            final IntBinaryOperator reducer;
6682 +            if ((transformer = this.transformer) != null &&
6683 +                (reducer = this.reducer) != null) {
6684 +                int r = this.basis;
6685 +                for (int b; (b = preSplit()) > 0;)
6686 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6687 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6688 +                V v;
6689 +                while ((v = advance()) != null)
6690 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6691 +                result = r;
6692 +                CountedCompleter<?> c;
6693 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6694 +                    MapReduceMappingsToIntTask<K,V>
6695 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
6696 +                        s = t.rights;
6697 +                    while (s != null) {
6698 +                        t.result = reducer.applyAsInt(t.result, s.result);
6699 +                        s = t.rights = s.nextRight;
6700 +                    }
6701 +                }
6702 +            }
6703 +        }
6704 +    }
6705 +
6706 +    // Unsafe mechanics
6707 +    private static final sun.misc.Unsafe U;
6708 +    private static final long SIZECTL;
6709 +    private static final long TRANSFERINDEX;
6710 +    private static final long TRANSFERORIGIN;
6711 +    private static final long BASECOUNT;
6712 +    private static final long CELLSBUSY;
6713 +    private static final long CELLVALUE;
6714 +    private static final long ABASE;
6715 +    private static final int ASHIFT;
6716 +
6717 +    static {
6718 +        try {
6719 +            U = sun.misc.Unsafe.getUnsafe();
6720 +            Class<?> k = ConcurrentHashMap.class;
6721 +            SIZECTL = U.objectFieldOffset
6722 +                (k.getDeclaredField("sizeCtl"));
6723 +            TRANSFERINDEX = U.objectFieldOffset
6724 +                (k.getDeclaredField("transferIndex"));
6725 +            TRANSFERORIGIN = U.objectFieldOffset
6726 +                (k.getDeclaredField("transferOrigin"));
6727 +            BASECOUNT = U.objectFieldOffset
6728 +                (k.getDeclaredField("baseCount"));
6729 +            CELLSBUSY = U.objectFieldOffset
6730 +                (k.getDeclaredField("cellsBusy"));
6731 +            Class<?> ck = Cell.class;
6732 +            CELLVALUE = U.objectFieldOffset
6733 +                (ck.getDeclaredField("value"));
6734 +            Class<?> sc = Node[].class;
6735 +            ABASE = U.arrayBaseOffset(sc);
6736 +            int scale = U.arrayIndexScale(sc);
6737 +            if ((scale & (scale - 1)) != 0)
6738 +                throw new Error("data type scale not a power of two");
6739 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6740 +        } catch (Exception e) {
6741 +            throw new Error(e);
6742 +        }
6743 +    }
6744 +
6745   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines