ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.89 by dl, Tue Jun 6 11:17:58 2006 UTC vs.
Revision 1.268 by jsr166, Wed Mar 4 00:22:30 2015 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.atomic.AtomicReference;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.ToDoubleBiFunction;
35 > import java.util.function.ToDoubleFunction;
36 > import java.util.function.ToIntBiFunction;
37 > import java.util.function.ToIntFunction;
38 > import java.util.function.ToLongBiFunction;
39 > import java.util.function.ToLongFunction;
40 > import java.util.stream.Stream;
41  
42   /**
43   * A hash table supporting full concurrency of retrievals and
44 < * adjustable expected concurrency for updates. This class obeys the
44 > * high expected concurrency for updates. This class obeys the
45   * same functional specification as {@link java.util.Hashtable}, and
46   * includes versions of methods corresponding to each method of
47 < * <tt>Hashtable</tt>. However, even though all operations are
47 > * {@code Hashtable}. However, even though all operations are
48   * thread-safe, retrieval operations do <em>not</em> entail locking,
49   * and there is <em>not</em> any support for locking the entire table
50   * in a way that prevents all access.  This class is fully
51 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
51 > * interoperable with {@code Hashtable} in programs that rely on its
52   * thread safety but not on its synchronization details.
53   *
54 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
55 < * block, so may overlap with update operations (including
56 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
57 < * of the most recently <em>completed</em> update operations holding
58 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
59 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
60 < * removal of only some entries.  Similarly, Iterators and
61 < * Enumerations return elements reflecting the state of the hash table
62 < * at some point at or since the creation of the iterator/enumeration.
63 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
54 > * <p>Retrieval operations (including {@code get}) generally do not
55 > * block, so may overlap with update operations (including {@code put}
56 > * and {@code remove}). Retrievals reflect the results of the most
57 > * recently <em>completed</em> update operations holding upon their
58 > * onset. (More formally, an update operation for a given key bears a
59 > * <em>happens-before</em> relation with any (non-null) retrieval for
60 > * that key reporting the updated value.)  For aggregate operations
61 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
62 > * reflect insertion or removal of only some entries.  Similarly,
63 > * Iterators, Spliterators and Enumerations return elements reflecting the
64 > * state of the hash table at some point at or since the creation of the
65 > * iterator/enumeration.  They do <em>not</em> throw {@link
66 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
67   * However, iterators are designed to be used by only one thread at a time.
68 + * Bear in mind that the results of aggregate status methods including
69 + * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
70 + * useful only when a map is not undergoing concurrent updates in other threads.
71 + * Otherwise the results of these methods reflect transient states
72 + * that may be adequate for monitoring or estimation purposes, but not
73 + * for program control.
74 + *
75 + * <p>The table is dynamically expanded when there are too many
76 + * collisions (i.e., keys that have distinct hash codes but fall into
77 + * the same slot modulo the table size), with the expected average
78 + * effect of maintaining roughly two bins per mapping (corresponding
79 + * to a 0.75 load factor threshold for resizing). There may be much
80 + * variance around this average as mappings are added and removed, but
81 + * overall, this maintains a commonly accepted time/space tradeoff for
82 + * hash tables.  However, resizing this or any other kind of hash
83 + * table may be a relatively slow operation. When possible, it is a
84 + * good idea to provide a size estimate as an optional {@code
85 + * initialCapacity} constructor argument. An additional optional
86 + * {@code loadFactor} constructor argument provides a further means of
87 + * customizing initial table capacity by specifying the table density
88 + * to be used in calculating the amount of space to allocate for the
89 + * given number of elements.  Also, for compatibility with previous
90 + * versions of this class, constructors may optionally specify an
91 + * expected {@code concurrencyLevel} as an additional hint for
92 + * internal sizing.  Note that using many keys with exactly the same
93 + * {@code hashCode()} is a sure way to slow down performance of any
94 + * hash table. To ameliorate impact, when keys are {@link Comparable},
95 + * this class may use comparison order among keys to help break ties.
96 + *
97 + * <p>A {@link Set} projection of a ConcurrentHashMap may be created
98 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
99 + * (using {@link #keySet(Object)} when only keys are of interest, and the
100 + * mapped values are (perhaps transiently) not used or all take the
101 + * same mapping value.
102   *
103 < * <p> The allowed concurrency among update operations is guided by
104 < * the optional <tt>concurrencyLevel</tt> constructor argument
105 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
106 < * table is internally partitioned to try to permit the indicated
107 < * number of concurrent updates without contention. Because placement
108 < * in hash tables is essentially random, the actual concurrency will
45 < * vary.  Ideally, you should choose a value to accommodate as many
46 < * threads as will ever concurrently modify the table. Using a
47 < * significantly higher value than you need can waste space and time,
48 < * and a significantly lower value can lead to thread contention. But
49 < * overestimates and underestimates within an order of magnitude do
50 < * not usually have much noticeable impact. A value of one is
51 < * appropriate when it is known that only one thread will modify and
52 < * all others will only read. Also, resizing this or any other kind of
53 < * hash table is a relatively slow operation, so, when possible, it is
54 < * a good idea to provide estimates of expected table sizes in
55 < * constructors.
103 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
104 > * form of histogram or multiset) by using {@link
105 > * java.util.concurrent.atomic.LongAdder} values and initializing via
106 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
107 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
108 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
109   *
110   * <p>This class and its views and iterators implement all of the
111   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
112   * interfaces.
113   *
114 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
115 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
114 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
115 > * does <em>not</em> allow {@code null} to be used as a key or value.
116 > *
117 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
118 > * operations that, unlike most {@link Stream} methods, are designed
119 > * to be safely, and often sensibly, applied even with maps that are
120 > * being concurrently updated by other threads; for example, when
121 > * computing a snapshot summary of the values in a shared registry.
122 > * There are three kinds of operation, each with four forms, accepting
123 > * functions with Keys, Values, Entries, and (Key, Value) arguments
124 > * and/or return values. Because the elements of a ConcurrentHashMap
125 > * are not ordered in any particular way, and may be processed in
126 > * different orders in different parallel executions, the correctness
127 > * of supplied functions should not depend on any ordering, or on any
128 > * other objects or values that may transiently change while
129 > * computation is in progress; and except for forEach actions, should
130 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
131 > * objects do not support method {@code setValue}.
132 > *
133 > * <ul>
134 > * <li> forEach: Perform a given action on each element.
135 > * A variant form applies a given transformation on each element
136 > * before performing the action.</li>
137 > *
138 > * <li> search: Return the first available non-null result of
139 > * applying a given function on each element; skipping further
140 > * search when a result is found.</li>
141 > *
142 > * <li> reduce: Accumulate each element.  The supplied reduction
143 > * function cannot rely on ordering (more formally, it should be
144 > * both associative and commutative).  There are five variants:
145 > *
146 > * <ul>
147 > *
148 > * <li> Plain reductions. (There is not a form of this method for
149 > * (key, value) function arguments since there is no corresponding
150 > * return type.)</li>
151 > *
152 > * <li> Mapped reductions that accumulate the results of a given
153 > * function applied to each element.</li>
154 > *
155 > * <li> Reductions to scalar doubles, longs, and ints, using a
156 > * given basis value.</li>
157 > *
158 > * </ul>
159 > * </li>
160 > * </ul>
161 > *
162 > * <p>These bulk operations accept a {@code parallelismThreshold}
163 > * argument. Methods proceed sequentially if the current map size is
164 > * estimated to be less than the given threshold. Using a value of
165 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
166 > * of {@code 1} results in maximal parallelism by partitioning into
167 > * enough subtasks to fully utilize the {@link
168 > * ForkJoinPool#commonPool()} that is used for all parallel
169 > * computations. Normally, you would initially choose one of these
170 > * extreme values, and then measure performance of using in-between
171 > * values that trade off overhead versus throughput.
172 > *
173 > * <p>The concurrency properties of bulk operations follow
174 > * from those of ConcurrentHashMap: Any non-null result returned
175 > * from {@code get(key)} and related access methods bears a
176 > * happens-before relation with the associated insertion or
177 > * update.  The result of any bulk operation reflects the
178 > * composition of these per-element relations (but is not
179 > * necessarily atomic with respect to the map as a whole unless it
180 > * is somehow known to be quiescent).  Conversely, because keys
181 > * and values in the map are never null, null serves as a reliable
182 > * atomic indicator of the current lack of any result.  To
183 > * maintain this property, null serves as an implicit basis for
184 > * all non-scalar reduction operations. For the double, long, and
185 > * int versions, the basis should be one that, when combined with
186 > * any other value, returns that other value (more formally, it
187 > * should be the identity element for the reduction). Most common
188 > * reductions have these properties; for example, computing a sum
189 > * with basis 0 or a minimum with basis MAX_VALUE.
190 > *
191 > * <p>Search and transformation functions provided as arguments
192 > * should similarly return null to indicate the lack of any result
193 > * (in which case it is not used). In the case of mapped
194 > * reductions, this also enables transformations to serve as
195 > * filters, returning null (or, in the case of primitive
196 > * specializations, the identity basis) if the element should not
197 > * be combined. You can create compound transformations and
198 > * filterings by composing them yourself under this "null means
199 > * there is nothing there now" rule before using them in search or
200 > * reduce operations.
201 > *
202 > * <p>Methods accepting and/or returning Entry arguments maintain
203 > * key-value associations. They may be useful for example when
204 > * finding the key for the greatest value. Note that "plain" Entry
205 > * arguments can be supplied using {@code new
206 > * AbstractMap.SimpleEntry(k,v)}.
207 > *
208 > * <p>Bulk operations may complete abruptly, throwing an
209 > * exception encountered in the application of a supplied
210 > * function. Bear in mind when handling such exceptions that other
211 > * concurrently executing functions could also have thrown
212 > * exceptions, or would have done so if the first exception had
213 > * not occurred.
214 > *
215 > * <p>Speedups for parallel compared to sequential forms are common
216 > * but not guaranteed.  Parallel operations involving brief functions
217 > * on small maps may execute more slowly than sequential forms if the
218 > * underlying work to parallelize the computation is more expensive
219 > * than the computation itself.  Similarly, parallelization may not
220 > * lead to much actual parallelism if all processors are busy
221 > * performing unrelated tasks.
222 > *
223 > * <p>All arguments to all task methods must be non-null.
224   *
225   * <p>This class is a member of the
226   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 231 | import java.io.ObjectOutputStream;
231   * @param <K> the type of keys maintained by this map
232   * @param <V> the type of mapped values
233   */
234 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
235 <        implements ConcurrentMap<K, V>, Serializable {
234 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
235 >    implements ConcurrentMap<K,V>, Serializable {
236      private static final long serialVersionUID = 7249069246763182397L;
237  
238      /*
239 <     * The basic strategy is to subdivide the table among Segments,
240 <     * each of which itself is a concurrently readable hash table.
239 >     * Overview:
240 >     *
241 >     * The primary design goal of this hash table is to maintain
242 >     * concurrent readability (typically method get(), but also
243 >     * iterators and related methods) while minimizing update
244 >     * contention. Secondary goals are to keep space consumption about
245 >     * the same or better than java.util.HashMap, and to support high
246 >     * initial insertion rates on an empty table by many threads.
247 >     *
248 >     * This map usually acts as a binned (bucketed) hash table.  Each
249 >     * key-value mapping is held in a Node.  Most nodes are instances
250 >     * of the basic Node class with hash, key, value, and next
251 >     * fields. However, various subclasses exist: TreeNodes are
252 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
253 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
254 >     * of bins during resizing. ReservationNodes are used as
255 >     * placeholders while establishing values in computeIfAbsent and
256 >     * related methods.  The types TreeBin, ForwardingNode, and
257 >     * ReservationNode do not hold normal user keys, values, or
258 >     * hashes, and are readily distinguishable during search etc
259 >     * because they have negative hash fields and null key and value
260 >     * fields. (These special nodes are either uncommon or transient,
261 >     * so the impact of carrying around some unused fields is
262 >     * insignificant.)
263 >     *
264 >     * The table is lazily initialized to a power-of-two size upon the
265 >     * first insertion.  Each bin in the table normally contains a
266 >     * list of Nodes (most often, the list has only zero or one Node).
267 >     * Table accesses require volatile/atomic reads, writes, and
268 >     * CASes.  Because there is no other way to arrange this without
269 >     * adding further indirections, we use intrinsics
270 >     * (sun.misc.Unsafe) operations.
271 >     *
272 >     * We use the top (sign) bit of Node hash fields for control
273 >     * purposes -- it is available anyway because of addressing
274 >     * constraints.  Nodes with negative hash fields are specially
275 >     * handled or ignored in map methods.
276 >     *
277 >     * Insertion (via put or its variants) of the first node in an
278 >     * empty bin is performed by just CASing it to the bin.  This is
279 >     * by far the most common case for put operations under most
280 >     * key/hash distributions.  Other update operations (insert,
281 >     * delete, and replace) require locks.  We do not want to waste
282 >     * the space required to associate a distinct lock object with
283 >     * each bin, so instead use the first node of a bin list itself as
284 >     * a lock. Locking support for these locks relies on builtin
285 >     * "synchronized" monitors.
286 >     *
287 >     * Using the first node of a list as a lock does not by itself
288 >     * suffice though: When a node is locked, any update must first
289 >     * validate that it is still the first node after locking it, and
290 >     * retry if not. Because new nodes are always appended to lists,
291 >     * once a node is first in a bin, it remains first until deleted
292 >     * or the bin becomes invalidated (upon resizing).
293 >     *
294 >     * The main disadvantage of per-bin locks is that other update
295 >     * operations on other nodes in a bin list protected by the same
296 >     * lock can stall, for example when user equals() or mapping
297 >     * functions take a long time.  However, statistically, under
298 >     * random hash codes, this is not a common problem.  Ideally, the
299 >     * frequency of nodes in bins follows a Poisson distribution
300 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
301 >     * parameter of about 0.5 on average, given the resizing threshold
302 >     * of 0.75, although with a large variance because of resizing
303 >     * granularity. Ignoring variance, the expected occurrences of
304 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
305 >     * first values are:
306 >     *
307 >     * 0:    0.60653066
308 >     * 1:    0.30326533
309 >     * 2:    0.07581633
310 >     * 3:    0.01263606
311 >     * 4:    0.00157952
312 >     * 5:    0.00015795
313 >     * 6:    0.00001316
314 >     * 7:    0.00000094
315 >     * 8:    0.00000006
316 >     * more: less than 1 in ten million
317 >     *
318 >     * Lock contention probability for two threads accessing distinct
319 >     * elements is roughly 1 / (8 * #elements) under random hashes.
320 >     *
321 >     * Actual hash code distributions encountered in practice
322 >     * sometimes deviate significantly from uniform randomness.  This
323 >     * includes the case when N > (1<<30), so some keys MUST collide.
324 >     * Similarly for dumb or hostile usages in which multiple keys are
325 >     * designed to have identical hash codes or ones that differs only
326 >     * in masked-out high bits. So we use a secondary strategy that
327 >     * applies when the number of nodes in a bin exceeds a
328 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
329 >     * specialized form of red-black trees), bounding search time to
330 >     * O(log N).  Each search step in a TreeBin is at least twice as
331 >     * slow as in a regular list, but given that N cannot exceed
332 >     * (1<<64) (before running out of addresses) this bounds search
333 >     * steps, lock hold times, etc, to reasonable constants (roughly
334 >     * 100 nodes inspected per operation worst case) so long as keys
335 >     * are Comparable (which is very common -- String, Long, etc).
336 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
337 >     * traversal pointers as regular nodes, so can be traversed in
338 >     * iterators in the same way.
339 >     *
340 >     * The table is resized when occupancy exceeds a percentage
341 >     * threshold (nominally, 0.75, but see below).  Any thread
342 >     * noticing an overfull bin may assist in resizing after the
343 >     * initiating thread allocates and sets up the replacement array.
344 >     * However, rather than stalling, these other threads may proceed
345 >     * with insertions etc.  The use of TreeBins shields us from the
346 >     * worst case effects of overfilling while resizes are in
347 >     * progress.  Resizing proceeds by transferring bins, one by one,
348 >     * from the table to the next table. However, threads claim small
349 >     * blocks of indices to transfer (via field transferIndex) before
350 >     * doing so, reducing contention.  A generation stamp in field
351 >     * sizeCtl ensures that resizings do not overlap. Because we are
352 >     * using power-of-two expansion, the elements from each bin must
353 >     * either stay at same index, or move with a power of two
354 >     * offset. We eliminate unnecessary node creation by catching
355 >     * cases where old nodes can be reused because their next fields
356 >     * won't change.  On average, only about one-sixth of them need
357 >     * cloning when a table doubles. The nodes they replace will be
358 >     * garbage collectable as soon as they are no longer referenced by
359 >     * any reader thread that may be in the midst of concurrently
360 >     * traversing table.  Upon transfer, the old table bin contains
361 >     * only a special forwarding node (with hash field "MOVED") that
362 >     * contains the next table as its key. On encountering a
363 >     * forwarding node, access and update operations restart, using
364 >     * the new table.
365 >     *
366 >     * Each bin transfer requires its bin lock, which can stall
367 >     * waiting for locks while resizing. However, because other
368 >     * threads can join in and help resize rather than contend for
369 >     * locks, average aggregate waits become shorter as resizing
370 >     * progresses.  The transfer operation must also ensure that all
371 >     * accessible bins in both the old and new table are usable by any
372 >     * traversal.  This is arranged in part by proceeding from the
373 >     * last bin (table.length - 1) up towards the first.  Upon seeing
374 >     * a forwarding node, traversals (see class Traverser) arrange to
375 >     * move to the new table without revisiting nodes.  To ensure that
376 >     * no intervening nodes are skipped even when moved out of order,
377 >     * a stack (see class TableStack) is created on first encounter of
378 >     * a forwarding node during a traversal, to maintain its place if
379 >     * later processing the current table. The need for these
380 >     * save/restore mechanics is relatively rare, but when one
381 >     * forwarding node is encountered, typically many more will be.
382 >     * So Traversers use a simple caching scheme to avoid creating so
383 >     * many new TableStack nodes. (Thanks to Peter Levart for
384 >     * suggesting use of a stack here.)
385 >     *
386 >     * The traversal scheme also applies to partial traversals of
387 >     * ranges of bins (via an alternate Traverser constructor)
388 >     * to support partitioned aggregate operations.  Also, read-only
389 >     * operations give up if ever forwarded to a null table, which
390 >     * provides support for shutdown-style clearing, which is also not
391 >     * currently implemented.
392 >     *
393 >     * Lazy table initialization minimizes footprint until first use,
394 >     * and also avoids resizings when the first operation is from a
395 >     * putAll, constructor with map argument, or deserialization.
396 >     * These cases attempt to override the initial capacity settings,
397 >     * but harmlessly fail to take effect in cases of races.
398 >     *
399 >     * The element count is maintained using a specialization of
400 >     * LongAdder. We need to incorporate a specialization rather than
401 >     * just use a LongAdder in order to access implicit
402 >     * contention-sensing that leads to creation of multiple
403 >     * CounterCells.  The counter mechanics avoid contention on
404 >     * updates but can encounter cache thrashing if read too
405 >     * frequently during concurrent access. To avoid reading so often,
406 >     * resizing under contention is attempted only upon adding to a
407 >     * bin already holding two or more nodes. Under uniform hash
408 >     * distributions, the probability of this occurring at threshold
409 >     * is around 13%, meaning that only about 1 in 8 puts check
410 >     * threshold (and after resizing, many fewer do so).
411 >     *
412 >     * TreeBins use a special form of comparison for search and
413 >     * related operations (which is the main reason we cannot use
414 >     * existing collections such as TreeMaps). TreeBins contain
415 >     * Comparable elements, but may contain others, as well as
416 >     * elements that are Comparable but not necessarily Comparable for
417 >     * the same T, so we cannot invoke compareTo among them. To handle
418 >     * this, the tree is ordered primarily by hash value, then by
419 >     * Comparable.compareTo order if applicable.  On lookup at a node,
420 >     * if elements are not comparable or compare as 0 then both left
421 >     * and right children may need to be searched in the case of tied
422 >     * hash values. (This corresponds to the full list search that
423 >     * would be necessary if all elements were non-Comparable and had
424 >     * tied hashes.) On insertion, to keep a total ordering (or as
425 >     * close as is required here) across rebalancings, we compare
426 >     * classes and identityHashCodes as tie-breakers. The red-black
427 >     * balancing code is updated from pre-jdk-collections
428 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
429 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
430 >     * Algorithms" (CLR).
431 >     *
432 >     * TreeBins also require an additional locking mechanism.  While
433 >     * list traversal is always possible by readers even during
434 >     * updates, tree traversal is not, mainly because of tree-rotations
435 >     * that may change the root node and/or its linkages.  TreeBins
436 >     * include a simple read-write lock mechanism parasitic on the
437 >     * main bin-synchronization strategy: Structural adjustments
438 >     * associated with an insertion or removal are already bin-locked
439 >     * (and so cannot conflict with other writers) but must wait for
440 >     * ongoing readers to finish. Since there can be only one such
441 >     * waiter, we use a simple scheme using a single "waiter" field to
442 >     * block writers.  However, readers need never block.  If the root
443 >     * lock is held, they proceed along the slow traversal path (via
444 >     * next-pointers) until the lock becomes available or the list is
445 >     * exhausted, whichever comes first. These cases are not fast, but
446 >     * maximize aggregate expected throughput.
447 >     *
448 >     * Maintaining API and serialization compatibility with previous
449 >     * versions of this class introduces several oddities. Mainly: We
450 >     * leave untouched but unused constructor arguments refering to
451 >     * concurrencyLevel. We accept a loadFactor constructor argument,
452 >     * but apply it only to initial table capacity (which is the only
453 >     * time that we can guarantee to honor it.) We also declare an
454 >     * unused "Segment" class that is instantiated in minimal form
455 >     * only when serializing.
456 >     *
457 >     * Also, solely for compatibility with previous versions of this
458 >     * class, it extends AbstractMap, even though all of its methods
459 >     * are overridden, so it is just useless baggage.
460 >     *
461 >     * This file is organized to make things a little easier to follow
462 >     * while reading than they might otherwise: First the main static
463 >     * declarations and utilities, then fields, then main public
464 >     * methods (with a few factorings of multiple public methods into
465 >     * internal ones), then sizing methods, trees, traversers, and
466 >     * bulk operations.
467       */
468  
469      /* ---------------- Constants -------------- */
470  
471      /**
472 <     * The default initial capacity for this table,
473 <     * used when not otherwise specified in a constructor.
472 >     * The largest possible table capacity.  This value must be
473 >     * exactly 1<<30 to stay within Java array allocation and indexing
474 >     * bounds for power of two table sizes, and is further required
475 >     * because the top two bits of 32bit hash fields are used for
476 >     * control purposes.
477       */
478 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
478 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
479  
480      /**
481 <     * The default load factor for this table, used when not
482 <     * otherwise specified in a constructor.
481 >     * The default initial table capacity.  Must be a power of 2
482 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
483       */
484 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
484 >    private static final int DEFAULT_CAPACITY = 16;
485  
486      /**
487 <     * The default concurrency level for this table, used when not
488 <     * otherwise specified in a constructor.
487 >     * The largest possible (non-power of two) array size.
488 >     * Needed by toArray and related methods.
489       */
490 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
490 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
491  
492      /**
493 <     * The maximum capacity, used if a higher value is implicitly
494 <     * specified by either of the constructors with arguments.  MUST
105 <     * be a power of two <= 1<<30 to ensure that entries are indexable
106 <     * using ints.
493 >     * The default concurrency level for this table. Unused but
494 >     * defined for compatibility with previous versions of this class.
495       */
496 <    static final int MAXIMUM_CAPACITY = 1 << 30;
496 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
497  
498      /**
499 <     * The maximum number of segments to allow; used to bound
500 <     * constructor arguments.
499 >     * The load factor for this table. Overrides of this value in
500 >     * constructors affect only the initial table capacity.  The
501 >     * actual floating point value isn't normally used -- it is
502 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
503 >     * the associated resizing threshold.
504       */
505 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
505 >    private static final float LOAD_FACTOR = 0.75f;
506  
507      /**
508 <     * Number of unsynchronized retries in size and containsValue
509 <     * methods before resorting to locking. This is used to avoid
510 <     * unbounded retries if tables undergo continuous modification
511 <     * which would make it impossible to obtain an accurate result.
508 >     * The bin count threshold for using a tree rather than list for a
509 >     * bin.  Bins are converted to trees when adding an element to a
510 >     * bin with at least this many nodes. The value must be greater
511 >     * than 2, and should be at least 8 to mesh with assumptions in
512 >     * tree removal about conversion back to plain bins upon
513 >     * shrinkage.
514       */
515 <    static final int RETRIES_BEFORE_LOCK = 2;
123 <
124 <    /* ---------------- Fields -------------- */
515 >    static final int TREEIFY_THRESHOLD = 8;
516  
517      /**
518 <     * Mask value for indexing into segments. The upper bits of a
519 <     * key's hash code are used to choose the segment.
518 >     * The bin count threshold for untreeifying a (split) bin during a
519 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
520 >     * most 6 to mesh with shrinkage detection under removal.
521       */
522 <    final int segmentMask;
522 >    static final int UNTREEIFY_THRESHOLD = 6;
523  
524      /**
525 <     * Shift value for indexing within segments.
525 >     * The smallest table capacity for which bins may be treeified.
526 >     * (Otherwise the table is resized if too many nodes in a bin.)
527 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
528 >     * conflicts between resizing and treeification thresholds.
529       */
530 <    final int segmentShift;
530 >    static final int MIN_TREEIFY_CAPACITY = 64;
531  
532      /**
533 <     * The segments, each of which is a specialized hash table
533 >     * Minimum number of rebinnings per transfer step. Ranges are
534 >     * subdivided to allow multiple resizer threads.  This value
535 >     * serves as a lower bound to avoid resizers encountering
536 >     * excessive memory contention.  The value should be at least
537 >     * DEFAULT_CAPACITY.
538       */
539 <    final Segment<K,V>[] segments;
141 <
142 <    transient Set<K> keySet;
143 <    transient Set<Map.Entry<K,V>> entrySet;
144 <    transient Collection<V> values;
145 <
146 <    /* ---------------- Small Utilities -------------- */
539 >    private static final int MIN_TRANSFER_STRIDE = 16;
540  
541      /**
542 <     * Applies a supplemental hash function to a given hashCode, which
543 <     * defends against poor quality hash functions.  This is critical
151 <     * because HashMap uses power-of two length hash tables, that
152 <     * otherwise encounter collisions for hashCodes that do not differ
153 <     * in lower bits.
542 >     * The number of bits used for generation stamp in sizeCtl.
543 >     * Must be at least 6 for 32bit arrays.
544       */
545 <    static int hash(int h) {
156 <        // This function ensures that hashCodes that differ only by
157 <        // constant multiples at each bit position have a bounded
158 <        // number of collisions (approximately 8 at default load factor).
159 <        h ^= (h >>> 20) ^ (h >>> 12);
160 <        return h ^ (h >>> 7) ^ (h >>> 4);
161 <    }
545 >    private static int RESIZE_STAMP_BITS = 16;
546  
547      /**
548 <     * Returns the segment that should be used for key with given hash
549 <     * @param hash the hash code for the key
166 <     * @return the segment
548 >     * The maximum number of threads that can help resize.
549 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
550       */
551 <    final Segment<K,V> segmentFor(int hash) {
169 <        return segments[(hash >>> segmentShift) & segmentMask];
170 <    }
171 <
172 <    /* ---------------- Inner Classes -------------- */
551 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
552  
553      /**
554 <     * ConcurrentHashMap list entry. Note that this is never exported
176 <     * out as a user-visible Map.Entry.
177 <     *
178 <     * Because the value field is volatile, not final, it is legal wrt
179 <     * the Java Memory Model for an unsynchronized reader to see null
180 <     * instead of initial value when read via a data race.  Although a
181 <     * reordering leading to this is not likely to ever actually
182 <     * occur, the Segment.readValueUnderLock method is used as a
183 <     * backup in case a null (pre-initialized) value is ever seen in
184 <     * an unsynchronized access method.
554 >     * The bit shift for recording size stamp in sizeCtl.
555       */
556 <    static final class HashEntry<K,V> {
187 <        final K key;
188 <        final int hash;
189 <        volatile V value;
190 <        final HashEntry<K,V> next;
556 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
557  
558 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
559 <            this.key = key;
560 <            this.hash = hash;
561 <            this.next = next;
562 <            this.value = value;
563 <        }
558 >    /*
559 >     * Encodings for Node hash fields. See above for explanation.
560 >     */
561 >    static final int MOVED     = -1; // hash for forwarding nodes
562 >    static final int TREEBIN   = -2; // hash for roots of trees
563 >    static final int RESERVED  = -3; // hash for transient reservations
564 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
565 >
566 >    /** Number of CPUS, to place bounds on some sizings */
567 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
568 >
569 >    /** For serialization compatibility. */
570 >    private static final ObjectStreamField[] serialPersistentFields = {
571 >        new ObjectStreamField("segments", Segment[].class),
572 >        new ObjectStreamField("segmentMask", Integer.TYPE),
573 >        new ObjectStreamField("segmentShift", Integer.TYPE)
574 >    };
575  
576 <        @SuppressWarnings("unchecked")
200 <        static final <K,V> HashEntry<K,V>[] newArray(int i) {
201 <            return new HashEntry[i];
202 <        }
203 <    }
576 >    /* ---------------- Nodes -------------- */
577  
578      /**
579 <     * Segments are specialized versions of hash tables.  This
580 <     * subclasses from ReentrantLock opportunistically, just to
581 <     * simplify some locking and avoid separate construction.
579 >     * Key-value entry.  This class is never exported out as a
580 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
581 >     * MapEntry below), but can be used for read-only traversals used
582 >     * in bulk tasks.  Subclasses of Node with a negative hash field
583 >     * are special, and contain null keys and values (but are never
584 >     * exported).  Otherwise, keys and vals are never null.
585       */
586 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
587 <        /*
588 <         * Segments maintain a table of entry lists that are ALWAYS
589 <         * kept in a consistent state, so can be read without locking.
590 <         * Next fields of nodes are immutable (final).  All list
215 <         * additions are performed at the front of each bin. This
216 <         * makes it easy to check changes, and also fast to traverse.
217 <         * When nodes would otherwise be changed, new nodes are
218 <         * created to replace them. This works well for hash tables
219 <         * since the bin lists tend to be short. (The average length
220 <         * is less than two for the default load factor threshold.)
221 <         *
222 <         * Read operations can thus proceed without locking, but rely
223 <         * on selected uses of volatiles to ensure that completed
224 <         * write operations performed by other threads are
225 <         * noticed. For most purposes, the "count" field, tracking the
226 <         * number of elements, serves as that volatile variable
227 <         * ensuring visibility.  This is convenient because this field
228 <         * needs to be read in many read operations anyway:
229 <         *
230 <         *   - All (unsynchronized) read operations must first read the
231 <         *     "count" field, and should not look at table entries if
232 <         *     it is 0.
233 <         *
234 <         *   - All (synchronized) write operations should write to
235 <         *     the "count" field after structurally changing any bin.
236 <         *     The operations must not take any action that could even
237 <         *     momentarily cause a concurrent read operation to see
238 <         *     inconsistent data. This is made easier by the nature of
239 <         *     the read operations in Map. For example, no operation
240 <         *     can reveal that the table has grown but the threshold
241 <         *     has not yet been updated, so there are no atomicity
242 <         *     requirements for this with respect to reads.
243 <         *
244 <         * As a guide, all critical volatile reads and writes to the
245 <         * count field are marked in code comments.
246 <         */
247 <
248 <        private static final long serialVersionUID = 2249069246763182397L;
249 <
250 <        /**
251 <         * The number of elements in this segment's region.
252 <         */
253 <        transient volatile int count;
254 <
255 <        /**
256 <         * Number of updates that alter the size of the table. This is
257 <         * used during bulk-read methods to make sure they see a
258 <         * consistent snapshot: If modCounts change during a traversal
259 <         * of segments computing size or checking containsValue, then
260 <         * we might have an inconsistent view of state so (usually)
261 <         * must retry.
262 <         */
263 <        transient int modCount;
264 <
265 <        /**
266 <         * The table is rehashed when its size exceeds this threshold.
267 <         * (The value of this field is always <tt>(int)(capacity *
268 <         * loadFactor)</tt>.)
269 <         */
270 <        transient int threshold;
271 <
272 <        /**
273 <         * The per-segment table.
274 <         */
275 <        transient volatile HashEntry<K,V>[] table;
276 <
277 <        /**
278 <         * The load factor for the hash table.  Even though this value
279 <         * is same for all segments, it is replicated to avoid needing
280 <         * links to outer object.
281 <         * @serial
282 <         */
283 <        final float loadFactor;
284 <
285 <        Segment(int initialCapacity, float lf) {
286 <            loadFactor = lf;
287 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
288 <        }
586 >    static class Node<K,V> implements Map.Entry<K,V> {
587 >        final int hash;
588 >        final K key;
589 >        volatile V val;
590 >        volatile Node<K,V> next;
591  
592 <        @SuppressWarnings("unchecked")
593 <        static final <K,V> Segment<K,V>[] newArray(int i) {
594 <            return new Segment[i];
592 >        Node(int hash, K key, V val, Node<K,V> next) {
593 >            this.hash = hash;
594 >            this.key = key;
595 >            this.val = val;
596 >            this.next = next;
597          }
598  
599 <        /**
600 <         * Sets table to new HashEntry array.
601 <         * Call only while holding lock or in constructor.
602 <         */
603 <        void setTable(HashEntry<K,V>[] newTable) {
604 <            threshold = (int)(newTable.length * loadFactor);
605 <            table = newTable;
599 >        public final K getKey()     { return key; }
600 >        public final V getValue()   { return val; }
601 >        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
602 >        public final String toString() {
603 >            return Helpers.mapEntryToString(key, val);
604 >        }
605 >        public final V setValue(V value) {
606 >            throw new UnsupportedOperationException();
607 >        }
608 >
609 >        public final boolean equals(Object o) {
610 >            Object k, v, u; Map.Entry<?,?> e;
611 >            return ((o instanceof Map.Entry) &&
612 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
613 >                    (v = e.getValue()) != null &&
614 >                    (k == key || k.equals(key)) &&
615 >                    (v == (u = val) || v.equals(u)));
616          }
617  
618          /**
619 <         * Returns properly casted first entry of bin for given hash.
619 >         * Virtualized support for map.get(); overridden in subclasses.
620           */
621 <        HashEntry<K,V> getFirst(int hash) {
622 <            HashEntry<K,V>[] tab = table;
623 <            return tab[hash & (tab.length - 1)];
624 <        }
625 <
626 <        /**
627 <         * Reads value field of an entry under lock. Called if value
628 <         * field ever appears to be null. This is possible only if a
629 <         * compiler happens to reorder a HashEntry initialization with
316 <         * its table assignment, which is legal under memory model
317 <         * but is not known to ever occur.
318 <         */
319 <        V readValueUnderLock(HashEntry<K,V> e) {
320 <            lock();
321 <            try {
322 <                return e.value;
323 <            } finally {
324 <                unlock();
325 <            }
326 <        }
327 <
328 <        /* Specialized implementations of map methods */
329 <
330 <        V get(Object key, int hash) {
331 <            if (count != 0) { // read-volatile
332 <                HashEntry<K,V> e = getFirst(hash);
333 <                while (e != null) {
334 <                    if (e.hash == hash && key.equals(e.key)) {
335 <                        V v = e.value;
336 <                        if (v != null)
337 <                            return v;
338 <                        return readValueUnderLock(e); // recheck
339 <                    }
340 <                    e = e.next;
341 <                }
621 >        Node<K,V> find(int h, Object k) {
622 >            Node<K,V> e = this;
623 >            if (k != null) {
624 >                do {
625 >                    K ek;
626 >                    if (e.hash == h &&
627 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
628 >                        return e;
629 >                } while ((e = e.next) != null);
630              }
631              return null;
632          }
633 +    }
634  
635 <        boolean containsKey(Object key, int hash) {
347 <            if (count != 0) { // read-volatile
348 <                HashEntry<K,V> e = getFirst(hash);
349 <                while (e != null) {
350 <                    if (e.hash == hash && key.equals(e.key))
351 <                        return true;
352 <                    e = e.next;
353 <                }
354 <            }
355 <            return false;
356 <        }
635 >    /* ---------------- Static utilities -------------- */
636  
637 <        boolean containsValue(Object value) {
638 <            if (count != 0) { // read-volatile
639 <                HashEntry<K,V>[] tab = table;
640 <                int len = tab.length;
641 <                for (int i = 0 ; i < len; i++) {
642 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
643 <                        V v = e.value;
644 <                        if (v == null) // recheck
645 <                            v = readValueUnderLock(e);
646 <                        if (value.equals(v))
647 <                            return true;
648 <                    }
649 <                }
650 <            }
651 <            return false;
652 <        }
637 >    /**
638 >     * Spreads (XORs) higher bits of hash to lower and also forces top
639 >     * bit to 0. Because the table uses power-of-two masking, sets of
640 >     * hashes that vary only in bits above the current mask will
641 >     * always collide. (Among known examples are sets of Float keys
642 >     * holding consecutive whole numbers in small tables.)  So we
643 >     * apply a transform that spreads the impact of higher bits
644 >     * downward. There is a tradeoff between speed, utility, and
645 >     * quality of bit-spreading. Because many common sets of hashes
646 >     * are already reasonably distributed (so don't benefit from
647 >     * spreading), and because we use trees to handle large sets of
648 >     * collisions in bins, we just XOR some shifted bits in the
649 >     * cheapest possible way to reduce systematic lossage, as well as
650 >     * to incorporate impact of the highest bits that would otherwise
651 >     * never be used in index calculations because of table bounds.
652 >     */
653 >    static final int spread(int h) {
654 >        return (h ^ (h >>> 16)) & HASH_BITS;
655 >    }
656  
657 <        boolean replace(K key, int hash, V oldValue, V newValue) {
658 <            lock();
659 <            try {
660 <                HashEntry<K,V> e = getFirst(hash);
661 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
662 <                    e = e.next;
663 <
664 <                boolean replaced = false;
665 <                if (e != null && oldValue.equals(e.value)) {
666 <                    replaced = true;
667 <                    e.value = newValue;
668 <                }
669 <                return replaced;
388 <            } finally {
389 <                unlock();
390 <            }
391 <        }
657 >    /**
658 >     * Returns a power of two table size for the given desired capacity.
659 >     * See Hackers Delight, sec 3.2
660 >     */
661 >    private static final int tableSizeFor(int c) {
662 >        int n = c - 1;
663 >        n |= n >>> 1;
664 >        n |= n >>> 2;
665 >        n |= n >>> 4;
666 >        n |= n >>> 8;
667 >        n |= n >>> 16;
668 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
669 >    }
670  
671 <        V replace(K key, int hash, V newValue) {
672 <            lock();
673 <            try {
674 <                HashEntry<K,V> e = getFirst(hash);
675 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
676 <                    e = e.next;
677 <
678 <                V oldValue = null;
679 <                if (e != null) {
680 <                    oldValue = e.value;
681 <                    e.value = newValue;
671 >    /**
672 >     * Returns x's Class if it is of the form "class C implements
673 >     * Comparable<C>", else null.
674 >     */
675 >    static Class<?> comparableClassFor(Object x) {
676 >        if (x instanceof Comparable) {
677 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
678 >            if ((c = x.getClass()) == String.class) // bypass checks
679 >                return c;
680 >            if ((ts = c.getGenericInterfaces()) != null) {
681 >                for (int i = 0; i < ts.length; ++i) {
682 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
683 >                        ((p = (ParameterizedType)t).getRawType() ==
684 >                         Comparable.class) &&
685 >                        (as = p.getActualTypeArguments()) != null &&
686 >                        as.length == 1 && as[0] == c) // type arg is c
687 >                        return c;
688                  }
405                return oldValue;
406            } finally {
407                unlock();
689              }
690          }
691 +        return null;
692 +    }
693  
694 +    /**
695 +     * Returns k.compareTo(x) if x matches kc (k's screened comparable
696 +     * class), else 0.
697 +     */
698 +    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
699 +    static int compareComparables(Class<?> kc, Object k, Object x) {
700 +        return (x == null || x.getClass() != kc ? 0 :
701 +                ((Comparable)k).compareTo(x));
702 +    }
703  
704 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
413 <            lock();
414 <            try {
415 <                int c = count;
416 <                if (c++ > threshold) // ensure capacity
417 <                    rehash();
418 <                HashEntry<K,V>[] tab = table;
419 <                int index = hash & (tab.length - 1);
420 <                HashEntry<K,V> first = tab[index];
421 <                HashEntry<K,V> e = first;
422 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
423 <                    e = e.next;
424 <
425 <                V oldValue;
426 <                if (e != null) {
427 <                    oldValue = e.value;
428 <                    if (!onlyIfAbsent)
429 <                        e.value = value;
430 <                }
431 <                else {
432 <                    oldValue = null;
433 <                    ++modCount;
434 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
435 <                    count = c; // write-volatile
436 <                }
437 <                return oldValue;
438 <            } finally {
439 <                unlock();
440 <            }
441 <        }
704 >    /* ---------------- Table element access -------------- */
705  
706 <        void rehash() {
707 <            HashEntry<K,V>[] oldTable = table;
708 <            int oldCapacity = oldTable.length;
709 <            if (oldCapacity >= MAXIMUM_CAPACITY)
710 <                return;
706 >    /*
707 >     * Volatile access methods are used for table elements as well as
708 >     * elements of in-progress next table while resizing.  All uses of
709 >     * the tab arguments must be null checked by callers.  All callers
710 >     * also paranoically precheck that tab's length is not zero (or an
711 >     * equivalent check), thus ensuring that any index argument taking
712 >     * the form of a hash value anded with (length - 1) is a valid
713 >     * index.  Note that, to be correct wrt arbitrary concurrency
714 >     * errors by users, these checks must operate on local variables,
715 >     * which accounts for some odd-looking inline assignments below.
716 >     * Note that calls to setTabAt always occur within locked regions,
717 >     * and so in principle require only release ordering, not
718 >     * full volatile semantics, but are currently coded as volatile
719 >     * writes to be conservative.
720 >     */
721 >
722 >    @SuppressWarnings("unchecked")
723 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
724 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
725 >    }
726  
727 <            /*
728 <             * Reclassify nodes in each list to new Map.  Because we are
729 <             * using power-of-two expansion, the elements from each bin
730 <             * must either stay at same index, or move with a power of two
453 <             * offset. We eliminate unnecessary node creation by catching
454 <             * cases where old nodes can be reused because their next
455 <             * fields won't change. Statistically, at the default
456 <             * threshold, only about one-sixth of them need cloning when
457 <             * a table doubles. The nodes they replace will be garbage
458 <             * collectable as soon as they are no longer referenced by any
459 <             * reader thread that may be in the midst of traversing table
460 <             * right now.
461 <             */
462 <
463 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
464 <            threshold = (int)(newTable.length * loadFactor);
465 <            int sizeMask = newTable.length - 1;
466 <            for (int i = 0; i < oldCapacity ; i++) {
467 <                // We need to guarantee that any existing reads of old Map can
468 <                //  proceed. So we cannot yet null out each bin.
469 <                HashEntry<K,V> e = oldTable[i];
470 <
471 <                if (e != null) {
472 <                    HashEntry<K,V> next = e.next;
473 <                    int idx = e.hash & sizeMask;
474 <
475 <                    //  Single node on list
476 <                    if (next == null)
477 <                        newTable[idx] = e;
727 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
728 >                                        Node<K,V> c, Node<K,V> v) {
729 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
730 >    }
731  
732 <                    else {
733 <                        // Reuse trailing consecutive sequence at same slot
734 <                        HashEntry<K,V> lastRun = e;
482 <                        int lastIdx = idx;
483 <                        for (HashEntry<K,V> last = next;
484 <                             last != null;
485 <                             last = last.next) {
486 <                            int k = last.hash & sizeMask;
487 <                            if (k != lastIdx) {
488 <                                lastIdx = k;
489 <                                lastRun = last;
490 <                            }
491 <                        }
492 <                        newTable[lastIdx] = lastRun;
732 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
733 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
734 >    }
735  
736 <                        // Clone all remaining nodes
495 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
496 <                            int k = p.hash & sizeMask;
497 <                            HashEntry<K,V> n = newTable[k];
498 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
499 <                                                             n, p.value);
500 <                        }
501 <                    }
502 <                }
503 <            }
504 <            table = newTable;
505 <        }
736 >    /* ---------------- Fields -------------- */
737  
738 <        /**
739 <         * Remove; match on key only if value null, else match both.
740 <         */
741 <        V remove(Object key, int hash, Object value) {
742 <            lock();
512 <            try {
513 <                int c = count - 1;
514 <                HashEntry<K,V>[] tab = table;
515 <                int index = hash & (tab.length - 1);
516 <                HashEntry<K,V> first = tab[index];
517 <                HashEntry<K,V> e = first;
518 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
519 <                    e = e.next;
520 <
521 <                V oldValue = null;
522 <                if (e != null) {
523 <                    V v = e.value;
524 <                    if (value == null || value.equals(v)) {
525 <                        oldValue = v;
526 <                        // All entries following removed node can stay
527 <                        // in list, but all preceding ones need to be
528 <                        // cloned.
529 <                        ++modCount;
530 <                        HashEntry<K,V> newFirst = e.next;
531 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
532 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
533 <                                                          newFirst, p.value);
534 <                        tab[index] = newFirst;
535 <                        count = c; // write-volatile
536 <                    }
537 <                }
538 <                return oldValue;
539 <            } finally {
540 <                unlock();
541 <            }
542 <        }
738 >    /**
739 >     * The array of bins. Lazily initialized upon first insertion.
740 >     * Size is always a power of two. Accessed directly by iterators.
741 >     */
742 >    transient volatile Node<K,V>[] table;
743  
744 <        void clear() {
745 <            if (count != 0) {
746 <                lock();
747 <                try {
548 <                    HashEntry<K,V>[] tab = table;
549 <                    for (int i = 0; i < tab.length ; i++)
550 <                        tab[i] = null;
551 <                    ++modCount;
552 <                    count = 0; // write-volatile
553 <                } finally {
554 <                    unlock();
555 <                }
556 <            }
557 <        }
558 <    }
744 >    /**
745 >     * The next table to use; non-null only while resizing.
746 >     */
747 >    private transient volatile Node<K,V>[] nextTable;
748  
749 +    /**
750 +     * Base counter value, used mainly when there is no contention,
751 +     * but also as a fallback during table initialization
752 +     * races. Updated via CAS.
753 +     */
754 +    private transient volatile long baseCount;
755  
756 +    /**
757 +     * Table initialization and resizing control.  When negative, the
758 +     * table is being initialized or resized: -1 for initialization,
759 +     * else -(1 + the number of active resizing threads).  Otherwise,
760 +     * when table is null, holds the initial table size to use upon
761 +     * creation, or 0 for default. After initialization, holds the
762 +     * next element count value upon which to resize the table.
763 +     */
764 +    private transient volatile int sizeCtl;
765  
766 <    /* ---------------- Public operations -------------- */
766 >    /**
767 >     * The next table index (plus one) to split while resizing.
768 >     */
769 >    private transient volatile int transferIndex;
770  
771      /**
772 <     * Creates a new, empty map with the specified initial
566 <     * capacity, load factor and concurrency level.
567 <     *
568 <     * @param initialCapacity the initial capacity. The implementation
569 <     * performs internal sizing to accommodate this many elements.
570 <     * @param loadFactor  the load factor threshold, used to control resizing.
571 <     * Resizing may be performed when the average number of elements per
572 <     * bin exceeds this threshold.
573 <     * @param concurrencyLevel the estimated number of concurrently
574 <     * updating threads. The implementation performs internal sizing
575 <     * to try to accommodate this many threads.
576 <     * @throws IllegalArgumentException if the initial capacity is
577 <     * negative or the load factor or concurrencyLevel are
578 <     * nonpositive.
772 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
773       */
774 <    public ConcurrentHashMap(int initialCapacity,
581 <                             float loadFactor, int concurrencyLevel) {
582 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
583 <            throw new IllegalArgumentException();
774 >    private transient volatile int cellsBusy;
775  
776 <        if (concurrencyLevel > MAX_SEGMENTS)
777 <            concurrencyLevel = MAX_SEGMENTS;
776 >    /**
777 >     * Table of counter cells. When non-null, size is a power of 2.
778 >     */
779 >    private transient volatile CounterCell[] counterCells;
780  
781 <        // Find power-of-two sizes best matching arguments
782 <        int sshift = 0;
783 <        int ssize = 1;
784 <        while (ssize < concurrencyLevel) {
592 <            ++sshift;
593 <            ssize <<= 1;
594 <        }
595 <        segmentShift = 32 - sshift;
596 <        segmentMask = ssize - 1;
597 <        this.segments = Segment.newArray(ssize);
598 <
599 <        if (initialCapacity > MAXIMUM_CAPACITY)
600 <            initialCapacity = MAXIMUM_CAPACITY;
601 <        int c = initialCapacity / ssize;
602 <        if (c * ssize < initialCapacity)
603 <            ++c;
604 <        int cap = 1;
605 <        while (cap < c)
606 <            cap <<= 1;
781 >    // views
782 >    private transient KeySetView<K,V> keySet;
783 >    private transient ValuesView<K,V> values;
784 >    private transient EntrySetView<K,V> entrySet;
785  
786 <        for (int i = 0; i < this.segments.length; ++i)
787 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
610 <    }
786 >
787 >    /* ---------------- Public operations -------------- */
788  
789      /**
790 <     * Creates a new, empty map with the specified initial capacity
614 <     * and load factor and with the default concurrencyLevel (16).
615 <     *
616 <     * @param initialCapacity The implementation performs internal
617 <     * sizing to accommodate this many elements.
618 <     * @param loadFactor  the load factor threshold, used to control resizing.
619 <     * Resizing may be performed when the average number of elements per
620 <     * bin exceeds this threshold.
621 <     * @throws IllegalArgumentException if the initial capacity of
622 <     * elements is negative or the load factor is nonpositive
623 <     *
624 <     * @since 1.6
790 >     * Creates a new, empty map with the default initial table size (16).
791       */
792 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
627 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
792 >    public ConcurrentHashMap() {
793      }
794  
795      /**
796 <     * Creates a new, empty map with the specified initial capacity,
797 <     * and with default load factor (0.75) and concurrencyLevel (16).
796 >     * Creates a new, empty map with an initial table size
797 >     * accommodating the specified number of elements without the need
798 >     * to dynamically resize.
799       *
800 <     * @param initialCapacity the initial capacity. The implementation
801 <     * performs internal sizing to accommodate this many elements.
800 >     * @param initialCapacity The implementation performs internal
801 >     * sizing to accommodate this many elements.
802       * @throws IllegalArgumentException if the initial capacity of
803 <     * elements is negative.
803 >     * elements is negative
804       */
805      public ConcurrentHashMap(int initialCapacity) {
806 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
807 <    }
808 <
809 <    /**
810 <     * Creates a new, empty map with a default initial capacity (16),
811 <     * load factor (0.75) and concurrencyLevel (16).
646 <     */
647 <    public ConcurrentHashMap() {
648 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
806 >        if (initialCapacity < 0)
807 >            throw new IllegalArgumentException();
808 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
809 >                   MAXIMUM_CAPACITY :
810 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
811 >        this.sizeCtl = cap;
812      }
813  
814      /**
815       * Creates a new map with the same mappings as the given map.
653     * The map is created with a capacity of 1.5 times the number
654     * of mappings in the given map or 16 (whichever is greater),
655     * and a default load factor (0.75) and concurrencyLevel (16).
816       *
817       * @param m the map
818       */
819      public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
820 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
661 <                      DEFAULT_INITIAL_CAPACITY),
662 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
820 >        this.sizeCtl = DEFAULT_CAPACITY;
821          putAll(m);
822      }
823  
824      /**
825 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
825 >     * Creates a new, empty map with an initial table size based on
826 >     * the given number of elements ({@code initialCapacity}) and
827 >     * initial table density ({@code loadFactor}).
828 >     *
829 >     * @param initialCapacity the initial capacity. The implementation
830 >     * performs internal sizing to accommodate this many elements,
831 >     * given the specified load factor.
832 >     * @param loadFactor the load factor (table density) for
833 >     * establishing the initial table size
834 >     * @throws IllegalArgumentException if the initial capacity of
835 >     * elements is negative or the load factor is nonpositive
836       *
837 <     * @return <tt>true</tt> if this map contains no key-value mappings
837 >     * @since 1.6
838       */
839 <    public boolean isEmpty() {
840 <        final Segment<K,V>[] segments = this.segments;
673 <        /*
674 <         * We keep track of per-segment modCounts to avoid ABA
675 <         * problems in which an element in one segment was added and
676 <         * in another removed during traversal, in which case the
677 <         * table was never actually empty at any point. Note the
678 <         * similar use of modCounts in the size() and containsValue()
679 <         * methods, which are the only other methods also susceptible
680 <         * to ABA problems.
681 <         */
682 <        int[] mc = new int[segments.length];
683 <        int mcsum = 0;
684 <        for (int i = 0; i < segments.length; ++i) {
685 <            if (segments[i].count != 0)
686 <                return false;
687 <            else
688 <                mcsum += mc[i] = segments[i].modCount;
689 <        }
690 <        // If mcsum happens to be zero, then we know we got a snapshot
691 <        // before any modifications at all were made.  This is
692 <        // probably common enough to bother tracking.
693 <        if (mcsum != 0) {
694 <            for (int i = 0; i < segments.length; ++i) {
695 <                if (segments[i].count != 0 ||
696 <                    mc[i] != segments[i].modCount)
697 <                    return false;
698 <            }
699 <        }
700 <        return true;
839 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
840 >        this(initialCapacity, loadFactor, 1);
841      }
842  
843      /**
844 <     * Returns the number of key-value mappings in this map.  If the
845 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
846 <     * <tt>Integer.MAX_VALUE</tt>.
844 >     * Creates a new, empty map with an initial table size based on
845 >     * the given number of elements ({@code initialCapacity}), table
846 >     * density ({@code loadFactor}), and number of concurrently
847 >     * updating threads ({@code concurrencyLevel}).
848       *
849 <     * @return the number of key-value mappings in this map
849 >     * @param initialCapacity the initial capacity. The implementation
850 >     * performs internal sizing to accommodate this many elements,
851 >     * given the specified load factor.
852 >     * @param loadFactor the load factor (table density) for
853 >     * establishing the initial table size
854 >     * @param concurrencyLevel the estimated number of concurrently
855 >     * updating threads. The implementation may use this value as
856 >     * a sizing hint.
857 >     * @throws IllegalArgumentException if the initial capacity is
858 >     * negative or the load factor or concurrencyLevel are
859 >     * nonpositive
860 >     */
861 >    public ConcurrentHashMap(int initialCapacity,
862 >                             float loadFactor, int concurrencyLevel) {
863 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
864 >            throw new IllegalArgumentException();
865 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
866 >            initialCapacity = concurrencyLevel;   // as estimated threads
867 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
868 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
869 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
870 >        this.sizeCtl = cap;
871 >    }
872 >
873 >    // Original (since JDK1.2) Map methods
874 >
875 >    /**
876 >     * {@inheritDoc}
877       */
878      public int size() {
879 <        final Segment<K,V>[] segments = this.segments;
880 <        long sum = 0;
881 <        long check = 0;
882 <        int[] mc = new int[segments.length];
883 <        // Try a few times to get accurate count. On failure due to
884 <        // continuous async changes in table, resort to locking.
885 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
886 <            check = 0;
887 <            sum = 0;
888 <            int mcsum = 0;
889 <            for (int i = 0; i < segments.length; ++i) {
722 <                sum += segments[i].count;
723 <                mcsum += mc[i] = segments[i].modCount;
724 <            }
725 <            if (mcsum != 0) {
726 <                for (int i = 0; i < segments.length; ++i) {
727 <                    check += segments[i].count;
728 <                    if (mc[i] != segments[i].modCount) {
729 <                        check = -1; // force retry
730 <                        break;
731 <                    }
732 <                }
733 <            }
734 <            if (check == sum)
735 <                break;
736 <        }
737 <        if (check != sum) { // Resort to locking all segments
738 <            sum = 0;
739 <            for (int i = 0; i < segments.length; ++i)
740 <                segments[i].lock();
741 <            for (int i = 0; i < segments.length; ++i)
742 <                sum += segments[i].count;
743 <            for (int i = 0; i < segments.length; ++i)
744 <                segments[i].unlock();
745 <        }
746 <        if (sum > Integer.MAX_VALUE)
747 <            return Integer.MAX_VALUE;
748 <        else
749 <            return (int)sum;
879 >        long n = sumCount();
880 >        return ((n < 0L) ? 0 :
881 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
882 >                (int)n);
883 >    }
884 >
885 >    /**
886 >     * {@inheritDoc}
887 >     */
888 >    public boolean isEmpty() {
889 >        return sumCount() <= 0L; // ignore transient negative values
890      }
891  
892      /**
# Line 761 | Line 901 | public class ConcurrentHashMap<K, V> ext
901       * @throws NullPointerException if the specified key is null
902       */
903      public V get(Object key) {
904 <        int hash = hash(key.hashCode());
905 <        return segmentFor(hash).get(key, hash);
904 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
905 >        int h = spread(key.hashCode());
906 >        if ((tab = table) != null && (n = tab.length) > 0 &&
907 >            (e = tabAt(tab, (n - 1) & h)) != null) {
908 >            if ((eh = e.hash) == h) {
909 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
910 >                    return e.val;
911 >            }
912 >            else if (eh < 0)
913 >                return (p = e.find(h, key)) != null ? p.val : null;
914 >            while ((e = e.next) != null) {
915 >                if (e.hash == h &&
916 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
917 >                    return e.val;
918 >            }
919 >        }
920 >        return null;
921      }
922  
923      /**
924       * Tests if the specified object is a key in this table.
925       *
926 <     * @param  key   possible key
927 <     * @return <tt>true</tt> if and only if the specified object
926 >     * @param  key possible key
927 >     * @return {@code true} if and only if the specified object
928       *         is a key in this table, as determined by the
929 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
929 >     *         {@code equals} method; {@code false} otherwise
930       * @throws NullPointerException if the specified key is null
931       */
932      public boolean containsKey(Object key) {
933 <        int hash = hash(key.hashCode());
779 <        return segmentFor(hash).containsKey(key, hash);
933 >        return get(key) != null;
934      }
935  
936      /**
937 <     * Returns <tt>true</tt> if this map maps one or more keys to the
938 <     * specified value. Note: This method requires a full internal
939 <     * traversal of the hash table, and so is much slower than
786 <     * method <tt>containsKey</tt>.
937 >     * Returns {@code true} if this map maps one or more keys to the
938 >     * specified value. Note: This method may require a full traversal
939 >     * of the map, and is much slower than method {@code containsKey}.
940       *
941       * @param value value whose presence in this map is to be tested
942 <     * @return <tt>true</tt> if this map maps one or more keys to the
942 >     * @return {@code true} if this map maps one or more keys to the
943       *         specified value
944       * @throws NullPointerException if the specified value is null
945       */
946      public boolean containsValue(Object value) {
947          if (value == null)
948              throw new NullPointerException();
949 <
950 <        // See explanation of modCount use above
951 <
952 <        final Segment<K,V>[] segments = this.segments;
953 <        int[] mc = new int[segments.length];
954 <
802 <        // Try a few times without locking
803 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
804 <            int sum = 0;
805 <            int mcsum = 0;
806 <            for (int i = 0; i < segments.length; ++i) {
807 <                int c = segments[i].count;
808 <                mcsum += mc[i] = segments[i].modCount;
809 <                if (segments[i].containsValue(value))
949 >        Node<K,V>[] t;
950 >        if ((t = table) != null) {
951 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
952 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
953 >                V v;
954 >                if ((v = p.val) == value || (v != null && value.equals(v)))
955                      return true;
956              }
812            boolean cleanSweep = true;
813            if (mcsum != 0) {
814                for (int i = 0; i < segments.length; ++i) {
815                    int c = segments[i].count;
816                    if (mc[i] != segments[i].modCount) {
817                        cleanSweep = false;
818                        break;
819                    }
820                }
821            }
822            if (cleanSweep)
823                return false;
957          }
958 <        // Resort to locking all segments
826 <        for (int i = 0; i < segments.length; ++i)
827 <            segments[i].lock();
828 <        boolean found = false;
829 <        try {
830 <            for (int i = 0; i < segments.length; ++i) {
831 <                if (segments[i].containsValue(value)) {
832 <                    found = true;
833 <                    break;
834 <                }
835 <            }
836 <        } finally {
837 <            for (int i = 0; i < segments.length; ++i)
838 <                segments[i].unlock();
839 <        }
840 <        return found;
841 <    }
842 <
843 <    /**
844 <     * Legacy method testing if some key maps into the specified value
845 <     * in this table.  This method is identical in functionality to
846 <     * {@link #containsValue}, and exists solely to ensure
847 <     * full compatibility with class {@link java.util.Hashtable},
848 <     * which supported this method prior to introduction of the
849 <     * Java Collections framework.
850 <
851 <     * @param  value a value to search for
852 <     * @return <tt>true</tt> if and only if some key maps to the
853 <     *         <tt>value</tt> argument in this table as
854 <     *         determined by the <tt>equals</tt> method;
855 <     *         <tt>false</tt> otherwise
856 <     * @throws NullPointerException if the specified value is null
857 <     */
858 <    public boolean contains(Object value) {
859 <        return containsValue(value);
958 >        return false;
959      }
960  
961      /**
962       * Maps the specified key to the specified value in this table.
963       * Neither the key nor the value can be null.
964       *
965 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
965 >     * <p>The value can be retrieved by calling the {@code get} method
966       * with a key that is equal to the original key.
967       *
968       * @param key key with which the specified value is to be associated
969       * @param value value to be associated with the specified key
970 <     * @return the previous value associated with <tt>key</tt>, or
971 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
970 >     * @return the previous value associated with {@code key}, or
971 >     *         {@code null} if there was no mapping for {@code key}
972       * @throws NullPointerException if the specified key or value is null
973       */
974      public V put(K key, V value) {
975 <        if (value == null)
877 <            throw new NullPointerException();
878 <        int hash = hash(key.hashCode());
879 <        return segmentFor(hash).put(key, hash, value, false);
975 >        return putVal(key, value, false);
976      }
977  
978 <    /**
979 <     * {@inheritDoc}
980 <     *
981 <     * @return the previous value associated with the specified key,
982 <     *         or <tt>null</tt> if there was no mapping for the key
983 <     * @throws NullPointerException if the specified key or value is null
984 <     */
985 <    public V putIfAbsent(K key, V value) {
986 <        if (value == null)
987 <            throw new NullPointerException();
988 <        int hash = hash(key.hashCode());
989 <        return segmentFor(hash).put(key, hash, value, true);
978 >    /** Implementation for put and putIfAbsent */
979 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
980 >        if (key == null || value == null) throw new NullPointerException();
981 >        int hash = spread(key.hashCode());
982 >        int binCount = 0;
983 >        for (Node<K,V>[] tab = table;;) {
984 >            Node<K,V> f; int n, i, fh;
985 >            if (tab == null || (n = tab.length) == 0)
986 >                tab = initTable();
987 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
988 >                if (casTabAt(tab, i, null,
989 >                             new Node<K,V>(hash, key, value, null)))
990 >                    break;                   // no lock when adding to empty bin
991 >            }
992 >            else if ((fh = f.hash) == MOVED)
993 >                tab = helpTransfer(tab, f);
994 >            else {
995 >                V oldVal = null;
996 >                synchronized (f) {
997 >                    if (tabAt(tab, i) == f) {
998 >                        if (fh >= 0) {
999 >                            binCount = 1;
1000 >                            for (Node<K,V> e = f;; ++binCount) {
1001 >                                K ek;
1002 >                                if (e.hash == hash &&
1003 >                                    ((ek = e.key) == key ||
1004 >                                     (ek != null && key.equals(ek)))) {
1005 >                                    oldVal = e.val;
1006 >                                    if (!onlyIfAbsent)
1007 >                                        e.val = value;
1008 >                                    break;
1009 >                                }
1010 >                                Node<K,V> pred = e;
1011 >                                if ((e = e.next) == null) {
1012 >                                    pred.next = new Node<K,V>(hash, key,
1013 >                                                              value, null);
1014 >                                    break;
1015 >                                }
1016 >                            }
1017 >                        }
1018 >                        else if (f instanceof TreeBin) {
1019 >                            Node<K,V> p;
1020 >                            binCount = 2;
1021 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1022 >                                                           value)) != null) {
1023 >                                oldVal = p.val;
1024 >                                if (!onlyIfAbsent)
1025 >                                    p.val = value;
1026 >                            }
1027 >                        }
1028 >                        else if (f instanceof ReservationNode)
1029 >                            throw new IllegalStateException("Recursive update");
1030 >                    }
1031 >                }
1032 >                if (binCount != 0) {
1033 >                    if (binCount >= TREEIFY_THRESHOLD)
1034 >                        treeifyBin(tab, i);
1035 >                    if (oldVal != null)
1036 >                        return oldVal;
1037 >                    break;
1038 >                }
1039 >            }
1040 >        }
1041 >        addCount(1L, binCount);
1042 >        return null;
1043      }
1044  
1045      /**
# Line 901 | Line 1050 | public class ConcurrentHashMap<K, V> ext
1050       * @param m mappings to be stored in this map
1051       */
1052      public void putAll(Map<? extends K, ? extends V> m) {
1053 +        tryPresize(m.size());
1054          for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1055 <            put(e.getKey(), e.getValue());
1055 >            putVal(e.getKey(), e.getValue(), false);
1056      }
1057  
1058      /**
# Line 910 | Line 1060 | public class ConcurrentHashMap<K, V> ext
1060       * This method does nothing if the key is not in the map.
1061       *
1062       * @param  key the key that needs to be removed
1063 <     * @return the previous value associated with <tt>key</tt>, or
1064 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1063 >     * @return the previous value associated with {@code key}, or
1064 >     *         {@code null} if there was no mapping for {@code key}
1065       * @throws NullPointerException if the specified key is null
1066       */
1067      public V remove(Object key) {
1068 <        int hash = hash(key.hashCode());
1069 <        return segmentFor(hash).remove(key, hash, null);
1068 >        return replaceNode(key, null, null);
1069 >    }
1070 >
1071 >    /**
1072 >     * Implementation for the four public remove/replace methods:
1073 >     * Replaces node value with v, conditional upon match of cv if
1074 >     * non-null.  If resulting value is null, delete.
1075 >     */
1076 >    final V replaceNode(Object key, V value, Object cv) {
1077 >        int hash = spread(key.hashCode());
1078 >        for (Node<K,V>[] tab = table;;) {
1079 >            Node<K,V> f; int n, i, fh;
1080 >            if (tab == null || (n = tab.length) == 0 ||
1081 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1082 >                break;
1083 >            else if ((fh = f.hash) == MOVED)
1084 >                tab = helpTransfer(tab, f);
1085 >            else {
1086 >                V oldVal = null;
1087 >                boolean validated = false;
1088 >                synchronized (f) {
1089 >                    if (tabAt(tab, i) == f) {
1090 >                        if (fh >= 0) {
1091 >                            validated = true;
1092 >                            for (Node<K,V> e = f, pred = null;;) {
1093 >                                K ek;
1094 >                                if (e.hash == hash &&
1095 >                                    ((ek = e.key) == key ||
1096 >                                     (ek != null && key.equals(ek)))) {
1097 >                                    V ev = e.val;
1098 >                                    if (cv == null || cv == ev ||
1099 >                                        (ev != null && cv.equals(ev))) {
1100 >                                        oldVal = ev;
1101 >                                        if (value != null)
1102 >                                            e.val = value;
1103 >                                        else if (pred != null)
1104 >                                            pred.next = e.next;
1105 >                                        else
1106 >                                            setTabAt(tab, i, e.next);
1107 >                                    }
1108 >                                    break;
1109 >                                }
1110 >                                pred = e;
1111 >                                if ((e = e.next) == null)
1112 >                                    break;
1113 >                            }
1114 >                        }
1115 >                        else if (f instanceof TreeBin) {
1116 >                            validated = true;
1117 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1118 >                            TreeNode<K,V> r, p;
1119 >                            if ((r = t.root) != null &&
1120 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1121 >                                V pv = p.val;
1122 >                                if (cv == null || cv == pv ||
1123 >                                    (pv != null && cv.equals(pv))) {
1124 >                                    oldVal = pv;
1125 >                                    if (value != null)
1126 >                                        p.val = value;
1127 >                                    else if (t.removeTreeNode(p))
1128 >                                        setTabAt(tab, i, untreeify(t.first));
1129 >                                }
1130 >                            }
1131 >                        }
1132 >                        else if (f instanceof ReservationNode)
1133 >                            throw new IllegalStateException("Recursive update");
1134 >                    }
1135 >                }
1136 >                if (validated) {
1137 >                    if (oldVal != null) {
1138 >                        if (value == null)
1139 >                            addCount(-1L, -1);
1140 >                        return oldVal;
1141 >                    }
1142 >                    break;
1143 >                }
1144 >            }
1145 >        }
1146 >        return null;
1147 >    }
1148 >
1149 >    /**
1150 >     * Removes all of the mappings from this map.
1151 >     */
1152 >    public void clear() {
1153 >        long delta = 0L; // negative number of deletions
1154 >        int i = 0;
1155 >        Node<K,V>[] tab = table;
1156 >        while (tab != null && i < tab.length) {
1157 >            int fh;
1158 >            Node<K,V> f = tabAt(tab, i);
1159 >            if (f == null)
1160 >                ++i;
1161 >            else if ((fh = f.hash) == MOVED) {
1162 >                tab = helpTransfer(tab, f);
1163 >                i = 0; // restart
1164 >            }
1165 >            else {
1166 >                synchronized (f) {
1167 >                    if (tabAt(tab, i) == f) {
1168 >                        Node<K,V> p = (fh >= 0 ? f :
1169 >                                       (f instanceof TreeBin) ?
1170 >                                       ((TreeBin<K,V>)f).first : null);
1171 >                        while (p != null) {
1172 >                            --delta;
1173 >                            p = p.next;
1174 >                        }
1175 >                        setTabAt(tab, i++, null);
1176 >                    }
1177 >                }
1178 >            }
1179 >        }
1180 >        if (delta != 0L)
1181 >            addCount(delta, -1);
1182 >    }
1183 >
1184 >    /**
1185 >     * Returns a {@link Set} view of the keys contained in this map.
1186 >     * The set is backed by the map, so changes to the map are
1187 >     * reflected in the set, and vice-versa. The set supports element
1188 >     * removal, which removes the corresponding mapping from this map,
1189 >     * via the {@code Iterator.remove}, {@code Set.remove},
1190 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1191 >     * operations.  It does not support the {@code add} or
1192 >     * {@code addAll} operations.
1193 >     *
1194 >     * <p>The view's iterators and spliterators are
1195 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1196 >     *
1197 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1198 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1199 >     *
1200 >     * @return the set view
1201 >     */
1202 >    public KeySetView<K,V> keySet() {
1203 >        KeySetView<K,V> ks;
1204 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1205 >    }
1206 >
1207 >    /**
1208 >     * Returns a {@link Collection} view of the values contained in this map.
1209 >     * The collection is backed by the map, so changes to the map are
1210 >     * reflected in the collection, and vice-versa.  The collection
1211 >     * supports element removal, which removes the corresponding
1212 >     * mapping from this map, via the {@code Iterator.remove},
1213 >     * {@code Collection.remove}, {@code removeAll},
1214 >     * {@code retainAll}, and {@code clear} operations.  It does not
1215 >     * support the {@code add} or {@code addAll} operations.
1216 >     *
1217 >     * <p>The view's iterators and spliterators are
1218 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1219 >     *
1220 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1221 >     * and {@link Spliterator#NONNULL}.
1222 >     *
1223 >     * @return the collection view
1224 >     */
1225 >    public Collection<V> values() {
1226 >        ValuesView<K,V> vs;
1227 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1228 >    }
1229 >
1230 >    /**
1231 >     * Returns a {@link Set} view of the mappings contained in this map.
1232 >     * The set is backed by the map, so changes to the map are
1233 >     * reflected in the set, and vice-versa.  The set supports element
1234 >     * removal, which removes the corresponding mapping from the map,
1235 >     * via the {@code Iterator.remove}, {@code Set.remove},
1236 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1237 >     * operations.
1238 >     *
1239 >     * <p>The view's iterators and spliterators are
1240 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1241 >     *
1242 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1243 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1244 >     *
1245 >     * @return the set view
1246 >     */
1247 >    public Set<Map.Entry<K,V>> entrySet() {
1248 >        EntrySetView<K,V> es;
1249 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1250 >    }
1251 >
1252 >    /**
1253 >     * Returns the hash code value for this {@link Map}, i.e.,
1254 >     * the sum of, for each key-value pair in the map,
1255 >     * {@code key.hashCode() ^ value.hashCode()}.
1256 >     *
1257 >     * @return the hash code value for this map
1258 >     */
1259 >    public int hashCode() {
1260 >        int h = 0;
1261 >        Node<K,V>[] t;
1262 >        if ((t = table) != null) {
1263 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1264 >            for (Node<K,V> p; (p = it.advance()) != null; )
1265 >                h += p.key.hashCode() ^ p.val.hashCode();
1266 >        }
1267 >        return h;
1268 >    }
1269 >
1270 >    /**
1271 >     * Returns a string representation of this map.  The string
1272 >     * representation consists of a list of key-value mappings (in no
1273 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1274 >     * mappings are separated by the characters {@code ", "} (comma
1275 >     * and space).  Each key-value mapping is rendered as the key
1276 >     * followed by an equals sign ("{@code =}") followed by the
1277 >     * associated value.
1278 >     *
1279 >     * @return a string representation of this map
1280 >     */
1281 >    public String toString() {
1282 >        Node<K,V>[] t;
1283 >        int f = (t = table) == null ? 0 : t.length;
1284 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1285 >        StringBuilder sb = new StringBuilder();
1286 >        sb.append('{');
1287 >        Node<K,V> p;
1288 >        if ((p = it.advance()) != null) {
1289 >            for (;;) {
1290 >                K k = p.key;
1291 >                V v = p.val;
1292 >                sb.append(k == this ? "(this Map)" : k);
1293 >                sb.append('=');
1294 >                sb.append(v == this ? "(this Map)" : v);
1295 >                if ((p = it.advance()) == null)
1296 >                    break;
1297 >                sb.append(',').append(' ');
1298 >            }
1299 >        }
1300 >        return sb.append('}').toString();
1301 >    }
1302 >
1303 >    /**
1304 >     * Compares the specified object with this map for equality.
1305 >     * Returns {@code true} if the given object is a map with the same
1306 >     * mappings as this map.  This operation may return misleading
1307 >     * results if either map is concurrently modified during execution
1308 >     * of this method.
1309 >     *
1310 >     * @param o object to be compared for equality with this map
1311 >     * @return {@code true} if the specified object is equal to this map
1312 >     */
1313 >    public boolean equals(Object o) {
1314 >        if (o != this) {
1315 >            if (!(o instanceof Map))
1316 >                return false;
1317 >            Map<?,?> m = (Map<?,?>) o;
1318 >            Node<K,V>[] t;
1319 >            int f = (t = table) == null ? 0 : t.length;
1320 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1321 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1322 >                V val = p.val;
1323 >                Object v = m.get(p.key);
1324 >                if (v == null || (v != val && !v.equals(val)))
1325 >                    return false;
1326 >            }
1327 >            for (Map.Entry<?,?> e : m.entrySet()) {
1328 >                Object mk, mv, v;
1329 >                if ((mk = e.getKey()) == null ||
1330 >                    (mv = e.getValue()) == null ||
1331 >                    (v = get(mk)) == null ||
1332 >                    (mv != v && !mv.equals(v)))
1333 >                    return false;
1334 >            }
1335 >        }
1336 >        return true;
1337 >    }
1338 >
1339 >    /**
1340 >     * Stripped-down version of helper class used in previous version,
1341 >     * declared for the sake of serialization compatibility
1342 >     */
1343 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1344 >        private static final long serialVersionUID = 2249069246763182397L;
1345 >        final float loadFactor;
1346 >        Segment(float lf) { this.loadFactor = lf; }
1347 >    }
1348 >
1349 >    /**
1350 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1351 >     * stream (i.e., serializes it).
1352 >     * @param s the stream
1353 >     * @throws java.io.IOException if an I/O error occurs
1354 >     * @serialData
1355 >     * the key (Object) and value (Object)
1356 >     * for each key-value mapping, followed by a null pair.
1357 >     * The key-value mappings are emitted in no particular order.
1358 >     */
1359 >    private void writeObject(java.io.ObjectOutputStream s)
1360 >        throws java.io.IOException {
1361 >        // For serialization compatibility
1362 >        // Emulate segment calculation from previous version of this class
1363 >        int sshift = 0;
1364 >        int ssize = 1;
1365 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1366 >            ++sshift;
1367 >            ssize <<= 1;
1368 >        }
1369 >        int segmentShift = 32 - sshift;
1370 >        int segmentMask = ssize - 1;
1371 >        @SuppressWarnings("unchecked")
1372 >        Segment<K,V>[] segments = (Segment<K,V>[])
1373 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1374 >        for (int i = 0; i < segments.length; ++i)
1375 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1376 >        s.putFields().put("segments", segments);
1377 >        s.putFields().put("segmentShift", segmentShift);
1378 >        s.putFields().put("segmentMask", segmentMask);
1379 >        s.writeFields();
1380 >
1381 >        Node<K,V>[] t;
1382 >        if ((t = table) != null) {
1383 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1384 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1385 >                s.writeObject(p.key);
1386 >                s.writeObject(p.val);
1387 >            }
1388 >        }
1389 >        s.writeObject(null);
1390 >        s.writeObject(null);
1391 >        segments = null; // throw away
1392 >    }
1393 >
1394 >    /**
1395 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1396 >     * @param s the stream
1397 >     * @throws ClassNotFoundException if the class of a serialized object
1398 >     *         could not be found
1399 >     * @throws java.io.IOException if an I/O error occurs
1400 >     */
1401 >    private void readObject(java.io.ObjectInputStream s)
1402 >        throws java.io.IOException, ClassNotFoundException {
1403 >        /*
1404 >         * To improve performance in typical cases, we create nodes
1405 >         * while reading, then place in table once size is known.
1406 >         * However, we must also validate uniqueness and deal with
1407 >         * overpopulated bins while doing so, which requires
1408 >         * specialized versions of putVal mechanics.
1409 >         */
1410 >        sizeCtl = -1; // force exclusion for table construction
1411 >        s.defaultReadObject();
1412 >        long size = 0L;
1413 >        Node<K,V> p = null;
1414 >        for (;;) {
1415 >            @SuppressWarnings("unchecked")
1416 >            K k = (K) s.readObject();
1417 >            @SuppressWarnings("unchecked")
1418 >            V v = (V) s.readObject();
1419 >            if (k != null && v != null) {
1420 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1421 >                ++size;
1422 >            }
1423 >            else
1424 >                break;
1425 >        }
1426 >        if (size == 0L)
1427 >            sizeCtl = 0;
1428 >        else {
1429 >            int n;
1430 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1431 >                n = MAXIMUM_CAPACITY;
1432 >            else {
1433 >                int sz = (int)size;
1434 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1435 >            }
1436 >            @SuppressWarnings("unchecked")
1437 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1438 >            int mask = n - 1;
1439 >            long added = 0L;
1440 >            while (p != null) {
1441 >                boolean insertAtFront;
1442 >                Node<K,V> next = p.next, first;
1443 >                int h = p.hash, j = h & mask;
1444 >                if ((first = tabAt(tab, j)) == null)
1445 >                    insertAtFront = true;
1446 >                else {
1447 >                    K k = p.key;
1448 >                    if (first.hash < 0) {
1449 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1450 >                        if (t.putTreeVal(h, k, p.val) == null)
1451 >                            ++added;
1452 >                        insertAtFront = false;
1453 >                    }
1454 >                    else {
1455 >                        int binCount = 0;
1456 >                        insertAtFront = true;
1457 >                        Node<K,V> q; K qk;
1458 >                        for (q = first; q != null; q = q.next) {
1459 >                            if (q.hash == h &&
1460 >                                ((qk = q.key) == k ||
1461 >                                 (qk != null && k.equals(qk)))) {
1462 >                                insertAtFront = false;
1463 >                                break;
1464 >                            }
1465 >                            ++binCount;
1466 >                        }
1467 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1468 >                            insertAtFront = false;
1469 >                            ++added;
1470 >                            p.next = first;
1471 >                            TreeNode<K,V> hd = null, tl = null;
1472 >                            for (q = p; q != null; q = q.next) {
1473 >                                TreeNode<K,V> t = new TreeNode<K,V>
1474 >                                    (q.hash, q.key, q.val, null, null);
1475 >                                if ((t.prev = tl) == null)
1476 >                                    hd = t;
1477 >                                else
1478 >                                    tl.next = t;
1479 >                                tl = t;
1480 >                            }
1481 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1482 >                        }
1483 >                    }
1484 >                }
1485 >                if (insertAtFront) {
1486 >                    ++added;
1487 >                    p.next = first;
1488 >                    setTabAt(tab, j, p);
1489 >                }
1490 >                p = next;
1491 >            }
1492 >            table = tab;
1493 >            sizeCtl = n - (n >>> 2);
1494 >            baseCount = added;
1495 >        }
1496 >    }
1497 >
1498 >    // ConcurrentMap methods
1499 >
1500 >    /**
1501 >     * {@inheritDoc}
1502 >     *
1503 >     * @return the previous value associated with the specified key,
1504 >     *         or {@code null} if there was no mapping for the key
1505 >     * @throws NullPointerException if the specified key or value is null
1506 >     */
1507 >    public V putIfAbsent(K key, V value) {
1508 >        return putVal(key, value, true);
1509      }
1510  
1511      /**
# Line 925 | Line 1514 | public class ConcurrentHashMap<K, V> ext
1514       * @throws NullPointerException if the specified key is null
1515       */
1516      public boolean remove(Object key, Object value) {
1517 <        int hash = hash(key.hashCode());
1518 <        if (value == null)
1519 <            return false;
931 <        return segmentFor(hash).remove(key, hash, value) != null;
1517 >        if (key == null)
1518 >            throw new NullPointerException();
1519 >        return value != null && replaceNode(key, null, value) != null;
1520      }
1521  
1522      /**
# Line 937 | Line 1525 | public class ConcurrentHashMap<K, V> ext
1525       * @throws NullPointerException if any of the arguments are null
1526       */
1527      public boolean replace(K key, V oldValue, V newValue) {
1528 <        if (oldValue == null || newValue == null)
1528 >        if (key == null || oldValue == null || newValue == null)
1529              throw new NullPointerException();
1530 <        int hash = hash(key.hashCode());
943 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
1530 >        return replaceNode(key, newValue, oldValue) != null;
1531      }
1532  
1533      /**
1534       * {@inheritDoc}
1535       *
1536       * @return the previous value associated with the specified key,
1537 <     *         or <tt>null</tt> if there was no mapping for the key
1537 >     *         or {@code null} if there was no mapping for the key
1538       * @throws NullPointerException if the specified key or value is null
1539       */
1540      public V replace(K key, V value) {
1541 <        if (value == null)
1541 >        if (key == null || value == null)
1542              throw new NullPointerException();
1543 <        int hash = hash(key.hashCode());
957 <        return segmentFor(hash).replace(key, hash, value);
1543 >        return replaceNode(key, value, null);
1544      }
1545  
1546 +    // Overrides of JDK8+ Map extension method defaults
1547 +
1548      /**
1549 <     * Removes all of the mappings from this map.
1549 >     * Returns the value to which the specified key is mapped, or the
1550 >     * given default value if this map contains no mapping for the
1551 >     * key.
1552 >     *
1553 >     * @param key the key whose associated value is to be returned
1554 >     * @param defaultValue the value to return if this map contains
1555 >     * no mapping for the given key
1556 >     * @return the mapping for the key, if present; else the default value
1557 >     * @throws NullPointerException if the specified key is null
1558       */
1559 <    public void clear() {
1560 <        for (int i = 0; i < segments.length; ++i)
1561 <            segments[i].clear();
1559 >    public V getOrDefault(Object key, V defaultValue) {
1560 >        V v;
1561 >        return (v = get(key)) == null ? defaultValue : v;
1562 >    }
1563 >
1564 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1565 >        if (action == null) throw new NullPointerException();
1566 >        Node<K,V>[] t;
1567 >        if ((t = table) != null) {
1568 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1569 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1570 >                action.accept(p.key, p.val);
1571 >            }
1572 >        }
1573 >    }
1574 >
1575 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1576 >        if (function == null) throw new NullPointerException();
1577 >        Node<K,V>[] t;
1578 >        if ((t = table) != null) {
1579 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1580 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1581 >                V oldValue = p.val;
1582 >                for (K key = p.key;;) {
1583 >                    V newValue = function.apply(key, oldValue);
1584 >                    if (newValue == null)
1585 >                        throw new NullPointerException();
1586 >                    if (replaceNode(key, newValue, oldValue) != null ||
1587 >                        (oldValue = get(key)) == null)
1588 >                        break;
1589 >                }
1590 >            }
1591 >        }
1592      }
1593  
1594      /**
1595 <     * Returns a {@link Set} view of the keys contained in this map.
1596 <     * The set is backed by the map, so changes to the map are
1597 <     * reflected in the set, and vice-versa.  The set supports element
1598 <     * removal, which removes the corresponding mapping from this map,
1599 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1600 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1601 <     * operations.  It does not support the <tt>add</tt> or
1602 <     * <tt>addAll</tt> operations.
1603 <     *
1604 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1605 <     * that will never throw {@link ConcurrentModificationException},
1606 <     * and guarantees to traverse elements as they existed upon
1607 <     * construction of the iterator, and may (but is not guaranteed to)
1608 <     * reflect any modifications subsequent to construction.
1609 <     */
1610 <    public Set<K> keySet() {
1611 <        Set<K> ks = keySet;
1612 <        return (ks != null) ? ks : (keySet = new KeySet());
1595 >     * If the specified key is not already associated with a value,
1596 >     * attempts to compute its value using the given mapping function
1597 >     * and enters it into this map unless {@code null}.  The entire
1598 >     * method invocation is performed atomically, so the function is
1599 >     * applied at most once per key.  Some attempted update operations
1600 >     * on this map by other threads may be blocked while computation
1601 >     * is in progress, so the computation should be short and simple,
1602 >     * and must not attempt to update any other mappings of this map.
1603 >     *
1604 >     * @param key key with which the specified value is to be associated
1605 >     * @param mappingFunction the function to compute a value
1606 >     * @return the current (existing or computed) value associated with
1607 >     *         the specified key, or null if the computed value is null
1608 >     * @throws NullPointerException if the specified key or mappingFunction
1609 >     *         is null
1610 >     * @throws IllegalStateException if the computation detectably
1611 >     *         attempts a recursive update to this map that would
1612 >     *         otherwise never complete
1613 >     * @throws RuntimeException or Error if the mappingFunction does so,
1614 >     *         in which case the mapping is left unestablished
1615 >     */
1616 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1617 >        if (key == null || mappingFunction == null)
1618 >            throw new NullPointerException();
1619 >        int h = spread(key.hashCode());
1620 >        V val = null;
1621 >        int binCount = 0;
1622 >        for (Node<K,V>[] tab = table;;) {
1623 >            Node<K,V> f; int n, i, fh;
1624 >            if (tab == null || (n = tab.length) == 0)
1625 >                tab = initTable();
1626 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1627 >                Node<K,V> r = new ReservationNode<K,V>();
1628 >                synchronized (r) {
1629 >                    if (casTabAt(tab, i, null, r)) {
1630 >                        binCount = 1;
1631 >                        Node<K,V> node = null;
1632 >                        try {
1633 >                            if ((val = mappingFunction.apply(key)) != null)
1634 >                                node = new Node<K,V>(h, key, val, null);
1635 >                        } finally {
1636 >                            setTabAt(tab, i, node);
1637 >                        }
1638 >                    }
1639 >                }
1640 >                if (binCount != 0)
1641 >                    break;
1642 >            }
1643 >            else if ((fh = f.hash) == MOVED)
1644 >                tab = helpTransfer(tab, f);
1645 >            else {
1646 >                boolean added = false;
1647 >                synchronized (f) {
1648 >                    if (tabAt(tab, i) == f) {
1649 >                        if (fh >= 0) {
1650 >                            binCount = 1;
1651 >                            for (Node<K,V> e = f;; ++binCount) {
1652 >                                K ek;
1653 >                                if (e.hash == h &&
1654 >                                    ((ek = e.key) == key ||
1655 >                                     (ek != null && key.equals(ek)))) {
1656 >                                    val = e.val;
1657 >                                    break;
1658 >                                }
1659 >                                Node<K,V> pred = e;
1660 >                                if ((e = e.next) == null) {
1661 >                                    if ((val = mappingFunction.apply(key)) != null) {
1662 >                                        if (pred.next != null)
1663 >                                            throw new IllegalStateException("Recursive update");
1664 >                                        added = true;
1665 >                                        pred.next = new Node<K,V>(h, key, val, null);
1666 >                                    }
1667 >                                    break;
1668 >                                }
1669 >                            }
1670 >                        }
1671 >                        else if (f instanceof TreeBin) {
1672 >                            binCount = 2;
1673 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1674 >                            TreeNode<K,V> r, p;
1675 >                            if ((r = t.root) != null &&
1676 >                                (p = r.findTreeNode(h, key, null)) != null)
1677 >                                val = p.val;
1678 >                            else if ((val = mappingFunction.apply(key)) != null) {
1679 >                                added = true;
1680 >                                t.putTreeVal(h, key, val);
1681 >                            }
1682 >                        }
1683 >                        else if (f instanceof ReservationNode)
1684 >                            throw new IllegalStateException("Recursive update");
1685 >                    }
1686 >                }
1687 >                if (binCount != 0) {
1688 >                    if (binCount >= TREEIFY_THRESHOLD)
1689 >                        treeifyBin(tab, i);
1690 >                    if (!added)
1691 >                        return val;
1692 >                    break;
1693 >                }
1694 >            }
1695 >        }
1696 >        if (val != null)
1697 >            addCount(1L, binCount);
1698 >        return val;
1699      }
1700  
1701      /**
1702 <     * Returns a {@link Collection} view of the values contained in this map.
1703 <     * The collection is backed by the map, so changes to the map are
1704 <     * reflected in the collection, and vice-versa.  The collection
1705 <     * supports element removal, which removes the corresponding
1706 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1707 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1708 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1709 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1710 <     *
1711 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1712 <     * that will never throw {@link ConcurrentModificationException},
1713 <     * and guarantees to traverse elements as they existed upon
1714 <     * construction of the iterator, and may (but is not guaranteed to)
1715 <     * reflect any modifications subsequent to construction.
1702 >     * If the value for the specified key is present, attempts to
1703 >     * compute a new mapping given the key and its current mapped
1704 >     * value.  The entire method invocation is performed atomically.
1705 >     * Some attempted update operations on this map by other threads
1706 >     * may be blocked while computation is in progress, so the
1707 >     * computation should be short and simple, and must not attempt to
1708 >     * update any other mappings of this map.
1709 >     *
1710 >     * @param key key with which a value may be associated
1711 >     * @param remappingFunction the function to compute a value
1712 >     * @return the new value associated with the specified key, or null if none
1713 >     * @throws NullPointerException if the specified key or remappingFunction
1714 >     *         is null
1715 >     * @throws IllegalStateException if the computation detectably
1716 >     *         attempts a recursive update to this map that would
1717 >     *         otherwise never complete
1718 >     * @throws RuntimeException or Error if the remappingFunction does so,
1719 >     *         in which case the mapping is unchanged
1720       */
1721 <    public Collection<V> values() {
1722 <        Collection<V> vs = values;
1723 <        return (vs != null) ? vs : (values = new Values());
1721 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1722 >        if (key == null || remappingFunction == null)
1723 >            throw new NullPointerException();
1724 >        int h = spread(key.hashCode());
1725 >        V val = null;
1726 >        int delta = 0;
1727 >        int binCount = 0;
1728 >        for (Node<K,V>[] tab = table;;) {
1729 >            Node<K,V> f; int n, i, fh;
1730 >            if (tab == null || (n = tab.length) == 0)
1731 >                tab = initTable();
1732 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1733 >                break;
1734 >            else if ((fh = f.hash) == MOVED)
1735 >                tab = helpTransfer(tab, f);
1736 >            else {
1737 >                synchronized (f) {
1738 >                    if (tabAt(tab, i) == f) {
1739 >                        if (fh >= 0) {
1740 >                            binCount = 1;
1741 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1742 >                                K ek;
1743 >                                if (e.hash == h &&
1744 >                                    ((ek = e.key) == key ||
1745 >                                     (ek != null && key.equals(ek)))) {
1746 >                                    val = remappingFunction.apply(key, e.val);
1747 >                                    if (val != null)
1748 >                                        e.val = val;
1749 >                                    else {
1750 >                                        delta = -1;
1751 >                                        Node<K,V> en = e.next;
1752 >                                        if (pred != null)
1753 >                                            pred.next = en;
1754 >                                        else
1755 >                                            setTabAt(tab, i, en);
1756 >                                    }
1757 >                                    break;
1758 >                                }
1759 >                                pred = e;
1760 >                                if ((e = e.next) == null)
1761 >                                    break;
1762 >                            }
1763 >                        }
1764 >                        else if (f instanceof TreeBin) {
1765 >                            binCount = 2;
1766 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1767 >                            TreeNode<K,V> r, p;
1768 >                            if ((r = t.root) != null &&
1769 >                                (p = r.findTreeNode(h, key, null)) != null) {
1770 >                                val = remappingFunction.apply(key, p.val);
1771 >                                if (val != null)
1772 >                                    p.val = val;
1773 >                                else {
1774 >                                    delta = -1;
1775 >                                    if (t.removeTreeNode(p))
1776 >                                        setTabAt(tab, i, untreeify(t.first));
1777 >                                }
1778 >                            }
1779 >                        }
1780 >                        else if (f instanceof ReservationNode)
1781 >                            throw new IllegalStateException("Recursive update");
1782 >                    }
1783 >                }
1784 >                if (binCount != 0)
1785 >                    break;
1786 >            }
1787 >        }
1788 >        if (delta != 0)
1789 >            addCount((long)delta, binCount);
1790 >        return val;
1791      }
1792  
1793      /**
1794 <     * Returns a {@link Set} view of the mappings contained in this map.
1795 <     * The set is backed by the map, so changes to the map are
1796 <     * reflected in the set, and vice-versa.  The set supports element
1797 <     * removal, which removes the corresponding mapping from the map,
1798 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1799 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1800 <     * operations.  It does not support the <tt>add</tt> or
1801 <     * <tt>addAll</tt> operations.
1802 <     *
1803 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1804 <     * that will never throw {@link ConcurrentModificationException},
1805 <     * and guarantees to traverse elements as they existed upon
1806 <     * construction of the iterator, and may (but is not guaranteed to)
1807 <     * reflect any modifications subsequent to construction.
1794 >     * Attempts to compute a mapping for the specified key and its
1795 >     * current mapped value (or {@code null} if there is no current
1796 >     * mapping). The entire method invocation is performed atomically.
1797 >     * Some attempted update operations on this map by other threads
1798 >     * may be blocked while computation is in progress, so the
1799 >     * computation should be short and simple, and must not attempt to
1800 >     * update any other mappings of this Map.
1801 >     *
1802 >     * @param key key with which the specified value is to be associated
1803 >     * @param remappingFunction the function to compute a value
1804 >     * @return the new value associated with the specified key, or null if none
1805 >     * @throws NullPointerException if the specified key or remappingFunction
1806 >     *         is null
1807 >     * @throws IllegalStateException if the computation detectably
1808 >     *         attempts a recursive update to this map that would
1809 >     *         otherwise never complete
1810 >     * @throws RuntimeException or Error if the remappingFunction does so,
1811 >     *         in which case the mapping is unchanged
1812 >     */
1813 >    public V compute(K key,
1814 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1815 >        if (key == null || remappingFunction == null)
1816 >            throw new NullPointerException();
1817 >        int h = spread(key.hashCode());
1818 >        V val = null;
1819 >        int delta = 0;
1820 >        int binCount = 0;
1821 >        for (Node<K,V>[] tab = table;;) {
1822 >            Node<K,V> f; int n, i, fh;
1823 >            if (tab == null || (n = tab.length) == 0)
1824 >                tab = initTable();
1825 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1826 >                Node<K,V> r = new ReservationNode<K,V>();
1827 >                synchronized (r) {
1828 >                    if (casTabAt(tab, i, null, r)) {
1829 >                        binCount = 1;
1830 >                        Node<K,V> node = null;
1831 >                        try {
1832 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1833 >                                delta = 1;
1834 >                                node = new Node<K,V>(h, key, val, null);
1835 >                            }
1836 >                        } finally {
1837 >                            setTabAt(tab, i, node);
1838 >                        }
1839 >                    }
1840 >                }
1841 >                if (binCount != 0)
1842 >                    break;
1843 >            }
1844 >            else if ((fh = f.hash) == MOVED)
1845 >                tab = helpTransfer(tab, f);
1846 >            else {
1847 >                synchronized (f) {
1848 >                    if (tabAt(tab, i) == f) {
1849 >                        if (fh >= 0) {
1850 >                            binCount = 1;
1851 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1852 >                                K ek;
1853 >                                if (e.hash == h &&
1854 >                                    ((ek = e.key) == key ||
1855 >                                     (ek != null && key.equals(ek)))) {
1856 >                                    val = remappingFunction.apply(key, e.val);
1857 >                                    if (val != null)
1858 >                                        e.val = val;
1859 >                                    else {
1860 >                                        delta = -1;
1861 >                                        Node<K,V> en = e.next;
1862 >                                        if (pred != null)
1863 >                                            pred.next = en;
1864 >                                        else
1865 >                                            setTabAt(tab, i, en);
1866 >                                    }
1867 >                                    break;
1868 >                                }
1869 >                                pred = e;
1870 >                                if ((e = e.next) == null) {
1871 >                                    val = remappingFunction.apply(key, null);
1872 >                                    if (val != null) {
1873 >                                        if (pred.next != null)
1874 >                                            throw new IllegalStateException("Recursive update");
1875 >                                        delta = 1;
1876 >                                        pred.next =
1877 >                                            new Node<K,V>(h, key, val, null);
1878 >                                    }
1879 >                                    break;
1880 >                                }
1881 >                            }
1882 >                        }
1883 >                        else if (f instanceof TreeBin) {
1884 >                            binCount = 1;
1885 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1886 >                            TreeNode<K,V> r, p;
1887 >                            if ((r = t.root) != null)
1888 >                                p = r.findTreeNode(h, key, null);
1889 >                            else
1890 >                                p = null;
1891 >                            V pv = (p == null) ? null : p.val;
1892 >                            val = remappingFunction.apply(key, pv);
1893 >                            if (val != null) {
1894 >                                if (p != null)
1895 >                                    p.val = val;
1896 >                                else {
1897 >                                    delta = 1;
1898 >                                    t.putTreeVal(h, key, val);
1899 >                                }
1900 >                            }
1901 >                            else if (p != null) {
1902 >                                delta = -1;
1903 >                                if (t.removeTreeNode(p))
1904 >                                    setTabAt(tab, i, untreeify(t.first));
1905 >                            }
1906 >                        }
1907 >                        else if (f instanceof ReservationNode)
1908 >                            throw new IllegalStateException("Recursive update");
1909 >                    }
1910 >                }
1911 >                if (binCount != 0) {
1912 >                    if (binCount >= TREEIFY_THRESHOLD)
1913 >                        treeifyBin(tab, i);
1914 >                    break;
1915 >                }
1916 >            }
1917 >        }
1918 >        if (delta != 0)
1919 >            addCount((long)delta, binCount);
1920 >        return val;
1921 >    }
1922 >
1923 >    /**
1924 >     * If the specified key is not already associated with a
1925 >     * (non-null) value, associates it with the given value.
1926 >     * Otherwise, replaces the value with the results of the given
1927 >     * remapping function, or removes if {@code null}. The entire
1928 >     * method invocation is performed atomically.  Some attempted
1929 >     * update operations on this map by other threads may be blocked
1930 >     * while computation is in progress, so the computation should be
1931 >     * short and simple, and must not attempt to update any other
1932 >     * mappings of this Map.
1933 >     *
1934 >     * @param key key with which the specified value is to be associated
1935 >     * @param value the value to use if absent
1936 >     * @param remappingFunction the function to recompute a value if present
1937 >     * @return the new value associated with the specified key, or null if none
1938 >     * @throws NullPointerException if the specified key or the
1939 >     *         remappingFunction is null
1940 >     * @throws RuntimeException or Error if the remappingFunction does so,
1941 >     *         in which case the mapping is unchanged
1942       */
1943 <    public Set<Map.Entry<K,V>> entrySet() {
1944 <        Set<Map.Entry<K,V>> es = entrySet;
1945 <        return (es != null) ? es : (entrySet = new EntrySet());
1943 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1944 >        if (key == null || value == null || remappingFunction == null)
1945 >            throw new NullPointerException();
1946 >        int h = spread(key.hashCode());
1947 >        V val = null;
1948 >        int delta = 0;
1949 >        int binCount = 0;
1950 >        for (Node<K,V>[] tab = table;;) {
1951 >            Node<K,V> f; int n, i, fh;
1952 >            if (tab == null || (n = tab.length) == 0)
1953 >                tab = initTable();
1954 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1955 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1956 >                    delta = 1;
1957 >                    val = value;
1958 >                    break;
1959 >                }
1960 >            }
1961 >            else if ((fh = f.hash) == MOVED)
1962 >                tab = helpTransfer(tab, f);
1963 >            else {
1964 >                synchronized (f) {
1965 >                    if (tabAt(tab, i) == f) {
1966 >                        if (fh >= 0) {
1967 >                            binCount = 1;
1968 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1969 >                                K ek;
1970 >                                if (e.hash == h &&
1971 >                                    ((ek = e.key) == key ||
1972 >                                     (ek != null && key.equals(ek)))) {
1973 >                                    val = remappingFunction.apply(e.val, value);
1974 >                                    if (val != null)
1975 >                                        e.val = val;
1976 >                                    else {
1977 >                                        delta = -1;
1978 >                                        Node<K,V> en = e.next;
1979 >                                        if (pred != null)
1980 >                                            pred.next = en;
1981 >                                        else
1982 >                                            setTabAt(tab, i, en);
1983 >                                    }
1984 >                                    break;
1985 >                                }
1986 >                                pred = e;
1987 >                                if ((e = e.next) == null) {
1988 >                                    delta = 1;
1989 >                                    val = value;
1990 >                                    pred.next =
1991 >                                        new Node<K,V>(h, key, val, null);
1992 >                                    break;
1993 >                                }
1994 >                            }
1995 >                        }
1996 >                        else if (f instanceof TreeBin) {
1997 >                            binCount = 2;
1998 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1999 >                            TreeNode<K,V> r = t.root;
2000 >                            TreeNode<K,V> p = (r == null) ? null :
2001 >                                r.findTreeNode(h, key, null);
2002 >                            val = (p == null) ? value :
2003 >                                remappingFunction.apply(p.val, value);
2004 >                            if (val != null) {
2005 >                                if (p != null)
2006 >                                    p.val = val;
2007 >                                else {
2008 >                                    delta = 1;
2009 >                                    t.putTreeVal(h, key, val);
2010 >                                }
2011 >                            }
2012 >                            else if (p != null) {
2013 >                                delta = -1;
2014 >                                if (t.removeTreeNode(p))
2015 >                                    setTabAt(tab, i, untreeify(t.first));
2016 >                            }
2017 >                        }
2018 >                        else if (f instanceof ReservationNode)
2019 >                            throw new IllegalStateException("Recursive update");
2020 >                    }
2021 >                }
2022 >                if (binCount != 0) {
2023 >                    if (binCount >= TREEIFY_THRESHOLD)
2024 >                        treeifyBin(tab, i);
2025 >                    break;
2026 >                }
2027 >            }
2028 >        }
2029 >        if (delta != 0)
2030 >            addCount((long)delta, binCount);
2031 >        return val;
2032 >    }
2033 >
2034 >    // Hashtable legacy methods
2035 >
2036 >    /**
2037 >     * Legacy method testing if some key maps into the specified value
2038 >     * in this table.
2039 >     *
2040 >     * @deprecated This method is identical in functionality to
2041 >     * {@link #containsValue(Object)}, and exists solely to ensure
2042 >     * full compatibility with class {@link java.util.Hashtable},
2043 >     * which supported this method prior to introduction of the
2044 >     * Java Collections framework.
2045 >     *
2046 >     * @param  value a value to search for
2047 >     * @return {@code true} if and only if some key maps to the
2048 >     *         {@code value} argument in this table as
2049 >     *         determined by the {@code equals} method;
2050 >     *         {@code false} otherwise
2051 >     * @throws NullPointerException if the specified value is null
2052 >     */
2053 >    @Deprecated
2054 >    public boolean contains(Object value) {
2055 >        return containsValue(value);
2056      }
2057  
2058      /**
2059       * Returns an enumeration of the keys in this table.
2060       *
2061       * @return an enumeration of the keys in this table
2062 <     * @see #keySet
2062 >     * @see #keySet()
2063       */
2064      public Enumeration<K> keys() {
2065 <        return new KeyIterator();
2065 >        Node<K,V>[] t;
2066 >        int f = (t = table) == null ? 0 : t.length;
2067 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2068      }
2069  
2070      /**
2071       * Returns an enumeration of the values in this table.
2072       *
2073       * @return an enumeration of the values in this table
2074 <     * @see #values
2074 >     * @see #values()
2075       */
2076      public Enumeration<V> elements() {
2077 <        return new ValueIterator();
2077 >        Node<K,V>[] t;
2078 >        int f = (t = table) == null ? 0 : t.length;
2079 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2080      }
2081  
2082 <    /* ---------------- Iterator Support -------------- */
2082 >    // ConcurrentHashMap-only methods
2083 >
2084 >    /**
2085 >     * Returns the number of mappings. This method should be used
2086 >     * instead of {@link #size} because a ConcurrentHashMap may
2087 >     * contain more mappings than can be represented as an int. The
2088 >     * value returned is an estimate; the actual count may differ if
2089 >     * there are concurrent insertions or removals.
2090 >     *
2091 >     * @return the number of mappings
2092 >     * @since 1.8
2093 >     */
2094 >    public long mappingCount() {
2095 >        long n = sumCount();
2096 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2097 >    }
2098  
2099 <    abstract class HashIterator {
2100 <        int nextSegmentIndex;
2101 <        int nextTableIndex;
2102 <        HashEntry<K,V>[] currentTable;
2103 <        HashEntry<K, V> nextEntry;
2104 <        HashEntry<K, V> lastReturned;
2099 >    /**
2100 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2101 >     * from the given type to {@code Boolean.TRUE}.
2102 >     *
2103 >     * @param <K> the element type of the returned set
2104 >     * @return the new set
2105 >     * @since 1.8
2106 >     */
2107 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2108 >        return new KeySetView<K,Boolean>
2109 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2110 >    }
2111  
2112 <        HashIterator() {
2113 <            nextSegmentIndex = segments.length - 1;
2114 <            nextTableIndex = -1;
2115 <            advance();
2112 >    /**
2113 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2114 >     * from the given type to {@code Boolean.TRUE}.
2115 >     *
2116 >     * @param initialCapacity The implementation performs internal
2117 >     * sizing to accommodate this many elements.
2118 >     * @param <K> the element type of the returned set
2119 >     * @return the new set
2120 >     * @throws IllegalArgumentException if the initial capacity of
2121 >     * elements is negative
2122 >     * @since 1.8
2123 >     */
2124 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2125 >        return new KeySetView<K,Boolean>
2126 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2127 >    }
2128 >
2129 >    /**
2130 >     * Returns a {@link Set} view of the keys in this map, using the
2131 >     * given common mapped value for any additions (i.e., {@link
2132 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2133 >     * This is of course only appropriate if it is acceptable to use
2134 >     * the same value for all additions from this view.
2135 >     *
2136 >     * @param mappedValue the mapped value to use for any additions
2137 >     * @return the set view
2138 >     * @throws NullPointerException if the mappedValue is null
2139 >     */
2140 >    public KeySetView<K,V> keySet(V mappedValue) {
2141 >        if (mappedValue == null)
2142 >            throw new NullPointerException();
2143 >        return new KeySetView<K,V>(this, mappedValue);
2144 >    }
2145 >
2146 >    /* ---------------- Special Nodes -------------- */
2147 >
2148 >    /**
2149 >     * A node inserted at head of bins during transfer operations.
2150 >     */
2151 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2152 >        final Node<K,V>[] nextTable;
2153 >        ForwardingNode(Node<K,V>[] tab) {
2154 >            super(MOVED, null, null, null);
2155 >            this.nextTable = tab;
2156 >        }
2157 >
2158 >        Node<K,V> find(int h, Object k) {
2159 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2160 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2161 >                Node<K,V> e; int n;
2162 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2163 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2164 >                    return null;
2165 >                for (;;) {
2166 >                    int eh; K ek;
2167 >                    if ((eh = e.hash) == h &&
2168 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2169 >                        return e;
2170 >                    if (eh < 0) {
2171 >                        if (e instanceof ForwardingNode) {
2172 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2173 >                            continue outer;
2174 >                        }
2175 >                        else
2176 >                            return e.find(h, k);
2177 >                    }
2178 >                    if ((e = e.next) == null)
2179 >                        return null;
2180 >                }
2181 >            }
2182          }
2183 +    }
2184 +
2185 +    /**
2186 +     * A place-holder node used in computeIfAbsent and compute
2187 +     */
2188 +    static final class ReservationNode<K,V> extends Node<K,V> {
2189 +        ReservationNode() {
2190 +            super(RESERVED, null, null, null);
2191 +        }
2192 +
2193 +        Node<K,V> find(int h, Object k) {
2194 +            return null;
2195 +        }
2196 +    }
2197 +
2198 +    /* ---------------- Table Initialization and Resizing -------------- */
2199 +
2200 +    /**
2201 +     * Returns the stamp bits for resizing a table of size n.
2202 +     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2203 +     */
2204 +    static final int resizeStamp(int n) {
2205 +        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2206 +    }
2207  
2208 <        public boolean hasMoreElements() { return hasNext(); }
2208 >    /**
2209 >     * Initializes table, using the size recorded in sizeCtl.
2210 >     */
2211 >    private final Node<K,V>[] initTable() {
2212 >        Node<K,V>[] tab; int sc;
2213 >        while ((tab = table) == null || tab.length == 0) {
2214 >            if ((sc = sizeCtl) < 0)
2215 >                Thread.yield(); // lost initialization race; just spin
2216 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2217 >                try {
2218 >                    if ((tab = table) == null || tab.length == 0) {
2219 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2220 >                        @SuppressWarnings("unchecked")
2221 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2222 >                        table = tab = nt;
2223 >                        sc = n - (n >>> 2);
2224 >                    }
2225 >                } finally {
2226 >                    sizeCtl = sc;
2227 >                }
2228 >                break;
2229 >            }
2230 >        }
2231 >        return tab;
2232 >    }
2233  
2234 <        final void advance() {
2235 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
2234 >    /**
2235 >     * Adds to count, and if table is too small and not already
2236 >     * resizing, initiates transfer. If already resizing, helps
2237 >     * perform transfer if work is available.  Rechecks occupancy
2238 >     * after a transfer to see if another resize is already needed
2239 >     * because resizings are lagging additions.
2240 >     *
2241 >     * @param x the count to add
2242 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2243 >     */
2244 >    private final void addCount(long x, int check) {
2245 >        CounterCell[] as; long b, s;
2246 >        if ((as = counterCells) != null ||
2247 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2248 >            CounterCell a; long v; int m;
2249 >            boolean uncontended = true;
2250 >            if (as == null || (m = as.length - 1) < 0 ||
2251 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2252 >                !(uncontended =
2253 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2254 >                fullAddCount(x, uncontended);
2255 >                return;
2256 >            }
2257 >            if (check <= 1)
2258                  return;
2259 +            s = sumCount();
2260 +        }
2261 +        if (check >= 0) {
2262 +            Node<K,V>[] tab, nt; int n, sc;
2263 +            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2264 +                   (n = tab.length) < MAXIMUM_CAPACITY) {
2265 +                int rs = resizeStamp(n);
2266 +                if (sc < 0) {
2267 +                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2268 +                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2269 +                        transferIndex <= 0)
2270 +                        break;
2271 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2272 +                        transfer(tab, nt);
2273 +                }
2274 +                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2275 +                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2276 +                    transfer(tab, null);
2277 +                s = sumCount();
2278 +            }
2279 +        }
2280 +    }
2281  
2282 <            while (nextTableIndex >= 0) {
2283 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
2282 >    /**
2283 >     * Helps transfer if a resize is in progress.
2284 >     */
2285 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2286 >        Node<K,V>[] nextTab; int sc;
2287 >        if (tab != null && (f instanceof ForwardingNode) &&
2288 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2289 >            int rs = resizeStamp(tab.length);
2290 >            while (nextTab == nextTable && table == tab &&
2291 >                   (sc = sizeCtl) < 0) {
2292 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2293 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2294 >                    break;
2295 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2296 >                    transfer(tab, nextTab);
2297 >                    break;
2298 >                }
2299 >            }
2300 >            return nextTab;
2301 >        }
2302 >        return table;
2303 >    }
2304 >
2305 >    /**
2306 >     * Tries to presize table to accommodate the given number of elements.
2307 >     *
2308 >     * @param size number of elements (doesn't need to be perfectly accurate)
2309 >     */
2310 >    private final void tryPresize(int size) {
2311 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2312 >            tableSizeFor(size + (size >>> 1) + 1);
2313 >        int sc;
2314 >        while ((sc = sizeCtl) >= 0) {
2315 >            Node<K,V>[] tab = table; int n;
2316 >            if (tab == null || (n = tab.length) == 0) {
2317 >                n = (sc > c) ? sc : c;
2318 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2319 >                    try {
2320 >                        if (table == tab) {
2321 >                            @SuppressWarnings("unchecked")
2322 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2323 >                            table = nt;
2324 >                            sc = n - (n >>> 2);
2325 >                        }
2326 >                    } finally {
2327 >                        sizeCtl = sc;
2328 >                    }
2329 >                }
2330 >            }
2331 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2332 >                break;
2333 >            else if (tab == table) {
2334 >                int rs = resizeStamp(n);
2335 >                if (U.compareAndSwapInt(this, SIZECTL, sc,
2336 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2337 >                    transfer(tab, null);
2338 >            }
2339 >        }
2340 >    }
2341 >
2342 >    /**
2343 >     * Moves and/or copies the nodes in each bin to new table. See
2344 >     * above for explanation.
2345 >     */
2346 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2347 >        int n = tab.length, stride;
2348 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2349 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2350 >        if (nextTab == null) {            // initiating
2351 >            try {
2352 >                @SuppressWarnings("unchecked")
2353 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2354 >                nextTab = nt;
2355 >            } catch (Throwable ex) {      // try to cope with OOME
2356 >                sizeCtl = Integer.MAX_VALUE;
2357 >                return;
2358 >            }
2359 >            nextTable = nextTab;
2360 >            transferIndex = n;
2361 >        }
2362 >        int nextn = nextTab.length;
2363 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2364 >        boolean advance = true;
2365 >        boolean finishing = false; // to ensure sweep before committing nextTab
2366 >        for (int i = 0, bound = 0;;) {
2367 >            Node<K,V> f; int fh;
2368 >            while (advance) {
2369 >                int nextIndex, nextBound;
2370 >                if (--i >= bound || finishing)
2371 >                    advance = false;
2372 >                else if ((nextIndex = transferIndex) <= 0) {
2373 >                    i = -1;
2374 >                    advance = false;
2375 >                }
2376 >                else if (U.compareAndSwapInt
2377 >                         (this, TRANSFERINDEX, nextIndex,
2378 >                          nextBound = (nextIndex > stride ?
2379 >                                       nextIndex - stride : 0))) {
2380 >                    bound = nextBound;
2381 >                    i = nextIndex - 1;
2382 >                    advance = false;
2383 >                }
2384 >            }
2385 >            if (i < 0 || i >= n || i + n >= nextn) {
2386 >                int sc;
2387 >                if (finishing) {
2388 >                    nextTable = null;
2389 >                    table = nextTab;
2390 >                    sizeCtl = (n << 1) - (n >>> 1);
2391                      return;
2392 +                }
2393 +                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2394 +                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2395 +                        return;
2396 +                    finishing = advance = true;
2397 +                    i = n; // recheck before commit
2398 +                }
2399              }
2400 +            else if ((f = tabAt(tab, i)) == null)
2401 +                advance = casTabAt(tab, i, null, fwd);
2402 +            else if ((fh = f.hash) == MOVED)
2403 +                advance = true; // already processed
2404 +            else {
2405 +                synchronized (f) {
2406 +                    if (tabAt(tab, i) == f) {
2407 +                        Node<K,V> ln, hn;
2408 +                        if (fh >= 0) {
2409 +                            int runBit = fh & n;
2410 +                            Node<K,V> lastRun = f;
2411 +                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2412 +                                int b = p.hash & n;
2413 +                                if (b != runBit) {
2414 +                                    runBit = b;
2415 +                                    lastRun = p;
2416 +                                }
2417 +                            }
2418 +                            if (runBit == 0) {
2419 +                                ln = lastRun;
2420 +                                hn = null;
2421 +                            }
2422 +                            else {
2423 +                                hn = lastRun;
2424 +                                ln = null;
2425 +                            }
2426 +                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2427 +                                int ph = p.hash; K pk = p.key; V pv = p.val;
2428 +                                if ((ph & n) == 0)
2429 +                                    ln = new Node<K,V>(ph, pk, pv, ln);
2430 +                                else
2431 +                                    hn = new Node<K,V>(ph, pk, pv, hn);
2432 +                            }
2433 +                            setTabAt(nextTab, i, ln);
2434 +                            setTabAt(nextTab, i + n, hn);
2435 +                            setTabAt(tab, i, fwd);
2436 +                            advance = true;
2437 +                        }
2438 +                        else if (f instanceof TreeBin) {
2439 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2440 +                            TreeNode<K,V> lo = null, loTail = null;
2441 +                            TreeNode<K,V> hi = null, hiTail = null;
2442 +                            int lc = 0, hc = 0;
2443 +                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2444 +                                int h = e.hash;
2445 +                                TreeNode<K,V> p = new TreeNode<K,V>
2446 +                                    (h, e.key, e.val, null, null);
2447 +                                if ((h & n) == 0) {
2448 +                                    if ((p.prev = loTail) == null)
2449 +                                        lo = p;
2450 +                                    else
2451 +                                        loTail.next = p;
2452 +                                    loTail = p;
2453 +                                    ++lc;
2454 +                                }
2455 +                                else {
2456 +                                    if ((p.prev = hiTail) == null)
2457 +                                        hi = p;
2458 +                                    else
2459 +                                        hiTail.next = p;
2460 +                                    hiTail = p;
2461 +                                    ++hc;
2462 +                                }
2463 +                            }
2464 +                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2465 +                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2466 +                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2467 +                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2468 +                            setTabAt(nextTab, i, ln);
2469 +                            setTabAt(nextTab, i + n, hn);
2470 +                            setTabAt(tab, i, fwd);
2471 +                            advance = true;
2472 +                        }
2473 +                    }
2474 +                }
2475 +            }
2476 +        }
2477 +    }
2478 +
2479 +    /* ---------------- Counter support -------------- */
2480  
2481 <            while (nextSegmentIndex >= 0) {
2482 <                Segment<K,V> seg = segments[nextSegmentIndex--];
2483 <                if (seg.count != 0) {
2484 <                    currentTable = seg.table;
2485 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
2486 <                        if ( (nextEntry = currentTable[j]) != null) {
2487 <                            nextTableIndex = j - 1;
2488 <                            return;
2481 >    /**
2482 >     * A padded cell for distributing counts.  Adapted from LongAdder
2483 >     * and Striped64.  See their internal docs for explanation.
2484 >     */
2485 >    @sun.misc.Contended static final class CounterCell {
2486 >        volatile long value;
2487 >        CounterCell(long x) { value = x; }
2488 >    }
2489 >
2490 >    final long sumCount() {
2491 >        CounterCell[] as = counterCells; CounterCell a;
2492 >        long sum = baseCount;
2493 >        if (as != null) {
2494 >            for (int i = 0; i < as.length; ++i) {
2495 >                if ((a = as[i]) != null)
2496 >                    sum += a.value;
2497 >            }
2498 >        }
2499 >        return sum;
2500 >    }
2501 >
2502 >    // See LongAdder version for explanation
2503 >    private final void fullAddCount(long x, boolean wasUncontended) {
2504 >        int h;
2505 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2506 >            ThreadLocalRandom.localInit();      // force initialization
2507 >            h = ThreadLocalRandom.getProbe();
2508 >            wasUncontended = true;
2509 >        }
2510 >        boolean collide = false;                // True if last slot nonempty
2511 >        for (;;) {
2512 >            CounterCell[] as; CounterCell a; int n; long v;
2513 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2514 >                if ((a = as[(n - 1) & h]) == null) {
2515 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2516 >                        CounterCell r = new CounterCell(x); // Optimistic create
2517 >                        if (cellsBusy == 0 &&
2518 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2519 >                            boolean created = false;
2520 >                            try {               // Recheck under lock
2521 >                                CounterCell[] rs; int m, j;
2522 >                                if ((rs = counterCells) != null &&
2523 >                                    (m = rs.length) > 0 &&
2524 >                                    rs[j = (m - 1) & h] == null) {
2525 >                                    rs[j] = r;
2526 >                                    created = true;
2527 >                                }
2528 >                            } finally {
2529 >                                cellsBusy = 0;
2530 >                            }
2531 >                            if (created)
2532 >                                break;
2533 >                            continue;           // Slot is now non-empty
2534                          }
2535                      }
2536 +                    collide = false;
2537                  }
2538 +                else if (!wasUncontended)       // CAS already known to fail
2539 +                    wasUncontended = true;      // Continue after rehash
2540 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2541 +                    break;
2542 +                else if (counterCells != as || n >= NCPU)
2543 +                    collide = false;            // At max size or stale
2544 +                else if (!collide)
2545 +                    collide = true;
2546 +                else if (cellsBusy == 0 &&
2547 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2548 +                    try {
2549 +                        if (counterCells == as) {// Expand table unless stale
2550 +                            CounterCell[] rs = new CounterCell[n << 1];
2551 +                            for (int i = 0; i < n; ++i)
2552 +                                rs[i] = as[i];
2553 +                            counterCells = rs;
2554 +                        }
2555 +                    } finally {
2556 +                        cellsBusy = 0;
2557 +                    }
2558 +                    collide = false;
2559 +                    continue;                   // Retry with expanded table
2560 +                }
2561 +                h = ThreadLocalRandom.advanceProbe(h);
2562 +            }
2563 +            else if (cellsBusy == 0 && counterCells == as &&
2564 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2565 +                boolean init = false;
2566 +                try {                           // Initialize table
2567 +                    if (counterCells == as) {
2568 +                        CounterCell[] rs = new CounterCell[2];
2569 +                        rs[h & 1] = new CounterCell(x);
2570 +                        counterCells = rs;
2571 +                        init = true;
2572 +                    }
2573 +                } finally {
2574 +                    cellsBusy = 0;
2575 +                }
2576 +                if (init)
2577 +                    break;
2578              }
2579 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2580 +                break;                          // Fall back on using base
2581          }
2582 +    }
2583  
2584 <        public boolean hasNext() { return nextEntry != null; }
2584 >    /* ---------------- Conversion from/to TreeBins -------------- */
2585  
2586 <        HashEntry<K,V> nextEntry() {
2587 <            if (nextEntry == null)
2588 <                throw new NoSuchElementException();
2589 <            lastReturned = nextEntry;
2586 >    /**
2587 >     * Replaces all linked nodes in bin at given index unless table is
2588 >     * too small, in which case resizes instead.
2589 >     */
2590 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2591 >        Node<K,V> b; int n;
2592 >        if (tab != null) {
2593 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2594 >                tryPresize(n << 1);
2595 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2596 >                synchronized (b) {
2597 >                    if (tabAt(tab, index) == b) {
2598 >                        TreeNode<K,V> hd = null, tl = null;
2599 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2600 >                            TreeNode<K,V> p =
2601 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2602 >                                                  null, null);
2603 >                            if ((p.prev = tl) == null)
2604 >                                hd = p;
2605 >                            else
2606 >                                tl.next = p;
2607 >                            tl = p;
2608 >                        }
2609 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2610 >                    }
2611 >                }
2612 >            }
2613 >        }
2614 >    }
2615 >
2616 >    /**
2617 >     * Returns a list on non-TreeNodes replacing those in given list.
2618 >     */
2619 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2620 >        Node<K,V> hd = null, tl = null;
2621 >        for (Node<K,V> q = b; q != null; q = q.next) {
2622 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2623 >            if (tl == null)
2624 >                hd = p;
2625 >            else
2626 >                tl.next = p;
2627 >            tl = p;
2628 >        }
2629 >        return hd;
2630 >    }
2631 >
2632 >    /* ---------------- TreeNodes -------------- */
2633 >
2634 >    /**
2635 >     * Nodes for use in TreeBins
2636 >     */
2637 >    static final class TreeNode<K,V> extends Node<K,V> {
2638 >        TreeNode<K,V> parent;  // red-black tree links
2639 >        TreeNode<K,V> left;
2640 >        TreeNode<K,V> right;
2641 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2642 >        boolean red;
2643 >
2644 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2645 >                 TreeNode<K,V> parent) {
2646 >            super(hash, key, val, next);
2647 >            this.parent = parent;
2648 >        }
2649 >
2650 >        Node<K,V> find(int h, Object k) {
2651 >            return findTreeNode(h, k, null);
2652 >        }
2653 >
2654 >        /**
2655 >         * Returns the TreeNode (or null if not found) for the given key
2656 >         * starting at given root.
2657 >         */
2658 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2659 >            if (k != null) {
2660 >                TreeNode<K,V> p = this;
2661 >                do {
2662 >                    int ph, dir; K pk; TreeNode<K,V> q;
2663 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2664 >                    if ((ph = p.hash) > h)
2665 >                        p = pl;
2666 >                    else if (ph < h)
2667 >                        p = pr;
2668 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2669 >                        return p;
2670 >                    else if (pl == null)
2671 >                        p = pr;
2672 >                    else if (pr == null)
2673 >                        p = pl;
2674 >                    else if ((kc != null ||
2675 >                              (kc = comparableClassFor(k)) != null) &&
2676 >                             (dir = compareComparables(kc, k, pk)) != 0)
2677 >                        p = (dir < 0) ? pl : pr;
2678 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2679 >                        return q;
2680 >                    else
2681 >                        p = pl;
2682 >                } while (p != null);
2683 >            }
2684 >            return null;
2685 >        }
2686 >    }
2687 >
2688 >    /* ---------------- TreeBins -------------- */
2689 >
2690 >    /**
2691 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2692 >     * keys or values, but instead point to list of TreeNodes and
2693 >     * their root. They also maintain a parasitic read-write lock
2694 >     * forcing writers (who hold bin lock) to wait for readers (who do
2695 >     * not) to complete before tree restructuring operations.
2696 >     */
2697 >    static final class TreeBin<K,V> extends Node<K,V> {
2698 >        TreeNode<K,V> root;
2699 >        volatile TreeNode<K,V> first;
2700 >        volatile Thread waiter;
2701 >        volatile int lockState;
2702 >        // values for lockState
2703 >        static final int WRITER = 1; // set while holding write lock
2704 >        static final int WAITER = 2; // set when waiting for write lock
2705 >        static final int READER = 4; // increment value for setting read lock
2706 >
2707 >        /**
2708 >         * Tie-breaking utility for ordering insertions when equal
2709 >         * hashCodes and non-comparable. We don't require a total
2710 >         * order, just a consistent insertion rule to maintain
2711 >         * equivalence across rebalancings. Tie-breaking further than
2712 >         * necessary simplifies testing a bit.
2713 >         */
2714 >        static int tieBreakOrder(Object a, Object b) {
2715 >            int d;
2716 >            if (a == null || b == null ||
2717 >                (d = a.getClass().getName().
2718 >                 compareTo(b.getClass().getName())) == 0)
2719 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2720 >                     -1 : 1);
2721 >            return d;
2722 >        }
2723 >
2724 >        /**
2725 >         * Creates bin with initial set of nodes headed by b.
2726 >         */
2727 >        TreeBin(TreeNode<K,V> b) {
2728 >            super(TREEBIN, null, null, null);
2729 >            this.first = b;
2730 >            TreeNode<K,V> r = null;
2731 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2732 >                next = (TreeNode<K,V>)x.next;
2733 >                x.left = x.right = null;
2734 >                if (r == null) {
2735 >                    x.parent = null;
2736 >                    x.red = false;
2737 >                    r = x;
2738 >                }
2739 >                else {
2740 >                    K k = x.key;
2741 >                    int h = x.hash;
2742 >                    Class<?> kc = null;
2743 >                    for (TreeNode<K,V> p = r;;) {
2744 >                        int dir, ph;
2745 >                        K pk = p.key;
2746 >                        if ((ph = p.hash) > h)
2747 >                            dir = -1;
2748 >                        else if (ph < h)
2749 >                            dir = 1;
2750 >                        else if ((kc == null &&
2751 >                                  (kc = comparableClassFor(k)) == null) ||
2752 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2753 >                            dir = tieBreakOrder(k, pk);
2754 >                        TreeNode<K,V> xp = p;
2755 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2756 >                            x.parent = xp;
2757 >                            if (dir <= 0)
2758 >                                xp.left = x;
2759 >                            else
2760 >                                xp.right = x;
2761 >                            r = balanceInsertion(r, x);
2762 >                            break;
2763 >                        }
2764 >                    }
2765 >                }
2766 >            }
2767 >            this.root = r;
2768 >            assert checkInvariants(root);
2769 >        }
2770 >
2771 >        /**
2772 >         * Acquires write lock for tree restructuring.
2773 >         */
2774 >        private final void lockRoot() {
2775 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2776 >                contendedLock(); // offload to separate method
2777 >        }
2778 >
2779 >        /**
2780 >         * Releases write lock for tree restructuring.
2781 >         */
2782 >        private final void unlockRoot() {
2783 >            lockState = 0;
2784 >        }
2785 >
2786 >        /**
2787 >         * Possibly blocks awaiting root lock.
2788 >         */
2789 >        private final void contendedLock() {
2790 >            boolean waiting = false;
2791 >            for (int s;;) {
2792 >                if (((s = lockState) & ~WAITER) == 0) {
2793 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2794 >                        if (waiting)
2795 >                            waiter = null;
2796 >                        return;
2797 >                    }
2798 >                }
2799 >                else if ((s & WAITER) == 0) {
2800 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2801 >                        waiting = true;
2802 >                        waiter = Thread.currentThread();
2803 >                    }
2804 >                }
2805 >                else if (waiting)
2806 >                    LockSupport.park(this);
2807 >            }
2808 >        }
2809 >
2810 >        /**
2811 >         * Returns matching node or null if none. Tries to search
2812 >         * using tree comparisons from root, but continues linear
2813 >         * search when lock not available.
2814 >         */
2815 >        final Node<K,V> find(int h, Object k) {
2816 >            if (k != null) {
2817 >                for (Node<K,V> e = first; e != null; ) {
2818 >                    int s; K ek;
2819 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2820 >                        if (e.hash == h &&
2821 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2822 >                            return e;
2823 >                        e = e.next;
2824 >                    }
2825 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2826 >                                                 s + READER)) {
2827 >                        TreeNode<K,V> r, p;
2828 >                        try {
2829 >                            p = ((r = root) == null ? null :
2830 >                                 r.findTreeNode(h, k, null));
2831 >                        } finally {
2832 >                            Thread w;
2833 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2834 >                                (READER|WAITER) && (w = waiter) != null)
2835 >                                LockSupport.unpark(w);
2836 >                        }
2837 >                        return p;
2838 >                    }
2839 >                }
2840 >            }
2841 >            return null;
2842 >        }
2843 >
2844 >        /**
2845 >         * Finds or adds a node.
2846 >         * @return null if added
2847 >         */
2848 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2849 >            Class<?> kc = null;
2850 >            boolean searched = false;
2851 >            for (TreeNode<K,V> p = root;;) {
2852 >                int dir, ph; K pk;
2853 >                if (p == null) {
2854 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2855 >                    break;
2856 >                }
2857 >                else if ((ph = p.hash) > h)
2858 >                    dir = -1;
2859 >                else if (ph < h)
2860 >                    dir = 1;
2861 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2862 >                    return p;
2863 >                else if ((kc == null &&
2864 >                          (kc = comparableClassFor(k)) == null) ||
2865 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2866 >                    if (!searched) {
2867 >                        TreeNode<K,V> q, ch;
2868 >                        searched = true;
2869 >                        if (((ch = p.left) != null &&
2870 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2871 >                            ((ch = p.right) != null &&
2872 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2873 >                            return q;
2874 >                    }
2875 >                    dir = tieBreakOrder(k, pk);
2876 >                }
2877 >
2878 >                TreeNode<K,V> xp = p;
2879 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2880 >                    TreeNode<K,V> x, f = first;
2881 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2882 >                    if (f != null)
2883 >                        f.prev = x;
2884 >                    if (dir <= 0)
2885 >                        xp.left = x;
2886 >                    else
2887 >                        xp.right = x;
2888 >                    if (!xp.red)
2889 >                        x.red = true;
2890 >                    else {
2891 >                        lockRoot();
2892 >                        try {
2893 >                            root = balanceInsertion(root, x);
2894 >                        } finally {
2895 >                            unlockRoot();
2896 >                        }
2897 >                    }
2898 >                    break;
2899 >                }
2900 >            }
2901 >            assert checkInvariants(root);
2902 >            return null;
2903 >        }
2904 >
2905 >        /**
2906 >         * Removes the given node, that must be present before this
2907 >         * call.  This is messier than typical red-black deletion code
2908 >         * because we cannot swap the contents of an interior node
2909 >         * with a leaf successor that is pinned by "next" pointers
2910 >         * that are accessible independently of lock. So instead we
2911 >         * swap the tree linkages.
2912 >         *
2913 >         * @return true if now too small, so should be untreeified
2914 >         */
2915 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2916 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2917 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2918 >            TreeNode<K,V> r, rl;
2919 >            if (pred == null)
2920 >                first = next;
2921 >            else
2922 >                pred.next = next;
2923 >            if (next != null)
2924 >                next.prev = pred;
2925 >            if (first == null) {
2926 >                root = null;
2927 >                return true;
2928 >            }
2929 >            if ((r = root) == null || r.right == null || // too small
2930 >                (rl = r.left) == null || rl.left == null)
2931 >                return true;
2932 >            lockRoot();
2933 >            try {
2934 >                TreeNode<K,V> replacement;
2935 >                TreeNode<K,V> pl = p.left;
2936 >                TreeNode<K,V> pr = p.right;
2937 >                if (pl != null && pr != null) {
2938 >                    TreeNode<K,V> s = pr, sl;
2939 >                    while ((sl = s.left) != null) // find successor
2940 >                        s = sl;
2941 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2942 >                    TreeNode<K,V> sr = s.right;
2943 >                    TreeNode<K,V> pp = p.parent;
2944 >                    if (s == pr) { // p was s's direct parent
2945 >                        p.parent = s;
2946 >                        s.right = p;
2947 >                    }
2948 >                    else {
2949 >                        TreeNode<K,V> sp = s.parent;
2950 >                        if ((p.parent = sp) != null) {
2951 >                            if (s == sp.left)
2952 >                                sp.left = p;
2953 >                            else
2954 >                                sp.right = p;
2955 >                        }
2956 >                        if ((s.right = pr) != null)
2957 >                            pr.parent = s;
2958 >                    }
2959 >                    p.left = null;
2960 >                    if ((p.right = sr) != null)
2961 >                        sr.parent = p;
2962 >                    if ((s.left = pl) != null)
2963 >                        pl.parent = s;
2964 >                    if ((s.parent = pp) == null)
2965 >                        r = s;
2966 >                    else if (p == pp.left)
2967 >                        pp.left = s;
2968 >                    else
2969 >                        pp.right = s;
2970 >                    if (sr != null)
2971 >                        replacement = sr;
2972 >                    else
2973 >                        replacement = p;
2974 >                }
2975 >                else if (pl != null)
2976 >                    replacement = pl;
2977 >                else if (pr != null)
2978 >                    replacement = pr;
2979 >                else
2980 >                    replacement = p;
2981 >                if (replacement != p) {
2982 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2983 >                    if (pp == null)
2984 >                        r = replacement;
2985 >                    else if (p == pp.left)
2986 >                        pp.left = replacement;
2987 >                    else
2988 >                        pp.right = replacement;
2989 >                    p.left = p.right = p.parent = null;
2990 >                }
2991 >
2992 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2993 >
2994 >                if (p == replacement) {  // detach pointers
2995 >                    TreeNode<K,V> pp;
2996 >                    if ((pp = p.parent) != null) {
2997 >                        if (p == pp.left)
2998 >                            pp.left = null;
2999 >                        else if (p == pp.right)
3000 >                            pp.right = null;
3001 >                        p.parent = null;
3002 >                    }
3003 >                }
3004 >            } finally {
3005 >                unlockRoot();
3006 >            }
3007 >            assert checkInvariants(root);
3008 >            return false;
3009 >        }
3010 >
3011 >        /* ------------------------------------------------------------ */
3012 >        // Red-black tree methods, all adapted from CLR
3013 >
3014 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3015 >                                              TreeNode<K,V> p) {
3016 >            TreeNode<K,V> r, pp, rl;
3017 >            if (p != null && (r = p.right) != null) {
3018 >                if ((rl = p.right = r.left) != null)
3019 >                    rl.parent = p;
3020 >                if ((pp = r.parent = p.parent) == null)
3021 >                    (root = r).red = false;
3022 >                else if (pp.left == p)
3023 >                    pp.left = r;
3024 >                else
3025 >                    pp.right = r;
3026 >                r.left = p;
3027 >                p.parent = r;
3028 >            }
3029 >            return root;
3030 >        }
3031 >
3032 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3033 >                                               TreeNode<K,V> p) {
3034 >            TreeNode<K,V> l, pp, lr;
3035 >            if (p != null && (l = p.left) != null) {
3036 >                if ((lr = p.left = l.right) != null)
3037 >                    lr.parent = p;
3038 >                if ((pp = l.parent = p.parent) == null)
3039 >                    (root = l).red = false;
3040 >                else if (pp.right == p)
3041 >                    pp.right = l;
3042 >                else
3043 >                    pp.left = l;
3044 >                l.right = p;
3045 >                p.parent = l;
3046 >            }
3047 >            return root;
3048 >        }
3049 >
3050 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3051 >                                                    TreeNode<K,V> x) {
3052 >            x.red = true;
3053 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3054 >                if ((xp = x.parent) == null) {
3055 >                    x.red = false;
3056 >                    return x;
3057 >                }
3058 >                else if (!xp.red || (xpp = xp.parent) == null)
3059 >                    return root;
3060 >                if (xp == (xppl = xpp.left)) {
3061 >                    if ((xppr = xpp.right) != null && xppr.red) {
3062 >                        xppr.red = false;
3063 >                        xp.red = false;
3064 >                        xpp.red = true;
3065 >                        x = xpp;
3066 >                    }
3067 >                    else {
3068 >                        if (x == xp.right) {
3069 >                            root = rotateLeft(root, x = xp);
3070 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3071 >                        }
3072 >                        if (xp != null) {
3073 >                            xp.red = false;
3074 >                            if (xpp != null) {
3075 >                                xpp.red = true;
3076 >                                root = rotateRight(root, xpp);
3077 >                            }
3078 >                        }
3079 >                    }
3080 >                }
3081 >                else {
3082 >                    if (xppl != null && xppl.red) {
3083 >                        xppl.red = false;
3084 >                        xp.red = false;
3085 >                        xpp.red = true;
3086 >                        x = xpp;
3087 >                    }
3088 >                    else {
3089 >                        if (x == xp.left) {
3090 >                            root = rotateRight(root, x = xp);
3091 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3092 >                        }
3093 >                        if (xp != null) {
3094 >                            xp.red = false;
3095 >                            if (xpp != null) {
3096 >                                xpp.red = true;
3097 >                                root = rotateLeft(root, xpp);
3098 >                            }
3099 >                        }
3100 >                    }
3101 >                }
3102 >            }
3103 >        }
3104 >
3105 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3106 >                                                   TreeNode<K,V> x) {
3107 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3108 >                if (x == null || x == root)
3109 >                    return root;
3110 >                else if ((xp = x.parent) == null) {
3111 >                    x.red = false;
3112 >                    return x;
3113 >                }
3114 >                else if (x.red) {
3115 >                    x.red = false;
3116 >                    return root;
3117 >                }
3118 >                else if ((xpl = xp.left) == x) {
3119 >                    if ((xpr = xp.right) != null && xpr.red) {
3120 >                        xpr.red = false;
3121 >                        xp.red = true;
3122 >                        root = rotateLeft(root, xp);
3123 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3124 >                    }
3125 >                    if (xpr == null)
3126 >                        x = xp;
3127 >                    else {
3128 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3129 >                        if ((sr == null || !sr.red) &&
3130 >                            (sl == null || !sl.red)) {
3131 >                            xpr.red = true;
3132 >                            x = xp;
3133 >                        }
3134 >                        else {
3135 >                            if (sr == null || !sr.red) {
3136 >                                if (sl != null)
3137 >                                    sl.red = false;
3138 >                                xpr.red = true;
3139 >                                root = rotateRight(root, xpr);
3140 >                                xpr = (xp = x.parent) == null ?
3141 >                                    null : xp.right;
3142 >                            }
3143 >                            if (xpr != null) {
3144 >                                xpr.red = (xp == null) ? false : xp.red;
3145 >                                if ((sr = xpr.right) != null)
3146 >                                    sr.red = false;
3147 >                            }
3148 >                            if (xp != null) {
3149 >                                xp.red = false;
3150 >                                root = rotateLeft(root, xp);
3151 >                            }
3152 >                            x = root;
3153 >                        }
3154 >                    }
3155 >                }
3156 >                else { // symmetric
3157 >                    if (xpl != null && xpl.red) {
3158 >                        xpl.red = false;
3159 >                        xp.red = true;
3160 >                        root = rotateRight(root, xp);
3161 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3162 >                    }
3163 >                    if (xpl == null)
3164 >                        x = xp;
3165 >                    else {
3166 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3167 >                        if ((sl == null || !sl.red) &&
3168 >                            (sr == null || !sr.red)) {
3169 >                            xpl.red = true;
3170 >                            x = xp;
3171 >                        }
3172 >                        else {
3173 >                            if (sl == null || !sl.red) {
3174 >                                if (sr != null)
3175 >                                    sr.red = false;
3176 >                                xpl.red = true;
3177 >                                root = rotateLeft(root, xpl);
3178 >                                xpl = (xp = x.parent) == null ?
3179 >                                    null : xp.left;
3180 >                            }
3181 >                            if (xpl != null) {
3182 >                                xpl.red = (xp == null) ? false : xp.red;
3183 >                                if ((sl = xpl.left) != null)
3184 >                                    sl.red = false;
3185 >                            }
3186 >                            if (xp != null) {
3187 >                                xp.red = false;
3188 >                                root = rotateRight(root, xp);
3189 >                            }
3190 >                            x = root;
3191 >                        }
3192 >                    }
3193 >                }
3194 >            }
3195 >        }
3196 >
3197 >        /**
3198 >         * Recursive invariant check
3199 >         */
3200 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3201 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3202 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3203 >            if (tb != null && tb.next != t)
3204 >                return false;
3205 >            if (tn != null && tn.prev != t)
3206 >                return false;
3207 >            if (tp != null && t != tp.left && t != tp.right)
3208 >                return false;
3209 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3210 >                return false;
3211 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3212 >                return false;
3213 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3214 >                return false;
3215 >            if (tl != null && !checkInvariants(tl))
3216 >                return false;
3217 >            if (tr != null && !checkInvariants(tr))
3218 >                return false;
3219 >            return true;
3220 >        }
3221 >
3222 >        private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3223 >        private static final long LOCKSTATE;
3224 >        static {
3225 >            try {
3226 >                LOCKSTATE = U.objectFieldOffset
3227 >                    (TreeBin.class.getDeclaredField("lockState"));
3228 >            } catch (ReflectiveOperationException e) {
3229 >                throw new Error(e);
3230 >            }
3231 >        }
3232 >    }
3233 >
3234 >    /* ----------------Table Traversal -------------- */
3235 >
3236 >    /**
3237 >     * Records the table, its length, and current traversal index for a
3238 >     * traverser that must process a region of a forwarded table before
3239 >     * proceeding with current table.
3240 >     */
3241 >    static final class TableStack<K,V> {
3242 >        int length;
3243 >        int index;
3244 >        Node<K,V>[] tab;
3245 >        TableStack<K,V> next;
3246 >    }
3247 >
3248 >    /**
3249 >     * Encapsulates traversal for methods such as containsValue; also
3250 >     * serves as a base class for other iterators and spliterators.
3251 >     *
3252 >     * Method advance visits once each still-valid node that was
3253 >     * reachable upon iterator construction. It might miss some that
3254 >     * were added to a bin after the bin was visited, which is OK wrt
3255 >     * consistency guarantees. Maintaining this property in the face
3256 >     * of possible ongoing resizes requires a fair amount of
3257 >     * bookkeeping state that is difficult to optimize away amidst
3258 >     * volatile accesses.  Even so, traversal maintains reasonable
3259 >     * throughput.
3260 >     *
3261 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3262 >     * However, if the table has been resized, then all future steps
3263 >     * must traverse both the bin at the current index as well as at
3264 >     * (index + baseSize); and so on for further resizings. To
3265 >     * paranoically cope with potential sharing by users of iterators
3266 >     * across threads, iteration terminates if a bounds checks fails
3267 >     * for a table read.
3268 >     */
3269 >    static class Traverser<K,V> {
3270 >        Node<K,V>[] tab;        // current table; updated if resized
3271 >        Node<K,V> next;         // the next entry to use
3272 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3273 >        int index;              // index of bin to use next
3274 >        int baseIndex;          // current index of initial table
3275 >        int baseLimit;          // index bound for initial table
3276 >        final int baseSize;     // initial table size
3277 >
3278 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3279 >            this.tab = tab;
3280 >            this.baseSize = size;
3281 >            this.baseIndex = this.index = index;
3282 >            this.baseLimit = limit;
3283 >            this.next = null;
3284 >        }
3285 >
3286 >        /**
3287 >         * Advances if possible, returning next valid node, or null if none.
3288 >         */
3289 >        final Node<K,V> advance() {
3290 >            Node<K,V> e;
3291 >            if ((e = next) != null)
3292 >                e = e.next;
3293 >            for (;;) {
3294 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3295 >                if (e != null)
3296 >                    return next = e;
3297 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3298 >                    (n = t.length) <= (i = index) || i < 0)
3299 >                    return next = null;
3300 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3301 >                    if (e instanceof ForwardingNode) {
3302 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3303 >                        e = null;
3304 >                        pushState(t, i, n);
3305 >                        continue;
3306 >                    }
3307 >                    else if (e instanceof TreeBin)
3308 >                        e = ((TreeBin<K,V>)e).first;
3309 >                    else
3310 >                        e = null;
3311 >                }
3312 >                if (stack != null)
3313 >                    recoverState(n);
3314 >                else if ((index = i + baseSize) >= n)
3315 >                    index = ++baseIndex; // visit upper slots if present
3316 >            }
3317 >        }
3318 >
3319 >        /**
3320 >         * Saves traversal state upon encountering a forwarding node.
3321 >         */
3322 >        private void pushState(Node<K,V>[] t, int i, int n) {
3323 >            TableStack<K,V> s = spare;  // reuse if possible
3324 >            if (s != null)
3325 >                spare = s.next;
3326 >            else
3327 >                s = new TableStack<K,V>();
3328 >            s.tab = t;
3329 >            s.length = n;
3330 >            s.index = i;
3331 >            s.next = stack;
3332 >            stack = s;
3333 >        }
3334 >
3335 >        /**
3336 >         * Possibly pops traversal state.
3337 >         *
3338 >         * @param n length of current table
3339 >         */
3340 >        private void recoverState(int n) {
3341 >            TableStack<K,V> s; int len;
3342 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3343 >                n = len;
3344 >                index = s.index;
3345 >                tab = s.tab;
3346 >                s.tab = null;
3347 >                TableStack<K,V> next = s.next;
3348 >                s.next = spare; // save for reuse
3349 >                stack = next;
3350 >                spare = s;
3351 >            }
3352 >            if (s == null && (index += baseSize) >= n)
3353 >                index = ++baseIndex;
3354 >        }
3355 >    }
3356 >
3357 >    /**
3358 >     * Base of key, value, and entry Iterators. Adds fields to
3359 >     * Traverser to support iterator.remove.
3360 >     */
3361 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3362 >        final ConcurrentHashMap<K,V> map;
3363 >        Node<K,V> lastReturned;
3364 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3365 >                    ConcurrentHashMap<K,V> map) {
3366 >            super(tab, size, index, limit);
3367 >            this.map = map;
3368              advance();
1098            return lastReturned;
3369          }
3370  
3371 <        public void remove() {
3372 <            if (lastReturned == null)
3371 >        public final boolean hasNext() { return next != null; }
3372 >        public final boolean hasMoreElements() { return next != null; }
3373 >
3374 >        public final void remove() {
3375 >            Node<K,V> p;
3376 >            if ((p = lastReturned) == null)
3377                  throw new IllegalStateException();
1104            ConcurrentHashMap.this.remove(lastReturned.key);
3378              lastReturned = null;
3379 +            map.replaceNode(p.key, null, null);
3380 +        }
3381 +    }
3382 +
3383 +    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3384 +        implements Iterator<K>, Enumeration<K> {
3385 +        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3386 +                    ConcurrentHashMap<K,V> map) {
3387 +            super(tab, index, size, limit, map);
3388 +        }
3389 +
3390 +        public final K next() {
3391 +            Node<K,V> p;
3392 +            if ((p = next) == null)
3393 +                throw new NoSuchElementException();
3394 +            K k = p.key;
3395 +            lastReturned = p;
3396 +            advance();
3397 +            return k;
3398          }
3399 +
3400 +        public final K nextElement() { return next(); }
3401      }
3402  
3403 <    final class KeyIterator
3404 <        extends HashIterator
3405 <        implements Iterator<K>, Enumeration<K>
3406 <    {
3407 <        public K next()        { return super.nextEntry().key; }
3408 <        public K nextElement() { return super.nextEntry().key; }
3403 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3404 >        implements Iterator<V>, Enumeration<V> {
3405 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3406 >                      ConcurrentHashMap<K,V> map) {
3407 >            super(tab, index, size, limit, map);
3408 >        }
3409 >
3410 >        public final V next() {
3411 >            Node<K,V> p;
3412 >            if ((p = next) == null)
3413 >                throw new NoSuchElementException();
3414 >            V v = p.val;
3415 >            lastReturned = p;
3416 >            advance();
3417 >            return v;
3418 >        }
3419 >
3420 >        public final V nextElement() { return next(); }
3421      }
3422  
3423 <    final class ValueIterator
3424 <        extends HashIterator
3425 <        implements Iterator<V>, Enumeration<V>
3426 <    {
3427 <        public V next()        { return super.nextEntry().value; }
3428 <        public V nextElement() { return super.nextEntry().value; }
3423 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3424 >        implements Iterator<Map.Entry<K,V>> {
3425 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3426 >                      ConcurrentHashMap<K,V> map) {
3427 >            super(tab, index, size, limit, map);
3428 >        }
3429 >
3430 >        public final Map.Entry<K,V> next() {
3431 >            Node<K,V> p;
3432 >            if ((p = next) == null)
3433 >                throw new NoSuchElementException();
3434 >            K k = p.key;
3435 >            V v = p.val;
3436 >            lastReturned = p;
3437 >            advance();
3438 >            return new MapEntry<K,V>(k, v, map);
3439 >        }
3440      }
3441  
3442      /**
3443 <     * Custom Entry class used by EntryIterator.next(), that relays
1127 <     * setValue changes to the underlying map.
3443 >     * Exported Entry for EntryIterator
3444       */
3445 <    final class WriteThroughEntry
3446 <        extends AbstractMap.SimpleEntry<K,V>
3447 <    {
3448 <        WriteThroughEntry(K k, V v) {
3449 <            super(k,v);
3445 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3446 >        final K key; // non-null
3447 >        V val;       // non-null
3448 >        final ConcurrentHashMap<K,V> map;
3449 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3450 >            this.key = key;
3451 >            this.val = val;
3452 >            this.map = map;
3453 >        }
3454 >        public K getKey()        { return key; }
3455 >        public V getValue()      { return val; }
3456 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3457 >        public String toString() {
3458 >            return Helpers.mapEntryToString(key, val);
3459 >        }
3460 >
3461 >        public boolean equals(Object o) {
3462 >            Object k, v; Map.Entry<?,?> e;
3463 >            return ((o instanceof Map.Entry) &&
3464 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3465 >                    (v = e.getValue()) != null &&
3466 >                    (k == key || k.equals(key)) &&
3467 >                    (v == val || v.equals(val)));
3468          }
3469  
3470          /**
3471 <         * Set our entry's value and write through to the map. The
3472 <         * value to return is somewhat arbitrary here. Since a
3473 <         * WriteThroughEntry does not necessarily track asynchronous
3474 <         * changes, the most recent "previous" value could be
3475 <         * different from what we return (or could even have been
3476 <         * removed in which case the put will re-establish). We do not
1143 <         * and cannot guarantee more.
3471 >         * Sets our entry's value and writes through to the map. The
3472 >         * value to return is somewhat arbitrary here. Since we do not
3473 >         * necessarily track asynchronous changes, the most recent
3474 >         * "previous" value could be different from what we return (or
3475 >         * could even have been removed, in which case the put will
3476 >         * re-establish). We do not and cannot guarantee more.
3477           */
3478 <        public V setValue(V value) {
3478 >        public V setValue(V value) {
3479              if (value == null) throw new NullPointerException();
3480 <            V v = super.setValue(value);
3481 <            ConcurrentHashMap.this.put(getKey(), value);
3480 >            V v = val;
3481 >            val = value;
3482 >            map.put(key, value);
3483              return v;
3484          }
3485      }
3486  
3487 <    final class EntryIterator
3488 <        extends HashIterator
3489 <        implements Iterator<Entry<K,V>>
3490 <    {
3491 <        public Map.Entry<K,V> next() {
3492 <            HashEntry<K,V> e = super.nextEntry();
3493 <            return new WriteThroughEntry(e.key, e.value);
3487 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3488 >        implements Spliterator<K> {
3489 >        long est;               // size estimate
3490 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3491 >                       long est) {
3492 >            super(tab, size, index, limit);
3493 >            this.est = est;
3494 >        }
3495 >
3496 >        public Spliterator<K> trySplit() {
3497 >            int i, f, h;
3498 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3499 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3500 >                                        f, est >>>= 1);
3501 >        }
3502 >
3503 >        public void forEachRemaining(Consumer<? super K> action) {
3504 >            if (action == null) throw new NullPointerException();
3505 >            for (Node<K,V> p; (p = advance()) != null;)
3506 >                action.accept(p.key);
3507 >        }
3508 >
3509 >        public boolean tryAdvance(Consumer<? super K> action) {
3510 >            if (action == null) throw new NullPointerException();
3511 >            Node<K,V> p;
3512 >            if ((p = advance()) == null)
3513 >                return false;
3514 >            action.accept(p.key);
3515 >            return true;
3516 >        }
3517 >
3518 >        public long estimateSize() { return est; }
3519 >
3520 >        public int characteristics() {
3521 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3522 >                Spliterator.NONNULL;
3523          }
3524      }
3525  
3526 <    final class KeySet extends AbstractSet<K> {
3527 <        public Iterator<K> iterator() {
3528 <            return new KeyIterator();
3526 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3527 >        implements Spliterator<V> {
3528 >        long est;               // size estimate
3529 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3530 >                         long est) {
3531 >            super(tab, size, index, limit);
3532 >            this.est = est;
3533 >        }
3534 >
3535 >        public Spliterator<V> trySplit() {
3536 >            int i, f, h;
3537 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3538 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3539 >                                          f, est >>>= 1);
3540 >        }
3541 >
3542 >        public void forEachRemaining(Consumer<? super V> action) {
3543 >            if (action == null) throw new NullPointerException();
3544 >            for (Node<K,V> p; (p = advance()) != null;)
3545 >                action.accept(p.val);
3546 >        }
3547 >
3548 >        public boolean tryAdvance(Consumer<? super V> action) {
3549 >            if (action == null) throw new NullPointerException();
3550 >            Node<K,V> p;
3551 >            if ((p = advance()) == null)
3552 >                return false;
3553 >            action.accept(p.val);
3554 >            return true;
3555          }
3556 <        public int size() {
3557 <            return ConcurrentHashMap.this.size();
3556 >
3557 >        public long estimateSize() { return est; }
3558 >
3559 >        public int characteristics() {
3560 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3561          }
3562 <        public boolean contains(Object o) {
3563 <            return ConcurrentHashMap.this.containsKey(o);
3562 >    }
3563 >
3564 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3565 >        implements Spliterator<Map.Entry<K,V>> {
3566 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3567 >        long est;               // size estimate
3568 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3569 >                         long est, ConcurrentHashMap<K,V> map) {
3570 >            super(tab, size, index, limit);
3571 >            this.map = map;
3572 >            this.est = est;
3573 >        }
3574 >
3575 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3576 >            int i, f, h;
3577 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3578 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3579 >                                          f, est >>>= 1, map);
3580 >        }
3581 >
3582 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3583 >            if (action == null) throw new NullPointerException();
3584 >            for (Node<K,V> p; (p = advance()) != null; )
3585 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3586 >        }
3587 >
3588 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3589 >            if (action == null) throw new NullPointerException();
3590 >            Node<K,V> p;
3591 >            if ((p = advance()) == null)
3592 >                return false;
3593 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3594 >            return true;
3595          }
3596 <        public boolean remove(Object o) {
3597 <            return ConcurrentHashMap.this.remove(o) != null;
3596 >
3597 >        public long estimateSize() { return est; }
3598 >
3599 >        public int characteristics() {
3600 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3601 >                Spliterator.NONNULL;
3602          }
3603 <        public void clear() {
3604 <            ConcurrentHashMap.this.clear();
3603 >    }
3604 >
3605 >    // Parallel bulk operations
3606 >
3607 >    /**
3608 >     * Computes initial batch value for bulk tasks. The returned value
3609 >     * is approximately exp2 of the number of times (minus one) to
3610 >     * split task by two before executing leaf action. This value is
3611 >     * faster to compute and more convenient to use as a guide to
3612 >     * splitting than is the depth, since it is used while dividing by
3613 >     * two anyway.
3614 >     */
3615 >    final int batchFor(long b) {
3616 >        long n;
3617 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3618 >            return 0;
3619 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3620 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3621 >    }
3622 >
3623 >    /**
3624 >     * Performs the given action for each (key, value).
3625 >     *
3626 >     * @param parallelismThreshold the (estimated) number of elements
3627 >     * needed for this operation to be executed in parallel
3628 >     * @param action the action
3629 >     * @since 1.8
3630 >     */
3631 >    public void forEach(long parallelismThreshold,
3632 >                        BiConsumer<? super K,? super V> action) {
3633 >        if (action == null) throw new NullPointerException();
3634 >        new ForEachMappingTask<K,V>
3635 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3636 >             action).invoke();
3637 >    }
3638 >
3639 >    /**
3640 >     * Performs the given action for each non-null transformation
3641 >     * of each (key, value).
3642 >     *
3643 >     * @param parallelismThreshold the (estimated) number of elements
3644 >     * needed for this operation to be executed in parallel
3645 >     * @param transformer a function returning the transformation
3646 >     * for an element, or null if there is no transformation (in
3647 >     * which case the action is not applied)
3648 >     * @param action the action
3649 >     * @param <U> the return type of the transformer
3650 >     * @since 1.8
3651 >     */
3652 >    public <U> void forEach(long parallelismThreshold,
3653 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3654 >                            Consumer<? super U> action) {
3655 >        if (transformer == null || action == null)
3656 >            throw new NullPointerException();
3657 >        new ForEachTransformedMappingTask<K,V,U>
3658 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3659 >             transformer, action).invoke();
3660 >    }
3661 >
3662 >    /**
3663 >     * Returns a non-null result from applying the given search
3664 >     * function on each (key, value), or null if none.  Upon
3665 >     * success, further element processing is suppressed and the
3666 >     * results of any other parallel invocations of the search
3667 >     * function are ignored.
3668 >     *
3669 >     * @param parallelismThreshold the (estimated) number of elements
3670 >     * needed for this operation to be executed in parallel
3671 >     * @param searchFunction a function returning a non-null
3672 >     * result on success, else null
3673 >     * @param <U> the return type of the search function
3674 >     * @return a non-null result from applying the given search
3675 >     * function on each (key, value), or null if none
3676 >     * @since 1.8
3677 >     */
3678 >    public <U> U search(long parallelismThreshold,
3679 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3680 >        if (searchFunction == null) throw new NullPointerException();
3681 >        return new SearchMappingsTask<K,V,U>
3682 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3683 >             searchFunction, new AtomicReference<U>()).invoke();
3684 >    }
3685 >
3686 >    /**
3687 >     * Returns the result of accumulating the given transformation
3688 >     * of all (key, value) pairs using the given reducer to
3689 >     * combine values, or null if none.
3690 >     *
3691 >     * @param parallelismThreshold the (estimated) number of elements
3692 >     * needed for this operation to be executed in parallel
3693 >     * @param transformer a function returning the transformation
3694 >     * for an element, or null if there is no transformation (in
3695 >     * which case it is not combined)
3696 >     * @param reducer a commutative associative combining function
3697 >     * @param <U> the return type of the transformer
3698 >     * @return the result of accumulating the given transformation
3699 >     * of all (key, value) pairs
3700 >     * @since 1.8
3701 >     */
3702 >    public <U> U reduce(long parallelismThreshold,
3703 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3704 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3705 >        if (transformer == null || reducer == null)
3706 >            throw new NullPointerException();
3707 >        return new MapReduceMappingsTask<K,V,U>
3708 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3709 >             null, transformer, reducer).invoke();
3710 >    }
3711 >
3712 >    /**
3713 >     * Returns the result of accumulating the given transformation
3714 >     * of all (key, value) pairs using the given reducer to
3715 >     * combine values, and the given basis as an identity value.
3716 >     *
3717 >     * @param parallelismThreshold the (estimated) number of elements
3718 >     * needed for this operation to be executed in parallel
3719 >     * @param transformer a function returning the transformation
3720 >     * for an element
3721 >     * @param basis the identity (initial default value) for the reduction
3722 >     * @param reducer a commutative associative combining function
3723 >     * @return the result of accumulating the given transformation
3724 >     * of all (key, value) pairs
3725 >     * @since 1.8
3726 >     */
3727 >    public double reduceToDouble(long parallelismThreshold,
3728 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3729 >                                 double basis,
3730 >                                 DoubleBinaryOperator reducer) {
3731 >        if (transformer == null || reducer == null)
3732 >            throw new NullPointerException();
3733 >        return new MapReduceMappingsToDoubleTask<K,V>
3734 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3735 >             null, transformer, basis, reducer).invoke();
3736 >    }
3737 >
3738 >    /**
3739 >     * Returns the result of accumulating the given transformation
3740 >     * of all (key, value) pairs using the given reducer to
3741 >     * combine values, and the given basis as an identity value.
3742 >     *
3743 >     * @param parallelismThreshold the (estimated) number of elements
3744 >     * needed for this operation to be executed in parallel
3745 >     * @param transformer a function returning the transformation
3746 >     * for an element
3747 >     * @param basis the identity (initial default value) for the reduction
3748 >     * @param reducer a commutative associative combining function
3749 >     * @return the result of accumulating the given transformation
3750 >     * of all (key, value) pairs
3751 >     * @since 1.8
3752 >     */
3753 >    public long reduceToLong(long parallelismThreshold,
3754 >                             ToLongBiFunction<? super K, ? super V> transformer,
3755 >                             long basis,
3756 >                             LongBinaryOperator reducer) {
3757 >        if (transformer == null || reducer == null)
3758 >            throw new NullPointerException();
3759 >        return new MapReduceMappingsToLongTask<K,V>
3760 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3761 >             null, transformer, basis, reducer).invoke();
3762 >    }
3763 >
3764 >    /**
3765 >     * Returns the result of accumulating the given transformation
3766 >     * of all (key, value) pairs using the given reducer to
3767 >     * combine values, and the given basis as an identity value.
3768 >     *
3769 >     * @param parallelismThreshold the (estimated) number of elements
3770 >     * needed for this operation to be executed in parallel
3771 >     * @param transformer a function returning the transformation
3772 >     * for an element
3773 >     * @param basis the identity (initial default value) for the reduction
3774 >     * @param reducer a commutative associative combining function
3775 >     * @return the result of accumulating the given transformation
3776 >     * of all (key, value) pairs
3777 >     * @since 1.8
3778 >     */
3779 >    public int reduceToInt(long parallelismThreshold,
3780 >                           ToIntBiFunction<? super K, ? super V> transformer,
3781 >                           int basis,
3782 >                           IntBinaryOperator reducer) {
3783 >        if (transformer == null || reducer == null)
3784 >            throw new NullPointerException();
3785 >        return new MapReduceMappingsToIntTask<K,V>
3786 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3787 >             null, transformer, basis, reducer).invoke();
3788 >    }
3789 >
3790 >    /**
3791 >     * Performs the given action for each key.
3792 >     *
3793 >     * @param parallelismThreshold the (estimated) number of elements
3794 >     * needed for this operation to be executed in parallel
3795 >     * @param action the action
3796 >     * @since 1.8
3797 >     */
3798 >    public void forEachKey(long parallelismThreshold,
3799 >                           Consumer<? super K> action) {
3800 >        if (action == null) throw new NullPointerException();
3801 >        new ForEachKeyTask<K,V>
3802 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3803 >             action).invoke();
3804 >    }
3805 >
3806 >    /**
3807 >     * Performs the given action for each non-null transformation
3808 >     * of each key.
3809 >     *
3810 >     * @param parallelismThreshold the (estimated) number of elements
3811 >     * needed for this operation to be executed in parallel
3812 >     * @param transformer a function returning the transformation
3813 >     * for an element, or null if there is no transformation (in
3814 >     * which case the action is not applied)
3815 >     * @param action the action
3816 >     * @param <U> the return type of the transformer
3817 >     * @since 1.8
3818 >     */
3819 >    public <U> void forEachKey(long parallelismThreshold,
3820 >                               Function<? super K, ? extends U> transformer,
3821 >                               Consumer<? super U> action) {
3822 >        if (transformer == null || action == null)
3823 >            throw new NullPointerException();
3824 >        new ForEachTransformedKeyTask<K,V,U>
3825 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3826 >             transformer, action).invoke();
3827 >    }
3828 >
3829 >    /**
3830 >     * Returns a non-null result from applying the given search
3831 >     * function on each key, or null if none. Upon success,
3832 >     * further element processing is suppressed and the results of
3833 >     * any other parallel invocations of the search function are
3834 >     * ignored.
3835 >     *
3836 >     * @param parallelismThreshold the (estimated) number of elements
3837 >     * needed for this operation to be executed in parallel
3838 >     * @param searchFunction a function returning a non-null
3839 >     * result on success, else null
3840 >     * @param <U> the return type of the search function
3841 >     * @return a non-null result from applying the given search
3842 >     * function on each key, or null if none
3843 >     * @since 1.8
3844 >     */
3845 >    public <U> U searchKeys(long parallelismThreshold,
3846 >                            Function<? super K, ? extends U> searchFunction) {
3847 >        if (searchFunction == null) throw new NullPointerException();
3848 >        return new SearchKeysTask<K,V,U>
3849 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3850 >             searchFunction, new AtomicReference<U>()).invoke();
3851 >    }
3852 >
3853 >    /**
3854 >     * Returns the result of accumulating all keys using the given
3855 >     * reducer to combine values, or null if none.
3856 >     *
3857 >     * @param parallelismThreshold the (estimated) number of elements
3858 >     * needed for this operation to be executed in parallel
3859 >     * @param reducer a commutative associative combining function
3860 >     * @return the result of accumulating all keys using the given
3861 >     * reducer to combine values, or null if none
3862 >     * @since 1.8
3863 >     */
3864 >    public K reduceKeys(long parallelismThreshold,
3865 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3866 >        if (reducer == null) throw new NullPointerException();
3867 >        return new ReduceKeysTask<K,V>
3868 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3869 >             null, reducer).invoke();
3870 >    }
3871 >
3872 >    /**
3873 >     * Returns the result of accumulating the given transformation
3874 >     * of all keys using the given reducer to combine values, or
3875 >     * null if none.
3876 >     *
3877 >     * @param parallelismThreshold the (estimated) number of elements
3878 >     * needed for this operation to be executed in parallel
3879 >     * @param transformer a function returning the transformation
3880 >     * for an element, or null if there is no transformation (in
3881 >     * which case it is not combined)
3882 >     * @param reducer a commutative associative combining function
3883 >     * @param <U> the return type of the transformer
3884 >     * @return the result of accumulating the given transformation
3885 >     * of all keys
3886 >     * @since 1.8
3887 >     */
3888 >    public <U> U reduceKeys(long parallelismThreshold,
3889 >                            Function<? super K, ? extends U> transformer,
3890 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3891 >        if (transformer == null || reducer == null)
3892 >            throw new NullPointerException();
3893 >        return new MapReduceKeysTask<K,V,U>
3894 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3895 >             null, transformer, reducer).invoke();
3896 >    }
3897 >
3898 >    /**
3899 >     * Returns the result of accumulating the given transformation
3900 >     * of all keys using the given reducer to combine values, and
3901 >     * the given basis as an identity value.
3902 >     *
3903 >     * @param parallelismThreshold the (estimated) number of elements
3904 >     * needed for this operation to be executed in parallel
3905 >     * @param transformer a function returning the transformation
3906 >     * for an element
3907 >     * @param basis the identity (initial default value) for the reduction
3908 >     * @param reducer a commutative associative combining function
3909 >     * @return the result of accumulating the given transformation
3910 >     * of all keys
3911 >     * @since 1.8
3912 >     */
3913 >    public double reduceKeysToDouble(long parallelismThreshold,
3914 >                                     ToDoubleFunction<? super K> transformer,
3915 >                                     double basis,
3916 >                                     DoubleBinaryOperator reducer) {
3917 >        if (transformer == null || reducer == null)
3918 >            throw new NullPointerException();
3919 >        return new MapReduceKeysToDoubleTask<K,V>
3920 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3921 >             null, transformer, basis, reducer).invoke();
3922 >    }
3923 >
3924 >    /**
3925 >     * Returns the result of accumulating the given transformation
3926 >     * of all keys using the given reducer to combine values, and
3927 >     * the given basis as an identity value.
3928 >     *
3929 >     * @param parallelismThreshold the (estimated) number of elements
3930 >     * needed for this operation to be executed in parallel
3931 >     * @param transformer a function returning the transformation
3932 >     * for an element
3933 >     * @param basis the identity (initial default value) for the reduction
3934 >     * @param reducer a commutative associative combining function
3935 >     * @return the result of accumulating the given transformation
3936 >     * of all keys
3937 >     * @since 1.8
3938 >     */
3939 >    public long reduceKeysToLong(long parallelismThreshold,
3940 >                                 ToLongFunction<? super K> transformer,
3941 >                                 long basis,
3942 >                                 LongBinaryOperator reducer) {
3943 >        if (transformer == null || reducer == null)
3944 >            throw new NullPointerException();
3945 >        return new MapReduceKeysToLongTask<K,V>
3946 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3947 >             null, transformer, basis, reducer).invoke();
3948 >    }
3949 >
3950 >    /**
3951 >     * Returns the result of accumulating the given transformation
3952 >     * of all keys using the given reducer to combine values, and
3953 >     * the given basis as an identity value.
3954 >     *
3955 >     * @param parallelismThreshold the (estimated) number of elements
3956 >     * needed for this operation to be executed in parallel
3957 >     * @param transformer a function returning the transformation
3958 >     * for an element
3959 >     * @param basis the identity (initial default value) for the reduction
3960 >     * @param reducer a commutative associative combining function
3961 >     * @return the result of accumulating the given transformation
3962 >     * of all keys
3963 >     * @since 1.8
3964 >     */
3965 >    public int reduceKeysToInt(long parallelismThreshold,
3966 >                               ToIntFunction<? super K> transformer,
3967 >                               int basis,
3968 >                               IntBinaryOperator reducer) {
3969 >        if (transformer == null || reducer == null)
3970 >            throw new NullPointerException();
3971 >        return new MapReduceKeysToIntTask<K,V>
3972 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3973 >             null, transformer, basis, reducer).invoke();
3974 >    }
3975 >
3976 >    /**
3977 >     * Performs the given action for each value.
3978 >     *
3979 >     * @param parallelismThreshold the (estimated) number of elements
3980 >     * needed for this operation to be executed in parallel
3981 >     * @param action the action
3982 >     * @since 1.8
3983 >     */
3984 >    public void forEachValue(long parallelismThreshold,
3985 >                             Consumer<? super V> action) {
3986 >        if (action == null)
3987 >            throw new NullPointerException();
3988 >        new ForEachValueTask<K,V>
3989 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3990 >             action).invoke();
3991 >    }
3992 >
3993 >    /**
3994 >     * Performs the given action for each non-null transformation
3995 >     * of each value.
3996 >     *
3997 >     * @param parallelismThreshold the (estimated) number of elements
3998 >     * needed for this operation to be executed in parallel
3999 >     * @param transformer a function returning the transformation
4000 >     * for an element, or null if there is no transformation (in
4001 >     * which case the action is not applied)
4002 >     * @param action the action
4003 >     * @param <U> the return type of the transformer
4004 >     * @since 1.8
4005 >     */
4006 >    public <U> void forEachValue(long parallelismThreshold,
4007 >                                 Function<? super V, ? extends U> transformer,
4008 >                                 Consumer<? super U> action) {
4009 >        if (transformer == null || action == null)
4010 >            throw new NullPointerException();
4011 >        new ForEachTransformedValueTask<K,V,U>
4012 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4013 >             transformer, action).invoke();
4014 >    }
4015 >
4016 >    /**
4017 >     * Returns a non-null result from applying the given search
4018 >     * function on each value, or null if none.  Upon success,
4019 >     * further element processing is suppressed and the results of
4020 >     * any other parallel invocations of the search function are
4021 >     * ignored.
4022 >     *
4023 >     * @param parallelismThreshold the (estimated) number of elements
4024 >     * needed for this operation to be executed in parallel
4025 >     * @param searchFunction a function returning a non-null
4026 >     * result on success, else null
4027 >     * @param <U> the return type of the search function
4028 >     * @return a non-null result from applying the given search
4029 >     * function on each value, or null if none
4030 >     * @since 1.8
4031 >     */
4032 >    public <U> U searchValues(long parallelismThreshold,
4033 >                              Function<? super V, ? extends U> searchFunction) {
4034 >        if (searchFunction == null) throw new NullPointerException();
4035 >        return new SearchValuesTask<K,V,U>
4036 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4037 >             searchFunction, new AtomicReference<U>()).invoke();
4038 >    }
4039 >
4040 >    /**
4041 >     * Returns the result of accumulating all values using the
4042 >     * given reducer to combine values, or null if none.
4043 >     *
4044 >     * @param parallelismThreshold the (estimated) number of elements
4045 >     * needed for this operation to be executed in parallel
4046 >     * @param reducer a commutative associative combining function
4047 >     * @return the result of accumulating all values
4048 >     * @since 1.8
4049 >     */
4050 >    public V reduceValues(long parallelismThreshold,
4051 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4052 >        if (reducer == null) throw new NullPointerException();
4053 >        return new ReduceValuesTask<K,V>
4054 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4055 >             null, reducer).invoke();
4056 >    }
4057 >
4058 >    /**
4059 >     * Returns the result of accumulating the given transformation
4060 >     * of all values using the given reducer to combine values, or
4061 >     * null if none.
4062 >     *
4063 >     * @param parallelismThreshold the (estimated) number of elements
4064 >     * needed for this operation to be executed in parallel
4065 >     * @param transformer a function returning the transformation
4066 >     * for an element, or null if there is no transformation (in
4067 >     * which case it is not combined)
4068 >     * @param reducer a commutative associative combining function
4069 >     * @param <U> the return type of the transformer
4070 >     * @return the result of accumulating the given transformation
4071 >     * of all values
4072 >     * @since 1.8
4073 >     */
4074 >    public <U> U reduceValues(long parallelismThreshold,
4075 >                              Function<? super V, ? extends U> transformer,
4076 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4077 >        if (transformer == null || reducer == null)
4078 >            throw new NullPointerException();
4079 >        return new MapReduceValuesTask<K,V,U>
4080 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4081 >             null, transformer, reducer).invoke();
4082 >    }
4083 >
4084 >    /**
4085 >     * Returns the result of accumulating the given transformation
4086 >     * of all values using the given reducer to combine values,
4087 >     * and the given basis as an identity value.
4088 >     *
4089 >     * @param parallelismThreshold the (estimated) number of elements
4090 >     * needed for this operation to be executed in parallel
4091 >     * @param transformer a function returning the transformation
4092 >     * for an element
4093 >     * @param basis the identity (initial default value) for the reduction
4094 >     * @param reducer a commutative associative combining function
4095 >     * @return the result of accumulating the given transformation
4096 >     * of all values
4097 >     * @since 1.8
4098 >     */
4099 >    public double reduceValuesToDouble(long parallelismThreshold,
4100 >                                       ToDoubleFunction<? super V> transformer,
4101 >                                       double basis,
4102 >                                       DoubleBinaryOperator reducer) {
4103 >        if (transformer == null || reducer == null)
4104 >            throw new NullPointerException();
4105 >        return new MapReduceValuesToDoubleTask<K,V>
4106 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4107 >             null, transformer, basis, reducer).invoke();
4108 >    }
4109 >
4110 >    /**
4111 >     * Returns the result of accumulating the given transformation
4112 >     * of all values using the given reducer to combine values,
4113 >     * and the given basis as an identity value.
4114 >     *
4115 >     * @param parallelismThreshold the (estimated) number of elements
4116 >     * needed for this operation to be executed in parallel
4117 >     * @param transformer a function returning the transformation
4118 >     * for an element
4119 >     * @param basis the identity (initial default value) for the reduction
4120 >     * @param reducer a commutative associative combining function
4121 >     * @return the result of accumulating the given transformation
4122 >     * of all values
4123 >     * @since 1.8
4124 >     */
4125 >    public long reduceValuesToLong(long parallelismThreshold,
4126 >                                   ToLongFunction<? super V> transformer,
4127 >                                   long basis,
4128 >                                   LongBinaryOperator reducer) {
4129 >        if (transformer == null || reducer == null)
4130 >            throw new NullPointerException();
4131 >        return new MapReduceValuesToLongTask<K,V>
4132 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4133 >             null, transformer, basis, reducer).invoke();
4134 >    }
4135 >
4136 >    /**
4137 >     * Returns the result of accumulating the given transformation
4138 >     * of all values using the given reducer to combine values,
4139 >     * and the given basis as an identity value.
4140 >     *
4141 >     * @param parallelismThreshold the (estimated) number of elements
4142 >     * needed for this operation to be executed in parallel
4143 >     * @param transformer a function returning the transformation
4144 >     * for an element
4145 >     * @param basis the identity (initial default value) for the reduction
4146 >     * @param reducer a commutative associative combining function
4147 >     * @return the result of accumulating the given transformation
4148 >     * of all values
4149 >     * @since 1.8
4150 >     */
4151 >    public int reduceValuesToInt(long parallelismThreshold,
4152 >                                 ToIntFunction<? super V> transformer,
4153 >                                 int basis,
4154 >                                 IntBinaryOperator reducer) {
4155 >        if (transformer == null || reducer == null)
4156 >            throw new NullPointerException();
4157 >        return new MapReduceValuesToIntTask<K,V>
4158 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4159 >             null, transformer, basis, reducer).invoke();
4160 >    }
4161 >
4162 >    /**
4163 >     * Performs the given action for each entry.
4164 >     *
4165 >     * @param parallelismThreshold the (estimated) number of elements
4166 >     * needed for this operation to be executed in parallel
4167 >     * @param action the action
4168 >     * @since 1.8
4169 >     */
4170 >    public void forEachEntry(long parallelismThreshold,
4171 >                             Consumer<? super Map.Entry<K,V>> action) {
4172 >        if (action == null) throw new NullPointerException();
4173 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4174 >                                  action).invoke();
4175 >    }
4176 >
4177 >    /**
4178 >     * Performs the given action for each non-null transformation
4179 >     * of each entry.
4180 >     *
4181 >     * @param parallelismThreshold the (estimated) number of elements
4182 >     * needed for this operation to be executed in parallel
4183 >     * @param transformer a function returning the transformation
4184 >     * for an element, or null if there is no transformation (in
4185 >     * which case the action is not applied)
4186 >     * @param action the action
4187 >     * @param <U> the return type of the transformer
4188 >     * @since 1.8
4189 >     */
4190 >    public <U> void forEachEntry(long parallelismThreshold,
4191 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4192 >                                 Consumer<? super U> action) {
4193 >        if (transformer == null || action == null)
4194 >            throw new NullPointerException();
4195 >        new ForEachTransformedEntryTask<K,V,U>
4196 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4197 >             transformer, action).invoke();
4198 >    }
4199 >
4200 >    /**
4201 >     * Returns a non-null result from applying the given search
4202 >     * function on each entry, or null if none.  Upon success,
4203 >     * further element processing is suppressed and the results of
4204 >     * any other parallel invocations of the search function are
4205 >     * ignored.
4206 >     *
4207 >     * @param parallelismThreshold the (estimated) number of elements
4208 >     * needed for this operation to be executed in parallel
4209 >     * @param searchFunction a function returning a non-null
4210 >     * result on success, else null
4211 >     * @param <U> the return type of the search function
4212 >     * @return a non-null result from applying the given search
4213 >     * function on each entry, or null if none
4214 >     * @since 1.8
4215 >     */
4216 >    public <U> U searchEntries(long parallelismThreshold,
4217 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4218 >        if (searchFunction == null) throw new NullPointerException();
4219 >        return new SearchEntriesTask<K,V,U>
4220 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4221 >             searchFunction, new AtomicReference<U>()).invoke();
4222 >    }
4223 >
4224 >    /**
4225 >     * Returns the result of accumulating all entries using the
4226 >     * given reducer to combine values, or null if none.
4227 >     *
4228 >     * @param parallelismThreshold the (estimated) number of elements
4229 >     * needed for this operation to be executed in parallel
4230 >     * @param reducer a commutative associative combining function
4231 >     * @return the result of accumulating all entries
4232 >     * @since 1.8
4233 >     */
4234 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4235 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4236 >        if (reducer == null) throw new NullPointerException();
4237 >        return new ReduceEntriesTask<K,V>
4238 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4239 >             null, reducer).invoke();
4240 >    }
4241 >
4242 >    /**
4243 >     * Returns the result of accumulating the given transformation
4244 >     * of all entries using the given reducer to combine values,
4245 >     * or null if none.
4246 >     *
4247 >     * @param parallelismThreshold the (estimated) number of elements
4248 >     * needed for this operation to be executed in parallel
4249 >     * @param transformer a function returning the transformation
4250 >     * for an element, or null if there is no transformation (in
4251 >     * which case it is not combined)
4252 >     * @param reducer a commutative associative combining function
4253 >     * @param <U> the return type of the transformer
4254 >     * @return the result of accumulating the given transformation
4255 >     * of all entries
4256 >     * @since 1.8
4257 >     */
4258 >    public <U> U reduceEntries(long parallelismThreshold,
4259 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4260 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4261 >        if (transformer == null || reducer == null)
4262 >            throw new NullPointerException();
4263 >        return new MapReduceEntriesTask<K,V,U>
4264 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4265 >             null, transformer, reducer).invoke();
4266 >    }
4267 >
4268 >    /**
4269 >     * Returns the result of accumulating the given transformation
4270 >     * of all entries using the given reducer to combine values,
4271 >     * and the given basis as an identity value.
4272 >     *
4273 >     * @param parallelismThreshold the (estimated) number of elements
4274 >     * needed for this operation to be executed in parallel
4275 >     * @param transformer a function returning the transformation
4276 >     * for an element
4277 >     * @param basis the identity (initial default value) for the reduction
4278 >     * @param reducer a commutative associative combining function
4279 >     * @return the result of accumulating the given transformation
4280 >     * of all entries
4281 >     * @since 1.8
4282 >     */
4283 >    public double reduceEntriesToDouble(long parallelismThreshold,
4284 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4285 >                                        double basis,
4286 >                                        DoubleBinaryOperator reducer) {
4287 >        if (transformer == null || reducer == null)
4288 >            throw new NullPointerException();
4289 >        return new MapReduceEntriesToDoubleTask<K,V>
4290 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4291 >             null, transformer, basis, reducer).invoke();
4292 >    }
4293 >
4294 >    /**
4295 >     * Returns the result of accumulating the given transformation
4296 >     * of all entries using the given reducer to combine values,
4297 >     * and the given basis as an identity value.
4298 >     *
4299 >     * @param parallelismThreshold the (estimated) number of elements
4300 >     * needed for this operation to be executed in parallel
4301 >     * @param transformer a function returning the transformation
4302 >     * for an element
4303 >     * @param basis the identity (initial default value) for the reduction
4304 >     * @param reducer a commutative associative combining function
4305 >     * @return the result of accumulating the given transformation
4306 >     * of all entries
4307 >     * @since 1.8
4308 >     */
4309 >    public long reduceEntriesToLong(long parallelismThreshold,
4310 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4311 >                                    long basis,
4312 >                                    LongBinaryOperator reducer) {
4313 >        if (transformer == null || reducer == null)
4314 >            throw new NullPointerException();
4315 >        return new MapReduceEntriesToLongTask<K,V>
4316 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4317 >             null, transformer, basis, reducer).invoke();
4318 >    }
4319 >
4320 >    /**
4321 >     * Returns the result of accumulating the given transformation
4322 >     * of all entries using the given reducer to combine values,
4323 >     * and the given basis as an identity value.
4324 >     *
4325 >     * @param parallelismThreshold the (estimated) number of elements
4326 >     * needed for this operation to be executed in parallel
4327 >     * @param transformer a function returning the transformation
4328 >     * for an element
4329 >     * @param basis the identity (initial default value) for the reduction
4330 >     * @param reducer a commutative associative combining function
4331 >     * @return the result of accumulating the given transformation
4332 >     * of all entries
4333 >     * @since 1.8
4334 >     */
4335 >    public int reduceEntriesToInt(long parallelismThreshold,
4336 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4337 >                                  int basis,
4338 >                                  IntBinaryOperator reducer) {
4339 >        if (transformer == null || reducer == null)
4340 >            throw new NullPointerException();
4341 >        return new MapReduceEntriesToIntTask<K,V>
4342 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4343 >             null, transformer, basis, reducer).invoke();
4344 >    }
4345 >
4346 >
4347 >    /* ----------------Views -------------- */
4348 >
4349 >    /**
4350 >     * Base class for views.
4351 >     */
4352 >    abstract static class CollectionView<K,V,E>
4353 >        implements Collection<E>, java.io.Serializable {
4354 >        private static final long serialVersionUID = 7249069246763182397L;
4355 >        final ConcurrentHashMap<K,V> map;
4356 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4357 >
4358 >        /**
4359 >         * Returns the map backing this view.
4360 >         *
4361 >         * @return the map backing this view
4362 >         */
4363 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4364 >
4365 >        /**
4366 >         * Removes all of the elements from this view, by removing all
4367 >         * the mappings from the map backing this view.
4368 >         */
4369 >        public final void clear()      { map.clear(); }
4370 >        public final int size()        { return map.size(); }
4371 >        public final boolean isEmpty() { return map.isEmpty(); }
4372 >
4373 >        // implementations below rely on concrete classes supplying these
4374 >        // abstract methods
4375 >        /**
4376 >         * Returns an iterator over the elements in this collection.
4377 >         *
4378 >         * <p>The returned iterator is
4379 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4380 >         *
4381 >         * @return an iterator over the elements in this collection
4382 >         */
4383 >        public abstract Iterator<E> iterator();
4384 >        public abstract boolean contains(Object o);
4385 >        public abstract boolean remove(Object o);
4386 >
4387 >        private static final String oomeMsg = "Required array size too large";
4388 >
4389 >        public final Object[] toArray() {
4390 >            long sz = map.mappingCount();
4391 >            if (sz > MAX_ARRAY_SIZE)
4392 >                throw new OutOfMemoryError(oomeMsg);
4393 >            int n = (int)sz;
4394 >            Object[] r = new Object[n];
4395 >            int i = 0;
4396 >            for (E e : this) {
4397 >                if (i == n) {
4398 >                    if (n >= MAX_ARRAY_SIZE)
4399 >                        throw new OutOfMemoryError(oomeMsg);
4400 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4401 >                        n = MAX_ARRAY_SIZE;
4402 >                    else
4403 >                        n += (n >>> 1) + 1;
4404 >                    r = Arrays.copyOf(r, n);
4405 >                }
4406 >                r[i++] = e;
4407 >            }
4408 >            return (i == n) ? r : Arrays.copyOf(r, i);
4409 >        }
4410 >
4411 >        @SuppressWarnings("unchecked")
4412 >        public final <T> T[] toArray(T[] a) {
4413 >            long sz = map.mappingCount();
4414 >            if (sz > MAX_ARRAY_SIZE)
4415 >                throw new OutOfMemoryError(oomeMsg);
4416 >            int m = (int)sz;
4417 >            T[] r = (a.length >= m) ? a :
4418 >                (T[])java.lang.reflect.Array
4419 >                .newInstance(a.getClass().getComponentType(), m);
4420 >            int n = r.length;
4421 >            int i = 0;
4422 >            for (E e : this) {
4423 >                if (i == n) {
4424 >                    if (n >= MAX_ARRAY_SIZE)
4425 >                        throw new OutOfMemoryError(oomeMsg);
4426 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4427 >                        n = MAX_ARRAY_SIZE;
4428 >                    else
4429 >                        n += (n >>> 1) + 1;
4430 >                    r = Arrays.copyOf(r, n);
4431 >                }
4432 >                r[i++] = (T)e;
4433 >            }
4434 >            if (a == r && i < n) {
4435 >                r[i] = null; // null-terminate
4436 >                return r;
4437 >            }
4438 >            return (i == n) ? r : Arrays.copyOf(r, i);
4439 >        }
4440 >
4441 >        /**
4442 >         * Returns a string representation of this collection.
4443 >         * The string representation consists of the string representations
4444 >         * of the collection's elements in the order they are returned by
4445 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4446 >         * Adjacent elements are separated by the characters {@code ", "}
4447 >         * (comma and space).  Elements are converted to strings as by
4448 >         * {@link String#valueOf(Object)}.
4449 >         *
4450 >         * @return a string representation of this collection
4451 >         */
4452 >        public final String toString() {
4453 >            StringBuilder sb = new StringBuilder();
4454 >            sb.append('[');
4455 >            Iterator<E> it = iterator();
4456 >            if (it.hasNext()) {
4457 >                for (;;) {
4458 >                    Object e = it.next();
4459 >                    sb.append(e == this ? "(this Collection)" : e);
4460 >                    if (!it.hasNext())
4461 >                        break;
4462 >                    sb.append(',').append(' ');
4463 >                }
4464 >            }
4465 >            return sb.append(']').toString();
4466 >        }
4467 >
4468 >        public final boolean containsAll(Collection<?> c) {
4469 >            if (c != this) {
4470 >                for (Object e : c) {
4471 >                    if (e == null || !contains(e))
4472 >                        return false;
4473 >                }
4474 >            }
4475 >            return true;
4476 >        }
4477 >
4478 >        public final boolean removeAll(Collection<?> c) {
4479 >            if (c == null) throw new NullPointerException();
4480 >            boolean modified = false;
4481 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4482 >                if (c.contains(it.next())) {
4483 >                    it.remove();
4484 >                    modified = true;
4485 >                }
4486 >            }
4487 >            return modified;
4488 >        }
4489 >
4490 >        public final boolean retainAll(Collection<?> c) {
4491 >            if (c == null) throw new NullPointerException();
4492 >            boolean modified = false;
4493 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4494 >                if (!c.contains(it.next())) {
4495 >                    it.remove();
4496 >                    modified = true;
4497 >                }
4498 >            }
4499 >            return modified;
4500          }
4501 +
4502      }
4503  
4504 <    final class Values extends AbstractCollection<V> {
4505 <        public Iterator<V> iterator() {
4506 <            return new ValueIterator();
4504 >    /**
4505 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4506 >     * which additions may optionally be enabled by mapping to a
4507 >     * common value.  This class cannot be directly instantiated.
4508 >     * See {@link #keySet() keySet()},
4509 >     * {@link #keySet(Object) keySet(V)},
4510 >     * {@link #newKeySet() newKeySet()},
4511 >     * {@link #newKeySet(int) newKeySet(int)}.
4512 >     *
4513 >     * @since 1.8
4514 >     */
4515 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4516 >        implements Set<K>, java.io.Serializable {
4517 >        private static final long serialVersionUID = 7249069246763182397L;
4518 >        private final V value;
4519 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4520 >            super(map);
4521 >            this.value = value;
4522          }
4523 <        public int size() {
4524 <            return ConcurrentHashMap.this.size();
4523 >
4524 >        /**
4525 >         * Returns the default mapped value for additions,
4526 >         * or {@code null} if additions are not supported.
4527 >         *
4528 >         * @return the default mapped value for additions, or {@code null}
4529 >         * if not supported
4530 >         */
4531 >        public V getMappedValue() { return value; }
4532 >
4533 >        /**
4534 >         * {@inheritDoc}
4535 >         * @throws NullPointerException if the specified key is null
4536 >         */
4537 >        public boolean contains(Object o) { return map.containsKey(o); }
4538 >
4539 >        /**
4540 >         * Removes the key from this map view, by removing the key (and its
4541 >         * corresponding value) from the backing map.  This method does
4542 >         * nothing if the key is not in the map.
4543 >         *
4544 >         * @param  o the key to be removed from the backing map
4545 >         * @return {@code true} if the backing map contained the specified key
4546 >         * @throws NullPointerException if the specified key is null
4547 >         */
4548 >        public boolean remove(Object o) { return map.remove(o) != null; }
4549 >
4550 >        /**
4551 >         * @return an iterator over the keys of the backing map
4552 >         */
4553 >        public Iterator<K> iterator() {
4554 >            Node<K,V>[] t;
4555 >            ConcurrentHashMap<K,V> m = map;
4556 >            int f = (t = m.table) == null ? 0 : t.length;
4557 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4558          }
4559 <        public boolean contains(Object o) {
4560 <            return ConcurrentHashMap.this.containsValue(o);
4559 >
4560 >        /**
4561 >         * Adds the specified key to this set view by mapping the key to
4562 >         * the default mapped value in the backing map, if defined.
4563 >         *
4564 >         * @param e key to be added
4565 >         * @return {@code true} if this set changed as a result of the call
4566 >         * @throws NullPointerException if the specified key is null
4567 >         * @throws UnsupportedOperationException if no default mapped value
4568 >         * for additions was provided
4569 >         */
4570 >        public boolean add(K e) {
4571 >            V v;
4572 >            if ((v = value) == null)
4573 >                throw new UnsupportedOperationException();
4574 >            return map.putVal(e, v, true) == null;
4575 >        }
4576 >
4577 >        /**
4578 >         * Adds all of the elements in the specified collection to this set,
4579 >         * as if by calling {@link #add} on each one.
4580 >         *
4581 >         * @param c the elements to be inserted into this set
4582 >         * @return {@code true} if this set changed as a result of the call
4583 >         * @throws NullPointerException if the collection or any of its
4584 >         * elements are {@code null}
4585 >         * @throws UnsupportedOperationException if no default mapped value
4586 >         * for additions was provided
4587 >         */
4588 >        public boolean addAll(Collection<? extends K> c) {
4589 >            boolean added = false;
4590 >            V v;
4591 >            if ((v = value) == null)
4592 >                throw new UnsupportedOperationException();
4593 >            for (K e : c) {
4594 >                if (map.putVal(e, v, true) == null)
4595 >                    added = true;
4596 >            }
4597 >            return added;
4598          }
4599 <        public void clear() {
4600 <            ConcurrentHashMap.this.clear();
4599 >
4600 >        public int hashCode() {
4601 >            int h = 0;
4602 >            for (K e : this)
4603 >                h += e.hashCode();
4604 >            return h;
4605 >        }
4606 >
4607 >        public boolean equals(Object o) {
4608 >            Set<?> c;
4609 >            return ((o instanceof Set) &&
4610 >                    ((c = (Set<?>)o) == this ||
4611 >                     (containsAll(c) && c.containsAll(this))));
4612 >        }
4613 >
4614 >        public Spliterator<K> spliterator() {
4615 >            Node<K,V>[] t;
4616 >            ConcurrentHashMap<K,V> m = map;
4617 >            long n = m.sumCount();
4618 >            int f = (t = m.table) == null ? 0 : t.length;
4619 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4620 >        }
4621 >
4622 >        public void forEach(Consumer<? super K> action) {
4623 >            if (action == null) throw new NullPointerException();
4624 >            Node<K,V>[] t;
4625 >            if ((t = map.table) != null) {
4626 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4627 >                for (Node<K,V> p; (p = it.advance()) != null; )
4628 >                    action.accept(p.key);
4629 >            }
4630          }
4631      }
4632  
4633 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4634 <        public Iterator<Map.Entry<K,V>> iterator() {
4635 <            return new EntryIterator();
4633 >    /**
4634 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4635 >     * values, in which additions are disabled. This class cannot be
4636 >     * directly instantiated. See {@link #values()}.
4637 >     */
4638 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4639 >        implements Collection<V>, java.io.Serializable {
4640 >        private static final long serialVersionUID = 2249069246763182397L;
4641 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4642 >        public final boolean contains(Object o) {
4643 >            return map.containsValue(o);
4644          }
4645 +
4646 +        public final boolean remove(Object o) {
4647 +            if (o != null) {
4648 +                for (Iterator<V> it = iterator(); it.hasNext();) {
4649 +                    if (o.equals(it.next())) {
4650 +                        it.remove();
4651 +                        return true;
4652 +                    }
4653 +                }
4654 +            }
4655 +            return false;
4656 +        }
4657 +
4658 +        public final Iterator<V> iterator() {
4659 +            ConcurrentHashMap<K,V> m = map;
4660 +            Node<K,V>[] t;
4661 +            int f = (t = m.table) == null ? 0 : t.length;
4662 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4663 +        }
4664 +
4665 +        public final boolean add(V e) {
4666 +            throw new UnsupportedOperationException();
4667 +        }
4668 +        public final boolean addAll(Collection<? extends V> c) {
4669 +            throw new UnsupportedOperationException();
4670 +        }
4671 +
4672 +        public Spliterator<V> spliterator() {
4673 +            Node<K,V>[] t;
4674 +            ConcurrentHashMap<K,V> m = map;
4675 +            long n = m.sumCount();
4676 +            int f = (t = m.table) == null ? 0 : t.length;
4677 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4678 +        }
4679 +
4680 +        public void forEach(Consumer<? super V> action) {
4681 +            if (action == null) throw new NullPointerException();
4682 +            Node<K,V>[] t;
4683 +            if ((t = map.table) != null) {
4684 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4685 +                for (Node<K,V> p; (p = it.advance()) != null; )
4686 +                    action.accept(p.val);
4687 +            }
4688 +        }
4689 +    }
4690 +
4691 +    /**
4692 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4693 +     * entries.  This class cannot be directly instantiated. See
4694 +     * {@link #entrySet()}.
4695 +     */
4696 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4697 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4698 +        private static final long serialVersionUID = 2249069246763182397L;
4699 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4700 +
4701          public boolean contains(Object o) {
4702 <            if (!(o instanceof Map.Entry))
4703 <                return false;
4704 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4705 <            V v = ConcurrentHashMap.this.get(e.getKey());
4706 <            return v != null && v.equals(e.getValue());
4702 >            Object k, v, r; Map.Entry<?,?> e;
4703 >            return ((o instanceof Map.Entry) &&
4704 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4705 >                    (r = map.get(k)) != null &&
4706 >                    (v = e.getValue()) != null &&
4707 >                    (v == r || v.equals(r)));
4708          }
4709 +
4710          public boolean remove(Object o) {
4711 <            if (!(o instanceof Map.Entry))
4712 <                return false;
4713 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4714 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4711 >            Object k, v; Map.Entry<?,?> e;
4712 >            return ((o instanceof Map.Entry) &&
4713 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4714 >                    (v = e.getValue()) != null &&
4715 >                    map.remove(k, v));
4716          }
4717 <        public int size() {
4718 <            return ConcurrentHashMap.this.size();
4717 >
4718 >        /**
4719 >         * @return an iterator over the entries of the backing map
4720 >         */
4721 >        public Iterator<Map.Entry<K,V>> iterator() {
4722 >            ConcurrentHashMap<K,V> m = map;
4723 >            Node<K,V>[] t;
4724 >            int f = (t = m.table) == null ? 0 : t.length;
4725 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4726 >        }
4727 >
4728 >        public boolean add(Entry<K,V> e) {
4729 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4730 >        }
4731 >
4732 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4733 >            boolean added = false;
4734 >            for (Entry<K,V> e : c) {
4735 >                if (add(e))
4736 >                    added = true;
4737 >            }
4738 >            return added;
4739 >        }
4740 >
4741 >        public final int hashCode() {
4742 >            int h = 0;
4743 >            Node<K,V>[] t;
4744 >            if ((t = map.table) != null) {
4745 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4746 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4747 >                    h += p.hashCode();
4748 >                }
4749 >            }
4750 >            return h;
4751          }
4752 <        public void clear() {
4753 <            ConcurrentHashMap.this.clear();
4752 >
4753 >        public final boolean equals(Object o) {
4754 >            Set<?> c;
4755 >            return ((o instanceof Set) &&
4756 >                    ((c = (Set<?>)o) == this ||
4757 >                     (containsAll(c) && c.containsAll(this))));
4758 >        }
4759 >
4760 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4761 >            Node<K,V>[] t;
4762 >            ConcurrentHashMap<K,V> m = map;
4763 >            long n = m.sumCount();
4764 >            int f = (t = m.table) == null ? 0 : t.length;
4765 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4766 >        }
4767 >
4768 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4769 >            if (action == null) throw new NullPointerException();
4770 >            Node<K,V>[] t;
4771 >            if ((t = map.table) != null) {
4772 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4773 >                for (Node<K,V> p; (p = it.advance()) != null; )
4774 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4775 >            }
4776          }
4777 +
4778      }
4779  
4780 <    /* ---------------- Serialization Support -------------- */
4780 >    // -------------------------------------------------------
4781  
4782      /**
4783 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
4784 <     * stream (i.e., serialize it).
1226 <     * @param s the stream
1227 <     * @serialData
1228 <     * the key (Object) and value (Object)
1229 <     * for each key-value mapping, followed by a null pair.
1230 <     * The key-value mappings are emitted in no particular order.
4783 >     * Base class for bulk tasks. Repeats some fields and code from
4784 >     * class Traverser, because we need to subclass CountedCompleter.
4785       */
4786 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
4787 <        s.defaultWriteObject();
4786 >    @SuppressWarnings("serial")
4787 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4788 >        Node<K,V>[] tab;        // same as Traverser
4789 >        Node<K,V> next;
4790 >        TableStack<K,V> stack, spare;
4791 >        int index;
4792 >        int baseIndex;
4793 >        int baseLimit;
4794 >        final int baseSize;
4795 >        int batch;              // split control
4796 >
4797 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4798 >            super(par);
4799 >            this.batch = b;
4800 >            this.index = this.baseIndex = i;
4801 >            if ((this.tab = t) == null)
4802 >                this.baseSize = this.baseLimit = 0;
4803 >            else if (par == null)
4804 >                this.baseSize = this.baseLimit = t.length;
4805 >            else {
4806 >                this.baseLimit = f;
4807 >                this.baseSize = par.baseSize;
4808 >            }
4809 >        }
4810  
4811 <        for (int k = 0; k < segments.length; ++k) {
4812 <            Segment<K,V> seg = segments[k];
4813 <            seg.lock();
4814 <            try {
4815 <                HashEntry<K,V>[] tab = seg.table;
4816 <                for (int i = 0; i < tab.length; ++i) {
4817 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
4818 <                        s.writeObject(e.key);
4819 <                        s.writeObject(e.value);
4811 >        /**
4812 >         * Same as Traverser version
4813 >         */
4814 >        final Node<K,V> advance() {
4815 >            Node<K,V> e;
4816 >            if ((e = next) != null)
4817 >                e = e.next;
4818 >            for (;;) {
4819 >                Node<K,V>[] t; int i, n;
4820 >                if (e != null)
4821 >                    return next = e;
4822 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4823 >                    (n = t.length) <= (i = index) || i < 0)
4824 >                    return next = null;
4825 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4826 >                    if (e instanceof ForwardingNode) {
4827 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4828 >                        e = null;
4829 >                        pushState(t, i, n);
4830 >                        continue;
4831                      }
4832 +                    else if (e instanceof TreeBin)
4833 +                        e = ((TreeBin<K,V>)e).first;
4834 +                    else
4835 +                        e = null;
4836                  }
4837 <            } finally {
4838 <                seg.unlock();
4837 >                if (stack != null)
4838 >                    recoverState(n);
4839 >                else if ((index = i + baseSize) >= n)
4840 >                    index = ++baseIndex;
4841              }
4842          }
4843 <        s.writeObject(null);
4844 <        s.writeObject(null);
4843 >
4844 >        private void pushState(Node<K,V>[] t, int i, int n) {
4845 >            TableStack<K,V> s = spare;
4846 >            if (s != null)
4847 >                spare = s.next;
4848 >            else
4849 >                s = new TableStack<K,V>();
4850 >            s.tab = t;
4851 >            s.length = n;
4852 >            s.index = i;
4853 >            s.next = stack;
4854 >            stack = s;
4855 >        }
4856 >
4857 >        private void recoverState(int n) {
4858 >            TableStack<K,V> s; int len;
4859 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4860 >                n = len;
4861 >                index = s.index;
4862 >                tab = s.tab;
4863 >                s.tab = null;
4864 >                TableStack<K,V> next = s.next;
4865 >                s.next = spare; // save for reuse
4866 >                stack = next;
4867 >                spare = s;
4868 >            }
4869 >            if (s == null && (index += baseSize) >= n)
4870 >                index = ++baseIndex;
4871 >        }
4872      }
4873  
4874 <    /**
4875 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
4876 <     * stream (i.e., deserialize it).
4877 <     * @param s the stream
4878 <     */
4879 <    private void readObject(java.io.ObjectInputStream s)
4880 <        throws IOException, ClassNotFoundException  {
4881 <        s.defaultReadObject();
4874 >    /*
4875 >     * Task classes. Coded in a regular but ugly format/style to
4876 >     * simplify checks that each variant differs in the right way from
4877 >     * others. The null screenings exist because compilers cannot tell
4878 >     * that we've already null-checked task arguments, so we force
4879 >     * simplest hoisted bypass to help avoid convoluted traps.
4880 >     */
4881 >    @SuppressWarnings("serial")
4882 >    static final class ForEachKeyTask<K,V>
4883 >        extends BulkTask<K,V,Void> {
4884 >        final Consumer<? super K> action;
4885 >        ForEachKeyTask
4886 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4887 >             Consumer<? super K> action) {
4888 >            super(p, b, i, f, t);
4889 >            this.action = action;
4890 >        }
4891 >        public final void compute() {
4892 >            final Consumer<? super K> action;
4893 >            if ((action = this.action) != null) {
4894 >                for (int i = baseIndex, f, h; batch > 0 &&
4895 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4896 >                    addToPendingCount(1);
4897 >                    new ForEachKeyTask<K,V>
4898 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4899 >                         action).fork();
4900 >                }
4901 >                for (Node<K,V> p; (p = advance()) != null;)
4902 >                    action.accept(p.key);
4903 >                propagateCompletion();
4904 >            }
4905 >        }
4906 >    }
4907  
4908 <        // Initialize each segment to be minimally sized, and let grow.
4909 <        for (int i = 0; i < segments.length; ++i) {
4910 <            segments[i].setTable(new HashEntry[1]);
4908 >    @SuppressWarnings("serial")
4909 >    static final class ForEachValueTask<K,V>
4910 >        extends BulkTask<K,V,Void> {
4911 >        final Consumer<? super V> action;
4912 >        ForEachValueTask
4913 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4914 >             Consumer<? super V> action) {
4915 >            super(p, b, i, f, t);
4916 >            this.action = action;
4917 >        }
4918 >        public final void compute() {
4919 >            final Consumer<? super V> action;
4920 >            if ((action = this.action) != null) {
4921 >                for (int i = baseIndex, f, h; batch > 0 &&
4922 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4923 >                    addToPendingCount(1);
4924 >                    new ForEachValueTask<K,V>
4925 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4926 >                         action).fork();
4927 >                }
4928 >                for (Node<K,V> p; (p = advance()) != null;)
4929 >                    action.accept(p.val);
4930 >                propagateCompletion();
4931 >            }
4932          }
4933 +    }
4934  
4935 <        // Read the keys and values, and put the mappings in the table
4936 <        for (;;) {
4937 <            K key = (K) s.readObject();
4938 <            V value = (V) s.readObject();
4939 <            if (key == null)
4940 <                break;
4941 <            put(key, value);
4935 >    @SuppressWarnings("serial")
4936 >    static final class ForEachEntryTask<K,V>
4937 >        extends BulkTask<K,V,Void> {
4938 >        final Consumer<? super Entry<K,V>> action;
4939 >        ForEachEntryTask
4940 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4941 >             Consumer<? super Entry<K,V>> action) {
4942 >            super(p, b, i, f, t);
4943 >            this.action = action;
4944 >        }
4945 >        public final void compute() {
4946 >            final Consumer<? super Entry<K,V>> action;
4947 >            if ((action = this.action) != null) {
4948 >                for (int i = baseIndex, f, h; batch > 0 &&
4949 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4950 >                    addToPendingCount(1);
4951 >                    new ForEachEntryTask<K,V>
4952 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4953 >                         action).fork();
4954 >                }
4955 >                for (Node<K,V> p; (p = advance()) != null; )
4956 >                    action.accept(p);
4957 >                propagateCompletion();
4958 >            }
4959 >        }
4960 >    }
4961 >
4962 >    @SuppressWarnings("serial")
4963 >    static final class ForEachMappingTask<K,V>
4964 >        extends BulkTask<K,V,Void> {
4965 >        final BiConsumer<? super K, ? super V> action;
4966 >        ForEachMappingTask
4967 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4968 >             BiConsumer<? super K,? super V> action) {
4969 >            super(p, b, i, f, t);
4970 >            this.action = action;
4971 >        }
4972 >        public final void compute() {
4973 >            final BiConsumer<? super K, ? super V> action;
4974 >            if ((action = this.action) != null) {
4975 >                for (int i = baseIndex, f, h; batch > 0 &&
4976 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4977 >                    addToPendingCount(1);
4978 >                    new ForEachMappingTask<K,V>
4979 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4980 >                         action).fork();
4981 >                }
4982 >                for (Node<K,V> p; (p = advance()) != null; )
4983 >                    action.accept(p.key, p.val);
4984 >                propagateCompletion();
4985 >            }
4986 >        }
4987 >    }
4988 >
4989 >    @SuppressWarnings("serial")
4990 >    static final class ForEachTransformedKeyTask<K,V,U>
4991 >        extends BulkTask<K,V,Void> {
4992 >        final Function<? super K, ? extends U> transformer;
4993 >        final Consumer<? super U> action;
4994 >        ForEachTransformedKeyTask
4995 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4996 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4997 >            super(p, b, i, f, t);
4998 >            this.transformer = transformer; this.action = action;
4999 >        }
5000 >        public final void compute() {
5001 >            final Function<? super K, ? extends U> transformer;
5002 >            final Consumer<? super U> action;
5003 >            if ((transformer = this.transformer) != null &&
5004 >                (action = this.action) != null) {
5005 >                for (int i = baseIndex, f, h; batch > 0 &&
5006 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5007 >                    addToPendingCount(1);
5008 >                    new ForEachTransformedKeyTask<K,V,U>
5009 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5010 >                         transformer, action).fork();
5011 >                }
5012 >                for (Node<K,V> p; (p = advance()) != null; ) {
5013 >                    U u;
5014 >                    if ((u = transformer.apply(p.key)) != null)
5015 >                        action.accept(u);
5016 >                }
5017 >                propagateCompletion();
5018 >            }
5019 >        }
5020 >    }
5021 >
5022 >    @SuppressWarnings("serial")
5023 >    static final class ForEachTransformedValueTask<K,V,U>
5024 >        extends BulkTask<K,V,Void> {
5025 >        final Function<? super V, ? extends U> transformer;
5026 >        final Consumer<? super U> action;
5027 >        ForEachTransformedValueTask
5028 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5029 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5030 >            super(p, b, i, f, t);
5031 >            this.transformer = transformer; this.action = action;
5032 >        }
5033 >        public final void compute() {
5034 >            final Function<? super V, ? extends U> transformer;
5035 >            final Consumer<? super U> action;
5036 >            if ((transformer = this.transformer) != null &&
5037 >                (action = this.action) != null) {
5038 >                for (int i = baseIndex, f, h; batch > 0 &&
5039 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5040 >                    addToPendingCount(1);
5041 >                    new ForEachTransformedValueTask<K,V,U>
5042 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5043 >                         transformer, action).fork();
5044 >                }
5045 >                for (Node<K,V> p; (p = advance()) != null; ) {
5046 >                    U u;
5047 >                    if ((u = transformer.apply(p.val)) != null)
5048 >                        action.accept(u);
5049 >                }
5050 >                propagateCompletion();
5051 >            }
5052 >        }
5053 >    }
5054 >
5055 >    @SuppressWarnings("serial")
5056 >    static final class ForEachTransformedEntryTask<K,V,U>
5057 >        extends BulkTask<K,V,Void> {
5058 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5059 >        final Consumer<? super U> action;
5060 >        ForEachTransformedEntryTask
5061 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5062 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5063 >            super(p, b, i, f, t);
5064 >            this.transformer = transformer; this.action = action;
5065 >        }
5066 >        public final void compute() {
5067 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5068 >            final Consumer<? super U> action;
5069 >            if ((transformer = this.transformer) != null &&
5070 >                (action = this.action) != null) {
5071 >                for (int i = baseIndex, f, h; batch > 0 &&
5072 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5073 >                    addToPendingCount(1);
5074 >                    new ForEachTransformedEntryTask<K,V,U>
5075 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5076 >                         transformer, action).fork();
5077 >                }
5078 >                for (Node<K,V> p; (p = advance()) != null; ) {
5079 >                    U u;
5080 >                    if ((u = transformer.apply(p)) != null)
5081 >                        action.accept(u);
5082 >                }
5083 >                propagateCompletion();
5084 >            }
5085 >        }
5086 >    }
5087 >
5088 >    @SuppressWarnings("serial")
5089 >    static final class ForEachTransformedMappingTask<K,V,U>
5090 >        extends BulkTask<K,V,Void> {
5091 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5092 >        final Consumer<? super U> action;
5093 >        ForEachTransformedMappingTask
5094 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5095 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5096 >             Consumer<? super U> action) {
5097 >            super(p, b, i, f, t);
5098 >            this.transformer = transformer; this.action = action;
5099 >        }
5100 >        public final void compute() {
5101 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5102 >            final Consumer<? super U> action;
5103 >            if ((transformer = this.transformer) != null &&
5104 >                (action = this.action) != null) {
5105 >                for (int i = baseIndex, f, h; batch > 0 &&
5106 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5107 >                    addToPendingCount(1);
5108 >                    new ForEachTransformedMappingTask<K,V,U>
5109 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5110 >                         transformer, action).fork();
5111 >                }
5112 >                for (Node<K,V> p; (p = advance()) != null; ) {
5113 >                    U u;
5114 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5115 >                        action.accept(u);
5116 >                }
5117 >                propagateCompletion();
5118 >            }
5119 >        }
5120 >    }
5121 >
5122 >    @SuppressWarnings("serial")
5123 >    static final class SearchKeysTask<K,V,U>
5124 >        extends BulkTask<K,V,U> {
5125 >        final Function<? super K, ? extends U> searchFunction;
5126 >        final AtomicReference<U> result;
5127 >        SearchKeysTask
5128 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5129 >             Function<? super K, ? extends U> searchFunction,
5130 >             AtomicReference<U> result) {
5131 >            super(p, b, i, f, t);
5132 >            this.searchFunction = searchFunction; this.result = result;
5133 >        }
5134 >        public final U getRawResult() { return result.get(); }
5135 >        public final void compute() {
5136 >            final Function<? super K, ? extends U> searchFunction;
5137 >            final AtomicReference<U> result;
5138 >            if ((searchFunction = this.searchFunction) != null &&
5139 >                (result = this.result) != null) {
5140 >                for (int i = baseIndex, f, h; batch > 0 &&
5141 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5142 >                    if (result.get() != null)
5143 >                        return;
5144 >                    addToPendingCount(1);
5145 >                    new SearchKeysTask<K,V,U>
5146 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5147 >                         searchFunction, result).fork();
5148 >                }
5149 >                while (result.get() == null) {
5150 >                    U u;
5151 >                    Node<K,V> p;
5152 >                    if ((p = advance()) == null) {
5153 >                        propagateCompletion();
5154 >                        break;
5155 >                    }
5156 >                    if ((u = searchFunction.apply(p.key)) != null) {
5157 >                        if (result.compareAndSet(null, u))
5158 >                            quietlyCompleteRoot();
5159 >                        break;
5160 >                    }
5161 >                }
5162 >            }
5163 >        }
5164 >    }
5165 >
5166 >    @SuppressWarnings("serial")
5167 >    static final class SearchValuesTask<K,V,U>
5168 >        extends BulkTask<K,V,U> {
5169 >        final Function<? super V, ? extends U> searchFunction;
5170 >        final AtomicReference<U> result;
5171 >        SearchValuesTask
5172 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5173 >             Function<? super V, ? extends U> searchFunction,
5174 >             AtomicReference<U> result) {
5175 >            super(p, b, i, f, t);
5176 >            this.searchFunction = searchFunction; this.result = result;
5177 >        }
5178 >        public final U getRawResult() { return result.get(); }
5179 >        public final void compute() {
5180 >            final Function<? super V, ? extends U> searchFunction;
5181 >            final AtomicReference<U> result;
5182 >            if ((searchFunction = this.searchFunction) != null &&
5183 >                (result = this.result) != null) {
5184 >                for (int i = baseIndex, f, h; batch > 0 &&
5185 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5186 >                    if (result.get() != null)
5187 >                        return;
5188 >                    addToPendingCount(1);
5189 >                    new SearchValuesTask<K,V,U>
5190 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5191 >                         searchFunction, result).fork();
5192 >                }
5193 >                while (result.get() == null) {
5194 >                    U u;
5195 >                    Node<K,V> p;
5196 >                    if ((p = advance()) == null) {
5197 >                        propagateCompletion();
5198 >                        break;
5199 >                    }
5200 >                    if ((u = searchFunction.apply(p.val)) != null) {
5201 >                        if (result.compareAndSet(null, u))
5202 >                            quietlyCompleteRoot();
5203 >                        break;
5204 >                    }
5205 >                }
5206 >            }
5207 >        }
5208 >    }
5209 >
5210 >    @SuppressWarnings("serial")
5211 >    static final class SearchEntriesTask<K,V,U>
5212 >        extends BulkTask<K,V,U> {
5213 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5214 >        final AtomicReference<U> result;
5215 >        SearchEntriesTask
5216 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5217 >             Function<Entry<K,V>, ? extends U> searchFunction,
5218 >             AtomicReference<U> result) {
5219 >            super(p, b, i, f, t);
5220 >            this.searchFunction = searchFunction; this.result = result;
5221 >        }
5222 >        public final U getRawResult() { return result.get(); }
5223 >        public final void compute() {
5224 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5225 >            final AtomicReference<U> result;
5226 >            if ((searchFunction = this.searchFunction) != null &&
5227 >                (result = this.result) != null) {
5228 >                for (int i = baseIndex, f, h; batch > 0 &&
5229 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5230 >                    if (result.get() != null)
5231 >                        return;
5232 >                    addToPendingCount(1);
5233 >                    new SearchEntriesTask<K,V,U>
5234 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5235 >                         searchFunction, result).fork();
5236 >                }
5237 >                while (result.get() == null) {
5238 >                    U u;
5239 >                    Node<K,V> p;
5240 >                    if ((p = advance()) == null) {
5241 >                        propagateCompletion();
5242 >                        break;
5243 >                    }
5244 >                    if ((u = searchFunction.apply(p)) != null) {
5245 >                        if (result.compareAndSet(null, u))
5246 >                            quietlyCompleteRoot();
5247 >                        return;
5248 >                    }
5249 >                }
5250 >            }
5251 >        }
5252 >    }
5253 >
5254 >    @SuppressWarnings("serial")
5255 >    static final class SearchMappingsTask<K,V,U>
5256 >        extends BulkTask<K,V,U> {
5257 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5258 >        final AtomicReference<U> result;
5259 >        SearchMappingsTask
5260 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5261 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5262 >             AtomicReference<U> result) {
5263 >            super(p, b, i, f, t);
5264 >            this.searchFunction = searchFunction; this.result = result;
5265 >        }
5266 >        public final U getRawResult() { return result.get(); }
5267 >        public final void compute() {
5268 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5269 >            final AtomicReference<U> result;
5270 >            if ((searchFunction = this.searchFunction) != null &&
5271 >                (result = this.result) != null) {
5272 >                for (int i = baseIndex, f, h; batch > 0 &&
5273 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5274 >                    if (result.get() != null)
5275 >                        return;
5276 >                    addToPendingCount(1);
5277 >                    new SearchMappingsTask<K,V,U>
5278 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5279 >                         searchFunction, result).fork();
5280 >                }
5281 >                while (result.get() == null) {
5282 >                    U u;
5283 >                    Node<K,V> p;
5284 >                    if ((p = advance()) == null) {
5285 >                        propagateCompletion();
5286 >                        break;
5287 >                    }
5288 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5289 >                        if (result.compareAndSet(null, u))
5290 >                            quietlyCompleteRoot();
5291 >                        break;
5292 >                    }
5293 >                }
5294 >            }
5295 >        }
5296 >    }
5297 >
5298 >    @SuppressWarnings("serial")
5299 >    static final class ReduceKeysTask<K,V>
5300 >        extends BulkTask<K,V,K> {
5301 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5302 >        K result;
5303 >        ReduceKeysTask<K,V> rights, nextRight;
5304 >        ReduceKeysTask
5305 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5306 >             ReduceKeysTask<K,V> nextRight,
5307 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5308 >            super(p, b, i, f, t); this.nextRight = nextRight;
5309 >            this.reducer = reducer;
5310 >        }
5311 >        public final K getRawResult() { return result; }
5312 >        public final void compute() {
5313 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5314 >            if ((reducer = this.reducer) != null) {
5315 >                for (int i = baseIndex, f, h; batch > 0 &&
5316 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5317 >                    addToPendingCount(1);
5318 >                    (rights = new ReduceKeysTask<K,V>
5319 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5320 >                      rights, reducer)).fork();
5321 >                }
5322 >                K r = null;
5323 >                for (Node<K,V> p; (p = advance()) != null; ) {
5324 >                    K u = p.key;
5325 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5326 >                }
5327 >                result = r;
5328 >                CountedCompleter<?> c;
5329 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5330 >                    @SuppressWarnings("unchecked")
5331 >                    ReduceKeysTask<K,V>
5332 >                        t = (ReduceKeysTask<K,V>)c,
5333 >                        s = t.rights;
5334 >                    while (s != null) {
5335 >                        K tr, sr;
5336 >                        if ((sr = s.result) != null)
5337 >                            t.result = (((tr = t.result) == null) ? sr :
5338 >                                        reducer.apply(tr, sr));
5339 >                        s = t.rights = s.nextRight;
5340 >                    }
5341 >                }
5342 >            }
5343 >        }
5344 >    }
5345 >
5346 >    @SuppressWarnings("serial")
5347 >    static final class ReduceValuesTask<K,V>
5348 >        extends BulkTask<K,V,V> {
5349 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5350 >        V result;
5351 >        ReduceValuesTask<K,V> rights, nextRight;
5352 >        ReduceValuesTask
5353 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5354 >             ReduceValuesTask<K,V> nextRight,
5355 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5356 >            super(p, b, i, f, t); this.nextRight = nextRight;
5357 >            this.reducer = reducer;
5358 >        }
5359 >        public final V getRawResult() { return result; }
5360 >        public final void compute() {
5361 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5362 >            if ((reducer = this.reducer) != null) {
5363 >                for (int i = baseIndex, f, h; batch > 0 &&
5364 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5365 >                    addToPendingCount(1);
5366 >                    (rights = new ReduceValuesTask<K,V>
5367 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5368 >                      rights, reducer)).fork();
5369 >                }
5370 >                V r = null;
5371 >                for (Node<K,V> p; (p = advance()) != null; ) {
5372 >                    V v = p.val;
5373 >                    r = (r == null) ? v : reducer.apply(r, v);
5374 >                }
5375 >                result = r;
5376 >                CountedCompleter<?> c;
5377 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5378 >                    @SuppressWarnings("unchecked")
5379 >                    ReduceValuesTask<K,V>
5380 >                        t = (ReduceValuesTask<K,V>)c,
5381 >                        s = t.rights;
5382 >                    while (s != null) {
5383 >                        V tr, sr;
5384 >                        if ((sr = s.result) != null)
5385 >                            t.result = (((tr = t.result) == null) ? sr :
5386 >                                        reducer.apply(tr, sr));
5387 >                        s = t.rights = s.nextRight;
5388 >                    }
5389 >                }
5390 >            }
5391 >        }
5392 >    }
5393 >
5394 >    @SuppressWarnings("serial")
5395 >    static final class ReduceEntriesTask<K,V>
5396 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5397 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5398 >        Map.Entry<K,V> result;
5399 >        ReduceEntriesTask<K,V> rights, nextRight;
5400 >        ReduceEntriesTask
5401 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5402 >             ReduceEntriesTask<K,V> nextRight,
5403 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5404 >            super(p, b, i, f, t); this.nextRight = nextRight;
5405 >            this.reducer = reducer;
5406 >        }
5407 >        public final Map.Entry<K,V> getRawResult() { return result; }
5408 >        public final void compute() {
5409 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5410 >            if ((reducer = this.reducer) != null) {
5411 >                for (int i = baseIndex, f, h; batch > 0 &&
5412 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5413 >                    addToPendingCount(1);
5414 >                    (rights = new ReduceEntriesTask<K,V>
5415 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5416 >                      rights, reducer)).fork();
5417 >                }
5418 >                Map.Entry<K,V> r = null;
5419 >                for (Node<K,V> p; (p = advance()) != null; )
5420 >                    r = (r == null) ? p : reducer.apply(r, p);
5421 >                result = r;
5422 >                CountedCompleter<?> c;
5423 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5424 >                    @SuppressWarnings("unchecked")
5425 >                    ReduceEntriesTask<K,V>
5426 >                        t = (ReduceEntriesTask<K,V>)c,
5427 >                        s = t.rights;
5428 >                    while (s != null) {
5429 >                        Map.Entry<K,V> tr, sr;
5430 >                        if ((sr = s.result) != null)
5431 >                            t.result = (((tr = t.result) == null) ? sr :
5432 >                                        reducer.apply(tr, sr));
5433 >                        s = t.rights = s.nextRight;
5434 >                    }
5435 >                }
5436 >            }
5437 >        }
5438 >    }
5439 >
5440 >    @SuppressWarnings("serial")
5441 >    static final class MapReduceKeysTask<K,V,U>
5442 >        extends BulkTask<K,V,U> {
5443 >        final Function<? super K, ? extends U> transformer;
5444 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5445 >        U result;
5446 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5447 >        MapReduceKeysTask
5448 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5449 >             MapReduceKeysTask<K,V,U> nextRight,
5450 >             Function<? super K, ? extends U> transformer,
5451 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5452 >            super(p, b, i, f, t); this.nextRight = nextRight;
5453 >            this.transformer = transformer;
5454 >            this.reducer = reducer;
5455 >        }
5456 >        public final U getRawResult() { return result; }
5457 >        public final void compute() {
5458 >            final Function<? super K, ? extends U> transformer;
5459 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5460 >            if ((transformer = this.transformer) != null &&
5461 >                (reducer = this.reducer) != null) {
5462 >                for (int i = baseIndex, f, h; batch > 0 &&
5463 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5464 >                    addToPendingCount(1);
5465 >                    (rights = new MapReduceKeysTask<K,V,U>
5466 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5467 >                      rights, transformer, reducer)).fork();
5468 >                }
5469 >                U r = null;
5470 >                for (Node<K,V> p; (p = advance()) != null; ) {
5471 >                    U u;
5472 >                    if ((u = transformer.apply(p.key)) != null)
5473 >                        r = (r == null) ? u : reducer.apply(r, u);
5474 >                }
5475 >                result = r;
5476 >                CountedCompleter<?> c;
5477 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5478 >                    @SuppressWarnings("unchecked")
5479 >                    MapReduceKeysTask<K,V,U>
5480 >                        t = (MapReduceKeysTask<K,V,U>)c,
5481 >                        s = t.rights;
5482 >                    while (s != null) {
5483 >                        U tr, sr;
5484 >                        if ((sr = s.result) != null)
5485 >                            t.result = (((tr = t.result) == null) ? sr :
5486 >                                        reducer.apply(tr, sr));
5487 >                        s = t.rights = s.nextRight;
5488 >                    }
5489 >                }
5490 >            }
5491 >        }
5492 >    }
5493 >
5494 >    @SuppressWarnings("serial")
5495 >    static final class MapReduceValuesTask<K,V,U>
5496 >        extends BulkTask<K,V,U> {
5497 >        final Function<? super V, ? extends U> transformer;
5498 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5499 >        U result;
5500 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5501 >        MapReduceValuesTask
5502 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5503 >             MapReduceValuesTask<K,V,U> nextRight,
5504 >             Function<? super V, ? extends U> transformer,
5505 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5506 >            super(p, b, i, f, t); this.nextRight = nextRight;
5507 >            this.transformer = transformer;
5508 >            this.reducer = reducer;
5509 >        }
5510 >        public final U getRawResult() { return result; }
5511 >        public final void compute() {
5512 >            final Function<? super V, ? extends U> transformer;
5513 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5514 >            if ((transformer = this.transformer) != null &&
5515 >                (reducer = this.reducer) != null) {
5516 >                for (int i = baseIndex, f, h; batch > 0 &&
5517 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5518 >                    addToPendingCount(1);
5519 >                    (rights = new MapReduceValuesTask<K,V,U>
5520 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5521 >                      rights, transformer, reducer)).fork();
5522 >                }
5523 >                U r = null;
5524 >                for (Node<K,V> p; (p = advance()) != null; ) {
5525 >                    U u;
5526 >                    if ((u = transformer.apply(p.val)) != null)
5527 >                        r = (r == null) ? u : reducer.apply(r, u);
5528 >                }
5529 >                result = r;
5530 >                CountedCompleter<?> c;
5531 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5532 >                    @SuppressWarnings("unchecked")
5533 >                    MapReduceValuesTask<K,V,U>
5534 >                        t = (MapReduceValuesTask<K,V,U>)c,
5535 >                        s = t.rights;
5536 >                    while (s != null) {
5537 >                        U tr, sr;
5538 >                        if ((sr = s.result) != null)
5539 >                            t.result = (((tr = t.result) == null) ? sr :
5540 >                                        reducer.apply(tr, sr));
5541 >                        s = t.rights = s.nextRight;
5542 >                    }
5543 >                }
5544 >            }
5545 >        }
5546 >    }
5547 >
5548 >    @SuppressWarnings("serial")
5549 >    static final class MapReduceEntriesTask<K,V,U>
5550 >        extends BulkTask<K,V,U> {
5551 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5552 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5553 >        U result;
5554 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5555 >        MapReduceEntriesTask
5556 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5557 >             MapReduceEntriesTask<K,V,U> nextRight,
5558 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5559 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5560 >            super(p, b, i, f, t); this.nextRight = nextRight;
5561 >            this.transformer = transformer;
5562 >            this.reducer = reducer;
5563 >        }
5564 >        public final U getRawResult() { return result; }
5565 >        public final void compute() {
5566 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5567 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5568 >            if ((transformer = this.transformer) != null &&
5569 >                (reducer = this.reducer) != null) {
5570 >                for (int i = baseIndex, f, h; batch > 0 &&
5571 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5572 >                    addToPendingCount(1);
5573 >                    (rights = new MapReduceEntriesTask<K,V,U>
5574 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5575 >                      rights, transformer, reducer)).fork();
5576 >                }
5577 >                U r = null;
5578 >                for (Node<K,V> p; (p = advance()) != null; ) {
5579 >                    U u;
5580 >                    if ((u = transformer.apply(p)) != null)
5581 >                        r = (r == null) ? u : reducer.apply(r, u);
5582 >                }
5583 >                result = r;
5584 >                CountedCompleter<?> c;
5585 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5586 >                    @SuppressWarnings("unchecked")
5587 >                    MapReduceEntriesTask<K,V,U>
5588 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5589 >                        s = t.rights;
5590 >                    while (s != null) {
5591 >                        U tr, sr;
5592 >                        if ((sr = s.result) != null)
5593 >                            t.result = (((tr = t.result) == null) ? sr :
5594 >                                        reducer.apply(tr, sr));
5595 >                        s = t.rights = s.nextRight;
5596 >                    }
5597 >                }
5598 >            }
5599 >        }
5600 >    }
5601 >
5602 >    @SuppressWarnings("serial")
5603 >    static final class MapReduceMappingsTask<K,V,U>
5604 >        extends BulkTask<K,V,U> {
5605 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5606 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5607 >        U result;
5608 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5609 >        MapReduceMappingsTask
5610 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5611 >             MapReduceMappingsTask<K,V,U> nextRight,
5612 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5613 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5614 >            super(p, b, i, f, t); this.nextRight = nextRight;
5615 >            this.transformer = transformer;
5616 >            this.reducer = reducer;
5617 >        }
5618 >        public final U getRawResult() { return result; }
5619 >        public final void compute() {
5620 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5621 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5622 >            if ((transformer = this.transformer) != null &&
5623 >                (reducer = this.reducer) != null) {
5624 >                for (int i = baseIndex, f, h; batch > 0 &&
5625 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5626 >                    addToPendingCount(1);
5627 >                    (rights = new MapReduceMappingsTask<K,V,U>
5628 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5629 >                      rights, transformer, reducer)).fork();
5630 >                }
5631 >                U r = null;
5632 >                for (Node<K,V> p; (p = advance()) != null; ) {
5633 >                    U u;
5634 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5635 >                        r = (r == null) ? u : reducer.apply(r, u);
5636 >                }
5637 >                result = r;
5638 >                CountedCompleter<?> c;
5639 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5640 >                    @SuppressWarnings("unchecked")
5641 >                    MapReduceMappingsTask<K,V,U>
5642 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5643 >                        s = t.rights;
5644 >                    while (s != null) {
5645 >                        U tr, sr;
5646 >                        if ((sr = s.result) != null)
5647 >                            t.result = (((tr = t.result) == null) ? sr :
5648 >                                        reducer.apply(tr, sr));
5649 >                        s = t.rights = s.nextRight;
5650 >                    }
5651 >                }
5652 >            }
5653 >        }
5654 >    }
5655 >
5656 >    @SuppressWarnings("serial")
5657 >    static final class MapReduceKeysToDoubleTask<K,V>
5658 >        extends BulkTask<K,V,Double> {
5659 >        final ToDoubleFunction<? super K> transformer;
5660 >        final DoubleBinaryOperator reducer;
5661 >        final double basis;
5662 >        double result;
5663 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5664 >        MapReduceKeysToDoubleTask
5665 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5666 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5667 >             ToDoubleFunction<? super K> transformer,
5668 >             double basis,
5669 >             DoubleBinaryOperator reducer) {
5670 >            super(p, b, i, f, t); this.nextRight = nextRight;
5671 >            this.transformer = transformer;
5672 >            this.basis = basis; this.reducer = reducer;
5673 >        }
5674 >        public final Double getRawResult() { return result; }
5675 >        public final void compute() {
5676 >            final ToDoubleFunction<? super K> transformer;
5677 >            final DoubleBinaryOperator reducer;
5678 >            if ((transformer = this.transformer) != null &&
5679 >                (reducer = this.reducer) != null) {
5680 >                double r = this.basis;
5681 >                for (int i = baseIndex, f, h; batch > 0 &&
5682 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5683 >                    addToPendingCount(1);
5684 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5685 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5686 >                      rights, transformer, r, reducer)).fork();
5687 >                }
5688 >                for (Node<K,V> p; (p = advance()) != null; )
5689 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5690 >                result = r;
5691 >                CountedCompleter<?> c;
5692 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5693 >                    @SuppressWarnings("unchecked")
5694 >                    MapReduceKeysToDoubleTask<K,V>
5695 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5696 >                        s = t.rights;
5697 >                    while (s != null) {
5698 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5699 >                        s = t.rights = s.nextRight;
5700 >                    }
5701 >                }
5702 >            }
5703 >        }
5704 >    }
5705 >
5706 >    @SuppressWarnings("serial")
5707 >    static final class MapReduceValuesToDoubleTask<K,V>
5708 >        extends BulkTask<K,V,Double> {
5709 >        final ToDoubleFunction<? super V> transformer;
5710 >        final DoubleBinaryOperator reducer;
5711 >        final double basis;
5712 >        double result;
5713 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5714 >        MapReduceValuesToDoubleTask
5715 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5716 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5717 >             ToDoubleFunction<? super V> transformer,
5718 >             double basis,
5719 >             DoubleBinaryOperator reducer) {
5720 >            super(p, b, i, f, t); this.nextRight = nextRight;
5721 >            this.transformer = transformer;
5722 >            this.basis = basis; this.reducer = reducer;
5723 >        }
5724 >        public final Double getRawResult() { return result; }
5725 >        public final void compute() {
5726 >            final ToDoubleFunction<? super V> transformer;
5727 >            final DoubleBinaryOperator reducer;
5728 >            if ((transformer = this.transformer) != null &&
5729 >                (reducer = this.reducer) != null) {
5730 >                double r = this.basis;
5731 >                for (int i = baseIndex, f, h; batch > 0 &&
5732 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5733 >                    addToPendingCount(1);
5734 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5735 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5736 >                      rights, transformer, r, reducer)).fork();
5737 >                }
5738 >                for (Node<K,V> p; (p = advance()) != null; )
5739 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5740 >                result = r;
5741 >                CountedCompleter<?> c;
5742 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5743 >                    @SuppressWarnings("unchecked")
5744 >                    MapReduceValuesToDoubleTask<K,V>
5745 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5746 >                        s = t.rights;
5747 >                    while (s != null) {
5748 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5749 >                        s = t.rights = s.nextRight;
5750 >                    }
5751 >                }
5752 >            }
5753 >        }
5754 >    }
5755 >
5756 >    @SuppressWarnings("serial")
5757 >    static final class MapReduceEntriesToDoubleTask<K,V>
5758 >        extends BulkTask<K,V,Double> {
5759 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5760 >        final DoubleBinaryOperator reducer;
5761 >        final double basis;
5762 >        double result;
5763 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5764 >        MapReduceEntriesToDoubleTask
5765 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5766 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5767 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5768 >             double basis,
5769 >             DoubleBinaryOperator reducer) {
5770 >            super(p, b, i, f, t); this.nextRight = nextRight;
5771 >            this.transformer = transformer;
5772 >            this.basis = basis; this.reducer = reducer;
5773 >        }
5774 >        public final Double getRawResult() { return result; }
5775 >        public final void compute() {
5776 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5777 >            final DoubleBinaryOperator reducer;
5778 >            if ((transformer = this.transformer) != null &&
5779 >                (reducer = this.reducer) != null) {
5780 >                double r = this.basis;
5781 >                for (int i = baseIndex, f, h; batch > 0 &&
5782 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5783 >                    addToPendingCount(1);
5784 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5785 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5786 >                      rights, transformer, r, reducer)).fork();
5787 >                }
5788 >                for (Node<K,V> p; (p = advance()) != null; )
5789 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5790 >                result = r;
5791 >                CountedCompleter<?> c;
5792 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5793 >                    @SuppressWarnings("unchecked")
5794 >                    MapReduceEntriesToDoubleTask<K,V>
5795 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5796 >                        s = t.rights;
5797 >                    while (s != null) {
5798 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5799 >                        s = t.rights = s.nextRight;
5800 >                    }
5801 >                }
5802 >            }
5803 >        }
5804 >    }
5805 >
5806 >    @SuppressWarnings("serial")
5807 >    static final class MapReduceMappingsToDoubleTask<K,V>
5808 >        extends BulkTask<K,V,Double> {
5809 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5810 >        final DoubleBinaryOperator reducer;
5811 >        final double basis;
5812 >        double result;
5813 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5814 >        MapReduceMappingsToDoubleTask
5815 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5816 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5817 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5818 >             double basis,
5819 >             DoubleBinaryOperator reducer) {
5820 >            super(p, b, i, f, t); this.nextRight = nextRight;
5821 >            this.transformer = transformer;
5822 >            this.basis = basis; this.reducer = reducer;
5823 >        }
5824 >        public final Double getRawResult() { return result; }
5825 >        public final void compute() {
5826 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5827 >            final DoubleBinaryOperator reducer;
5828 >            if ((transformer = this.transformer) != null &&
5829 >                (reducer = this.reducer) != null) {
5830 >                double r = this.basis;
5831 >                for (int i = baseIndex, f, h; batch > 0 &&
5832 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5833 >                    addToPendingCount(1);
5834 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5835 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5836 >                      rights, transformer, r, reducer)).fork();
5837 >                }
5838 >                for (Node<K,V> p; (p = advance()) != null; )
5839 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5840 >                result = r;
5841 >                CountedCompleter<?> c;
5842 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5843 >                    @SuppressWarnings("unchecked")
5844 >                    MapReduceMappingsToDoubleTask<K,V>
5845 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5846 >                        s = t.rights;
5847 >                    while (s != null) {
5848 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5849 >                        s = t.rights = s.nextRight;
5850 >                    }
5851 >                }
5852 >            }
5853 >        }
5854 >    }
5855 >
5856 >    @SuppressWarnings("serial")
5857 >    static final class MapReduceKeysToLongTask<K,V>
5858 >        extends BulkTask<K,V,Long> {
5859 >        final ToLongFunction<? super K> transformer;
5860 >        final LongBinaryOperator reducer;
5861 >        final long basis;
5862 >        long result;
5863 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5864 >        MapReduceKeysToLongTask
5865 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5866 >             MapReduceKeysToLongTask<K,V> nextRight,
5867 >             ToLongFunction<? super K> transformer,
5868 >             long basis,
5869 >             LongBinaryOperator reducer) {
5870 >            super(p, b, i, f, t); this.nextRight = nextRight;
5871 >            this.transformer = transformer;
5872 >            this.basis = basis; this.reducer = reducer;
5873 >        }
5874 >        public final Long getRawResult() { return result; }
5875 >        public final void compute() {
5876 >            final ToLongFunction<? super K> transformer;
5877 >            final LongBinaryOperator reducer;
5878 >            if ((transformer = this.transformer) != null &&
5879 >                (reducer = this.reducer) != null) {
5880 >                long r = this.basis;
5881 >                for (int i = baseIndex, f, h; batch > 0 &&
5882 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5883 >                    addToPendingCount(1);
5884 >                    (rights = new MapReduceKeysToLongTask<K,V>
5885 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5886 >                      rights, transformer, r, reducer)).fork();
5887 >                }
5888 >                for (Node<K,V> p; (p = advance()) != null; )
5889 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5890 >                result = r;
5891 >                CountedCompleter<?> c;
5892 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5893 >                    @SuppressWarnings("unchecked")
5894 >                    MapReduceKeysToLongTask<K,V>
5895 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5896 >                        s = t.rights;
5897 >                    while (s != null) {
5898 >                        t.result = reducer.applyAsLong(t.result, s.result);
5899 >                        s = t.rights = s.nextRight;
5900 >                    }
5901 >                }
5902 >            }
5903 >        }
5904 >    }
5905 >
5906 >    @SuppressWarnings("serial")
5907 >    static final class MapReduceValuesToLongTask<K,V>
5908 >        extends BulkTask<K,V,Long> {
5909 >        final ToLongFunction<? super V> transformer;
5910 >        final LongBinaryOperator reducer;
5911 >        final long basis;
5912 >        long result;
5913 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5914 >        MapReduceValuesToLongTask
5915 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5916 >             MapReduceValuesToLongTask<K,V> nextRight,
5917 >             ToLongFunction<? super V> transformer,
5918 >             long basis,
5919 >             LongBinaryOperator reducer) {
5920 >            super(p, b, i, f, t); this.nextRight = nextRight;
5921 >            this.transformer = transformer;
5922 >            this.basis = basis; this.reducer = reducer;
5923 >        }
5924 >        public final Long getRawResult() { return result; }
5925 >        public final void compute() {
5926 >            final ToLongFunction<? super V> transformer;
5927 >            final LongBinaryOperator reducer;
5928 >            if ((transformer = this.transformer) != null &&
5929 >                (reducer = this.reducer) != null) {
5930 >                long r = this.basis;
5931 >                for (int i = baseIndex, f, h; batch > 0 &&
5932 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5933 >                    addToPendingCount(1);
5934 >                    (rights = new MapReduceValuesToLongTask<K,V>
5935 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5936 >                      rights, transformer, r, reducer)).fork();
5937 >                }
5938 >                for (Node<K,V> p; (p = advance()) != null; )
5939 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5940 >                result = r;
5941 >                CountedCompleter<?> c;
5942 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5943 >                    @SuppressWarnings("unchecked")
5944 >                    MapReduceValuesToLongTask<K,V>
5945 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5946 >                        s = t.rights;
5947 >                    while (s != null) {
5948 >                        t.result = reducer.applyAsLong(t.result, s.result);
5949 >                        s = t.rights = s.nextRight;
5950 >                    }
5951 >                }
5952 >            }
5953 >        }
5954 >    }
5955 >
5956 >    @SuppressWarnings("serial")
5957 >    static final class MapReduceEntriesToLongTask<K,V>
5958 >        extends BulkTask<K,V,Long> {
5959 >        final ToLongFunction<Map.Entry<K,V>> transformer;
5960 >        final LongBinaryOperator reducer;
5961 >        final long basis;
5962 >        long result;
5963 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5964 >        MapReduceEntriesToLongTask
5965 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5966 >             MapReduceEntriesToLongTask<K,V> nextRight,
5967 >             ToLongFunction<Map.Entry<K,V>> transformer,
5968 >             long basis,
5969 >             LongBinaryOperator reducer) {
5970 >            super(p, b, i, f, t); this.nextRight = nextRight;
5971 >            this.transformer = transformer;
5972 >            this.basis = basis; this.reducer = reducer;
5973 >        }
5974 >        public final Long getRawResult() { return result; }
5975 >        public final void compute() {
5976 >            final ToLongFunction<Map.Entry<K,V>> transformer;
5977 >            final LongBinaryOperator reducer;
5978 >            if ((transformer = this.transformer) != null &&
5979 >                (reducer = this.reducer) != null) {
5980 >                long r = this.basis;
5981 >                for (int i = baseIndex, f, h; batch > 0 &&
5982 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5983 >                    addToPendingCount(1);
5984 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5985 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5986 >                      rights, transformer, r, reducer)).fork();
5987 >                }
5988 >                for (Node<K,V> p; (p = advance()) != null; )
5989 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5990 >                result = r;
5991 >                CountedCompleter<?> c;
5992 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5993 >                    @SuppressWarnings("unchecked")
5994 >                    MapReduceEntriesToLongTask<K,V>
5995 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5996 >                        s = t.rights;
5997 >                    while (s != null) {
5998 >                        t.result = reducer.applyAsLong(t.result, s.result);
5999 >                        s = t.rights = s.nextRight;
6000 >                    }
6001 >                }
6002 >            }
6003 >        }
6004 >    }
6005 >
6006 >    @SuppressWarnings("serial")
6007 >    static final class MapReduceMappingsToLongTask<K,V>
6008 >        extends BulkTask<K,V,Long> {
6009 >        final ToLongBiFunction<? super K, ? super V> transformer;
6010 >        final LongBinaryOperator reducer;
6011 >        final long basis;
6012 >        long result;
6013 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6014 >        MapReduceMappingsToLongTask
6015 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6016 >             MapReduceMappingsToLongTask<K,V> nextRight,
6017 >             ToLongBiFunction<? super K, ? super V> transformer,
6018 >             long basis,
6019 >             LongBinaryOperator reducer) {
6020 >            super(p, b, i, f, t); this.nextRight = nextRight;
6021 >            this.transformer = transformer;
6022 >            this.basis = basis; this.reducer = reducer;
6023 >        }
6024 >        public final Long getRawResult() { return result; }
6025 >        public final void compute() {
6026 >            final ToLongBiFunction<? super K, ? super V> transformer;
6027 >            final LongBinaryOperator reducer;
6028 >            if ((transformer = this.transformer) != null &&
6029 >                (reducer = this.reducer) != null) {
6030 >                long r = this.basis;
6031 >                for (int i = baseIndex, f, h; batch > 0 &&
6032 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6033 >                    addToPendingCount(1);
6034 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6035 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6036 >                      rights, transformer, r, reducer)).fork();
6037 >                }
6038 >                for (Node<K,V> p; (p = advance()) != null; )
6039 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6040 >                result = r;
6041 >                CountedCompleter<?> c;
6042 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6043 >                    @SuppressWarnings("unchecked")
6044 >                    MapReduceMappingsToLongTask<K,V>
6045 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6046 >                        s = t.rights;
6047 >                    while (s != null) {
6048 >                        t.result = reducer.applyAsLong(t.result, s.result);
6049 >                        s = t.rights = s.nextRight;
6050 >                    }
6051 >                }
6052 >            }
6053 >        }
6054 >    }
6055 >
6056 >    @SuppressWarnings("serial")
6057 >    static final class MapReduceKeysToIntTask<K,V>
6058 >        extends BulkTask<K,V,Integer> {
6059 >        final ToIntFunction<? super K> transformer;
6060 >        final IntBinaryOperator reducer;
6061 >        final int basis;
6062 >        int result;
6063 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6064 >        MapReduceKeysToIntTask
6065 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6066 >             MapReduceKeysToIntTask<K,V> nextRight,
6067 >             ToIntFunction<? super K> transformer,
6068 >             int basis,
6069 >             IntBinaryOperator reducer) {
6070 >            super(p, b, i, f, t); this.nextRight = nextRight;
6071 >            this.transformer = transformer;
6072 >            this.basis = basis; this.reducer = reducer;
6073 >        }
6074 >        public final Integer getRawResult() { return result; }
6075 >        public final void compute() {
6076 >            final ToIntFunction<? super K> transformer;
6077 >            final IntBinaryOperator reducer;
6078 >            if ((transformer = this.transformer) != null &&
6079 >                (reducer = this.reducer) != null) {
6080 >                int r = this.basis;
6081 >                for (int i = baseIndex, f, h; batch > 0 &&
6082 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6083 >                    addToPendingCount(1);
6084 >                    (rights = new MapReduceKeysToIntTask<K,V>
6085 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6086 >                      rights, transformer, r, reducer)).fork();
6087 >                }
6088 >                for (Node<K,V> p; (p = advance()) != null; )
6089 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6090 >                result = r;
6091 >                CountedCompleter<?> c;
6092 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6093 >                    @SuppressWarnings("unchecked")
6094 >                    MapReduceKeysToIntTask<K,V>
6095 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6096 >                        s = t.rights;
6097 >                    while (s != null) {
6098 >                        t.result = reducer.applyAsInt(t.result, s.result);
6099 >                        s = t.rights = s.nextRight;
6100 >                    }
6101 >                }
6102 >            }
6103 >        }
6104 >    }
6105 >
6106 >    @SuppressWarnings("serial")
6107 >    static final class MapReduceValuesToIntTask<K,V>
6108 >        extends BulkTask<K,V,Integer> {
6109 >        final ToIntFunction<? super V> transformer;
6110 >        final IntBinaryOperator reducer;
6111 >        final int basis;
6112 >        int result;
6113 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6114 >        MapReduceValuesToIntTask
6115 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6116 >             MapReduceValuesToIntTask<K,V> nextRight,
6117 >             ToIntFunction<? super V> transformer,
6118 >             int basis,
6119 >             IntBinaryOperator reducer) {
6120 >            super(p, b, i, f, t); this.nextRight = nextRight;
6121 >            this.transformer = transformer;
6122 >            this.basis = basis; this.reducer = reducer;
6123 >        }
6124 >        public final Integer getRawResult() { return result; }
6125 >        public final void compute() {
6126 >            final ToIntFunction<? super V> transformer;
6127 >            final IntBinaryOperator reducer;
6128 >            if ((transformer = this.transformer) != null &&
6129 >                (reducer = this.reducer) != null) {
6130 >                int r = this.basis;
6131 >                for (int i = baseIndex, f, h; batch > 0 &&
6132 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6133 >                    addToPendingCount(1);
6134 >                    (rights = new MapReduceValuesToIntTask<K,V>
6135 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6136 >                      rights, transformer, r, reducer)).fork();
6137 >                }
6138 >                for (Node<K,V> p; (p = advance()) != null; )
6139 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6140 >                result = r;
6141 >                CountedCompleter<?> c;
6142 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6143 >                    @SuppressWarnings("unchecked")
6144 >                    MapReduceValuesToIntTask<K,V>
6145 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6146 >                        s = t.rights;
6147 >                    while (s != null) {
6148 >                        t.result = reducer.applyAsInt(t.result, s.result);
6149 >                        s = t.rights = s.nextRight;
6150 >                    }
6151 >                }
6152 >            }
6153 >        }
6154 >    }
6155 >
6156 >    @SuppressWarnings("serial")
6157 >    static final class MapReduceEntriesToIntTask<K,V>
6158 >        extends BulkTask<K,V,Integer> {
6159 >        final ToIntFunction<Map.Entry<K,V>> transformer;
6160 >        final IntBinaryOperator reducer;
6161 >        final int basis;
6162 >        int result;
6163 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6164 >        MapReduceEntriesToIntTask
6165 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6166 >             MapReduceEntriesToIntTask<K,V> nextRight,
6167 >             ToIntFunction<Map.Entry<K,V>> transformer,
6168 >             int basis,
6169 >             IntBinaryOperator reducer) {
6170 >            super(p, b, i, f, t); this.nextRight = nextRight;
6171 >            this.transformer = transformer;
6172 >            this.basis = basis; this.reducer = reducer;
6173 >        }
6174 >        public final Integer getRawResult() { return result; }
6175 >        public final void compute() {
6176 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6177 >            final IntBinaryOperator reducer;
6178 >            if ((transformer = this.transformer) != null &&
6179 >                (reducer = this.reducer) != null) {
6180 >                int r = this.basis;
6181 >                for (int i = baseIndex, f, h; batch > 0 &&
6182 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6183 >                    addToPendingCount(1);
6184 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6185 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6186 >                      rights, transformer, r, reducer)).fork();
6187 >                }
6188 >                for (Node<K,V> p; (p = advance()) != null; )
6189 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6190 >                result = r;
6191 >                CountedCompleter<?> c;
6192 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6193 >                    @SuppressWarnings("unchecked")
6194 >                    MapReduceEntriesToIntTask<K,V>
6195 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6196 >                        s = t.rights;
6197 >                    while (s != null) {
6198 >                        t.result = reducer.applyAsInt(t.result, s.result);
6199 >                        s = t.rights = s.nextRight;
6200 >                    }
6201 >                }
6202 >            }
6203 >        }
6204 >    }
6205 >
6206 >    @SuppressWarnings("serial")
6207 >    static final class MapReduceMappingsToIntTask<K,V>
6208 >        extends BulkTask<K,V,Integer> {
6209 >        final ToIntBiFunction<? super K, ? super V> transformer;
6210 >        final IntBinaryOperator reducer;
6211 >        final int basis;
6212 >        int result;
6213 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6214 >        MapReduceMappingsToIntTask
6215 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6216 >             MapReduceMappingsToIntTask<K,V> nextRight,
6217 >             ToIntBiFunction<? super K, ? super V> transformer,
6218 >             int basis,
6219 >             IntBinaryOperator reducer) {
6220 >            super(p, b, i, f, t); this.nextRight = nextRight;
6221 >            this.transformer = transformer;
6222 >            this.basis = basis; this.reducer = reducer;
6223 >        }
6224 >        public final Integer getRawResult() { return result; }
6225 >        public final void compute() {
6226 >            final ToIntBiFunction<? super K, ? super V> transformer;
6227 >            final IntBinaryOperator reducer;
6228 >            if ((transformer = this.transformer) != null &&
6229 >                (reducer = this.reducer) != null) {
6230 >                int r = this.basis;
6231 >                for (int i = baseIndex, f, h; batch > 0 &&
6232 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6233 >                    addToPendingCount(1);
6234 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6235 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6236 >                      rights, transformer, r, reducer)).fork();
6237 >                }
6238 >                for (Node<K,V> p; (p = advance()) != null; )
6239 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6240 >                result = r;
6241 >                CountedCompleter<?> c;
6242 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6243 >                    @SuppressWarnings("unchecked")
6244 >                    MapReduceMappingsToIntTask<K,V>
6245 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6246 >                        s = t.rights;
6247 >                    while (s != null) {
6248 >                        t.result = reducer.applyAsInt(t.result, s.result);
6249 >                        s = t.rights = s.nextRight;
6250 >                    }
6251 >                }
6252 >            }
6253 >        }
6254 >    }
6255 >
6256 >    // Unsafe mechanics
6257 >    private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6258 >    private static final long SIZECTL;
6259 >    private static final long TRANSFERINDEX;
6260 >    private static final long BASECOUNT;
6261 >    private static final long CELLSBUSY;
6262 >    private static final long CELLVALUE;
6263 >    private static final int ABASE;
6264 >    private static final int ASHIFT;
6265 >
6266 >    static {
6267 >        try {
6268 >            SIZECTL = U.objectFieldOffset
6269 >                (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6270 >            TRANSFERINDEX = U.objectFieldOffset
6271 >                (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6272 >            BASECOUNT = U.objectFieldOffset
6273 >                (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6274 >            CELLSBUSY = U.objectFieldOffset
6275 >                (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6276 >
6277 >            CELLVALUE = U.objectFieldOffset
6278 >                (CounterCell.class.getDeclaredField("value"));
6279 >
6280 >            ABASE = U.arrayBaseOffset(Node[].class);
6281 >            int scale = U.arrayIndexScale(Node[].class);
6282 >            if ((scale & (scale - 1)) != 0)
6283 >                throw new Error("array index scale not a power of two");
6284 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6285 >        } catch (ReflectiveOperationException e) {
6286 >            throw new Error(e);
6287          }
6288      }
6289   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines