ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.89 by dl, Tue Jun 6 11:17:58 2006 UTC vs.
Revision 1.196 by dl, Mon Mar 18 12:40:30 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 > import java.util.concurrent.ForkJoinPool;
9 > import java.util.concurrent.CountedCompleter;
10 > import java.util.Spliterator;
11 > import java.util.stream.Stream;
12 > import java.util.stream.Streams;
13 > import java.util.function.*;
14 > import java.util.function.Consumer;
15 > import java.util.function.Function;
16 > import java.util.function.BiFunction;
17 >
18 > import java.util.Comparator;
19 > import java.util.Arrays;
20 > import java.util.Map;
21 > import java.util.Set;
22 > import java.util.Collection;
23 > import java.util.AbstractMap;
24 > import java.util.AbstractSet;
25 > import java.util.AbstractCollection;
26 > import java.util.Hashtable;
27 > import java.util.HashMap;
28 > import java.util.Iterator;
29 > import java.util.Enumeration;
30 > import java.util.ConcurrentModificationException;
31 > import java.util.NoSuchElementException;
32 > import java.util.concurrent.ConcurrentMap;
33 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
34 > import java.util.concurrent.atomic.AtomicInteger;
35 > import java.util.concurrent.atomic.AtomicReference;
36   import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
37  
38   /**
39   * A hash table supporting full concurrency of retrievals and
40 < * adjustable expected concurrency for updates. This class obeys the
40 > * high expected concurrency for updates. This class obeys the
41   * same functional specification as {@link java.util.Hashtable}, and
42   * includes versions of methods corresponding to each method of
43 < * <tt>Hashtable</tt>. However, even though all operations are
43 > * {@code Hashtable}. However, even though all operations are
44   * thread-safe, retrieval operations do <em>not</em> entail locking,
45   * and there is <em>not</em> any support for locking the entire table
46   * in a way that prevents all access.  This class is fully
47 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
47 > * interoperable with {@code Hashtable} in programs that rely on its
48   * thread safety but not on its synchronization details.
49   *
50 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
51 < * block, so may overlap with update operations (including
52 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
53 < * of the most recently <em>completed</em> update operations holding
54 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
55 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
56 < * removal of only some entries.  Similarly, Iterators and
57 < * Enumerations return elements reflecting the state of the hash table
58 < * at some point at or since the creation of the iterator/enumeration.
59 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
60 < * However, iterators are designed to be used by only one thread at a time.
61 < *
62 < * <p> The allowed concurrency among update operations is guided by
63 < * the optional <tt>concurrencyLevel</tt> constructor argument
64 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
65 < * table is internally partitioned to try to permit the indicated
66 < * number of concurrent updates without contention. Because placement
67 < * in hash tables is essentially random, the actual concurrency will
68 < * vary.  Ideally, you should choose a value to accommodate as many
69 < * threads as will ever concurrently modify the table. Using a
70 < * significantly higher value than you need can waste space and time,
71 < * and a significantly lower value can lead to thread contention. But
72 < * overestimates and underestimates within an order of magnitude do
73 < * not usually have much noticeable impact. A value of one is
74 < * appropriate when it is known that only one thread will modify and
75 < * all others will only read. Also, resizing this or any other kind of
76 < * hash table is a relatively slow operation, so, when possible, it is
77 < * a good idea to provide estimates of expected table sizes in
78 < * constructors.
50 > * <p>Retrieval operations (including {@code get}) generally do not
51 > * block, so may overlap with update operations (including {@code put}
52 > * and {@code remove}). Retrievals reflect the results of the most
53 > * recently <em>completed</em> update operations holding upon their
54 > * onset. (More formally, an update operation for a given key bears a
55 > * <em>happens-before</em> relation with any (non-null) retrieval for
56 > * that key reporting the updated value.)  For aggregate operations
57 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
58 > * reflect insertion or removal of only some entries.  Similarly,
59 > * Iterators and Enumerations return elements reflecting the state of
60 > * the hash table at some point at or since the creation of the
61 > * iterator/enumeration.  They do <em>not</em> throw {@link
62 > * ConcurrentModificationException}.  However, iterators are designed
63 > * to be used by only one thread at a time.  Bear in mind that the
64 > * results of aggregate status methods including {@code size}, {@code
65 > * isEmpty}, and {@code containsValue} are typically useful only when
66 > * a map is not undergoing concurrent updates in other threads.
67 > * Otherwise the results of these methods reflect transient states
68 > * that may be adequate for monitoring or estimation purposes, but not
69 > * for program control.
70 > *
71 > * <p>The table is dynamically expanded when there are too many
72 > * collisions (i.e., keys that have distinct hash codes but fall into
73 > * the same slot modulo the table size), with the expected average
74 > * effect of maintaining roughly two bins per mapping (corresponding
75 > * to a 0.75 load factor threshold for resizing). There may be much
76 > * variance around this average as mappings are added and removed, but
77 > * overall, this maintains a commonly accepted time/space tradeoff for
78 > * hash tables.  However, resizing this or any other kind of hash
79 > * table may be a relatively slow operation. When possible, it is a
80 > * good idea to provide a size estimate as an optional {@code
81 > * initialCapacity} constructor argument. An additional optional
82 > * {@code loadFactor} constructor argument provides a further means of
83 > * customizing initial table capacity by specifying the table density
84 > * to be used in calculating the amount of space to allocate for the
85 > * given number of elements.  Also, for compatibility with previous
86 > * versions of this class, constructors may optionally specify an
87 > * expected {@code concurrencyLevel} as an additional hint for
88 > * internal sizing.  Note that using many keys with exactly the same
89 > * {@code hashCode()} is a sure way to slow down performance of any
90 > * hash table.
91 > *
92 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
93 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
94 > * (using {@link #keySet(Object)} when only keys are of interest, and the
95 > * mapped values are (perhaps transiently) not used or all take the
96 > * same mapping value.
97 > *
98 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
99 > * form of histogram or multiset) by using {@link
100 > * java.util.concurrent.atomic.LongAdder} values and initializing via
101 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
102 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
103 > * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
104   *
105   * <p>This class and its views and iterators implement all of the
106   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
107   * interfaces.
108   *
109 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
110 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
109 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
110 > * does <em>not</em> allow {@code null} to be used as a key or value.
111 > *
112 > * <p>ConcurrentHashMaps support sequential and parallel operations
113 > * bulk operations. (Parallel forms use the {@link
114 > * ForkJoinPool#commonPool()}). Tasks that may be used in other
115 > * contexts are available in class {@link ForkJoinTasks}. These
116 > * operations are designed to be safely, and often sensibly, applied
117 > * even with maps that are being concurrently updated by other
118 > * threads; for example, when computing a snapshot summary of the
119 > * values in a shared registry.  There are three kinds of operation,
120 > * each with four forms, accepting functions with Keys, Values,
121 > * Entries, and (Key, Value) arguments and/or return values. Because
122 > * the elements of a ConcurrentHashMap are not ordered in any
123 > * particular way, and may be processed in different orders in
124 > * different parallel executions, the correctness of supplied
125 > * functions should not depend on any ordering, or on any other
126 > * objects or values that may transiently change while computation is
127 > * in progress; and except for forEach actions, should ideally be
128 > * side-effect-free.
129 > *
130 > * <ul>
131 > * <li> forEach: Perform a given action on each element.
132 > * A variant form applies a given transformation on each element
133 > * before performing the action.</li>
134 > *
135 > * <li> search: Return the first available non-null result of
136 > * applying a given function on each element; skipping further
137 > * search when a result is found.</li>
138 > *
139 > * <li> reduce: Accumulate each element.  The supplied reduction
140 > * function cannot rely on ordering (more formally, it should be
141 > * both associative and commutative).  There are five variants:
142 > *
143 > * <ul>
144 > *
145 > * <li> Plain reductions. (There is not a form of this method for
146 > * (key, value) function arguments since there is no corresponding
147 > * return type.)</li>
148 > *
149 > * <li> Mapped reductions that accumulate the results of a given
150 > * function applied to each element.</li>
151 > *
152 > * <li> Reductions to scalar doubles, longs, and ints, using a
153 > * given basis value.</li>
154 > *
155 > * </ul>
156 > * </li>
157 > * </ul>
158 > *
159 > * <p>The concurrency properties of bulk operations follow
160 > * from those of ConcurrentHashMap: Any non-null result returned
161 > * from {@code get(key)} and related access methods bears a
162 > * happens-before relation with the associated insertion or
163 > * update.  The result of any bulk operation reflects the
164 > * composition of these per-element relations (but is not
165 > * necessarily atomic with respect to the map as a whole unless it
166 > * is somehow known to be quiescent).  Conversely, because keys
167 > * and values in the map are never null, null serves as a reliable
168 > * atomic indicator of the current lack of any result.  To
169 > * maintain this property, null serves as an implicit basis for
170 > * all non-scalar reduction operations. For the double, long, and
171 > * int versions, the basis should be one that, when combined with
172 > * any other value, returns that other value (more formally, it
173 > * should be the identity element for the reduction). Most common
174 > * reductions have these properties; for example, computing a sum
175 > * with basis 0 or a minimum with basis MAX_VALUE.
176 > *
177 > * <p>Search and transformation functions provided as arguments
178 > * should similarly return null to indicate the lack of any result
179 > * (in which case it is not used). In the case of mapped
180 > * reductions, this also enables transformations to serve as
181 > * filters, returning null (or, in the case of primitive
182 > * specializations, the identity basis) if the element should not
183 > * be combined. You can create compound transformations and
184 > * filterings by composing them yourself under this "null means
185 > * there is nothing there now" rule before using them in search or
186 > * reduce operations.
187 > *
188 > * <p>Methods accepting and/or returning Entry arguments maintain
189 > * key-value associations. They may be useful for example when
190 > * finding the key for the greatest value. Note that "plain" Entry
191 > * arguments can be supplied using {@code new
192 > * AbstractMap.SimpleEntry(k,v)}.
193 > *
194 > * <p>Bulk operations may complete abruptly, throwing an
195 > * exception encountered in the application of a supplied
196 > * function. Bear in mind when handling such exceptions that other
197 > * concurrently executing functions could also have thrown
198 > * exceptions, or would have done so if the first exception had
199 > * not occurred.
200 > *
201 > * <p>Speedups for parallel compared to sequential forms are common
202 > * but not guaranteed.  Parallel operations involving brief functions
203 > * on small maps may execute more slowly than sequential forms if the
204 > * underlying work to parallelize the computation is more expensive
205 > * than the computation itself.  Similarly, parallelization may not
206 > * lead to much actual parallelism if all processors are busy
207 > * performing unrelated tasks.
208 > *
209 > * <p>All arguments to all task methods must be non-null.
210   *
211   * <p>This class is a member of the
212   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 217 | import java.io.ObjectOutputStream;
217   * @param <K> the type of keys maintained by this map
218   * @param <V> the type of mapped values
219   */
220 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
221 <        implements ConcurrentMap<K, V>, Serializable {
220 > public class ConcurrentHashMap<K,V>
221 >    implements ConcurrentMap<K,V>, Serializable {
222      private static final long serialVersionUID = 7249069246763182397L;
223  
224      /*
225 <     * The basic strategy is to subdivide the table among Segments,
226 <     * each of which itself is a concurrently readable hash table.
225 >     * Overview:
226 >     *
227 >     * The primary design goal of this hash table is to maintain
228 >     * concurrent readability (typically method get(), but also
229 >     * iterators and related methods) while minimizing update
230 >     * contention. Secondary goals are to keep space consumption about
231 >     * the same or better than java.util.HashMap, and to support high
232 >     * initial insertion rates on an empty table by many threads.
233 >     *
234 >     * Each key-value mapping is held in a Node.  Because Node key
235 >     * fields can contain special values, they are defined using plain
236 >     * Object types (not type "K"). This leads to a lot of explicit
237 >     * casting (and many explicit warning suppressions to tell
238 >     * compilers not to complain about it). It also allows some of the
239 >     * public methods to be factored into a smaller number of internal
240 >     * methods (although sadly not so for the five variants of
241 >     * put-related operations). The validation-based approach
242 >     * explained below leads to a lot of code sprawl because
243 >     * retry-control precludes factoring into smaller methods.
244 >     *
245 >     * The table is lazily initialized to a power-of-two size upon the
246 >     * first insertion.  Each bin in the table normally contains a
247 >     * list of Nodes (most often, the list has only zero or one Node).
248 >     * Table accesses require volatile/atomic reads, writes, and
249 >     * CASes.  Because there is no other way to arrange this without
250 >     * adding further indirections, we use intrinsics
251 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
252 >     * are always accurately traversable under volatile reads, so long
253 >     * as lookups check hash code and non-nullness of value before
254 >     * checking key equality.
255 >     *
256 >     * We use the top (sign) bit of Node hash fields for control
257 >     * purposes -- it is available anyway because of addressing
258 >     * constraints.  Nodes with negative hash fields are forwarding
259 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
260 >     * of each normal Node's hash field contain a transformation of
261 >     * the key's hash code.
262 >     *
263 >     * Insertion (via put or its variants) of the first node in an
264 >     * empty bin is performed by just CASing it to the bin.  This is
265 >     * by far the most common case for put operations under most
266 >     * key/hash distributions.  Other update operations (insert,
267 >     * delete, and replace) require locks.  We do not want to waste
268 >     * the space required to associate a distinct lock object with
269 >     * each bin, so instead use the first node of a bin list itself as
270 >     * a lock. Locking support for these locks relies on builtin
271 >     * "synchronized" monitors.
272 >     *
273 >     * Using the first node of a list as a lock does not by itself
274 >     * suffice though: When a node is locked, any update must first
275 >     * validate that it is still the first node after locking it, and
276 >     * retry if not. Because new nodes are always appended to lists,
277 >     * once a node is first in a bin, it remains first until deleted
278 >     * or the bin becomes invalidated (upon resizing).  However,
279 >     * operations that only conditionally update may inspect nodes
280 >     * until the point of update. This is a converse of sorts to the
281 >     * lazy locking technique described by Herlihy & Shavit.
282 >     *
283 >     * The main disadvantage of per-bin locks is that other update
284 >     * operations on other nodes in a bin list protected by the same
285 >     * lock can stall, for example when user equals() or mapping
286 >     * functions take a long time.  However, statistically, under
287 >     * random hash codes, this is not a common problem.  Ideally, the
288 >     * frequency of nodes in bins follows a Poisson distribution
289 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
290 >     * parameter of about 0.5 on average, given the resizing threshold
291 >     * of 0.75, although with a large variance because of resizing
292 >     * granularity. Ignoring variance, the expected occurrences of
293 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
294 >     * first values are:
295 >     *
296 >     * 0:    0.60653066
297 >     * 1:    0.30326533
298 >     * 2:    0.07581633
299 >     * 3:    0.01263606
300 >     * 4:    0.00157952
301 >     * 5:    0.00015795
302 >     * 6:    0.00001316
303 >     * 7:    0.00000094
304 >     * 8:    0.00000006
305 >     * more: less than 1 in ten million
306 >     *
307 >     * Lock contention probability for two threads accessing distinct
308 >     * elements is roughly 1 / (8 * #elements) under random hashes.
309 >     *
310 >     * Actual hash code distributions encountered in practice
311 >     * sometimes deviate significantly from uniform randomness.  This
312 >     * includes the case when N > (1<<30), so some keys MUST collide.
313 >     * Similarly for dumb or hostile usages in which multiple keys are
314 >     * designed to have identical hash codes. Also, although we guard
315 >     * against the worst effects of this (see method spread), sets of
316 >     * hashes may differ only in bits that do not impact their bin
317 >     * index for a given power-of-two mask.  So we use a secondary
318 >     * strategy that applies when the number of nodes in a bin exceeds
319 >     * a threshold, and at least one of the keys implements
320 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
321 >     * (a specialized form of red-black trees), bounding search time
322 >     * to O(log N).  Each search step in a TreeBin is around twice as
323 >     * slow as in a regular list, but given that N cannot exceed
324 >     * (1<<64) (before running out of addresses) this bounds search
325 >     * steps, lock hold times, etc, to reasonable constants (roughly
326 >     * 100 nodes inspected per operation worst case) so long as keys
327 >     * are Comparable (which is very common -- String, Long, etc).
328 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
329 >     * traversal pointers as regular nodes, so can be traversed in
330 >     * iterators in the same way.
331 >     *
332 >     * The table is resized when occupancy exceeds a percentage
333 >     * threshold (nominally, 0.75, but see below).  Any thread
334 >     * noticing an overfull bin may assist in resizing after the
335 >     * initiating thread allocates and sets up the replacement
336 >     * array. However, rather than stalling, these other threads may
337 >     * proceed with insertions etc.  The use of TreeBins shields us
338 >     * from the worst case effects of overfilling while resizes are in
339 >     * progress.  Resizing proceeds by transferring bins, one by one,
340 >     * from the table to the next table. To enable concurrency, the
341 >     * next table must be (incrementally) prefilled with place-holders
342 >     * serving as reverse forwarders to the old table.  Because we are
343 >     * using power-of-two expansion, the elements from each bin must
344 >     * either stay at same index, or move with a power of two
345 >     * offset. We eliminate unnecessary node creation by catching
346 >     * cases where old nodes can be reused because their next fields
347 >     * won't change.  On average, only about one-sixth of them need
348 >     * cloning when a table doubles. The nodes they replace will be
349 >     * garbage collectable as soon as they are no longer referenced by
350 >     * any reader thread that may be in the midst of concurrently
351 >     * traversing table.  Upon transfer, the old table bin contains
352 >     * only a special forwarding node (with hash field "MOVED") that
353 >     * contains the next table as its key. On encountering a
354 >     * forwarding node, access and update operations restart, using
355 >     * the new table.
356 >     *
357 >     * Each bin transfer requires its bin lock, which can stall
358 >     * waiting for locks while resizing. However, because other
359 >     * threads can join in and help resize rather than contend for
360 >     * locks, average aggregate waits become shorter as resizing
361 >     * progresses.  The transfer operation must also ensure that all
362 >     * accessible bins in both the old and new table are usable by any
363 >     * traversal.  This is arranged by proceeding from the last bin
364 >     * (table.length - 1) up towards the first.  Upon seeing a
365 >     * forwarding node, traversals (see class Traverser) arrange to
366 >     * move to the new table without revisiting nodes.  However, to
367 >     * ensure that no intervening nodes are skipped, bin splitting can
368 >     * only begin after the associated reverse-forwarders are in
369 >     * place.
370 >     *
371 >     * The traversal scheme also applies to partial traversals of
372 >     * ranges of bins (via an alternate Traverser constructor)
373 >     * to support partitioned aggregate operations.  Also, read-only
374 >     * operations give up if ever forwarded to a null table, which
375 >     * provides support for shutdown-style clearing, which is also not
376 >     * currently implemented.
377 >     *
378 >     * Lazy table initialization minimizes footprint until first use,
379 >     * and also avoids resizings when the first operation is from a
380 >     * putAll, constructor with map argument, or deserialization.
381 >     * These cases attempt to override the initial capacity settings,
382 >     * but harmlessly fail to take effect in cases of races.
383 >     *
384 >     * The element count is maintained using a specialization of
385 >     * LongAdder. We need to incorporate a specialization rather than
386 >     * just use a LongAdder in order to access implicit
387 >     * contention-sensing that leads to creation of multiple
388 >     * Cells.  The counter mechanics avoid contention on
389 >     * updates but can encounter cache thrashing if read too
390 >     * frequently during concurrent access. To avoid reading so often,
391 >     * resizing under contention is attempted only upon adding to a
392 >     * bin already holding two or more nodes. Under uniform hash
393 >     * distributions, the probability of this occurring at threshold
394 >     * is around 13%, meaning that only about 1 in 8 puts check
395 >     * threshold (and after resizing, many fewer do so). The bulk
396 >     * putAll operation further reduces contention by only committing
397 >     * count updates upon these size checks.
398 >     *
399 >     * Maintaining API and serialization compatibility with previous
400 >     * versions of this class introduces several oddities. Mainly: We
401 >     * leave untouched but unused constructor arguments refering to
402 >     * concurrencyLevel. We accept a loadFactor constructor argument,
403 >     * but apply it only to initial table capacity (which is the only
404 >     * time that we can guarantee to honor it.) We also declare an
405 >     * unused "Segment" class that is instantiated in minimal form
406 >     * only when serializing.
407       */
408  
409      /* ---------------- Constants -------------- */
410  
411      /**
412 <     * The default initial capacity for this table,
413 <     * used when not otherwise specified in a constructor.
412 >     * The largest possible table capacity.  This value must be
413 >     * exactly 1<<30 to stay within Java array allocation and indexing
414 >     * bounds for power of two table sizes, and is further required
415 >     * because the top two bits of 32bit hash fields are used for
416 >     * control purposes.
417       */
418 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
418 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
419  
420      /**
421 <     * The default load factor for this table, used when not
422 <     * otherwise specified in a constructor.
421 >     * The default initial table capacity.  Must be a power of 2
422 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
423       */
424 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
424 >    private static final int DEFAULT_CAPACITY = 16;
425  
426      /**
427 <     * The default concurrency level for this table, used when not
428 <     * otherwise specified in a constructor.
427 >     * The largest possible (non-power of two) array size.
428 >     * Needed by toArray and related methods.
429       */
430 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
430 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
431  
432      /**
433 <     * The maximum capacity, used if a higher value is implicitly
434 <     * specified by either of the constructors with arguments.  MUST
105 <     * be a power of two <= 1<<30 to ensure that entries are indexable
106 <     * using ints.
433 >     * The default concurrency level for this table. Unused but
434 >     * defined for compatibility with previous versions of this class.
435       */
436 <    static final int MAXIMUM_CAPACITY = 1 << 30;
436 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
437  
438      /**
439 <     * The maximum number of segments to allow; used to bound
440 <     * constructor arguments.
439 >     * The load factor for this table. Overrides of this value in
440 >     * constructors affect only the initial table capacity.  The
441 >     * actual floating point value isn't normally used -- it is
442 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
443 >     * the associated resizing threshold.
444       */
445 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
445 >    private static final float LOAD_FACTOR = 0.75f;
446  
447      /**
448 <     * Number of unsynchronized retries in size and containsValue
449 <     * methods before resorting to locking. This is used to avoid
450 <     * unbounded retries if tables undergo continuous modification
120 <     * which would make it impossible to obtain an accurate result.
448 >     * The bin count threshold for using a tree rather than list for a
449 >     * bin.  The value reflects the approximate break-even point for
450 >     * using tree-based operations.
451       */
452 <    static final int RETRIES_BEFORE_LOCK = 2;
452 >    private static final int TREE_THRESHOLD = 8;
453 >
454 >    /**
455 >     * Minimum number of rebinnings per transfer step. Ranges are
456 >     * subdivided to allow multiple resizer threads.  This value
457 >     * serves as a lower bound to avoid resizers encountering
458 >     * excessive memory contention.  The value should be at least
459 >     * DEFAULT_CAPACITY.
460 >     */
461 >    private static final int MIN_TRANSFER_STRIDE = 16;
462 >
463 >    /*
464 >     * Encodings for Node hash fields. See above for explanation.
465 >     */
466 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
467 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
468 >
469 >    /** Number of CPUS, to place bounds on some sizings */
470 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
471 >
472 >    /* ---------------- Counters -------------- */
473 >
474 >    // Adapted from LongAdder and Striped64.
475 >    // See their internal docs for explanation.
476 >
477 >    // A padded cell for distributing counts
478 >    static final class Cell {
479 >        volatile long p0, p1, p2, p3, p4, p5, p6;
480 >        volatile long value;
481 >        volatile long q0, q1, q2, q3, q4, q5, q6;
482 >        Cell(long x) { value = x; }
483 >    }
484  
485      /* ---------------- Fields -------------- */
486  
487      /**
488 <     * Mask value for indexing into segments. The upper bits of a
489 <     * key's hash code are used to choose the segment.
488 >     * The array of bins. Lazily initialized upon first insertion.
489 >     * Size is always a power of two. Accessed directly by iterators.
490       */
491 <    final int segmentMask;
491 >    transient volatile Node<V>[] table;
492  
493      /**
494 <     * Shift value for indexing within segments.
494 >     * The next table to use; non-null only while resizing.
495       */
496 <    final int segmentShift;
496 >    private transient volatile Node<V>[] nextTable;
497  
498      /**
499 <     * The segments, each of which is a specialized hash table
499 >     * Base counter value, used mainly when there is no contention,
500 >     * but also as a fallback during table initialization
501 >     * races. Updated via CAS.
502       */
503 <    final Segment<K,V>[] segments;
503 >    private transient volatile long baseCount;
504  
505 <    transient Set<K> keySet;
506 <    transient Set<Map.Entry<K,V>> entrySet;
507 <    transient Collection<V> values;
505 >    /**
506 >     * Table initialization and resizing control.  When negative, the
507 >     * table is being initialized or resized: -1 for initialization,
508 >     * else -(1 + the number of active resizing threads).  Otherwise,
509 >     * when table is null, holds the initial table size to use upon
510 >     * creation, or 0 for default. After initialization, holds the
511 >     * next element count value upon which to resize the table.
512 >     */
513 >    private transient volatile int sizeCtl;
514  
515 <    /* ---------------- Small Utilities -------------- */
515 >    /**
516 >     * The next table index (plus one) to split while resizing.
517 >     */
518 >    private transient volatile int transferIndex;
519  
520      /**
521 <     * Applies a supplemental hash function to a given hashCode, which
150 <     * defends against poor quality hash functions.  This is critical
151 <     * because HashMap uses power-of two length hash tables, that
152 <     * otherwise encounter collisions for hashCodes that do not differ
153 <     * in lower bits.
521 >     * The least available table index to split while resizing.
522       */
523 <    static int hash(int h) {
524 <        // This function ensures that hashCodes that differ only by
525 <        // constant multiples at each bit position have a bounded
526 <        // number of collisions (approximately 8 at default load factor).
527 <        h ^= (h >>> 20) ^ (h >>> 12);
528 <        return h ^ (h >>> 7) ^ (h >>> 4);
161 <    }
523 >    private transient volatile int transferOrigin;
524 >
525 >    /**
526 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
527 >     */
528 >    private transient volatile int cellsBusy;
529  
530      /**
531 <     * Returns the segment that should be used for key with given hash
532 <     * @param hash the hash code for the key
533 <     * @return the segment
531 >     * Table of counter cells. When non-null, size is a power of 2.
532 >     */
533 >    private transient volatile Cell[] counterCells;
534 >
535 >    // views
536 >    private transient KeySetView<K,V> keySet;
537 >    private transient ValuesView<K,V> values;
538 >    private transient EntrySetView<K,V> entrySet;
539 >
540 >    /** For serialization compatibility. Null unless serialized; see below */
541 >    private Segment<K,V>[] segments;
542 >
543 >    /* ---------------- Table element access -------------- */
544 >
545 >    /*
546 >     * Volatile access methods are used for table elements as well as
547 >     * elements of in-progress next table while resizing.  Uses are
548 >     * null checked by callers, and implicitly bounds-checked, relying
549 >     * on the invariants that tab arrays have non-zero size, and all
550 >     * indices are masked with (tab.length - 1) which is never
551 >     * negative and always less than length. Note that, to be correct
552 >     * wrt arbitrary concurrency errors by users, bounds checks must
553 >     * operate on local variables, which accounts for some odd-looking
554 >     * inline assignments below.
555       */
556 <    final Segment<K,V> segmentFor(int hash) {
557 <        return segments[(hash >>> segmentShift) & segmentMask];
556 >
557 >    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
558 >        (Node<V>[] tab, int i) { // used by Traverser
559 >        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
560 >    }
561 >
562 >    private static final <V> boolean casTabAt
563 >        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
564 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
565      }
566  
567 <    /* ---------------- Inner Classes -------------- */
567 >    private static final <V> void setTabAt
568 >        (Node<V>[] tab, int i, Node<V> v) {
569 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
570 >    }
571 >
572 >    /* ---------------- Nodes -------------- */
573  
574      /**
575 <     * ConcurrentHashMap list entry. Note that this is never exported
576 <     * out as a user-visible Map.Entry.
577 <     *
578 <     * Because the value field is volatile, not final, it is legal wrt
579 <     * the Java Memory Model for an unsynchronized reader to see null
580 <     * instead of initial value when read via a data race.  Although a
581 <     * reordering leading to this is not likely to ever actually
582 <     * occur, the Segment.readValueUnderLock method is used as a
183 <     * backup in case a null (pre-initialized) value is ever seen in
184 <     * an unsynchronized access method.
575 >     * Key-value entry. Note that this is never exported out as a
576 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
577 >     * field of MOVED are special, and do not contain user keys or
578 >     * values.  Otherwise, keys are never null, and null val fields
579 >     * indicate that a node is in the process of being deleted or
580 >     * created. For purposes of read-only access, a key may be read
581 >     * before a val, but can only be used after checking val to be
582 >     * non-null.
583       */
584 <    static final class HashEntry<K,V> {
187 <        final K key;
584 >    static class Node<V> {
585          final int hash;
586 <        volatile V value;
587 <        final HashEntry<K,V> next;
586 >        final Object key;
587 >        volatile V val;
588 >        volatile Node<V> next;
589  
590 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 <            this.key = key;
590 >        Node(int hash, Object key, V val, Node<V> next) {
591              this.hash = hash;
592 +            this.key = key;
593 +            this.val = val;
594              this.next = next;
196            this.value = value;
595          }
198
199        @SuppressWarnings("unchecked")
200        static final <K,V> HashEntry<K,V>[] newArray(int i) {
201            return new HashEntry[i];
202        }
596      }
597  
598 +    /* ---------------- TreeBins -------------- */
599 +
600      /**
601 <     * Segments are specialized versions of hash tables.  This
602 <     * subclasses from ReentrantLock opportunistically, just to
603 <     * simplify some locking and avoid separate construction.
604 <     */
605 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
606 <        /*
607 <         * Segments maintain a table of entry lists that are ALWAYS
608 <         * kept in a consistent state, so can be read without locking.
609 <         * Next fields of nodes are immutable (final).  All list
610 <         * additions are performed at the front of each bin. This
611 <         * makes it easy to check changes, and also fast to traverse.
612 <         * When nodes would otherwise be changed, new nodes are
613 <         * created to replace them. This works well for hash tables
614 <         * since the bin lists tend to be short. (The average length
220 <         * is less than two for the default load factor threshold.)
221 <         *
222 <         * Read operations can thus proceed without locking, but rely
223 <         * on selected uses of volatiles to ensure that completed
224 <         * write operations performed by other threads are
225 <         * noticed. For most purposes, the "count" field, tracking the
226 <         * number of elements, serves as that volatile variable
227 <         * ensuring visibility.  This is convenient because this field
228 <         * needs to be read in many read operations anyway:
229 <         *
230 <         *   - All (unsynchronized) read operations must first read the
231 <         *     "count" field, and should not look at table entries if
232 <         *     it is 0.
233 <         *
234 <         *   - All (synchronized) write operations should write to
235 <         *     the "count" field after structurally changing any bin.
236 <         *     The operations must not take any action that could even
237 <         *     momentarily cause a concurrent read operation to see
238 <         *     inconsistent data. This is made easier by the nature of
239 <         *     the read operations in Map. For example, no operation
240 <         *     can reveal that the table has grown but the threshold
241 <         *     has not yet been updated, so there are no atomicity
242 <         *     requirements for this with respect to reads.
243 <         *
244 <         * As a guide, all critical volatile reads and writes to the
245 <         * count field are marked in code comments.
246 <         */
601 >     * Nodes for use in TreeBins
602 >     */
603 >    static final class TreeNode<V> extends Node<V> {
604 >        TreeNode<V> parent;  // red-black tree links
605 >        TreeNode<V> left;
606 >        TreeNode<V> right;
607 >        TreeNode<V> prev;    // needed to unlink next upon deletion
608 >        boolean red;
609 >
610 >        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
611 >            super(hash, key, val, next);
612 >            this.parent = parent;
613 >        }
614 >    }
615  
616 +    /**
617 +     * A specialized form of red-black tree for use in bins
618 +     * whose size exceeds a threshold.
619 +     *
620 +     * TreeBins use a special form of comparison for search and
621 +     * related operations (which is the main reason we cannot use
622 +     * existing collections such as TreeMaps). TreeBins contain
623 +     * Comparable elements, but may contain others, as well as
624 +     * elements that are Comparable but not necessarily Comparable<T>
625 +     * for the same T, so we cannot invoke compareTo among them. To
626 +     * handle this, the tree is ordered primarily by hash value, then
627 +     * by getClass().getName() order, and then by Comparator order
628 +     * among elements of the same class.  On lookup at a node, if
629 +     * elements are not comparable or compare as 0, both left and
630 +     * right children may need to be searched in the case of tied hash
631 +     * values. (This corresponds to the full list search that would be
632 +     * necessary if all elements were non-Comparable and had tied
633 +     * hashes.)  The red-black balancing code is updated from
634 +     * pre-jdk-collections
635 +     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
636 +     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
637 +     * Algorithms" (CLR).
638 +     *
639 +     * TreeBins also maintain a separate locking discipline than
640 +     * regular bins. Because they are forwarded via special MOVED
641 +     * nodes at bin heads (which can never change once established),
642 +     * we cannot use those nodes as locks. Instead, TreeBin
643 +     * extends AbstractQueuedSynchronizer to support a simple form of
644 +     * read-write lock. For update operations and table validation,
645 +     * the exclusive form of lock behaves in the same way as bin-head
646 +     * locks. However, lookups use shared read-lock mechanics to allow
647 +     * multiple readers in the absence of writers.  Additionally,
648 +     * these lookups do not ever block: While the lock is not
649 +     * available, they proceed along the slow traversal path (via
650 +     * next-pointers) until the lock becomes available or the list is
651 +     * exhausted, whichever comes first. (These cases are not fast,
652 +     * but maximize aggregate expected throughput.)  The AQS mechanics
653 +     * for doing this are straightforward.  The lock state is held as
654 +     * AQS getState().  Read counts are negative; the write count (1)
655 +     * is positive.  There are no signalling preferences among readers
656 +     * and writers. Since we don't need to export full Lock API, we
657 +     * just override the minimal AQS methods and use them directly.
658 +     */
659 +    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
660          private static final long serialVersionUID = 2249069246763182397L;
661 +        transient TreeNode<V> root;  // root of tree
662 +        transient TreeNode<V> first; // head of next-pointer list
663  
664 <        /**
665 <         * The number of elements in this segment's region.
666 <         */
667 <        transient volatile int count;
664 >        /* AQS overrides */
665 >        public final boolean isHeldExclusively() { return getState() > 0; }
666 >        public final boolean tryAcquire(int ignore) {
667 >            if (compareAndSetState(0, 1)) {
668 >                setExclusiveOwnerThread(Thread.currentThread());
669 >                return true;
670 >            }
671 >            return false;
672 >        }
673 >        public final boolean tryRelease(int ignore) {
674 >            setExclusiveOwnerThread(null);
675 >            setState(0);
676 >            return true;
677 >        }
678 >        public final int tryAcquireShared(int ignore) {
679 >            for (int c;;) {
680 >                if ((c = getState()) > 0)
681 >                    return -1;
682 >                if (compareAndSetState(c, c -1))
683 >                    return 1;
684 >            }
685 >        }
686 >        public final boolean tryReleaseShared(int ignore) {
687 >            int c;
688 >            do {} while (!compareAndSetState(c = getState(), c + 1));
689 >            return c == -1;
690 >        }
691 >
692 >        /** From CLR */
693 >        private void rotateLeft(TreeNode<V> p) {
694 >            if (p != null) {
695 >                TreeNode<V> r = p.right, pp, rl;
696 >                if ((rl = p.right = r.left) != null)
697 >                    rl.parent = p;
698 >                if ((pp = r.parent = p.parent) == null)
699 >                    root = r;
700 >                else if (pp.left == p)
701 >                    pp.left = r;
702 >                else
703 >                    pp.right = r;
704 >                r.left = p;
705 >                p.parent = r;
706 >            }
707 >        }
708  
709 <        /**
710 <         * Number of updates that alter the size of the table. This is
711 <         * used during bulk-read methods to make sure they see a
712 <         * consistent snapshot: If modCounts change during a traversal
713 <         * of segments computing size or checking containsValue, then
714 <         * we might have an inconsistent view of state so (usually)
715 <         * must retry.
716 <         */
717 <        transient int modCount;
709 >        /** From CLR */
710 >        private void rotateRight(TreeNode<V> p) {
711 >            if (p != null) {
712 >                TreeNode<V> l = p.left, pp, lr;
713 >                if ((lr = p.left = l.right) != null)
714 >                    lr.parent = p;
715 >                if ((pp = l.parent = p.parent) == null)
716 >                    root = l;
717 >                else if (pp.right == p)
718 >                    pp.right = l;
719 >                else
720 >                    pp.left = l;
721 >                l.right = p;
722 >                p.parent = l;
723 >            }
724 >        }
725  
726          /**
727 <         * The table is rehashed when its size exceeds this threshold.
728 <         * (The value of this field is always <tt>(int)(capacity *
268 <         * loadFactor)</tt>.)
727 >         * Returns the TreeNode (or null if not found) for the given key
728 >         * starting at given root.
729           */
730 <        transient int threshold;
730 >        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
731 >            (int h, Object k, TreeNode<V> p) {
732 >            Class<?> c = k.getClass();
733 >            while (p != null) {
734 >                int dir, ph;  Object pk; Class<?> pc;
735 >                if ((ph = p.hash) == h) {
736 >                    if ((pk = p.key) == k || k.equals(pk))
737 >                        return p;
738 >                    if (c != (pc = pk.getClass()) ||
739 >                        !(k instanceof Comparable) ||
740 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
741 >                        if ((dir = (c == pc) ? 0 :
742 >                             c.getName().compareTo(pc.getName())) == 0) {
743 >                            TreeNode<V> r = null, pl, pr; // check both sides
744 >                            if ((pr = p.right) != null && h >= pr.hash &&
745 >                                (r = getTreeNode(h, k, pr)) != null)
746 >                                return r;
747 >                            else if ((pl = p.left) != null && h <= pl.hash)
748 >                                dir = -1;
749 >                            else // nothing there
750 >                                return null;
751 >                        }
752 >                    }
753 >                }
754 >                else
755 >                    dir = (h < ph) ? -1 : 1;
756 >                p = (dir > 0) ? p.right : p.left;
757 >            }
758 >            return null;
759 >        }
760  
761          /**
762 <         * The per-segment table.
762 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
763 >         * read-lock to call getTreeNode, but during failure to get
764 >         * lock, searches along next links.
765           */
766 <        transient volatile HashEntry<K,V>[] table;
766 >        final V getValue(int h, Object k) {
767 >            Node<V> r = null;
768 >            int c = getState(); // Must read lock state first
769 >            for (Node<V> e = first; e != null; e = e.next) {
770 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
771 >                    try {
772 >                        r = getTreeNode(h, k, root);
773 >                    } finally {
774 >                        releaseShared(0);
775 >                    }
776 >                    break;
777 >                }
778 >                else if (e.hash == h && k.equals(e.key)) {
779 >                    r = e;
780 >                    break;
781 >                }
782 >                else
783 >                    c = getState();
784 >            }
785 >            return r == null ? null : r.val;
786 >        }
787  
788          /**
789 <         * The load factor for the hash table.  Even though this value
790 <         * is same for all segments, it is replicated to avoid needing
280 <         * links to outer object.
281 <         * @serial
789 >         * Finds or adds a node.
790 >         * @return null if added
791           */
792 <        final float loadFactor;
793 <
794 <        Segment(int initialCapacity, float lf) {
795 <            loadFactor = lf;
796 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
797 <        }
792 >        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
793 >            (int h, Object k, V v) {
794 >            Class<?> c = k.getClass();
795 >            TreeNode<V> pp = root, p = null;
796 >            int dir = 0;
797 >            while (pp != null) { // find existing node or leaf to insert at
798 >                int ph;  Object pk; Class<?> pc;
799 >                p = pp;
800 >                if ((ph = p.hash) == h) {
801 >                    if ((pk = p.key) == k || k.equals(pk))
802 >                        return p;
803 >                    if (c != (pc = pk.getClass()) ||
804 >                        !(k instanceof Comparable) ||
805 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
806 >                        TreeNode<V> s = null, r = null, pr;
807 >                        if ((dir = (c == pc) ? 0 :
808 >                             c.getName().compareTo(pc.getName())) == 0) {
809 >                            if ((pr = p.right) != null && h >= pr.hash &&
810 >                                (r = getTreeNode(h, k, pr)) != null)
811 >                                return r;
812 >                            else // continue left
813 >                                dir = -1;
814 >                        }
815 >                        else if ((pr = p.right) != null && h >= pr.hash)
816 >                            s = pr;
817 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
818 >                            return r;
819 >                    }
820 >                }
821 >                else
822 >                    dir = (h < ph) ? -1 : 1;
823 >                pp = (dir > 0) ? p.right : p.left;
824 >            }
825  
826 <        @SuppressWarnings("unchecked")
827 <        static final <K,V> Segment<K,V>[] newArray(int i) {
828 <            return new Segment[i];
826 >            TreeNode<V> f = first;
827 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
828 >            if (p == null)
829 >                root = x;
830 >            else { // attach and rebalance; adapted from CLR
831 >                TreeNode<V> xp, xpp;
832 >                if (f != null)
833 >                    f.prev = x;
834 >                if (dir <= 0)
835 >                    p.left = x;
836 >                else
837 >                    p.right = x;
838 >                x.red = true;
839 >                while (x != null && (xp = x.parent) != null && xp.red &&
840 >                       (xpp = xp.parent) != null) {
841 >                    TreeNode<V> xppl = xpp.left;
842 >                    if (xp == xppl) {
843 >                        TreeNode<V> y = xpp.right;
844 >                        if (y != null && y.red) {
845 >                            y.red = false;
846 >                            xp.red = false;
847 >                            xpp.red = true;
848 >                            x = xpp;
849 >                        }
850 >                        else {
851 >                            if (x == xp.right) {
852 >                                rotateLeft(x = xp);
853 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
854 >                            }
855 >                            if (xp != null) {
856 >                                xp.red = false;
857 >                                if (xpp != null) {
858 >                                    xpp.red = true;
859 >                                    rotateRight(xpp);
860 >                                }
861 >                            }
862 >                        }
863 >                    }
864 >                    else {
865 >                        TreeNode<V> y = xppl;
866 >                        if (y != null && y.red) {
867 >                            y.red = false;
868 >                            xp.red = false;
869 >                            xpp.red = true;
870 >                            x = xpp;
871 >                        }
872 >                        else {
873 >                            if (x == xp.left) {
874 >                                rotateRight(x = xp);
875 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
876 >                            }
877 >                            if (xp != null) {
878 >                                xp.red = false;
879 >                                if (xpp != null) {
880 >                                    xpp.red = true;
881 >                                    rotateLeft(xpp);
882 >                                }
883 >                            }
884 >                        }
885 >                    }
886 >                }
887 >                TreeNode<V> r = root;
888 >                if (r != null && r.red)
889 >                    r.red = false;
890 >            }
891 >            return null;
892          }
893  
894          /**
895 <         * Sets table to new HashEntry array.
896 <         * Call only while holding lock or in constructor.
895 >         * Removes the given node, that must be present before this
896 >         * call.  This is messier than typical red-black deletion code
897 >         * because we cannot swap the contents of an interior node
898 >         * with a leaf successor that is pinned by "next" pointers
899 >         * that are accessible independently of lock. So instead we
900 >         * swap the tree linkages.
901           */
902 <        void setTable(HashEntry<K,V>[] newTable) {
903 <            threshold = (int)(newTable.length * loadFactor);
904 <            table = newTable;
902 >        final void deleteTreeNode(TreeNode<V> p) {
903 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
904 >            TreeNode<V> pred = p.prev;
905 >            if (pred == null)
906 >                first = next;
907 >            else
908 >                pred.next = next;
909 >            if (next != null)
910 >                next.prev = pred;
911 >            TreeNode<V> replacement;
912 >            TreeNode<V> pl = p.left;
913 >            TreeNode<V> pr = p.right;
914 >            if (pl != null && pr != null) {
915 >                TreeNode<V> s = pr, sl;
916 >                while ((sl = s.left) != null) // find successor
917 >                    s = sl;
918 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
919 >                TreeNode<V> sr = s.right;
920 >                TreeNode<V> pp = p.parent;
921 >                if (s == pr) { // p was s's direct parent
922 >                    p.parent = s;
923 >                    s.right = p;
924 >                }
925 >                else {
926 >                    TreeNode<V> sp = s.parent;
927 >                    if ((p.parent = sp) != null) {
928 >                        if (s == sp.left)
929 >                            sp.left = p;
930 >                        else
931 >                            sp.right = p;
932 >                    }
933 >                    if ((s.right = pr) != null)
934 >                        pr.parent = s;
935 >                }
936 >                p.left = null;
937 >                if ((p.right = sr) != null)
938 >                    sr.parent = p;
939 >                if ((s.left = pl) != null)
940 >                    pl.parent = s;
941 >                if ((s.parent = pp) == null)
942 >                    root = s;
943 >                else if (p == pp.left)
944 >                    pp.left = s;
945 >                else
946 >                    pp.right = s;
947 >                replacement = sr;
948 >            }
949 >            else
950 >                replacement = (pl != null) ? pl : pr;
951 >            TreeNode<V> pp = p.parent;
952 >            if (replacement == null) {
953 >                if (pp == null) {
954 >                    root = null;
955 >                    return;
956 >                }
957 >                replacement = p;
958 >            }
959 >            else {
960 >                replacement.parent = pp;
961 >                if (pp == null)
962 >                    root = replacement;
963 >                else if (p == pp.left)
964 >                    pp.left = replacement;
965 >                else
966 >                    pp.right = replacement;
967 >                p.left = p.right = p.parent = null;
968 >            }
969 >            if (!p.red) { // rebalance, from CLR
970 >                TreeNode<V> x = replacement;
971 >                while (x != null) {
972 >                    TreeNode<V> xp, xpl;
973 >                    if (x.red || (xp = x.parent) == null) {
974 >                        x.red = false;
975 >                        break;
976 >                    }
977 >                    if (x == (xpl = xp.left)) {
978 >                        TreeNode<V> sib = xp.right;
979 >                        if (sib != null && sib.red) {
980 >                            sib.red = false;
981 >                            xp.red = true;
982 >                            rotateLeft(xp);
983 >                            sib = (xp = x.parent) == null ? null : xp.right;
984 >                        }
985 >                        if (sib == null)
986 >                            x = xp;
987 >                        else {
988 >                            TreeNode<V> sl = sib.left, sr = sib.right;
989 >                            if ((sr == null || !sr.red) &&
990 >                                (sl == null || !sl.red)) {
991 >                                sib.red = true;
992 >                                x = xp;
993 >                            }
994 >                            else {
995 >                                if (sr == null || !sr.red) {
996 >                                    if (sl != null)
997 >                                        sl.red = false;
998 >                                    sib.red = true;
999 >                                    rotateRight(sib);
1000 >                                    sib = (xp = x.parent) == null ?
1001 >                                        null : xp.right;
1002 >                                }
1003 >                                if (sib != null) {
1004 >                                    sib.red = (xp == null) ? false : xp.red;
1005 >                                    if ((sr = sib.right) != null)
1006 >                                        sr.red = false;
1007 >                                }
1008 >                                if (xp != null) {
1009 >                                    xp.red = false;
1010 >                                    rotateLeft(xp);
1011 >                                }
1012 >                                x = root;
1013 >                            }
1014 >                        }
1015 >                    }
1016 >                    else { // symmetric
1017 >                        TreeNode<V> sib = xpl;
1018 >                        if (sib != null && sib.red) {
1019 >                            sib.red = false;
1020 >                            xp.red = true;
1021 >                            rotateRight(xp);
1022 >                            sib = (xp = x.parent) == null ? null : xp.left;
1023 >                        }
1024 >                        if (sib == null)
1025 >                            x = xp;
1026 >                        else {
1027 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1028 >                            if ((sl == null || !sl.red) &&
1029 >                                (sr == null || !sr.red)) {
1030 >                                sib.red = true;
1031 >                                x = xp;
1032 >                            }
1033 >                            else {
1034 >                                if (sl == null || !sl.red) {
1035 >                                    if (sr != null)
1036 >                                        sr.red = false;
1037 >                                    sib.red = true;
1038 >                                    rotateLeft(sib);
1039 >                                    sib = (xp = x.parent) == null ?
1040 >                                        null : xp.left;
1041 >                                }
1042 >                                if (sib != null) {
1043 >                                    sib.red = (xp == null) ? false : xp.red;
1044 >                                    if ((sl = sib.left) != null)
1045 >                                        sl.red = false;
1046 >                                }
1047 >                                if (xp != null) {
1048 >                                    xp.red = false;
1049 >                                    rotateRight(xp);
1050 >                                }
1051 >                                x = root;
1052 >                            }
1053 >                        }
1054 >                    }
1055 >                }
1056 >            }
1057 >            if (p == replacement && (pp = p.parent) != null) {
1058 >                if (p == pp.left) // detach pointers
1059 >                    pp.left = null;
1060 >                else if (p == pp.right)
1061 >                    pp.right = null;
1062 >                p.parent = null;
1063 >            }
1064          }
1065 +    }
1066  
1067 <        /**
1068 <         * Returns properly casted first entry of bin for given hash.
1069 <         */
1070 <        HashEntry<K,V> getFirst(int hash) {
1071 <            HashEntry<K,V>[] tab = table;
1072 <            return tab[hash & (tab.length - 1)];
1067 >    /* ---------------- Collision reduction methods -------------- */
1068 >
1069 >    /**
1070 >     * Spreads higher bits to lower, and also forces top bit to 0.
1071 >     * Because the table uses power-of-two masking, sets of hashes
1072 >     * that vary only in bits above the current mask will always
1073 >     * collide. (Among known examples are sets of Float keys holding
1074 >     * consecutive whole numbers in small tables.)  To counter this,
1075 >     * we apply a transform that spreads the impact of higher bits
1076 >     * downward. There is a tradeoff between speed, utility, and
1077 >     * quality of bit-spreading. Because many common sets of hashes
1078 >     * are already reasonably distributed across bits (so don't benefit
1079 >     * from spreading), and because we use trees to handle large sets
1080 >     * of collisions in bins, we don't need excessively high quality.
1081 >     */
1082 >    private static final int spread(int h) {
1083 >        h ^= (h >>> 18) ^ (h >>> 12);
1084 >        return (h ^ (h >>> 10)) & HASH_BITS;
1085 >    }
1086 >
1087 >    /**
1088 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1089 >     * only when locked.
1090 >     */
1091 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1092 >        if (key instanceof Comparable) {
1093 >            TreeBin<V> t = new TreeBin<V>();
1094 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1095 >                t.putTreeNode(e.hash, e.key, e.val);
1096 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1097          }
1098 +    }
1099  
1100 <        /**
1101 <         * Reads value field of an entry under lock. Called if value
1102 <         * field ever appears to be null. This is possible only if a
1103 <         * compiler happens to reorder a HashEntry initialization with
1104 <         * its table assignment, which is legal under memory model
1105 <         * but is not known to ever occur.
1106 <         */
1107 <        V readValueUnderLock(HashEntry<K,V> e) {
1108 <            lock();
1109 <            try {
1110 <                return e.value;
1111 <            } finally {
1112 <                unlock();
1100 >    /* ---------------- Internal access and update methods -------------- */
1101 >
1102 >    /** Implementation for get and containsKey */
1103 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1104 >        int h = spread(k.hashCode());
1105 >        retry: for (Node<V>[] tab = table; tab != null;) {
1106 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1107 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1108 >                if ((eh = e.hash) < 0) {
1109 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1110 >                        return ((TreeBin<V>)ek).getValue(h, k);
1111 >                    else {                      // restart with new table
1112 >                        tab = (Node<V>[])ek;
1113 >                        continue retry;
1114 >                    }
1115 >                }
1116 >                else if (eh == h && (ev = e.val) != null &&
1117 >                         ((ek = e.key) == k || k.equals(ek)))
1118 >                    return ev;
1119              }
1120 +            break;
1121          }
1122 +        return null;
1123 +    }
1124  
1125 <        /* Specialized implementations of map methods */
1126 <
1127 <        V get(Object key, int hash) {
1128 <            if (count != 0) { // read-volatile
1129 <                HashEntry<K,V> e = getFirst(hash);
1130 <                while (e != null) {
1131 <                    if (e.hash == hash && key.equals(e.key)) {
1132 <                        V v = e.value;
1133 <                        if (v != null)
1134 <                            return v;
1135 <                        return readValueUnderLock(e); // recheck
1125 >    /**
1126 >     * Implementation for the four public remove/replace methods:
1127 >     * Replaces node value with v, conditional upon match of cv if
1128 >     * non-null.  If resulting value is null, delete.
1129 >     */
1130 >    @SuppressWarnings("unchecked") private final V internalReplace
1131 >        (Object k, V v, Object cv) {
1132 >        int h = spread(k.hashCode());
1133 >        V oldVal = null;
1134 >        for (Node<V>[] tab = table;;) {
1135 >            Node<V> f; int i, fh; Object fk;
1136 >            if (tab == null ||
1137 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1138 >                break;
1139 >            else if ((fh = f.hash) < 0) {
1140 >                if ((fk = f.key) instanceof TreeBin) {
1141 >                    TreeBin<V> t = (TreeBin<V>)fk;
1142 >                    boolean validated = false;
1143 >                    boolean deleted = false;
1144 >                    t.acquire(0);
1145 >                    try {
1146 >                        if (tabAt(tab, i) == f) {
1147 >                            validated = true;
1148 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1149 >                            if (p != null) {
1150 >                                V pv = p.val;
1151 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1152 >                                    oldVal = pv;
1153 >                                    if ((p.val = v) == null) {
1154 >                                        deleted = true;
1155 >                                        t.deleteTreeNode(p);
1156 >                                    }
1157 >                                }
1158 >                            }
1159 >                        }
1160 >                    } finally {
1161 >                        t.release(0);
1162 >                    }
1163 >                    if (validated) {
1164 >                        if (deleted)
1165 >                            addCount(-1L, -1);
1166 >                        break;
1167                      }
1168 <                    e = e.next;
1168 >                }
1169 >                else
1170 >                    tab = (Node<V>[])fk;
1171 >            }
1172 >            else if (fh != h && f.next == null) // precheck
1173 >                break;                          // rules out possible existence
1174 >            else {
1175 >                boolean validated = false;
1176 >                boolean deleted = false;
1177 >                synchronized (f) {
1178 >                    if (tabAt(tab, i) == f) {
1179 >                        validated = true;
1180 >                        for (Node<V> e = f, pred = null;;) {
1181 >                            Object ek; V ev;
1182 >                            if (e.hash == h &&
1183 >                                ((ev = e.val) != null) &&
1184 >                                ((ek = e.key) == k || k.equals(ek))) {
1185 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1186 >                                    oldVal = ev;
1187 >                                    if ((e.val = v) == null) {
1188 >                                        deleted = true;
1189 >                                        Node<V> en = e.next;
1190 >                                        if (pred != null)
1191 >                                            pred.next = en;
1192 >                                        else
1193 >                                            setTabAt(tab, i, en);
1194 >                                    }
1195 >                                }
1196 >                                break;
1197 >                            }
1198 >                            pred = e;
1199 >                            if ((e = e.next) == null)
1200 >                                break;
1201 >                        }
1202 >                    }
1203 >                }
1204 >                if (validated) {
1205 >                    if (deleted)
1206 >                        addCount(-1L, -1);
1207 >                    break;
1208                  }
1209              }
343            return null;
1210          }
1211 +        return oldVal;
1212 +    }
1213  
1214 <        boolean containsKey(Object key, int hash) {
1215 <            if (count != 0) { // read-volatile
1216 <                HashEntry<K,V> e = getFirst(hash);
1217 <                while (e != null) {
1218 <                    if (e.hash == hash && key.equals(e.key))
1219 <                        return true;
1220 <                    e = e.next;
1214 >    /*
1215 >     * Internal versions of insertion methods
1216 >     * All have the same basic structure as the first (internalPut):
1217 >     *  1. If table uninitialized, create
1218 >     *  2. If bin empty, try to CAS new node
1219 >     *  3. If bin stale, use new table
1220 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1221 >     *  5. Lock and validate; if valid, scan and add or update
1222 >     *
1223 >     * The putAll method differs mainly in attempting to pre-allocate
1224 >     * enough table space, and also more lazily performs count updates
1225 >     * and checks.
1226 >     *
1227 >     * Most of the function-accepting methods can't be factored nicely
1228 >     * because they require different functional forms, so instead
1229 >     * sprawl out similar mechanics.
1230 >     */
1231 >
1232 >    /** Implementation for put and putIfAbsent */
1233 >    @SuppressWarnings("unchecked") private final V internalPut
1234 >        (K k, V v, boolean onlyIfAbsent) {
1235 >        if (k == null || v == null) throw new NullPointerException();
1236 >        int h = spread(k.hashCode());
1237 >        int len = 0;
1238 >        for (Node<V>[] tab = table;;) {
1239 >            int i, fh; Node<V> f; Object fk; V fv;
1240 >            if (tab == null)
1241 >                tab = initTable();
1242 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1243 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1244 >                    break;                   // no lock when adding to empty bin
1245 >            }
1246 >            else if ((fh = f.hash) < 0) {
1247 >                if ((fk = f.key) instanceof TreeBin) {
1248 >                    TreeBin<V> t = (TreeBin<V>)fk;
1249 >                    V oldVal = null;
1250 >                    t.acquire(0);
1251 >                    try {
1252 >                        if (tabAt(tab, i) == f) {
1253 >                            len = 2;
1254 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1255 >                            if (p != null) {
1256 >                                oldVal = p.val;
1257 >                                if (!onlyIfAbsent)
1258 >                                    p.val = v;
1259 >                            }
1260 >                        }
1261 >                    } finally {
1262 >                        t.release(0);
1263 >                    }
1264 >                    if (len != 0) {
1265 >                        if (oldVal != null)
1266 >                            return oldVal;
1267 >                        break;
1268 >                    }
1269 >                }
1270 >                else
1271 >                    tab = (Node<V>[])fk;
1272 >            }
1273 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1274 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1275 >                return fv;
1276 >            else {
1277 >                V oldVal = null;
1278 >                synchronized (f) {
1279 >                    if (tabAt(tab, i) == f) {
1280 >                        len = 1;
1281 >                        for (Node<V> e = f;; ++len) {
1282 >                            Object ek; V ev;
1283 >                            if (e.hash == h &&
1284 >                                (ev = e.val) != null &&
1285 >                                ((ek = e.key) == k || k.equals(ek))) {
1286 >                                oldVal = ev;
1287 >                                if (!onlyIfAbsent)
1288 >                                    e.val = v;
1289 >                                break;
1290 >                            }
1291 >                            Node<V> last = e;
1292 >                            if ((e = e.next) == null) {
1293 >                                last.next = new Node<V>(h, k, v, null);
1294 >                                if (len >= TREE_THRESHOLD)
1295 >                                    replaceWithTreeBin(tab, i, k);
1296 >                                break;
1297 >                            }
1298 >                        }
1299 >                    }
1300 >                }
1301 >                if (len != 0) {
1302 >                    if (oldVal != null)
1303 >                        return oldVal;
1304 >                    break;
1305                  }
1306              }
355            return false;
1307          }
1308 +        addCount(1L, len);
1309 +        return null;
1310 +    }
1311  
1312 <        boolean containsValue(Object value) {
1313 <            if (count != 0) { // read-volatile
1314 <                HashEntry<K,V>[] tab = table;
1315 <                int len = tab.length;
1316 <                for (int i = 0 ; i < len; i++) {
1317 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1318 <                        V v = e.value;
1319 <                        if (v == null) // recheck
1320 <                            v = readValueUnderLock(e);
1321 <                        if (value.equals(v))
1322 <                            return true;
1312 >    /** Implementation for computeIfAbsent */
1313 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1314 >        (K k, Function<? super K, ? extends V> mf) {
1315 >        if (k == null || mf == null)
1316 >            throw new NullPointerException();
1317 >        int h = spread(k.hashCode());
1318 >        V val = null;
1319 >        int len = 0;
1320 >        for (Node<V>[] tab = table;;) {
1321 >            Node<V> f; int i; Object fk;
1322 >            if (tab == null)
1323 >                tab = initTable();
1324 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1325 >                Node<V> node = new Node<V>(h, k, null, null);
1326 >                synchronized (node) {
1327 >                    if (casTabAt(tab, i, null, node)) {
1328 >                        len = 1;
1329 >                        try {
1330 >                            if ((val = mf.apply(k)) != null)
1331 >                                node.val = val;
1332 >                        } finally {
1333 >                            if (val == null)
1334 >                                setTabAt(tab, i, null);
1335 >                        }
1336                      }
1337                  }
1338 +                if (len != 0)
1339 +                    break;
1340 +            }
1341 +            else if (f.hash < 0) {
1342 +                if ((fk = f.key) instanceof TreeBin) {
1343 +                    TreeBin<V> t = (TreeBin<V>)fk;
1344 +                    boolean added = false;
1345 +                    t.acquire(0);
1346 +                    try {
1347 +                        if (tabAt(tab, i) == f) {
1348 +                            len = 1;
1349 +                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1350 +                            if (p != null)
1351 +                                val = p.val;
1352 +                            else if ((val = mf.apply(k)) != null) {
1353 +                                added = true;
1354 +                                len = 2;
1355 +                                t.putTreeNode(h, k, val);
1356 +                            }
1357 +                        }
1358 +                    } finally {
1359 +                        t.release(0);
1360 +                    }
1361 +                    if (len != 0) {
1362 +                        if (!added)
1363 +                            return val;
1364 +                        break;
1365 +                    }
1366 +                }
1367 +                else
1368 +                    tab = (Node<V>[])fk;
1369 +            }
1370 +            else {
1371 +                for (Node<V> e = f; e != null; e = e.next) { // prescan
1372 +                    Object ek; V ev;
1373 +                    if (e.hash == h && (ev = e.val) != null &&
1374 +                        ((ek = e.key) == k || k.equals(ek)))
1375 +                        return ev;
1376 +                }
1377 +                boolean added = false;
1378 +                synchronized (f) {
1379 +                    if (tabAt(tab, i) == f) {
1380 +                        len = 1;
1381 +                        for (Node<V> e = f;; ++len) {
1382 +                            Object ek; V ev;
1383 +                            if (e.hash == h &&
1384 +                                (ev = e.val) != null &&
1385 +                                ((ek = e.key) == k || k.equals(ek))) {
1386 +                                val = ev;
1387 +                                break;
1388 +                            }
1389 +                            Node<V> last = e;
1390 +                            if ((e = e.next) == null) {
1391 +                                if ((val = mf.apply(k)) != null) {
1392 +                                    added = true;
1393 +                                    last.next = new Node<V>(h, k, val, null);
1394 +                                    if (len >= TREE_THRESHOLD)
1395 +                                        replaceWithTreeBin(tab, i, k);
1396 +                                }
1397 +                                break;
1398 +                            }
1399 +                        }
1400 +                    }
1401 +                }
1402 +                if (len != 0) {
1403 +                    if (!added)
1404 +                        return val;
1405 +                    break;
1406 +                }
1407              }
372            return false;
1408          }
1409 +        if (val != null)
1410 +            addCount(1L, len);
1411 +        return val;
1412 +    }
1413  
1414 <        boolean replace(K key, int hash, V oldValue, V newValue) {
1415 <            lock();
1416 <            try {
1417 <                HashEntry<K,V> e = getFirst(hash);
1418 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1419 <                    e = e.next;
1414 >    /** Implementation for compute */
1415 >    @SuppressWarnings("unchecked") private final V internalCompute
1416 >        (K k, boolean onlyIfPresent,
1417 >         BiFunction<? super K, ? super V, ? extends V> mf) {
1418 >        if (k == null || mf == null)
1419 >            throw new NullPointerException();
1420 >        int h = spread(k.hashCode());
1421 >        V val = null;
1422 >        int delta = 0;
1423 >        int len = 0;
1424 >        for (Node<V>[] tab = table;;) {
1425 >            Node<V> f; int i, fh; Object fk;
1426 >            if (tab == null)
1427 >                tab = initTable();
1428 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1429 >                if (onlyIfPresent)
1430 >                    break;
1431 >                Node<V> node = new Node<V>(h, k, null, null);
1432 >                synchronized (node) {
1433 >                    if (casTabAt(tab, i, null, node)) {
1434 >                        try {
1435 >                            len = 1;
1436 >                            if ((val = mf.apply(k, null)) != null) {
1437 >                                node.val = val;
1438 >                                delta = 1;
1439 >                            }
1440 >                        } finally {
1441 >                            if (delta == 0)
1442 >                                setTabAt(tab, i, null);
1443 >                        }
1444 >                    }
1445 >                }
1446 >                if (len != 0)
1447 >                    break;
1448 >            }
1449 >            else if ((fh = f.hash) < 0) {
1450 >                if ((fk = f.key) instanceof TreeBin) {
1451 >                    TreeBin<V> t = (TreeBin<V>)fk;
1452 >                    t.acquire(0);
1453 >                    try {
1454 >                        if (tabAt(tab, i) == f) {
1455 >                            len = 1;
1456 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1457 >                            if (p == null && onlyIfPresent)
1458 >                                break;
1459 >                            V pv = (p == null) ? null : p.val;
1460 >                            if ((val = mf.apply(k, pv)) != null) {
1461 >                                if (p != null)
1462 >                                    p.val = val;
1463 >                                else {
1464 >                                    len = 2;
1465 >                                    delta = 1;
1466 >                                    t.putTreeNode(h, k, val);
1467 >                                }
1468 >                            }
1469 >                            else if (p != null) {
1470 >                                delta = -1;
1471 >                                t.deleteTreeNode(p);
1472 >                            }
1473 >                        }
1474 >                    } finally {
1475 >                        t.release(0);
1476 >                    }
1477 >                    if (len != 0)
1478 >                        break;
1479 >                }
1480 >                else
1481 >                    tab = (Node<V>[])fk;
1482 >            }
1483 >            else {
1484 >                synchronized (f) {
1485 >                    if (tabAt(tab, i) == f) {
1486 >                        len = 1;
1487 >                        for (Node<V> e = f, pred = null;; ++len) {
1488 >                            Object ek; V ev;
1489 >                            if (e.hash == h &&
1490 >                                (ev = e.val) != null &&
1491 >                                ((ek = e.key) == k || k.equals(ek))) {
1492 >                                val = mf.apply(k, ev);
1493 >                                if (val != null)
1494 >                                    e.val = val;
1495 >                                else {
1496 >                                    delta = -1;
1497 >                                    Node<V> en = e.next;
1498 >                                    if (pred != null)
1499 >                                        pred.next = en;
1500 >                                    else
1501 >                                        setTabAt(tab, i, en);
1502 >                                }
1503 >                                break;
1504 >                            }
1505 >                            pred = e;
1506 >                            if ((e = e.next) == null) {
1507 >                                if (!onlyIfPresent &&
1508 >                                    (val = mf.apply(k, null)) != null) {
1509 >                                    pred.next = new Node<V>(h, k, val, null);
1510 >                                    delta = 1;
1511 >                                    if (len >= TREE_THRESHOLD)
1512 >                                        replaceWithTreeBin(tab, i, k);
1513 >                                }
1514 >                                break;
1515 >                            }
1516 >                        }
1517 >                    }
1518 >                }
1519 >                if (len != 0)
1520 >                    break;
1521 >            }
1522 >        }
1523 >        if (delta != 0)
1524 >            addCount((long)delta, len);
1525 >        return val;
1526 >    }
1527  
1528 <                boolean replaced = false;
1529 <                if (e != null && oldValue.equals(e.value)) {
1530 <                    replaced = true;
1531 <                    e.value = newValue;
1528 >    /** Implementation for merge */
1529 >    @SuppressWarnings("unchecked") private final V internalMerge
1530 >        (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1531 >        if (k == null || v == null || mf == null)
1532 >            throw new NullPointerException();
1533 >        int h = spread(k.hashCode());
1534 >        V val = null;
1535 >        int delta = 0;
1536 >        int len = 0;
1537 >        for (Node<V>[] tab = table;;) {
1538 >            int i; Node<V> f; Object fk; V fv;
1539 >            if (tab == null)
1540 >                tab = initTable();
1541 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1542 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1543 >                    delta = 1;
1544 >                    val = v;
1545 >                    break;
1546 >                }
1547 >            }
1548 >            else if (f.hash < 0) {
1549 >                if ((fk = f.key) instanceof TreeBin) {
1550 >                    TreeBin<V> t = (TreeBin<V>)fk;
1551 >                    t.acquire(0);
1552 >                    try {
1553 >                        if (tabAt(tab, i) == f) {
1554 >                            len = 1;
1555 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1556 >                            val = (p == null) ? v : mf.apply(p.val, v);
1557 >                            if (val != null) {
1558 >                                if (p != null)
1559 >                                    p.val = val;
1560 >                                else {
1561 >                                    len = 2;
1562 >                                    delta = 1;
1563 >                                    t.putTreeNode(h, k, val);
1564 >                                }
1565 >                            }
1566 >                            else if (p != null) {
1567 >                                delta = -1;
1568 >                                t.deleteTreeNode(p);
1569 >                            }
1570 >                        }
1571 >                    } finally {
1572 >                        t.release(0);
1573 >                    }
1574 >                    if (len != 0)
1575 >                        break;
1576                  }
1577 <                return replaced;
1578 <            } finally {
1579 <                unlock();
1577 >                else
1578 >                    tab = (Node<V>[])fk;
1579 >            }
1580 >            else {
1581 >                synchronized (f) {
1582 >                    if (tabAt(tab, i) == f) {
1583 >                        len = 1;
1584 >                        for (Node<V> e = f, pred = null;; ++len) {
1585 >                            Object ek; V ev;
1586 >                            if (e.hash == h &&
1587 >                                (ev = e.val) != null &&
1588 >                                ((ek = e.key) == k || k.equals(ek))) {
1589 >                                val = mf.apply(ev, v);
1590 >                                if (val != null)
1591 >                                    e.val = val;
1592 >                                else {
1593 >                                    delta = -1;
1594 >                                    Node<V> en = e.next;
1595 >                                    if (pred != null)
1596 >                                        pred.next = en;
1597 >                                    else
1598 >                                        setTabAt(tab, i, en);
1599 >                                }
1600 >                                break;
1601 >                            }
1602 >                            pred = e;
1603 >                            if ((e = e.next) == null) {
1604 >                                val = v;
1605 >                                pred.next = new Node<V>(h, k, val, null);
1606 >                                delta = 1;
1607 >                                if (len >= TREE_THRESHOLD)
1608 >                                    replaceWithTreeBin(tab, i, k);
1609 >                                break;
1610 >                            }
1611 >                        }
1612 >                    }
1613 >                }
1614 >                if (len != 0)
1615 >                    break;
1616              }
1617          }
1618 +        if (delta != 0)
1619 +            addCount((long)delta, len);
1620 +        return val;
1621 +    }
1622  
1623 <        V replace(K key, int hash, V newValue) {
1624 <            lock();
1625 <            try {
1626 <                HashEntry<K,V> e = getFirst(hash);
1627 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1628 <                    e = e.next;
1623 >    /** Implementation for putAll */
1624 >    @SuppressWarnings("unchecked") private final void internalPutAll
1625 >        (Map<? extends K, ? extends V> m) {
1626 >        tryPresize(m.size());
1627 >        long delta = 0L;     // number of uncommitted additions
1628 >        boolean npe = false; // to throw exception on exit for nulls
1629 >        try {                // to clean up counts on other exceptions
1630 >            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1631 >                Object k; V v;
1632 >                if (entry == null || (k = entry.getKey()) == null ||
1633 >                    (v = entry.getValue()) == null) {
1634 >                    npe = true;
1635 >                    break;
1636 >                }
1637 >                int h = spread(k.hashCode());
1638 >                for (Node<V>[] tab = table;;) {
1639 >                    int i; Node<V> f; int fh; Object fk;
1640 >                    if (tab == null)
1641 >                        tab = initTable();
1642 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1643 >                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1644 >                            ++delta;
1645 >                            break;
1646 >                        }
1647 >                    }
1648 >                    else if ((fh = f.hash) < 0) {
1649 >                        if ((fk = f.key) instanceof TreeBin) {
1650 >                            TreeBin<V> t = (TreeBin<V>)fk;
1651 >                            boolean validated = false;
1652 >                            t.acquire(0);
1653 >                            try {
1654 >                                if (tabAt(tab, i) == f) {
1655 >                                    validated = true;
1656 >                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1657 >                                    if (p != null)
1658 >                                        p.val = v;
1659 >                                    else {
1660 >                                        t.putTreeNode(h, k, v);
1661 >                                        ++delta;
1662 >                                    }
1663 >                                }
1664 >                            } finally {
1665 >                                t.release(0);
1666 >                            }
1667 >                            if (validated)
1668 >                                break;
1669 >                        }
1670 >                        else
1671 >                            tab = (Node<V>[])fk;
1672 >                    }
1673 >                    else {
1674 >                        int len = 0;
1675 >                        synchronized (f) {
1676 >                            if (tabAt(tab, i) == f) {
1677 >                                len = 1;
1678 >                                for (Node<V> e = f;; ++len) {
1679 >                                    Object ek; V ev;
1680 >                                    if (e.hash == h &&
1681 >                                        (ev = e.val) != null &&
1682 >                                        ((ek = e.key) == k || k.equals(ek))) {
1683 >                                        e.val = v;
1684 >                                        break;
1685 >                                    }
1686 >                                    Node<V> last = e;
1687 >                                    if ((e = e.next) == null) {
1688 >                                        ++delta;
1689 >                                        last.next = new Node<V>(h, k, v, null);
1690 >                                        if (len >= TREE_THRESHOLD)
1691 >                                            replaceWithTreeBin(tab, i, k);
1692 >                                        break;
1693 >                                    }
1694 >                                }
1695 >                            }
1696 >                        }
1697 >                        if (len != 0) {
1698 >                            if (len > 1) {
1699 >                                addCount(delta, len);
1700 >                                delta = 0L;
1701 >                            }
1702 >                            break;
1703 >                        }
1704 >                    }
1705 >                }
1706 >            }
1707 >        } finally {
1708 >            if (delta != 0L)
1709 >                addCount(delta, 2);
1710 >        }
1711 >        if (npe)
1712 >            throw new NullPointerException();
1713 >    }
1714  
1715 <                V oldValue = null;
1716 <                if (e != null) {
1717 <                    oldValue = e.value;
1718 <                    e.value = newValue;
1715 >    /**
1716 >     * Implementation for clear. Steps through each bin, removing all
1717 >     * nodes.
1718 >     */
1719 >    @SuppressWarnings("unchecked") private final void internalClear() {
1720 >        long delta = 0L; // negative number of deletions
1721 >        int i = 0;
1722 >        Node<V>[] tab = table;
1723 >        while (tab != null && i < tab.length) {
1724 >            Node<V> f = tabAt(tab, i);
1725 >            if (f == null)
1726 >                ++i;
1727 >            else if (f.hash < 0) {
1728 >                Object fk;
1729 >                if ((fk = f.key) instanceof TreeBin) {
1730 >                    TreeBin<V> t = (TreeBin<V>)fk;
1731 >                    t.acquire(0);
1732 >                    try {
1733 >                        if (tabAt(tab, i) == f) {
1734 >                            for (Node<V> p = t.first; p != null; p = p.next) {
1735 >                                if (p.val != null) { // (currently always true)
1736 >                                    p.val = null;
1737 >                                    --delta;
1738 >                                }
1739 >                            }
1740 >                            t.first = null;
1741 >                            t.root = null;
1742 >                            ++i;
1743 >                        }
1744 >                    } finally {
1745 >                        t.release(0);
1746 >                    }
1747 >                }
1748 >                else
1749 >                    tab = (Node<V>[])fk;
1750 >            }
1751 >            else {
1752 >                synchronized (f) {
1753 >                    if (tabAt(tab, i) == f) {
1754 >                        for (Node<V> e = f; e != null; e = e.next) {
1755 >                            if (e.val != null) {  // (currently always true)
1756 >                                e.val = null;
1757 >                                --delta;
1758 >                            }
1759 >                        }
1760 >                        setTabAt(tab, i, null);
1761 >                        ++i;
1762 >                    }
1763                  }
405                return oldValue;
406            } finally {
407                unlock();
1764              }
1765          }
1766 +        if (delta != 0L)
1767 +            addCount(delta, -1);
1768 +    }
1769  
1770 +    /* ---------------- Table Initialization and Resizing -------------- */
1771  
1772 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
1773 <            lock();
1774 <            try {
1775 <                int c = count;
1776 <                if (c++ > threshold) // ensure capacity
1777 <                    rehash();
1778 <                HashEntry<K,V>[] tab = table;
1779 <                int index = hash & (tab.length - 1);
1780 <                HashEntry<K,V> first = tab[index];
1781 <                HashEntry<K,V> e = first;
1782 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1783 <                    e = e.next;
1772 >    /**
1773 >     * Returns a power of two table size for the given desired capacity.
1774 >     * See Hackers Delight, sec 3.2
1775 >     */
1776 >    private static final int tableSizeFor(int c) {
1777 >        int n = c - 1;
1778 >        n |= n >>> 1;
1779 >        n |= n >>> 2;
1780 >        n |= n >>> 4;
1781 >        n |= n >>> 8;
1782 >        n |= n >>> 16;
1783 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1784 >    }
1785  
1786 <                V oldValue;
1787 <                if (e != null) {
1788 <                    oldValue = e.value;
1789 <                    if (!onlyIfAbsent)
1790 <                        e.value = value;
1786 >    /**
1787 >     * Initializes table, using the size recorded in sizeCtl.
1788 >     */
1789 >    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1790 >        Node<V>[] tab; int sc;
1791 >        while ((tab = table) == null) {
1792 >            if ((sc = sizeCtl) < 0)
1793 >                Thread.yield(); // lost initialization race; just spin
1794 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1795 >                try {
1796 >                    if ((tab = table) == null) {
1797 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1798 >                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1799 >                        table = tab = (Node<V>[])tb;
1800 >                        sc = n - (n >>> 2);
1801 >                    }
1802 >                } finally {
1803 >                    sizeCtl = sc;
1804                  }
1805 <                else {
1806 <                    oldValue = null;
1807 <                    ++modCount;
1808 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
1809 <                    count = c; // write-volatile
1805 >                break;
1806 >            }
1807 >        }
1808 >        return tab;
1809 >    }
1810 >
1811 >    /**
1812 >     * Adds to count, and if table is too small and not already
1813 >     * resizing, initiates transfer. If already resizing, helps
1814 >     * perform transfer if work is available.  Rechecks occupancy
1815 >     * after a transfer to see if another resize is already needed
1816 >     * because resizings are lagging additions.
1817 >     *
1818 >     * @param x the count to add
1819 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1820 >     */
1821 >    private final void addCount(long x, int check) {
1822 >        Cell[] as; long b, s;
1823 >        if ((as = counterCells) != null ||
1824 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1825 >            Cell a; long v; int m;
1826 >            boolean uncontended = true;
1827 >            if (as == null || (m = as.length - 1) < 0 ||
1828 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1829 >                !(uncontended =
1830 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1831 >                fullAddCount(x, uncontended);
1832 >                return;
1833 >            }
1834 >            if (check <= 1)
1835 >                return;
1836 >            s = sumCount();
1837 >        }
1838 >        if (check >= 0) {
1839 >            Node<V>[] tab, nt; int sc;
1840 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1841 >                   tab.length < MAXIMUM_CAPACITY) {
1842 >                if (sc < 0) {
1843 >                    if (sc == -1 || transferIndex <= transferOrigin ||
1844 >                        (nt = nextTable) == null)
1845 >                        break;
1846 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1847 >                        transfer(tab, nt);
1848                  }
1849 <                return oldValue;
1850 <            } finally {
1851 <                unlock();
1849 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1850 >                    transfer(tab, null);
1851 >                s = sumCount();
1852              }
1853          }
1854 +    }
1855 +
1856 +    /**
1857 +     * Tries to presize table to accommodate the given number of elements.
1858 +     *
1859 +     * @param size number of elements (doesn't need to be perfectly accurate)
1860 +     */
1861 +    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1862 +        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1863 +            tableSizeFor(size + (size >>> 1) + 1);
1864 +        int sc;
1865 +        while ((sc = sizeCtl) >= 0) {
1866 +            Node<V>[] tab = table; int n;
1867 +            if (tab == null || (n = tab.length) == 0) {
1868 +                n = (sc > c) ? sc : c;
1869 +                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1870 +                    try {
1871 +                        if (table == tab) {
1872 +                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1873 +                            table = (Node<V>[])tb;
1874 +                            sc = n - (n >>> 2);
1875 +                        }
1876 +                    } finally {
1877 +                        sizeCtl = sc;
1878 +                    }
1879 +                }
1880 +            }
1881 +            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1882 +                break;
1883 +            else if (tab == table &&
1884 +                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1885 +                transfer(tab, null);
1886 +        }
1887 +    }
1888  
1889 <        void rehash() {
1890 <            HashEntry<K,V>[] oldTable = table;
1891 <            int oldCapacity = oldTable.length;
1892 <            if (oldCapacity >= MAXIMUM_CAPACITY)
1889 >    /**
1890 >     * Moves and/or copies the nodes in each bin to new table. See
1891 >     * above for explanation.
1892 >     */
1893 >    @SuppressWarnings("unchecked") private final void transfer
1894 >        (Node<V>[] tab, Node<V>[] nextTab) {
1895 >        int n = tab.length, stride;
1896 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1897 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1898 >        if (nextTab == null) {            // initiating
1899 >            try {
1900 >                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1901 >                nextTab = (Node<V>[])tb;
1902 >            } catch (Throwable ex) {      // try to cope with OOME
1903 >                sizeCtl = Integer.MAX_VALUE;
1904                  return;
1905 +            }
1906 +            nextTable = nextTab;
1907 +            transferOrigin = n;
1908 +            transferIndex = n;
1909 +            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1910 +            for (int k = n; k > 0;) {    // progressively reveal ready slots
1911 +                int nextk = (k > stride) ? k - stride : 0;
1912 +                for (int m = nextk; m < k; ++m)
1913 +                    nextTab[m] = rev;
1914 +                for (int m = n + nextk; m < n + k; ++m)
1915 +                    nextTab[m] = rev;
1916 +                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1917 +            }
1918 +        }
1919 +        int nextn = nextTab.length;
1920 +        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1921 +        boolean advance = true;
1922 +        for (int i = 0, bound = 0;;) {
1923 +            int nextIndex, nextBound; Node<V> f; Object fk;
1924 +            while (advance) {
1925 +                if (--i >= bound)
1926 +                    advance = false;
1927 +                else if ((nextIndex = transferIndex) <= transferOrigin) {
1928 +                    i = -1;
1929 +                    advance = false;
1930 +                }
1931 +                else if (U.compareAndSwapInt
1932 +                         (this, TRANSFERINDEX, nextIndex,
1933 +                          nextBound = (nextIndex > stride ?
1934 +                                       nextIndex - stride : 0))) {
1935 +                    bound = nextBound;
1936 +                    i = nextIndex - 1;
1937 +                    advance = false;
1938 +                }
1939 +            }
1940 +            if (i < 0 || i >= n || i + n >= nextn) {
1941 +                for (int sc;;) {
1942 +                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1943 +                        if (sc == -1) {
1944 +                            nextTable = null;
1945 +                            table = nextTab;
1946 +                            sizeCtl = (n << 1) - (n >>> 1);
1947 +                        }
1948 +                        return;
1949 +                    }
1950 +                }
1951 +            }
1952 +            else if ((f = tabAt(tab, i)) == null) {
1953 +                if (casTabAt(tab, i, null, fwd)) {
1954 +                    setTabAt(nextTab, i, null);
1955 +                    setTabAt(nextTab, i + n, null);
1956 +                    advance = true;
1957 +                }
1958 +            }
1959 +            else if (f.hash >= 0) {
1960 +                synchronized (f) {
1961 +                    if (tabAt(tab, i) == f) {
1962 +                        int runBit = f.hash & n;
1963 +                        Node<V> lastRun = f, lo = null, hi = null;
1964 +                        for (Node<V> p = f.next; p != null; p = p.next) {
1965 +                            int b = p.hash & n;
1966 +                            if (b != runBit) {
1967 +                                runBit = b;
1968 +                                lastRun = p;
1969 +                            }
1970 +                        }
1971 +                        if (runBit == 0)
1972 +                            lo = lastRun;
1973 +                        else
1974 +                            hi = lastRun;
1975 +                        for (Node<V> p = f; p != lastRun; p = p.next) {
1976 +                            int ph = p.hash;
1977 +                            Object pk = p.key; V pv = p.val;
1978 +                            if ((ph & n) == 0)
1979 +                                lo = new Node<V>(ph, pk, pv, lo);
1980 +                            else
1981 +                                hi = new Node<V>(ph, pk, pv, hi);
1982 +                        }
1983 +                        setTabAt(nextTab, i, lo);
1984 +                        setTabAt(nextTab, i + n, hi);
1985 +                        setTabAt(tab, i, fwd);
1986 +                        advance = true;
1987 +                    }
1988 +                }
1989 +            }
1990 +            else if ((fk = f.key) instanceof TreeBin) {
1991 +                TreeBin<V> t = (TreeBin<V>)fk;
1992 +                t.acquire(0);
1993 +                try {
1994 +                    if (tabAt(tab, i) == f) {
1995 +                        TreeBin<V> lt = new TreeBin<V>();
1996 +                        TreeBin<V> ht = new TreeBin<V>();
1997 +                        int lc = 0, hc = 0;
1998 +                        for (Node<V> e = t.first; e != null; e = e.next) {
1999 +                            int h = e.hash;
2000 +                            Object k = e.key; V v = e.val;
2001 +                            if ((h & n) == 0) {
2002 +                                ++lc;
2003 +                                lt.putTreeNode(h, k, v);
2004 +                            }
2005 +                            else {
2006 +                                ++hc;
2007 +                                ht.putTreeNode(h, k, v);
2008 +                            }
2009 +                        }
2010 +                        Node<V> ln, hn; // throw away trees if too small
2011 +                        if (lc < TREE_THRESHOLD) {
2012 +                            ln = null;
2013 +                            for (Node<V> p = lt.first; p != null; p = p.next)
2014 +                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2015 +                        }
2016 +                        else
2017 +                            ln = new Node<V>(MOVED, lt, null, null);
2018 +                        setTabAt(nextTab, i, ln);
2019 +                        if (hc < TREE_THRESHOLD) {
2020 +                            hn = null;
2021 +                            for (Node<V> p = ht.first; p != null; p = p.next)
2022 +                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2023 +                        }
2024 +                        else
2025 +                            hn = new Node<V>(MOVED, ht, null, null);
2026 +                        setTabAt(nextTab, i + n, hn);
2027 +                        setTabAt(tab, i, fwd);
2028 +                        advance = true;
2029 +                    }
2030 +                } finally {
2031 +                    t.release(0);
2032 +                }
2033 +            }
2034 +            else
2035 +                advance = true; // already processed
2036 +        }
2037 +    }
2038  
2039 <            /*
450 <             * Reclassify nodes in each list to new Map.  Because we are
451 <             * using power-of-two expansion, the elements from each bin
452 <             * must either stay at same index, or move with a power of two
453 <             * offset. We eliminate unnecessary node creation by catching
454 <             * cases where old nodes can be reused because their next
455 <             * fields won't change. Statistically, at the default
456 <             * threshold, only about one-sixth of them need cloning when
457 <             * a table doubles. The nodes they replace will be garbage
458 <             * collectable as soon as they are no longer referenced by any
459 <             * reader thread that may be in the midst of traversing table
460 <             * right now.
461 <             */
462 <
463 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
464 <            threshold = (int)(newTable.length * loadFactor);
465 <            int sizeMask = newTable.length - 1;
466 <            for (int i = 0; i < oldCapacity ; i++) {
467 <                // We need to guarantee that any existing reads of old Map can
468 <                //  proceed. So we cannot yet null out each bin.
469 <                HashEntry<K,V> e = oldTable[i];
470 <
471 <                if (e != null) {
472 <                    HashEntry<K,V> next = e.next;
473 <                    int idx = e.hash & sizeMask;
474 <
475 <                    //  Single node on list
476 <                    if (next == null)
477 <                        newTable[idx] = e;
2039 >    /* ---------------- Counter support -------------- */
2040  
2041 <                    else {
2042 <                        // Reuse trailing consecutive sequence at same slot
2043 <                        HashEntry<K,V> lastRun = e;
2044 <                        int lastIdx = idx;
2045 <                        for (HashEntry<K,V> last = next;
2046 <                             last != null;
2047 <                             last = last.next) {
2048 <                            int k = last.hash & sizeMask;
2049 <                            if (k != lastIdx) {
2050 <                                lastIdx = k;
2051 <                                lastRun = last;
2041 >    final long sumCount() {
2042 >        Cell[] as = counterCells; Cell a;
2043 >        long sum = baseCount;
2044 >        if (as != null) {
2045 >            for (int i = 0; i < as.length; ++i) {
2046 >                if ((a = as[i]) != null)
2047 >                    sum += a.value;
2048 >            }
2049 >        }
2050 >        return sum;
2051 >    }
2052 >
2053 >    // See LongAdder version for explanation
2054 >    private final void fullAddCount(long x, boolean wasUncontended) {
2055 >        int h;
2056 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2057 >            ThreadLocalRandom.localInit();      // force initialization
2058 >            h = ThreadLocalRandom.getProbe();
2059 >            wasUncontended = true;
2060 >        }
2061 >        boolean collide = false;                // True if last slot nonempty
2062 >        for (;;) {
2063 >            Cell[] as; Cell a; int n; long v;
2064 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2065 >                if ((a = as[(n - 1) & h]) == null) {
2066 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2067 >                        Cell r = new Cell(x); // Optimistic create
2068 >                        if (cellsBusy == 0 &&
2069 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2070 >                            boolean created = false;
2071 >                            try {               // Recheck under lock
2072 >                                Cell[] rs; int m, j;
2073 >                                if ((rs = counterCells) != null &&
2074 >                                    (m = rs.length) > 0 &&
2075 >                                    rs[j = (m - 1) & h] == null) {
2076 >                                    rs[j] = r;
2077 >                                    created = true;
2078 >                                }
2079 >                            } finally {
2080 >                                cellsBusy = 0;
2081                              }
2082 +                            if (created)
2083 +                                break;
2084 +                            continue;           // Slot is now non-empty
2085 +                        }
2086 +                    }
2087 +                    collide = false;
2088 +                }
2089 +                else if (!wasUncontended)       // CAS already known to fail
2090 +                    wasUncontended = true;      // Continue after rehash
2091 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2092 +                    break;
2093 +                else if (counterCells != as || n >= NCPU)
2094 +                    collide = false;            // At max size or stale
2095 +                else if (!collide)
2096 +                    collide = true;
2097 +                else if (cellsBusy == 0 &&
2098 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2099 +                    try {
2100 +                        if (counterCells == as) {// Expand table unless stale
2101 +                            Cell[] rs = new Cell[n << 1];
2102 +                            for (int i = 0; i < n; ++i)
2103 +                                rs[i] = as[i];
2104 +                            counterCells = rs;
2105                          }
2106 <                        newTable[lastIdx] = lastRun;
2106 >                    } finally {
2107 >                        cellsBusy = 0;
2108 >                    }
2109 >                    collide = false;
2110 >                    continue;                   // Retry with expanded table
2111 >                }
2112 >                h = ThreadLocalRandom.advanceProbe(h);
2113 >            }
2114 >            else if (cellsBusy == 0 && counterCells == as &&
2115 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2116 >                boolean init = false;
2117 >                try {                           // Initialize table
2118 >                    if (counterCells == as) {
2119 >                        Cell[] rs = new Cell[2];
2120 >                        rs[h & 1] = new Cell(x);
2121 >                        counterCells = rs;
2122 >                        init = true;
2123 >                    }
2124 >                } finally {
2125 >                    cellsBusy = 0;
2126 >                }
2127 >                if (init)
2128 >                    break;
2129 >            }
2130 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2131 >                break;                          // Fall back on using base
2132 >        }
2133 >    }
2134  
2135 <                        // Clone all remaining nodes
2136 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
2137 <                            int k = p.hash & sizeMask;
2138 <                            HashEntry<K,V> n = newTable[k];
2139 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
2140 <                                                             n, p.value);
2135 >    /* ----------------Table Traversal -------------- */
2136 >
2137 >    /**
2138 >     * Encapsulates traversal for methods such as containsValue; also
2139 >     * serves as a base class for other iterators and bulk tasks.
2140 >     *
2141 >     * At each step, the iterator snapshots the key ("nextKey") and
2142 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2143 >     * snapshot, has a non-null user value). Because val fields can
2144 >     * change (including to null, indicating deletion), field nextVal
2145 >     * might not be accurate at point of use, but still maintains the
2146 >     * weak consistency property of holding a value that was once
2147 >     * valid. To support iterator.remove, the nextKey field is not
2148 >     * updated (nulled out) when the iterator cannot advance.
2149 >     *
2150 >     * Exported iterators must track whether the iterator has advanced
2151 >     * (in hasNext vs next) (by setting/checking/nulling field
2152 >     * nextVal), and then extract key, value, or key-value pairs as
2153 >     * return values of next().
2154 >     *
2155 >     * Method advance visits once each still-valid node that was
2156 >     * reachable upon iterator construction. It might miss some that
2157 >     * were added to a bin after the bin was visited, which is OK wrt
2158 >     * consistency guarantees. Maintaining this property in the face
2159 >     * of possible ongoing resizes requires a fair amount of
2160 >     * bookkeeping state that is difficult to optimize away amidst
2161 >     * volatile accesses.  Even so, traversal maintains reasonable
2162 >     * throughput.
2163 >     *
2164 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2165 >     * However, if the table has been resized, then all future steps
2166 >     * must traverse both the bin at the current index as well as at
2167 >     * (index + baseSize); and so on for further resizings. To
2168 >     * paranoically cope with potential sharing by users of iterators
2169 >     * across threads, iteration terminates if a bounds checks fails
2170 >     * for a table read.
2171 >     *
2172 >     * Methods advanceKey and advanceValue are specializations of the
2173 >     * common cases of advance, relaying to the full version
2174 >     * otherwise. The forEachKey and forEachValue methods further
2175 >     * specialize, bypassing all incremental field updates in most cases.
2176 >     *
2177 >     * This class supports both Spliterator-based traversal and
2178 >     * CountedCompleter-based bulk tasks. The same "batch" field is
2179 >     * used, but in slightly different ways, in the two cases.  For
2180 >     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2181 >     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2182 >     * size that halves down to zero for leaf tasks, that is only
2183 >     * computed upon execution of the task. (Tasks can be submitted to
2184 >     * any pool, of any size, so we don't know scale factors until
2185 >     * running.)
2186 >     *
2187 >     * This class extends CountedCompleter to streamline parallel
2188 >     * iteration in bulk operations. This adds only a few fields of
2189 >     * space overhead, which is small enough in cases where it is not
2190 >     * needed to not worry about it.  Because CountedCompleter is
2191 >     * Serializable, but iterators need not be, we need to add warning
2192 >     * suppressions.
2193 >     */
2194 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2195 >        extends CountedCompleter<R> {
2196 >        final ConcurrentHashMap<K,V> map;
2197 >        Node<V> next;        // the next entry to use
2198 >        K nextKey;           // cached key field of next
2199 >        V nextVal;           // cached val field of next
2200 >        Node<V>[] tab;       // current table; updated if resized
2201 >        int index;           // index of bin to use next
2202 >        int baseIndex;       // current index of initial table
2203 >        int baseLimit;       // index bound for initial table
2204 >        final int baseSize;  // initial table size
2205 >        int batch;           // split control
2206 >
2207 >        /** Creates iterator for all entries in the table. */
2208 >        Traverser(ConcurrentHashMap<K,V> map) {
2209 >            this.map = map;
2210 >            Node<V>[] t = this.tab = map.table;
2211 >            baseLimit = baseSize = (t == null) ? 0 : t.length;
2212 >        }
2213 >
2214 >        /** Task constructor */
2215 >        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2216 >            super(it);
2217 >            this.map = map;
2218 >            this.batch = batch; // -1 if unknown
2219 >            if (it == null) {
2220 >                Node<V>[] t = this.tab = map.table;
2221 >                baseLimit = baseSize = (t == null) ? 0 : t.length;
2222 >            }
2223 >            else { // split parent
2224 >                this.tab = it.tab;
2225 >                this.baseSize = it.baseSize;
2226 >                int hi = this.baseLimit = it.baseLimit;
2227 >                it.baseLimit = this.index = this.baseIndex =
2228 >                    (hi + it.baseIndex) >>> 1;
2229 >            }
2230 >        }
2231 >
2232 >        /** Spliterator constructor */
2233 >        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2234 >            super(it);
2235 >            this.map = map;
2236 >            if (it == null) {
2237 >                Node<V>[] t = this.tab = map.table;
2238 >                baseLimit = baseSize = (t == null) ? 0 : t.length;
2239 >                long n = map.sumCount();
2240 >                batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2241 >                         (int)n);
2242 >            }
2243 >            else {
2244 >                this.tab = it.tab;
2245 >                this.baseSize = it.baseSize;
2246 >                int hi = this.baseLimit = it.baseLimit;
2247 >                it.baseLimit = this.index = this.baseIndex =
2248 >                    (hi + it.baseIndex) >>> 1;
2249 >                this.batch = it.batch >>>= 1;
2250 >            }
2251 >        }
2252 >
2253 >        /**
2254 >         * Advances if possible, returning next valid value, or null if none.
2255 >         */
2256 >        @SuppressWarnings("unchecked") final V advance() {
2257 >            for (Node<V> e = next;;) {
2258 >                if (e != null)                  // advance past used/skipped node
2259 >                    e = next = e.next;
2260 >                while (e == null) {             // get to next non-null bin
2261 >                    Node<V>[] t; int i, n;      // must use locals in checks
2262 >                    if (baseIndex >= baseLimit || (t = tab) == null ||
2263 >                        (n = t.length) <= (i = index) || i < 0)
2264 >                        return nextVal = null;
2265 >                    if ((e = next = tabAt(t, index)) != null && e.hash < 0) {
2266 >                        Object ek;
2267 >                        if ((ek = e.key) instanceof TreeBin)
2268 >                            e = ((TreeBin<V>)ek).first;
2269 >                        else {
2270 >                            tab = (Node<V>[])ek;
2271 >                            continue;           // restarts due to null val
2272                          }
2273                      }
2274 +                    if ((index += baseSize) >= n)
2275 +                        index = ++baseIndex;    // visit upper slots if present
2276                  }
2277 +                nextKey = (K)e.key;
2278 +                if ((nextVal = e.val) != null) // skip deleted or special nodes
2279 +                    return nextVal;
2280              }
504            table = newTable;
2281          }
2282  
2283          /**
2284 <         * Remove; match on key only if value null, else match both.
2284 >         * Common case version for value traversal
2285           */
2286 <        V remove(Object key, int hash, Object value) {
2287 <            lock();
2288 <            try {
2289 <                int c = count - 1;
2290 <                HashEntry<K,V>[] tab = table;
2291 <                int index = hash & (tab.length - 1);
2292 <                HashEntry<K,V> first = tab[index];
2293 <                HashEntry<K,V> e = first;
2294 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
2295 <                    e = e.next;
2286 >        @SuppressWarnings("unchecked") final V advanceValue() {
2287 >            outer: for (Node<V> e = next;;) {
2288 >                if (e == null || (e = e.next) == null) {
2289 >                    Node<V>[] t; int i, len, n; Object ek;
2290 >                    if ((t = tab) == null ||
2291 >                        baseSize != (len = t.length) ||
2292 >                        len < (n = baseLimit) ||
2293 >                        baseIndex != (i = index))
2294 >                        break;
2295 >                    do {
2296 >                        if (i < 0 || i >= n) {
2297 >                            index = baseIndex = n;
2298 >                            next = null;
2299 >                            return nextVal = null;
2300 >                        }
2301 >                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2302 >                            if ((ek = e.key) instanceof TreeBin)
2303 >                                e = ((TreeBin<V>)ek).first;
2304 >                            else {
2305 >                                index = baseIndex = i;
2306 >                                next = null;
2307 >                                tab = (Node<V>[])ek;
2308 >                                break outer;
2309 >                            }
2310 >                        }
2311 >                        ++i;
2312 >                    } while (e == null);
2313 >                    index = baseIndex = i;
2314 >                }
2315 >                V v;
2316 >                K k = (K)e.key;
2317 >                if ((v = e.val) != null) {
2318 >                    nextVal = v;
2319 >                    nextKey = k;
2320 >                    next = e;
2321 >                    return v;
2322 >                }
2323 >            }
2324 >            return advance();
2325 >        }
2326  
2327 <                V oldValue = null;
2328 <                if (e != null) {
2329 <                    V v = e.value;
2330 <                    if (value == null || value.equals(v)) {
2331 <                        oldValue = v;
2332 <                        // All entries following removed node can stay
2333 <                        // in list, but all preceding ones need to be
2334 <                        // cloned.
2335 <                        ++modCount;
2336 <                        HashEntry<K,V> newFirst = e.next;
2337 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
2338 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
2339 <                                                          newFirst, p.value);
2340 <                        tab[index] = newFirst;
2341 <                        count = c; // write-volatile
2342 <                    }
2343 <                }
2344 <                return oldValue;
2345 <            } finally {
2346 <                unlock();
2327 >        /**
2328 >         * Common case version for key traversal
2329 >         */
2330 >        @SuppressWarnings("unchecked") final K advanceKey() {
2331 >            outer: for (Node<V> e = next;;) {
2332 >                if (e == null || (e = e.next) == null) {
2333 >                    Node<V>[] t; int i, len, n; Object ek;
2334 >                    if ((t = tab) == null ||
2335 >                        baseSize != (len = t.length) ||
2336 >                        len < (n = baseLimit) ||
2337 >                        baseIndex != (i = index))
2338 >                        break;
2339 >                    do {
2340 >                        if (i < 0 || i >= n) {
2341 >                            index = baseIndex = n;
2342 >                            next = null;
2343 >                            nextVal = null;
2344 >                            return null;
2345 >                        }
2346 >                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2347 >                            if ((ek = e.key) instanceof TreeBin)
2348 >                                e = ((TreeBin<V>)ek).first;
2349 >                            else {
2350 >                                index = baseIndex = i;
2351 >                                next = null;
2352 >                                tab = (Node<V>[])ek;
2353 >                                break outer;
2354 >                            }
2355 >                        }
2356 >                        ++i;
2357 >                    } while (e == null);
2358 >                    index = baseIndex = i;
2359 >                }
2360 >                V v;
2361 >                K k = (K)e.key;
2362 >                if ((v = e.val) != null) {
2363 >                    nextVal = v;
2364 >                    nextKey = k;
2365 >                    next = e;
2366 >                    return k;
2367 >                }
2368              }
2369 +            return (advance() == null) ? null : nextKey;
2370          }
2371  
2372 <        void clear() {
2373 <            if (count != 0) {
2374 <                lock();
2375 <                try {
2376 <                    HashEntry<K,V>[] tab = table;
2377 <                    for (int i = 0; i < tab.length ; i++)
2378 <                        tab[i] = null;
2379 <                    ++modCount;
2380 <                    count = 0; // write-volatile
2381 <                } finally {
2382 <                    unlock();
2372 >        @SuppressWarnings("unchecked") final void forEachValue(Consumer<? super V> action) {
2373 >            if (action == null) throw new NullPointerException();
2374 >            Node<V>[] t; int i, len, n;
2375 >            if ((t = tab) != null && baseSize == (len = t.length) &&
2376 >                len >= (n = baseLimit) && baseIndex == (i = index)) {
2377 >                index = baseIndex = n;
2378 >                nextVal = null;
2379 >                Node<V> e = next;
2380 >                next = null;
2381 >                if (e != null)
2382 >                    e = e.next;
2383 >                outer: for (;; e = e.next) {
2384 >                    V v; Object ek;
2385 >                    for (; e == null; ++i) {
2386 >                        if (i < 0 || i >= n)
2387 >                            return;
2388 >                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2389 >                            if ((ek = e.key) instanceof TreeBin)
2390 >                                e = ((TreeBin<V>)ek).first;
2391 >                            else {
2392 >                                index = baseIndex = i;
2393 >                                tab = (Node<V>[])ek;
2394 >                                break outer;
2395 >                            }
2396 >                        }
2397 >                    }
2398 >                    if ((v = e.val) != null)
2399 >                        action.accept(v);
2400                  }
2401              }
2402 +            V v;
2403 +            while ((v = advance()) != null)
2404 +                action.accept(v);
2405          }
558    }
2406  
2407 +        @SuppressWarnings("unchecked") final void forEachKey(Consumer<? super K> action) {
2408 +            if (action == null) throw new NullPointerException();
2409 +            Node<V>[] t; int i, len, n;
2410 +            if ((t = tab) != null && baseSize == (len = t.length) &&
2411 +                len >= (n = baseLimit) && baseIndex == (i = index)) {
2412 +                index = baseIndex = n;
2413 +                nextVal = null;
2414 +                Node<V> e = next;
2415 +                next = null;
2416 +                if (e != null)
2417 +                    e = e.next;
2418 +                outer: for (;; e = e.next) {
2419 +                    for (; e == null; ++i) {
2420 +                        if (i < 0 || i >= n)
2421 +                            return;
2422 +                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2423 +                            Object ek;
2424 +                            if ((ek = e.key) instanceof TreeBin)
2425 +                                e = ((TreeBin<V>)ek).first;
2426 +                            else {
2427 +                                index = baseIndex = i;
2428 +                                tab = (Node<V>[])ek;
2429 +                                break outer;
2430 +                            }
2431 +                        }
2432 +                    }
2433 +                    Object k = e.key;
2434 +                    if (e.val != null)
2435 +                        action.accept((K)k);
2436 +                }
2437 +            }
2438 +            while (advance() != null)
2439 +                action.accept(nextKey);
2440 +        }
2441 +
2442 +        public final void remove() {
2443 +            K k = nextKey;
2444 +            if (k == null && (advanceValue() == null || (k = nextKey) == null))
2445 +                throw new IllegalStateException();
2446 +            map.internalReplace(k, null, null);
2447 +        }
2448 +
2449 +        public final boolean hasNext() {
2450 +            return nextVal != null || advanceValue() != null;
2451 +        }
2452 +
2453 +        public final boolean hasMoreElements() { return hasNext(); }
2454 +
2455 +        public void compute() { } // default no-op CountedCompleter body
2456  
2457 +        public long estimateSize() { return batch; }
2458 +
2459 +        /**
2460 +         * Returns a batch value > 0 if this task should (and must) be
2461 +         * split, if so, adding to pending count, and in any case
2462 +         * updating batch value. The initial batch value is approx
2463 +         * exp2 of the number of times (minus one) to split task by
2464 +         * two before executing leaf action. This value is faster to
2465 +         * compute and more convenient to use as a guide to splitting
2466 +         * than is the depth, since it is used while dividing by two
2467 +         * anyway.
2468 +         */
2469 +        final int preSplit() {
2470 +            int b;  ForkJoinPool pool;
2471 +            if ((b = batch) < 0) { // force initialization
2472 +                int sp = (((pool = getPool()) == null) ?
2473 +                          ForkJoinPool.getCommonPoolParallelism() :
2474 +                          pool.getParallelism()) << 3; // slack of 8
2475 +                long n = map.sumCount();
2476 +                b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2477 +            }
2478 +            b = (b <= 1 || baseIndex >= baseLimit) ? 0 : (b >>> 1);
2479 +            if ((batch = b) > 0)
2480 +                addToPendingCount(1);
2481 +            return b;
2482 +        }
2483 +    }
2484  
2485      /* ---------------- Public operations -------------- */
2486  
2487      /**
2488 <     * Creates a new, empty map with the specified initial
2489 <     * capacity, load factor and concurrency level.
2488 >     * Creates a new, empty map with the default initial table size (16).
2489 >     */
2490 >    public ConcurrentHashMap() {
2491 >    }
2492 >
2493 >    /**
2494 >     * Creates a new, empty map with an initial table size
2495 >     * accommodating the specified number of elements without the need
2496 >     * to dynamically resize.
2497       *
2498 <     * @param initialCapacity the initial capacity. The implementation
2499 <     * performs internal sizing to accommodate this many elements.
2500 <     * @param loadFactor  the load factor threshold, used to control resizing.
2501 <     * Resizing may be performed when the average number of elements per
572 <     * bin exceeds this threshold.
573 <     * @param concurrencyLevel the estimated number of concurrently
574 <     * updating threads. The implementation performs internal sizing
575 <     * to try to accommodate this many threads.
576 <     * @throws IllegalArgumentException if the initial capacity is
577 <     * negative or the load factor or concurrencyLevel are
578 <     * nonpositive.
2498 >     * @param initialCapacity The implementation performs internal
2499 >     * sizing to accommodate this many elements.
2500 >     * @throws IllegalArgumentException if the initial capacity of
2501 >     * elements is negative
2502       */
2503 <    public ConcurrentHashMap(int initialCapacity,
2504 <                             float loadFactor, int concurrencyLevel) {
582 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
2503 >    public ConcurrentHashMap(int initialCapacity) {
2504 >        if (initialCapacity < 0)
2505              throw new IllegalArgumentException();
2506 +        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2507 +                   MAXIMUM_CAPACITY :
2508 +                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2509 +        this.sizeCtl = cap;
2510 +    }
2511  
2512 <        if (concurrencyLevel > MAX_SEGMENTS)
2513 <            concurrencyLevel = MAX_SEGMENTS;
2514 <
2515 <        // Find power-of-two sizes best matching arguments
2516 <        int sshift = 0;
2517 <        int ssize = 1;
2518 <        while (ssize < concurrencyLevel) {
2519 <            ++sshift;
593 <            ssize <<= 1;
594 <        }
595 <        segmentShift = 32 - sshift;
596 <        segmentMask = ssize - 1;
597 <        this.segments = Segment.newArray(ssize);
598 <
599 <        if (initialCapacity > MAXIMUM_CAPACITY)
600 <            initialCapacity = MAXIMUM_CAPACITY;
601 <        int c = initialCapacity / ssize;
602 <        if (c * ssize < initialCapacity)
603 <            ++c;
604 <        int cap = 1;
605 <        while (cap < c)
606 <            cap <<= 1;
607 <
608 <        for (int i = 0; i < this.segments.length; ++i)
609 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
2512 >    /**
2513 >     * Creates a new map with the same mappings as the given map.
2514 >     *
2515 >     * @param m the map
2516 >     */
2517 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2518 >        this.sizeCtl = DEFAULT_CAPACITY;
2519 >        internalPutAll(m);
2520      }
2521  
2522      /**
2523 <     * Creates a new, empty map with the specified initial capacity
2524 <     * and load factor and with the default concurrencyLevel (16).
2523 >     * Creates a new, empty map with an initial table size based on
2524 >     * the given number of elements ({@code initialCapacity}) and
2525 >     * initial table density ({@code loadFactor}).
2526       *
2527 <     * @param initialCapacity The implementation performs internal
2528 <     * sizing to accommodate this many elements.
2529 <     * @param loadFactor  the load factor threshold, used to control resizing.
2530 <     * Resizing may be performed when the average number of elements per
2531 <     * bin exceeds this threshold.
2527 >     * @param initialCapacity the initial capacity. The implementation
2528 >     * performs internal sizing to accommodate this many elements,
2529 >     * given the specified load factor.
2530 >     * @param loadFactor the load factor (table density) for
2531 >     * establishing the initial table size
2532       * @throws IllegalArgumentException if the initial capacity of
2533       * elements is negative or the load factor is nonpositive
2534       *
2535       * @since 1.6
2536       */
2537      public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2538 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2538 >        this(initialCapacity, loadFactor, 1);
2539      }
2540  
2541      /**
2542 <     * Creates a new, empty map with the specified initial capacity,
2543 <     * and with default load factor (0.75) and concurrencyLevel (16).
2542 >     * Creates a new, empty map with an initial table size based on
2543 >     * the given number of elements ({@code initialCapacity}), table
2544 >     * density ({@code loadFactor}), and number of concurrently
2545 >     * updating threads ({@code concurrencyLevel}).
2546       *
2547       * @param initialCapacity the initial capacity. The implementation
2548 <     * performs internal sizing to accommodate this many elements.
2549 <     * @throws IllegalArgumentException if the initial capacity of
2550 <     * elements is negative.
2548 >     * performs internal sizing to accommodate this many elements,
2549 >     * given the specified load factor.
2550 >     * @param loadFactor the load factor (table density) for
2551 >     * establishing the initial table size
2552 >     * @param concurrencyLevel the estimated number of concurrently
2553 >     * updating threads. The implementation may use this value as
2554 >     * a sizing hint.
2555 >     * @throws IllegalArgumentException if the initial capacity is
2556 >     * negative or the load factor or concurrencyLevel are
2557 >     * nonpositive
2558       */
2559 <    public ConcurrentHashMap(int initialCapacity) {
2560 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2559 >    public ConcurrentHashMap(int initialCapacity,
2560 >                               float loadFactor, int concurrencyLevel) {
2561 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2562 >            throw new IllegalArgumentException();
2563 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2564 >            initialCapacity = concurrencyLevel;   // as estimated threads
2565 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2566 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2567 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2568 >        this.sizeCtl = cap;
2569      }
2570  
2571      /**
2572 <     * Creates a new, empty map with a default initial capacity (16),
2573 <     * load factor (0.75) and concurrencyLevel (16).
2572 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2573 >     * from the given type to {@code Boolean.TRUE}.
2574 >     *
2575 >     * @return the new set
2576       */
2577 <    public ConcurrentHashMap() {
2578 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2577 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2578 >        return new KeySetView<K,Boolean>
2579 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2580      }
2581  
2582      /**
2583 <     * Creates a new map with the same mappings as the given map.
2584 <     * The map is created with a capacity of 1.5 times the number
654 <     * of mappings in the given map or 16 (whichever is greater),
655 <     * and a default load factor (0.75) and concurrencyLevel (16).
2583 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2584 >     * from the given type to {@code Boolean.TRUE}.
2585       *
2586 <     * @param m the map
2586 >     * @param initialCapacity The implementation performs internal
2587 >     * sizing to accommodate this many elements.
2588 >     * @throws IllegalArgumentException if the initial capacity of
2589 >     * elements is negative
2590 >     * @return the new set
2591       */
2592 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2593 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
2594 <                      DEFAULT_INITIAL_CAPACITY),
662 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
663 <        putAll(m);
2592 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2593 >        return new KeySetView<K,Boolean>
2594 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2595      }
2596  
2597      /**
2598 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
668 <     *
669 <     * @return <tt>true</tt> if this map contains no key-value mappings
2598 >     * {@inheritDoc}
2599       */
2600      public boolean isEmpty() {
2601 <        final Segment<K,V>[] segments = this.segments;
673 <        /*
674 <         * We keep track of per-segment modCounts to avoid ABA
675 <         * problems in which an element in one segment was added and
676 <         * in another removed during traversal, in which case the
677 <         * table was never actually empty at any point. Note the
678 <         * similar use of modCounts in the size() and containsValue()
679 <         * methods, which are the only other methods also susceptible
680 <         * to ABA problems.
681 <         */
682 <        int[] mc = new int[segments.length];
683 <        int mcsum = 0;
684 <        for (int i = 0; i < segments.length; ++i) {
685 <            if (segments[i].count != 0)
686 <                return false;
687 <            else
688 <                mcsum += mc[i] = segments[i].modCount;
689 <        }
690 <        // If mcsum happens to be zero, then we know we got a snapshot
691 <        // before any modifications at all were made.  This is
692 <        // probably common enough to bother tracking.
693 <        if (mcsum != 0) {
694 <            for (int i = 0; i < segments.length; ++i) {
695 <                if (segments[i].count != 0 ||
696 <                    mc[i] != segments[i].modCount)
697 <                    return false;
698 <            }
699 <        }
700 <        return true;
2601 >        return sumCount() <= 0L; // ignore transient negative values
2602      }
2603  
2604      /**
2605 <     * Returns the number of key-value mappings in this map.  If the
705 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
706 <     * <tt>Integer.MAX_VALUE</tt>.
707 <     *
708 <     * @return the number of key-value mappings in this map
2605 >     * {@inheritDoc}
2606       */
2607      public int size() {
2608 <        final Segment<K,V>[] segments = this.segments;
2609 <        long sum = 0;
2610 <        long check = 0;
2611 <        int[] mc = new int[segments.length];
2612 <        // Try a few times to get accurate count. On failure due to
2613 <        // continuous async changes in table, resort to locking.
2614 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
2615 <            check = 0;
2616 <            sum = 0;
2617 <            int mcsum = 0;
2618 <            for (int i = 0; i < segments.length; ++i) {
2619 <                sum += segments[i].count;
2620 <                mcsum += mc[i] = segments[i].modCount;
2621 <            }
2622 <            if (mcsum != 0) {
2623 <                for (int i = 0; i < segments.length; ++i) {
2624 <                    check += segments[i].count;
2625 <                    if (mc[i] != segments[i].modCount) {
729 <                        check = -1; // force retry
730 <                        break;
731 <                    }
732 <                }
733 <            }
734 <            if (check == sum)
735 <                break;
736 <        }
737 <        if (check != sum) { // Resort to locking all segments
738 <            sum = 0;
739 <            for (int i = 0; i < segments.length; ++i)
740 <                segments[i].lock();
741 <            for (int i = 0; i < segments.length; ++i)
742 <                sum += segments[i].count;
743 <            for (int i = 0; i < segments.length; ++i)
744 <                segments[i].unlock();
745 <        }
746 <        if (sum > Integer.MAX_VALUE)
747 <            return Integer.MAX_VALUE;
748 <        else
749 <            return (int)sum;
2608 >        long n = sumCount();
2609 >        return ((n < 0L) ? 0 :
2610 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2611 >                (int)n);
2612 >    }
2613 >
2614 >    /**
2615 >     * Returns the number of mappings. This method should be used
2616 >     * instead of {@link #size} because a ConcurrentHashMap may
2617 >     * contain more mappings than can be represented as an int. The
2618 >     * value returned is an estimate; the actual count may differ if
2619 >     * there are concurrent insertions or removals.
2620 >     *
2621 >     * @return the number of mappings
2622 >     */
2623 >    public long mappingCount() {
2624 >        long n = sumCount();
2625 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2626      }
2627  
2628      /**
# Line 761 | Line 2637 | public class ConcurrentHashMap<K, V> ext
2637       * @throws NullPointerException if the specified key is null
2638       */
2639      public V get(Object key) {
2640 <        int hash = hash(key.hashCode());
2641 <        return segmentFor(hash).get(key, hash);
2640 >        return internalGet(key);
2641 >    }
2642 >
2643 >    /**
2644 >     * Returns the value to which the specified key is mapped,
2645 >     * or the given defaultValue if this map contains no mapping for the key.
2646 >     *
2647 >     * @param key the key
2648 >     * @param defaultValue the value to return if this map contains
2649 >     * no mapping for the given key
2650 >     * @return the mapping for the key, if present; else the defaultValue
2651 >     * @throws NullPointerException if the specified key is null
2652 >     */
2653 >    public V getOrDefault(Object key, V defaultValue) {
2654 >        V v;
2655 >        return (v = internalGet(key)) == null ? defaultValue : v;
2656      }
2657  
2658      /**
2659       * Tests if the specified object is a key in this table.
2660       *
2661 <     * @param  key   possible key
2662 <     * @return <tt>true</tt> if and only if the specified object
2661 >     * @param  key possible key
2662 >     * @return {@code true} if and only if the specified object
2663       *         is a key in this table, as determined by the
2664 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
2664 >     *         {@code equals} method; {@code false} otherwise
2665       * @throws NullPointerException if the specified key is null
2666       */
2667      public boolean containsKey(Object key) {
2668 <        int hash = hash(key.hashCode());
779 <        return segmentFor(hash).containsKey(key, hash);
2668 >        return internalGet(key) != null;
2669      }
2670  
2671      /**
2672 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2673 <     * specified value. Note: This method requires a full internal
2674 <     * traversal of the hash table, and so is much slower than
786 <     * method <tt>containsKey</tt>.
2672 >     * Returns {@code true} if this map maps one or more keys to the
2673 >     * specified value. Note: This method may require a full traversal
2674 >     * of the map, and is much slower than method {@code containsKey}.
2675       *
2676       * @param value value whose presence in this map is to be tested
2677 <     * @return <tt>true</tt> if this map maps one or more keys to the
2677 >     * @return {@code true} if this map maps one or more keys to the
2678       *         specified value
2679       * @throws NullPointerException if the specified value is null
2680       */
2681      public boolean containsValue(Object value) {
2682          if (value == null)
2683              throw new NullPointerException();
2684 <
2685 <        // See explanation of modCount use above
2686 <
2687 <        final Segment<K,V>[] segments = this.segments;
2688 <        int[] mc = new int[segments.length];
801 <
802 <        // Try a few times without locking
803 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
804 <            int sum = 0;
805 <            int mcsum = 0;
806 <            for (int i = 0; i < segments.length; ++i) {
807 <                int c = segments[i].count;
808 <                mcsum += mc[i] = segments[i].modCount;
809 <                if (segments[i].containsValue(value))
810 <                    return true;
811 <            }
812 <            boolean cleanSweep = true;
813 <            if (mcsum != 0) {
814 <                for (int i = 0; i < segments.length; ++i) {
815 <                    int c = segments[i].count;
816 <                    if (mc[i] != segments[i].modCount) {
817 <                        cleanSweep = false;
818 <                        break;
819 <                    }
820 <                }
821 <            }
822 <            if (cleanSweep)
823 <                return false;
2684 >        V v;
2685 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2686 >        while ((v = it.advanceValue()) != null) {
2687 >            if (v == value || value.equals(v))
2688 >                return true;
2689          }
2690 <        // Resort to locking all segments
826 <        for (int i = 0; i < segments.length; ++i)
827 <            segments[i].lock();
828 <        boolean found = false;
829 <        try {
830 <            for (int i = 0; i < segments.length; ++i) {
831 <                if (segments[i].containsValue(value)) {
832 <                    found = true;
833 <                    break;
834 <                }
835 <            }
836 <        } finally {
837 <            for (int i = 0; i < segments.length; ++i)
838 <                segments[i].unlock();
839 <        }
840 <        return found;
2690 >        return false;
2691      }
2692  
2693      /**
2694       * Legacy method testing if some key maps into the specified value
2695       * in this table.  This method is identical in functionality to
2696 <     * {@link #containsValue}, and exists solely to ensure
2696 >     * {@link #containsValue(Object)}, and exists solely to ensure
2697       * full compatibility with class {@link java.util.Hashtable},
2698       * which supported this method prior to introduction of the
2699       * Java Collections framework.
2700 <
2700 >     *
2701       * @param  value a value to search for
2702 <     * @return <tt>true</tt> if and only if some key maps to the
2703 <     *         <tt>value</tt> argument in this table as
2704 <     *         determined by the <tt>equals</tt> method;
2705 <     *         <tt>false</tt> otherwise
2702 >     * @return {@code true} if and only if some key maps to the
2703 >     *         {@code value} argument in this table as
2704 >     *         determined by the {@code equals} method;
2705 >     *         {@code false} otherwise
2706       * @throws NullPointerException if the specified value is null
2707       */
2708 <    public boolean contains(Object value) {
2708 >    @Deprecated public boolean contains(Object value) {
2709          return containsValue(value);
2710      }
2711  
# Line 863 | Line 2713 | public class ConcurrentHashMap<K, V> ext
2713       * Maps the specified key to the specified value in this table.
2714       * Neither the key nor the value can be null.
2715       *
2716 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
2716 >     * <p>The value can be retrieved by calling the {@code get} method
2717       * with a key that is equal to the original key.
2718       *
2719       * @param key key with which the specified value is to be associated
2720       * @param value value to be associated with the specified key
2721 <     * @return the previous value associated with <tt>key</tt>, or
2722 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2721 >     * @return the previous value associated with {@code key}, or
2722 >     *         {@code null} if there was no mapping for {@code key}
2723       * @throws NullPointerException if the specified key or value is null
2724       */
2725      public V put(K key, V value) {
2726 <        if (value == null)
877 <            throw new NullPointerException();
878 <        int hash = hash(key.hashCode());
879 <        return segmentFor(hash).put(key, hash, value, false);
2726 >        return internalPut(key, value, false);
2727      }
2728  
2729      /**
2730       * {@inheritDoc}
2731       *
2732       * @return the previous value associated with the specified key,
2733 <     *         or <tt>null</tt> if there was no mapping for the key
2733 >     *         or {@code null} if there was no mapping for the key
2734       * @throws NullPointerException if the specified key or value is null
2735       */
2736      public V putIfAbsent(K key, V value) {
2737 <        if (value == null)
891 <            throw new NullPointerException();
892 <        int hash = hash(key.hashCode());
893 <        return segmentFor(hash).put(key, hash, value, true);
2737 >        return internalPut(key, value, true);
2738      }
2739  
2740      /**
# Line 901 | Line 2745 | public class ConcurrentHashMap<K, V> ext
2745       * @param m mappings to be stored in this map
2746       */
2747      public void putAll(Map<? extends K, ? extends V> m) {
2748 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
2749 <            put(e.getKey(), e.getValue());
2748 >        internalPutAll(m);
2749 >    }
2750 >
2751 >    /**
2752 >     * If the specified key is not already associated with a value (or
2753 >     * is mapped to {@code null}), attempts to compute its value using
2754 >     * the given mapping function and enters it into this map unless
2755 >     * {@code null}. The entire method invocation is performed
2756 >     * atomically, so the function is applied at most once per key.
2757 >     * Some attempted update operations on this map by other threads
2758 >     * may be blocked while computation is in progress, so the
2759 >     * computation should be short and simple, and must not attempt to
2760 >     * update any other mappings of this Map.
2761 >     *
2762 >     * @param key key with which the specified value is to be associated
2763 >     * @param mappingFunction the function to compute a value
2764 >     * @return the current (existing or computed) value associated with
2765 >     *         the specified key, or null if the computed value is null
2766 >     * @throws NullPointerException if the specified key or mappingFunction
2767 >     *         is null
2768 >     * @throws IllegalStateException if the computation detectably
2769 >     *         attempts a recursive update to this map that would
2770 >     *         otherwise never complete
2771 >     * @throws RuntimeException or Error if the mappingFunction does so,
2772 >     *         in which case the mapping is left unestablished
2773 >     */
2774 >    public V computeIfAbsent
2775 >        (K key, Function<? super K, ? extends V> mappingFunction) {
2776 >        return internalComputeIfAbsent(key, mappingFunction);
2777 >    }
2778 >
2779 >    /**
2780 >     * If the value for the specified key is present and non-null,
2781 >     * attempts to compute a new mapping given the key and its current
2782 >     * mapped value.  The entire method invocation is performed
2783 >     * atomically.  Some attempted update operations on this map by
2784 >     * other threads may be blocked while computation is in progress,
2785 >     * so the computation should be short and simple, and must not
2786 >     * attempt to update any other mappings of this Map.
2787 >     *
2788 >     * @param key key with which the specified value is to be associated
2789 >     * @param remappingFunction the function to compute a value
2790 >     * @return the new value associated with the specified key, or null if none
2791 >     * @throws NullPointerException if the specified key or remappingFunction
2792 >     *         is null
2793 >     * @throws IllegalStateException if the computation detectably
2794 >     *         attempts a recursive update to this map that would
2795 >     *         otherwise never complete
2796 >     * @throws RuntimeException or Error if the remappingFunction does so,
2797 >     *         in which case the mapping is unchanged
2798 >     */
2799 >    public V computeIfPresent
2800 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2801 >        return internalCompute(key, true, remappingFunction);
2802 >    }
2803 >
2804 >    /**
2805 >     * Attempts to compute a mapping for the specified key and its
2806 >     * current mapped value (or {@code null} if there is no current
2807 >     * mapping). The entire method invocation is performed atomically.
2808 >     * Some attempted update operations on this map by other threads
2809 >     * may be blocked while computation is in progress, so the
2810 >     * computation should be short and simple, and must not attempt to
2811 >     * update any other mappings of this Map.
2812 >     *
2813 >     * @param key key with which the specified value is to be associated
2814 >     * @param remappingFunction the function to compute a value
2815 >     * @return the new value associated with the specified key, or null if none
2816 >     * @throws NullPointerException if the specified key or remappingFunction
2817 >     *         is null
2818 >     * @throws IllegalStateException if the computation detectably
2819 >     *         attempts a recursive update to this map that would
2820 >     *         otherwise never complete
2821 >     * @throws RuntimeException or Error if the remappingFunction does so,
2822 >     *         in which case the mapping is unchanged
2823 >     */
2824 >    public V compute
2825 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2826 >        return internalCompute(key, false, remappingFunction);
2827 >    }
2828 >
2829 >    /**
2830 >     * If the specified key is not already associated with a
2831 >     * (non-null) value, associates it with the given value.
2832 >     * Otherwise, replaces the value with the results of the given
2833 >     * remapping function, or removes if {@code null}. The entire
2834 >     * method invocation is performed atomically.  Some attempted
2835 >     * update operations on this map by other threads may be blocked
2836 >     * while computation is in progress, so the computation should be
2837 >     * short and simple, and must not attempt to update any other
2838 >     * mappings of this Map.
2839 >     *
2840 >     * @param key key with which the specified value is to be associated
2841 >     * @param value the value to use if absent
2842 >     * @param remappingFunction the function to recompute a value if present
2843 >     * @return the new value associated with the specified key, or null if none
2844 >     * @throws NullPointerException if the specified key or the
2845 >     *         remappingFunction is null
2846 >     * @throws RuntimeException or Error if the remappingFunction does so,
2847 >     *         in which case the mapping is unchanged
2848 >     */
2849 >    public V merge
2850 >        (K key, V value,
2851 >         BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2852 >        return internalMerge(key, value, remappingFunction);
2853      }
2854  
2855      /**
# Line 910 | Line 2857 | public class ConcurrentHashMap<K, V> ext
2857       * This method does nothing if the key is not in the map.
2858       *
2859       * @param  key the key that needs to be removed
2860 <     * @return the previous value associated with <tt>key</tt>, or
2861 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2860 >     * @return the previous value associated with {@code key}, or
2861 >     *         {@code null} if there was no mapping for {@code key}
2862       * @throws NullPointerException if the specified key is null
2863       */
2864      public V remove(Object key) {
2865 <        int hash = hash(key.hashCode());
919 <        return segmentFor(hash).remove(key, hash, null);
2865 >        return internalReplace(key, null, null);
2866      }
2867  
2868      /**
# Line 925 | Line 2871 | public class ConcurrentHashMap<K, V> ext
2871       * @throws NullPointerException if the specified key is null
2872       */
2873      public boolean remove(Object key, Object value) {
2874 <        int hash = hash(key.hashCode());
2875 <        if (value == null)
2876 <            return false;
931 <        return segmentFor(hash).remove(key, hash, value) != null;
2874 >        if (key == null)
2875 >            throw new NullPointerException();
2876 >        return value != null && internalReplace(key, null, value) != null;
2877      }
2878  
2879      /**
# Line 937 | Line 2882 | public class ConcurrentHashMap<K, V> ext
2882       * @throws NullPointerException if any of the arguments are null
2883       */
2884      public boolean replace(K key, V oldValue, V newValue) {
2885 <        if (oldValue == null || newValue == null)
2885 >        if (key == null || oldValue == null || newValue == null)
2886              throw new NullPointerException();
2887 <        int hash = hash(key.hashCode());
943 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
2887 >        return internalReplace(key, newValue, oldValue) != null;
2888      }
2889  
2890      /**
2891       * {@inheritDoc}
2892       *
2893       * @return the previous value associated with the specified key,
2894 <     *         or <tt>null</tt> if there was no mapping for the key
2894 >     *         or {@code null} if there was no mapping for the key
2895       * @throws NullPointerException if the specified key or value is null
2896       */
2897      public V replace(K key, V value) {
2898 <        if (value == null)
2898 >        if (key == null || value == null)
2899              throw new NullPointerException();
2900 <        int hash = hash(key.hashCode());
957 <        return segmentFor(hash).replace(key, hash, value);
2900 >        return internalReplace(key, value, null);
2901      }
2902  
2903      /**
2904       * Removes all of the mappings from this map.
2905       */
2906      public void clear() {
2907 <        for (int i = 0; i < segments.length; ++i)
965 <            segments[i].clear();
2907 >        internalClear();
2908      }
2909  
2910      /**
2911       * Returns a {@link Set} view of the keys contained in this map.
2912       * The set is backed by the map, so changes to the map are
2913 <     * reflected in the set, and vice-versa.  The set supports element
972 <     * removal, which removes the corresponding mapping from this map,
973 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
974 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
975 <     * operations.  It does not support the <tt>add</tt> or
976 <     * <tt>addAll</tt> operations.
2913 >     * reflected in the set, and vice-versa.
2914       *
2915 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2916 <     * that will never throw {@link ConcurrentModificationException},
2917 <     * and guarantees to traverse elements as they existed upon
2918 <     * construction of the iterator, and may (but is not guaranteed to)
2919 <     * reflect any modifications subsequent to construction.
2915 >     * @return the set view
2916 >     */
2917 >    public KeySetView<K,V> keySet() {
2918 >        KeySetView<K,V> ks = keySet;
2919 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2920 >    }
2921 >
2922 >    /**
2923 >     * Returns a {@link Set} view of the keys in this map, using the
2924 >     * given common mapped value for any additions (i.e., {@link
2925 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2926 >     * This is of course only appropriate if it is acceptable to use
2927 >     * the same value for all additions from this view.
2928 >     *
2929 >     * @param mappedValue the mapped value to use for any additions
2930 >     * @return the set view
2931 >     * @throws NullPointerException if the mappedValue is null
2932       */
2933 <    public Set<K> keySet() {
2934 <        Set<K> ks = keySet;
2935 <        return (ks != null) ? ks : (keySet = new KeySet());
2933 >    public KeySetView<K,V> keySet(V mappedValue) {
2934 >        if (mappedValue == null)
2935 >            throw new NullPointerException();
2936 >        return new KeySetView<K,V>(this, mappedValue);
2937      }
2938  
2939      /**
2940       * Returns a {@link Collection} view of the values contained in this map.
2941       * The collection is backed by the map, so changes to the map are
2942 <     * reflected in the collection, and vice-versa.  The collection
993 <     * supports element removal, which removes the corresponding
994 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
995 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
996 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
997 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
2942 >     * reflected in the collection, and vice-versa.
2943       *
2944 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1000 <     * that will never throw {@link ConcurrentModificationException},
1001 <     * and guarantees to traverse elements as they existed upon
1002 <     * construction of the iterator, and may (but is not guaranteed to)
1003 <     * reflect any modifications subsequent to construction.
2944 >     * @return the collection view
2945       */
2946 <    public Collection<V> values() {
2947 <        Collection<V> vs = values;
2948 <        return (vs != null) ? vs : (values = new Values());
2946 >    public ValuesView<K,V> values() {
2947 >        ValuesView<K,V> vs = values;
2948 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2949      }
2950  
2951      /**
# Line 1012 | Line 2953 | public class ConcurrentHashMap<K, V> ext
2953       * The set is backed by the map, so changes to the map are
2954       * reflected in the set, and vice-versa.  The set supports element
2955       * removal, which removes the corresponding mapping from the map,
2956 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2957 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2958 <     * operations.  It does not support the <tt>add</tt> or
2959 <     * <tt>addAll</tt> operations.
2956 >     * via the {@code Iterator.remove}, {@code Set.remove},
2957 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2958 >     * operations.  It does not support the {@code add} or
2959 >     * {@code addAll} operations.
2960       *
2961 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2961 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2962       * that will never throw {@link ConcurrentModificationException},
2963       * and guarantees to traverse elements as they existed upon
2964       * construction of the iterator, and may (but is not guaranteed to)
2965       * reflect any modifications subsequent to construction.
2966 +     *
2967 +     * @return the set view
2968       */
2969      public Set<Map.Entry<K,V>> entrySet() {
2970 <        Set<Map.Entry<K,V>> es = entrySet;
2971 <        return (es != null) ? es : (entrySet = new EntrySet());
2970 >        EntrySetView<K,V> es = entrySet;
2971 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2972      }
2973  
2974      /**
2975       * Returns an enumeration of the keys in this table.
2976       *
2977       * @return an enumeration of the keys in this table
2978 <     * @see #keySet
2978 >     * @see #keySet()
2979       */
2980      public Enumeration<K> keys() {
2981 <        return new KeyIterator();
2981 >        return new KeyIterator<K,V>(this);
2982      }
2983  
2984      /**
2985       * Returns an enumeration of the values in this table.
2986       *
2987       * @return an enumeration of the values in this table
2988 <     * @see #values
2988 >     * @see #values()
2989       */
2990      public Enumeration<V> elements() {
2991 <        return new ValueIterator();
2991 >        return new ValueIterator<K,V>(this);
2992      }
2993  
2994 <    /* ---------------- Iterator Support -------------- */
2994 >    /**
2995 >     * Returns the hash code value for this {@link Map}, i.e.,
2996 >     * the sum of, for each key-value pair in the map,
2997 >     * {@code key.hashCode() ^ value.hashCode()}.
2998 >     *
2999 >     * @return the hash code value for this map
3000 >     */
3001 >    public int hashCode() {
3002 >        int h = 0;
3003 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3004 >        V v;
3005 >        while ((v = it.advanceValue()) != null) {
3006 >            h += it.nextKey.hashCode() ^ v.hashCode();
3007 >        }
3008 >        return h;
3009 >    }
3010  
3011 <    abstract class HashIterator {
3012 <        int nextSegmentIndex;
3013 <        int nextTableIndex;
3014 <        HashEntry<K,V>[] currentTable;
3015 <        HashEntry<K, V> nextEntry;
3016 <        HashEntry<K, V> lastReturned;
3011 >    /**
3012 >     * Returns a string representation of this map.  The string
3013 >     * representation consists of a list of key-value mappings (in no
3014 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3015 >     * mappings are separated by the characters {@code ", "} (comma
3016 >     * and space).  Each key-value mapping is rendered as the key
3017 >     * followed by an equals sign ("{@code =}") followed by the
3018 >     * associated value.
3019 >     *
3020 >     * @return a string representation of this map
3021 >     */
3022 >    public String toString() {
3023 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3024 >        StringBuilder sb = new StringBuilder();
3025 >        sb.append('{');
3026 >        V v;
3027 >        if ((v = it.advanceValue()) != null) {
3028 >            for (;;) {
3029 >                K k = it.nextKey;
3030 >                sb.append(k == this ? "(this Map)" : k);
3031 >                sb.append('=');
3032 >                sb.append(v == this ? "(this Map)" : v);
3033 >                if ((v = it.advanceValue()) == null)
3034 >                    break;
3035 >                sb.append(',').append(' ');
3036 >            }
3037 >        }
3038 >        return sb.append('}').toString();
3039 >    }
3040  
3041 <        HashIterator() {
3042 <            nextSegmentIndex = segments.length - 1;
3043 <            nextTableIndex = -1;
3044 <            advance();
3041 >    /**
3042 >     * Compares the specified object with this map for equality.
3043 >     * Returns {@code true} if the given object is a map with the same
3044 >     * mappings as this map.  This operation may return misleading
3045 >     * results if either map is concurrently modified during execution
3046 >     * of this method.
3047 >     *
3048 >     * @param o object to be compared for equality with this map
3049 >     * @return {@code true} if the specified object is equal to this map
3050 >     */
3051 >    public boolean equals(Object o) {
3052 >        if (o != this) {
3053 >            if (!(o instanceof Map))
3054 >                return false;
3055 >            Map<?,?> m = (Map<?,?>) o;
3056 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3057 >            V val;
3058 >            while ((val = it.advanceValue()) != null) {
3059 >                Object v = m.get(it.nextKey);
3060 >                if (v == null || (v != val && !v.equals(val)))
3061 >                    return false;
3062 >            }
3063 >            for (Map.Entry<?,?> e : m.entrySet()) {
3064 >                Object mk, mv, v;
3065 >                if ((mk = e.getKey()) == null ||
3066 >                    (mv = e.getValue()) == null ||
3067 >                    (v = internalGet(mk)) == null ||
3068 >                    (mv != v && !mv.equals(v)))
3069 >                    return false;
3070 >            }
3071          }
3072 +        return true;
3073 +    }
3074  
3075 <        public boolean hasMoreElements() { return hasNext(); }
3075 >    /* ----------------Iterators -------------- */
3076  
3077 <        final void advance() {
3078 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
3079 <                return;
3077 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3078 >        extends Traverser<K,V,Object>
3079 >        implements Spliterator<K>, Iterator<K>, Enumeration<K> {
3080 >        KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
3081 >        KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3082 >            super(map, it);
3083 >        }
3084 >        public Spliterator<K> trySplit() {
3085 >            return (baseLimit - baseIndex <= 1) ? null :
3086 >                new KeyIterator<K,V>(map, this);
3087 >        }
3088 >        public final K next() {
3089 >            K k;
3090 >            if ((k = (nextVal == null) ? advanceKey() : nextKey) == null)
3091 >                throw new NoSuchElementException();
3092 >            nextVal = null;
3093 >            return k;
3094 >        }
3095  
3096 <            while (nextTableIndex >= 0) {
1073 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
1074 <                    return;
1075 <            }
3096 >        public final K nextElement() { return next(); }
3097  
3098 <            while (nextSegmentIndex >= 0) {
3099 <                Segment<K,V> seg = segments[nextSegmentIndex--];
3100 <                if (seg.count != 0) {
3101 <                    currentTable = seg.table;
1081 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
1082 <                        if ( (nextEntry = currentTable[j]) != null) {
1083 <                            nextTableIndex = j - 1;
1084 <                            return;
1085 <                        }
1086 <                    }
1087 <                }
1088 <            }
3098 >        public Iterator<K> iterator() { return this; }
3099 >
3100 >        public void forEach(Consumer<? super K> action) {
3101 >            forEachKey(action);
3102          }
3103  
3104 <        public boolean hasNext() { return nextEntry != null; }
3104 >        public boolean tryAdvance(Consumer<? super K> block) {
3105 >            if (block == null) throw new NullPointerException();
3106 >            K k;
3107 >            if ((k = advanceKey()) == null)
3108 >                return false;
3109 >            block.accept(k);
3110 >            return true;
3111 >        }
3112 >
3113 >        public int characteristics() {
3114 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3115 >                Spliterator.NONNULL;
3116 >        }
3117 >
3118 >    }
3119  
3120 <        HashEntry<K,V> nextEntry() {
3121 <            if (nextEntry == null)
3120 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3121 >        extends Traverser<K,V,Object>
3122 >        implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3123 >        ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
3124 >        ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3125 >            super(map, it);
3126 >        }
3127 >        public Spliterator<V> trySplit() {
3128 >            return (baseLimit - baseIndex <= 1) ? null :
3129 >                new ValueIterator<K,V>(map, this);
3130 >        }
3131 >
3132 >        public final V next() {
3133 >            V v;
3134 >            if ((v = nextVal) == null && (v = advanceValue()) == null)
3135                  throw new NoSuchElementException();
3136 <            lastReturned = nextEntry;
3137 <            advance();
1098 <            return lastReturned;
3136 >            nextVal = null;
3137 >            return v;
3138          }
3139  
3140 <        public void remove() {
3141 <            if (lastReturned == null)
3142 <                throw new IllegalStateException();
3143 <            ConcurrentHashMap.this.remove(lastReturned.key);
3144 <            lastReturned = null;
3140 >        public final V nextElement() { return next(); }
3141 >
3142 >        public Iterator<V> iterator() { return this; }
3143 >
3144 >        public void forEach(Consumer<? super V> action) {
3145 >            forEachValue(action);
3146 >        }
3147 >
3148 >        public boolean tryAdvance(Consumer<? super V> block) {
3149 >            V v;
3150 >            if (block == null) throw new NullPointerException();
3151 >            if ((v = advanceValue()) == null)
3152 >                return false;
3153 >            block.accept(v);
3154 >            return true;
3155          }
1107    }
3156  
3157 <    final class KeyIterator
3158 <        extends HashIterator
3159 <        implements Iterator<K>, Enumeration<K>
1112 <    {
1113 <        public K next()        { return super.nextEntry().key; }
1114 <        public K nextElement() { return super.nextEntry().key; }
3157 >        public int characteristics() {
3158 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3159 >        }
3160      }
3161  
3162 <    final class ValueIterator
3163 <        extends HashIterator
3164 <        implements Iterator<V>, Enumeration<V>
3165 <    {
3166 <        public V next()        { return super.nextEntry().value; }
3167 <        public V nextElement() { return super.nextEntry().value; }
3162 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3163 >        extends Traverser<K,V,Object>
3164 >        implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3165 >        EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3166 >        EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3167 >            super(map, it);
3168 >        }
3169 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3170 >            return (baseLimit - baseIndex <= 1) ? null :
3171 >                new EntryIterator<K,V>(map, this);
3172 >        }
3173 >
3174 >        public final Map.Entry<K,V> next() {
3175 >            V v;
3176 >            if ((v = nextVal) == null && (v = advanceValue()) == null)
3177 >                throw new NoSuchElementException();
3178 >            K k = nextKey;
3179 >            nextVal = null;
3180 >            return new MapEntry<K,V>(k, v, map);
3181 >        }
3182 >
3183 >        public Iterator<Map.Entry<K,V>> iterator() { return this; }
3184 >
3185 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3186 >            if (action == null) throw new NullPointerException();
3187 >            V v;
3188 >            while ((v = advanceValue()) != null)
3189 >                action.accept(entryFor(nextKey, v));
3190 >        }
3191 >
3192 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3193 >            V v;
3194 >            if (block == null) throw new NullPointerException();
3195 >            if ((v = advanceValue()) == null)
3196 >                return false;
3197 >            block.accept(entryFor(nextKey, v));
3198 >            return true;
3199 >        }
3200 >
3201 >        public int characteristics() {
3202 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3203 >                Spliterator.NONNULL;
3204 >        }
3205      }
3206  
3207      /**
3208 <     * Custom Entry class used by EntryIterator.next(), that relays
1127 <     * setValue changes to the underlying map.
3208 >     * Exported Entry for iterators
3209       */
3210 <    final class WriteThroughEntry
3211 <        extends AbstractMap.SimpleEntry<K,V>
3212 <    {
3213 <        WriteThroughEntry(K k, V v) {
3214 <            super(k,v);
3210 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3211 >        final K key; // non-null
3212 >        V val;       // non-null
3213 >        final ConcurrentHashMap<K,V> map;
3214 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3215 >            this.key = key;
3216 >            this.val = val;
3217 >            this.map = map;
3218 >        }
3219 >        public final K getKey()       { return key; }
3220 >        public final V getValue()     { return val; }
3221 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3222 >        public final String toString(){ return key + "=" + val; }
3223 >
3224 >        public final boolean equals(Object o) {
3225 >            Object k, v; Map.Entry<?,?> e;
3226 >            return ((o instanceof Map.Entry) &&
3227 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3228 >                    (v = e.getValue()) != null &&
3229 >                    (k == key || k.equals(key)) &&
3230 >                    (v == val || v.equals(val)));
3231          }
3232  
3233          /**
3234 <         * Set our entry's value and write through to the map. The
3235 <         * value to return is somewhat arbitrary here. Since a
3236 <         * WriteThroughEntry does not necessarily track asynchronous
3237 <         * changes, the most recent "previous" value could be
3238 <         * different from what we return (or could even have been
3239 <         * removed in which case the put will re-establish). We do not
1143 <         * and cannot guarantee more.
3234 >         * Sets our entry's value and writes through to the map. The
3235 >         * value to return is somewhat arbitrary here. Since we do not
3236 >         * necessarily track asynchronous changes, the most recent
3237 >         * "previous" value could be different from what we return (or
3238 >         * could even have been removed in which case the put will
3239 >         * re-establish). We do not and cannot guarantee more.
3240           */
3241 <        public V setValue(V value) {
3241 >        public final V setValue(V value) {
3242              if (value == null) throw new NullPointerException();
3243 <            V v = super.setValue(value);
3244 <            ConcurrentHashMap.this.put(getKey(), value);
3243 >            V v = val;
3244 >            val = value;
3245 >            map.put(key, value);
3246              return v;
3247          }
3248      }
3249  
3250 <    final class EntryIterator
3251 <        extends HashIterator
3252 <        implements Iterator<Entry<K,V>>
3253 <    {
3254 <        public Map.Entry<K,V> next() {
3255 <            HashEntry<K,V> e = super.nextEntry();
3256 <            return new WriteThroughEntry(e.key, e.value);
3250 >    /**
3251 >     * Returns exportable snapshot entry for the given key and value
3252 >     * when write-through can't or shouldn't be used.
3253 >     */
3254 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3255 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3256 >    }
3257 >
3258 >    /* ---------------- Serialization Support -------------- */
3259 >
3260 >    /**
3261 >     * Stripped-down version of helper class used in previous version,
3262 >     * declared for the sake of serialization compatibility
3263 >     */
3264 >    static class Segment<K,V> implements Serializable {
3265 >        private static final long serialVersionUID = 2249069246763182397L;
3266 >        final float loadFactor;
3267 >        Segment(float lf) { this.loadFactor = lf; }
3268 >    }
3269 >
3270 >    /**
3271 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3272 >     * stream (i.e., serializes it).
3273 >     * @param s the stream
3274 >     * @serialData
3275 >     * the key (Object) and value (Object)
3276 >     * for each key-value mapping, followed by a null pair.
3277 >     * The key-value mappings are emitted in no particular order.
3278 >     */
3279 >    @SuppressWarnings("unchecked") private void writeObject
3280 >        (java.io.ObjectOutputStream s)
3281 >        throws java.io.IOException {
3282 >        if (segments == null) { // for serialization compatibility
3283 >            segments = (Segment<K,V>[])
3284 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3285 >            for (int i = 0; i < segments.length; ++i)
3286 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3287 >        }
3288 >        s.defaultWriteObject();
3289 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3290 >        V v;
3291 >        while ((v = it.advanceValue()) != null) {
3292 >            s.writeObject(it.nextKey);
3293 >            s.writeObject(v);
3294          }
3295 +        s.writeObject(null);
3296 +        s.writeObject(null);
3297 +        segments = null; // throw away
3298      }
3299  
3300 <    final class KeySet extends AbstractSet<K> {
3301 <        public Iterator<K> iterator() {
3302 <            return new KeyIterator();
3300 >    /**
3301 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3302 >     * @param s the stream
3303 >     */
3304 >    @SuppressWarnings("unchecked") private void readObject
3305 >        (java.io.ObjectInputStream s)
3306 >        throws java.io.IOException, ClassNotFoundException {
3307 >        s.defaultReadObject();
3308 >        this.segments = null; // unneeded
3309 >
3310 >        // Create all nodes, then place in table once size is known
3311 >        long size = 0L;
3312 >        Node<V> p = null;
3313 >        for (;;) {
3314 >            K k = (K) s.readObject();
3315 >            V v = (V) s.readObject();
3316 >            if (k != null && v != null) {
3317 >                int h = spread(k.hashCode());
3318 >                p = new Node<V>(h, k, v, p);
3319 >                ++size;
3320 >            }
3321 >            else
3322 >                break;
3323          }
3324 <        public int size() {
3325 <            return ConcurrentHashMap.this.size();
3324 >        if (p != null) {
3325 >            boolean init = false;
3326 >            int n;
3327 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3328 >                n = MAXIMUM_CAPACITY;
3329 >            else {
3330 >                int sz = (int)size;
3331 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3332 >            }
3333 >            int sc = sizeCtl;
3334 >            boolean collide = false;
3335 >            if (n > sc &&
3336 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3337 >                try {
3338 >                    if (table == null) {
3339 >                        init = true;
3340 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3341 >                        Node<V>[] tab = (Node<V>[])rt;
3342 >                        int mask = n - 1;
3343 >                        while (p != null) {
3344 >                            int j = p.hash & mask;
3345 >                            Node<V> next = p.next;
3346 >                            Node<V> q = p.next = tabAt(tab, j);
3347 >                            setTabAt(tab, j, p);
3348 >                            if (!collide && q != null && q.hash == p.hash)
3349 >                                collide = true;
3350 >                            p = next;
3351 >                        }
3352 >                        table = tab;
3353 >                        addCount(size, -1);
3354 >                        sc = n - (n >>> 2);
3355 >                    }
3356 >                } finally {
3357 >                    sizeCtl = sc;
3358 >                }
3359 >                if (collide) { // rescan and convert to TreeBins
3360 >                    Node<V>[] tab = table;
3361 >                    for (int i = 0; i < tab.length; ++i) {
3362 >                        int c = 0;
3363 >                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3364 >                            if (++c > TREE_THRESHOLD &&
3365 >                                (e.key instanceof Comparable)) {
3366 >                                replaceWithTreeBin(tab, i, e.key);
3367 >                                break;
3368 >                            }
3369 >                        }
3370 >                    }
3371 >                }
3372 >            }
3373 >            if (!init) { // Can only happen if unsafely published.
3374 >                while (p != null) {
3375 >                    internalPut((K)p.key, p.val, false);
3376 >                    p = p.next;
3377 >                }
3378 >            }
3379          }
3380 <        public boolean contains(Object o) {
3381 <            return ConcurrentHashMap.this.containsKey(o);
3380 >    }
3381 >
3382 >    // -------------------------------------------------------
3383 >
3384 >    // Sequential bulk operations
3385 >
3386 >    /**
3387 >     * Performs the given action for each (key, value).
3388 >     *
3389 >     * @param action the action
3390 >     */
3391 >    public void forEachSequentially
3392 >        (BiConsumer<? super K, ? super V> action) {
3393 >        if (action == null) throw new NullPointerException();
3394 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3395 >        V v;
3396 >        while ((v = it.advanceValue()) != null)
3397 >            action.accept(it.nextKey, v);
3398 >    }
3399 >
3400 >    /**
3401 >     * Performs the given action for each non-null transformation
3402 >     * of each (key, value).
3403 >     *
3404 >     * @param transformer a function returning the transformation
3405 >     * for an element, or null if there is no transformation (in
3406 >     * which case the action is not applied)
3407 >     * @param action the action
3408 >     */
3409 >    public <U> void forEachSequentially
3410 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3411 >         Consumer<? super U> action) {
3412 >        if (transformer == null || action == null)
3413 >            throw new NullPointerException();
3414 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3415 >        V v; U u;
3416 >        while ((v = it.advanceValue()) != null) {
3417 >            if ((u = transformer.apply(it.nextKey, v)) != null)
3418 >                action.accept(u);
3419          }
3420 <        public boolean remove(Object o) {
3421 <            return ConcurrentHashMap.this.remove(o) != null;
3420 >    }
3421 >
3422 >    /**
3423 >     * Returns a non-null result from applying the given search
3424 >     * function on each (key, value), or null if none.
3425 >     *
3426 >     * @param searchFunction a function returning a non-null
3427 >     * result on success, else null
3428 >     * @return a non-null result from applying the given search
3429 >     * function on each (key, value), or null if none
3430 >     */
3431 >    public <U> U searchSequentially
3432 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3433 >        if (searchFunction == null) throw new NullPointerException();
3434 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3435 >        V v; U u;
3436 >        while ((v = it.advanceValue()) != null) {
3437 >            if ((u = searchFunction.apply(it.nextKey, v)) != null)
3438 >                return u;
3439          }
3440 <        public void clear() {
3441 <            ConcurrentHashMap.this.clear();
3440 >        return null;
3441 >    }
3442 >
3443 >    /**
3444 >     * Returns the result of accumulating the given transformation
3445 >     * of all (key, value) pairs using the given reducer to
3446 >     * combine values, or null if none.
3447 >     *
3448 >     * @param transformer a function returning the transformation
3449 >     * for an element, or null if there is no transformation (in
3450 >     * which case it is not combined)
3451 >     * @param reducer a commutative associative combining function
3452 >     * @return the result of accumulating the given transformation
3453 >     * of all (key, value) pairs
3454 >     */
3455 >    public <U> U reduceSequentially
3456 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3457 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3458 >        if (transformer == null || reducer == null)
3459 >            throw new NullPointerException();
3460 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3461 >        U r = null, u; V v;
3462 >        while ((v = it.advanceValue()) != null) {
3463 >            if ((u = transformer.apply(it.nextKey, v)) != null)
3464 >                r = (r == null) ? u : reducer.apply(r, u);
3465          }
3466 +        return r;
3467 +    }
3468 +
3469 +    /**
3470 +     * Returns the result of accumulating the given transformation
3471 +     * of all (key, value) pairs using the given reducer to
3472 +     * combine values, and the given basis as an identity value.
3473 +     *
3474 +     * @param transformer a function returning the transformation
3475 +     * for an element
3476 +     * @param basis the identity (initial default value) for the reduction
3477 +     * @param reducer a commutative associative combining function
3478 +     * @return the result of accumulating the given transformation
3479 +     * of all (key, value) pairs
3480 +     */
3481 +    public double reduceToDoubleSequentially
3482 +        (ToDoubleBiFunction<? super K, ? super V> transformer,
3483 +         double basis,
3484 +         DoubleBinaryOperator reducer) {
3485 +        if (transformer == null || reducer == null)
3486 +            throw new NullPointerException();
3487 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3488 +        double r = basis; V v;
3489 +        while ((v = it.advanceValue()) != null)
3490 +            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3491 +        return r;
3492      }
3493  
3494 <    final class Values extends AbstractCollection<V> {
3495 <        public Iterator<V> iterator() {
3496 <            return new ValueIterator();
3494 >    /**
3495 >     * Returns the result of accumulating the given transformation
3496 >     * of all (key, value) pairs using the given reducer to
3497 >     * combine values, and the given basis as an identity value.
3498 >     *
3499 >     * @param transformer a function returning the transformation
3500 >     * for an element
3501 >     * @param basis the identity (initial default value) for the reduction
3502 >     * @param reducer a commutative associative combining function
3503 >     * @return the result of accumulating the given transformation
3504 >     * of all (key, value) pairs
3505 >     */
3506 >    public long reduceToLongSequentially
3507 >        (ToLongBiFunction<? super K, ? super V> transformer,
3508 >         long basis,
3509 >         LongBinaryOperator reducer) {
3510 >        if (transformer == null || reducer == null)
3511 >            throw new NullPointerException();
3512 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3513 >        long r = basis; V v;
3514 >        while ((v = it.advanceValue()) != null)
3515 >            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3516 >        return r;
3517 >    }
3518 >
3519 >    /**
3520 >     * Returns the result of accumulating the given transformation
3521 >     * of all (key, value) pairs using the given reducer to
3522 >     * combine values, and the given basis as an identity value.
3523 >     *
3524 >     * @param transformer a function returning the transformation
3525 >     * for an element
3526 >     * @param basis the identity (initial default value) for the reduction
3527 >     * @param reducer a commutative associative combining function
3528 >     * @return the result of accumulating the given transformation
3529 >     * of all (key, value) pairs
3530 >     */
3531 >    public int reduceToIntSequentially
3532 >        (ToIntBiFunction<? super K, ? super V> transformer,
3533 >         int basis,
3534 >         IntBinaryOperator reducer) {
3535 >        if (transformer == null || reducer == null)
3536 >            throw new NullPointerException();
3537 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3538 >        int r = basis; V v;
3539 >        while ((v = it.advanceValue()) != null)
3540 >            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3541 >        return r;
3542 >    }
3543 >
3544 >    /**
3545 >     * Performs the given action for each key.
3546 >     *
3547 >     * @param action the action
3548 >     */
3549 >    public void forEachKeySequentially
3550 >        (Consumer<? super K> action) {
3551 >        new Traverser<K,V,Object>(this).forEachKey(action);
3552 >    }
3553 >
3554 >    /**
3555 >     * Performs the given action for each non-null transformation
3556 >     * of each key.
3557 >     *
3558 >     * @param transformer a function returning the transformation
3559 >     * for an element, or null if there is no transformation (in
3560 >     * which case the action is not applied)
3561 >     * @param action the action
3562 >     */
3563 >    public <U> void forEachKeySequentially
3564 >        (Function<? super K, ? extends U> transformer,
3565 >         Consumer<? super U> action) {
3566 >        if (transformer == null || action == null)
3567 >            throw new NullPointerException();
3568 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3569 >        K k; U u;
3570 >        while ((k = it.advanceKey()) != null) {
3571 >            if ((u = transformer.apply(k)) != null)
3572 >                action.accept(u);
3573          }
3574 <        public int size() {
3575 <            return ConcurrentHashMap.this.size();
3574 >        ForkJoinTasks.forEachKey
3575 >            (this, transformer, action).invoke();
3576 >    }
3577 >
3578 >    /**
3579 >     * Returns a non-null result from applying the given search
3580 >     * function on each key, or null if none.
3581 >     *
3582 >     * @param searchFunction a function returning a non-null
3583 >     * result on success, else null
3584 >     * @return a non-null result from applying the given search
3585 >     * function on each key, or null if none
3586 >     */
3587 >    public <U> U searchKeysSequentially
3588 >        (Function<? super K, ? extends U> searchFunction) {
3589 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3590 >        K k; U u;
3591 >        while ((k = it.advanceKey()) != null) {
3592 >            if ((u = searchFunction.apply(k)) != null)
3593 >                return u;
3594          }
3595 <        public boolean contains(Object o) {
3596 <            return ConcurrentHashMap.this.containsValue(o);
3595 >        return null;
3596 >    }
3597 >
3598 >    /**
3599 >     * Returns the result of accumulating all keys using the given
3600 >     * reducer to combine values, or null if none.
3601 >     *
3602 >     * @param reducer a commutative associative combining function
3603 >     * @return the result of accumulating all keys using the given
3604 >     * reducer to combine values, or null if none
3605 >     */
3606 >    public K reduceKeysSequentially
3607 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
3608 >        if (reducer == null) throw new NullPointerException();
3609 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3610 >        K u, r = null;
3611 >        while ((u = it.advanceKey()) != null) {
3612 >            r = (r == null) ? u : reducer.apply(r, u);
3613          }
3614 <        public void clear() {
3615 <            ConcurrentHashMap.this.clear();
3614 >        return r;
3615 >    }
3616 >
3617 >    /**
3618 >     * Returns the result of accumulating the given transformation
3619 >     * of all keys using the given reducer to combine values, or
3620 >     * null if none.
3621 >     *
3622 >     * @param transformer a function returning the transformation
3623 >     * for an element, or null if there is no transformation (in
3624 >     * which case it is not combined)
3625 >     * @param reducer a commutative associative combining function
3626 >     * @return the result of accumulating the given transformation
3627 >     * of all keys
3628 >     */
3629 >    public <U> U reduceKeysSequentially
3630 >        (Function<? super K, ? extends U> transformer,
3631 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3632 >        if (transformer == null || reducer == null)
3633 >            throw new NullPointerException();
3634 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3635 >        K k; U r = null, u;
3636 >        while ((k = it.advanceKey()) != null) {
3637 >            if ((u = transformer.apply(k)) != null)
3638 >                r = (r == null) ? u : reducer.apply(r, u);
3639          }
3640 +        return r;
3641      }
3642  
3643 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3644 <        public Iterator<Map.Entry<K,V>> iterator() {
3645 <            return new EntryIterator();
3643 >    /**
3644 >     * Returns the result of accumulating the given transformation
3645 >     * of all keys using the given reducer to combine values, and
3646 >     * the given basis as an identity value.
3647 >     *
3648 >     * @param transformer a function returning the transformation
3649 >     * for an element
3650 >     * @param basis the identity (initial default value) for the reduction
3651 >     * @param reducer a commutative associative combining function
3652 >     * @return the result of accumulating the given transformation
3653 >     * of all keys
3654 >     */
3655 >    public double reduceKeysToDoubleSequentially
3656 >        (ToDoubleFunction<? super K> transformer,
3657 >         double basis,
3658 >         DoubleBinaryOperator reducer) {
3659 >        if (transformer == null || reducer == null)
3660 >            throw new NullPointerException();
3661 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3662 >        double r = basis;
3663 >        K k;
3664 >        while ((k = it.advanceKey()) != null)
3665 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
3666 >        return r;
3667 >    }
3668 >
3669 >    /**
3670 >     * Returns the result of accumulating the given transformation
3671 >     * of all keys using the given reducer to combine values, and
3672 >     * the given basis as an identity value.
3673 >     *
3674 >     * @param transformer a function returning the transformation
3675 >     * for an element
3676 >     * @param basis the identity (initial default value) for the reduction
3677 >     * @param reducer a commutative associative combining function
3678 >     * @return the result of accumulating the given transformation
3679 >     * of all keys
3680 >     */
3681 >    public long reduceKeysToLongSequentially
3682 >        (ToLongFunction<? super K> transformer,
3683 >         long basis,
3684 >         LongBinaryOperator reducer) {
3685 >        if (transformer == null || reducer == null)
3686 >            throw new NullPointerException();
3687 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3688 >        long r = basis;
3689 >        K k;
3690 >        while ((k = it.advanceKey()) != null)
3691 >            r = reducer.applyAsLong(r, transformer.applyAsLong(k));
3692 >        return r;
3693 >    }
3694 >
3695 >    /**
3696 >     * Returns the result of accumulating the given transformation
3697 >     * of all keys using the given reducer to combine values, and
3698 >     * the given basis as an identity value.
3699 >     *
3700 >     * @param transformer a function returning the transformation
3701 >     * for an element
3702 >     * @param basis the identity (initial default value) for the reduction
3703 >     * @param reducer a commutative associative combining function
3704 >     * @return the result of accumulating the given transformation
3705 >     * of all keys
3706 >     */
3707 >    public int reduceKeysToIntSequentially
3708 >        (ToIntFunction<? super K> transformer,
3709 >         int basis,
3710 >         IntBinaryOperator reducer) {
3711 >        if (transformer == null || reducer == null)
3712 >            throw new NullPointerException();
3713 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3714 >        int r = basis;
3715 >        K k;
3716 >        while ((k = it.advanceKey()) != null)
3717 >            r = reducer.applyAsInt(r, transformer.applyAsInt(k));
3718 >        return r;
3719 >    }
3720 >
3721 >    /**
3722 >     * Performs the given action for each value.
3723 >     *
3724 >     * @param action the action
3725 >     */
3726 >    public void forEachValueSequentially(Consumer<? super V> action) {
3727 >        new Traverser<K,V,Object>(this).forEachValue(action);
3728 >    }
3729 >
3730 >    /**
3731 >     * Performs the given action for each non-null transformation
3732 >     * of each value.
3733 >     *
3734 >     * @param transformer a function returning the transformation
3735 >     * for an element, or null if there is no transformation (in
3736 >     * which case the action is not applied)
3737 >     * @param action the action
3738 >     */
3739 >    public <U> void forEachValueSequentially
3740 >        (Function<? super V, ? extends U> transformer,
3741 >         Consumer<? super U> action) {
3742 >        if (transformer == null || action == null)
3743 >            throw new NullPointerException();
3744 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3745 >        V v; U u;
3746 >        while ((v = it.advanceValue()) != null) {
3747 >            if ((u = transformer.apply(v)) != null)
3748 >                action.accept(u);
3749          }
3750 <        public boolean contains(Object o) {
3751 <            if (!(o instanceof Map.Entry))
3752 <                return false;
3753 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3754 <            V v = ConcurrentHashMap.this.get(e.getKey());
3755 <            return v != null && v.equals(e.getValue());
3750 >    }
3751 >
3752 >    /**
3753 >     * Returns a non-null result from applying the given search
3754 >     * function on each value, or null if none.
3755 >     *
3756 >     * @param searchFunction a function returning a non-null
3757 >     * result on success, else null
3758 >     * @return a non-null result from applying the given search
3759 >     * function on each value, or null if none
3760 >     */
3761 >    public <U> U searchValuesSequentially
3762 >        (Function<? super V, ? extends U> searchFunction) {
3763 >        if (searchFunction == null) throw new NullPointerException();
3764 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3765 >        V v; U u;
3766 >        while ((v = it.advanceValue()) != null) {
3767 >            if ((u = searchFunction.apply(v)) != null)
3768 >                return u;
3769          }
3770 <        public boolean remove(Object o) {
3771 <            if (!(o instanceof Map.Entry))
3772 <                return false;
3773 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3774 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
3770 >        return null;
3771 >    }
3772 >
3773 >    /**
3774 >     * Returns the result of accumulating all values using the
3775 >     * given reducer to combine values, or null if none.
3776 >     *
3777 >     * @param reducer a commutative associative combining function
3778 >     * @return the result of accumulating all values
3779 >     */
3780 >    public V reduceValuesSequentially
3781 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
3782 >        if (reducer == null) throw new NullPointerException();
3783 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3784 >        V r = null; V v;
3785 >        while ((v = it.advanceValue()) != null)
3786 >            r = (r == null) ? v : reducer.apply(r, v);
3787 >        return r;
3788 >    }
3789 >
3790 >    /**
3791 >     * Returns the result of accumulating the given transformation
3792 >     * of all values using the given reducer to combine values, or
3793 >     * null if none.
3794 >     *
3795 >     * @param transformer a function returning the transformation
3796 >     * for an element, or null if there is no transformation (in
3797 >     * which case it is not combined)
3798 >     * @param reducer a commutative associative combining function
3799 >     * @return the result of accumulating the given transformation
3800 >     * of all values
3801 >     */
3802 >    public <U> U reduceValuesSequentially
3803 >        (Function<? super V, ? extends U> transformer,
3804 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3805 >        if (transformer == null || reducer == null)
3806 >            throw new NullPointerException();
3807 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3808 >        U r = null, u; V v;
3809 >        while ((v = it.advanceValue()) != null) {
3810 >            if ((u = transformer.apply(v)) != null)
3811 >                r = (r == null) ? u : reducer.apply(r, u);
3812          }
3813 <        public int size() {
3814 <            return ConcurrentHashMap.this.size();
3813 >        return r;
3814 >    }
3815 >
3816 >    /**
3817 >     * Returns the result of accumulating the given transformation
3818 >     * of all values using the given reducer to combine values,
3819 >     * and the given basis as an identity value.
3820 >     *
3821 >     * @param transformer a function returning the transformation
3822 >     * for an element
3823 >     * @param basis the identity (initial default value) for the reduction
3824 >     * @param reducer a commutative associative combining function
3825 >     * @return the result of accumulating the given transformation
3826 >     * of all values
3827 >     */
3828 >    public double reduceValuesToDoubleSequentially
3829 >        (ToDoubleFunction<? super V> transformer,
3830 >         double basis,
3831 >         DoubleBinaryOperator reducer) {
3832 >        if (transformer == null || reducer == null)
3833 >            throw new NullPointerException();
3834 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3835 >        double r = basis; V v;
3836 >        while ((v = it.advanceValue()) != null)
3837 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3838 >        return r;
3839 >    }
3840 >
3841 >    /**
3842 >     * Returns the result of accumulating the given transformation
3843 >     * of all values using the given reducer to combine values,
3844 >     * and the given basis as an identity value.
3845 >     *
3846 >     * @param transformer a function returning the transformation
3847 >     * for an element
3848 >     * @param basis the identity (initial default value) for the reduction
3849 >     * @param reducer a commutative associative combining function
3850 >     * @return the result of accumulating the given transformation
3851 >     * of all values
3852 >     */
3853 >    public long reduceValuesToLongSequentially
3854 >        (ToLongFunction<? super V> transformer,
3855 >         long basis,
3856 >         LongBinaryOperator reducer) {
3857 >        if (transformer == null || reducer == null)
3858 >            throw new NullPointerException();
3859 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3860 >        long r = basis; V v;
3861 >        while ((v = it.advanceValue()) != null)
3862 >            r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3863 >        return r;
3864 >    }
3865 >
3866 >    /**
3867 >     * Returns the result of accumulating the given transformation
3868 >     * of all values using the given reducer to combine values,
3869 >     * and the given basis as an identity value.
3870 >     *
3871 >     * @param transformer a function returning the transformation
3872 >     * for an element
3873 >     * @param basis the identity (initial default value) for the reduction
3874 >     * @param reducer a commutative associative combining function
3875 >     * @return the result of accumulating the given transformation
3876 >     * of all values
3877 >     */
3878 >    public int reduceValuesToIntSequentially
3879 >        (ToIntFunction<? super V> transformer,
3880 >         int basis,
3881 >         IntBinaryOperator reducer) {
3882 >        if (transformer == null || reducer == null)
3883 >            throw new NullPointerException();
3884 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3885 >        int r = basis; V v;
3886 >        while ((v = it.advanceValue()) != null)
3887 >            r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3888 >        return r;
3889 >    }
3890 >
3891 >    /**
3892 >     * Performs the given action for each entry.
3893 >     *
3894 >     * @param action the action
3895 >     */
3896 >    public void forEachEntrySequentially
3897 >        (Consumer<? super Map.Entry<K,V>> action) {
3898 >        if (action == null) throw new NullPointerException();
3899 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3900 >        V v;
3901 >        while ((v = it.advanceValue()) != null)
3902 >            action.accept(entryFor(it.nextKey, v));
3903 >    }
3904 >
3905 >    /**
3906 >     * Performs the given action for each non-null transformation
3907 >     * of each entry.
3908 >     *
3909 >     * @param transformer a function returning the transformation
3910 >     * for an element, or null if there is no transformation (in
3911 >     * which case the action is not applied)
3912 >     * @param action the action
3913 >     */
3914 >    public <U> void forEachEntrySequentially
3915 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3916 >         Consumer<? super U> action) {
3917 >        if (transformer == null || action == null)
3918 >            throw new NullPointerException();
3919 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3920 >        V v; U u;
3921 >        while ((v = it.advanceValue()) != null) {
3922 >            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3923 >                action.accept(u);
3924          }
3925 <        public void clear() {
3926 <            ConcurrentHashMap.this.clear();
3925 >    }
3926 >
3927 >    /**
3928 >     * Returns a non-null result from applying the given search
3929 >     * function on each entry, or null if none.
3930 >     *
3931 >     * @param searchFunction a function returning a non-null
3932 >     * result on success, else null
3933 >     * @return a non-null result from applying the given search
3934 >     * function on each entry, or null if none
3935 >     */
3936 >    public <U> U searchEntriesSequentially
3937 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3938 >        if (searchFunction == null) throw new NullPointerException();
3939 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3940 >        V v; U u;
3941 >        while ((v = it.advanceValue()) != null) {
3942 >            if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3943 >                return u;
3944          }
3945 +        return null;
3946      }
3947  
3948 <    /* ---------------- Serialization Support -------------- */
3948 >    /**
3949 >     * Returns the result of accumulating all entries using the
3950 >     * given reducer to combine values, or null if none.
3951 >     *
3952 >     * @param reducer a commutative associative combining function
3953 >     * @return the result of accumulating all entries
3954 >     */
3955 >    public Map.Entry<K,V> reduceEntriesSequentially
3956 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3957 >        if (reducer == null) throw new NullPointerException();
3958 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3959 >        Map.Entry<K,V> r = null; V v;
3960 >        while ((v = it.advanceValue()) != null) {
3961 >            Map.Entry<K,V> u = entryFor(it.nextKey, v);
3962 >            r = (r == null) ? u : reducer.apply(r, u);
3963 >        }
3964 >        return r;
3965 >    }
3966  
3967      /**
3968 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
3969 <     * stream (i.e., serialize it).
3970 <     * @param s the stream
3971 <     * @serialData
3972 <     * the key (Object) and value (Object)
3973 <     * for each key-value mapping, followed by a null pair.
3974 <     * The key-value mappings are emitted in no particular order.
3968 >     * Returns the result of accumulating the given transformation
3969 >     * of all entries using the given reducer to combine values,
3970 >     * or null if none.
3971 >     *
3972 >     * @param transformer a function returning the transformation
3973 >     * for an element, or null if there is no transformation (in
3974 >     * which case it is not combined)
3975 >     * @param reducer a commutative associative combining function
3976 >     * @return the result of accumulating the given transformation
3977 >     * of all entries
3978 >     */
3979 >    public <U> U reduceEntriesSequentially
3980 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3981 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3982 >        if (transformer == null || reducer == null)
3983 >            throw new NullPointerException();
3984 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3985 >        U r = null, u; V v;
3986 >        while ((v = it.advanceValue()) != null) {
3987 >            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3988 >                r = (r == null) ? u : reducer.apply(r, u);
3989 >        }
3990 >        return r;
3991 >    }
3992 >
3993 >    /**
3994 >     * Returns the result of accumulating the given transformation
3995 >     * of all entries using the given reducer to combine values,
3996 >     * and the given basis as an identity value.
3997 >     *
3998 >     * @param transformer a function returning the transformation
3999 >     * for an element
4000 >     * @param basis the identity (initial default value) for the reduction
4001 >     * @param reducer a commutative associative combining function
4002 >     * @return the result of accumulating the given transformation
4003 >     * of all entries
4004 >     */
4005 >    public double reduceEntriesToDoubleSequentially
4006 >        (ToDoubleFunction<Map.Entry<K,V>> transformer,
4007 >         double basis,
4008 >         DoubleBinaryOperator reducer) {
4009 >        if (transformer == null || reducer == null)
4010 >            throw new NullPointerException();
4011 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4012 >        double r = basis; V v;
4013 >        while ((v = it.advanceValue()) != null)
4014 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
4015 >        return r;
4016 >    }
4017 >
4018 >    /**
4019 >     * Returns the result of accumulating the given transformation
4020 >     * of all entries using the given reducer to combine values,
4021 >     * and the given basis as an identity value.
4022 >     *
4023 >     * @param transformer a function returning the transformation
4024 >     * for an element
4025 >     * @param basis the identity (initial default value) for the reduction
4026 >     * @param reducer a commutative associative combining function
4027 >     * @return the result of accumulating the given transformation
4028 >     * of all entries
4029 >     */
4030 >    public long reduceEntriesToLongSequentially
4031 >        (ToLongFunction<Map.Entry<K,V>> transformer,
4032 >         long basis,
4033 >         LongBinaryOperator reducer) {
4034 >        if (transformer == null || reducer == null)
4035 >            throw new NullPointerException();
4036 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4037 >        long r = basis; V v;
4038 >        while ((v = it.advanceValue()) != null)
4039 >            r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
4040 >        return r;
4041 >    }
4042 >
4043 >    /**
4044 >     * Returns the result of accumulating the given transformation
4045 >     * of all entries using the given reducer to combine values,
4046 >     * and the given basis as an identity value.
4047 >     *
4048 >     * @param transformer a function returning the transformation
4049 >     * for an element
4050 >     * @param basis the identity (initial default value) for the reduction
4051 >     * @param reducer a commutative associative combining function
4052 >     * @return the result of accumulating the given transformation
4053 >     * of all entries
4054 >     */
4055 >    public int reduceEntriesToIntSequentially
4056 >        (ToIntFunction<Map.Entry<K,V>> transformer,
4057 >         int basis,
4058 >         IntBinaryOperator reducer) {
4059 >        if (transformer == null || reducer == null)
4060 >            throw new NullPointerException();
4061 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4062 >        int r = basis; V v;
4063 >        while ((v = it.advanceValue()) != null)
4064 >            r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
4065 >        return r;
4066 >    }
4067 >
4068 >    // Parallel bulk operations
4069 >
4070 >    /**
4071 >     * Performs the given action for each (key, value).
4072 >     *
4073 >     * @param action the action
4074       */
4075 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
4076 <        s.defaultWriteObject();
4075 >    public void forEachInParallel(BiConsumer<? super K,? super V> action) {
4076 >        ForkJoinTasks.forEach
4077 >            (this, action).invoke();
4078 >    }
4079  
4080 <        for (int k = 0; k < segments.length; ++k) {
4081 <            Segment<K,V> seg = segments[k];
4082 <            seg.lock();
4083 <            try {
4084 <                HashEntry<K,V>[] tab = seg.table;
4085 <                for (int i = 0; i < tab.length; ++i) {
4086 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
4087 <                        s.writeObject(e.key);
4088 <                        s.writeObject(e.value);
4080 >    /**
4081 >     * Performs the given action for each non-null transformation
4082 >     * of each (key, value).
4083 >     *
4084 >     * @param transformer a function returning the transformation
4085 >     * for an element, or null if there is no transformation (in
4086 >     * which case the action is not applied)
4087 >     * @param action the action
4088 >     */
4089 >    public <U> void forEachInParallel
4090 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
4091 >                            Consumer<? super U> action) {
4092 >        ForkJoinTasks.forEach
4093 >            (this, transformer, action).invoke();
4094 >    }
4095 >
4096 >    /**
4097 >     * Returns a non-null result from applying the given search
4098 >     * function on each (key, value), or null if none.  Upon
4099 >     * success, further element processing is suppressed and the
4100 >     * results of any other parallel invocations of the search
4101 >     * function are ignored.
4102 >     *
4103 >     * @param searchFunction a function returning a non-null
4104 >     * result on success, else null
4105 >     * @return a non-null result from applying the given search
4106 >     * function on each (key, value), or null if none
4107 >     */
4108 >    public <U> U searchInParallel
4109 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4110 >        return ForkJoinTasks.search
4111 >            (this, searchFunction).invoke();
4112 >    }
4113 >
4114 >    /**
4115 >     * Returns the result of accumulating the given transformation
4116 >     * of all (key, value) pairs using the given reducer to
4117 >     * combine values, or null if none.
4118 >     *
4119 >     * @param transformer a function returning the transformation
4120 >     * for an element, or null if there is no transformation (in
4121 >     * which case it is not combined)
4122 >     * @param reducer a commutative associative combining function
4123 >     * @return the result of accumulating the given transformation
4124 >     * of all (key, value) pairs
4125 >     */
4126 >    public <U> U reduceInParallel
4127 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
4128 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4129 >        return ForkJoinTasks.reduce
4130 >            (this, transformer, reducer).invoke();
4131 >    }
4132 >
4133 >    /**
4134 >     * Returns the result of accumulating the given transformation
4135 >     * of all (key, value) pairs using the given reducer to
4136 >     * combine values, and the given basis as an identity value.
4137 >     *
4138 >     * @param transformer a function returning the transformation
4139 >     * for an element
4140 >     * @param basis the identity (initial default value) for the reduction
4141 >     * @param reducer a commutative associative combining function
4142 >     * @return the result of accumulating the given transformation
4143 >     * of all (key, value) pairs
4144 >     */
4145 >    public double reduceToDoubleInParallel
4146 >        (ToDoubleBiFunction<? super K, ? super V> transformer,
4147 >         double basis,
4148 >         DoubleBinaryOperator reducer) {
4149 >        return ForkJoinTasks.reduceToDouble
4150 >            (this, transformer, basis, reducer).invoke();
4151 >    }
4152 >
4153 >    /**
4154 >     * Returns the result of accumulating the given transformation
4155 >     * of all (key, value) pairs using the given reducer to
4156 >     * combine values, and the given basis as an identity value.
4157 >     *
4158 >     * @param transformer a function returning the transformation
4159 >     * for an element
4160 >     * @param basis the identity (initial default value) for the reduction
4161 >     * @param reducer a commutative associative combining function
4162 >     * @return the result of accumulating the given transformation
4163 >     * of all (key, value) pairs
4164 >     */
4165 >    public long reduceToLongInParallel
4166 >        (ToLongBiFunction<? super K, ? super V> transformer,
4167 >         long basis,
4168 >         LongBinaryOperator reducer) {
4169 >        return ForkJoinTasks.reduceToLong
4170 >            (this, transformer, basis, reducer).invoke();
4171 >    }
4172 >
4173 >    /**
4174 >     * Returns the result of accumulating the given transformation
4175 >     * of all (key, value) pairs using the given reducer to
4176 >     * combine values, and the given basis as an identity value.
4177 >     *
4178 >     * @param transformer a function returning the transformation
4179 >     * for an element
4180 >     * @param basis the identity (initial default value) for the reduction
4181 >     * @param reducer a commutative associative combining function
4182 >     * @return the result of accumulating the given transformation
4183 >     * of all (key, value) pairs
4184 >     */
4185 >    public int reduceToIntInParallel
4186 >        (ToIntBiFunction<? super K, ? super V> transformer,
4187 >         int basis,
4188 >         IntBinaryOperator reducer) {
4189 >        return ForkJoinTasks.reduceToInt
4190 >            (this, transformer, basis, reducer).invoke();
4191 >    }
4192 >
4193 >    /**
4194 >     * Performs the given action for each key.
4195 >     *
4196 >     * @param action the action
4197 >     */
4198 >    public void forEachKeyInParallel(Consumer<? super K> action) {
4199 >        ForkJoinTasks.forEachKey
4200 >            (this, action).invoke();
4201 >    }
4202 >
4203 >    /**
4204 >     * Performs the given action for each non-null transformation
4205 >     * of each key.
4206 >     *
4207 >     * @param transformer a function returning the transformation
4208 >     * for an element, or null if there is no transformation (in
4209 >     * which case the action is not applied)
4210 >     * @param action the action
4211 >     */
4212 >    public <U> void forEachKeyInParallel
4213 >        (Function<? super K, ? extends U> transformer,
4214 >         Consumer<? super U> action) {
4215 >        ForkJoinTasks.forEachKey
4216 >            (this, transformer, action).invoke();
4217 >    }
4218 >
4219 >    /**
4220 >     * Returns a non-null result from applying the given search
4221 >     * function on each key, or null if none. Upon success,
4222 >     * further element processing is suppressed and the results of
4223 >     * any other parallel invocations of the search function are
4224 >     * ignored.
4225 >     *
4226 >     * @param searchFunction a function returning a non-null
4227 >     * result on success, else null
4228 >     * @return a non-null result from applying the given search
4229 >     * function on each key, or null if none
4230 >     */
4231 >    public <U> U searchKeysInParallel
4232 >        (Function<? super K, ? extends U> searchFunction) {
4233 >        return ForkJoinTasks.searchKeys
4234 >            (this, searchFunction).invoke();
4235 >    }
4236 >
4237 >    /**
4238 >     * Returns the result of accumulating all keys using the given
4239 >     * reducer to combine values, or null if none.
4240 >     *
4241 >     * @param reducer a commutative associative combining function
4242 >     * @return the result of accumulating all keys using the given
4243 >     * reducer to combine values, or null if none
4244 >     */
4245 >    public K reduceKeysInParallel
4246 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
4247 >        return ForkJoinTasks.reduceKeys
4248 >            (this, reducer).invoke();
4249 >    }
4250 >
4251 >    /**
4252 >     * Returns the result of accumulating the given transformation
4253 >     * of all keys using the given reducer to combine values, or
4254 >     * null if none.
4255 >     *
4256 >     * @param transformer a function returning the transformation
4257 >     * for an element, or null if there is no transformation (in
4258 >     * which case it is not combined)
4259 >     * @param reducer a commutative associative combining function
4260 >     * @return the result of accumulating the given transformation
4261 >     * of all keys
4262 >     */
4263 >    public <U> U reduceKeysInParallel
4264 >        (Function<? super K, ? extends U> transformer,
4265 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4266 >        return ForkJoinTasks.reduceKeys
4267 >            (this, transformer, reducer).invoke();
4268 >    }
4269 >
4270 >    /**
4271 >     * Returns the result of accumulating the given transformation
4272 >     * of all keys using the given reducer to combine values, and
4273 >     * the given basis as an identity value.
4274 >     *
4275 >     * @param transformer a function returning the transformation
4276 >     * for an element
4277 >     * @param basis the identity (initial default value) for the reduction
4278 >     * @param reducer a commutative associative combining function
4279 >     * @return the result of accumulating the given transformation
4280 >     * of all keys
4281 >     */
4282 >    public double reduceKeysToDoubleInParallel
4283 >        (ToDoubleFunction<? super K> transformer,
4284 >         double basis,
4285 >         DoubleBinaryOperator reducer) {
4286 >        return ForkJoinTasks.reduceKeysToDouble
4287 >            (this, transformer, basis, reducer).invoke();
4288 >    }
4289 >
4290 >    /**
4291 >     * Returns the result of accumulating the given transformation
4292 >     * of all keys using the given reducer to combine values, and
4293 >     * the given basis as an identity value.
4294 >     *
4295 >     * @param transformer a function returning the transformation
4296 >     * for an element
4297 >     * @param basis the identity (initial default value) for the reduction
4298 >     * @param reducer a commutative associative combining function
4299 >     * @return the result of accumulating the given transformation
4300 >     * of all keys
4301 >     */
4302 >    public long reduceKeysToLongInParallel
4303 >        (ToLongFunction<? super K> transformer,
4304 >         long basis,
4305 >         LongBinaryOperator reducer) {
4306 >        return ForkJoinTasks.reduceKeysToLong
4307 >            (this, transformer, basis, reducer).invoke();
4308 >    }
4309 >
4310 >    /**
4311 >     * Returns the result of accumulating the given transformation
4312 >     * of all keys using the given reducer to combine values, and
4313 >     * the given basis as an identity value.
4314 >     *
4315 >     * @param transformer a function returning the transformation
4316 >     * for an element
4317 >     * @param basis the identity (initial default value) for the reduction
4318 >     * @param reducer a commutative associative combining function
4319 >     * @return the result of accumulating the given transformation
4320 >     * of all keys
4321 >     */
4322 >    public int reduceKeysToIntInParallel
4323 >        (ToIntFunction<? super K> transformer,
4324 >         int basis,
4325 >         IntBinaryOperator reducer) {
4326 >        return ForkJoinTasks.reduceKeysToInt
4327 >            (this, transformer, basis, reducer).invoke();
4328 >    }
4329 >
4330 >    /**
4331 >     * Performs the given action for each value.
4332 >     *
4333 >     * @param action the action
4334 >     */
4335 >    public void forEachValueInParallel(Consumer<? super V> action) {
4336 >        ForkJoinTasks.forEachValue
4337 >            (this, action).invoke();
4338 >    }
4339 >
4340 >    /**
4341 >     * Performs the given action for each non-null transformation
4342 >     * of each value.
4343 >     *
4344 >     * @param transformer a function returning the transformation
4345 >     * for an element, or null if there is no transformation (in
4346 >     * which case the action is not applied)
4347 >     * @param action the action
4348 >     */
4349 >    public <U> void forEachValueInParallel
4350 >        (Function<? super V, ? extends U> transformer,
4351 >         Consumer<? super U> action) {
4352 >        ForkJoinTasks.forEachValue
4353 >            (this, transformer, action).invoke();
4354 >    }
4355 >
4356 >    /**
4357 >     * Returns a non-null result from applying the given search
4358 >     * function on each value, or null if none.  Upon success,
4359 >     * further element processing is suppressed and the results of
4360 >     * any other parallel invocations of the search function are
4361 >     * ignored.
4362 >     *
4363 >     * @param searchFunction a function returning a non-null
4364 >     * result on success, else null
4365 >     * @return a non-null result from applying the given search
4366 >     * function on each value, or null if none
4367 >     */
4368 >    public <U> U searchValuesInParallel
4369 >        (Function<? super V, ? extends U> searchFunction) {
4370 >        return ForkJoinTasks.searchValues
4371 >            (this, searchFunction).invoke();
4372 >    }
4373 >
4374 >    /**
4375 >     * Returns the result of accumulating all values using the
4376 >     * given reducer to combine values, or null if none.
4377 >     *
4378 >     * @param reducer a commutative associative combining function
4379 >     * @return the result of accumulating all values
4380 >     */
4381 >    public V reduceValuesInParallel
4382 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
4383 >        return ForkJoinTasks.reduceValues
4384 >            (this, reducer).invoke();
4385 >    }
4386 >
4387 >    /**
4388 >     * Returns the result of accumulating the given transformation
4389 >     * of all values using the given reducer to combine values, or
4390 >     * null if none.
4391 >     *
4392 >     * @param transformer a function returning the transformation
4393 >     * for an element, or null if there is no transformation (in
4394 >     * which case it is not combined)
4395 >     * @param reducer a commutative associative combining function
4396 >     * @return the result of accumulating the given transformation
4397 >     * of all values
4398 >     */
4399 >    public <U> U reduceValuesInParallel
4400 >        (Function<? super V, ? extends U> transformer,
4401 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4402 >        return ForkJoinTasks.reduceValues
4403 >            (this, transformer, reducer).invoke();
4404 >    }
4405 >
4406 >    /**
4407 >     * Returns the result of accumulating the given transformation
4408 >     * of all values using the given reducer to combine values,
4409 >     * and the given basis as an identity value.
4410 >     *
4411 >     * @param transformer a function returning the transformation
4412 >     * for an element
4413 >     * @param basis the identity (initial default value) for the reduction
4414 >     * @param reducer a commutative associative combining function
4415 >     * @return the result of accumulating the given transformation
4416 >     * of all values
4417 >     */
4418 >    public double reduceValuesToDoubleInParallel
4419 >        (ToDoubleFunction<? super V> transformer,
4420 >         double basis,
4421 >         DoubleBinaryOperator reducer) {
4422 >        return ForkJoinTasks.reduceValuesToDouble
4423 >            (this, transformer, basis, reducer).invoke();
4424 >    }
4425 >
4426 >    /**
4427 >     * Returns the result of accumulating the given transformation
4428 >     * of all values using the given reducer to combine values,
4429 >     * and the given basis as an identity value.
4430 >     *
4431 >     * @param transformer a function returning the transformation
4432 >     * for an element
4433 >     * @param basis the identity (initial default value) for the reduction
4434 >     * @param reducer a commutative associative combining function
4435 >     * @return the result of accumulating the given transformation
4436 >     * of all values
4437 >     */
4438 >    public long reduceValuesToLongInParallel
4439 >        (ToLongFunction<? super V> transformer,
4440 >         long basis,
4441 >         LongBinaryOperator reducer) {
4442 >        return ForkJoinTasks.reduceValuesToLong
4443 >            (this, transformer, basis, reducer).invoke();
4444 >    }
4445 >
4446 >    /**
4447 >     * Returns the result of accumulating the given transformation
4448 >     * of all values using the given reducer to combine values,
4449 >     * and the given basis as an identity value.
4450 >     *
4451 >     * @param transformer a function returning the transformation
4452 >     * for an element
4453 >     * @param basis the identity (initial default value) for the reduction
4454 >     * @param reducer a commutative associative combining function
4455 >     * @return the result of accumulating the given transformation
4456 >     * of all values
4457 >     */
4458 >    public int reduceValuesToIntInParallel
4459 >        (ToIntFunction<? super V> transformer,
4460 >         int basis,
4461 >         IntBinaryOperator reducer) {
4462 >        return ForkJoinTasks.reduceValuesToInt
4463 >            (this, transformer, basis, reducer).invoke();
4464 >    }
4465 >
4466 >    /**
4467 >     * Performs the given action for each entry.
4468 >     *
4469 >     * @param action the action
4470 >     */
4471 >    public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4472 >        ForkJoinTasks.forEachEntry
4473 >            (this, action).invoke();
4474 >    }
4475 >
4476 >    /**
4477 >     * Performs the given action for each non-null transformation
4478 >     * of each entry.
4479 >     *
4480 >     * @param transformer a function returning the transformation
4481 >     * for an element, or null if there is no transformation (in
4482 >     * which case the action is not applied)
4483 >     * @param action the action
4484 >     */
4485 >    public <U> void forEachEntryInParallel
4486 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4487 >         Consumer<? super U> action) {
4488 >        ForkJoinTasks.forEachEntry
4489 >            (this, transformer, action).invoke();
4490 >    }
4491 >
4492 >    /**
4493 >     * Returns a non-null result from applying the given search
4494 >     * function on each entry, or null if none.  Upon success,
4495 >     * further element processing is suppressed and the results of
4496 >     * any other parallel invocations of the search function are
4497 >     * ignored.
4498 >     *
4499 >     * @param searchFunction a function returning a non-null
4500 >     * result on success, else null
4501 >     * @return a non-null result from applying the given search
4502 >     * function on each entry, or null if none
4503 >     */
4504 >    public <U> U searchEntriesInParallel
4505 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4506 >        return ForkJoinTasks.searchEntries
4507 >            (this, searchFunction).invoke();
4508 >    }
4509 >
4510 >    /**
4511 >     * Returns the result of accumulating all entries using the
4512 >     * given reducer to combine values, or null if none.
4513 >     *
4514 >     * @param reducer a commutative associative combining function
4515 >     * @return the result of accumulating all entries
4516 >     */
4517 >    public Map.Entry<K,V> reduceEntriesInParallel
4518 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4519 >        return ForkJoinTasks.reduceEntries
4520 >            (this, reducer).invoke();
4521 >    }
4522 >
4523 >    /**
4524 >     * Returns the result of accumulating the given transformation
4525 >     * of all entries using the given reducer to combine values,
4526 >     * or null if none.
4527 >     *
4528 >     * @param transformer a function returning the transformation
4529 >     * for an element, or null if there is no transformation (in
4530 >     * which case it is not combined)
4531 >     * @param reducer a commutative associative combining function
4532 >     * @return the result of accumulating the given transformation
4533 >     * of all entries
4534 >     */
4535 >    public <U> U reduceEntriesInParallel
4536 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4537 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4538 >        return ForkJoinTasks.reduceEntries
4539 >            (this, transformer, reducer).invoke();
4540 >    }
4541 >
4542 >    /**
4543 >     * Returns the result of accumulating the given transformation
4544 >     * of all entries using the given reducer to combine values,
4545 >     * and the given basis as an identity value.
4546 >     *
4547 >     * @param transformer a function returning the transformation
4548 >     * for an element
4549 >     * @param basis the identity (initial default value) for the reduction
4550 >     * @param reducer a commutative associative combining function
4551 >     * @return the result of accumulating the given transformation
4552 >     * of all entries
4553 >     */
4554 >    public double reduceEntriesToDoubleInParallel
4555 >        (ToDoubleFunction<Map.Entry<K,V>> transformer,
4556 >         double basis,
4557 >         DoubleBinaryOperator reducer) {
4558 >        return ForkJoinTasks.reduceEntriesToDouble
4559 >            (this, transformer, basis, reducer).invoke();
4560 >    }
4561 >
4562 >    /**
4563 >     * Returns the result of accumulating the given transformation
4564 >     * of all entries using the given reducer to combine values,
4565 >     * and the given basis as an identity value.
4566 >     *
4567 >     * @param transformer a function returning the transformation
4568 >     * for an element
4569 >     * @param basis the identity (initial default value) for the reduction
4570 >     * @param reducer a commutative associative combining function
4571 >     * @return the result of accumulating the given transformation
4572 >     * of all entries
4573 >     */
4574 >    public long reduceEntriesToLongInParallel
4575 >        (ToLongFunction<Map.Entry<K,V>> transformer,
4576 >         long basis,
4577 >         LongBinaryOperator reducer) {
4578 >        return ForkJoinTasks.reduceEntriesToLong
4579 >            (this, transformer, basis, reducer).invoke();
4580 >    }
4581 >
4582 >    /**
4583 >     * Returns the result of accumulating the given transformation
4584 >     * of all entries using the given reducer to combine values,
4585 >     * and the given basis as an identity value.
4586 >     *
4587 >     * @param transformer a function returning the transformation
4588 >     * for an element
4589 >     * @param basis the identity (initial default value) for the reduction
4590 >     * @param reducer a commutative associative combining function
4591 >     * @return the result of accumulating the given transformation
4592 >     * of all entries
4593 >     */
4594 >    public int reduceEntriesToIntInParallel
4595 >        (ToIntFunction<Map.Entry<K,V>> transformer,
4596 >         int basis,
4597 >         IntBinaryOperator reducer) {
4598 >        return ForkJoinTasks.reduceEntriesToInt
4599 >            (this, transformer, basis, reducer).invoke();
4600 >    }
4601 >
4602 >
4603 >    /* ----------------Views -------------- */
4604 >
4605 >    /**
4606 >     * Base class for views.
4607 >     */
4608 >    abstract static class CHMCollectionView<K,V,E>
4609 >            implements Collection<E>, java.io.Serializable {
4610 >        private static final long serialVersionUID = 7249069246763182397L;
4611 >        final ConcurrentHashMap<K,V> map;
4612 >        CHMCollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4613 >
4614 >        /**
4615 >         * Returns the map backing this view.
4616 >         *
4617 >         * @return the map backing this view
4618 >         */
4619 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4620 >
4621 >        /**
4622 >         * Removes all of the elements from this view, by removing all
4623 >         * the mappings from the map backing this view.
4624 >         */
4625 >        public final void clear()      { map.clear(); }
4626 >        public final int size()        { return map.size(); }
4627 >        public final boolean isEmpty() { return map.isEmpty(); }
4628 >
4629 >        // implementations below rely on concrete classes supplying these
4630 >        // abstract methods
4631 >        /**
4632 >         * Returns a "weakly consistent" iterator that will never
4633 >         * throw {@link ConcurrentModificationException}, and
4634 >         * guarantees to traverse elements as they existed upon
4635 >         * construction of the iterator, and may (but is not
4636 >         * guaranteed to) reflect any modifications subsequent to
4637 >         * construction.
4638 >         */
4639 >        public abstract Iterator<E> iterator();
4640 >        public abstract boolean contains(Object o);
4641 >        public abstract boolean remove(Object o);
4642 >
4643 >        private static final String oomeMsg = "Required array size too large";
4644 >
4645 >        public final Object[] toArray() {
4646 >            long sz = map.mappingCount();
4647 >            if (sz > MAX_ARRAY_SIZE)
4648 >                throw new OutOfMemoryError(oomeMsg);
4649 >            int n = (int)sz;
4650 >            Object[] r = new Object[n];
4651 >            int i = 0;
4652 >            for (E e : this) {
4653 >                if (i == n) {
4654 >                    if (n >= MAX_ARRAY_SIZE)
4655 >                        throw new OutOfMemoryError(oomeMsg);
4656 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4657 >                        n = MAX_ARRAY_SIZE;
4658 >                    else
4659 >                        n += (n >>> 1) + 1;
4660 >                    r = Arrays.copyOf(r, n);
4661 >                }
4662 >                r[i++] = e;
4663 >            }
4664 >            return (i == n) ? r : Arrays.copyOf(r, i);
4665 >        }
4666 >
4667 >        @SuppressWarnings("unchecked")
4668 >        public final <T> T[] toArray(T[] a) {
4669 >            long sz = map.mappingCount();
4670 >            if (sz > MAX_ARRAY_SIZE)
4671 >                throw new OutOfMemoryError(oomeMsg);
4672 >            int m = (int)sz;
4673 >            T[] r = (a.length >= m) ? a :
4674 >                (T[])java.lang.reflect.Array
4675 >                .newInstance(a.getClass().getComponentType(), m);
4676 >            int n = r.length;
4677 >            int i = 0;
4678 >            for (E e : this) {
4679 >                if (i == n) {
4680 >                    if (n >= MAX_ARRAY_SIZE)
4681 >                        throw new OutOfMemoryError(oomeMsg);
4682 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4683 >                        n = MAX_ARRAY_SIZE;
4684 >                    else
4685 >                        n += (n >>> 1) + 1;
4686 >                    r = Arrays.copyOf(r, n);
4687 >                }
4688 >                r[i++] = (T)e;
4689 >            }
4690 >            if (a == r && i < n) {
4691 >                r[i] = null; // null-terminate
4692 >                return r;
4693 >            }
4694 >            return (i == n) ? r : Arrays.copyOf(r, i);
4695 >        }
4696 >
4697 >        /**
4698 >         * Returns a string representation of this collection.
4699 >         * The string representation consists of the string representations
4700 >         * of the collection's elements in the order they are returned by
4701 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4702 >         * Adjacent elements are separated by the characters {@code ", "}
4703 >         * (comma and space).  Elements are converted to strings as by
4704 >         * {@link String#valueOf(Object)}.
4705 >         *
4706 >         * @return a string representation of this collection
4707 >         */
4708 >        public final String toString() {
4709 >            StringBuilder sb = new StringBuilder();
4710 >            sb.append('[');
4711 >            Iterator<E> it = iterator();
4712 >            if (it.hasNext()) {
4713 >                for (;;) {
4714 >                    Object e = it.next();
4715 >                    sb.append(e == this ? "(this Collection)" : e);
4716 >                    if (!it.hasNext())
4717 >                        break;
4718 >                    sb.append(',').append(' ');
4719 >                }
4720 >            }
4721 >            return sb.append(']').toString();
4722 >        }
4723 >
4724 >        public final boolean containsAll(Collection<?> c) {
4725 >            if (c != this) {
4726 >                for (Object e : c) {
4727 >                    if (e == null || !contains(e))
4728 >                        return false;
4729 >                }
4730 >            }
4731 >            return true;
4732 >        }
4733 >
4734 >        public final boolean removeAll(Collection<?> c) {
4735 >            boolean modified = false;
4736 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4737 >                if (c.contains(it.next())) {
4738 >                    it.remove();
4739 >                    modified = true;
4740 >                }
4741 >            }
4742 >            return modified;
4743 >        }
4744 >
4745 >        public final boolean retainAll(Collection<?> c) {
4746 >            boolean modified = false;
4747 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4748 >                if (!c.contains(it.next())) {
4749 >                    it.remove();
4750 >                    modified = true;
4751 >                }
4752 >            }
4753 >            return modified;
4754 >        }
4755 >
4756 >    }
4757 >
4758 >    abstract static class CHMSetView<K,V,E>
4759 >            extends CHMCollectionView<K,V,E>
4760 >            implements Set<E>, java.io.Serializable {
4761 >        private static final long serialVersionUID = 7249069246763182397L;
4762 >        CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4763 >
4764 >        // Implement Set API
4765 >
4766 >        /**
4767 >         * Implements {@link Set#hashCode()}.
4768 >         * @return the hash code value for this set
4769 >         */
4770 >        public final int hashCode() {
4771 >            int h = 0;
4772 >            for (E e : this)
4773 >                h += e.hashCode();
4774 >            return h;
4775 >        }
4776 >
4777 >        /**
4778 >         * Implements {@link Set#equals(Object)}.
4779 >         * @param o object to be compared for equality with this set
4780 >         * @return {@code true} if the specified object is equal to this set
4781 >        */
4782 >        public final boolean equals(Object o) {
4783 >            Set<?> c;
4784 >            return ((o instanceof Set) &&
4785 >                    ((c = (Set<?>)o) == this ||
4786 >                     (containsAll(c) && c.containsAll(this))));
4787 >        }
4788 >    }
4789 >
4790 >    /**
4791 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4792 >     * which additions may optionally be enabled by mapping to a
4793 >     * common value.  This class cannot be directly instantiated.
4794 >     * See {@link #keySet() keySet()},
4795 >     * {@link #keySet(Object) keySet(V)},
4796 >     * {@link #newKeySet() newKeySet()},
4797 >     * {@link #newKeySet(int) newKeySet(int)}.
4798 >     */
4799 >    public static class KeySetView<K,V>
4800 >            extends CHMSetView<K,V,K>
4801 >            implements Set<K>, java.io.Serializable {
4802 >        private static final long serialVersionUID = 7249069246763182397L;
4803 >        private final V value;
4804 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4805 >            super(map);
4806 >            this.value = value;
4807 >        }
4808 >
4809 >        /**
4810 >         * Returns the default mapped value for additions,
4811 >         * or {@code null} if additions are not supported.
4812 >         *
4813 >         * @return the default mapped value for additions, or {@code null}
4814 >         * if not supported
4815 >         */
4816 >        public V getMappedValue() { return value; }
4817 >
4818 >        /**
4819 >         * {@inheritDoc}
4820 >         * @throws NullPointerException if the specified key is null
4821 >         */
4822 >        public boolean contains(Object o) { return map.containsKey(o); }
4823 >
4824 >        /**
4825 >         * Removes the key from this map view, by removing the key (and its
4826 >         * corresponding value) from the backing map.  This method does
4827 >         * nothing if the key is not in the map.
4828 >         *
4829 >         * @param  o the key to be removed from the backing map
4830 >         * @return {@code true} if the backing map contained the specified key
4831 >         * @throws NullPointerException if the specified key is null
4832 >         */
4833 >        public boolean remove(Object o) { return map.remove(o) != null; }
4834 >
4835 >        /**
4836 >         * @return an iterator over the keys of the backing map
4837 >         */
4838 >        public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4839 >
4840 >        /**
4841 >         * Adds the specified key to this set view by mapping the key to
4842 >         * the default mapped value in the backing map, if defined.
4843 >         *
4844 >         * @param e key to be added
4845 >         * @return {@code true} if this set changed as a result of the call
4846 >         * @throws NullPointerException if the specified key is null
4847 >         * @throws UnsupportedOperationException if no default mapped value
4848 >         * for additions was provided
4849 >         */
4850 >        public boolean add(K e) {
4851 >            V v;
4852 >            if ((v = value) == null)
4853 >                throw new UnsupportedOperationException();
4854 >            return map.internalPut(e, v, true) == null;
4855 >        }
4856 >
4857 >        /**
4858 >         * Adds all of the elements in the specified collection to this set,
4859 >         * as if by calling {@link #add} on each one.
4860 >         *
4861 >         * @param c the elements to be inserted into this set
4862 >         * @return {@code true} if this set changed as a result of the call
4863 >         * @throws NullPointerException if the collection or any of its
4864 >         * elements are {@code null}
4865 >         * @throws UnsupportedOperationException if no default mapped value
4866 >         * for additions was provided
4867 >         */
4868 >        public boolean addAll(Collection<? extends K> c) {
4869 >            boolean added = false;
4870 >            V v;
4871 >            if ((v = value) == null)
4872 >                throw new UnsupportedOperationException();
4873 >            for (K e : c) {
4874 >                if (map.internalPut(e, v, true) == null)
4875 >                    added = true;
4876 >            }
4877 >            return added;
4878 >        }
4879 >
4880 >        public Spliterator<K> spliterator() {
4881 >            return new KeyIterator<>(map, null);
4882 >        }
4883 >
4884 >    }
4885 >
4886 >    /**
4887 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4888 >     * values, in which additions are disabled. This class cannot be
4889 >     * directly instantiated. See {@link #values()}.
4890 >     *
4891 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4892 >     * that will never throw {@link ConcurrentModificationException},
4893 >     * and guarantees to traverse elements as they existed upon
4894 >     * construction of the iterator, and may (but is not guaranteed to)
4895 >     * reflect any modifications subsequent to construction.
4896 >     */
4897 >    public static final class ValuesView<K,V>
4898 >            extends CHMCollectionView<K,V,V>
4899 >            implements Collection<V>, java.io.Serializable {
4900 >        private static final long serialVersionUID = 2249069246763182397L;
4901 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4902 >        public final boolean contains(Object o) {
4903 >            return map.containsValue(o);
4904 >        }
4905 >        public final boolean remove(Object o) {
4906 >            if (o != null) {
4907 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4908 >                    if (o.equals(it.next())) {
4909 >                        it.remove();
4910 >                        return true;
4911                      }
4912                  }
1246            } finally {
1247                seg.unlock();
4913              }
4914 +            return false;
4915          }
4916 <        s.writeObject(null);
4917 <        s.writeObject(null);
4916 >
4917 >        /**
4918 >         * @return an iterator over the values of the backing map
4919 >         */
4920 >        public final Iterator<V> iterator() {
4921 >            return new ValueIterator<K,V>(map);
4922 >        }
4923 >
4924 >        /** Always throws {@link UnsupportedOperationException}. */
4925 >        public final boolean add(V e) {
4926 >            throw new UnsupportedOperationException();
4927 >        }
4928 >        /** Always throws {@link UnsupportedOperationException}. */
4929 >        public final boolean addAll(Collection<? extends V> c) {
4930 >            throw new UnsupportedOperationException();
4931 >        }
4932 >
4933 >        public Spliterator<V> spliterator() {
4934 >            return new ValueIterator<K,V>(map, null);
4935 >        }
4936 >
4937      }
4938  
4939      /**
4940 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
4941 <     * stream (i.e., deserialize it).
4942 <     * @param s the stream
4940 >     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4941 >     * entries.  This class cannot be directly instantiated. See
4942 >     * {@link #entrySet()}.
4943 >     */
4944 >    public static final class EntrySetView<K,V>
4945 >            extends CHMSetView<K,V,Map.Entry<K,V>>
4946 >            implements Set<Map.Entry<K,V>>, java.io.Serializable {
4947 >        private static final long serialVersionUID = 2249069246763182397L;
4948 >        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4949 >
4950 >        public final boolean contains(Object o) {
4951 >            Object k, v, r; Map.Entry<?,?> e;
4952 >            return ((o instanceof Map.Entry) &&
4953 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4954 >                    (r = map.get(k)) != null &&
4955 >                    (v = e.getValue()) != null &&
4956 >                    (v == r || v.equals(r)));
4957 >        }
4958 >        public final boolean remove(Object o) {
4959 >            Object k, v; Map.Entry<?,?> e;
4960 >            return ((o instanceof Map.Entry) &&
4961 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4962 >                    (v = e.getValue()) != null &&
4963 >                    map.remove(k, v));
4964 >        }
4965 >
4966 >        /**
4967 >         * @return an iterator over the entries of the backing map
4968 >         */
4969 >        public final Iterator<Map.Entry<K,V>> iterator() {
4970 >            return new EntryIterator<K,V>(map);
4971 >        }
4972 >
4973 >        /**
4974 >         * Adds the specified mapping to this view.
4975 >         *
4976 >         * @param e mapping to be added
4977 >         * @return {@code true} if this set changed as a result of the call
4978 >         * @throws NullPointerException if the entry, its key, or its
4979 >         * value is null
4980 >         */
4981 >        public final boolean add(Entry<K,V> e) {
4982 >            return map.internalPut(e.getKey(), e.getValue(), false) == null;
4983 >        }
4984 >        /**
4985 >         * Adds all of the mappings in the specified collection to this
4986 >         * set, as if by calling {@link #add(Map.Entry)} on each one.
4987 >         * @param c the mappings to be inserted into this set
4988 >         * @return {@code true} if this set changed as a result of the call
4989 >         * @throws NullPointerException if the collection or any of its
4990 >         * entries, keys, or values are null
4991 >         */
4992 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4993 >            boolean added = false;
4994 >            for (Entry<K,V> e : c) {
4995 >                if (add(e))
4996 >                    added = true;
4997 >            }
4998 >            return added;
4999 >        }
5000 >
5001 >        public Spliterator<Map.Entry<K,V>> spliterator() {
5002 >            return new EntryIterator<K,V>(map, null);
5003 >        }
5004 >
5005 >    }
5006 >
5007 >    // ---------------------------------------------------------------------
5008 >
5009 >    /**
5010 >     * Predefined tasks for performing bulk parallel operations on
5011 >     * ConcurrentHashMaps. These tasks follow the forms and rules used
5012 >     * for bulk operations. Each method has the same name, but returns
5013 >     * a task rather than invoking it. These methods may be useful in
5014 >     * custom applications such as submitting a task without waiting
5015 >     * for completion, using a custom pool, or combining with other
5016 >     * tasks.
5017       */
5018 <    private void readObject(java.io.ObjectInputStream s)
5019 <        throws IOException, ClassNotFoundException  {
5020 <        s.defaultReadObject();
5018 >    public static class ForkJoinTasks {
5019 >        private ForkJoinTasks() {}
5020 >
5021 >        /**
5022 >         * Returns a task that when invoked, performs the given
5023 >         * action for each (key, value)
5024 >         *
5025 >         * @param map the map
5026 >         * @param action the action
5027 >         * @return the task
5028 >         */
5029 >        public static <K,V> ForkJoinTask<Void> forEach
5030 >            (ConcurrentHashMap<K,V> map,
5031 >             BiConsumer<? super K, ? super V> action) {
5032 >            if (action == null) throw new NullPointerException();
5033 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
5034 >        }
5035  
5036 <        // Initialize each segment to be minimally sized, and let grow.
5037 <        for (int i = 0; i < segments.length; ++i) {
5038 <            segments[i].setTable(new HashEntry[1]);
5036 >        /**
5037 >         * Returns a task that when invoked, performs the given
5038 >         * action for each non-null transformation of each (key, value)
5039 >         *
5040 >         * @param map the map
5041 >         * @param transformer a function returning the transformation
5042 >         * for an element, or null if there is no transformation (in
5043 >         * which case the action is not applied)
5044 >         * @param action the action
5045 >         * @return the task
5046 >         */
5047 >        public static <K,V,U> ForkJoinTask<Void> forEach
5048 >            (ConcurrentHashMap<K,V> map,
5049 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5050 >             Consumer<? super U> action) {
5051 >            if (transformer == null || action == null)
5052 >                throw new NullPointerException();
5053 >            return new ForEachTransformedMappingTask<K,V,U>
5054 >                (map, null, -1, transformer, action);
5055          }
5056  
5057 <        // Read the keys and values, and put the mappings in the table
5058 <        for (;;) {
5059 <            K key = (K) s.readObject();
5060 <            V value = (V) s.readObject();
5061 <            if (key == null)
5062 <                break;
5063 <            put(key, value);
5057 >        /**
5058 >         * Returns a task that when invoked, returns a non-null result
5059 >         * from applying the given search function on each (key,
5060 >         * value), or null if none. Upon success, further element
5061 >         * processing is suppressed and the results of any other
5062 >         * parallel invocations of the search function are ignored.
5063 >         *
5064 >         * @param map the map
5065 >         * @param searchFunction a function returning a non-null
5066 >         * result on success, else null
5067 >         * @return the task
5068 >         */
5069 >        public static <K,V,U> ForkJoinTask<U> search
5070 >            (ConcurrentHashMap<K,V> map,
5071 >             BiFunction<? super K, ? super V, ? extends U> searchFunction) {
5072 >            if (searchFunction == null) throw new NullPointerException();
5073 >            return new SearchMappingsTask<K,V,U>
5074 >                (map, null, -1, searchFunction,
5075 >                 new AtomicReference<U>());
5076 >        }
5077 >
5078 >        /**
5079 >         * Returns a task that when invoked, returns the result of
5080 >         * accumulating the given transformation of all (key, value) pairs
5081 >         * using the given reducer to combine values, or null if none.
5082 >         *
5083 >         * @param map the map
5084 >         * @param transformer a function returning the transformation
5085 >         * for an element, or null if there is no transformation (in
5086 >         * which case it is not combined)
5087 >         * @param reducer a commutative associative combining function
5088 >         * @return the task
5089 >         */
5090 >        public static <K,V,U> ForkJoinTask<U> reduce
5091 >            (ConcurrentHashMap<K,V> map,
5092 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5093 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5094 >            if (transformer == null || reducer == null)
5095 >                throw new NullPointerException();
5096 >            return new MapReduceMappingsTask<K,V,U>
5097 >                (map, null, -1, null, transformer, reducer);
5098 >        }
5099 >
5100 >        /**
5101 >         * Returns a task that when invoked, returns the result of
5102 >         * accumulating the given transformation of all (key, value) pairs
5103 >         * using the given reducer to combine values, and the given
5104 >         * basis as an identity value.
5105 >         *
5106 >         * @param map the map
5107 >         * @param transformer a function returning the transformation
5108 >         * for an element
5109 >         * @param basis the identity (initial default value) for the reduction
5110 >         * @param reducer a commutative associative combining function
5111 >         * @return the task
5112 >         */
5113 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
5114 >            (ConcurrentHashMap<K,V> map,
5115 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5116 >             double basis,
5117 >             DoubleBinaryOperator reducer) {
5118 >            if (transformer == null || reducer == null)
5119 >                throw new NullPointerException();
5120 >            return new MapReduceMappingsToDoubleTask<K,V>
5121 >                (map, null, -1, null, transformer, basis, reducer);
5122 >        }
5123 >
5124 >        /**
5125 >         * Returns a task that when invoked, returns the result of
5126 >         * accumulating the given transformation of all (key, value) pairs
5127 >         * using the given reducer to combine values, and the given
5128 >         * basis as an identity value.
5129 >         *
5130 >         * @param map the map
5131 >         * @param transformer a function returning the transformation
5132 >         * for an element
5133 >         * @param basis the identity (initial default value) for the reduction
5134 >         * @param reducer a commutative associative combining function
5135 >         * @return the task
5136 >         */
5137 >        public static <K,V> ForkJoinTask<Long> reduceToLong
5138 >            (ConcurrentHashMap<K,V> map,
5139 >             ToLongBiFunction<? super K, ? super V> transformer,
5140 >             long basis,
5141 >             LongBinaryOperator reducer) {
5142 >            if (transformer == null || reducer == null)
5143 >                throw new NullPointerException();
5144 >            return new MapReduceMappingsToLongTask<K,V>
5145 >                (map, null, -1, null, transformer, basis, reducer);
5146 >        }
5147 >
5148 >        /**
5149 >         * Returns a task that when invoked, returns the result of
5150 >         * accumulating the given transformation of all (key, value) pairs
5151 >         * using the given reducer to combine values, and the given
5152 >         * basis as an identity value.
5153 >         *
5154 >         * @param map the map
5155 >         * @param transformer a function returning the transformation
5156 >         * for an element
5157 >         * @param basis the identity (initial default value) for the reduction
5158 >         * @param reducer a commutative associative combining function
5159 >         * @return the task
5160 >         */
5161 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
5162 >            (ConcurrentHashMap<K,V> map,
5163 >             ToIntBiFunction<? super K, ? super V> transformer,
5164 >             int basis,
5165 >             IntBinaryOperator reducer) {
5166 >            if (transformer == null || reducer == null)
5167 >                throw new NullPointerException();
5168 >            return new MapReduceMappingsToIntTask<K,V>
5169 >                (map, null, -1, null, transformer, basis, reducer);
5170 >        }
5171 >
5172 >        /**
5173 >         * Returns a task that when invoked, performs the given action
5174 >         * for each key.
5175 >         *
5176 >         * @param map the map
5177 >         * @param action the action
5178 >         * @return the task
5179 >         */
5180 >        public static <K,V> ForkJoinTask<Void> forEachKey
5181 >            (ConcurrentHashMap<K,V> map,
5182 >             Consumer<? super K> action) {
5183 >            if (action == null) throw new NullPointerException();
5184 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
5185 >        }
5186 >
5187 >        /**
5188 >         * Returns a task that when invoked, performs the given action
5189 >         * for each non-null transformation of each key.
5190 >         *
5191 >         * @param map the map
5192 >         * @param transformer a function returning the transformation
5193 >         * for an element, or null if there is no transformation (in
5194 >         * which case the action is not applied)
5195 >         * @param action the action
5196 >         * @return the task
5197 >         */
5198 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
5199 >            (ConcurrentHashMap<K,V> map,
5200 >             Function<? super K, ? extends U> transformer,
5201 >             Consumer<? super U> action) {
5202 >            if (transformer == null || action == null)
5203 >                throw new NullPointerException();
5204 >            return new ForEachTransformedKeyTask<K,V,U>
5205 >                (map, null, -1, transformer, action);
5206 >        }
5207 >
5208 >        /**
5209 >         * Returns a task that when invoked, returns a non-null result
5210 >         * from applying the given search function on each key, or
5211 >         * null if none.  Upon success, further element processing is
5212 >         * suppressed and the results of any other parallel
5213 >         * invocations of the search function are ignored.
5214 >         *
5215 >         * @param map the map
5216 >         * @param searchFunction a function returning a non-null
5217 >         * result on success, else null
5218 >         * @return the task
5219 >         */
5220 >        public static <K,V,U> ForkJoinTask<U> searchKeys
5221 >            (ConcurrentHashMap<K,V> map,
5222 >             Function<? super K, ? extends U> searchFunction) {
5223 >            if (searchFunction == null) throw new NullPointerException();
5224 >            return new SearchKeysTask<K,V,U>
5225 >                (map, null, -1, searchFunction,
5226 >                 new AtomicReference<U>());
5227 >        }
5228 >
5229 >        /**
5230 >         * Returns a task that when invoked, returns the result of
5231 >         * accumulating all keys using the given reducer to combine
5232 >         * values, or null if none.
5233 >         *
5234 >         * @param map the map
5235 >         * @param reducer a commutative associative combining function
5236 >         * @return the task
5237 >         */
5238 >        public static <K,V> ForkJoinTask<K> reduceKeys
5239 >            (ConcurrentHashMap<K,V> map,
5240 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5241 >            if (reducer == null) throw new NullPointerException();
5242 >            return new ReduceKeysTask<K,V>
5243 >                (map, null, -1, null, reducer);
5244 >        }
5245 >
5246 >        /**
5247 >         * Returns a task that when invoked, returns the result of
5248 >         * accumulating the given transformation of all keys using the given
5249 >         * reducer to combine values, or null if none.
5250 >         *
5251 >         * @param map the map
5252 >         * @param transformer a function returning the transformation
5253 >         * for an element, or null if there is no transformation (in
5254 >         * which case it is not combined)
5255 >         * @param reducer a commutative associative combining function
5256 >         * @return the task
5257 >         */
5258 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
5259 >            (ConcurrentHashMap<K,V> map,
5260 >             Function<? super K, ? extends U> transformer,
5261 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5262 >            if (transformer == null || reducer == null)
5263 >                throw new NullPointerException();
5264 >            return new MapReduceKeysTask<K,V,U>
5265 >                (map, null, -1, null, transformer, reducer);
5266 >        }
5267 >
5268 >        /**
5269 >         * Returns a task that when invoked, returns the result of
5270 >         * accumulating the given transformation of all keys using the given
5271 >         * reducer to combine values, and the given basis as an
5272 >         * identity value.
5273 >         *
5274 >         * @param map the map
5275 >         * @param transformer a function returning the transformation
5276 >         * for an element
5277 >         * @param basis the identity (initial default value) for the reduction
5278 >         * @param reducer a commutative associative combining function
5279 >         * @return the task
5280 >         */
5281 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5282 >            (ConcurrentHashMap<K,V> map,
5283 >             ToDoubleFunction<? super K> transformer,
5284 >             double basis,
5285 >             DoubleBinaryOperator reducer) {
5286 >            if (transformer == null || reducer == null)
5287 >                throw new NullPointerException();
5288 >            return new MapReduceKeysToDoubleTask<K,V>
5289 >                (map, null, -1, null, transformer, basis, reducer);
5290 >        }
5291 >
5292 >        /**
5293 >         * Returns a task that when invoked, returns the result of
5294 >         * accumulating the given transformation of all keys using the given
5295 >         * reducer to combine values, and the given basis as an
5296 >         * identity value.
5297 >         *
5298 >         * @param map the map
5299 >         * @param transformer a function returning the transformation
5300 >         * for an element
5301 >         * @param basis the identity (initial default value) for the reduction
5302 >         * @param reducer a commutative associative combining function
5303 >         * @return the task
5304 >         */
5305 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5306 >            (ConcurrentHashMap<K,V> map,
5307 >             ToLongFunction<? super K> transformer,
5308 >             long basis,
5309 >             LongBinaryOperator reducer) {
5310 >            if (transformer == null || reducer == null)
5311 >                throw new NullPointerException();
5312 >            return new MapReduceKeysToLongTask<K,V>
5313 >                (map, null, -1, null, transformer, basis, reducer);
5314 >        }
5315 >
5316 >        /**
5317 >         * Returns a task that when invoked, returns the result of
5318 >         * accumulating the given transformation of all keys using the given
5319 >         * reducer to combine values, and the given basis as an
5320 >         * identity value.
5321 >         *
5322 >         * @param map the map
5323 >         * @param transformer a function returning the transformation
5324 >         * for an element
5325 >         * @param basis the identity (initial default value) for the reduction
5326 >         * @param reducer a commutative associative combining function
5327 >         * @return the task
5328 >         */
5329 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5330 >            (ConcurrentHashMap<K,V> map,
5331 >             ToIntFunction<? super K> transformer,
5332 >             int basis,
5333 >             IntBinaryOperator reducer) {
5334 >            if (transformer == null || reducer == null)
5335 >                throw new NullPointerException();
5336 >            return new MapReduceKeysToIntTask<K,V>
5337 >                (map, null, -1, null, transformer, basis, reducer);
5338 >        }
5339 >
5340 >        /**
5341 >         * Returns a task that when invoked, performs the given action
5342 >         * for each value.
5343 >         *
5344 >         * @param map the map
5345 >         * @param action the action
5346 >         * @return the task
5347 >         */
5348 >        public static <K,V> ForkJoinTask<Void> forEachValue
5349 >            (ConcurrentHashMap<K,V> map,
5350 >             Consumer<? super V> action) {
5351 >            if (action == null) throw new NullPointerException();
5352 >            return new ForEachValueTask<K,V>(map, null, -1, action);
5353 >        }
5354 >
5355 >        /**
5356 >         * Returns a task that when invoked, performs the given action
5357 >         * for each non-null transformation of each value.
5358 >         *
5359 >         * @param map the map
5360 >         * @param transformer a function returning the transformation
5361 >         * for an element, or null if there is no transformation (in
5362 >         * which case the action is not applied)
5363 >         * @param action the action
5364 >         * @return the task
5365 >         */
5366 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
5367 >            (ConcurrentHashMap<K,V> map,
5368 >             Function<? super V, ? extends U> transformer,
5369 >             Consumer<? super U> action) {
5370 >            if (transformer == null || action == null)
5371 >                throw new NullPointerException();
5372 >            return new ForEachTransformedValueTask<K,V,U>
5373 >                (map, null, -1, transformer, action);
5374 >        }
5375 >
5376 >        /**
5377 >         * Returns a task that when invoked, returns a non-null result
5378 >         * from applying the given search function on each value, or
5379 >         * null if none.  Upon success, further element processing is
5380 >         * suppressed and the results of any other parallel
5381 >         * invocations of the search function are ignored.
5382 >         *
5383 >         * @param map the map
5384 >         * @param searchFunction a function returning a non-null
5385 >         * result on success, else null
5386 >         * @return the task
5387 >         */
5388 >        public static <K,V,U> ForkJoinTask<U> searchValues
5389 >            (ConcurrentHashMap<K,V> map,
5390 >             Function<? super V, ? extends U> searchFunction) {
5391 >            if (searchFunction == null) throw new NullPointerException();
5392 >            return new SearchValuesTask<K,V,U>
5393 >                (map, null, -1, searchFunction,
5394 >                 new AtomicReference<U>());
5395 >        }
5396 >
5397 >        /**
5398 >         * Returns a task that when invoked, returns the result of
5399 >         * accumulating all values using the given reducer to combine
5400 >         * values, or null if none.
5401 >         *
5402 >         * @param map the map
5403 >         * @param reducer a commutative associative combining function
5404 >         * @return the task
5405 >         */
5406 >        public static <K,V> ForkJoinTask<V> reduceValues
5407 >            (ConcurrentHashMap<K,V> map,
5408 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5409 >            if (reducer == null) throw new NullPointerException();
5410 >            return new ReduceValuesTask<K,V>
5411 >                (map, null, -1, null, reducer);
5412 >        }
5413 >
5414 >        /**
5415 >         * Returns a task that when invoked, returns the result of
5416 >         * accumulating the given transformation of all values using the
5417 >         * given reducer to combine values, or null if none.
5418 >         *
5419 >         * @param map the map
5420 >         * @param transformer a function returning the transformation
5421 >         * for an element, or null if there is no transformation (in
5422 >         * which case it is not combined)
5423 >         * @param reducer a commutative associative combining function
5424 >         * @return the task
5425 >         */
5426 >        public static <K,V,U> ForkJoinTask<U> reduceValues
5427 >            (ConcurrentHashMap<K,V> map,
5428 >             Function<? super V, ? extends U> transformer,
5429 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5430 >            if (transformer == null || reducer == null)
5431 >                throw new NullPointerException();
5432 >            return new MapReduceValuesTask<K,V,U>
5433 >                (map, null, -1, null, transformer, reducer);
5434 >        }
5435 >
5436 >        /**
5437 >         * Returns a task that when invoked, returns the result of
5438 >         * accumulating the given transformation of all values using the
5439 >         * given reducer to combine values, and the given basis as an
5440 >         * identity value.
5441 >         *
5442 >         * @param map the map
5443 >         * @param transformer a function returning the transformation
5444 >         * for an element
5445 >         * @param basis the identity (initial default value) for the reduction
5446 >         * @param reducer a commutative associative combining function
5447 >         * @return the task
5448 >         */
5449 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5450 >            (ConcurrentHashMap<K,V> map,
5451 >             ToDoubleFunction<? super V> transformer,
5452 >             double basis,
5453 >             DoubleBinaryOperator reducer) {
5454 >            if (transformer == null || reducer == null)
5455 >                throw new NullPointerException();
5456 >            return new MapReduceValuesToDoubleTask<K,V>
5457 >                (map, null, -1, null, transformer, basis, reducer);
5458 >        }
5459 >
5460 >        /**
5461 >         * Returns a task that when invoked, returns the result of
5462 >         * accumulating the given transformation of all values using the
5463 >         * given reducer to combine values, and the given basis as an
5464 >         * identity value.
5465 >         *
5466 >         * @param map the map
5467 >         * @param transformer a function returning the transformation
5468 >         * for an element
5469 >         * @param basis the identity (initial default value) for the reduction
5470 >         * @param reducer a commutative associative combining function
5471 >         * @return the task
5472 >         */
5473 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5474 >            (ConcurrentHashMap<K,V> map,
5475 >             ToLongFunction<? super V> transformer,
5476 >             long basis,
5477 >             LongBinaryOperator reducer) {
5478 >            if (transformer == null || reducer == null)
5479 >                throw new NullPointerException();
5480 >            return new MapReduceValuesToLongTask<K,V>
5481 >                (map, null, -1, null, transformer, basis, reducer);
5482 >        }
5483 >
5484 >        /**
5485 >         * Returns a task that when invoked, returns the result of
5486 >         * accumulating the given transformation of all values using the
5487 >         * given reducer to combine values, and the given basis as an
5488 >         * identity value.
5489 >         *
5490 >         * @param map the map
5491 >         * @param transformer a function returning the transformation
5492 >         * for an element
5493 >         * @param basis the identity (initial default value) for the reduction
5494 >         * @param reducer a commutative associative combining function
5495 >         * @return the task
5496 >         */
5497 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5498 >            (ConcurrentHashMap<K,V> map,
5499 >             ToIntFunction<? super V> transformer,
5500 >             int basis,
5501 >             IntBinaryOperator reducer) {
5502 >            if (transformer == null || reducer == null)
5503 >                throw new NullPointerException();
5504 >            return new MapReduceValuesToIntTask<K,V>
5505 >                (map, null, -1, null, transformer, basis, reducer);
5506 >        }
5507 >
5508 >        /**
5509 >         * Returns a task that when invoked, perform the given action
5510 >         * for each entry.
5511 >         *
5512 >         * @param map the map
5513 >         * @param action the action
5514 >         * @return the task
5515 >         */
5516 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5517 >            (ConcurrentHashMap<K,V> map,
5518 >             Consumer<? super Map.Entry<K,V>> action) {
5519 >            if (action == null) throw new NullPointerException();
5520 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5521 >        }
5522 >
5523 >        /**
5524 >         * Returns a task that when invoked, perform the given action
5525 >         * for each non-null transformation of each entry.
5526 >         *
5527 >         * @param map the map
5528 >         * @param transformer a function returning the transformation
5529 >         * for an element, or null if there is no transformation (in
5530 >         * which case the action is not applied)
5531 >         * @param action the action
5532 >         * @return the task
5533 >         */
5534 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5535 >            (ConcurrentHashMap<K,V> map,
5536 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5537 >             Consumer<? super U> action) {
5538 >            if (transformer == null || action == null)
5539 >                throw new NullPointerException();
5540 >            return new ForEachTransformedEntryTask<K,V,U>
5541 >                (map, null, -1, transformer, action);
5542 >        }
5543 >
5544 >        /**
5545 >         * Returns a task that when invoked, returns a non-null result
5546 >         * from applying the given search function on each entry, or
5547 >         * null if none.  Upon success, further element processing is
5548 >         * suppressed and the results of any other parallel
5549 >         * invocations of the search function are ignored.
5550 >         *
5551 >         * @param map the map
5552 >         * @param searchFunction a function returning a non-null
5553 >         * result on success, else null
5554 >         * @return the task
5555 >         */
5556 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5557 >            (ConcurrentHashMap<K,V> map,
5558 >             Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5559 >            if (searchFunction == null) throw new NullPointerException();
5560 >            return new SearchEntriesTask<K,V,U>
5561 >                (map, null, -1, searchFunction,
5562 >                 new AtomicReference<U>());
5563 >        }
5564 >
5565 >        /**
5566 >         * Returns a task that when invoked, returns the result of
5567 >         * accumulating all entries using the given reducer to combine
5568 >         * values, or null if none.
5569 >         *
5570 >         * @param map the map
5571 >         * @param reducer a commutative associative combining function
5572 >         * @return the task
5573 >         */
5574 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5575 >            (ConcurrentHashMap<K,V> map,
5576 >             BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5577 >            if (reducer == null) throw new NullPointerException();
5578 >            return new ReduceEntriesTask<K,V>
5579 >                (map, null, -1, null, reducer);
5580 >        }
5581 >
5582 >        /**
5583 >         * Returns a task that when invoked, returns the result of
5584 >         * accumulating the given transformation of all entries using the
5585 >         * given reducer to combine values, or null if none.
5586 >         *
5587 >         * @param map the map
5588 >         * @param transformer a function returning the transformation
5589 >         * for an element, or null if there is no transformation (in
5590 >         * which case it is not combined)
5591 >         * @param reducer a commutative associative combining function
5592 >         * @return the task
5593 >         */
5594 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5595 >            (ConcurrentHashMap<K,V> map,
5596 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5597 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5598 >            if (transformer == null || reducer == null)
5599 >                throw new NullPointerException();
5600 >            return new MapReduceEntriesTask<K,V,U>
5601 >                (map, null, -1, null, transformer, reducer);
5602 >        }
5603 >
5604 >        /**
5605 >         * Returns a task that when invoked, returns the result of
5606 >         * accumulating the given transformation of all entries using the
5607 >         * given reducer to combine values, and the given basis as an
5608 >         * identity value.
5609 >         *
5610 >         * @param map the map
5611 >         * @param transformer a function returning the transformation
5612 >         * for an element
5613 >         * @param basis the identity (initial default value) for the reduction
5614 >         * @param reducer a commutative associative combining function
5615 >         * @return the task
5616 >         */
5617 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5618 >            (ConcurrentHashMap<K,V> map,
5619 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5620 >             double basis,
5621 >             DoubleBinaryOperator reducer) {
5622 >            if (transformer == null || reducer == null)
5623 >                throw new NullPointerException();
5624 >            return new MapReduceEntriesToDoubleTask<K,V>
5625 >                (map, null, -1, null, transformer, basis, reducer);
5626 >        }
5627 >
5628 >        /**
5629 >         * Returns a task that when invoked, returns the result of
5630 >         * accumulating the given transformation of all entries using the
5631 >         * given reducer to combine values, and the given basis as an
5632 >         * identity value.
5633 >         *
5634 >         * @param map the map
5635 >         * @param transformer a function returning the transformation
5636 >         * for an element
5637 >         * @param basis the identity (initial default value) for the reduction
5638 >         * @param reducer a commutative associative combining function
5639 >         * @return the task
5640 >         */
5641 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5642 >            (ConcurrentHashMap<K,V> map,
5643 >             ToLongFunction<Map.Entry<K,V>> transformer,
5644 >             long basis,
5645 >             LongBinaryOperator reducer) {
5646 >            if (transformer == null || reducer == null)
5647 >                throw new NullPointerException();
5648 >            return new MapReduceEntriesToLongTask<K,V>
5649 >                (map, null, -1, null, transformer, basis, reducer);
5650 >        }
5651 >
5652 >        /**
5653 >         * Returns a task that when invoked, returns the result of
5654 >         * accumulating the given transformation of all entries using the
5655 >         * given reducer to combine values, and the given basis as an
5656 >         * identity value.
5657 >         *
5658 >         * @param map the map
5659 >         * @param transformer a function returning the transformation
5660 >         * for an element
5661 >         * @param basis the identity (initial default value) for the reduction
5662 >         * @param reducer a commutative associative combining function
5663 >         * @return the task
5664 >         */
5665 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5666 >            (ConcurrentHashMap<K,V> map,
5667 >             ToIntFunction<Map.Entry<K,V>> transformer,
5668 >             int basis,
5669 >             IntBinaryOperator reducer) {
5670 >            if (transformer == null || reducer == null)
5671 >                throw new NullPointerException();
5672 >            return new MapReduceEntriesToIntTask<K,V>
5673 >                (map, null, -1, null, transformer, basis, reducer);
5674 >        }
5675 >    }
5676 >
5677 >    // -------------------------------------------------------
5678 >
5679 >    /*
5680 >     * Task classes. Coded in a regular but ugly format/style to
5681 >     * simplify checks that each variant differs in the right way from
5682 >     * others. The null screenings exist because compilers cannot tell
5683 >     * that we've already null-checked task arguments, so we force
5684 >     * simplest hoisted bypass to help avoid convoluted traps.
5685 >     */
5686 >
5687 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5688 >        extends Traverser<K,V,Void> {
5689 >        final Consumer<? super K> action;
5690 >        ForEachKeyTask
5691 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5692 >             Consumer<? super K> action) {
5693 >            super(m, p, b);
5694 >            this.action = action;
5695 >        }
5696 >        public final void compute() {
5697 >            final Consumer<? super K> action;
5698 >            if ((action = this.action) != null) {
5699 >                for (int b; (b = preSplit()) > 0;)
5700 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5701 >                forEachKey(action);
5702 >                propagateCompletion();
5703 >            }
5704 >        }
5705 >    }
5706 >
5707 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5708 >        extends Traverser<K,V,Void> {
5709 >        final Consumer<? super V> action;
5710 >        ForEachValueTask
5711 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5712 >             Consumer<? super V> action) {
5713 >            super(m, p, b);
5714 >            this.action = action;
5715 >        }
5716 >        public final void compute() {
5717 >            final Consumer<? super V> action;
5718 >            if ((action = this.action) != null) {
5719 >                for (int b; (b = preSplit()) > 0;)
5720 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5721 >                forEachValue(action);
5722 >                propagateCompletion();
5723 >            }
5724          }
5725      }
5726 +
5727 +    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5728 +        extends Traverser<K,V,Void> {
5729 +        final Consumer<? super Entry<K,V>> action;
5730 +        ForEachEntryTask
5731 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5732 +             Consumer<? super Entry<K,V>> action) {
5733 +            super(m, p, b);
5734 +            this.action = action;
5735 +        }
5736 +        public final void compute() {
5737 +            final Consumer<? super Entry<K,V>> action;
5738 +            if ((action = this.action) != null) {
5739 +                for (int b; (b = preSplit()) > 0;)
5740 +                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5741 +                V v;
5742 +                while ((v = advanceValue()) != null)
5743 +                    action.accept(entryFor(nextKey, v));
5744 +                propagateCompletion();
5745 +            }
5746 +        }
5747 +    }
5748 +
5749 +    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5750 +        extends Traverser<K,V,Void> {
5751 +        final BiConsumer<? super K, ? super V> action;
5752 +        ForEachMappingTask
5753 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5754 +             BiConsumer<? super K,? super V> action) {
5755 +            super(m, p, b);
5756 +            this.action = action;
5757 +        }
5758 +        public final void compute() {
5759 +            final BiConsumer<? super K, ? super V> action;
5760 +            if ((action = this.action) != null) {
5761 +                for (int b; (b = preSplit()) > 0;)
5762 +                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5763 +                V v;
5764 +                while ((v = advanceValue()) != null)
5765 +                    action.accept(nextKey, v);
5766 +                propagateCompletion();
5767 +            }
5768 +        }
5769 +    }
5770 +
5771 +    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5772 +        extends Traverser<K,V,Void> {
5773 +        final Function<? super K, ? extends U> transformer;
5774 +        final Consumer<? super U> action;
5775 +        ForEachTransformedKeyTask
5776 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5777 +             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5778 +            super(m, p, b);
5779 +            this.transformer = transformer; this.action = action;
5780 +        }
5781 +        public final void compute() {
5782 +            final Function<? super K, ? extends U> transformer;
5783 +            final Consumer<? super U> action;
5784 +            if ((transformer = this.transformer) != null &&
5785 +                (action = this.action) != null) {
5786 +                for (int b; (b = preSplit()) > 0;)
5787 +                    new ForEachTransformedKeyTask<K,V,U>
5788 +                        (map, this, b, transformer, action).fork();
5789 +                K k; U u;
5790 +                while ((k = advanceKey()) != null) {
5791 +                    if ((u = transformer.apply(k)) != null)
5792 +                        action.accept(u);
5793 +                }
5794 +                propagateCompletion();
5795 +            }
5796 +        }
5797 +    }
5798 +
5799 +    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5800 +        extends Traverser<K,V,Void> {
5801 +        final Function<? super V, ? extends U> transformer;
5802 +        final Consumer<? super U> action;
5803 +        ForEachTransformedValueTask
5804 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5805 +             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5806 +            super(m, p, b);
5807 +            this.transformer = transformer; this.action = action;
5808 +        }
5809 +        public final void compute() {
5810 +            final Function<? super V, ? extends U> transformer;
5811 +            final Consumer<? super U> action;
5812 +            if ((transformer = this.transformer) != null &&
5813 +                (action = this.action) != null) {
5814 +                for (int b; (b = preSplit()) > 0;)
5815 +                    new ForEachTransformedValueTask<K,V,U>
5816 +                        (map, this, b, transformer, action).fork();
5817 +                V v; U u;
5818 +                while ((v = advanceValue()) != null) {
5819 +                    if ((u = transformer.apply(v)) != null)
5820 +                        action.accept(u);
5821 +                }
5822 +                propagateCompletion();
5823 +            }
5824 +        }
5825 +    }
5826 +
5827 +    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5828 +        extends Traverser<K,V,Void> {
5829 +        final Function<Map.Entry<K,V>, ? extends U> transformer;
5830 +        final Consumer<? super U> action;
5831 +        ForEachTransformedEntryTask
5832 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5833 +             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5834 +            super(m, p, b);
5835 +            this.transformer = transformer; this.action = action;
5836 +        }
5837 +        public final void compute() {
5838 +            final Function<Map.Entry<K,V>, ? extends U> transformer;
5839 +            final Consumer<? super U> action;
5840 +            if ((transformer = this.transformer) != null &&
5841 +                (action = this.action) != null) {
5842 +                for (int b; (b = preSplit()) > 0;)
5843 +                    new ForEachTransformedEntryTask<K,V,U>
5844 +                        (map, this, b, transformer, action).fork();
5845 +                V v; U u;
5846 +                while ((v = advanceValue()) != null) {
5847 +                    if ((u = transformer.apply(entryFor(nextKey,
5848 +                                                        v))) != null)
5849 +                        action.accept(u);
5850 +                }
5851 +                propagateCompletion();
5852 +            }
5853 +        }
5854 +    }
5855 +
5856 +    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5857 +        extends Traverser<K,V,Void> {
5858 +        final BiFunction<? super K, ? super V, ? extends U> transformer;
5859 +        final Consumer<? super U> action;
5860 +        ForEachTransformedMappingTask
5861 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5862 +             BiFunction<? super K, ? super V, ? extends U> transformer,
5863 +             Consumer<? super U> action) {
5864 +            super(m, p, b);
5865 +            this.transformer = transformer; this.action = action;
5866 +        }
5867 +        public final void compute() {
5868 +            final BiFunction<? super K, ? super V, ? extends U> transformer;
5869 +            final Consumer<? super U> action;
5870 +            if ((transformer = this.transformer) != null &&
5871 +                (action = this.action) != null) {
5872 +                for (int b; (b = preSplit()) > 0;)
5873 +                    new ForEachTransformedMappingTask<K,V,U>
5874 +                        (map, this, b, transformer, action).fork();
5875 +                V v; U u;
5876 +                while ((v = advanceValue()) != null) {
5877 +                    if ((u = transformer.apply(nextKey, v)) != null)
5878 +                        action.accept(u);
5879 +                }
5880 +                propagateCompletion();
5881 +            }
5882 +        }
5883 +    }
5884 +
5885 +    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5886 +        extends Traverser<K,V,U> {
5887 +        final Function<? super K, ? extends U> searchFunction;
5888 +        final AtomicReference<U> result;
5889 +        SearchKeysTask
5890 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5891 +             Function<? super K, ? extends U> searchFunction,
5892 +             AtomicReference<U> result) {
5893 +            super(m, p, b);
5894 +            this.searchFunction = searchFunction; this.result = result;
5895 +        }
5896 +        public final U getRawResult() { return result.get(); }
5897 +        public final void compute() {
5898 +            final Function<? super K, ? extends U> searchFunction;
5899 +            final AtomicReference<U> result;
5900 +            if ((searchFunction = this.searchFunction) != null &&
5901 +                (result = this.result) != null) {
5902 +                for (int b;;) {
5903 +                    if (result.get() != null)
5904 +                        return;
5905 +                    if ((b = preSplit()) <= 0)
5906 +                        break;
5907 +                    new SearchKeysTask<K,V,U>
5908 +                        (map, this, b, searchFunction, result).fork();
5909 +                }
5910 +                while (result.get() == null) {
5911 +                    K k; U u;
5912 +                    if ((k = advanceKey()) == null) {
5913 +                        propagateCompletion();
5914 +                        break;
5915 +                    }
5916 +                    if ((u = searchFunction.apply(k)) != null) {
5917 +                        if (result.compareAndSet(null, u))
5918 +                            quietlyCompleteRoot();
5919 +                        break;
5920 +                    }
5921 +                }
5922 +            }
5923 +        }
5924 +    }
5925 +
5926 +    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5927 +        extends Traverser<K,V,U> {
5928 +        final Function<? super V, ? extends U> searchFunction;
5929 +        final AtomicReference<U> result;
5930 +        SearchValuesTask
5931 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5932 +             Function<? super V, ? extends U> searchFunction,
5933 +             AtomicReference<U> result) {
5934 +            super(m, p, b);
5935 +            this.searchFunction = searchFunction; this.result = result;
5936 +        }
5937 +        public final U getRawResult() { return result.get(); }
5938 +        public final void compute() {
5939 +            final Function<? super V, ? extends U> searchFunction;
5940 +            final AtomicReference<U> result;
5941 +            if ((searchFunction = this.searchFunction) != null &&
5942 +                (result = this.result) != null) {
5943 +                for (int b;;) {
5944 +                    if (result.get() != null)
5945 +                        return;
5946 +                    if ((b = preSplit()) <= 0)
5947 +                        break;
5948 +                    new SearchValuesTask<K,V,U>
5949 +                        (map, this, b, searchFunction, result).fork();
5950 +                }
5951 +                while (result.get() == null) {
5952 +                    V v; U u;
5953 +                    if ((v = advanceValue()) == null) {
5954 +                        propagateCompletion();
5955 +                        break;
5956 +                    }
5957 +                    if ((u = searchFunction.apply(v)) != null) {
5958 +                        if (result.compareAndSet(null, u))
5959 +                            quietlyCompleteRoot();
5960 +                        break;
5961 +                    }
5962 +                }
5963 +            }
5964 +        }
5965 +    }
5966 +
5967 +    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5968 +        extends Traverser<K,V,U> {
5969 +        final Function<Entry<K,V>, ? extends U> searchFunction;
5970 +        final AtomicReference<U> result;
5971 +        SearchEntriesTask
5972 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5973 +             Function<Entry<K,V>, ? extends U> searchFunction,
5974 +             AtomicReference<U> result) {
5975 +            super(m, p, b);
5976 +            this.searchFunction = searchFunction; this.result = result;
5977 +        }
5978 +        public final U getRawResult() { return result.get(); }
5979 +        public final void compute() {
5980 +            final Function<Entry<K,V>, ? extends U> searchFunction;
5981 +            final AtomicReference<U> result;
5982 +            if ((searchFunction = this.searchFunction) != null &&
5983 +                (result = this.result) != null) {
5984 +                for (int b;;) {
5985 +                    if (result.get() != null)
5986 +                        return;
5987 +                    if ((b = preSplit()) <= 0)
5988 +                        break;
5989 +                    new SearchEntriesTask<K,V,U>
5990 +                        (map, this, b, searchFunction, result).fork();
5991 +                }
5992 +                while (result.get() == null) {
5993 +                    V v; U u;
5994 +                    if ((v = advanceValue()) == null) {
5995 +                        propagateCompletion();
5996 +                        break;
5997 +                    }
5998 +                    if ((u = searchFunction.apply(entryFor(nextKey,
5999 +                                                           v))) != null) {
6000 +                        if (result.compareAndSet(null, u))
6001 +                            quietlyCompleteRoot();
6002 +                        return;
6003 +                    }
6004 +                }
6005 +            }
6006 +        }
6007 +    }
6008 +
6009 +    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
6010 +        extends Traverser<K,V,U> {
6011 +        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6012 +        final AtomicReference<U> result;
6013 +        SearchMappingsTask
6014 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6015 +             BiFunction<? super K, ? super V, ? extends U> searchFunction,
6016 +             AtomicReference<U> result) {
6017 +            super(m, p, b);
6018 +            this.searchFunction = searchFunction; this.result = result;
6019 +        }
6020 +        public final U getRawResult() { return result.get(); }
6021 +        public final void compute() {
6022 +            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6023 +            final AtomicReference<U> result;
6024 +            if ((searchFunction = this.searchFunction) != null &&
6025 +                (result = this.result) != null) {
6026 +                for (int b;;) {
6027 +                    if (result.get() != null)
6028 +                        return;
6029 +                    if ((b = preSplit()) <= 0)
6030 +                        break;
6031 +                    new SearchMappingsTask<K,V,U>
6032 +                        (map, this, b, searchFunction, result).fork();
6033 +                }
6034 +                while (result.get() == null) {
6035 +                    V v; U u;
6036 +                    if ((v = advanceValue()) == null) {
6037 +                        propagateCompletion();
6038 +                        break;
6039 +                    }
6040 +                    if ((u = searchFunction.apply(nextKey, v)) != null) {
6041 +                        if (result.compareAndSet(null, u))
6042 +                            quietlyCompleteRoot();
6043 +                        break;
6044 +                    }
6045 +                }
6046 +            }
6047 +        }
6048 +    }
6049 +
6050 +    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
6051 +        extends Traverser<K,V,K> {
6052 +        final BiFunction<? super K, ? super K, ? extends K> reducer;
6053 +        K result;
6054 +        ReduceKeysTask<K,V> rights, nextRight;
6055 +        ReduceKeysTask
6056 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6057 +             ReduceKeysTask<K,V> nextRight,
6058 +             BiFunction<? super K, ? super K, ? extends K> reducer) {
6059 +            super(m, p, b); this.nextRight = nextRight;
6060 +            this.reducer = reducer;
6061 +        }
6062 +        public final K getRawResult() { return result; }
6063 +        @SuppressWarnings("unchecked") public final void compute() {
6064 +            final BiFunction<? super K, ? super K, ? extends K> reducer;
6065 +            if ((reducer = this.reducer) != null) {
6066 +                for (int b; (b = preSplit()) > 0;)
6067 +                    (rights = new ReduceKeysTask<K,V>
6068 +                     (map, this, b, rights, reducer)).fork();
6069 +                K u, r = null;
6070 +                while ((u = advanceKey()) != null) {
6071 +                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
6072 +                }
6073 +                result = r;
6074 +                CountedCompleter<?> c;
6075 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6076 +                    ReduceKeysTask<K,V>
6077 +                        t = (ReduceKeysTask<K,V>)c,
6078 +                        s = t.rights;
6079 +                    while (s != null) {
6080 +                        K tr, sr;
6081 +                        if ((sr = s.result) != null)
6082 +                            t.result = (((tr = t.result) == null) ? sr :
6083 +                                        reducer.apply(tr, sr));
6084 +                        s = t.rights = s.nextRight;
6085 +                    }
6086 +                }
6087 +            }
6088 +        }
6089 +    }
6090 +
6091 +    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6092 +        extends Traverser<K,V,V> {
6093 +        final BiFunction<? super V, ? super V, ? extends V> reducer;
6094 +        V result;
6095 +        ReduceValuesTask<K,V> rights, nextRight;
6096 +        ReduceValuesTask
6097 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6098 +             ReduceValuesTask<K,V> nextRight,
6099 +             BiFunction<? super V, ? super V, ? extends V> reducer) {
6100 +            super(m, p, b); this.nextRight = nextRight;
6101 +            this.reducer = reducer;
6102 +        }
6103 +        public final V getRawResult() { return result; }
6104 +        @SuppressWarnings("unchecked") public final void compute() {
6105 +            final BiFunction<? super V, ? super V, ? extends V> reducer;
6106 +            if ((reducer = this.reducer) != null) {
6107 +                for (int b; (b = preSplit()) > 0;)
6108 +                    (rights = new ReduceValuesTask<K,V>
6109 +                     (map, this, b, rights, reducer)).fork();
6110 +                V r = null, v;
6111 +                while ((v = advanceValue()) != null)
6112 +                    r = (r == null) ? v : reducer.apply(r, v);
6113 +                result = r;
6114 +                CountedCompleter<?> c;
6115 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6116 +                    ReduceValuesTask<K,V>
6117 +                        t = (ReduceValuesTask<K,V>)c,
6118 +                        s = t.rights;
6119 +                    while (s != null) {
6120 +                        V tr, sr;
6121 +                        if ((sr = s.result) != null)
6122 +                            t.result = (((tr = t.result) == null) ? sr :
6123 +                                        reducer.apply(tr, sr));
6124 +                        s = t.rights = s.nextRight;
6125 +                    }
6126 +                }
6127 +            }
6128 +        }
6129 +    }
6130 +
6131 +    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6132 +        extends Traverser<K,V,Map.Entry<K,V>> {
6133 +        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6134 +        Map.Entry<K,V> result;
6135 +        ReduceEntriesTask<K,V> rights, nextRight;
6136 +        ReduceEntriesTask
6137 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6138 +             ReduceEntriesTask<K,V> nextRight,
6139 +             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6140 +            super(m, p, b); this.nextRight = nextRight;
6141 +            this.reducer = reducer;
6142 +        }
6143 +        public final Map.Entry<K,V> getRawResult() { return result; }
6144 +        @SuppressWarnings("unchecked") public final void compute() {
6145 +            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6146 +            if ((reducer = this.reducer) != null) {
6147 +                for (int b; (b = preSplit()) > 0;)
6148 +                    (rights = new ReduceEntriesTask<K,V>
6149 +                     (map, this, b, rights, reducer)).fork();
6150 +                Map.Entry<K,V> r = null;
6151 +                V v;
6152 +                while ((v = advanceValue()) != null) {
6153 +                    Map.Entry<K,V> u = entryFor(nextKey, v);
6154 +                    r = (r == null) ? u : reducer.apply(r, u);
6155 +                }
6156 +                result = r;
6157 +                CountedCompleter<?> c;
6158 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6159 +                    ReduceEntriesTask<K,V>
6160 +                        t = (ReduceEntriesTask<K,V>)c,
6161 +                        s = t.rights;
6162 +                    while (s != null) {
6163 +                        Map.Entry<K,V> tr, sr;
6164 +                        if ((sr = s.result) != null)
6165 +                            t.result = (((tr = t.result) == null) ? sr :
6166 +                                        reducer.apply(tr, sr));
6167 +                        s = t.rights = s.nextRight;
6168 +                    }
6169 +                }
6170 +            }
6171 +        }
6172 +    }
6173 +
6174 +    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6175 +        extends Traverser<K,V,U> {
6176 +        final Function<? super K, ? extends U> transformer;
6177 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
6178 +        U result;
6179 +        MapReduceKeysTask<K,V,U> rights, nextRight;
6180 +        MapReduceKeysTask
6181 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6182 +             MapReduceKeysTask<K,V,U> nextRight,
6183 +             Function<? super K, ? extends U> transformer,
6184 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
6185 +            super(m, p, b); this.nextRight = nextRight;
6186 +            this.transformer = transformer;
6187 +            this.reducer = reducer;
6188 +        }
6189 +        public final U getRawResult() { return result; }
6190 +        @SuppressWarnings("unchecked") public final void compute() {
6191 +            final Function<? super K, ? extends U> transformer;
6192 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
6193 +            if ((transformer = this.transformer) != null &&
6194 +                (reducer = this.reducer) != null) {
6195 +                for (int b; (b = preSplit()) > 0;)
6196 +                    (rights = new MapReduceKeysTask<K,V,U>
6197 +                     (map, this, b, rights, transformer, reducer)).fork();
6198 +                K k; U r = null, u;
6199 +                while ((k = advanceKey()) != null) {
6200 +                    if ((u = transformer.apply(k)) != null)
6201 +                        r = (r == null) ? u : reducer.apply(r, u);
6202 +                }
6203 +                result = r;
6204 +                CountedCompleter<?> c;
6205 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6206 +                    MapReduceKeysTask<K,V,U>
6207 +                        t = (MapReduceKeysTask<K,V,U>)c,
6208 +                        s = t.rights;
6209 +                    while (s != null) {
6210 +                        U tr, sr;
6211 +                        if ((sr = s.result) != null)
6212 +                            t.result = (((tr = t.result) == null) ? sr :
6213 +                                        reducer.apply(tr, sr));
6214 +                        s = t.rights = s.nextRight;
6215 +                    }
6216 +                }
6217 +            }
6218 +        }
6219 +    }
6220 +
6221 +    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6222 +        extends Traverser<K,V,U> {
6223 +        final Function<? super V, ? extends U> transformer;
6224 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
6225 +        U result;
6226 +        MapReduceValuesTask<K,V,U> rights, nextRight;
6227 +        MapReduceValuesTask
6228 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6229 +             MapReduceValuesTask<K,V,U> nextRight,
6230 +             Function<? super V, ? extends U> transformer,
6231 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
6232 +            super(m, p, b); this.nextRight = nextRight;
6233 +            this.transformer = transformer;
6234 +            this.reducer = reducer;
6235 +        }
6236 +        public final U getRawResult() { return result; }
6237 +        @SuppressWarnings("unchecked") public final void compute() {
6238 +            final Function<? super V, ? extends U> transformer;
6239 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
6240 +            if ((transformer = this.transformer) != null &&
6241 +                (reducer = this.reducer) != null) {
6242 +                for (int b; (b = preSplit()) > 0;)
6243 +                    (rights = new MapReduceValuesTask<K,V,U>
6244 +                     (map, this, b, rights, transformer, reducer)).fork();
6245 +                U r = null, u;
6246 +                V v;
6247 +                while ((v = advanceValue()) != null) {
6248 +                    if ((u = transformer.apply(v)) != null)
6249 +                        r = (r == null) ? u : reducer.apply(r, u);
6250 +                }
6251 +                result = r;
6252 +                CountedCompleter<?> c;
6253 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6254 +                    MapReduceValuesTask<K,V,U>
6255 +                        t = (MapReduceValuesTask<K,V,U>)c,
6256 +                        s = t.rights;
6257 +                    while (s != null) {
6258 +                        U tr, sr;
6259 +                        if ((sr = s.result) != null)
6260 +                            t.result = (((tr = t.result) == null) ? sr :
6261 +                                        reducer.apply(tr, sr));
6262 +                        s = t.rights = s.nextRight;
6263 +                    }
6264 +                }
6265 +            }
6266 +        }
6267 +    }
6268 +
6269 +    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6270 +        extends Traverser<K,V,U> {
6271 +        final Function<Map.Entry<K,V>, ? extends U> transformer;
6272 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
6273 +        U result;
6274 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
6275 +        MapReduceEntriesTask
6276 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6277 +             MapReduceEntriesTask<K,V,U> nextRight,
6278 +             Function<Map.Entry<K,V>, ? extends U> transformer,
6279 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
6280 +            super(m, p, b); this.nextRight = nextRight;
6281 +            this.transformer = transformer;
6282 +            this.reducer = reducer;
6283 +        }
6284 +        public final U getRawResult() { return result; }
6285 +        @SuppressWarnings("unchecked") public final void compute() {
6286 +            final Function<Map.Entry<K,V>, ? extends U> transformer;
6287 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
6288 +            if ((transformer = this.transformer) != null &&
6289 +                (reducer = this.reducer) != null) {
6290 +                for (int b; (b = preSplit()) > 0;)
6291 +                    (rights = new MapReduceEntriesTask<K,V,U>
6292 +                     (map, this, b, rights, transformer, reducer)).fork();
6293 +                U r = null, u;
6294 +                V v;
6295 +                while ((v = advanceValue()) != null) {
6296 +                    if ((u = transformer.apply(entryFor(nextKey,
6297 +                                                        v))) != null)
6298 +                        r = (r == null) ? u : reducer.apply(r, u);
6299 +                }
6300 +                result = r;
6301 +                CountedCompleter<?> c;
6302 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6303 +                    MapReduceEntriesTask<K,V,U>
6304 +                        t = (MapReduceEntriesTask<K,V,U>)c,
6305 +                        s = t.rights;
6306 +                    while (s != null) {
6307 +                        U tr, sr;
6308 +                        if ((sr = s.result) != null)
6309 +                            t.result = (((tr = t.result) == null) ? sr :
6310 +                                        reducer.apply(tr, sr));
6311 +                        s = t.rights = s.nextRight;
6312 +                    }
6313 +                }
6314 +            }
6315 +        }
6316 +    }
6317 +
6318 +    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6319 +        extends Traverser<K,V,U> {
6320 +        final BiFunction<? super K, ? super V, ? extends U> transformer;
6321 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
6322 +        U result;
6323 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
6324 +        MapReduceMappingsTask
6325 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6326 +             MapReduceMappingsTask<K,V,U> nextRight,
6327 +             BiFunction<? super K, ? super V, ? extends U> transformer,
6328 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
6329 +            super(m, p, b); this.nextRight = nextRight;
6330 +            this.transformer = transformer;
6331 +            this.reducer = reducer;
6332 +        }
6333 +        public final U getRawResult() { return result; }
6334 +        @SuppressWarnings("unchecked") public final void compute() {
6335 +            final BiFunction<? super K, ? super V, ? extends U> transformer;
6336 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
6337 +            if ((transformer = this.transformer) != null &&
6338 +                (reducer = this.reducer) != null) {
6339 +                for (int b; (b = preSplit()) > 0;)
6340 +                    (rights = new MapReduceMappingsTask<K,V,U>
6341 +                     (map, this, b, rights, transformer, reducer)).fork();
6342 +                U r = null, u;
6343 +                V v;
6344 +                while ((v = advanceValue()) != null) {
6345 +                    if ((u = transformer.apply(nextKey, v)) != null)
6346 +                        r = (r == null) ? u : reducer.apply(r, u);
6347 +                }
6348 +                result = r;
6349 +                CountedCompleter<?> c;
6350 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6351 +                    MapReduceMappingsTask<K,V,U>
6352 +                        t = (MapReduceMappingsTask<K,V,U>)c,
6353 +                        s = t.rights;
6354 +                    while (s != null) {
6355 +                        U tr, sr;
6356 +                        if ((sr = s.result) != null)
6357 +                            t.result = (((tr = t.result) == null) ? sr :
6358 +                                        reducer.apply(tr, sr));
6359 +                        s = t.rights = s.nextRight;
6360 +                    }
6361 +                }
6362 +            }
6363 +        }
6364 +    }
6365 +
6366 +    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6367 +        extends Traverser<K,V,Double> {
6368 +        final ToDoubleFunction<? super K> transformer;
6369 +        final DoubleBinaryOperator reducer;
6370 +        final double basis;
6371 +        double result;
6372 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6373 +        MapReduceKeysToDoubleTask
6374 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6375 +             MapReduceKeysToDoubleTask<K,V> nextRight,
6376 +             ToDoubleFunction<? super K> transformer,
6377 +             double basis,
6378 +             DoubleBinaryOperator reducer) {
6379 +            super(m, p, b); this.nextRight = nextRight;
6380 +            this.transformer = transformer;
6381 +            this.basis = basis; this.reducer = reducer;
6382 +        }
6383 +        public final Double getRawResult() { return result; }
6384 +        @SuppressWarnings("unchecked") public final void compute() {
6385 +            final ToDoubleFunction<? super K> transformer;
6386 +            final DoubleBinaryOperator reducer;
6387 +            if ((transformer = this.transformer) != null &&
6388 +                (reducer = this.reducer) != null) {
6389 +                double r = this.basis;
6390 +                for (int b; (b = preSplit()) > 0;)
6391 +                    (rights = new MapReduceKeysToDoubleTask<K,V>
6392 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6393 +                K k;
6394 +                while ((k = advanceKey()) != null)
6395 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
6396 +                result = r;
6397 +                CountedCompleter<?> c;
6398 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6399 +                    MapReduceKeysToDoubleTask<K,V>
6400 +                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6401 +                        s = t.rights;
6402 +                    while (s != null) {
6403 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6404 +                        s = t.rights = s.nextRight;
6405 +                    }
6406 +                }
6407 +            }
6408 +        }
6409 +    }
6410 +
6411 +    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6412 +        extends Traverser<K,V,Double> {
6413 +        final ToDoubleFunction<? super V> transformer;
6414 +        final DoubleBinaryOperator reducer;
6415 +        final double basis;
6416 +        double result;
6417 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6418 +        MapReduceValuesToDoubleTask
6419 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6420 +             MapReduceValuesToDoubleTask<K,V> nextRight,
6421 +             ToDoubleFunction<? super V> transformer,
6422 +             double basis,
6423 +             DoubleBinaryOperator reducer) {
6424 +            super(m, p, b); this.nextRight = nextRight;
6425 +            this.transformer = transformer;
6426 +            this.basis = basis; this.reducer = reducer;
6427 +        }
6428 +        public final Double getRawResult() { return result; }
6429 +        @SuppressWarnings("unchecked") public final void compute() {
6430 +            final ToDoubleFunction<? super V> transformer;
6431 +            final DoubleBinaryOperator reducer;
6432 +            if ((transformer = this.transformer) != null &&
6433 +                (reducer = this.reducer) != null) {
6434 +                double r = this.basis;
6435 +                for (int b; (b = preSplit()) > 0;)
6436 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
6437 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6438 +                V v;
6439 +                while ((v = advanceValue()) != null)
6440 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6441 +                result = r;
6442 +                CountedCompleter<?> c;
6443 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6444 +                    MapReduceValuesToDoubleTask<K,V>
6445 +                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6446 +                        s = t.rights;
6447 +                    while (s != null) {
6448 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6449 +                        s = t.rights = s.nextRight;
6450 +                    }
6451 +                }
6452 +            }
6453 +        }
6454 +    }
6455 +
6456 +    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6457 +        extends Traverser<K,V,Double> {
6458 +        final ToDoubleFunction<Map.Entry<K,V>> transformer;
6459 +        final DoubleBinaryOperator reducer;
6460 +        final double basis;
6461 +        double result;
6462 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6463 +        MapReduceEntriesToDoubleTask
6464 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6465 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
6466 +             ToDoubleFunction<Map.Entry<K,V>> transformer,
6467 +             double basis,
6468 +             DoubleBinaryOperator reducer) {
6469 +            super(m, p, b); this.nextRight = nextRight;
6470 +            this.transformer = transformer;
6471 +            this.basis = basis; this.reducer = reducer;
6472 +        }
6473 +        public final Double getRawResult() { return result; }
6474 +        @SuppressWarnings("unchecked") public final void compute() {
6475 +            final ToDoubleFunction<Map.Entry<K,V>> transformer;
6476 +            final DoubleBinaryOperator reducer;
6477 +            if ((transformer = this.transformer) != null &&
6478 +                (reducer = this.reducer) != null) {
6479 +                double r = this.basis;
6480 +                for (int b; (b = preSplit()) > 0;)
6481 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6482 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6483 +                V v;
6484 +                while ((v = advanceValue()) != null)
6485 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6486 +                                                                    v)));
6487 +                result = r;
6488 +                CountedCompleter<?> c;
6489 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6490 +                    MapReduceEntriesToDoubleTask<K,V>
6491 +                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6492 +                        s = t.rights;
6493 +                    while (s != null) {
6494 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6495 +                        s = t.rights = s.nextRight;
6496 +                    }
6497 +                }
6498 +            }
6499 +        }
6500 +    }
6501 +
6502 +    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6503 +        extends Traverser<K,V,Double> {
6504 +        final ToDoubleBiFunction<? super K, ? super V> transformer;
6505 +        final DoubleBinaryOperator reducer;
6506 +        final double basis;
6507 +        double result;
6508 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6509 +        MapReduceMappingsToDoubleTask
6510 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6511 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
6512 +             ToDoubleBiFunction<? super K, ? super V> transformer,
6513 +             double basis,
6514 +             DoubleBinaryOperator reducer) {
6515 +            super(m, p, b); this.nextRight = nextRight;
6516 +            this.transformer = transformer;
6517 +            this.basis = basis; this.reducer = reducer;
6518 +        }
6519 +        public final Double getRawResult() { return result; }
6520 +        @SuppressWarnings("unchecked") public final void compute() {
6521 +            final ToDoubleBiFunction<? super K, ? super V> transformer;
6522 +            final DoubleBinaryOperator reducer;
6523 +            if ((transformer = this.transformer) != null &&
6524 +                (reducer = this.reducer) != null) {
6525 +                double r = this.basis;
6526 +                for (int b; (b = preSplit()) > 0;)
6527 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6528 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6529 +                V v;
6530 +                while ((v = advanceValue()) != null)
6531 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6532 +                result = r;
6533 +                CountedCompleter<?> c;
6534 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6535 +                    MapReduceMappingsToDoubleTask<K,V>
6536 +                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6537 +                        s = t.rights;
6538 +                    while (s != null) {
6539 +                        t.result = reducer.applyAsDouble(t.result, s.result);
6540 +                        s = t.rights = s.nextRight;
6541 +                    }
6542 +                }
6543 +            }
6544 +        }
6545 +    }
6546 +
6547 +    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6548 +        extends Traverser<K,V,Long> {
6549 +        final ToLongFunction<? super K> transformer;
6550 +        final LongBinaryOperator reducer;
6551 +        final long basis;
6552 +        long result;
6553 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
6554 +        MapReduceKeysToLongTask
6555 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6556 +             MapReduceKeysToLongTask<K,V> nextRight,
6557 +             ToLongFunction<? super K> transformer,
6558 +             long basis,
6559 +             LongBinaryOperator reducer) {
6560 +            super(m, p, b); this.nextRight = nextRight;
6561 +            this.transformer = transformer;
6562 +            this.basis = basis; this.reducer = reducer;
6563 +        }
6564 +        public final Long getRawResult() { return result; }
6565 +        @SuppressWarnings("unchecked") public final void compute() {
6566 +            final ToLongFunction<? super K> transformer;
6567 +            final LongBinaryOperator reducer;
6568 +            if ((transformer = this.transformer) != null &&
6569 +                (reducer = this.reducer) != null) {
6570 +                long r = this.basis;
6571 +                for (int b; (b = preSplit()) > 0;)
6572 +                    (rights = new MapReduceKeysToLongTask<K,V>
6573 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6574 +                K k;
6575 +                while ((k = advanceKey()) != null)
6576 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(k));
6577 +                result = r;
6578 +                CountedCompleter<?> c;
6579 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6580 +                    MapReduceKeysToLongTask<K,V>
6581 +                        t = (MapReduceKeysToLongTask<K,V>)c,
6582 +                        s = t.rights;
6583 +                    while (s != null) {
6584 +                        t.result = reducer.applyAsLong(t.result, s.result);
6585 +                        s = t.rights = s.nextRight;
6586 +                    }
6587 +                }
6588 +            }
6589 +        }
6590 +    }
6591 +
6592 +    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6593 +        extends Traverser<K,V,Long> {
6594 +        final ToLongFunction<? super V> transformer;
6595 +        final LongBinaryOperator reducer;
6596 +        final long basis;
6597 +        long result;
6598 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
6599 +        MapReduceValuesToLongTask
6600 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6601 +             MapReduceValuesToLongTask<K,V> nextRight,
6602 +             ToLongFunction<? super V> transformer,
6603 +             long basis,
6604 +             LongBinaryOperator reducer) {
6605 +            super(m, p, b); this.nextRight = nextRight;
6606 +            this.transformer = transformer;
6607 +            this.basis = basis; this.reducer = reducer;
6608 +        }
6609 +        public final Long getRawResult() { return result; }
6610 +        @SuppressWarnings("unchecked") public final void compute() {
6611 +            final ToLongFunction<? super V> transformer;
6612 +            final LongBinaryOperator reducer;
6613 +            if ((transformer = this.transformer) != null &&
6614 +                (reducer = this.reducer) != null) {
6615 +                long r = this.basis;
6616 +                for (int b; (b = preSplit()) > 0;)
6617 +                    (rights = new MapReduceValuesToLongTask<K,V>
6618 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6619 +                V v;
6620 +                while ((v = advanceValue()) != null)
6621 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6622 +                result = r;
6623 +                CountedCompleter<?> c;
6624 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6625 +                    MapReduceValuesToLongTask<K,V>
6626 +                        t = (MapReduceValuesToLongTask<K,V>)c,
6627 +                        s = t.rights;
6628 +                    while (s != null) {
6629 +                        t.result = reducer.applyAsLong(t.result, s.result);
6630 +                        s = t.rights = s.nextRight;
6631 +                    }
6632 +                }
6633 +            }
6634 +        }
6635 +    }
6636 +
6637 +    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6638 +        extends Traverser<K,V,Long> {
6639 +        final ToLongFunction<Map.Entry<K,V>> transformer;
6640 +        final LongBinaryOperator reducer;
6641 +        final long basis;
6642 +        long result;
6643 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6644 +        MapReduceEntriesToLongTask
6645 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6646 +             MapReduceEntriesToLongTask<K,V> nextRight,
6647 +             ToLongFunction<Map.Entry<K,V>> transformer,
6648 +             long basis,
6649 +             LongBinaryOperator reducer) {
6650 +            super(m, p, b); this.nextRight = nextRight;
6651 +            this.transformer = transformer;
6652 +            this.basis = basis; this.reducer = reducer;
6653 +        }
6654 +        public final Long getRawResult() { return result; }
6655 +        @SuppressWarnings("unchecked") public final void compute() {
6656 +            final ToLongFunction<Map.Entry<K,V>> transformer;
6657 +            final LongBinaryOperator reducer;
6658 +            if ((transformer = this.transformer) != null &&
6659 +                (reducer = this.reducer) != null) {
6660 +                long r = this.basis;
6661 +                for (int b; (b = preSplit()) > 0;)
6662 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6663 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6664 +                V v;
6665 +                while ((v = advanceValue()) != null)
6666 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6667 +                result = r;
6668 +                CountedCompleter<?> c;
6669 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6670 +                    MapReduceEntriesToLongTask<K,V>
6671 +                        t = (MapReduceEntriesToLongTask<K,V>)c,
6672 +                        s = t.rights;
6673 +                    while (s != null) {
6674 +                        t.result = reducer.applyAsLong(t.result, s.result);
6675 +                        s = t.rights = s.nextRight;
6676 +                    }
6677 +                }
6678 +            }
6679 +        }
6680 +    }
6681 +
6682 +    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6683 +        extends Traverser<K,V,Long> {
6684 +        final ToLongBiFunction<? super K, ? super V> transformer;
6685 +        final LongBinaryOperator reducer;
6686 +        final long basis;
6687 +        long result;
6688 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6689 +        MapReduceMappingsToLongTask
6690 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6691 +             MapReduceMappingsToLongTask<K,V> nextRight,
6692 +             ToLongBiFunction<? super K, ? super V> transformer,
6693 +             long basis,
6694 +             LongBinaryOperator reducer) {
6695 +            super(m, p, b); this.nextRight = nextRight;
6696 +            this.transformer = transformer;
6697 +            this.basis = basis; this.reducer = reducer;
6698 +        }
6699 +        public final Long getRawResult() { return result; }
6700 +        @SuppressWarnings("unchecked") public final void compute() {
6701 +            final ToLongBiFunction<? super K, ? super V> transformer;
6702 +            final LongBinaryOperator reducer;
6703 +            if ((transformer = this.transformer) != null &&
6704 +                (reducer = this.reducer) != null) {
6705 +                long r = this.basis;
6706 +                for (int b; (b = preSplit()) > 0;)
6707 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6708 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6709 +                V v;
6710 +                while ((v = advanceValue()) != null)
6711 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6712 +                result = r;
6713 +                CountedCompleter<?> c;
6714 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6715 +                    MapReduceMappingsToLongTask<K,V>
6716 +                        t = (MapReduceMappingsToLongTask<K,V>)c,
6717 +                        s = t.rights;
6718 +                    while (s != null) {
6719 +                        t.result = reducer.applyAsLong(t.result, s.result);
6720 +                        s = t.rights = s.nextRight;
6721 +                    }
6722 +                }
6723 +            }
6724 +        }
6725 +    }
6726 +
6727 +    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6728 +        extends Traverser<K,V,Integer> {
6729 +        final ToIntFunction<? super K> transformer;
6730 +        final IntBinaryOperator reducer;
6731 +        final int basis;
6732 +        int result;
6733 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6734 +        MapReduceKeysToIntTask
6735 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6736 +             MapReduceKeysToIntTask<K,V> nextRight,
6737 +             ToIntFunction<? super K> transformer,
6738 +             int basis,
6739 +             IntBinaryOperator reducer) {
6740 +            super(m, p, b); this.nextRight = nextRight;
6741 +            this.transformer = transformer;
6742 +            this.basis = basis; this.reducer = reducer;
6743 +        }
6744 +        public final Integer getRawResult() { return result; }
6745 +        @SuppressWarnings("unchecked") public final void compute() {
6746 +            final ToIntFunction<? super K> transformer;
6747 +            final IntBinaryOperator reducer;
6748 +            if ((transformer = this.transformer) != null &&
6749 +                (reducer = this.reducer) != null) {
6750 +                int r = this.basis;
6751 +                for (int b; (b = preSplit()) > 0;)
6752 +                    (rights = new MapReduceKeysToIntTask<K,V>
6753 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6754 +                K k;
6755 +                while ((k = advanceKey()) != null)
6756 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(k));
6757 +                result = r;
6758 +                CountedCompleter<?> c;
6759 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6760 +                    MapReduceKeysToIntTask<K,V>
6761 +                        t = (MapReduceKeysToIntTask<K,V>)c,
6762 +                        s = t.rights;
6763 +                    while (s != null) {
6764 +                        t.result = reducer.applyAsInt(t.result, s.result);
6765 +                        s = t.rights = s.nextRight;
6766 +                    }
6767 +                }
6768 +            }
6769 +        }
6770 +    }
6771 +
6772 +    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6773 +        extends Traverser<K,V,Integer> {
6774 +        final ToIntFunction<? super V> transformer;
6775 +        final IntBinaryOperator reducer;
6776 +        final int basis;
6777 +        int result;
6778 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6779 +        MapReduceValuesToIntTask
6780 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6781 +             MapReduceValuesToIntTask<K,V> nextRight,
6782 +             ToIntFunction<? super V> transformer,
6783 +             int basis,
6784 +             IntBinaryOperator reducer) {
6785 +            super(m, p, b); this.nextRight = nextRight;
6786 +            this.transformer = transformer;
6787 +            this.basis = basis; this.reducer = reducer;
6788 +        }
6789 +        public final Integer getRawResult() { return result; }
6790 +        @SuppressWarnings("unchecked") public final void compute() {
6791 +            final ToIntFunction<? super V> transformer;
6792 +            final IntBinaryOperator reducer;
6793 +            if ((transformer = this.transformer) != null &&
6794 +                (reducer = this.reducer) != null) {
6795 +                int r = this.basis;
6796 +                for (int b; (b = preSplit()) > 0;)
6797 +                    (rights = new MapReduceValuesToIntTask<K,V>
6798 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6799 +                V v;
6800 +                while ((v = advanceValue()) != null)
6801 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6802 +                result = r;
6803 +                CountedCompleter<?> c;
6804 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6805 +                    MapReduceValuesToIntTask<K,V>
6806 +                        t = (MapReduceValuesToIntTask<K,V>)c,
6807 +                        s = t.rights;
6808 +                    while (s != null) {
6809 +                        t.result = reducer.applyAsInt(t.result, s.result);
6810 +                        s = t.rights = s.nextRight;
6811 +                    }
6812 +                }
6813 +            }
6814 +        }
6815 +    }
6816 +
6817 +    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6818 +        extends Traverser<K,V,Integer> {
6819 +        final ToIntFunction<Map.Entry<K,V>> transformer;
6820 +        final IntBinaryOperator reducer;
6821 +        final int basis;
6822 +        int result;
6823 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6824 +        MapReduceEntriesToIntTask
6825 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6826 +             MapReduceEntriesToIntTask<K,V> nextRight,
6827 +             ToIntFunction<Map.Entry<K,V>> transformer,
6828 +             int basis,
6829 +             IntBinaryOperator reducer) {
6830 +            super(m, p, b); this.nextRight = nextRight;
6831 +            this.transformer = transformer;
6832 +            this.basis = basis; this.reducer = reducer;
6833 +        }
6834 +        public final Integer getRawResult() { return result; }
6835 +        @SuppressWarnings("unchecked") public final void compute() {
6836 +            final ToIntFunction<Map.Entry<K,V>> transformer;
6837 +            final IntBinaryOperator reducer;
6838 +            if ((transformer = this.transformer) != null &&
6839 +                (reducer = this.reducer) != null) {
6840 +                int r = this.basis;
6841 +                for (int b; (b = preSplit()) > 0;)
6842 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6843 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6844 +                V v;
6845 +                while ((v = advanceValue()) != null)
6846 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6847 +                                                                    v)));
6848 +                result = r;
6849 +                CountedCompleter<?> c;
6850 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6851 +                    MapReduceEntriesToIntTask<K,V>
6852 +                        t = (MapReduceEntriesToIntTask<K,V>)c,
6853 +                        s = t.rights;
6854 +                    while (s != null) {
6855 +                        t.result = reducer.applyAsInt(t.result, s.result);
6856 +                        s = t.rights = s.nextRight;
6857 +                    }
6858 +                }
6859 +            }
6860 +        }
6861 +    }
6862 +
6863 +    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6864 +        extends Traverser<K,V,Integer> {
6865 +        final ToIntBiFunction<? super K, ? super V> transformer;
6866 +        final IntBinaryOperator reducer;
6867 +        final int basis;
6868 +        int result;
6869 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6870 +        MapReduceMappingsToIntTask
6871 +            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6872 +             MapReduceMappingsToIntTask<K,V> nextRight,
6873 +             ToIntBiFunction<? super K, ? super V> transformer,
6874 +             int basis,
6875 +             IntBinaryOperator reducer) {
6876 +            super(m, p, b); this.nextRight = nextRight;
6877 +            this.transformer = transformer;
6878 +            this.basis = basis; this.reducer = reducer;
6879 +        }
6880 +        public final Integer getRawResult() { return result; }
6881 +        @SuppressWarnings("unchecked") public final void compute() {
6882 +            final ToIntBiFunction<? super K, ? super V> transformer;
6883 +            final IntBinaryOperator reducer;
6884 +            if ((transformer = this.transformer) != null &&
6885 +                (reducer = this.reducer) != null) {
6886 +                int r = this.basis;
6887 +                for (int b; (b = preSplit()) > 0;)
6888 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6889 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6890 +                V v;
6891 +                while ((v = advanceValue()) != null)
6892 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6893 +                result = r;
6894 +                CountedCompleter<?> c;
6895 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6896 +                    MapReduceMappingsToIntTask<K,V>
6897 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
6898 +                        s = t.rights;
6899 +                    while (s != null) {
6900 +                        t.result = reducer.applyAsInt(t.result, s.result);
6901 +                        s = t.rights = s.nextRight;
6902 +                    }
6903 +                }
6904 +            }
6905 +        }
6906 +    }
6907 +
6908 +    // Unsafe mechanics
6909 +    private static final sun.misc.Unsafe U;
6910 +    private static final long SIZECTL;
6911 +    private static final long TRANSFERINDEX;
6912 +    private static final long TRANSFERORIGIN;
6913 +    private static final long BASECOUNT;
6914 +    private static final long CELLSBUSY;
6915 +    private static final long CELLVALUE;
6916 +    private static final long ABASE;
6917 +    private static final int ASHIFT;
6918 +
6919 +    static {
6920 +        try {
6921 +            U = sun.misc.Unsafe.getUnsafe();
6922 +            Class<?> k = ConcurrentHashMap.class;
6923 +            SIZECTL = U.objectFieldOffset
6924 +                (k.getDeclaredField("sizeCtl"));
6925 +            TRANSFERINDEX = U.objectFieldOffset
6926 +                (k.getDeclaredField("transferIndex"));
6927 +            TRANSFERORIGIN = U.objectFieldOffset
6928 +                (k.getDeclaredField("transferOrigin"));
6929 +            BASECOUNT = U.objectFieldOffset
6930 +                (k.getDeclaredField("baseCount"));
6931 +            CELLSBUSY = U.objectFieldOffset
6932 +                (k.getDeclaredField("cellsBusy"));
6933 +            Class<?> ck = Cell.class;
6934 +            CELLVALUE = U.objectFieldOffset
6935 +                (ck.getDeclaredField("value"));
6936 +            Class<?> sc = Node[].class;
6937 +            ABASE = U.arrayBaseOffset(sc);
6938 +            int scale = U.arrayIndexScale(sc);
6939 +            if ((scale & (scale - 1)) != 0)
6940 +                throw new Error("data type scale not a power of two");
6941 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6942 +        } catch (Exception e) {
6943 +            throw new Error(e);
6944 +        }
6945 +    }
6946 +
6947   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines