ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.92 by dl, Sat Dec 2 20:55:01 2006 UTC vs.
Revision 1.226 by jsr166, Tue Jun 18 17:57:21 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.Arrays;
14 > import java.util.Collection;
15 > import java.util.Comparator;
16 > import java.util.ConcurrentModificationException;
17 > import java.util.Enumeration;
18 > import java.util.HashMap;
19 > import java.util.Hashtable;
20 > import java.util.Iterator;
21 > import java.util.Map;
22 > import java.util.NoSuchElementException;
23 > import java.util.Set;
24 > import java.util.Spliterator;
25 > import java.util.concurrent.ConcurrentMap;
26 > import java.util.concurrent.ForkJoinPool;
27 > import java.util.concurrent.atomic.AtomicReference;
28 > import java.util.concurrent.locks.LockSupport;
29 > import java.util.concurrent.locks.ReentrantLock;
30 > import java.util.function.BiConsumer;
31 > import java.util.function.BiFunction;
32 > import java.util.function.BinaryOperator;
33 > import java.util.function.Consumer;
34 > import java.util.function.DoubleBinaryOperator;
35 > import java.util.function.Function;
36 > import java.util.function.IntBinaryOperator;
37 > import java.util.function.LongBinaryOperator;
38 > import java.util.function.ToDoubleBiFunction;
39 > import java.util.function.ToDoubleFunction;
40 > import java.util.function.ToIntBiFunction;
41 > import java.util.function.ToIntFunction;
42 > import java.util.function.ToLongBiFunction;
43 > import java.util.function.ToLongFunction;
44 > import java.util.stream.Stream;
45  
46   /**
47   * A hash table supporting full concurrency of retrievals and
48 < * adjustable expected concurrency for updates. This class obeys the
48 > * high expected concurrency for updates. This class obeys the
49   * same functional specification as {@link java.util.Hashtable}, and
50   * includes versions of methods corresponding to each method of
51 < * <tt>Hashtable</tt>. However, even though all operations are
51 > * {@code Hashtable}. However, even though all operations are
52   * thread-safe, retrieval operations do <em>not</em> entail locking,
53   * and there is <em>not</em> any support for locking the entire table
54   * in a way that prevents all access.  This class is fully
55 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
55 > * interoperable with {@code Hashtable} in programs that rely on its
56   * thread safety but not on its synchronization details.
57   *
58 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
59 < * block, so may overlap with update operations (including
60 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
61 < * of the most recently <em>completed</em> update operations holding
62 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
63 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
64 < * removal of only some entries.  Similarly, Iterators and
65 < * Enumerations return elements reflecting the state of the hash table
66 < * at some point at or since the creation of the iterator/enumeration.
67 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
68 < * However, iterators are designed to be used by only one thread at a time.
69 < *
70 < * <p> The allowed concurrency among update operations is guided by
71 < * the optional <tt>concurrencyLevel</tt> constructor argument
72 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
73 < * table is internally partitioned to try to permit the indicated
74 < * number of concurrent updates without contention. Because placement
75 < * in hash tables is essentially random, the actual concurrency will
76 < * vary.  Ideally, you should choose a value to accommodate as many
77 < * threads as will ever concurrently modify the table. Using a
78 < * significantly higher value than you need can waste space and time,
79 < * and a significantly lower value can lead to thread contention. But
80 < * overestimates and underestimates within an order of magnitude do
81 < * not usually have much noticeable impact. A value of one is
82 < * appropriate when it is known that only one thread will modify and
83 < * all others will only read. Also, resizing this or any other kind of
84 < * hash table is a relatively slow operation, so, when possible, it is
85 < * a good idea to provide estimates of expected table sizes in
86 < * constructors.
58 > * <p>Retrieval operations (including {@code get}) generally do not
59 > * block, so may overlap with update operations (including {@code put}
60 > * and {@code remove}). Retrievals reflect the results of the most
61 > * recently <em>completed</em> update operations holding upon their
62 > * onset. (More formally, an update operation for a given key bears a
63 > * <em>happens-before</em> relation with any (non-null) retrieval for
64 > * that key reporting the updated value.)  For aggregate operations
65 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 > * reflect insertion or removal of only some entries.  Similarly,
67 > * Iterators and Enumerations return elements reflecting the state of
68 > * the hash table at some point at or since the creation of the
69 > * iterator/enumeration.  They do <em>not</em> throw {@link
70 > * ConcurrentModificationException}.  However, iterators are designed
71 > * to be used by only one thread at a time.  Bear in mind that the
72 > * results of aggregate status methods including {@code size}, {@code
73 > * isEmpty}, and {@code containsValue} are typically useful only when
74 > * a map is not undergoing concurrent updates in other threads.
75 > * Otherwise the results of these methods reflect transient states
76 > * that may be adequate for monitoring or estimation purposes, but not
77 > * for program control.
78 > *
79 > * <p>The table is dynamically expanded when there are too many
80 > * collisions (i.e., keys that have distinct hash codes but fall into
81 > * the same slot modulo the table size), with the expected average
82 > * effect of maintaining roughly two bins per mapping (corresponding
83 > * to a 0.75 load factor threshold for resizing). There may be much
84 > * variance around this average as mappings are added and removed, but
85 > * overall, this maintains a commonly accepted time/space tradeoff for
86 > * hash tables.  However, resizing this or any other kind of hash
87 > * table may be a relatively slow operation. When possible, it is a
88 > * good idea to provide a size estimate as an optional {@code
89 > * initialCapacity} constructor argument. An additional optional
90 > * {@code loadFactor} constructor argument provides a further means of
91 > * customizing initial table capacity by specifying the table density
92 > * to be used in calculating the amount of space to allocate for the
93 > * given number of elements.  Also, for compatibility with previous
94 > * versions of this class, constructors may optionally specify an
95 > * expected {@code concurrencyLevel} as an additional hint for
96 > * internal sizing.  Note that using many keys with exactly the same
97 > * {@code hashCode()} is a sure way to slow down performance of any
98 > * hash table. To ameliorate impact, when keys are {@link Comparable},
99 > * this class may use comparison order among keys to help break ties.
100 > *
101 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 > * (using {@link #keySet(Object)} when only keys are of interest, and the
104 > * mapped values are (perhaps transiently) not used or all take the
105 > * same mapping value.
106 > *
107 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 > * form of histogram or multiset) by using {@link
109 > * java.util.concurrent.atomic.LongAdder} values and initializing via
110 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 > * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113   *
114   * <p>This class and its views and iterators implement all of the
115   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116   * interfaces.
117   *
118 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
119 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
118 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 > * does <em>not</em> allow {@code null} to be used as a key or value.
120 > *
121 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 > * operations that, unlike most {@link Stream} methods, are designed
123 > * to be safely, and often sensibly, applied even with maps that are
124 > * being concurrently updated by other threads; for example, when
125 > * computing a snapshot summary of the values in a shared registry.
126 > * There are three kinds of operation, each with four forms, accepting
127 > * functions with Keys, Values, Entries, and (Key, Value) arguments
128 > * and/or return values. Because the elements of a ConcurrentHashMap
129 > * are not ordered in any particular way, and may be processed in
130 > * different orders in different parallel executions, the correctness
131 > * of supplied functions should not depend on any ordering, or on any
132 > * other objects or values that may transiently change while
133 > * computation is in progress; and except for forEach actions, should
134 > * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
135 > * objects do not support method {@code setValue}.
136 > *
137 > * <ul>
138 > * <li> forEach: Perform a given action on each element.
139 > * A variant form applies a given transformation on each element
140 > * before performing the action.</li>
141 > *
142 > * <li> search: Return the first available non-null result of
143 > * applying a given function on each element; skipping further
144 > * search when a result is found.</li>
145 > *
146 > * <li> reduce: Accumulate each element.  The supplied reduction
147 > * function cannot rely on ordering (more formally, it should be
148 > * both associative and commutative).  There are five variants:
149 > *
150 > * <ul>
151 > *
152 > * <li> Plain reductions. (There is not a form of this method for
153 > * (key, value) function arguments since there is no corresponding
154 > * return type.)</li>
155 > *
156 > * <li> Mapped reductions that accumulate the results of a given
157 > * function applied to each element.</li>
158 > *
159 > * <li> Reductions to scalar doubles, longs, and ints, using a
160 > * given basis value.</li>
161 > *
162 > * </ul>
163 > * </li>
164 > * </ul>
165 > *
166 > * <p>These bulk operations accept a {@code parallelismThreshold}
167 > * argument. Methods proceed sequentially if the current map size is
168 > * estimated to be less than the given threshold. Using a value of
169 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
170 > * of {@code 1} results in maximal parallelism by partitioning into
171 > * enough subtasks to fully utilize the {@link
172 > * ForkJoinPool#commonPool()} that is used for all parallel
173 > * computations. Normally, you would initially choose one of these
174 > * extreme values, and then measure performance of using in-between
175 > * values that trade off overhead versus throughput.
176 > *
177 > * <p>The concurrency properties of bulk operations follow
178 > * from those of ConcurrentHashMap: Any non-null result returned
179 > * from {@code get(key)} and related access methods bears a
180 > * happens-before relation with the associated insertion or
181 > * update.  The result of any bulk operation reflects the
182 > * composition of these per-element relations (but is not
183 > * necessarily atomic with respect to the map as a whole unless it
184 > * is somehow known to be quiescent).  Conversely, because keys
185 > * and values in the map are never null, null serves as a reliable
186 > * atomic indicator of the current lack of any result.  To
187 > * maintain this property, null serves as an implicit basis for
188 > * all non-scalar reduction operations. For the double, long, and
189 > * int versions, the basis should be one that, when combined with
190 > * any other value, returns that other value (more formally, it
191 > * should be the identity element for the reduction). Most common
192 > * reductions have these properties; for example, computing a sum
193 > * with basis 0 or a minimum with basis MAX_VALUE.
194 > *
195 > * <p>Search and transformation functions provided as arguments
196 > * should similarly return null to indicate the lack of any result
197 > * (in which case it is not used). In the case of mapped
198 > * reductions, this also enables transformations to serve as
199 > * filters, returning null (or, in the case of primitive
200 > * specializations, the identity basis) if the element should not
201 > * be combined. You can create compound transformations and
202 > * filterings by composing them yourself under this "null means
203 > * there is nothing there now" rule before using them in search or
204 > * reduce operations.
205 > *
206 > * <p>Methods accepting and/or returning Entry arguments maintain
207 > * key-value associations. They may be useful for example when
208 > * finding the key for the greatest value. Note that "plain" Entry
209 > * arguments can be supplied using {@code new
210 > * AbstractMap.SimpleEntry(k,v)}.
211 > *
212 > * <p>Bulk operations may complete abruptly, throwing an
213 > * exception encountered in the application of a supplied
214 > * function. Bear in mind when handling such exceptions that other
215 > * concurrently executing functions could also have thrown
216 > * exceptions, or would have done so if the first exception had
217 > * not occurred.
218 > *
219 > * <p>Speedups for parallel compared to sequential forms are common
220 > * but not guaranteed.  Parallel operations involving brief functions
221 > * on small maps may execute more slowly than sequential forms if the
222 > * underlying work to parallelize the computation is more expensive
223 > * than the computation itself.  Similarly, parallelization may not
224 > * lead to much actual parallelism if all processors are busy
225 > * performing unrelated tasks.
226 > *
227 > * <p>All arguments to all task methods must be non-null.
228   *
229   * <p>This class is a member of the
230   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 235 | import java.io.ObjectOutputStream;
235   * @param <K> the type of keys maintained by this map
236   * @param <V> the type of mapped values
237   */
238 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74 <        implements ConcurrentMap<K, V>, Serializable {
238 > public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239      private static final long serialVersionUID = 7249069246763182397L;
240  
241      /*
242 <     * The basic strategy is to subdivide the table among Segments,
243 <     * each of which itself is a concurrently readable hash table.
242 >     * Overview:
243 >     *
244 >     * The primary design goal of this hash table is to maintain
245 >     * concurrent readability (typically method get(), but also
246 >     * iterators and related methods) while minimizing update
247 >     * contention. Secondary goals are to keep space consumption about
248 >     * the same or better than java.util.HashMap, and to support high
249 >     * initial insertion rates on an empty table by many threads.
250 >     *
251 >     * This map usually acts as a binned (bucketed) hash table.  Each
252 >     * key-value mapping is held in a Node.  Most nodes are instances
253 >     * of the basic Node class with hash, key, value, and next
254 >     * fields. However, various subclasses exist: TreeNodes are
255 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
256 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
257 >     * of bins during resizing. ReservationNodes are used as
258 >     * placeholders while establishing values in computeIfAbsent and
259 >     * related methods.  The types TreeBin, ForwardingNode, and
260 >     * ReservationNode do not hold normal user keys, values, or
261 >     * hashes, and are readily distinguishable during search etc
262 >     * because they have negative hash fields and null key and value
263 >     * fields. (These special nodes are either uncommon or transient,
264 >     * so the impact of carrying around some unused fields is
265 >     * insignficant.)
266 >     *
267 >     * The table is lazily initialized to a power-of-two size upon the
268 >     * first insertion.  Each bin in the table normally contains a
269 >     * list of Nodes (most often, the list has only zero or one Node).
270 >     * Table accesses require volatile/atomic reads, writes, and
271 >     * CASes.  Because there is no other way to arrange this without
272 >     * adding further indirections, we use intrinsics
273 >     * (sun.misc.Unsafe) operations.
274 >     *
275 >     * We use the top (sign) bit of Node hash fields for control
276 >     * purposes -- it is available anyway because of addressing
277 >     * constraints.  Nodes with negative hash fields are specially
278 >     * handled or ignored in map methods.
279 >     *
280 >     * Insertion (via put or its variants) of the first node in an
281 >     * empty bin is performed by just CASing it to the bin.  This is
282 >     * by far the most common case for put operations under most
283 >     * key/hash distributions.  Other update operations (insert,
284 >     * delete, and replace) require locks.  We do not want to waste
285 >     * the space required to associate a distinct lock object with
286 >     * each bin, so instead use the first node of a bin list itself as
287 >     * a lock. Locking support for these locks relies on builtin
288 >     * "synchronized" monitors.
289 >     *
290 >     * Using the first node of a list as a lock does not by itself
291 >     * suffice though: When a node is locked, any update must first
292 >     * validate that it is still the first node after locking it, and
293 >     * retry if not. Because new nodes are always appended to lists,
294 >     * once a node is first in a bin, it remains first until deleted
295 >     * or the bin becomes invalidated (upon resizing).
296 >     *
297 >     * The main disadvantage of per-bin locks is that other update
298 >     * operations on other nodes in a bin list protected by the same
299 >     * lock can stall, for example when user equals() or mapping
300 >     * functions take a long time.  However, statistically, under
301 >     * random hash codes, this is not a common problem.  Ideally, the
302 >     * frequency of nodes in bins follows a Poisson distribution
303 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
304 >     * parameter of about 0.5 on average, given the resizing threshold
305 >     * of 0.75, although with a large variance because of resizing
306 >     * granularity. Ignoring variance, the expected occurrences of
307 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
308 >     * first values are:
309 >     *
310 >     * 0:    0.60653066
311 >     * 1:    0.30326533
312 >     * 2:    0.07581633
313 >     * 3:    0.01263606
314 >     * 4:    0.00157952
315 >     * 5:    0.00015795
316 >     * 6:    0.00001316
317 >     * 7:    0.00000094
318 >     * 8:    0.00000006
319 >     * more: less than 1 in ten million
320 >     *
321 >     * Lock contention probability for two threads accessing distinct
322 >     * elements is roughly 1 / (8 * #elements) under random hashes.
323 >     *
324 >     * Actual hash code distributions encountered in practice
325 >     * sometimes deviate significantly from uniform randomness.  This
326 >     * includes the case when N > (1<<30), so some keys MUST collide.
327 >     * Similarly for dumb or hostile usages in which multiple keys are
328 >     * designed to have identical hash codes or ones that differs only
329 >     * in masked-out high bits. So we use a secondary strategy that
330 >     * applies when the number of nodes in a bin exceeds a
331 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
332 >     * specialized form of red-black trees), bounding search time to
333 >     * O(log N).  Each search step in a TreeBin is at least twice as
334 >     * slow as in a regular list, but given that N cannot exceed
335 >     * (1<<64) (before running out of addresses) this bounds search
336 >     * steps, lock hold times, etc, to reasonable constants (roughly
337 >     * 100 nodes inspected per operation worst case) so long as keys
338 >     * are Comparable (which is very common -- String, Long, etc).
339 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
340 >     * traversal pointers as regular nodes, so can be traversed in
341 >     * iterators in the same way.
342 >     *
343 >     * The table is resized when occupancy exceeds a percentage
344 >     * threshold (nominally, 0.75, but see below).  Any thread
345 >     * noticing an overfull bin may assist in resizing after the
346 >     * initiating thread allocates and sets up the replacement
347 >     * array. However, rather than stalling, these other threads may
348 >     * proceed with insertions etc.  The use of TreeBins shields us
349 >     * from the worst case effects of overfilling while resizes are in
350 >     * progress.  Resizing proceeds by transferring bins, one by one,
351 >     * from the table to the next table. To enable concurrency, the
352 >     * next table must be (incrementally) prefilled with place-holders
353 >     * serving as reverse forwarders to the old table.  Because we are
354 >     * using power-of-two expansion, the elements from each bin must
355 >     * either stay at same index, or move with a power of two
356 >     * offset. We eliminate unnecessary node creation by catching
357 >     * cases where old nodes can be reused because their next fields
358 >     * won't change.  On average, only about one-sixth of them need
359 >     * cloning when a table doubles. The nodes they replace will be
360 >     * garbage collectable as soon as they are no longer referenced by
361 >     * any reader thread that may be in the midst of concurrently
362 >     * traversing table.  Upon transfer, the old table bin contains
363 >     * only a special forwarding node (with hash field "MOVED") that
364 >     * contains the next table as its key. On encountering a
365 >     * forwarding node, access and update operations restart, using
366 >     * the new table.
367 >     *
368 >     * Each bin transfer requires its bin lock, which can stall
369 >     * waiting for locks while resizing. However, because other
370 >     * threads can join in and help resize rather than contend for
371 >     * locks, average aggregate waits become shorter as resizing
372 >     * progresses.  The transfer operation must also ensure that all
373 >     * accessible bins in both the old and new table are usable by any
374 >     * traversal.  This is arranged by proceeding from the last bin
375 >     * (table.length - 1) up towards the first.  Upon seeing a
376 >     * forwarding node, traversals (see class Traverser) arrange to
377 >     * move to the new table without revisiting nodes.  However, to
378 >     * ensure that no intervening nodes are skipped, bin splitting can
379 >     * only begin after the associated reverse-forwarders are in
380 >     * place.
381 >     *
382 >     * The traversal scheme also applies to partial traversals of
383 >     * ranges of bins (via an alternate Traverser constructor)
384 >     * to support partitioned aggregate operations.  Also, read-only
385 >     * operations give up if ever forwarded to a null table, which
386 >     * provides support for shutdown-style clearing, which is also not
387 >     * currently implemented.
388 >     *
389 >     * Lazy table initialization minimizes footprint until first use,
390 >     * and also avoids resizings when the first operation is from a
391 >     * putAll, constructor with map argument, or deserialization.
392 >     * These cases attempt to override the initial capacity settings,
393 >     * but harmlessly fail to take effect in cases of races.
394 >     *
395 >     * The element count is maintained using a specialization of
396 >     * LongAdder. We need to incorporate a specialization rather than
397 >     * just use a LongAdder in order to access implicit
398 >     * contention-sensing that leads to creation of multiple
399 >     * CounterCells.  The counter mechanics avoid contention on
400 >     * updates but can encounter cache thrashing if read too
401 >     * frequently during concurrent access. To avoid reading so often,
402 >     * resizing under contention is attempted only upon adding to a
403 >     * bin already holding two or more nodes. Under uniform hash
404 >     * distributions, the probability of this occurring at threshold
405 >     * is around 13%, meaning that only about 1 in 8 puts check
406 >     * threshold (and after resizing, many fewer do so).
407 >     *
408 >     * TreeBins use a special form of comparison for search and
409 >     * related operations (which is the main reason we cannot use
410 >     * existing collections such as TreeMaps). TreeBins contain
411 >     * Comparable elements, but may contain others, as well as
412 >     * elements that are Comparable but not necessarily Comparable
413 >     * for the same T, so we cannot invoke compareTo among them. To
414 >     * handle this, the tree is ordered primarily by hash value, then
415 >     * by Comparable.compareTo order if applicable.  On lookup at a
416 >     * node, if elements are not comparable or compare as 0 then both
417 >     * left and right children may need to be searched in the case of
418 >     * tied hash values. (This corresponds to the full list search
419 >     * that would be necessary if all elements were non-Comparable and
420 >     * had tied hashes.)  The red-black balancing code is updated from
421 >     * pre-jdk-collections
422 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
423 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
424 >     * Algorithms" (CLR).
425 >     *
426 >     * TreeBins also require an additional locking mechanism.  While
427 >     * list traversal is always possible by readers even during
428 >     * updates, tree traversal is not, mainly beause of tree-rotations
429 >     * that may change the root node and/or its linkages.  TreeBins
430 >     * include a simple read-write lock mechanism parasitic on the
431 >     * main bin-synchronization strategy: Structural adjustments
432 >     * associated with an insertion or removal are already bin-locked
433 >     * (and so cannot conflict with other writers) but must wait for
434 >     * ongoing readers to finish. Since there can be only one such
435 >     * waiter, we use a simple scheme using a single "waiter" field to
436 >     * block writers.  However, readers need never block.  If the root
437 >     * lock is held, they proceed along the slow traversal path (via
438 >     * next-pointers) until the lock becomes available or the list is
439 >     * exhausted, whichever comes first. These cases are not fast, but
440 >     * maximize aggregate expected throughput.
441 >     *
442 >     * Maintaining API and serialization compatibility with previous
443 >     * versions of this class introduces several oddities. Mainly: We
444 >     * leave untouched but unused constructor arguments refering to
445 >     * concurrencyLevel. We accept a loadFactor constructor argument,
446 >     * but apply it only to initial table capacity (which is the only
447 >     * time that we can guarantee to honor it.) We also declare an
448 >     * unused "Segment" class that is instantiated in minimal form
449 >     * only when serializing.
450 >     *
451 >     * This file is organized to make things a little easier to follow
452 >     * while reading than they might otherwise: First the main static
453 >     * declarations and utilities, then fields, then main public
454 >     * methods (with a few factorings of multiple public methods into
455 >     * internal ones), then sizing methods, trees, traversers, and
456 >     * bulk operations.
457       */
458  
459      /* ---------------- Constants -------------- */
460  
461      /**
462 <     * The default initial capacity for this table,
463 <     * used when not otherwise specified in a constructor.
462 >     * The largest possible table capacity.  This value must be
463 >     * exactly 1<<30 to stay within Java array allocation and indexing
464 >     * bounds for power of two table sizes, and is further required
465 >     * because the top two bits of 32bit hash fields are used for
466 >     * control purposes.
467       */
468 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
468 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
469  
470      /**
471 <     * The default load factor for this table, used when not
472 <     * otherwise specified in a constructor.
471 >     * The default initial table capacity.  Must be a power of 2
472 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
473       */
474 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
474 >    private static final int DEFAULT_CAPACITY = 16;
475  
476      /**
477 <     * The default concurrency level for this table, used when not
478 <     * otherwise specified in a constructor.
477 >     * The largest possible (non-power of two) array size.
478 >     * Needed by toArray and related methods.
479       */
480 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
480 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
481  
482      /**
483 <     * The maximum capacity, used if a higher value is implicitly
484 <     * specified by either of the constructors with arguments.  MUST
105 <     * be a power of two <= 1<<30 to ensure that entries are indexable
106 <     * using ints.
483 >     * The default concurrency level for this table. Unused but
484 >     * defined for compatibility with previous versions of this class.
485       */
486 <    static final int MAXIMUM_CAPACITY = 1 << 30;
486 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
487  
488      /**
489 <     * The maximum number of segments to allow; used to bound
490 <     * constructor arguments.
489 >     * The load factor for this table. Overrides of this value in
490 >     * constructors affect only the initial table capacity.  The
491 >     * actual floating point value isn't normally used -- it is
492 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
493 >     * the associated resizing threshold.
494       */
495 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
495 >    private static final float LOAD_FACTOR = 0.75f;
496  
497      /**
498 <     * Number of unsynchronized retries in size and containsValue
499 <     * methods before resorting to locking. This is used to avoid
500 <     * unbounded retries if tables undergo continuous modification
501 <     * which would make it impossible to obtain an accurate result.
498 >     * The bin count threshold for using a tree rather than list for a
499 >     * bin.  Bins are converted to trees when adding an element to a
500 >     * bin with at least this many nodes. The value must be greater
501 >     * than 2, and should be at least 8 to mesh with assumptions in
502 >     * tree removal about conversion back to plain bins upon
503 >     * shrinkage.
504       */
505 <    static final int RETRIES_BEFORE_LOCK = 2;
123 <
124 <    /* ---------------- Fields -------------- */
505 >    static final int TREEIFY_THRESHOLD = 8;
506  
507      /**
508 <     * Mask value for indexing into segments. The upper bits of a
509 <     * key's hash code are used to choose the segment.
508 >     * The bin count threshold for untreeifying a (split) bin during a
509 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
510 >     * most 6 to mesh with shrinkage detection under removal.
511       */
512 <    final int segmentMask;
512 >    static final int UNTREEIFY_THRESHOLD = 6;
513  
514      /**
515 <     * Shift value for indexing within segments.
515 >     * The smallest table capacity for which bins may be treeified.
516 >     * (Otherwise the table is resized if too many nodes in a bin.)
517 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
518 >     * conflicts between resizing and treeification thresholds.
519       */
520 <    final int segmentShift;
520 >    static final int MIN_TREEIFY_CAPACITY = 64;
521  
522      /**
523 <     * The segments, each of which is a specialized hash table
523 >     * Minimum number of rebinnings per transfer step. Ranges are
524 >     * subdivided to allow multiple resizer threads.  This value
525 >     * serves as a lower bound to avoid resizers encountering
526 >     * excessive memory contention.  The value should be at least
527 >     * DEFAULT_CAPACITY.
528       */
529 <    final Segment<K,V>[] segments;
529 >    private static final int MIN_TRANSFER_STRIDE = 16;
530  
531 <    transient Set<K> keySet;
532 <    transient Set<Map.Entry<K,V>> entrySet;
144 <    transient Collection<V> values;
145 <
146 <    /* ---------------- Small Utilities -------------- */
147 <
148 <    /**
149 <     * Applies a supplemental hash function to a given hashCode, which
150 <     * defends against poor quality hash functions.  This is critical
151 <     * because ConcurrentHashMap uses power-of-two length hash tables,
152 <     * that otherwise encounter collisions for hashCodes that do not
153 <     * differ in lower bits.
154 <     */
155 <    private static int hash(int h) {
156 <        // Spread bits to regularize both segment and index locations,
157 <        // using variant of Jenkins's shift-based hash.
158 <        h += ~(h << 13);
159 <        h ^= h >>> 7;
160 <        h += h << 3;
161 <        h ^= h >>> 17;
162 <        h += h << 5;
163 <        return h;
164 <    }
165 <
166 <    /**
167 <     * Returns the segment that should be used for key with given hash
168 <     * @param hash the hash code for the key
169 <     * @return the segment
531 >    /*
532 >     * Encodings for Node hash fields. See above for explanation.
533       */
534 <    final Segment<K,V> segmentFor(int hash) {
535 <        return segments[(hash >>> segmentShift) & segmentMask];
536 <    }
534 >    static final int MOVED     = 0x8fffffff; // (-1) hash for forwarding nodes
535 >    static final int TREEBIN   = 0x80000000; // hash for heads of treea
536 >    static final int RESERVED  = 0x80000001; // hash for transient reservations
537 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
538 >
539 >    /** Number of CPUS, to place bounds on some sizings */
540 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
541 >
542 >    /** For serialization compatibility. */
543 >    private static final ObjectStreamField[] serialPersistentFields = {
544 >        new ObjectStreamField("segments", Segment[].class),
545 >        new ObjectStreamField("segmentMask", Integer.TYPE),
546 >        new ObjectStreamField("segmentShift", Integer.TYPE)
547 >    };
548  
549 <    /* ---------------- Inner Classes -------------- */
549 >    /* ---------------- Nodes -------------- */
550  
551      /**
552 <     * ConcurrentHashMap list entry. Note that this is never exported
553 <     * out as a user-visible Map.Entry.
554 <     *
555 <     * Because the value field is volatile, not final, it is legal wrt
556 <     * the Java Memory Model for an unsynchronized reader to see null
557 <     * instead of initial value when read via a data race.  Although a
184 <     * reordering leading to this is not likely to ever actually
185 <     * occur, the Segment.readValueUnderLock method is used as a
186 <     * backup in case a null (pre-initialized) value is ever seen in
187 <     * an unsynchronized access method.
552 >     * Key-value entry.  This class is never exported out as a
553 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
554 >     * MapEntry below), but can be used for read-only traversals used
555 >     * in bulk tasks.  Subclasses of Node with a negativehash field
556 >     * are special, and contain null keys and values (but are never
557 >     * exported).  Otherwise, keys and vals are never null.
558       */
559 <    static final class HashEntry<K,V> {
190 <        final K key;
559 >    static class Node<K,V> implements Map.Entry<K,V> {
560          final int hash;
561 <        volatile V value;
562 <        final HashEntry<K,V> next;
561 >        final K key;
562 >        volatile V val;
563 >        Node<K,V> next;
564  
565 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
196 <            this.key = key;
565 >        Node(int hash, K key, V val, Node<K,V> next) {
566              this.hash = hash;
567 +            this.key = key;
568 +            this.val = val;
569              this.next = next;
199            this.value = value;
570          }
571  
572 <        @SuppressWarnings("unchecked")
573 <        static final <K,V> HashEntry<K,V>[] newArray(int i) {
574 <            return new HashEntry[i];
575 <        }
576 <    }
577 <
208 <    /**
209 <     * Segments are specialized versions of hash tables.  This
210 <     * subclasses from ReentrantLock opportunistically, just to
211 <     * simplify some locking and avoid separate construction.
212 <     */
213 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
214 <        /*
215 <         * Segments maintain a table of entry lists that are ALWAYS
216 <         * kept in a consistent state, so can be read without locking.
217 <         * Next fields of nodes are immutable (final).  All list
218 <         * additions are performed at the front of each bin. This
219 <         * makes it easy to check changes, and also fast to traverse.
220 <         * When nodes would otherwise be changed, new nodes are
221 <         * created to replace them. This works well for hash tables
222 <         * since the bin lists tend to be short. (The average length
223 <         * is less than two for the default load factor threshold.)
224 <         *
225 <         * Read operations can thus proceed without locking, but rely
226 <         * on selected uses of volatiles to ensure that completed
227 <         * write operations performed by other threads are
228 <         * noticed. For most purposes, the "count" field, tracking the
229 <         * number of elements, serves as that volatile variable
230 <         * ensuring visibility.  This is convenient because this field
231 <         * needs to be read in many read operations anyway:
232 <         *
233 <         *   - All (unsynchronized) read operations must first read the
234 <         *     "count" field, and should not look at table entries if
235 <         *     it is 0.
236 <         *
237 <         *   - All (synchronized) write operations should write to
238 <         *     the "count" field after structurally changing any bin.
239 <         *     The operations must not take any action that could even
240 <         *     momentarily cause a concurrent read operation to see
241 <         *     inconsistent data. This is made easier by the nature of
242 <         *     the read operations in Map. For example, no operation
243 <         *     can reveal that the table has grown but the threshold
244 <         *     has not yet been updated, so there are no atomicity
245 <         *     requirements for this with respect to reads.
246 <         *
247 <         * As a guide, all critical volatile reads and writes to the
248 <         * count field are marked in code comments.
249 <         */
250 <
251 <        private static final long serialVersionUID = 2249069246763182397L;
252 <
253 <        /**
254 <         * The number of elements in this segment's region.
255 <         */
256 <        transient volatile int count;
257 <
258 <        /**
259 <         * Number of updates that alter the size of the table. This is
260 <         * used during bulk-read methods to make sure they see a
261 <         * consistent snapshot: If modCounts change during a traversal
262 <         * of segments computing size or checking containsValue, then
263 <         * we might have an inconsistent view of state so (usually)
264 <         * must retry.
265 <         */
266 <        transient int modCount;
267 <
268 <        /**
269 <         * The table is rehashed when its size exceeds this threshold.
270 <         * (The value of this field is always <tt>(int)(capacity *
271 <         * loadFactor)</tt>.)
272 <         */
273 <        transient int threshold;
274 <
275 <        /**
276 <         * The per-segment table.
277 <         */
278 <        transient volatile HashEntry<K,V>[] table;
279 <
280 <        /**
281 <         * The load factor for the hash table.  Even though this value
282 <         * is same for all segments, it is replicated to avoid needing
283 <         * links to outer object.
284 <         * @serial
285 <         */
286 <        final float loadFactor;
287 <
288 <        Segment(int initialCapacity, float lf) {
289 <            loadFactor = lf;
290 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
572 >        public final K getKey()       { return key; }
573 >        public final V getValue()     { return val; }
574 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
575 >        public final String toString(){ return key + "=" + val; }
576 >        public final V setValue(V value) {
577 >            throw new UnsupportedOperationException();
578          }
579  
580 <        @SuppressWarnings("unchecked")
581 <        static final <K,V> Segment<K,V>[] newArray(int i) {
582 <            return new Segment[i];
580 >        public final boolean equals(Object o) {
581 >            Object k, v, u; Map.Entry<?,?> e;
582 >            return ((o instanceof Map.Entry) &&
583 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
584 >                    (v = e.getValue()) != null &&
585 >                    (k == key || k.equals(key)) &&
586 >                    (v == (u = val) || v.equals(u)));
587          }
588  
589          /**
590 <         * Sets table to new HashEntry array.
300 <         * Call only while holding lock or in constructor.
590 >         * Virtualized support for map.get(); overridden in subclasses.
591           */
592 <        void setTable(HashEntry<K,V>[] newTable) {
593 <            threshold = (int)(newTable.length * loadFactor);
594 <            table = newTable;
595 <        }
596 <
597 <        /**
598 <         * Returns properly casted first entry of bin for given hash.
599 <         */
600 <        HashEntry<K,V> getFirst(int hash) {
311 <            HashEntry<K,V>[] tab = table;
312 <            return tab[hash & (tab.length - 1)];
313 <        }
314 <
315 <        /**
316 <         * Reads value field of an entry under lock. Called if value
317 <         * field ever appears to be null. This is possible only if a
318 <         * compiler happens to reorder a HashEntry initialization with
319 <         * its table assignment, which is legal under memory model
320 <         * but is not known to ever occur.
321 <         */
322 <        V readValueUnderLock(HashEntry<K,V> e) {
323 <            lock();
324 <            try {
325 <                return e.value;
326 <            } finally {
327 <                unlock();
592 >        Node<K,V> find(int h, Object k) {
593 >            Node<K,V> e = this;
594 >            if (k != null) {
595 >                do {
596 >                    K ek;
597 >                    if (e.hash == h &&
598 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
599 >                        return e;
600 >                } while ((e = e.next) != null);
601              }
602 +            return null;
603          }
604 +    }
605  
606 <        /* Specialized implementations of map methods */
606 >    /* ---------------- Static utilities -------------- */
607  
608 <        V get(Object key, int hash) {
609 <            if (count != 0) { // read-volatile
610 <                HashEntry<K,V> e = getFirst(hash);
611 <                while (e != null) {
612 <                    if (e.hash == hash && key.equals(e.key)) {
613 <                        V v = e.value;
614 <                        if (v != null)
615 <                            return v;
616 <                        return readValueUnderLock(e); // recheck
617 <                    }
618 <                    e = e.next;
619 <                }
620 <            }
621 <            return null;
622 <        }
608 >    /**
609 >     * Spreads (XORs) higher bits of hash to lower and also forces top
610 >     * bit to 0. Because the table uses power-of-two masking, sets of
611 >     * hashes that vary only in bits above the current mask will
612 >     * always collide. (Among known examples are sets of Float keys
613 >     * holding consecutive whole numbers in small tables.)  So we
614 >     * apply a transform that spreads the impact of higher bits
615 >     * downward. There is a tradeoff between speed, utility, and
616 >     * quality of bit-spreading. Because many common sets of hashes
617 >     * are already reasonably distributed (so don't benefit from
618 >     * spreading), and because we use trees to handle large sets of
619 >     * collisions in bins, we just XOR some shifted bits in the
620 >     * cheapest possible way to reduce systematic lossage, as well as
621 >     * to incorporate impact of the highest bits that would otherwise
622 >     * never be used in index calculations because of table bounds.
623 >     */
624 >    static final int spread(int h) {
625 >        return (h ^ (h >>> 16)) & HASH_BITS;
626 >    }
627  
628 <        boolean containsKey(Object key, int hash) {
629 <            if (count != 0) { // read-volatile
630 <                HashEntry<K,V> e = getFirst(hash);
631 <                while (e != null) {
632 <                    if (e.hash == hash && key.equals(e.key))
633 <                        return true;
634 <                    e = e.next;
635 <                }
636 <            }
637 <            return false;
638 <        }
628 >    /**
629 >     * Returns a power of two table size for the given desired capacity.
630 >     * See Hackers Delight, sec 3.2
631 >     */
632 >    private static final int tableSizeFor(int c) {
633 >        int n = c - 1;
634 >        n |= n >>> 1;
635 >        n |= n >>> 2;
636 >        n |= n >>> 4;
637 >        n |= n >>> 8;
638 >        n |= n >>> 16;
639 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
640 >    }
641  
642 <        boolean containsValue(Object value) {
643 <            if (count != 0) { // read-volatile
644 <                HashEntry<K,V>[] tab = table;
645 <                int len = tab.length;
646 <                for (int i = 0 ; i < len; i++) {
647 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
648 <                        V v = e.value;
649 <                        if (v == null) // recheck
650 <                            v = readValueUnderLock(e);
651 <                        if (value.equals(v))
652 <                            return true;
653 <                    }
642 >    /**
643 >     * Returns x's Class if it is of the form "class C implements
644 >     * Comparable<C>", else null.
645 >     */
646 >    static Class<?> comparableClassFor(Object x) {
647 >        if (x instanceof Comparable) {
648 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
649 >            if ((c = x.getClass()) == String.class) // bypass checks
650 >                return c;
651 >            if ((ts = c.getGenericInterfaces()) != null) {
652 >                for (int i = 0; i < ts.length; ++i) {
653 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
654 >                        ((p = (ParameterizedType)t).getRawType() ==
655 >                         Comparable.class) &&
656 >                        (as = p.getActualTypeArguments()) != null &&
657 >                        as.length == 1 && as[0] == c) // type arg is c
658 >                        return c;
659                  }
660              }
375            return false;
661          }
662 +        return null;
663 +    }
664  
665 <        boolean replace(K key, int hash, V oldValue, V newValue) {
666 <            lock();
667 <            try {
668 <                HashEntry<K,V> e = getFirst(hash);
669 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
670 <                    e = e.next;
671 <
672 <                boolean replaced = false;
673 <                if (e != null && oldValue.equals(e.value)) {
387 <                    replaced = true;
388 <                    e.value = newValue;
389 <                }
390 <                return replaced;
391 <            } finally {
392 <                unlock();
393 <            }
394 <        }
665 >    /**
666 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
667 >     * class), else 0.
668 >     */
669 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
670 >    static int compareComparables(Class<?> kc, Object k, Object x) {
671 >        return (x == null || x.getClass() != kc ? 0 :
672 >                ((Comparable)k).compareTo(x));
673 >    }
674  
675 <        V replace(K key, int hash, V newValue) {
397 <            lock();
398 <            try {
399 <                HashEntry<K,V> e = getFirst(hash);
400 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
401 <                    e = e.next;
402 <
403 <                V oldValue = null;
404 <                if (e != null) {
405 <                    oldValue = e.value;
406 <                    e.value = newValue;
407 <                }
408 <                return oldValue;
409 <            } finally {
410 <                unlock();
411 <            }
412 <        }
675 >    /* ---------------- Table element access -------------- */
676  
677 +    /*
678 +     * Volatile access methods are used for table elements as well as
679 +     * elements of in-progress next table while resizing.  All uses of
680 +     * the tab arguments must be null checked by callers.  All callers
681 +     * also paranoically precheck that tab's length is not zero (or an
682 +     * equivalent check), thus ensuring that any index argument taking
683 +     * the form of a hash value anded with (length - 1) is a valid
684 +     * index.  Note that, to be correct wrt arbitrary concurrency
685 +     * errors by users, these checks must operate on local variables,
686 +     * which accounts for some odd-looking inline assignments below.
687 +     * Note that calls to setTabAt always occur within locked regions,
688 +     * and so do not need full volatile semantics, but still require
689 +     * ordering to maintain concurrent readability.
690 +     */
691 +
692 +    @SuppressWarnings("unchecked")
693 +    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
694 +        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
695 +    }
696  
697 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
698 <            lock();
699 <            try {
700 <                int c = count;
419 <                if (c++ > threshold) // ensure capacity
420 <                    rehash();
421 <                HashEntry<K,V>[] tab = table;
422 <                int index = hash & (tab.length - 1);
423 <                HashEntry<K,V> first = tab[index];
424 <                HashEntry<K,V> e = first;
425 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
426 <                    e = e.next;
427 <
428 <                V oldValue;
429 <                if (e != null) {
430 <                    oldValue = e.value;
431 <                    if (!onlyIfAbsent)
432 <                        e.value = value;
433 <                }
434 <                else {
435 <                    oldValue = null;
436 <                    ++modCount;
437 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
438 <                    count = c; // write-volatile
439 <                }
440 <                return oldValue;
441 <            } finally {
442 <                unlock();
443 <            }
444 <        }
697 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
698 >                                        Node<K,V> c, Node<K,V> v) {
699 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
700 >    }
701  
702 <        void rehash() {
703 <            HashEntry<K,V>[] oldTable = table;
704 <            int oldCapacity = oldTable.length;
449 <            if (oldCapacity >= MAXIMUM_CAPACITY)
450 <                return;
702 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
703 >        U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
704 >    }
705  
706 <            /*
453 <             * Reclassify nodes in each list to new Map.  Because we are
454 <             * using power-of-two expansion, the elements from each bin
455 <             * must either stay at same index, or move with a power of two
456 <             * offset. We eliminate unnecessary node creation by catching
457 <             * cases where old nodes can be reused because their next
458 <             * fields won't change. Statistically, at the default
459 <             * threshold, only about one-sixth of them need cloning when
460 <             * a table doubles. The nodes they replace will be garbage
461 <             * collectable as soon as they are no longer referenced by any
462 <             * reader thread that may be in the midst of traversing table
463 <             * right now.
464 <             */
465 <
466 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
467 <            threshold = (int)(newTable.length * loadFactor);
468 <            int sizeMask = newTable.length - 1;
469 <            for (int i = 0; i < oldCapacity ; i++) {
470 <                // We need to guarantee that any existing reads of old Map can
471 <                //  proceed. So we cannot yet null out each bin.
472 <                HashEntry<K,V> e = oldTable[i];
473 <
474 <                if (e != null) {
475 <                    HashEntry<K,V> next = e.next;
476 <                    int idx = e.hash & sizeMask;
477 <
478 <                    //  Single node on list
479 <                    if (next == null)
480 <                        newTable[idx] = e;
706 >    /* ---------------- Fields -------------- */
707  
708 <                    else {
709 <                        // Reuse trailing consecutive sequence at same slot
710 <                        HashEntry<K,V> lastRun = e;
711 <                        int lastIdx = idx;
712 <                        for (HashEntry<K,V> last = next;
487 <                             last != null;
488 <                             last = last.next) {
489 <                            int k = last.hash & sizeMask;
490 <                            if (k != lastIdx) {
491 <                                lastIdx = k;
492 <                                lastRun = last;
493 <                            }
494 <                        }
495 <                        newTable[lastIdx] = lastRun;
708 >    /**
709 >     * The array of bins. Lazily initialized upon first insertion.
710 >     * Size is always a power of two. Accessed directly by iterators.
711 >     */
712 >    transient volatile Node<K,V>[] table;
713  
714 <                        // Clone all remaining nodes
715 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
716 <                            int k = p.hash & sizeMask;
717 <                            HashEntry<K,V> n = newTable[k];
501 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
502 <                                                             n, p.value);
503 <                        }
504 <                    }
505 <                }
506 <            }
507 <            table = newTable;
508 <        }
714 >    /**
715 >     * The next table to use; non-null only while resizing.
716 >     */
717 >    private transient volatile Node<K,V>[] nextTable;
718  
719 <        /**
720 <         * Remove; match on key only if value null, else match both.
721 <         */
722 <        V remove(Object key, int hash, Object value) {
723 <            lock();
724 <            try {
516 <                int c = count - 1;
517 <                HashEntry<K,V>[] tab = table;
518 <                int index = hash & (tab.length - 1);
519 <                HashEntry<K,V> first = tab[index];
520 <                HashEntry<K,V> e = first;
521 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
522 <                    e = e.next;
523 <
524 <                V oldValue = null;
525 <                if (e != null) {
526 <                    V v = e.value;
527 <                    if (value == null || value.equals(v)) {
528 <                        oldValue = v;
529 <                        // All entries following removed node can stay
530 <                        // in list, but all preceding ones need to be
531 <                        // cloned.
532 <                        ++modCount;
533 <                        HashEntry<K,V> newFirst = e.next;
534 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
535 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
536 <                                                          newFirst, p.value);
537 <                        tab[index] = newFirst;
538 <                        count = c; // write-volatile
539 <                    }
540 <                }
541 <                return oldValue;
542 <            } finally {
543 <                unlock();
544 <            }
545 <        }
719 >    /**
720 >     * Base counter value, used mainly when there is no contention,
721 >     * but also as a fallback during table initialization
722 >     * races. Updated via CAS.
723 >     */
724 >    private transient volatile long baseCount;
725  
726 <        void clear() {
727 <            if (count != 0) {
728 <                lock();
729 <                try {
730 <                    HashEntry<K,V>[] tab = table;
731 <                    for (int i = 0; i < tab.length ; i++)
732 <                        tab[i] = null;
733 <                    ++modCount;
734 <                    count = 0; // write-volatile
556 <                } finally {
557 <                    unlock();
558 <                }
559 <            }
560 <        }
561 <    }
726 >    /**
727 >     * Table initialization and resizing control.  When negative, the
728 >     * table is being initialized or resized: -1 for initialization,
729 >     * else -(1 + the number of active resizing threads).  Otherwise,
730 >     * when table is null, holds the initial table size to use upon
731 >     * creation, or 0 for default. After initialization, holds the
732 >     * next element count value upon which to resize the table.
733 >     */
734 >    private transient volatile int sizeCtl;
735  
736 +    /**
737 +     * The next table index (plus one) to split while resizing.
738 +     */
739 +    private transient volatile int transferIndex;
740  
741 +    /**
742 +     * The least available table index to split while resizing.
743 +     */
744 +    private transient volatile int transferOrigin;
745  
746 <    /* ---------------- Public operations -------------- */
746 >    /**
747 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
748 >     */
749 >    private transient volatile int cellsBusy;
750  
751      /**
752 <     * Creates a new, empty map with the specified initial
569 <     * capacity, load factor and concurrency level.
570 <     *
571 <     * @param initialCapacity the initial capacity. The implementation
572 <     * performs internal sizing to accommodate this many elements.
573 <     * @param loadFactor  the load factor threshold, used to control resizing.
574 <     * Resizing may be performed when the average number of elements per
575 <     * bin exceeds this threshold.
576 <     * @param concurrencyLevel the estimated number of concurrently
577 <     * updating threads. The implementation performs internal sizing
578 <     * to try to accommodate this many threads.
579 <     * @throws IllegalArgumentException if the initial capacity is
580 <     * negative or the load factor or concurrencyLevel are
581 <     * nonpositive.
752 >     * Table of counter cells. When non-null, size is a power of 2.
753       */
754 <    public ConcurrentHashMap(int initialCapacity,
584 <                             float loadFactor, int concurrencyLevel) {
585 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
586 <            throw new IllegalArgumentException();
754 >    private transient volatile CounterCell[] counterCells;
755  
756 <        if (concurrencyLevel > MAX_SEGMENTS)
757 <            concurrencyLevel = MAX_SEGMENTS;
756 >    // views
757 >    private transient KeySetView<K,V> keySet;
758 >    private transient ValuesView<K,V> values;
759 >    private transient EntrySetView<K,V> entrySet;
760  
591        // Find power-of-two sizes best matching arguments
592        int sshift = 0;
593        int ssize = 1;
594        while (ssize < concurrencyLevel) {
595            ++sshift;
596            ssize <<= 1;
597        }
598        segmentShift = 32 - sshift;
599        segmentMask = ssize - 1;
600        this.segments = Segment.newArray(ssize);
601
602        if (initialCapacity > MAXIMUM_CAPACITY)
603            initialCapacity = MAXIMUM_CAPACITY;
604        int c = initialCapacity / ssize;
605        if (c * ssize < initialCapacity)
606            ++c;
607        int cap = 1;
608        while (cap < c)
609            cap <<= 1;
761  
762 <        for (int i = 0; i < this.segments.length; ++i)
612 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
613 <    }
762 >    /* ---------------- Public operations -------------- */
763  
764      /**
765 <     * Creates a new, empty map with the specified initial capacity
617 <     * and load factor and with the default concurrencyLevel (16).
618 <     *
619 <     * @param initialCapacity The implementation performs internal
620 <     * sizing to accommodate this many elements.
621 <     * @param loadFactor  the load factor threshold, used to control resizing.
622 <     * Resizing may be performed when the average number of elements per
623 <     * bin exceeds this threshold.
624 <     * @throws IllegalArgumentException if the initial capacity of
625 <     * elements is negative or the load factor is nonpositive
626 <     *
627 <     * @since 1.6
765 >     * Creates a new, empty map with the default initial table size (16).
766       */
767 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
630 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
767 >    public ConcurrentHashMap() {
768      }
769  
770      /**
771 <     * Creates a new, empty map with the specified initial capacity,
772 <     * and with default load factor (0.75) and concurrencyLevel (16).
771 >     * Creates a new, empty map with an initial table size
772 >     * accommodating the specified number of elements without the need
773 >     * to dynamically resize.
774       *
775 <     * @param initialCapacity the initial capacity. The implementation
776 <     * performs internal sizing to accommodate this many elements.
775 >     * @param initialCapacity The implementation performs internal
776 >     * sizing to accommodate this many elements.
777       * @throws IllegalArgumentException if the initial capacity of
778 <     * elements is negative.
778 >     * elements is negative
779       */
780      public ConcurrentHashMap(int initialCapacity) {
781 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
782 <    }
783 <
784 <    /**
785 <     * Creates a new, empty map with a default initial capacity (16),
786 <     * load factor (0.75) and concurrencyLevel (16).
649 <     */
650 <    public ConcurrentHashMap() {
651 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
781 >        if (initialCapacity < 0)
782 >            throw new IllegalArgumentException();
783 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
784 >                   MAXIMUM_CAPACITY :
785 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
786 >        this.sizeCtl = cap;
787      }
788  
789      /**
790       * Creates a new map with the same mappings as the given map.
656     * The map is created with a capacity of 1.5 times the number
657     * of mappings in the given map or 16 (whichever is greater),
658     * and a default load factor (0.75) and concurrencyLevel (16).
791       *
792       * @param m the map
793       */
794      public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
795 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
664 <                      DEFAULT_INITIAL_CAPACITY),
665 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
795 >        this.sizeCtl = DEFAULT_CAPACITY;
796          putAll(m);
797      }
798  
799      /**
800 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
800 >     * Creates a new, empty map with an initial table size based on
801 >     * the given number of elements ({@code initialCapacity}) and
802 >     * initial table density ({@code loadFactor}).
803       *
804 <     * @return <tt>true</tt> if this map contains no key-value mappings
804 >     * @param initialCapacity the initial capacity. The implementation
805 >     * performs internal sizing to accommodate this many elements,
806 >     * given the specified load factor.
807 >     * @param loadFactor the load factor (table density) for
808 >     * establishing the initial table size
809 >     * @throws IllegalArgumentException if the initial capacity of
810 >     * elements is negative or the load factor is nonpositive
811 >     *
812 >     * @since 1.6
813       */
814 <    public boolean isEmpty() {
815 <        final Segment<K,V>[] segments = this.segments;
676 <        /*
677 <         * We keep track of per-segment modCounts to avoid ABA
678 <         * problems in which an element in one segment was added and
679 <         * in another removed during traversal, in which case the
680 <         * table was never actually empty at any point. Note the
681 <         * similar use of modCounts in the size() and containsValue()
682 <         * methods, which are the only other methods also susceptible
683 <         * to ABA problems.
684 <         */
685 <        int[] mc = new int[segments.length];
686 <        int mcsum = 0;
687 <        for (int i = 0; i < segments.length; ++i) {
688 <            if (segments[i].count != 0)
689 <                return false;
690 <            else
691 <                mcsum += mc[i] = segments[i].modCount;
692 <        }
693 <        // If mcsum happens to be zero, then we know we got a snapshot
694 <        // before any modifications at all were made.  This is
695 <        // probably common enough to bother tracking.
696 <        if (mcsum != 0) {
697 <            for (int i = 0; i < segments.length; ++i) {
698 <                if (segments[i].count != 0 ||
699 <                    mc[i] != segments[i].modCount)
700 <                    return false;
701 <            }
702 <        }
703 <        return true;
814 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
815 >        this(initialCapacity, loadFactor, 1);
816      }
817  
818      /**
819 <     * Returns the number of key-value mappings in this map.  If the
820 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
821 <     * <tt>Integer.MAX_VALUE</tt>.
819 >     * Creates a new, empty map with an initial table size based on
820 >     * the given number of elements ({@code initialCapacity}), table
821 >     * density ({@code loadFactor}), and number of concurrently
822 >     * updating threads ({@code concurrencyLevel}).
823       *
824 <     * @return the number of key-value mappings in this map
824 >     * @param initialCapacity the initial capacity. The implementation
825 >     * performs internal sizing to accommodate this many elements,
826 >     * given the specified load factor.
827 >     * @param loadFactor the load factor (table density) for
828 >     * establishing the initial table size
829 >     * @param concurrencyLevel the estimated number of concurrently
830 >     * updating threads. The implementation may use this value as
831 >     * a sizing hint.
832 >     * @throws IllegalArgumentException if the initial capacity is
833 >     * negative or the load factor or concurrencyLevel are
834 >     * nonpositive
835 >     */
836 >    public ConcurrentHashMap(int initialCapacity,
837 >                             float loadFactor, int concurrencyLevel) {
838 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
839 >            throw new IllegalArgumentException();
840 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
841 >            initialCapacity = concurrencyLevel;   // as estimated threads
842 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
843 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
844 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
845 >        this.sizeCtl = cap;
846 >    }
847 >
848 >    // Original (since JDK1.2) Map methods
849 >
850 >    /**
851 >     * {@inheritDoc}
852       */
853      public int size() {
854 <        final Segment<K,V>[] segments = this.segments;
855 <        long sum = 0;
856 <        long check = 0;
857 <        int[] mc = new int[segments.length];
858 <        // Try a few times to get accurate count. On failure due to
859 <        // continuous async changes in table, resort to locking.
860 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
861 <            check = 0;
862 <            sum = 0;
863 <            int mcsum = 0;
864 <            for (int i = 0; i < segments.length; ++i) {
725 <                sum += segments[i].count;
726 <                mcsum += mc[i] = segments[i].modCount;
727 <            }
728 <            if (mcsum != 0) {
729 <                for (int i = 0; i < segments.length; ++i) {
730 <                    check += segments[i].count;
731 <                    if (mc[i] != segments[i].modCount) {
732 <                        check = -1; // force retry
733 <                        break;
734 <                    }
735 <                }
736 <            }
737 <            if (check == sum)
738 <                break;
739 <        }
740 <        if (check != sum) { // Resort to locking all segments
741 <            sum = 0;
742 <            for (int i = 0; i < segments.length; ++i)
743 <                segments[i].lock();
744 <            for (int i = 0; i < segments.length; ++i)
745 <                sum += segments[i].count;
746 <            for (int i = 0; i < segments.length; ++i)
747 <                segments[i].unlock();
748 <        }
749 <        if (sum > Integer.MAX_VALUE)
750 <            return Integer.MAX_VALUE;
751 <        else
752 <            return (int)sum;
854 >        long n = sumCount();
855 >        return ((n < 0L) ? 0 :
856 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
857 >                (int)n);
858 >    }
859 >
860 >    /**
861 >     * {@inheritDoc}
862 >     */
863 >    public boolean isEmpty() {
864 >        return sumCount() <= 0L; // ignore transient negative values
865      }
866  
867      /**
# Line 764 | Line 876 | public class ConcurrentHashMap<K, V> ext
876       * @throws NullPointerException if the specified key is null
877       */
878      public V get(Object key) {
879 <        int hash = hash(key.hashCode());
880 <        return segmentFor(hash).get(key, hash);
879 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
880 >        int h = spread(key.hashCode());
881 >        if ((tab = table) != null && (n = tab.length) > 0 &&
882 >            (e = tabAt(tab, (n - 1) & h)) != null) {
883 >            if ((eh = e.hash) == h) {
884 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
885 >                    return e.val;
886 >            }
887 >            else if (eh < 0)
888 >                return (p = e.find(h, key)) != null ? p.val : null;
889 >            while ((e = e.next) != null) {
890 >                if (e.hash == h &&
891 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
892 >                    return e.val;
893 >            }
894 >        }
895 >        return null;
896      }
897  
898      /**
899       * Tests if the specified object is a key in this table.
900       *
901 <     * @param  key   possible key
902 <     * @return <tt>true</tt> if and only if the specified object
901 >     * @param  key possible key
902 >     * @return {@code true} if and only if the specified object
903       *         is a key in this table, as determined by the
904 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
904 >     *         {@code equals} method; {@code false} otherwise
905       * @throws NullPointerException if the specified key is null
906       */
907      public boolean containsKey(Object key) {
908 <        int hash = hash(key.hashCode());
782 <        return segmentFor(hash).containsKey(key, hash);
908 >        return get(key) != null;
909      }
910  
911      /**
912 <     * Returns <tt>true</tt> if this map maps one or more keys to the
913 <     * specified value. Note: This method requires a full internal
914 <     * traversal of the hash table, and so is much slower than
789 <     * method <tt>containsKey</tt>.
912 >     * Returns {@code true} if this map maps one or more keys to the
913 >     * specified value. Note: This method may require a full traversal
914 >     * of the map, and is much slower than method {@code containsKey}.
915       *
916       * @param value value whose presence in this map is to be tested
917 <     * @return <tt>true</tt> if this map maps one or more keys to the
917 >     * @return {@code true} if this map maps one or more keys to the
918       *         specified value
919       * @throws NullPointerException if the specified value is null
920       */
921      public boolean containsValue(Object value) {
922          if (value == null)
923              throw new NullPointerException();
924 <
925 <        // See explanation of modCount use above
926 <
927 <        final Segment<K,V>[] segments = this.segments;
928 <        int[] mc = new int[segments.length];
929 <
805 <        // Try a few times without locking
806 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
807 <            int sum = 0;
808 <            int mcsum = 0;
809 <            for (int i = 0; i < segments.length; ++i) {
810 <                int c = segments[i].count;
811 <                mcsum += mc[i] = segments[i].modCount;
812 <                if (segments[i].containsValue(value))
924 >        Node<K,V>[] t;
925 >        if ((t = table) != null) {
926 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
927 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
928 >                V v;
929 >                if ((v = p.val) == value || (v != null && value.equals(v)))
930                      return true;
931              }
815            boolean cleanSweep = true;
816            if (mcsum != 0) {
817                for (int i = 0; i < segments.length; ++i) {
818                    int c = segments[i].count;
819                    if (mc[i] != segments[i].modCount) {
820                        cleanSweep = false;
821                        break;
822                    }
823                }
824            }
825            if (cleanSweep)
826                return false;
827        }
828        // Resort to locking all segments
829        for (int i = 0; i < segments.length; ++i)
830            segments[i].lock();
831        boolean found = false;
832        try {
833            for (int i = 0; i < segments.length; ++i) {
834                if (segments[i].containsValue(value)) {
835                    found = true;
836                    break;
837                }
838            }
839        } finally {
840            for (int i = 0; i < segments.length; ++i)
841                segments[i].unlock();
932          }
933 <        return found;
844 <    }
845 <
846 <    /**
847 <     * Legacy method testing if some key maps into the specified value
848 <     * in this table.  This method is identical in functionality to
849 <     * {@link #containsValue}, and exists solely to ensure
850 <     * full compatibility with class {@link java.util.Hashtable},
851 <     * which supported this method prior to introduction of the
852 <     * Java Collections framework.
853 <
854 <     * @param  value a value to search for
855 <     * @return <tt>true</tt> if and only if some key maps to the
856 <     *         <tt>value</tt> argument in this table as
857 <     *         determined by the <tt>equals</tt> method;
858 <     *         <tt>false</tt> otherwise
859 <     * @throws NullPointerException if the specified value is null
860 <     */
861 <    public boolean contains(Object value) {
862 <        return containsValue(value);
933 >        return false;
934      }
935  
936      /**
937       * Maps the specified key to the specified value in this table.
938       * Neither the key nor the value can be null.
939       *
940 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
940 >     * <p>The value can be retrieved by calling the {@code get} method
941       * with a key that is equal to the original key.
942       *
943       * @param key key with which the specified value is to be associated
944       * @param value value to be associated with the specified key
945 <     * @return the previous value associated with <tt>key</tt>, or
946 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
945 >     * @return the previous value associated with {@code key}, or
946 >     *         {@code null} if there was no mapping for {@code key}
947       * @throws NullPointerException if the specified key or value is null
948       */
949      public V put(K key, V value) {
950 <        if (value == null)
880 <            throw new NullPointerException();
881 <        int hash = hash(key.hashCode());
882 <        return segmentFor(hash).put(key, hash, value, false);
950 >        return putVal(key, value, false);
951      }
952  
953 <    /**
954 <     * {@inheritDoc}
955 <     *
956 <     * @return the previous value associated with the specified key,
957 <     *         or <tt>null</tt> if there was no mapping for the key
958 <     * @throws NullPointerException if the specified key or value is null
959 <     */
960 <    public V putIfAbsent(K key, V value) {
961 <        if (value == null)
962 <            throw new NullPointerException();
963 <        int hash = hash(key.hashCode());
964 <        return segmentFor(hash).put(key, hash, value, true);
953 >    /** Implementation for put and putIfAbsent */
954 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
955 >        if (key == null || value == null) throw new NullPointerException();
956 >        int hash = spread(key.hashCode());
957 >        int binCount = 0;
958 >        for (Node<K,V>[] tab = table;;) {
959 >            Node<K,V> f; int n, i, fh;
960 >            if (tab == null || (n = tab.length) == 0)
961 >                tab = initTable();
962 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
963 >                if (casTabAt(tab, i, null,
964 >                             new Node<K,V>(hash, key, value, null)))
965 >                    break;                   // no lock when adding to empty bin
966 >            }
967 >            else if ((fh = f.hash) == MOVED)
968 >                tab = helpTransfer(tab, f);
969 >            else {
970 >                V oldVal = null;
971 >                synchronized (f) {
972 >                    if (tabAt(tab, i) == f) {
973 >                        if (fh >= 0) {
974 >                            binCount = 1;
975 >                            for (Node<K,V> e = f;; ++binCount) {
976 >                                K ek;
977 >                                if (e.hash == hash &&
978 >                                    ((ek = e.key) == key ||
979 >                                     (ek != null && key.equals(ek)))) {
980 >                                    oldVal = e.val;
981 >                                    if (!onlyIfAbsent)
982 >                                        e.val = value;
983 >                                    break;
984 >                                }
985 >                                Node<K,V> pred = e;
986 >                                if ((e = e.next) == null) {
987 >                                    pred.next = new Node<K,V>(hash, key,
988 >                                                              value, null);
989 >                                    break;
990 >                                }
991 >                            }
992 >                        }
993 >                        else if (f instanceof TreeBin) {
994 >                            Node<K,V> p;
995 >                            binCount = 2;
996 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
997 >                                                           value)) != null) {
998 >                                oldVal = p.val;
999 >                                if (!onlyIfAbsent)
1000 >                                    p.val = value;
1001 >                            }
1002 >                        }
1003 >                    }
1004 >                }
1005 >                if (binCount != 0) {
1006 >                    if (binCount >= TREEIFY_THRESHOLD)
1007 >                        treeifyBin(tab, i);
1008 >                    if (oldVal != null)
1009 >                        return oldVal;
1010 >                    break;
1011 >                }
1012 >            }
1013 >        }
1014 >        addCount(1L, binCount);
1015 >        return null;
1016      }
1017  
1018      /**
# Line 904 | Line 1023 | public class ConcurrentHashMap<K, V> ext
1023       * @param m mappings to be stored in this map
1024       */
1025      public void putAll(Map<? extends K, ? extends V> m) {
1026 +        tryPresize(m.size());
1027          for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1028 <            put(e.getKey(), e.getValue());
1028 >            putVal(e.getKey(), e.getValue(), false);
1029      }
1030  
1031      /**
# Line 913 | Line 1033 | public class ConcurrentHashMap<K, V> ext
1033       * This method does nothing if the key is not in the map.
1034       *
1035       * @param  key the key that needs to be removed
1036 <     * @return the previous value associated with <tt>key</tt>, or
1037 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1036 >     * @return the previous value associated with {@code key}, or
1037 >     *         {@code null} if there was no mapping for {@code key}
1038       * @throws NullPointerException if the specified key is null
1039       */
1040      public V remove(Object key) {
1041 <        int hash = hash(key.hashCode());
922 <        return segmentFor(hash).remove(key, hash, null);
923 <    }
924 <
925 <    /**
926 <     * {@inheritDoc}
927 <     *
928 <     * @throws NullPointerException if the specified key is null
929 <     */
930 <    public boolean remove(Object key, Object value) {
931 <        int hash = hash(key.hashCode());
932 <        if (value == null)
933 <            return false;
934 <        return segmentFor(hash).remove(key, hash, value) != null;
935 <    }
936 <
937 <    /**
938 <     * {@inheritDoc}
939 <     *
940 <     * @throws NullPointerException if any of the arguments are null
941 <     */
942 <    public boolean replace(K key, V oldValue, V newValue) {
943 <        if (oldValue == null || newValue == null)
944 <            throw new NullPointerException();
945 <        int hash = hash(key.hashCode());
946 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
1041 >        return replaceNode(key, null, null);
1042      }
1043  
1044      /**
1045 <     * {@inheritDoc}
1046 <     *
1047 <     * @return the previous value associated with the specified key,
1048 <     *         or <tt>null</tt> if there was no mapping for the key
1049 <     * @throws NullPointerException if the specified key or value is null
1050 <     */
1051 <    public V replace(K key, V value) {
1052 <        if (value == null)
1053 <            throw new NullPointerException();
1054 <        int hash = hash(key.hashCode());
1055 <        return segmentFor(hash).replace(key, hash, value);
1045 >     * Implementation for the four public remove/replace methods:
1046 >     * Replaces node value with v, conditional upon match of cv if
1047 >     * non-null.  If resulting value is null, delete.
1048 >     */
1049 >    final V replaceNode(Object key, V value, Object cv) {
1050 >        int hash = spread(key.hashCode());
1051 >        for (Node<K,V>[] tab = table;;) {
1052 >            Node<K,V> f; int n, i, fh;
1053 >            if (tab == null || (n = tab.length) == 0 ||
1054 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1055 >                break;
1056 >            else if ((fh = f.hash) == MOVED)
1057 >                tab = helpTransfer(tab, f);
1058 >            else {
1059 >                V oldVal = null;
1060 >                boolean validated = false;
1061 >                synchronized (f) {
1062 >                    if (tabAt(tab, i) == f) {
1063 >                        if (fh >= 0) {
1064 >                            validated = true;
1065 >                            for (Node<K,V> e = f, pred = null;;) {
1066 >                                K ek;
1067 >                                if (e.hash == hash &&
1068 >                                    ((ek = e.key) == key ||
1069 >                                     (ek != null && key.equals(ek)))) {
1070 >                                    V ev = e.val;
1071 >                                    if (cv == null || cv == ev ||
1072 >                                        (ev != null && cv.equals(ev))) {
1073 >                                        oldVal = ev;
1074 >                                        if (value != null)
1075 >                                            e.val = value;
1076 >                                        else if (pred != null)
1077 >                                            pred.next = e.next;
1078 >                                        else
1079 >                                            setTabAt(tab, i, e.next);
1080 >                                    }
1081 >                                    break;
1082 >                                }
1083 >                                pred = e;
1084 >                                if ((e = e.next) == null)
1085 >                                    break;
1086 >                            }
1087 >                        }
1088 >                        else if (f instanceof TreeBin) {
1089 >                            validated = true;
1090 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1091 >                            TreeNode<K,V> r, p;
1092 >                            if ((r = t.root) != null &&
1093 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1094 >                                V pv = p.val;
1095 >                                if (cv == null || cv == pv ||
1096 >                                    (pv != null && cv.equals(pv))) {
1097 >                                    oldVal = pv;
1098 >                                    if (value != null)
1099 >                                        p.val = value;
1100 >                                    else if (t.removeTreeNode(p))
1101 >                                        setTabAt(tab, i, untreeify(t.first));
1102 >                                }
1103 >                            }
1104 >                        }
1105 >                    }
1106 >                }
1107 >                if (validated) {
1108 >                    if (oldVal != null) {
1109 >                        if (value == null)
1110 >                            addCount(-1L, -1);
1111 >                        return oldVal;
1112 >                    }
1113 >                    break;
1114 >                }
1115 >            }
1116 >        }
1117 >        return null;
1118      }
1119  
1120      /**
1121       * Removes all of the mappings from this map.
1122       */
1123      public void clear() {
1124 <        for (int i = 0; i < segments.length; ++i)
1125 <            segments[i].clear();
1124 >        long delta = 0L; // negative number of deletions
1125 >        int i = 0;
1126 >        Node<K,V>[] tab = table;
1127 >        while (tab != null && i < tab.length) {
1128 >            int fh;
1129 >            Node<K,V> f = tabAt(tab, i);
1130 >            if (f == null)
1131 >                ++i;
1132 >            else if ((fh = f.hash) == MOVED) {
1133 >                tab = helpTransfer(tab, f);
1134 >                i = 0; // restart
1135 >            }
1136 >            else {
1137 >                synchronized (f) {
1138 >                    if (tabAt(tab, i) == f) {
1139 >                        Node<K,V> p = (fh >= 0 ? f :
1140 >                                       (f instanceof TreeBin) ?
1141 >                                       ((TreeBin<K,V>)f).first : null);
1142 >                        while (p != null) {
1143 >                            --delta;
1144 >                            p = p.next;
1145 >                        }
1146 >                        setTabAt(tab, i++, null);
1147 >                    }
1148 >                }
1149 >            }
1150 >        }
1151 >        if (delta != 0L)
1152 >            addCount(delta, -1);
1153      }
1154  
1155      /**
1156       * Returns a {@link Set} view of the keys contained in this map.
1157       * The set is backed by the map, so changes to the map are
1158 <     * reflected in the set, and vice-versa.  The set supports element
1158 >     * reflected in the set, and vice-versa. The set supports element
1159       * removal, which removes the corresponding mapping from this map,
1160 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1161 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1162 <     * operations.  It does not support the <tt>add</tt> or
1163 <     * <tt>addAll</tt> operations.
1160 >     * via the {@code Iterator.remove}, {@code Set.remove},
1161 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1162 >     * operations.  It does not support the {@code add} or
1163 >     * {@code addAll} operations.
1164       *
1165 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1165 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1166       * that will never throw {@link ConcurrentModificationException},
1167       * and guarantees to traverse elements as they existed upon
1168       * construction of the iterator, and may (but is not guaranteed to)
1169       * reflect any modifications subsequent to construction.
1170 +     *
1171 +     * @return the set view
1172       */
1173 <    public Set<K> keySet() {
1174 <        Set<K> ks = keySet;
1175 <        return (ks != null) ? ks : (keySet = new KeySet());
1173 >    public KeySetView<K,V> keySet() {
1174 >        KeySetView<K,V> ks;
1175 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1176      }
1177  
1178      /**
# Line 994 | Line 1180 | public class ConcurrentHashMap<K, V> ext
1180       * The collection is backed by the map, so changes to the map are
1181       * reflected in the collection, and vice-versa.  The collection
1182       * supports element removal, which removes the corresponding
1183 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1184 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1185 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1186 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1183 >     * mapping from this map, via the {@code Iterator.remove},
1184 >     * {@code Collection.remove}, {@code removeAll},
1185 >     * {@code retainAll}, and {@code clear} operations.  It does not
1186 >     * support the {@code add} or {@code addAll} operations.
1187       *
1188 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1188 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1189       * that will never throw {@link ConcurrentModificationException},
1190       * and guarantees to traverse elements as they existed upon
1191       * construction of the iterator, and may (but is not guaranteed to)
1192       * reflect any modifications subsequent to construction.
1193 +     *
1194 +     * @return the collection view
1195       */
1196      public Collection<V> values() {
1197 <        Collection<V> vs = values;
1198 <        return (vs != null) ? vs : (values = new Values());
1197 >        ValuesView<K,V> vs;
1198 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1199      }
1200  
1201      /**
# Line 1015 | Line 1203 | public class ConcurrentHashMap<K, V> ext
1203       * The set is backed by the map, so changes to the map are
1204       * reflected in the set, and vice-versa.  The set supports element
1205       * removal, which removes the corresponding mapping from the map,
1206 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1207 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1208 <     * operations.  It does not support the <tt>add</tt> or
1021 <     * <tt>addAll</tt> operations.
1206 >     * via the {@code Iterator.remove}, {@code Set.remove},
1207 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1208 >     * operations.
1209       *
1210 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1210 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211       * that will never throw {@link ConcurrentModificationException},
1212       * and guarantees to traverse elements as they existed upon
1213       * construction of the iterator, and may (but is not guaranteed to)
1214       * reflect any modifications subsequent to construction.
1215 +     *
1216 +     * @return the set view
1217       */
1218      public Set<Map.Entry<K,V>> entrySet() {
1219 <        Set<Map.Entry<K,V>> es = entrySet;
1220 <        return (es != null) ? es : (entrySet = new EntrySet());
1219 >        EntrySetView<K,V> es;
1220 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1221 >    }
1222 >
1223 >    /**
1224 >     * Returns the hash code value for this {@link Map}, i.e.,
1225 >     * the sum of, for each key-value pair in the map,
1226 >     * {@code key.hashCode() ^ value.hashCode()}.
1227 >     *
1228 >     * @return the hash code value for this map
1229 >     */
1230 >    public int hashCode() {
1231 >        int h = 0;
1232 >        Node<K,V>[] t;
1233 >        if ((t = table) != null) {
1234 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1235 >            for (Node<K,V> p; (p = it.advance()) != null; )
1236 >                h += p.key.hashCode() ^ p.val.hashCode();
1237 >        }
1238 >        return h;
1239 >    }
1240 >
1241 >    /**
1242 >     * Returns a string representation of this map.  The string
1243 >     * representation consists of a list of key-value mappings (in no
1244 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1245 >     * mappings are separated by the characters {@code ", "} (comma
1246 >     * and space).  Each key-value mapping is rendered as the key
1247 >     * followed by an equals sign ("{@code =}") followed by the
1248 >     * associated value.
1249 >     *
1250 >     * @return a string representation of this map
1251 >     */
1252 >    public String toString() {
1253 >        Node<K,V>[] t;
1254 >        int f = (t = table) == null ? 0 : t.length;
1255 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1256 >        StringBuilder sb = new StringBuilder();
1257 >        sb.append('{');
1258 >        Node<K,V> p;
1259 >        if ((p = it.advance()) != null) {
1260 >            for (;;) {
1261 >                K k = p.key;
1262 >                V v = p.val;
1263 >                sb.append(k == this ? "(this Map)" : k);
1264 >                sb.append('=');
1265 >                sb.append(v == this ? "(this Map)" : v);
1266 >                if ((p = it.advance()) == null)
1267 >                    break;
1268 >                sb.append(',').append(' ');
1269 >            }
1270 >        }
1271 >        return sb.append('}').toString();
1272 >    }
1273 >
1274 >    /**
1275 >     * Compares the specified object with this map for equality.
1276 >     * Returns {@code true} if the given object is a map with the same
1277 >     * mappings as this map.  This operation may return misleading
1278 >     * results if either map is concurrently modified during execution
1279 >     * of this method.
1280 >     *
1281 >     * @param o object to be compared for equality with this map
1282 >     * @return {@code true} if the specified object is equal to this map
1283 >     */
1284 >    public boolean equals(Object o) {
1285 >        if (o != this) {
1286 >            if (!(o instanceof Map))
1287 >                return false;
1288 >            Map<?,?> m = (Map<?,?>) o;
1289 >            Node<K,V>[] t;
1290 >            int f = (t = table) == null ? 0 : t.length;
1291 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1292 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1293 >                V val = p.val;
1294 >                Object v = m.get(p.key);
1295 >                if (v == null || (v != val && !v.equals(val)))
1296 >                    return false;
1297 >            }
1298 >            for (Map.Entry<?,?> e : m.entrySet()) {
1299 >                Object mk, mv, v;
1300 >                if ((mk = e.getKey()) == null ||
1301 >                    (mv = e.getValue()) == null ||
1302 >                    (v = get(mk)) == null ||
1303 >                    (mv != v && !mv.equals(v)))
1304 >                    return false;
1305 >            }
1306 >        }
1307 >        return true;
1308 >    }
1309 >
1310 >    /**
1311 >     * Stripped-down version of helper class used in previous version,
1312 >     * declared for the sake of serialization compatibility
1313 >     */
1314 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1315 >        private static final long serialVersionUID = 2249069246763182397L;
1316 >        final float loadFactor;
1317 >        Segment(float lf) { this.loadFactor = lf; }
1318 >    }
1319 >
1320 >    /**
1321 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1322 >     * stream (i.e., serializes it).
1323 >     * @param s the stream
1324 >     * @serialData
1325 >     * the key (Object) and value (Object)
1326 >     * for each key-value mapping, followed by a null pair.
1327 >     * The key-value mappings are emitted in no particular order.
1328 >     */
1329 >    private void writeObject(java.io.ObjectOutputStream s)
1330 >        throws java.io.IOException {
1331 >        // For serialization compatibility
1332 >        // Emulate segment calculation from previous version of this class
1333 >        int sshift = 0;
1334 >        int ssize = 1;
1335 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1336 >            ++sshift;
1337 >            ssize <<= 1;
1338 >        }
1339 >        int segmentShift = 32 - sshift;
1340 >        int segmentMask = ssize - 1;
1341 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1342 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1343 >        for (int i = 0; i < segments.length; ++i)
1344 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1345 >        s.putFields().put("segments", segments);
1346 >        s.putFields().put("segmentShift", segmentShift);
1347 >        s.putFields().put("segmentMask", segmentMask);
1348 >        s.writeFields();
1349 >
1350 >        Node<K,V>[] t;
1351 >        if ((t = table) != null) {
1352 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1353 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1354 >                s.writeObject(p.key);
1355 >                s.writeObject(p.val);
1356 >            }
1357 >        }
1358 >        s.writeObject(null);
1359 >        s.writeObject(null);
1360 >        segments = null; // throw away
1361 >    }
1362 >
1363 >    /**
1364 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1365 >     * @param s the stream
1366 >     */
1367 >    private void readObject(java.io.ObjectInputStream s)
1368 >        throws java.io.IOException, ClassNotFoundException {
1369 >        /*
1370 >         * To improve performance in typical cases, we create nodes
1371 >         * while reading, then place in table once size is known.
1372 >         * However, we must also validate uniqueness and deal with
1373 >         * overpopulated bins while doing so, which requires
1374 >         * specialized versions of putVal mechanics.
1375 >         */
1376 >        sizeCtl = -1; // force exclusion for table construction
1377 >        s.defaultReadObject();
1378 >        long size = 0L;
1379 >        Node<K,V> p = null;
1380 >        for (;;) {
1381 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1382 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1383 >            if (k != null && v != null) {
1384 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1385 >                ++size;
1386 >            }
1387 >            else
1388 >                break;
1389 >        }
1390 >        if (size == 0L)
1391 >            sizeCtl = 0;
1392 >        else {
1393 >            int n;
1394 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1395 >                n = MAXIMUM_CAPACITY;
1396 >            else {
1397 >                int sz = (int)size;
1398 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1399 >            }
1400 >            @SuppressWarnings({"rawtypes","unchecked"})
1401 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1402 >            int mask = n - 1;
1403 >            long added = 0L;
1404 >            while (p != null) {
1405 >                boolean insertAtFront;
1406 >                Node<K,V> next = p.next, first;
1407 >                int h = p.hash, j = h & mask;
1408 >                if ((first = tabAt(tab, j)) == null)
1409 >                    insertAtFront = true;
1410 >                else {
1411 >                    K k = p.key;
1412 >                    if (first.hash < 0) {
1413 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1414 >                        if (t.putTreeVal(h, k, p.val) == null)
1415 >                            ++added;
1416 >                        insertAtFront = false;
1417 >                    }
1418 >                    else {
1419 >                        int binCount = 0;
1420 >                        insertAtFront = true;
1421 >                        Node<K,V> q; K qk;
1422 >                        for (q = first; q != null; q = q.next) {
1423 >                            if (q.hash == h &&
1424 >                                ((qk = q.key) == k ||
1425 >                                 (qk != null && k.equals(qk)))) {
1426 >                                insertAtFront = false;
1427 >                                break;
1428 >                            }
1429 >                            ++binCount;
1430 >                        }
1431 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1432 >                            insertAtFront = false;
1433 >                            ++added;
1434 >                            p.next = first;
1435 >                            TreeNode<K,V> hd = null, tl = null;
1436 >                            for (q = p; q != null; q = q.next) {
1437 >                                TreeNode<K,V> t = new TreeNode<K,V>
1438 >                                    (q.hash, q.key, q.val, null, null);
1439 >                                if ((t.prev = tl) == null)
1440 >                                    hd = t;
1441 >                                else
1442 >                                    tl.next = t;
1443 >                                tl = t;
1444 >                            }
1445 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1446 >                        }
1447 >                    }
1448 >                }
1449 >                if (insertAtFront) {
1450 >                    ++added;
1451 >                    p.next = first;
1452 >                    setTabAt(tab, j, p);
1453 >                }
1454 >                p = next;
1455 >            }
1456 >            table = tab;
1457 >            sizeCtl = n - (n >>> 2);
1458 >            baseCount = added;
1459 >        }
1460 >    }
1461 >
1462 >    // ConcurrentMap methods
1463 >
1464 >    /**
1465 >     * {@inheritDoc}
1466 >     *
1467 >     * @return the previous value associated with the specified key,
1468 >     *         or {@code null} if there was no mapping for the key
1469 >     * @throws NullPointerException if the specified key or value is null
1470 >     */
1471 >    public V putIfAbsent(K key, V value) {
1472 >        return putVal(key, value, true);
1473 >    }
1474 >
1475 >    /**
1476 >     * {@inheritDoc}
1477 >     *
1478 >     * @throws NullPointerException if the specified key is null
1479 >     */
1480 >    public boolean remove(Object key, Object value) {
1481 >        if (key == null)
1482 >            throw new NullPointerException();
1483 >        return value != null && replaceNode(key, null, value) != null;
1484 >    }
1485 >
1486 >    /**
1487 >     * {@inheritDoc}
1488 >     *
1489 >     * @throws NullPointerException if any of the arguments are null
1490 >     */
1491 >    public boolean replace(K key, V oldValue, V newValue) {
1492 >        if (key == null || oldValue == null || newValue == null)
1493 >            throw new NullPointerException();
1494 >        return replaceNode(key, newValue, oldValue) != null;
1495 >    }
1496 >
1497 >    /**
1498 >     * {@inheritDoc}
1499 >     *
1500 >     * @return the previous value associated with the specified key,
1501 >     *         or {@code null} if there was no mapping for the key
1502 >     * @throws NullPointerException if the specified key or value is null
1503 >     */
1504 >    public V replace(K key, V value) {
1505 >        if (key == null || value == null)
1506 >            throw new NullPointerException();
1507 >        return replaceNode(key, value, null);
1508 >    }
1509 >
1510 >    // Overrides of JDK8+ Map extension method defaults
1511 >
1512 >    /**
1513 >     * Returns the value to which the specified key is mapped, or the
1514 >     * given default value if this map contains no mapping for the
1515 >     * key.
1516 >     *
1517 >     * @param key the key whose associated value is to be returned
1518 >     * @param defaultValue the value to return if this map contains
1519 >     * no mapping for the given key
1520 >     * @return the mapping for the key, if present; else the default value
1521 >     * @throws NullPointerException if the specified key is null
1522 >     */
1523 >    public V getOrDefault(Object key, V defaultValue) {
1524 >        V v;
1525 >        return (v = get(key)) == null ? defaultValue : v;
1526 >    }
1527 >
1528 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1529 >        if (action == null) throw new NullPointerException();
1530 >        Node<K,V>[] t;
1531 >        if ((t = table) != null) {
1532 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1533 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1534 >                action.accept(p.key, p.val);
1535 >            }
1536 >        }
1537 >    }
1538 >
1539 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1540 >        if (function == null) throw new NullPointerException();
1541 >        Node<K,V>[] t;
1542 >        if ((t = table) != null) {
1543 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1544 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1545 >                V oldValue = p.val;
1546 >                for (K key = p.key;;) {
1547 >                    V newValue = function.apply(key, oldValue);
1548 >                    if (newValue == null)
1549 >                        throw new NullPointerException();
1550 >                    if (replaceNode(key, newValue, oldValue) != null ||
1551 >                        (oldValue = get(key)) == null)
1552 >                        break;
1553 >                }
1554 >            }
1555 >        }
1556 >    }
1557 >
1558 >    /**
1559 >     * If the specified key is not already associated with a value,
1560 >     * attempts to compute its value using the given mapping function
1561 >     * and enters it into this map unless {@code null}.  The entire
1562 >     * method invocation is performed atomically, so the function is
1563 >     * applied at most once per key.  Some attempted update operations
1564 >     * on this map by other threads may be blocked while computation
1565 >     * is in progress, so the computation should be short and simple,
1566 >     * and must not attempt to update any other mappings of this map.
1567 >     *
1568 >     * @param key key with which the specified value is to be associated
1569 >     * @param mappingFunction the function to compute a value
1570 >     * @return the current (existing or computed) value associated with
1571 >     *         the specified key, or null if the computed value is null
1572 >     * @throws NullPointerException if the specified key or mappingFunction
1573 >     *         is null
1574 >     * @throws IllegalStateException if the computation detectably
1575 >     *         attempts a recursive update to this map that would
1576 >     *         otherwise never complete
1577 >     * @throws RuntimeException or Error if the mappingFunction does so,
1578 >     *         in which case the mapping is left unestablished
1579 >     */
1580 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1581 >        if (key == null || mappingFunction == null)
1582 >            throw new NullPointerException();
1583 >        int h = spread(key.hashCode());
1584 >        V val = null;
1585 >        int binCount = 0;
1586 >        for (Node<K,V>[] tab = table;;) {
1587 >            Node<K,V> f; int n, i, fh;
1588 >            if (tab == null || (n = tab.length) == 0)
1589 >                tab = initTable();
1590 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1591 >                Node<K,V> r = new ReservationNode<K,V>();
1592 >                synchronized (r) {
1593 >                    if (casTabAt(tab, i, null, r)) {
1594 >                        binCount = 1;
1595 >                        Node<K,V> node = null;
1596 >                        try {
1597 >                            if ((val = mappingFunction.apply(key)) != null)
1598 >                                node = new Node<K,V>(h, key, val, null);
1599 >                        } finally {
1600 >                            setTabAt(tab, i, node);
1601 >                        }
1602 >                    }
1603 >                }
1604 >                if (binCount != 0)
1605 >                    break;
1606 >            }
1607 >            else if ((fh = f.hash) == MOVED)
1608 >                tab = helpTransfer(tab, f);
1609 >            else {
1610 >                boolean added = false;
1611 >                synchronized (f) {
1612 >                    if (tabAt(tab, i) == f) {
1613 >                        if (fh >= 0) {
1614 >                            binCount = 1;
1615 >                            for (Node<K,V> e = f;; ++binCount) {
1616 >                                K ek; V ev;
1617 >                                if (e.hash == h &&
1618 >                                    ((ek = e.key) == key ||
1619 >                                     (ek != null && key.equals(ek)))) {
1620 >                                    val = e.val;
1621 >                                    break;
1622 >                                }
1623 >                                Node<K,V> pred = e;
1624 >                                if ((e = e.next) == null) {
1625 >                                    if ((val = mappingFunction.apply(key)) != null) {
1626 >                                        added = true;
1627 >                                        pred.next = new Node<K,V>(h, key, val, null);
1628 >                                    }
1629 >                                    break;
1630 >                                }
1631 >                            }
1632 >                        }
1633 >                        else if (f instanceof TreeBin) {
1634 >                            binCount = 2;
1635 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1636 >                            TreeNode<K,V> r, p;
1637 >                            if ((r = t.root) != null &&
1638 >                                (p = r.findTreeNode(h, key, null)) != null)
1639 >                                val = p.val;
1640 >                            else if ((val = mappingFunction.apply(key)) != null) {
1641 >                                added = true;
1642 >                                t.putTreeVal(h, key, val);
1643 >                            }
1644 >                        }
1645 >                    }
1646 >                }
1647 >                if (binCount != 0) {
1648 >                    if (binCount >= TREEIFY_THRESHOLD)
1649 >                        treeifyBin(tab, i);
1650 >                    if (!added)
1651 >                        return val;
1652 >                    break;
1653 >                }
1654 >            }
1655 >        }
1656 >        if (val != null)
1657 >            addCount(1L, binCount);
1658 >        return val;
1659 >    }
1660 >
1661 >    /**
1662 >     * If the value for the specified key is present, attempts to
1663 >     * compute a new mapping given the key and its current mapped
1664 >     * value.  The entire method invocation is performed atomically.
1665 >     * Some attempted update operations on this map by other threads
1666 >     * may be blocked while computation is in progress, so the
1667 >     * computation should be short and simple, and must not attempt to
1668 >     * update any other mappings of this map.
1669 >     *
1670 >     * @param key key with which a value may be associated
1671 >     * @param remappingFunction the function to compute a value
1672 >     * @return the new value associated with the specified key, or null if none
1673 >     * @throws NullPointerException if the specified key or remappingFunction
1674 >     *         is null
1675 >     * @throws IllegalStateException if the computation detectably
1676 >     *         attempts a recursive update to this map that would
1677 >     *         otherwise never complete
1678 >     * @throws RuntimeException or Error if the remappingFunction does so,
1679 >     *         in which case the mapping is unchanged
1680 >     */
1681 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1682 >        if (key == null || remappingFunction == null)
1683 >            throw new NullPointerException();
1684 >        int h = spread(key.hashCode());
1685 >        V val = null;
1686 >        int delta = 0;
1687 >        int binCount = 0;
1688 >        for (Node<K,V>[] tab = table;;) {
1689 >            Node<K,V> f; int n, i, fh;
1690 >            if (tab == null || (n = tab.length) == 0)
1691 >                tab = initTable();
1692 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1693 >                break;
1694 >            else if ((fh = f.hash) == MOVED)
1695 >                tab = helpTransfer(tab, f);
1696 >            else {
1697 >                synchronized (f) {
1698 >                    if (tabAt(tab, i) == f) {
1699 >                        if (fh >= 0) {
1700 >                            binCount = 1;
1701 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1702 >                                K ek;
1703 >                                if (e.hash == h &&
1704 >                                    ((ek = e.key) == key ||
1705 >                                     (ek != null && key.equals(ek)))) {
1706 >                                    val = remappingFunction.apply(key, e.val);
1707 >                                    if (val != null)
1708 >                                        e.val = val;
1709 >                                    else {
1710 >                                        delta = -1;
1711 >                                        Node<K,V> en = e.next;
1712 >                                        if (pred != null)
1713 >                                            pred.next = en;
1714 >                                        else
1715 >                                            setTabAt(tab, i, en);
1716 >                                    }
1717 >                                    break;
1718 >                                }
1719 >                                pred = e;
1720 >                                if ((e = e.next) == null)
1721 >                                    break;
1722 >                            }
1723 >                        }
1724 >                        else if (f instanceof TreeBin) {
1725 >                            binCount = 2;
1726 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1727 >                            TreeNode<K,V> r, p;
1728 >                            if ((r = t.root) != null &&
1729 >                                (p = r.findTreeNode(h, key, null)) != null) {
1730 >                                val = remappingFunction.apply(key, p.val);
1731 >                                if (val != null)
1732 >                                    p.val = val;
1733 >                                else {
1734 >                                    delta = -1;
1735 >                                    if (t.removeTreeNode(p))
1736 >                                        setTabAt(tab, i, untreeify(t.first));
1737 >                                }
1738 >                            }
1739 >                        }
1740 >                    }
1741 >                }
1742 >                if (binCount != 0)
1743 >                    break;
1744 >            }
1745 >        }
1746 >        if (delta != 0)
1747 >            addCount((long)delta, binCount);
1748 >        return val;
1749 >    }
1750 >
1751 >    /**
1752 >     * Attempts to compute a mapping for the specified key and its
1753 >     * current mapped value (or {@code null} if there is no current
1754 >     * mapping). The entire method invocation is performed atomically.
1755 >     * Some attempted update operations on this map by other threads
1756 >     * may be blocked while computation is in progress, so the
1757 >     * computation should be short and simple, and must not attempt to
1758 >     * update any other mappings of this Map.
1759 >     *
1760 >     * @param key key with which the specified value is to be associated
1761 >     * @param remappingFunction the function to compute a value
1762 >     * @return the new value associated with the specified key, or null if none
1763 >     * @throws NullPointerException if the specified key or remappingFunction
1764 >     *         is null
1765 >     * @throws IllegalStateException if the computation detectably
1766 >     *         attempts a recursive update to this map that would
1767 >     *         otherwise never complete
1768 >     * @throws RuntimeException or Error if the remappingFunction does so,
1769 >     *         in which case the mapping is unchanged
1770 >     */
1771 >    public V compute(K key,
1772 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1773 >        if (key == null || remappingFunction == null)
1774 >            throw new NullPointerException();
1775 >        int h = spread(key.hashCode());
1776 >        V val = null;
1777 >        int delta = 0;
1778 >        int binCount = 0;
1779 >        for (Node<K,V>[] tab = table;;) {
1780 >            Node<K,V> f; int n, i, fh;
1781 >            if (tab == null || (n = tab.length) == 0)
1782 >                tab = initTable();
1783 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1784 >                Node<K,V> r = new ReservationNode<K,V>();
1785 >                synchronized (r) {
1786 >                    if (casTabAt(tab, i, null, r)) {
1787 >                        binCount = 1;
1788 >                        Node<K,V> node = null;
1789 >                        try {
1790 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1791 >                                delta = 1;
1792 >                                node = new Node<K,V>(h, key, val, null);
1793 >                            }
1794 >                        } finally {
1795 >                            setTabAt(tab, i, node);
1796 >                        }
1797 >                    }
1798 >                }
1799 >                if (binCount != 0)
1800 >                    break;
1801 >            }
1802 >            else if ((fh = f.hash) == MOVED)
1803 >                tab = helpTransfer(tab, f);
1804 >            else {
1805 >                synchronized (f) {
1806 >                    if (tabAt(tab, i) == f) {
1807 >                        if (fh >= 0) {
1808 >                            binCount = 1;
1809 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1810 >                                K ek;
1811 >                                if (e.hash == h &&
1812 >                                    ((ek = e.key) == key ||
1813 >                                     (ek != null && key.equals(ek)))) {
1814 >                                    val = remappingFunction.apply(key, e.val);
1815 >                                    if (val != null)
1816 >                                        e.val = val;
1817 >                                    else {
1818 >                                        delta = -1;
1819 >                                        Node<K,V> en = e.next;
1820 >                                        if (pred != null)
1821 >                                            pred.next = en;
1822 >                                        else
1823 >                                            setTabAt(tab, i, en);
1824 >                                    }
1825 >                                    break;
1826 >                                }
1827 >                                pred = e;
1828 >                                if ((e = e.next) == null) {
1829 >                                    val = remappingFunction.apply(key, null);
1830 >                                    if (val != null) {
1831 >                                        delta = 1;
1832 >                                        pred.next =
1833 >                                            new Node<K,V>(h, key, val, null);
1834 >                                    }
1835 >                                    break;
1836 >                                }
1837 >                            }
1838 >                        }
1839 >                        else if (f instanceof TreeBin) {
1840 >                            binCount = 1;
1841 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1842 >                            TreeNode<K,V> r, p;
1843 >                            if ((r = t.root) != null)
1844 >                                p = r.findTreeNode(h, key, null);
1845 >                            else
1846 >                                p = null;
1847 >                            V pv = (p == null) ? null : p.val;
1848 >                            val = remappingFunction.apply(key, pv);
1849 >                            if (val != null) {
1850 >                                if (p != null)
1851 >                                    p.val = val;
1852 >                                else {
1853 >                                    delta = 1;
1854 >                                    t.putTreeVal(h, key, val);
1855 >                                }
1856 >                            }
1857 >                            else if (p != null) {
1858 >                                delta = -1;
1859 >                                if (t.removeTreeNode(p))
1860 >                                    setTabAt(tab, i, untreeify(t.first));
1861 >                            }
1862 >                        }
1863 >                    }
1864 >                }
1865 >                if (binCount != 0) {
1866 >                    if (binCount >= TREEIFY_THRESHOLD)
1867 >                        treeifyBin(tab, i);
1868 >                    break;
1869 >                }
1870 >            }
1871 >        }
1872 >        if (delta != 0)
1873 >            addCount((long)delta, binCount);
1874 >        return val;
1875 >    }
1876 >
1877 >    /**
1878 >     * If the specified key is not already associated with a
1879 >     * (non-null) value, associates it with the given value.
1880 >     * Otherwise, replaces the value with the results of the given
1881 >     * remapping function, or removes if {@code null}. The entire
1882 >     * method invocation is performed atomically.  Some attempted
1883 >     * update operations on this map by other threads may be blocked
1884 >     * while computation is in progress, so the computation should be
1885 >     * short and simple, and must not attempt to update any other
1886 >     * mappings of this Map.
1887 >     *
1888 >     * @param key key with which the specified value is to be associated
1889 >     * @param value the value to use if absent
1890 >     * @param remappingFunction the function to recompute a value if present
1891 >     * @return the new value associated with the specified key, or null if none
1892 >     * @throws NullPointerException if the specified key or the
1893 >     *         remappingFunction is null
1894 >     * @throws RuntimeException or Error if the remappingFunction does so,
1895 >     *         in which case the mapping is unchanged
1896 >     */
1897 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1898 >        if (key == null || value == null || remappingFunction == null)
1899 >            throw new NullPointerException();
1900 >        int h = spread(key.hashCode());
1901 >        V val = null;
1902 >        int delta = 0;
1903 >        int binCount = 0;
1904 >        for (Node<K,V>[] tab = table;;) {
1905 >            Node<K,V> f; int n, i, fh;
1906 >            if (tab == null || (n = tab.length) == 0)
1907 >                tab = initTable();
1908 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1909 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1910 >                    delta = 1;
1911 >                    val = value;
1912 >                    break;
1913 >                }
1914 >            }
1915 >            else if ((fh = f.hash) == MOVED)
1916 >                tab = helpTransfer(tab, f);
1917 >            else {
1918 >                synchronized (f) {
1919 >                    if (tabAt(tab, i) == f) {
1920 >                        if (fh >= 0) {
1921 >                            binCount = 1;
1922 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1923 >                                K ek;
1924 >                                if (e.hash == h &&
1925 >                                    ((ek = e.key) == key ||
1926 >                                     (ek != null && key.equals(ek)))) {
1927 >                                    val = remappingFunction.apply(e.val, value);
1928 >                                    if (val != null)
1929 >                                        e.val = val;
1930 >                                    else {
1931 >                                        delta = -1;
1932 >                                        Node<K,V> en = e.next;
1933 >                                        if (pred != null)
1934 >                                            pred.next = en;
1935 >                                        else
1936 >                                            setTabAt(tab, i, en);
1937 >                                    }
1938 >                                    break;
1939 >                                }
1940 >                                pred = e;
1941 >                                if ((e = e.next) == null) {
1942 >                                    delta = 1;
1943 >                                    val = value;
1944 >                                    pred.next =
1945 >                                        new Node<K,V>(h, key, val, null);
1946 >                                    break;
1947 >                                }
1948 >                            }
1949 >                        }
1950 >                        else if (f instanceof TreeBin) {
1951 >                            binCount = 2;
1952 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1953 >                            TreeNode<K,V> r = t.root;
1954 >                            TreeNode<K,V> p = (r == null) ? null :
1955 >                                r.findTreeNode(h, key, null);
1956 >                            val = (p == null) ? value :
1957 >                                remappingFunction.apply(p.val, value);
1958 >                            if (val != null) {
1959 >                                if (p != null)
1960 >                                    p.val = val;
1961 >                                else {
1962 >                                    delta = 1;
1963 >                                    t.putTreeVal(h, key, val);
1964 >                                }
1965 >                            }
1966 >                            else if (p != null) {
1967 >                                delta = -1;
1968 >                                if (t.removeTreeNode(p))
1969 >                                    setTabAt(tab, i, untreeify(t.first));
1970 >                            }
1971 >                        }
1972 >                    }
1973 >                }
1974 >                if (binCount != 0) {
1975 >                    if (binCount >= TREEIFY_THRESHOLD)
1976 >                        treeifyBin(tab, i);
1977 >                    break;
1978 >                }
1979 >            }
1980 >        }
1981 >        if (delta != 0)
1982 >            addCount((long)delta, binCount);
1983 >        return val;
1984 >    }
1985 >
1986 >    // Hashtable legacy methods
1987 >
1988 >    /**
1989 >     * Legacy method testing if some key maps into the specified value
1990 >     * in this table.  This method is identical in functionality to
1991 >     * {@link #containsValue(Object)}, and exists solely to ensure
1992 >     * full compatibility with class {@link java.util.Hashtable},
1993 >     * which supported this method prior to introduction of the
1994 >     * Java Collections framework.
1995 >     *
1996 >     * @param  value a value to search for
1997 >     * @return {@code true} if and only if some key maps to the
1998 >     *         {@code value} argument in this table as
1999 >     *         determined by the {@code equals} method;
2000 >     *         {@code false} otherwise
2001 >     * @throws NullPointerException if the specified value is null
2002 >     */
2003 >    @Deprecated public boolean contains(Object value) {
2004 >        return containsValue(value);
2005      }
2006  
2007      /**
2008       * Returns an enumeration of the keys in this table.
2009       *
2010       * @return an enumeration of the keys in this table
2011 <     * @see #keySet
2011 >     * @see #keySet()
2012       */
2013      public Enumeration<K> keys() {
2014 <        return new KeyIterator();
2014 >        Node<K,V>[] t;
2015 >        int f = (t = table) == null ? 0 : t.length;
2016 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2017      }
2018  
2019      /**
2020       * Returns an enumeration of the values in this table.
2021       *
2022       * @return an enumeration of the values in this table
2023 <     * @see #values
2023 >     * @see #values()
2024       */
2025      public Enumeration<V> elements() {
2026 <        return new ValueIterator();
2026 >        Node<K,V>[] t;
2027 >        int f = (t = table) == null ? 0 : t.length;
2028 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2029      }
2030  
2031 <    /* ---------------- Iterator Support -------------- */
2031 >    // ConcurrentHashMap-only methods
2032  
2033 <    abstract class HashIterator {
2034 <        int nextSegmentIndex;
2035 <        int nextTableIndex;
2036 <        HashEntry<K,V>[] currentTable;
2037 <        HashEntry<K, V> nextEntry;
2038 <        HashEntry<K, V> lastReturned;
2033 >    /**
2034 >     * Returns the number of mappings. This method should be used
2035 >     * instead of {@link #size} because a ConcurrentHashMap may
2036 >     * contain more mappings than can be represented as an int. The
2037 >     * value returned is an estimate; the actual count may differ if
2038 >     * there are concurrent insertions or removals.
2039 >     *
2040 >     * @return the number of mappings
2041 >     * @since 1.8
2042 >     */
2043 >    public long mappingCount() {
2044 >        long n = sumCount();
2045 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2046 >    }
2047  
2048 <        HashIterator() {
2049 <            nextSegmentIndex = segments.length - 1;
2050 <            nextTableIndex = -1;
2051 <            advance();
2048 >    /**
2049 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2050 >     * from the given type to {@code Boolean.TRUE}.
2051 >     *
2052 >     * @return the new set
2053 >     * @since 1.8
2054 >     */
2055 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2056 >        return new KeySetView<K,Boolean>
2057 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2058 >    }
2059 >
2060 >    /**
2061 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2062 >     * from the given type to {@code Boolean.TRUE}.
2063 >     *
2064 >     * @param initialCapacity The implementation performs internal
2065 >     * sizing to accommodate this many elements.
2066 >     * @throws IllegalArgumentException if the initial capacity of
2067 >     * elements is negative
2068 >     * @return the new set
2069 >     * @since 1.8
2070 >     */
2071 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2072 >        return new KeySetView<K,Boolean>
2073 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2074 >    }
2075 >
2076 >    /**
2077 >     * Returns a {@link Set} view of the keys in this map, using the
2078 >     * given common mapped value for any additions (i.e., {@link
2079 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2080 >     * This is of course only appropriate if it is acceptable to use
2081 >     * the same value for all additions from this view.
2082 >     *
2083 >     * @param mappedValue the mapped value to use for any additions
2084 >     * @return the set view
2085 >     * @throws NullPointerException if the mappedValue is null
2086 >     */
2087 >    public KeySetView<K,V> keySet(V mappedValue) {
2088 >        if (mappedValue == null)
2089 >            throw new NullPointerException();
2090 >        return new KeySetView<K,V>(this, mappedValue);
2091 >    }
2092 >
2093 >    /* ---------------- Special Nodes -------------- */
2094 >
2095 >    /**
2096 >     * A node inserted at head of bins during transfer operations.
2097 >     */
2098 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2099 >        final Node<K,V>[] nextTable;
2100 >        ForwardingNode(Node<K,V>[] tab) {
2101 >            super(MOVED, null, null, null);
2102 >            this.nextTable = tab;
2103 >        }
2104 >
2105 >        Node<K,V> find(int h, Object k) {
2106 >            Node<K,V> e; int n;
2107 >            Node<K,V>[] tab = nextTable;
2108 >            if (k != null && tab != null && (n = tab.length) > 0 &&
2109 >                (e = tabAt(tab, (n - 1) & h)) != null) {
2110 >                do {
2111 >                    int eh; K ek;
2112 >                    if ((eh = e.hash) == h &&
2113 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2114 >                        return e;
2115 >                    if (eh < 0)
2116 >                        return e.find(h, k);
2117 >                } while ((e = e.next) != null);
2118 >            }
2119 >            return null;
2120 >        }
2121 >    }
2122 >
2123 >    /**
2124 >     * A place-holder node used in computeIfAbsent and compute
2125 >     */
2126 >    static final class ReservationNode<K,V> extends Node<K,V> {
2127 >        ReservationNode() {
2128 >            super(RESERVED, null, null, null);
2129 >        }
2130 >
2131 >        Node<K,V> find(int h, Object k) {
2132 >            return null;
2133 >        }
2134 >    }
2135 >
2136 >    /* ---------------- Table Initialization and Resizing -------------- */
2137 >
2138 >    /**
2139 >     * Initializes table, using the size recorded in sizeCtl.
2140 >     */
2141 >    private final Node<K,V>[] initTable() {
2142 >        Node<K,V>[] tab; int sc;
2143 >        while ((tab = table) == null || tab.length == 0) {
2144 >            if ((sc = sizeCtl) < 0)
2145 >                Thread.yield(); // lost initialization race; just spin
2146 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2147 >                try {
2148 >                    if ((tab = table) == null || tab.length == 0) {
2149 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2150 >                        @SuppressWarnings({"rawtypes","unchecked"})
2151 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2152 >                        table = tab = nt;
2153 >                        sc = n - (n >>> 2);
2154 >                    }
2155 >                } finally {
2156 >                    sizeCtl = sc;
2157 >                }
2158 >                break;
2159 >            }
2160          }
2161 +        return tab;
2162 +    }
2163  
2164 <        public boolean hasMoreElements() { return hasNext(); }
2164 >    /**
2165 >     * Adds to count, and if table is too small and not already
2166 >     * resizing, initiates transfer. If already resizing, helps
2167 >     * perform transfer if work is available.  Rechecks occupancy
2168 >     * after a transfer to see if another resize is already needed
2169 >     * because resizings are lagging additions.
2170 >     *
2171 >     * @param x the count to add
2172 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2173 >     */
2174 >    private final void addCount(long x, int check) {
2175 >        CounterCell[] as; long b, s;
2176 >        if ((as = counterCells) != null ||
2177 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2178 >            CounterCell a; long v; int m;
2179 >            boolean uncontended = true;
2180 >            if (as == null || (m = as.length - 1) < 0 ||
2181 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2182 >                !(uncontended =
2183 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2184 >                fullAddCount(x, uncontended);
2185 >                return;
2186 >            }
2187 >            if (check <= 1)
2188 >                return;
2189 >            s = sumCount();
2190 >        }
2191 >        if (check >= 0) {
2192 >            Node<K,V>[] tab, nt; int sc;
2193 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2194 >                   tab.length < MAXIMUM_CAPACITY) {
2195 >                if (sc < 0) {
2196 >                    if (sc == -1 || transferIndex <= transferOrigin ||
2197 >                        (nt = nextTable) == null)
2198 >                        break;
2199 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2200 >                        transfer(tab, nt);
2201 >                }
2202 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2203 >                    transfer(tab, null);
2204 >                s = sumCount();
2205 >            }
2206 >        }
2207 >    }
2208  
2209 <        final void advance() {
2210 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
2209 >    /**
2210 >     * Helps transfer if a resize is in progress.
2211 >     */
2212 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2213 >        Node<K,V>[] nextTab; int sc;
2214 >        if ((f instanceof ForwardingNode) &&
2215 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2216 >            if (nextTab == nextTable && tab == table &&
2217 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2218 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2219 >                transfer(tab, nextTab);
2220 >            return nextTab;
2221 >        }
2222 >        return table;
2223 >    }
2224 >
2225 >    /**
2226 >     * Tries to presize table to accommodate the given number of elements.
2227 >     *
2228 >     * @param size number of elements (doesn't need to be perfectly accurate)
2229 >     */
2230 >    private final void tryPresize(int size) {
2231 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2232 >            tableSizeFor(size + (size >>> 1) + 1);
2233 >        int sc;
2234 >        while ((sc = sizeCtl) >= 0) {
2235 >            Node<K,V>[] tab = table; int n;
2236 >            if (tab == null || (n = tab.length) == 0) {
2237 >                n = (sc > c) ? sc : c;
2238 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2239 >                    try {
2240 >                        if (table == tab) {
2241 >                            @SuppressWarnings({"rawtypes","unchecked"})
2242 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2243 >                            table = nt;
2244 >                            sc = n - (n >>> 2);
2245 >                        }
2246 >                    } finally {
2247 >                        sizeCtl = sc;
2248 >                    }
2249 >                }
2250 >            }
2251 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2252 >                break;
2253 >            else if (tab == table &&
2254 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2255 >                transfer(tab, null);
2256 >        }
2257 >    }
2258 >
2259 >    /**
2260 >     * Moves and/or copies the nodes in each bin to new table. See
2261 >     * above for explanation.
2262 >     */
2263 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2264 >        int n = tab.length, stride;
2265 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2266 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2267 >        if (nextTab == null) {            // initiating
2268 >            try {
2269 >                @SuppressWarnings({"rawtypes","unchecked"})
2270 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2271 >                nextTab = nt;
2272 >            } catch (Throwable ex) {      // try to cope with OOME
2273 >                sizeCtl = Integer.MAX_VALUE;
2274                  return;
2275 +            }
2276 +            nextTable = nextTab;
2277 +            transferOrigin = n;
2278 +            transferIndex = n;
2279 +            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2280 +            for (int k = n; k > 0;) {    // progressively reveal ready slots
2281 +                int nextk = (k > stride) ? k - stride : 0;
2282 +                for (int m = nextk; m < k; ++m)
2283 +                    nextTab[m] = rev;
2284 +                for (int m = n + nextk; m < n + k; ++m)
2285 +                    nextTab[m] = rev;
2286 +                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2287 +            }
2288 +        }
2289 +        int nextn = nextTab.length;
2290 +        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2291 +        boolean advance = true;
2292 +        for (int i = 0, bound = 0;;) {
2293 +            int nextIndex, nextBound, fh; Node<K,V> f;
2294 +            while (advance) {
2295 +                if (--i >= bound)
2296 +                    advance = false;
2297 +                else if ((nextIndex = transferIndex) <= transferOrigin) {
2298 +                    i = -1;
2299 +                    advance = false;
2300 +                }
2301 +                else if (U.compareAndSwapInt
2302 +                         (this, TRANSFERINDEX, nextIndex,
2303 +                          nextBound = (nextIndex > stride ?
2304 +                                       nextIndex - stride : 0))) {
2305 +                    bound = nextBound;
2306 +                    i = nextIndex - 1;
2307 +                    advance = false;
2308 +                }
2309 +            }
2310 +            if (i < 0 || i >= n || i + n >= nextn) {
2311 +                for (int sc;;) {
2312 +                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2313 +                        if (sc == -1) {
2314 +                            nextTable = null;
2315 +                            table = nextTab;
2316 +                            sizeCtl = (n << 1) - (n >>> 1);
2317 +                        }
2318 +                        return;
2319 +                    }
2320 +                }
2321 +            }
2322 +            else if ((f = tabAt(tab, i)) == null) {
2323 +                if (casTabAt(tab, i, null, fwd)) {
2324 +                    setTabAt(nextTab, i, null);
2325 +                    setTabAt(nextTab, i + n, null);
2326 +                    advance = true;
2327 +                }
2328 +            }
2329 +            else if ((fh = f.hash) == MOVED)
2330 +                advance = true; // already processed
2331 +            else {
2332 +                synchronized (f) {
2333 +                    if (tabAt(tab, i) == f) {
2334 +                        Node<K,V> ln, hn;
2335 +                        if (fh >= 0) {
2336 +                            int runBit = fh & n;
2337 +                            Node<K,V> lastRun = f;
2338 +                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2339 +                                int b = p.hash & n;
2340 +                                if (b != runBit) {
2341 +                                    runBit = b;
2342 +                                    lastRun = p;
2343 +                                }
2344 +                            }
2345 +                            if (runBit == 0) {
2346 +                                ln = lastRun;
2347 +                                hn = null;
2348 +                            }
2349 +                            else {
2350 +                                hn = lastRun;
2351 +                                ln = null;
2352 +                            }
2353 +                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2354 +                                int ph = p.hash; K pk = p.key; V pv = p.val;
2355 +                                if ((ph & n) == 0)
2356 +                                    ln = new Node<K,V>(ph, pk, pv, ln);
2357 +                                else
2358 +                                    hn = new Node<K,V>(ph, pk, pv, hn);
2359 +                            }
2360 +                        }
2361 +                        else if (f instanceof TreeBin) {
2362 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2363 +                            TreeNode<K,V> lo = null, loTail = null;
2364 +                            TreeNode<K,V> hi = null, hiTail = null;
2365 +                            int lc = 0, hc = 0;
2366 +                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2367 +                                int h = e.hash;
2368 +                                TreeNode<K,V> p = new TreeNode<K,V>
2369 +                                    (h, e.key, e.val, null, null);
2370 +                                if ((h & n) == 0) {
2371 +                                    if ((p.prev = loTail) == null)
2372 +                                        lo = p;
2373 +                                    else
2374 +                                        loTail.next = p;
2375 +                                    loTail = p;
2376 +                                    ++lc;
2377 +                                }
2378 +                                else {
2379 +                                    if ((p.prev = hiTail) == null)
2380 +                                        hi = p;
2381 +                                    else
2382 +                                        hiTail.next = p;
2383 +                                    hiTail = p;
2384 +                                    ++hc;
2385 +                                }
2386 +                            }
2387 +                            ln = (lc <= UNTREEIFY_THRESHOLD ?  untreeify(lo) :
2388 +                                  (hc != 0) ? new TreeBin<K,V>(lo) : t);
2389 +                            hn = (hc <= UNTREEIFY_THRESHOLD ? untreeify(hi) :
2390 +                                  (lc != 0) ? new TreeBin<K,V>(hi) : t);
2391 +                        }
2392 +                        else
2393 +                            ln = hn = null;
2394 +                        setTabAt(nextTab, i, ln);
2395 +                        setTabAt(nextTab, i + n, hn);
2396 +                        setTabAt(tab, i, fwd);
2397 +                        advance = true;
2398 +                    }
2399 +                }
2400 +            }
2401 +        }
2402 +    }
2403 +
2404 +    /* ---------------- Counter support -------------- */
2405  
2406 <            while (nextTableIndex >= 0) {
2407 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
2408 <                    return;
2406 >    /**
2407 >     * A padded cell for distributing counts.  Adapted from LongAdder
2408 >     * and Striped64.  See their internal docs for explanation.
2409 >     */
2410 >    @sun.misc.Contended static final class CounterCell {
2411 >        volatile long value;
2412 >        CounterCell(long x) { value = x; }
2413 >    }
2414 >
2415 >    final long sumCount() {
2416 >        CounterCell[] as = counterCells; CounterCell a;
2417 >        long sum = baseCount;
2418 >        if (as != null) {
2419 >            for (int i = 0; i < as.length; ++i) {
2420 >                if ((a = as[i]) != null)
2421 >                    sum += a.value;
2422              }
2423 +        }
2424 +        return sum;
2425 +    }
2426  
2427 <            while (nextSegmentIndex >= 0) {
2428 <                Segment<K,V> seg = segments[nextSegmentIndex--];
2429 <                if (seg.count != 0) {
2430 <                    currentTable = seg.table;
2431 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
2432 <                        if ( (nextEntry = currentTable[j]) != null) {
2433 <                            nextTableIndex = j - 1;
2434 <                            return;
2427 >    // See LongAdder version for explanation
2428 >    private final void fullAddCount(long x, boolean wasUncontended) {
2429 >        int h;
2430 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2431 >            ThreadLocalRandom.localInit();      // force initialization
2432 >            h = ThreadLocalRandom.getProbe();
2433 >            wasUncontended = true;
2434 >        }
2435 >        boolean collide = false;                // True if last slot nonempty
2436 >        for (;;) {
2437 >            CounterCell[] as; CounterCell a; int n; long v;
2438 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2439 >                if ((a = as[(n - 1) & h]) == null) {
2440 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2441 >                        CounterCell r = new CounterCell(x); // Optimistic create
2442 >                        if (cellsBusy == 0 &&
2443 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2444 >                            boolean created = false;
2445 >                            try {               // Recheck under lock
2446 >                                CounterCell[] rs; int m, j;
2447 >                                if ((rs = counterCells) != null &&
2448 >                                    (m = rs.length) > 0 &&
2449 >                                    rs[j = (m - 1) & h] == null) {
2450 >                                    rs[j] = r;
2451 >                                    created = true;
2452 >                                }
2453 >                            } finally {
2454 >                                cellsBusy = 0;
2455 >                            }
2456 >                            if (created)
2457 >                                break;
2458 >                            continue;           // Slot is now non-empty
2459 >                        }
2460 >                    }
2461 >                    collide = false;
2462 >                }
2463 >                else if (!wasUncontended)       // CAS already known to fail
2464 >                    wasUncontended = true;      // Continue after rehash
2465 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2466 >                    break;
2467 >                else if (counterCells != as || n >= NCPU)
2468 >                    collide = false;            // At max size or stale
2469 >                else if (!collide)
2470 >                    collide = true;
2471 >                else if (cellsBusy == 0 &&
2472 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2473 >                    try {
2474 >                        if (counterCells == as) {// Expand table unless stale
2475 >                            CounterCell[] rs = new CounterCell[n << 1];
2476 >                            for (int i = 0; i < n; ++i)
2477 >                                rs[i] = as[i];
2478 >                            counterCells = rs;
2479                          }
2480 +                    } finally {
2481 +                        cellsBusy = 0;
2482                      }
2483 +                    collide = false;
2484 +                    continue;                   // Retry with expanded table
2485                  }
2486 +                h = ThreadLocalRandom.advanceProbe(h);
2487              }
2488 +            else if (cellsBusy == 0 && counterCells == as &&
2489 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2490 +                boolean init = false;
2491 +                try {                           // Initialize table
2492 +                    if (counterCells == as) {
2493 +                        CounterCell[] rs = new CounterCell[2];
2494 +                        rs[h & 1] = new CounterCell(x);
2495 +                        counterCells = rs;
2496 +                        init = true;
2497 +                    }
2498 +                } finally {
2499 +                    cellsBusy = 0;
2500 +                }
2501 +                if (init)
2502 +                    break;
2503 +            }
2504 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2505 +                break;                          // Fall back on using base
2506          }
2507 +    }
2508  
2509 <        public boolean hasNext() { return nextEntry != null; }
2509 >    /* ---------------- Conversion from/to TreeBins -------------- */
2510  
2511 <        HashEntry<K,V> nextEntry() {
2512 <            if (nextEntry == null)
2513 <                throw new NoSuchElementException();
2514 <            lastReturned = nextEntry;
2511 >    /**
2512 >     * Replaces all linked nodes in bin at given index unless table is
2513 >     * too small, in which case resizes instead.
2514 >     */
2515 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2516 >        Node<K,V> b; int n, sc;
2517 >        if (tab != null) {
2518 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2519 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2520 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2521 >                    transfer(tab, null);
2522 >            }
2523 >            else if ((b = tabAt(tab, index)) != null) {
2524 >                synchronized (b) {
2525 >                    if (tabAt(tab, index) == b) {
2526 >                        TreeNode<K,V> hd = null, tl = null;
2527 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2528 >                            TreeNode<K,V> p =
2529 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2530 >                                                  null, null);
2531 >                            if ((p.prev = tl) == null)
2532 >                                hd = p;
2533 >                            else
2534 >                                tl.next = p;
2535 >                            tl = p;
2536 >                        }
2537 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2538 >                    }
2539 >                }
2540 >            }
2541 >        }
2542 >    }
2543 >
2544 >    /**
2545 >     * Returns a list on non-TreeNodes replacing those in given list
2546 >     */
2547 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2548 >        Node<K,V> hd = null, tl = null;
2549 >        for (Node<K,V> q = b; q != null; q = q.next) {
2550 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2551 >            if (tl == null)
2552 >                hd = p;
2553 >            else
2554 >                tl.next = p;
2555 >            tl = p;
2556 >        }
2557 >        return hd;
2558 >    }
2559 >
2560 >    /* ---------------- TreeNodes -------------- */
2561 >
2562 >    /**
2563 >     * Nodes for use in TreeBins
2564 >     */
2565 >    static final class TreeNode<K,V> extends Node<K,V> {
2566 >        TreeNode<K,V> parent;  // red-black tree links
2567 >        TreeNode<K,V> left;
2568 >        TreeNode<K,V> right;
2569 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2570 >        boolean red;
2571 >
2572 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2573 >                 TreeNode<K,V> parent) {
2574 >            super(hash, key, val, next);
2575 >            this.parent = parent;
2576 >        }
2577 >
2578 >        Node<K,V> find(int h, Object k) {
2579 >            return findTreeNode(h, k, null);
2580 >        }
2581 >
2582 >        /**
2583 >         * Returns the TreeNode (or null if not found) for the given key
2584 >         * starting at given root.
2585 >         */
2586 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2587 >            if (k != null) {
2588 >                TreeNode<K,V> p = this;
2589 >                do  {
2590 >                    int ph, dir; K pk; TreeNode<K,V> q;
2591 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2592 >                    if ((ph = p.hash) > h)
2593 >                        p = pl;
2594 >                    else if (ph < h)
2595 >                        p = pr;
2596 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2597 >                        return p;
2598 >                    else if (pl == null && pr == null)
2599 >                        break;
2600 >                    else if ((kc != null ||
2601 >                              (kc = comparableClassFor(k)) != null) &&
2602 >                             (dir = compareComparables(kc, k, pk)) != 0)
2603 >                        p = (dir < 0) ? pl : pr;
2604 >                    else if (pl == null)
2605 >                        p = pr;
2606 >                    else if (pr == null ||
2607 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2608 >                        p = pl;
2609 >                    else
2610 >                        return q;
2611 >                } while (p != null);
2612 >            }
2613 >            return null;
2614 >        }
2615 >    }
2616 >
2617 >    /* ---------------- TreeBins -------------- */
2618 >
2619 >    /**
2620 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2621 >     * keys or values, but instead point to list of TreeNodes and
2622 >     * their root. They also maintain a parasitic read-write lock
2623 >     * forcing writers (who hold bin lock) to wait for readers (who do
2624 >     * not) to complete before tree restructuring operations.
2625 >     */
2626 >    static final class TreeBin<K,V> extends Node<K,V> {
2627 >        TreeNode<K,V> root;
2628 >        volatile TreeNode<K,V> first;
2629 >        volatile Thread waiter;
2630 >        volatile int lockState;
2631 >        // values for lockState
2632 >        static final int WRITER = 1; // set while holding write lock
2633 >        static final int WAITER = 2; // set when waiting for write lock
2634 >        static final int READER = 4; // increment value for setting read lock
2635 >
2636 >        /**
2637 >         * Creates bin with initial set of nodes headed by b.
2638 >         */
2639 >        TreeBin(TreeNode<K,V> b) {
2640 >            super(TREEBIN, null, null, null);
2641 >            this.first = b;
2642 >            TreeNode<K,V> r = null;
2643 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2644 >                next = (TreeNode<K,V>)x.next;
2645 >                x.left = x.right = null;
2646 >                if (r == null) {
2647 >                    x.parent = null;
2648 >                    x.red = false;
2649 >                    r = x;
2650 >                }
2651 >                else {
2652 >                    Object key = x.key;
2653 >                    int hash = x.hash;
2654 >                    Class<?> kc = null;
2655 >                    for (TreeNode<K,V> p = r;;) {
2656 >                        int dir, ph;
2657 >                        if ((ph = p.hash) > hash)
2658 >                            dir = -1;
2659 >                        else if (ph < hash)
2660 >                            dir = 1;
2661 >                        else if ((kc != null ||
2662 >                                  (kc = comparableClassFor(key)) != null))
2663 >                            dir = compareComparables(kc, key, p.key);
2664 >                        else
2665 >                            dir = 0;
2666 >                        TreeNode<K,V> xp = p;
2667 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2668 >                            x.parent = xp;
2669 >                            if (dir <= 0)
2670 >                                xp.left = x;
2671 >                            else
2672 >                                xp.right = x;
2673 >                            r = balanceInsertion(r, x);
2674 >                            break;
2675 >                        }
2676 >                    }
2677 >                }
2678 >            }
2679 >            this.root = r;
2680 >        }
2681 >
2682 >        /**
2683 >         * Acquires write lock for tree restructuring
2684 >         */
2685 >        private final void lockRoot() {
2686 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2687 >                contendedLock(); // offload to separate method
2688 >        }
2689 >
2690 >        /**
2691 >         * Releases write lock for tree restructuring
2692 >         */
2693 >        private final void unlockRoot() {
2694 >            lockState = 0;
2695 >        }
2696 >
2697 >        /**
2698 >         * Possibly blocks awaiting root lock
2699 >         */
2700 >        private final void contendedLock() {
2701 >            boolean waiting = false;
2702 >            for (int s;;) {
2703 >                if (((s = lockState) & WRITER) == 0) {
2704 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2705 >                        if (waiting)
2706 >                            waiter = null;
2707 >                        return;
2708 >                    }
2709 >                }
2710 >                else if ((s | WAITER) == 0) {
2711 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2712 >                        waiting = true;
2713 >                        waiter = Thread.currentThread();
2714 >                    }
2715 >                }
2716 >                else if (waiting)
2717 >                    LockSupport.park(this);
2718 >            }
2719 >        }
2720 >
2721 >        /**
2722 >         * Returns matching node or null if none. Tries to search
2723 >         * using tree compareisons from root, but continues linear
2724 >         * search when lock not available.
2725 >         */
2726 >        final Node<K,V> find(int h, Object k) {
2727 >            if (k != null) {
2728 >                for (Node<K,V> e = first; e != null; e = e.next) {
2729 >                    int s; K ek;
2730 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2731 >                        if (e.hash == h &&
2732 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2733 >                            return e;
2734 >                    }
2735 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2736 >                                                 s + READER)) {
2737 >                        TreeNode<K,V> r, p;
2738 >                        try {
2739 >                            p = ((r = root) == null ? null :
2740 >                                 r.findTreeNode(h, k, null));
2741 >                        } finally {
2742 >                            Thread w;
2743 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2744 >                                (READER|WAITER) && (w = waiter) != null)
2745 >                                LockSupport.unpark(w);
2746 >                        }
2747 >                        return p;
2748 >                    }
2749 >                }
2750 >            }
2751 >            return null;
2752 >        }
2753 >
2754 >        /**
2755 >         * Finds or adds a node.
2756 >         * @return null if added
2757 >         */
2758 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2759 >            Class<?> kc = null;
2760 >            for (TreeNode<K,V> p = root;;) {
2761 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2762 >                if (p == null) {
2763 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2764 >                    break;
2765 >                }
2766 >                else if ((ph = p.hash) > h)
2767 >                    dir = -1;
2768 >                else if (ph < h)
2769 >                    dir = 1;
2770 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2771 >                    return p;
2772 >                else if ((kc == null &&
2773 >                          (kc = comparableClassFor(k)) == null) ||
2774 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2775 >                    if (p.left == null)
2776 >                        dir = 1;
2777 >                    else if ((pr = p.right) == null ||
2778 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2779 >                        dir = -1;
2780 >                    else
2781 >                        return q;
2782 >                }
2783 >                TreeNode<K,V> xp = p;
2784 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2785 >                    TreeNode<K,V> x, f = first;
2786 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2787 >                    if (f != null)
2788 >                        f.prev = x;
2789 >                    if (dir < 0)
2790 >                        xp.left = x;
2791 >                    else
2792 >                        xp.right = x;
2793 >                    if (!xp.red)
2794 >                        x.red = true;
2795 >                    else {
2796 >                        lockRoot();
2797 >                        try {
2798 >                            root = balanceInsertion(root, x);
2799 >                        } finally {
2800 >                            unlockRoot();
2801 >                        }
2802 >                    }
2803 >                    break;
2804 >                }
2805 >            }
2806 >            assert checkInvariants(root);
2807 >            return null;
2808 >        }
2809 >
2810 >        /**
2811 >         * Removes the given node, that must be present before this
2812 >         * call.  This is messier than typical red-black deletion code
2813 >         * because we cannot swap the contents of an interior node
2814 >         * with a leaf successor that is pinned by "next" pointers
2815 >         * that are accessible independently of lock. So instead we
2816 >         * swap the tree linkages.
2817 >         *
2818 >         * @return true if now too small so should be untreeified.
2819 >         */
2820 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2821 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2822 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2823 >            TreeNode<K,V> r, rl;
2824 >            if (pred == null)
2825 >                first = next;
2826 >            else
2827 >                pred.next = next;
2828 >            if (next != null)
2829 >                next.prev = pred;
2830 >            if (first == null) {
2831 >                root = null;
2832 >                return true;
2833 >            }
2834 >            if ((r = root) == null || r.right == null || // too small
2835 >                (rl = r.left) == null || rl.left == null)
2836 >                return true;
2837 >            lockRoot();
2838 >            try {
2839 >                TreeNode<K,V> replacement;
2840 >                TreeNode<K,V> pl = p.left;
2841 >                TreeNode<K,V> pr = p.right;
2842 >                if (pl != null && pr != null) {
2843 >                    TreeNode<K,V> s = pr, sl;
2844 >                    while ((sl = s.left) != null) // find successor
2845 >                        s = sl;
2846 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2847 >                    TreeNode<K,V> sr = s.right;
2848 >                    TreeNode<K,V> pp = p.parent;
2849 >                    if (s == pr) { // p was s's direct parent
2850 >                        p.parent = s;
2851 >                        s.right = p;
2852 >                    }
2853 >                    else {
2854 >                        TreeNode<K,V> sp = s.parent;
2855 >                        if ((p.parent = sp) != null) {
2856 >                            if (s == sp.left)
2857 >                                sp.left = p;
2858 >                            else
2859 >                                sp.right = p;
2860 >                        }
2861 >                        if ((s.right = pr) != null)
2862 >                            pr.parent = s;
2863 >                    }
2864 >                    p.left = null;
2865 >                    if ((p.right = sr) != null)
2866 >                        sr.parent = p;
2867 >                    if ((s.left = pl) != null)
2868 >                        pl.parent = s;
2869 >                    if ((s.parent = pp) == null)
2870 >                        r = s;
2871 >                    else if (p == pp.left)
2872 >                        pp.left = s;
2873 >                    else
2874 >                        pp.right = s;
2875 >                    if (sr != null)
2876 >                        replacement = sr;
2877 >                    else
2878 >                        replacement = p;
2879 >                }
2880 >                else if (pl != null)
2881 >                    replacement = pl;
2882 >                else if (pr != null)
2883 >                    replacement = pr;
2884 >                else
2885 >                    replacement = p;
2886 >                if (replacement != p) {
2887 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2888 >                    if (pp == null)
2889 >                        r = replacement;
2890 >                    else if (p == pp.left)
2891 >                        pp.left = replacement;
2892 >                    else
2893 >                        pp.right = replacement;
2894 >                    p.left = p.right = p.parent = null;
2895 >                }
2896 >
2897 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2898 >
2899 >                if (p == replacement) {  // detach pointers
2900 >                    TreeNode<K,V> pp;
2901 >                    if ((pp = p.parent) != null) {
2902 >                        if (p == pp.left)
2903 >                            pp.left = null;
2904 >                        else if (p == pp.right)
2905 >                            pp.right = null;
2906 >                        p.parent = null;
2907 >                    }
2908 >                }
2909 >            } finally {
2910 >                unlockRoot();
2911 >            }
2912 >            assert checkInvariants(root);
2913 >            return false;
2914 >        }
2915 >
2916 >        /* ------------------------------------------------------------ */
2917 >        // Red-black tree methods, all adapted from CLR
2918 >
2919 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2920 >                                              TreeNode<K,V> p) {
2921 >            TreeNode<K,V> r, pp, rl;
2922 >            if (p != null && (r = p.right) != null) {
2923 >                if ((rl = p.right = r.left) != null)
2924 >                    rl.parent = p;
2925 >                if ((pp = r.parent = p.parent) == null)
2926 >                    (root = r).red = false;
2927 >                else if (pp.left == p)
2928 >                    pp.left = r;
2929 >                else
2930 >                    pp.right = r;
2931 >                r.left = p;
2932 >                p.parent = r;
2933 >            }
2934 >            return root;
2935 >        }
2936 >
2937 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2938 >                                               TreeNode<K,V> p) {
2939 >            TreeNode<K,V> l, pp, lr;
2940 >            if (p != null && (l = p.left) != null) {
2941 >                if ((lr = p.left = l.right) != null)
2942 >                    lr.parent = p;
2943 >                if ((pp = l.parent = p.parent) == null)
2944 >                    (root = l).red = false;
2945 >                else if (pp.right == p)
2946 >                    pp.right = l;
2947 >                else
2948 >                    pp.left = l;
2949 >                l.right = p;
2950 >                p.parent = l;
2951 >            }
2952 >            return root;
2953 >        }
2954 >
2955 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2956 >                                                    TreeNode<K,V> x) {
2957 >            x.red = true;
2958 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2959 >                if ((xp = x.parent) == null) {
2960 >                    x.red = false;
2961 >                    return x;
2962 >                }
2963 >                else if (!xp.red || (xpp = xp.parent) == null)
2964 >                    return root;
2965 >                if (xp == (xppl = xpp.left)) {
2966 >                    if ((xppr = xpp.right) != null && xppr.red) {
2967 >                        xppr.red = false;
2968 >                        xp.red = false;
2969 >                        xpp.red = true;
2970 >                        x = xpp;
2971 >                    }
2972 >                    else {
2973 >                        if (x == xp.right) {
2974 >                            root = rotateLeft(root, x = xp);
2975 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2976 >                        }
2977 >                        if (xp != null) {
2978 >                            xp.red = false;
2979 >                            if (xpp != null) {
2980 >                                xpp.red = true;
2981 >                                root = rotateRight(root, xpp);
2982 >                            }
2983 >                        }
2984 >                    }
2985 >                }
2986 >                else {
2987 >                    if (xppl != null && xppl.red) {
2988 >                        xppl.red = false;
2989 >                        xp.red = false;
2990 >                        xpp.red = true;
2991 >                        x = xpp;
2992 >                    }
2993 >                    else {
2994 >                        if (x == xp.left) {
2995 >                            root = rotateRight(root, x = xp);
2996 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2997 >                        }
2998 >                        if (xp != null) {
2999 >                            xp.red = false;
3000 >                            if (xpp != null) {
3001 >                                xpp.red = true;
3002 >                                root = rotateLeft(root, xpp);
3003 >                            }
3004 >                        }
3005 >                    }
3006 >                }
3007 >            }
3008 >        }
3009 >
3010 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3011 >                                                   TreeNode<K,V> x) {
3012 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3013 >                if (x == null || x == root)
3014 >                    return root;
3015 >                else if ((xp = x.parent) == null) {
3016 >                    x.red = false;
3017 >                    return x;
3018 >                }
3019 >                else if (x.red) {
3020 >                    x.red = false;
3021 >                    return root;
3022 >                }
3023 >                else if ((xpl = xp.left) == x) {
3024 >                    if ((xpr = xp.right) != null && xpr.red) {
3025 >                        xpr.red = false;
3026 >                        xp.red = true;
3027 >                        root = rotateLeft(root, xp);
3028 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3029 >                    }
3030 >                    if (xpr == null)
3031 >                        x = xp;
3032 >                    else {
3033 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3034 >                        if ((sr == null || !sr.red) &&
3035 >                            (sl == null || !sl.red)) {
3036 >                            xpr.red = true;
3037 >                            x = xp;
3038 >                        }
3039 >                        else {
3040 >                            if (sr == null || !sr.red) {
3041 >                                if (sl != null)
3042 >                                    sl.red = false;
3043 >                                xpr.red = true;
3044 >                                root = rotateRight(root, xpr);
3045 >                                xpr = (xp = x.parent) == null ?
3046 >                                    null : xp.right;
3047 >                            }
3048 >                            if (xpr != null) {
3049 >                                xpr.red = (xp == null) ? false : xp.red;
3050 >                                if ((sr = xpr.right) != null)
3051 >                                    sr.red = false;
3052 >                            }
3053 >                            if (xp != null) {
3054 >                                xp.red = false;
3055 >                                root = rotateLeft(root, xp);
3056 >                            }
3057 >                            x = root;
3058 >                        }
3059 >                    }
3060 >                }
3061 >                else { // symmetric
3062 >                    if (xpl != null && xpl.red) {
3063 >                        xpl.red = false;
3064 >                        xp.red = true;
3065 >                        root = rotateRight(root, xp);
3066 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3067 >                    }
3068 >                    if (xpl == null)
3069 >                        x = xp;
3070 >                    else {
3071 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3072 >                        if ((sl == null || !sl.red) &&
3073 >                            (sr == null || !sr.red)) {
3074 >                            xpl.red = true;
3075 >                            x = xp;
3076 >                        }
3077 >                        else {
3078 >                            if (sl == null || !sl.red) {
3079 >                                if (sr != null)
3080 >                                    sr.red = false;
3081 >                                xpl.red = true;
3082 >                                root = rotateLeft(root, xpl);
3083 >                                xpl = (xp = x.parent) == null ?
3084 >                                    null : xp.left;
3085 >                            }
3086 >                            if (xpl != null) {
3087 >                                xpl.red = (xp == null) ? false : xp.red;
3088 >                                if ((sl = xpl.left) != null)
3089 >                                    sl.red = false;
3090 >                            }
3091 >                            if (xp != null) {
3092 >                                xp.red = false;
3093 >                                root = rotateRight(root, xp);
3094 >                            }
3095 >                            x = root;
3096 >                        }
3097 >                    }
3098 >                }
3099 >            }
3100 >        }
3101 >
3102 >        /**
3103 >         * Recursive invariant check
3104 >         */
3105 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3106 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3107 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3108 >            if (tb != null && tb.next != t)
3109 >                return false;
3110 >            if (tn != null && tn.prev != t)
3111 >                return false;
3112 >            if (tp != null && t != tp.left && t != tp.right)
3113 >                return false;
3114 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3115 >                return false;
3116 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3117 >                return false;
3118 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3119 >                return false;
3120 >            if (tl != null && !checkInvariants(tl))
3121 >                return false;
3122 >            if (tr != null && !checkInvariants(tr))
3123 >                return false;
3124 >            return true;
3125 >        }
3126 >
3127 >        private static final sun.misc.Unsafe U;
3128 >        private static final long LOCKSTATE;
3129 >        static {
3130 >            try {
3131 >                U = sun.misc.Unsafe.getUnsafe();
3132 >                Class<?> k = TreeBin.class;
3133 >                LOCKSTATE = U.objectFieldOffset
3134 >                    (k.getDeclaredField("lockState"));
3135 >            } catch (Exception e) {
3136 >                throw new Error(e);
3137 >            }
3138 >        }
3139 >    }
3140 >
3141 >    /* ----------------Table Traversal -------------- */
3142 >
3143 >    /**
3144 >     * Encapsulates traversal for methods such as containsValue; also
3145 >     * serves as a base class for other iterators and spliterators.
3146 >     *
3147 >     * Method advance visits once each still-valid node that was
3148 >     * reachable upon iterator construction. It might miss some that
3149 >     * were added to a bin after the bin was visited, which is OK wrt
3150 >     * consistency guarantees. Maintaining this property in the face
3151 >     * of possible ongoing resizes requires a fair amount of
3152 >     * bookkeeping state that is difficult to optimize away amidst
3153 >     * volatile accesses.  Even so, traversal maintains reasonable
3154 >     * throughput.
3155 >     *
3156 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3157 >     * However, if the table has been resized, then all future steps
3158 >     * must traverse both the bin at the current index as well as at
3159 >     * (index + baseSize); and so on for further resizings. To
3160 >     * paranoically cope with potential sharing by users of iterators
3161 >     * across threads, iteration terminates if a bounds checks fails
3162 >     * for a table read.
3163 >     */
3164 >    static class Traverser<K,V> {
3165 >        Node<K,V>[] tab;        // current table; updated if resized
3166 >        Node<K,V> next;         // the next entry to use
3167 >        int index;              // index of bin to use next
3168 >        int baseIndex;          // current index of initial table
3169 >        int baseLimit;          // index bound for initial table
3170 >        final int baseSize;     // initial table size
3171 >
3172 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3173 >            this.tab = tab;
3174 >            this.baseSize = size;
3175 >            this.baseIndex = this.index = index;
3176 >            this.baseLimit = limit;
3177 >            this.next = null;
3178 >        }
3179 >
3180 >        /**
3181 >         * Advances if possible, returning next valid node, or null if none.
3182 >         */
3183 >        final Node<K,V> advance() {
3184 >            Node<K,V> e;
3185 >            if ((e = next) != null)
3186 >                e = e.next;
3187 >            for (;;) {
3188 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3189 >                if (e != null)
3190 >                    return next = e;
3191 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3192 >                    (n = t.length) <= (i = index) || i < 0)
3193 >                    return next = null;
3194 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3195 >                    if (e instanceof ForwardingNode) {
3196 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3197 >                        e = null;
3198 >                        continue;
3199 >                    }
3200 >                    else if (e instanceof TreeBin)
3201 >                        e = ((TreeBin<K,V>)e).first;
3202 >                    else
3203 >                        e = null;
3204 >                }
3205 >                if ((index += baseSize) >= n)
3206 >                    index = ++baseIndex;    // visit upper slots if present
3207 >            }
3208 >        }
3209 >    }
3210 >
3211 >    /**
3212 >     * Base of key, value, and entry Iterators. Adds fields to
3213 >     * Traverser to support iterator.remove
3214 >     */
3215 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3216 >        final ConcurrentHashMap<K,V> map;
3217 >        Node<K,V> lastReturned;
3218 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3219 >                    ConcurrentHashMap<K,V> map) {
3220 >            super(tab, size, index, limit);
3221 >            this.map = map;
3222              advance();
1101            return lastReturned;
3223          }
3224  
3225 <        public void remove() {
3226 <            if (lastReturned == null)
3225 >        public final boolean hasNext() { return next != null; }
3226 >        public final boolean hasMoreElements() { return next != null; }
3227 >
3228 >        public final void remove() {
3229 >            Node<K,V> p;
3230 >            if ((p = lastReturned) == null)
3231                  throw new IllegalStateException();
1107            ConcurrentHashMap.this.remove(lastReturned.key);
3232              lastReturned = null;
3233 +            map.replaceNode(p.key, null, null);
3234          }
3235      }
3236  
3237 <    final class KeyIterator
3238 <        extends HashIterator
3239 <        implements Iterator<K>, Enumeration<K>
3240 <    {
3241 <        public K next()        { return super.nextEntry().key; }
3242 <        public K nextElement() { return super.nextEntry().key; }
3237 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3238 >        implements Iterator<K>, Enumeration<K> {
3239 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3240 >                    ConcurrentHashMap<K,V> map) {
3241 >            super(tab, index, size, limit, map);
3242 >        }
3243 >
3244 >        public final K next() {
3245 >            Node<K,V> p;
3246 >            if ((p = next) == null)
3247 >                throw new NoSuchElementException();
3248 >            K k = p.key;
3249 >            lastReturned = p;
3250 >            advance();
3251 >            return k;
3252 >        }
3253 >
3254 >        public final K nextElement() { return next(); }
3255      }
3256  
3257 <    final class ValueIterator
3258 <        extends HashIterator
3259 <        implements Iterator<V>, Enumeration<V>
3260 <    {
3261 <        public V next()        { return super.nextEntry().value; }
3262 <        public V nextElement() { return super.nextEntry().value; }
3257 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3258 >        implements Iterator<V>, Enumeration<V> {
3259 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3260 >                      ConcurrentHashMap<K,V> map) {
3261 >            super(tab, index, size, limit, map);
3262 >        }
3263 >
3264 >        public final V next() {
3265 >            Node<K,V> p;
3266 >            if ((p = next) == null)
3267 >                throw new NoSuchElementException();
3268 >            V v = p.val;
3269 >            lastReturned = p;
3270 >            advance();
3271 >            return v;
3272 >        }
3273 >
3274 >        public final V nextElement() { return next(); }
3275 >    }
3276 >
3277 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3278 >        implements Iterator<Map.Entry<K,V>> {
3279 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3280 >                      ConcurrentHashMap<K,V> map) {
3281 >            super(tab, index, size, limit, map);
3282 >        }
3283 >
3284 >        public final Map.Entry<K,V> next() {
3285 >            Node<K,V> p;
3286 >            if ((p = next) == null)
3287 >                throw new NoSuchElementException();
3288 >            K k = p.key;
3289 >            V v = p.val;
3290 >            lastReturned = p;
3291 >            advance();
3292 >            return new MapEntry<K,V>(k, v, map);
3293 >        }
3294      }
3295  
3296      /**
3297 <     * Custom Entry class used by EntryIterator.next(), that relays
1130 <     * setValue changes to the underlying map.
3297 >     * Exported Entry for EntryIterator
3298       */
3299 <    final class WriteThroughEntry
3300 <        extends AbstractMap.SimpleEntry<K,V>
3301 <    {
3302 <        WriteThroughEntry(K k, V v) {
3303 <            super(k,v);
3299 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3300 >        final K key; // non-null
3301 >        V val;       // non-null
3302 >        final ConcurrentHashMap<K,V> map;
3303 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3304 >            this.key = key;
3305 >            this.val = val;
3306 >            this.map = map;
3307 >        }
3308 >        public K getKey()        { return key; }
3309 >        public V getValue()      { return val; }
3310 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3311 >        public String toString() { return key + "=" + val; }
3312 >
3313 >        public boolean equals(Object o) {
3314 >            Object k, v; Map.Entry<?,?> e;
3315 >            return ((o instanceof Map.Entry) &&
3316 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3317 >                    (v = e.getValue()) != null &&
3318 >                    (k == key || k.equals(key)) &&
3319 >                    (v == val || v.equals(val)));
3320          }
3321  
3322          /**
3323 <         * Set our entry's value and write through to the map. The
3324 <         * value to return is somewhat arbitrary here. Since a
3325 <         * WriteThroughEntry does not necessarily track asynchronous
3326 <         * changes, the most recent "previous" value could be
3327 <         * different from what we return (or could even have been
3328 <         * removed in which case the put will re-establish). We do not
1146 <         * and cannot guarantee more.
3323 >         * Sets our entry's value and writes through to the map. The
3324 >         * value to return is somewhat arbitrary here. Since we do not
3325 >         * necessarily track asynchronous changes, the most recent
3326 >         * "previous" value could be different from what we return (or
3327 >         * could even have been removed, in which case the put will
3328 >         * re-establish). We do not and cannot guarantee more.
3329           */
3330 <        public V setValue(V value) {
3330 >        public V setValue(V value) {
3331              if (value == null) throw new NullPointerException();
3332 <            V v = super.setValue(value);
3333 <            ConcurrentHashMap.this.put(getKey(), value);
3332 >            V v = val;
3333 >            val = value;
3334 >            map.put(key, value);
3335              return v;
3336          }
3337      }
3338  
3339 <    final class EntryIterator
3340 <        extends HashIterator
3341 <        implements Iterator<Entry<K,V>>
3342 <    {
3343 <        public Map.Entry<K,V> next() {
3344 <            HashEntry<K,V> e = super.nextEntry();
3345 <            return new WriteThroughEntry(e.key, e.value);
3339 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3340 >        implements Spliterator<K> {
3341 >        long est;               // size estimate
3342 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3343 >                       long est) {
3344 >            super(tab, size, index, limit);
3345 >            this.est = est;
3346 >        }
3347 >
3348 >        public Spliterator<K> trySplit() {
3349 >            int i, f, h;
3350 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3351 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3352 >                                        f, est >>>= 1);
3353 >        }
3354 >
3355 >        public void forEachRemaining(Consumer<? super K> action) {
3356 >            if (action == null) throw new NullPointerException();
3357 >            for (Node<K,V> p; (p = advance()) != null;)
3358 >                action.accept(p.key);
3359 >        }
3360 >
3361 >        public boolean tryAdvance(Consumer<? super K> action) {
3362 >            if (action == null) throw new NullPointerException();
3363 >            Node<K,V> p;
3364 >            if ((p = advance()) == null)
3365 >                return false;
3366 >            action.accept(p.key);
3367 >            return true;
3368 >        }
3369 >
3370 >        public long estimateSize() { return est; }
3371 >
3372 >        public int characteristics() {
3373 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3374 >                Spliterator.NONNULL;
3375          }
3376      }
3377  
3378 <    final class KeySet extends AbstractSet<K> {
3379 <        public Iterator<K> iterator() {
3380 <            return new KeyIterator();
3378 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3379 >        implements Spliterator<V> {
3380 >        long est;               // size estimate
3381 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3382 >                         long est) {
3383 >            super(tab, size, index, limit);
3384 >            this.est = est;
3385 >        }
3386 >
3387 >        public Spliterator<V> trySplit() {
3388 >            int i, f, h;
3389 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3390 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3391 >                                          f, est >>>= 1);
3392 >        }
3393 >
3394 >        public void forEachRemaining(Consumer<? super V> action) {
3395 >            if (action == null) throw new NullPointerException();
3396 >            for (Node<K,V> p; (p = advance()) != null;)
3397 >                action.accept(p.val);
3398 >        }
3399 >
3400 >        public boolean tryAdvance(Consumer<? super V> action) {
3401 >            if (action == null) throw new NullPointerException();
3402 >            Node<K,V> p;
3403 >            if ((p = advance()) == null)
3404 >                return false;
3405 >            action.accept(p.val);
3406 >            return true;
3407          }
3408 <        public int size() {
3409 <            return ConcurrentHashMap.this.size();
3408 >
3409 >        public long estimateSize() { return est; }
3410 >
3411 >        public int characteristics() {
3412 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3413          }
3414 <        public boolean contains(Object o) {
3415 <            return ConcurrentHashMap.this.containsKey(o);
3414 >    }
3415 >
3416 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3417 >        implements Spliterator<Map.Entry<K,V>> {
3418 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3419 >        long est;               // size estimate
3420 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3421 >                         long est, ConcurrentHashMap<K,V> map) {
3422 >            super(tab, size, index, limit);
3423 >            this.map = map;
3424 >            this.est = est;
3425 >        }
3426 >
3427 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3428 >            int i, f, h;
3429 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3430 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3431 >                                          f, est >>>= 1, map);
3432 >        }
3433 >
3434 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3435 >            if (action == null) throw new NullPointerException();
3436 >            for (Node<K,V> p; (p = advance()) != null; )
3437 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3438 >        }
3439 >
3440 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3441 >            if (action == null) throw new NullPointerException();
3442 >            Node<K,V> p;
3443 >            if ((p = advance()) == null)
3444 >                return false;
3445 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3446 >            return true;
3447          }
3448 <        public boolean remove(Object o) {
3449 <            return ConcurrentHashMap.this.remove(o) != null;
3448 >
3449 >        public long estimateSize() { return est; }
3450 >
3451 >        public int characteristics() {
3452 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3453 >                Spliterator.NONNULL;
3454 >        }
3455 >    }
3456 >
3457 >    // Parallel bulk operations
3458 >
3459 >    /**
3460 >     * Computes initial batch value for bulk tasks. The returned value
3461 >     * is approximately exp2 of the number of times (minus one) to
3462 >     * split task by two before executing leaf action. This value is
3463 >     * faster to compute and more convenient to use as a guide to
3464 >     * splitting than is the depth, since it is used while dividing by
3465 >     * two anyway.
3466 >     */
3467 >    final int batchFor(long b) {
3468 >        long n;
3469 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3470 >            return 0;
3471 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3472 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3473 >    }
3474 >
3475 >    /**
3476 >     * Performs the given action for each (key, value).
3477 >     *
3478 >     * @param parallelismThreshold the (estimated) number of elements
3479 >     * needed for this operation to be executed in parallel
3480 >     * @param action the action
3481 >     * @since 1.8
3482 >     */
3483 >    public void forEach(long parallelismThreshold,
3484 >                        BiConsumer<? super K,? super V> action) {
3485 >        if (action == null) throw new NullPointerException();
3486 >        new ForEachMappingTask<K,V>
3487 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3488 >             action).invoke();
3489 >    }
3490 >
3491 >    /**
3492 >     * Performs the given action for each non-null transformation
3493 >     * of each (key, value).
3494 >     *
3495 >     * @param parallelismThreshold the (estimated) number of elements
3496 >     * needed for this operation to be executed in parallel
3497 >     * @param transformer a function returning the transformation
3498 >     * for an element, or null if there is no transformation (in
3499 >     * which case the action is not applied)
3500 >     * @param action the action
3501 >     * @since 1.8
3502 >     */
3503 >    public <U> void forEach(long parallelismThreshold,
3504 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3505 >                            Consumer<? super U> action) {
3506 >        if (transformer == null || action == null)
3507 >            throw new NullPointerException();
3508 >        new ForEachTransformedMappingTask<K,V,U>
3509 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3510 >             transformer, action).invoke();
3511 >    }
3512 >
3513 >    /**
3514 >     * Returns a non-null result from applying the given search
3515 >     * function on each (key, value), or null if none.  Upon
3516 >     * success, further element processing is suppressed and the
3517 >     * results of any other parallel invocations of the search
3518 >     * function are ignored.
3519 >     *
3520 >     * @param parallelismThreshold the (estimated) number of elements
3521 >     * needed for this operation to be executed in parallel
3522 >     * @param searchFunction a function returning a non-null
3523 >     * result on success, else null
3524 >     * @return a non-null result from applying the given search
3525 >     * function on each (key, value), or null if none
3526 >     * @since 1.8
3527 >     */
3528 >    public <U> U search(long parallelismThreshold,
3529 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3530 >        if (searchFunction == null) throw new NullPointerException();
3531 >        return new SearchMappingsTask<K,V,U>
3532 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3533 >             searchFunction, new AtomicReference<U>()).invoke();
3534 >    }
3535 >
3536 >    /**
3537 >     * Returns the result of accumulating the given transformation
3538 >     * of all (key, value) pairs using the given reducer to
3539 >     * combine values, or null if none.
3540 >     *
3541 >     * @param parallelismThreshold the (estimated) number of elements
3542 >     * needed for this operation to be executed in parallel
3543 >     * @param transformer a function returning the transformation
3544 >     * for an element, or null if there is no transformation (in
3545 >     * which case it is not combined)
3546 >     * @param reducer a commutative associative combining function
3547 >     * @return the result of accumulating the given transformation
3548 >     * of all (key, value) pairs
3549 >     * @since 1.8
3550 >     */
3551 >    public <U> U reduce(long parallelismThreshold,
3552 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3553 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3554 >        if (transformer == null || reducer == null)
3555 >            throw new NullPointerException();
3556 >        return new MapReduceMappingsTask<K,V,U>
3557 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3558 >             null, transformer, reducer).invoke();
3559 >    }
3560 >
3561 >    /**
3562 >     * Returns the result of accumulating the given transformation
3563 >     * of all (key, value) pairs using the given reducer to
3564 >     * combine values, and the given basis as an identity value.
3565 >     *
3566 >     * @param parallelismThreshold the (estimated) number of elements
3567 >     * needed for this operation to be executed in parallel
3568 >     * @param transformer a function returning the transformation
3569 >     * for an element
3570 >     * @param basis the identity (initial default value) for the reduction
3571 >     * @param reducer a commutative associative combining function
3572 >     * @return the result of accumulating the given transformation
3573 >     * of all (key, value) pairs
3574 >     * @since 1.8
3575 >     */
3576 >    public double reduceToDoubleIn(long parallelismThreshold,
3577 >                                   ToDoubleBiFunction<? super K, ? super V> transformer,
3578 >                                   double basis,
3579 >                                   DoubleBinaryOperator reducer) {
3580 >        if (transformer == null || reducer == null)
3581 >            throw new NullPointerException();
3582 >        return new MapReduceMappingsToDoubleTask<K,V>
3583 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3584 >             null, transformer, basis, reducer).invoke();
3585 >    }
3586 >
3587 >    /**
3588 >     * Returns the result of accumulating the given transformation
3589 >     * of all (key, value) pairs using the given reducer to
3590 >     * combine values, and the given basis as an identity value.
3591 >     *
3592 >     * @param parallelismThreshold the (estimated) number of elements
3593 >     * needed for this operation to be executed in parallel
3594 >     * @param transformer a function returning the transformation
3595 >     * for an element
3596 >     * @param basis the identity (initial default value) for the reduction
3597 >     * @param reducer a commutative associative combining function
3598 >     * @return the result of accumulating the given transformation
3599 >     * of all (key, value) pairs
3600 >     * @since 1.8
3601 >     */
3602 >    public long reduceToLong(long parallelismThreshold,
3603 >                             ToLongBiFunction<? super K, ? super V> transformer,
3604 >                             long basis,
3605 >                             LongBinaryOperator reducer) {
3606 >        if (transformer == null || reducer == null)
3607 >            throw new NullPointerException();
3608 >        return new MapReduceMappingsToLongTask<K,V>
3609 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3610 >             null, transformer, basis, reducer).invoke();
3611 >    }
3612 >
3613 >    /**
3614 >     * Returns the result of accumulating the given transformation
3615 >     * of all (key, value) pairs using the given reducer to
3616 >     * combine values, and the given basis as an identity value.
3617 >     *
3618 >     * @param parallelismThreshold the (estimated) number of elements
3619 >     * needed for this operation to be executed in parallel
3620 >     * @param transformer a function returning the transformation
3621 >     * for an element
3622 >     * @param basis the identity (initial default value) for the reduction
3623 >     * @param reducer a commutative associative combining function
3624 >     * @return the result of accumulating the given transformation
3625 >     * of all (key, value) pairs
3626 >     * @since 1.8
3627 >     */
3628 >    public int reduceToInt(long parallelismThreshold,
3629 >                           ToIntBiFunction<? super K, ? super V> transformer,
3630 >                           int basis,
3631 >                           IntBinaryOperator reducer) {
3632 >        if (transformer == null || reducer == null)
3633 >            throw new NullPointerException();
3634 >        return new MapReduceMappingsToIntTask<K,V>
3635 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3636 >             null, transformer, basis, reducer).invoke();
3637 >    }
3638 >
3639 >    /**
3640 >     * Performs the given action for each key.
3641 >     *
3642 >     * @param parallelismThreshold the (estimated) number of elements
3643 >     * needed for this operation to be executed in parallel
3644 >     * @param action the action
3645 >     * @since 1.8
3646 >     */
3647 >    public void forEachKey(long parallelismThreshold,
3648 >                           Consumer<? super K> action) {
3649 >        if (action == null) throw new NullPointerException();
3650 >        new ForEachKeyTask<K,V>
3651 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3652 >             action).invoke();
3653 >    }
3654 >
3655 >    /**
3656 >     * Performs the given action for each non-null transformation
3657 >     * of each key.
3658 >     *
3659 >     * @param parallelismThreshold the (estimated) number of elements
3660 >     * needed for this operation to be executed in parallel
3661 >     * @param transformer a function returning the transformation
3662 >     * for an element, or null if there is no transformation (in
3663 >     * which case the action is not applied)
3664 >     * @param action the action
3665 >     * @since 1.8
3666 >     */
3667 >    public <U> void forEachKey(long parallelismThreshold,
3668 >                               Function<? super K, ? extends U> transformer,
3669 >                               Consumer<? super U> action) {
3670 >        if (transformer == null || action == null)
3671 >            throw new NullPointerException();
3672 >        new ForEachTransformedKeyTask<K,V,U>
3673 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3674 >             transformer, action).invoke();
3675 >    }
3676 >
3677 >    /**
3678 >     * Returns a non-null result from applying the given search
3679 >     * function on each key, or null if none. Upon success,
3680 >     * further element processing is suppressed and the results of
3681 >     * any other parallel invocations of the search function are
3682 >     * ignored.
3683 >     *
3684 >     * @param parallelismThreshold the (estimated) number of elements
3685 >     * needed for this operation to be executed in parallel
3686 >     * @param searchFunction a function returning a non-null
3687 >     * result on success, else null
3688 >     * @return a non-null result from applying the given search
3689 >     * function on each key, or null if none
3690 >     * @since 1.8
3691 >     */
3692 >    public <U> U searchKeys(long parallelismThreshold,
3693 >                            Function<? super K, ? extends U> searchFunction) {
3694 >        if (searchFunction == null) throw new NullPointerException();
3695 >        return new SearchKeysTask<K,V,U>
3696 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3697 >             searchFunction, new AtomicReference<U>()).invoke();
3698 >    }
3699 >
3700 >    /**
3701 >     * Returns the result of accumulating all keys using the given
3702 >     * reducer to combine values, or null if none.
3703 >     *
3704 >     * @param parallelismThreshold the (estimated) number of elements
3705 >     * needed for this operation to be executed in parallel
3706 >     * @param reducer a commutative associative combining function
3707 >     * @return the result of accumulating all keys using the given
3708 >     * reducer to combine values, or null if none
3709 >     * @since 1.8
3710 >     */
3711 >    public K reduceKeys(long parallelismThreshold,
3712 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3713 >        if (reducer == null) throw new NullPointerException();
3714 >        return new ReduceKeysTask<K,V>
3715 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3716 >             null, reducer).invoke();
3717 >    }
3718 >
3719 >    /**
3720 >     * Returns the result of accumulating the given transformation
3721 >     * of all keys using the given reducer to combine values, or
3722 >     * null if none.
3723 >     *
3724 >     * @param parallelismThreshold the (estimated) number of elements
3725 >     * needed for this operation to be executed in parallel
3726 >     * @param transformer a function returning the transformation
3727 >     * for an element, or null if there is no transformation (in
3728 >     * which case it is not combined)
3729 >     * @param reducer a commutative associative combining function
3730 >     * @return the result of accumulating the given transformation
3731 >     * of all keys
3732 >     * @since 1.8
3733 >     */
3734 >    public <U> U reduceKeys(long parallelismThreshold,
3735 >                            Function<? super K, ? extends U> transformer,
3736 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3737 >        if (transformer == null || reducer == null)
3738 >            throw new NullPointerException();
3739 >        return new MapReduceKeysTask<K,V,U>
3740 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3741 >             null, transformer, reducer).invoke();
3742 >    }
3743 >
3744 >    /**
3745 >     * Returns the result of accumulating the given transformation
3746 >     * of all keys using the given reducer to combine values, and
3747 >     * the given basis as an identity value.
3748 >     *
3749 >     * @param parallelismThreshold the (estimated) number of elements
3750 >     * needed for this operation to be executed in parallel
3751 >     * @param transformer a function returning the transformation
3752 >     * for an element
3753 >     * @param basis the identity (initial default value) for the reduction
3754 >     * @param reducer a commutative associative combining function
3755 >     * @return the result of accumulating the given transformation
3756 >     * of all keys
3757 >     * @since 1.8
3758 >     */
3759 >    public double reduceKeysToDouble(long parallelismThreshold,
3760 >                                     ToDoubleFunction<? super K> transformer,
3761 >                                     double basis,
3762 >                                     DoubleBinaryOperator reducer) {
3763 >        if (transformer == null || reducer == null)
3764 >            throw new NullPointerException();
3765 >        return new MapReduceKeysToDoubleTask<K,V>
3766 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3767 >             null, transformer, basis, reducer).invoke();
3768 >    }
3769 >
3770 >    /**
3771 >     * Returns the result of accumulating the given transformation
3772 >     * of all keys using the given reducer to combine values, and
3773 >     * the given basis as an identity value.
3774 >     *
3775 >     * @param parallelismThreshold the (estimated) number of elements
3776 >     * needed for this operation to be executed in parallel
3777 >     * @param transformer a function returning the transformation
3778 >     * for an element
3779 >     * @param basis the identity (initial default value) for the reduction
3780 >     * @param reducer a commutative associative combining function
3781 >     * @return the result of accumulating the given transformation
3782 >     * of all keys
3783 >     * @since 1.8
3784 >     */
3785 >    public long reduceKeysToLong(long parallelismThreshold,
3786 >                                 ToLongFunction<? super K> transformer,
3787 >                                 long basis,
3788 >                                 LongBinaryOperator reducer) {
3789 >        if (transformer == null || reducer == null)
3790 >            throw new NullPointerException();
3791 >        return new MapReduceKeysToLongTask<K,V>
3792 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3793 >             null, transformer, basis, reducer).invoke();
3794 >    }
3795 >
3796 >    /**
3797 >     * Returns the result of accumulating the given transformation
3798 >     * of all keys using the given reducer to combine values, and
3799 >     * the given basis as an identity value.
3800 >     *
3801 >     * @param parallelismThreshold the (estimated) number of elements
3802 >     * needed for this operation to be executed in parallel
3803 >     * @param transformer a function returning the transformation
3804 >     * for an element
3805 >     * @param basis the identity (initial default value) for the reduction
3806 >     * @param reducer a commutative associative combining function
3807 >     * @return the result of accumulating the given transformation
3808 >     * of all keys
3809 >     * @since 1.8
3810 >     */
3811 >    public int reduceKeysToInt(long parallelismThreshold,
3812 >                               ToIntFunction<? super K> transformer,
3813 >                               int basis,
3814 >                               IntBinaryOperator reducer) {
3815 >        if (transformer == null || reducer == null)
3816 >            throw new NullPointerException();
3817 >        return new MapReduceKeysToIntTask<K,V>
3818 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3819 >             null, transformer, basis, reducer).invoke();
3820 >    }
3821 >
3822 >    /**
3823 >     * Performs the given action for each value.
3824 >     *
3825 >     * @param parallelismThreshold the (estimated) number of elements
3826 >     * needed for this operation to be executed in parallel
3827 >     * @param action the action
3828 >     * @since 1.8
3829 >     */
3830 >    public void forEachValue(long parallelismThreshold,
3831 >                             Consumer<? super V> action) {
3832 >        if (action == null)
3833 >            throw new NullPointerException();
3834 >        new ForEachValueTask<K,V>
3835 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3836 >             action).invoke();
3837 >    }
3838 >
3839 >    /**
3840 >     * Performs the given action for each non-null transformation
3841 >     * of each value.
3842 >     *
3843 >     * @param parallelismThreshold the (estimated) number of elements
3844 >     * needed for this operation to be executed in parallel
3845 >     * @param transformer a function returning the transformation
3846 >     * for an element, or null if there is no transformation (in
3847 >     * which case the action is not applied)
3848 >     * @param action the action
3849 >     * @since 1.8
3850 >     */
3851 >    public <U> void forEachValue(long parallelismThreshold,
3852 >                                 Function<? super V, ? extends U> transformer,
3853 >                                 Consumer<? super U> action) {
3854 >        if (transformer == null || action == null)
3855 >            throw new NullPointerException();
3856 >        new ForEachTransformedValueTask<K,V,U>
3857 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3858 >             transformer, action).invoke();
3859 >    }
3860 >
3861 >    /**
3862 >     * Returns a non-null result from applying the given search
3863 >     * function on each value, or null if none.  Upon success,
3864 >     * further element processing is suppressed and the results of
3865 >     * any other parallel invocations of the search function are
3866 >     * ignored.
3867 >     *
3868 >     * @param parallelismThreshold the (estimated) number of elements
3869 >     * needed for this operation to be executed in parallel
3870 >     * @param searchFunction a function returning a non-null
3871 >     * result on success, else null
3872 >     * @return a non-null result from applying the given search
3873 >     * function on each value, or null if none
3874 >     * @since 1.8
3875 >     */
3876 >    public <U> U searchValues(long parallelismThreshold,
3877 >                              Function<? super V, ? extends U> searchFunction) {
3878 >        if (searchFunction == null) throw new NullPointerException();
3879 >        return new SearchValuesTask<K,V,U>
3880 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3881 >             searchFunction, new AtomicReference<U>()).invoke();
3882 >    }
3883 >
3884 >    /**
3885 >     * Returns the result of accumulating all values using the
3886 >     * given reducer to combine values, or null if none.
3887 >     *
3888 >     * @param parallelismThreshold the (estimated) number of elements
3889 >     * needed for this operation to be executed in parallel
3890 >     * @param reducer a commutative associative combining function
3891 >     * @return the result of accumulating all values
3892 >     * @since 1.8
3893 >     */
3894 >    public V reduceValues(long parallelismThreshold,
3895 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
3896 >        if (reducer == null) throw new NullPointerException();
3897 >        return new ReduceValuesTask<K,V>
3898 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3899 >             null, reducer).invoke();
3900 >    }
3901 >
3902 >    /**
3903 >     * Returns the result of accumulating the given transformation
3904 >     * of all values using the given reducer to combine values, or
3905 >     * null if none.
3906 >     *
3907 >     * @param parallelismThreshold the (estimated) number of elements
3908 >     * needed for this operation to be executed in parallel
3909 >     * @param transformer a function returning the transformation
3910 >     * for an element, or null if there is no transformation (in
3911 >     * which case it is not combined)
3912 >     * @param reducer a commutative associative combining function
3913 >     * @return the result of accumulating the given transformation
3914 >     * of all values
3915 >     * @since 1.8
3916 >     */
3917 >    public <U> U reduceValues(long parallelismThreshold,
3918 >                              Function<? super V, ? extends U> transformer,
3919 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
3920 >        if (transformer == null || reducer == null)
3921 >            throw new NullPointerException();
3922 >        return new MapReduceValuesTask<K,V,U>
3923 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3924 >             null, transformer, reducer).invoke();
3925 >    }
3926 >
3927 >    /**
3928 >     * Returns the result of accumulating the given transformation
3929 >     * of all values using the given reducer to combine values,
3930 >     * and the given basis as an identity value.
3931 >     *
3932 >     * @param parallelismThreshold the (estimated) number of elements
3933 >     * needed for this operation to be executed in parallel
3934 >     * @param transformer a function returning the transformation
3935 >     * for an element
3936 >     * @param basis the identity (initial default value) for the reduction
3937 >     * @param reducer a commutative associative combining function
3938 >     * @return the result of accumulating the given transformation
3939 >     * of all values
3940 >     * @since 1.8
3941 >     */
3942 >    public double reduceValuesToDouble(long parallelismThreshold,
3943 >                                       ToDoubleFunction<? super V> transformer,
3944 >                                       double basis,
3945 >                                       DoubleBinaryOperator reducer) {
3946 >        if (transformer == null || reducer == null)
3947 >            throw new NullPointerException();
3948 >        return new MapReduceValuesToDoubleTask<K,V>
3949 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3950 >             null, transformer, basis, reducer).invoke();
3951 >    }
3952 >
3953 >    /**
3954 >     * Returns the result of accumulating the given transformation
3955 >     * of all values using the given reducer to combine values,
3956 >     * and the given basis as an identity value.
3957 >     *
3958 >     * @param parallelismThreshold the (estimated) number of elements
3959 >     * needed for this operation to be executed in parallel
3960 >     * @param transformer a function returning the transformation
3961 >     * for an element
3962 >     * @param basis the identity (initial default value) for the reduction
3963 >     * @param reducer a commutative associative combining function
3964 >     * @return the result of accumulating the given transformation
3965 >     * of all values
3966 >     * @since 1.8
3967 >     */
3968 >    public long reduceValuesToLong(long parallelismThreshold,
3969 >                                   ToLongFunction<? super V> transformer,
3970 >                                   long basis,
3971 >                                   LongBinaryOperator reducer) {
3972 >        if (transformer == null || reducer == null)
3973 >            throw new NullPointerException();
3974 >        return new MapReduceValuesToLongTask<K,V>
3975 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3976 >             null, transformer, basis, reducer).invoke();
3977 >    }
3978 >
3979 >    /**
3980 >     * Returns the result of accumulating the given transformation
3981 >     * of all values using the given reducer to combine values,
3982 >     * and the given basis as an identity value.
3983 >     *
3984 >     * @param parallelismThreshold the (estimated) number of elements
3985 >     * needed for this operation to be executed in parallel
3986 >     * @param transformer a function returning the transformation
3987 >     * for an element
3988 >     * @param basis the identity (initial default value) for the reduction
3989 >     * @param reducer a commutative associative combining function
3990 >     * @return the result of accumulating the given transformation
3991 >     * of all values
3992 >     * @since 1.8
3993 >     */
3994 >    public int reduceValuesToInt(long parallelismThreshold,
3995 >                                 ToIntFunction<? super V> transformer,
3996 >                                 int basis,
3997 >                                 IntBinaryOperator reducer) {
3998 >        if (transformer == null || reducer == null)
3999 >            throw new NullPointerException();
4000 >        return new MapReduceValuesToIntTask<K,V>
4001 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4002 >             null, transformer, basis, reducer).invoke();
4003 >    }
4004 >
4005 >    /**
4006 >     * Performs the given action for each entry.
4007 >     *
4008 >     * @param parallelismThreshold the (estimated) number of elements
4009 >     * needed for this operation to be executed in parallel
4010 >     * @param action the action
4011 >     * @since 1.8
4012 >     */
4013 >    public void forEachEntry(long parallelismThreshold,
4014 >                             Consumer<? super Map.Entry<K,V>> action) {
4015 >        if (action == null) throw new NullPointerException();
4016 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4017 >                                  action).invoke();
4018 >    }
4019 >
4020 >    /**
4021 >     * Performs the given action for each non-null transformation
4022 >     * of each entry.
4023 >     *
4024 >     * @param parallelismThreshold the (estimated) number of elements
4025 >     * needed for this operation to be executed in parallel
4026 >     * @param transformer a function returning the transformation
4027 >     * for an element, or null if there is no transformation (in
4028 >     * which case the action is not applied)
4029 >     * @param action the action
4030 >     * @since 1.8
4031 >     */
4032 >    public <U> void forEachEntry(long parallelismThreshold,
4033 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4034 >                                 Consumer<? super U> action) {
4035 >        if (transformer == null || action == null)
4036 >            throw new NullPointerException();
4037 >        new ForEachTransformedEntryTask<K,V,U>
4038 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4039 >             transformer, action).invoke();
4040 >    }
4041 >
4042 >    /**
4043 >     * Returns a non-null result from applying the given search
4044 >     * function on each entry, or null if none.  Upon success,
4045 >     * further element processing is suppressed and the results of
4046 >     * any other parallel invocations of the search function are
4047 >     * ignored.
4048 >     *
4049 >     * @param parallelismThreshold the (estimated) number of elements
4050 >     * needed for this operation to be executed in parallel
4051 >     * @param searchFunction a function returning a non-null
4052 >     * result on success, else null
4053 >     * @return a non-null result from applying the given search
4054 >     * function on each entry, or null if none
4055 >     * @since 1.8
4056 >     */
4057 >    public <U> U searchEntries(long parallelismThreshold,
4058 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4059 >        if (searchFunction == null) throw new NullPointerException();
4060 >        return new SearchEntriesTask<K,V,U>
4061 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4062 >             searchFunction, new AtomicReference<U>()).invoke();
4063 >    }
4064 >
4065 >    /**
4066 >     * Returns the result of accumulating all entries using the
4067 >     * given reducer to combine values, or null if none.
4068 >     *
4069 >     * @param parallelismThreshold the (estimated) number of elements
4070 >     * needed for this operation to be executed in parallel
4071 >     * @param reducer a commutative associative combining function
4072 >     * @return the result of accumulating all entries
4073 >     * @since 1.8
4074 >     */
4075 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4076 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4077 >        if (reducer == null) throw new NullPointerException();
4078 >        return new ReduceEntriesTask<K,V>
4079 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4080 >             null, reducer).invoke();
4081 >    }
4082 >
4083 >    /**
4084 >     * Returns the result of accumulating the given transformation
4085 >     * of all entries using the given reducer to combine values,
4086 >     * or null if none.
4087 >     *
4088 >     * @param parallelismThreshold the (estimated) number of elements
4089 >     * needed for this operation to be executed in parallel
4090 >     * @param transformer a function returning the transformation
4091 >     * for an element, or null if there is no transformation (in
4092 >     * which case it is not combined)
4093 >     * @param reducer a commutative associative combining function
4094 >     * @return the result of accumulating the given transformation
4095 >     * of all entries
4096 >     * @since 1.8
4097 >     */
4098 >    public <U> U reduceEntries(long parallelismThreshold,
4099 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4100 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4101 >        if (transformer == null || reducer == null)
4102 >            throw new NullPointerException();
4103 >        return new MapReduceEntriesTask<K,V,U>
4104 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4105 >             null, transformer, reducer).invoke();
4106 >    }
4107 >
4108 >    /**
4109 >     * Returns the result of accumulating the given transformation
4110 >     * of all entries using the given reducer to combine values,
4111 >     * and the given basis as an identity value.
4112 >     *
4113 >     * @param parallelismThreshold the (estimated) number of elements
4114 >     * needed for this operation to be executed in parallel
4115 >     * @param transformer a function returning the transformation
4116 >     * for an element
4117 >     * @param basis the identity (initial default value) for the reduction
4118 >     * @param reducer a commutative associative combining function
4119 >     * @return the result of accumulating the given transformation
4120 >     * of all entries
4121 >     * @since 1.8
4122 >     */
4123 >    public double reduceEntriesToDouble(long parallelismThreshold,
4124 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4125 >                                        double basis,
4126 >                                        DoubleBinaryOperator reducer) {
4127 >        if (transformer == null || reducer == null)
4128 >            throw new NullPointerException();
4129 >        return new MapReduceEntriesToDoubleTask<K,V>
4130 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4131 >             null, transformer, basis, reducer).invoke();
4132 >    }
4133 >
4134 >    /**
4135 >     * Returns the result of accumulating the given transformation
4136 >     * of all entries using the given reducer to combine values,
4137 >     * and the given basis as an identity value.
4138 >     *
4139 >     * @param parallelismThreshold the (estimated) number of elements
4140 >     * needed for this operation to be executed in parallel
4141 >     * @param transformer a function returning the transformation
4142 >     * for an element
4143 >     * @param basis the identity (initial default value) for the reduction
4144 >     * @param reducer a commutative associative combining function
4145 >     * @return the result of accumulating the given transformation
4146 >     * of all entries
4147 >     * @since 1.8
4148 >     */
4149 >    public long reduceEntriesToLong(long parallelismThreshold,
4150 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4151 >                                    long basis,
4152 >                                    LongBinaryOperator reducer) {
4153 >        if (transformer == null || reducer == null)
4154 >            throw new NullPointerException();
4155 >        return new MapReduceEntriesToLongTask<K,V>
4156 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4157 >             null, transformer, basis, reducer).invoke();
4158 >    }
4159 >
4160 >    /**
4161 >     * Returns the result of accumulating the given transformation
4162 >     * of all entries using the given reducer to combine values,
4163 >     * and the given basis as an identity value.
4164 >     *
4165 >     * @param parallelismThreshold the (estimated) number of elements
4166 >     * needed for this operation to be executed in parallel
4167 >     * @param transformer a function returning the transformation
4168 >     * for an element
4169 >     * @param basis the identity (initial default value) for the reduction
4170 >     * @param reducer a commutative associative combining function
4171 >     * @return the result of accumulating the given transformation
4172 >     * of all entries
4173 >     * @since 1.8
4174 >     */
4175 >    public int reduceEntriesToInt(long parallelismThreshold,
4176 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4177 >                                  int basis,
4178 >                                  IntBinaryOperator reducer) {
4179 >        if (transformer == null || reducer == null)
4180 >            throw new NullPointerException();
4181 >        return new MapReduceEntriesToIntTask<K,V>
4182 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4183 >             null, transformer, basis, reducer).invoke();
4184 >    }
4185 >
4186 >
4187 >    /* ----------------Views -------------- */
4188 >
4189 >    /**
4190 >     * Base class for views.
4191 >     */
4192 >    abstract static class CollectionView<K,V,E>
4193 >        implements Collection<E>, java.io.Serializable {
4194 >        private static final long serialVersionUID = 7249069246763182397L;
4195 >        final ConcurrentHashMap<K,V> map;
4196 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4197 >
4198 >        /**
4199 >         * Returns the map backing this view.
4200 >         *
4201 >         * @return the map backing this view
4202 >         */
4203 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4204 >
4205 >        /**
4206 >         * Removes all of the elements from this view, by removing all
4207 >         * the mappings from the map backing this view.
4208 >         */
4209 >        public final void clear()      { map.clear(); }
4210 >        public final int size()        { return map.size(); }
4211 >        public final boolean isEmpty() { return map.isEmpty(); }
4212 >
4213 >        // implementations below rely on concrete classes supplying these
4214 >        // abstract methods
4215 >        /**
4216 >         * Returns a "weakly consistent" iterator that will never
4217 >         * throw {@link ConcurrentModificationException}, and
4218 >         * guarantees to traverse elements as they existed upon
4219 >         * construction of the iterator, and may (but is not
4220 >         * guaranteed to) reflect any modifications subsequent to
4221 >         * construction.
4222 >         */
4223 >        public abstract Iterator<E> iterator();
4224 >        public abstract boolean contains(Object o);
4225 >        public abstract boolean remove(Object o);
4226 >
4227 >        private static final String oomeMsg = "Required array size too large";
4228 >
4229 >        public final Object[] toArray() {
4230 >            long sz = map.mappingCount();
4231 >            if (sz > MAX_ARRAY_SIZE)
4232 >                throw new OutOfMemoryError(oomeMsg);
4233 >            int n = (int)sz;
4234 >            Object[] r = new Object[n];
4235 >            int i = 0;
4236 >            for (E e : this) {
4237 >                if (i == n) {
4238 >                    if (n >= MAX_ARRAY_SIZE)
4239 >                        throw new OutOfMemoryError(oomeMsg);
4240 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4241 >                        n = MAX_ARRAY_SIZE;
4242 >                    else
4243 >                        n += (n >>> 1) + 1;
4244 >                    r = Arrays.copyOf(r, n);
4245 >                }
4246 >                r[i++] = e;
4247 >            }
4248 >            return (i == n) ? r : Arrays.copyOf(r, i);
4249          }
4250 <        public void clear() {
4251 <            ConcurrentHashMap.this.clear();
4250 >
4251 >        @SuppressWarnings("unchecked")
4252 >        public final <T> T[] toArray(T[] a) {
4253 >            long sz = map.mappingCount();
4254 >            if (sz > MAX_ARRAY_SIZE)
4255 >                throw new OutOfMemoryError(oomeMsg);
4256 >            int m = (int)sz;
4257 >            T[] r = (a.length >= m) ? a :
4258 >                (T[])java.lang.reflect.Array
4259 >                .newInstance(a.getClass().getComponentType(), m);
4260 >            int n = r.length;
4261 >            int i = 0;
4262 >            for (E e : this) {
4263 >                if (i == n) {
4264 >                    if (n >= MAX_ARRAY_SIZE)
4265 >                        throw new OutOfMemoryError(oomeMsg);
4266 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4267 >                        n = MAX_ARRAY_SIZE;
4268 >                    else
4269 >                        n += (n >>> 1) + 1;
4270 >                    r = Arrays.copyOf(r, n);
4271 >                }
4272 >                r[i++] = (T)e;
4273 >            }
4274 >            if (a == r && i < n) {
4275 >                r[i] = null; // null-terminate
4276 >                return r;
4277 >            }
4278 >            return (i == n) ? r : Arrays.copyOf(r, i);
4279 >        }
4280 >
4281 >        /**
4282 >         * Returns a string representation of this collection.
4283 >         * The string representation consists of the string representations
4284 >         * of the collection's elements in the order they are returned by
4285 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4286 >         * Adjacent elements are separated by the characters {@code ", "}
4287 >         * (comma and space).  Elements are converted to strings as by
4288 >         * {@link String#valueOf(Object)}.
4289 >         *
4290 >         * @return a string representation of this collection
4291 >         */
4292 >        public final String toString() {
4293 >            StringBuilder sb = new StringBuilder();
4294 >            sb.append('[');
4295 >            Iterator<E> it = iterator();
4296 >            if (it.hasNext()) {
4297 >                for (;;) {
4298 >                    Object e = it.next();
4299 >                    sb.append(e == this ? "(this Collection)" : e);
4300 >                    if (!it.hasNext())
4301 >                        break;
4302 >                    sb.append(',').append(' ');
4303 >                }
4304 >            }
4305 >            return sb.append(']').toString();
4306          }
4307 +
4308 +        public final boolean containsAll(Collection<?> c) {
4309 +            if (c != this) {
4310 +                for (Object e : c) {
4311 +                    if (e == null || !contains(e))
4312 +                        return false;
4313 +                }
4314 +            }
4315 +            return true;
4316 +        }
4317 +
4318 +        public final boolean removeAll(Collection<?> c) {
4319 +            boolean modified = false;
4320 +            for (Iterator<E> it = iterator(); it.hasNext();) {
4321 +                if (c.contains(it.next())) {
4322 +                    it.remove();
4323 +                    modified = true;
4324 +                }
4325 +            }
4326 +            return modified;
4327 +        }
4328 +
4329 +        public final boolean retainAll(Collection<?> c) {
4330 +            boolean modified = false;
4331 +            for (Iterator<E> it = iterator(); it.hasNext();) {
4332 +                if (!c.contains(it.next())) {
4333 +                    it.remove();
4334 +                    modified = true;
4335 +                }
4336 +            }
4337 +            return modified;
4338 +        }
4339 +
4340      }
4341  
4342 <    final class Values extends AbstractCollection<V> {
4343 <        public Iterator<V> iterator() {
4344 <            return new ValueIterator();
4342 >    /**
4343 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4344 >     * which additions may optionally be enabled by mapping to a
4345 >     * common value.  This class cannot be directly instantiated.
4346 >     * See {@link #keySet() keySet()},
4347 >     * {@link #keySet(Object) keySet(V)},
4348 >     * {@link #newKeySet() newKeySet()},
4349 >     * {@link #newKeySet(int) newKeySet(int)}.
4350 >     *
4351 >     * @since 1.8
4352 >     */
4353 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4354 >        implements Set<K>, java.io.Serializable {
4355 >        private static final long serialVersionUID = 7249069246763182397L;
4356 >        private final V value;
4357 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4358 >            super(map);
4359 >            this.value = value;
4360          }
4361 <        public int size() {
4362 <            return ConcurrentHashMap.this.size();
4361 >
4362 >        /**
4363 >         * Returns the default mapped value for additions,
4364 >         * or {@code null} if additions are not supported.
4365 >         *
4366 >         * @return the default mapped value for additions, or {@code null}
4367 >         * if not supported
4368 >         */
4369 >        public V getMappedValue() { return value; }
4370 >
4371 >        /**
4372 >         * {@inheritDoc}
4373 >         * @throws NullPointerException if the specified key is null
4374 >         */
4375 >        public boolean contains(Object o) { return map.containsKey(o); }
4376 >
4377 >        /**
4378 >         * Removes the key from this map view, by removing the key (and its
4379 >         * corresponding value) from the backing map.  This method does
4380 >         * nothing if the key is not in the map.
4381 >         *
4382 >         * @param  o the key to be removed from the backing map
4383 >         * @return {@code true} if the backing map contained the specified key
4384 >         * @throws NullPointerException if the specified key is null
4385 >         */
4386 >        public boolean remove(Object o) { return map.remove(o) != null; }
4387 >
4388 >        /**
4389 >         * @return an iterator over the keys of the backing map
4390 >         */
4391 >        public Iterator<K> iterator() {
4392 >            Node<K,V>[] t;
4393 >            ConcurrentHashMap<K,V> m = map;
4394 >            int f = (t = m.table) == null ? 0 : t.length;
4395 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4396          }
4397 <        public boolean contains(Object o) {
4398 <            return ConcurrentHashMap.this.containsValue(o);
4397 >
4398 >        /**
4399 >         * Adds the specified key to this set view by mapping the key to
4400 >         * the default mapped value in the backing map, if defined.
4401 >         *
4402 >         * @param e key to be added
4403 >         * @return {@code true} if this set changed as a result of the call
4404 >         * @throws NullPointerException if the specified key is null
4405 >         * @throws UnsupportedOperationException if no default mapped value
4406 >         * for additions was provided
4407 >         */
4408 >        public boolean add(K e) {
4409 >            V v;
4410 >            if ((v = value) == null)
4411 >                throw new UnsupportedOperationException();
4412 >            return map.putVal(e, v, true) == null;
4413          }
4414 <        public void clear() {
4415 <            ConcurrentHashMap.this.clear();
4414 >
4415 >        /**
4416 >         * Adds all of the elements in the specified collection to this set,
4417 >         * as if by calling {@link #add} on each one.
4418 >         *
4419 >         * @param c the elements to be inserted into this set
4420 >         * @return {@code true} if this set changed as a result of the call
4421 >         * @throws NullPointerException if the collection or any of its
4422 >         * elements are {@code null}
4423 >         * @throws UnsupportedOperationException if no default mapped value
4424 >         * for additions was provided
4425 >         */
4426 >        public boolean addAll(Collection<? extends K> c) {
4427 >            boolean added = false;
4428 >            V v;
4429 >            if ((v = value) == null)
4430 >                throw new UnsupportedOperationException();
4431 >            for (K e : c) {
4432 >                if (map.putVal(e, v, true) == null)
4433 >                    added = true;
4434 >            }
4435 >            return added;
4436 >        }
4437 >
4438 >        public int hashCode() {
4439 >            int h = 0;
4440 >            for (K e : this)
4441 >                h += e.hashCode();
4442 >            return h;
4443 >        }
4444 >
4445 >        public boolean equals(Object o) {
4446 >            Set<?> c;
4447 >            return ((o instanceof Set) &&
4448 >                    ((c = (Set<?>)o) == this ||
4449 >                     (containsAll(c) && c.containsAll(this))));
4450 >        }
4451 >
4452 >        public Spliterator<K> spliterator() {
4453 >            Node<K,V>[] t;
4454 >            ConcurrentHashMap<K,V> m = map;
4455 >            long n = m.sumCount();
4456 >            int f = (t = m.table) == null ? 0 : t.length;
4457 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4458 >        }
4459 >
4460 >        public void forEach(Consumer<? super K> action) {
4461 >            if (action == null) throw new NullPointerException();
4462 >            Node<K,V>[] t;
4463 >            if ((t = map.table) != null) {
4464 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4465 >                for (Node<K,V> p; (p = it.advance()) != null; )
4466 >                    action.accept(p.key);
4467 >            }
4468          }
4469      }
4470  
4471 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4472 <        public Iterator<Map.Entry<K,V>> iterator() {
4473 <            return new EntryIterator();
4471 >    /**
4472 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4473 >     * values, in which additions are disabled. This class cannot be
4474 >     * directly instantiated. See {@link #values()}.
4475 >     */
4476 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4477 >        implements Collection<V>, java.io.Serializable {
4478 >        private static final long serialVersionUID = 2249069246763182397L;
4479 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4480 >        public final boolean contains(Object o) {
4481 >            return map.containsValue(o);
4482 >        }
4483 >
4484 >        public final boolean remove(Object o) {
4485 >            if (o != null) {
4486 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4487 >                    if (o.equals(it.next())) {
4488 >                        it.remove();
4489 >                        return true;
4490 >                    }
4491 >                }
4492 >            }
4493 >            return false;
4494          }
4495 +
4496 +        public final Iterator<V> iterator() {
4497 +            ConcurrentHashMap<K,V> m = map;
4498 +            Node<K,V>[] t;
4499 +            int f = (t = m.table) == null ? 0 : t.length;
4500 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4501 +        }
4502 +
4503 +        public final boolean add(V e) {
4504 +            throw new UnsupportedOperationException();
4505 +        }
4506 +        public final boolean addAll(Collection<? extends V> c) {
4507 +            throw new UnsupportedOperationException();
4508 +        }
4509 +
4510 +        public Spliterator<V> spliterator() {
4511 +            Node<K,V>[] t;
4512 +            ConcurrentHashMap<K,V> m = map;
4513 +            long n = m.sumCount();
4514 +            int f = (t = m.table) == null ? 0 : t.length;
4515 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4516 +        }
4517 +
4518 +        public void forEach(Consumer<? super V> action) {
4519 +            if (action == null) throw new NullPointerException();
4520 +            Node<K,V>[] t;
4521 +            if ((t = map.table) != null) {
4522 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4523 +                for (Node<K,V> p; (p = it.advance()) != null; )
4524 +                    action.accept(p.val);
4525 +            }
4526 +        }
4527 +    }
4528 +
4529 +    /**
4530 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4531 +     * entries.  This class cannot be directly instantiated. See
4532 +     * {@link #entrySet()}.
4533 +     */
4534 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4535 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4536 +        private static final long serialVersionUID = 2249069246763182397L;
4537 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4538 +
4539          public boolean contains(Object o) {
4540 <            if (!(o instanceof Map.Entry))
4541 <                return false;
4542 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4543 <            V v = ConcurrentHashMap.this.get(e.getKey());
4544 <            return v != null && v.equals(e.getValue());
4540 >            Object k, v, r; Map.Entry<?,?> e;
4541 >            return ((o instanceof Map.Entry) &&
4542 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4543 >                    (r = map.get(k)) != null &&
4544 >                    (v = e.getValue()) != null &&
4545 >                    (v == r || v.equals(r)));
4546          }
4547 +
4548          public boolean remove(Object o) {
4549 <            if (!(o instanceof Map.Entry))
4550 <                return false;
4551 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4552 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4549 >            Object k, v; Map.Entry<?,?> e;
4550 >            return ((o instanceof Map.Entry) &&
4551 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4552 >                    (v = e.getValue()) != null &&
4553 >                    map.remove(k, v));
4554          }
4555 <        public int size() {
4556 <            return ConcurrentHashMap.this.size();
4555 >
4556 >        /**
4557 >         * @return an iterator over the entries of the backing map
4558 >         */
4559 >        public Iterator<Map.Entry<K,V>> iterator() {
4560 >            ConcurrentHashMap<K,V> m = map;
4561 >            Node<K,V>[] t;
4562 >            int f = (t = m.table) == null ? 0 : t.length;
4563 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4564          }
4565 <        public void clear() {
4566 <            ConcurrentHashMap.this.clear();
4565 >
4566 >        public boolean add(Entry<K,V> e) {
4567 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4568          }
4569 +
4570 +        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4571 +            boolean added = false;
4572 +            for (Entry<K,V> e : c) {
4573 +                if (add(e))
4574 +                    added = true;
4575 +            }
4576 +            return added;
4577 +        }
4578 +
4579 +        public final int hashCode() {
4580 +            int h = 0;
4581 +            Node<K,V>[] t;
4582 +            if ((t = map.table) != null) {
4583 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4584 +                for (Node<K,V> p; (p = it.advance()) != null; ) {
4585 +                    h += p.hashCode();
4586 +                }
4587 +            }
4588 +            return h;
4589 +        }
4590 +
4591 +        public final boolean equals(Object o) {
4592 +            Set<?> c;
4593 +            return ((o instanceof Set) &&
4594 +                    ((c = (Set<?>)o) == this ||
4595 +                     (containsAll(c) && c.containsAll(this))));
4596 +        }
4597 +
4598 +        public Spliterator<Map.Entry<K,V>> spliterator() {
4599 +            Node<K,V>[] t;
4600 +            ConcurrentHashMap<K,V> m = map;
4601 +            long n = m.sumCount();
4602 +            int f = (t = m.table) == null ? 0 : t.length;
4603 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4604 +        }
4605 +
4606 +        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4607 +            if (action == null) throw new NullPointerException();
4608 +            Node<K,V>[] t;
4609 +            if ((t = map.table) != null) {
4610 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4611 +                for (Node<K,V> p; (p = it.advance()) != null; )
4612 +                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4613 +            }
4614 +        }
4615 +
4616      }
4617  
4618 <    /* ---------------- Serialization Support -------------- */
4618 >    // -------------------------------------------------------
4619  
4620      /**
4621 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
4622 <     * stream (i.e., serialize it).
1229 <     * @param s the stream
1230 <     * @serialData
1231 <     * the key (Object) and value (Object)
1232 <     * for each key-value mapping, followed by a null pair.
1233 <     * The key-value mappings are emitted in no particular order.
4621 >     * Base class for bulk tasks. Repeats some fields and code from
4622 >     * class Traverser, because we need to subclass CountedCompleter.
4623       */
4624 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
4625 <        s.defaultWriteObject();
4624 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4625 >        Node<K,V>[] tab;        // same as Traverser
4626 >        Node<K,V> next;
4627 >        int index;
4628 >        int baseIndex;
4629 >        int baseLimit;
4630 >        final int baseSize;
4631 >        int batch;              // split control
4632 >
4633 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4634 >            super(par);
4635 >            this.batch = b;
4636 >            this.index = this.baseIndex = i;
4637 >            if ((this.tab = t) == null)
4638 >                this.baseSize = this.baseLimit = 0;
4639 >            else if (par == null)
4640 >                this.baseSize = this.baseLimit = t.length;
4641 >            else {
4642 >                this.baseLimit = f;
4643 >                this.baseSize = par.baseSize;
4644 >            }
4645 >        }
4646  
4647 <        for (int k = 0; k < segments.length; ++k) {
4648 <            Segment<K,V> seg = segments[k];
4649 <            seg.lock();
4650 <            try {
4651 <                HashEntry<K,V>[] tab = seg.table;
4652 <                for (int i = 0; i < tab.length; ++i) {
4653 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
4654 <                        s.writeObject(e.key);
4655 <                        s.writeObject(e.value);
4647 >        /**
4648 >         * Same as Traverser version
4649 >         */
4650 >        final Node<K,V> advance() {
4651 >            Node<K,V> e;
4652 >            if ((e = next) != null)
4653 >                e = e.next;
4654 >            for (;;) {
4655 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4656 >                if (e != null)
4657 >                    return next = e;
4658 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4659 >                    (n = t.length) <= (i = index) || i < 0)
4660 >                    return next = null;
4661 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4662 >                    if (e instanceof ForwardingNode) {
4663 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4664 >                        e = null;
4665 >                        continue;
4666                      }
4667 +                    else if (e instanceof TreeBin)
4668 +                        e = ((TreeBin<K,V>)e).first;
4669 +                    else
4670 +                        e = null;
4671                  }
4672 <            } finally {
4673 <                seg.unlock();
4672 >                if ((index += baseSize) >= n)
4673 >                    index = ++baseIndex;    // visit upper slots if present
4674              }
4675          }
1253        s.writeObject(null);
1254        s.writeObject(null);
4676      }
4677  
4678 <    /**
4679 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
4680 <     * stream (i.e., deserialize it).
4681 <     * @param s the stream
4682 <     */
4683 <    private void readObject(java.io.ObjectInputStream s)
4684 <        throws IOException, ClassNotFoundException  {
4685 <        s.defaultReadObject();
4678 >    /*
4679 >     * Task classes. Coded in a regular but ugly format/style to
4680 >     * simplify checks that each variant differs in the right way from
4681 >     * others. The null screenings exist because compilers cannot tell
4682 >     * that we've already null-checked task arguments, so we force
4683 >     * simplest hoisted bypass to help avoid convoluted traps.
4684 >     */
4685 >    @SuppressWarnings("serial")
4686 >    static final class ForEachKeyTask<K,V>
4687 >        extends BulkTask<K,V,Void> {
4688 >        final Consumer<? super K> action;
4689 >        ForEachKeyTask
4690 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4691 >             Consumer<? super K> action) {
4692 >            super(p, b, i, f, t);
4693 >            this.action = action;
4694 >        }
4695 >        public final void compute() {
4696 >            final Consumer<? super K> action;
4697 >            if ((action = this.action) != null) {
4698 >                for (int i = baseIndex, f, h; batch > 0 &&
4699 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4700 >                    addToPendingCount(1);
4701 >                    new ForEachKeyTask<K,V>
4702 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4703 >                         action).fork();
4704 >                }
4705 >                for (Node<K,V> p; (p = advance()) != null;)
4706 >                    action.accept(p.key);
4707 >                propagateCompletion();
4708 >            }
4709 >        }
4710 >    }
4711  
4712 <        // Initialize each segment to be minimally sized, and let grow.
4713 <        for (int i = 0; i < segments.length; ++i) {
4714 <            segments[i].setTable(new HashEntry[1]);
4712 >    @SuppressWarnings("serial")
4713 >    static final class ForEachValueTask<K,V>
4714 >        extends BulkTask<K,V,Void> {
4715 >        final Consumer<? super V> action;
4716 >        ForEachValueTask
4717 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4718 >             Consumer<? super V> action) {
4719 >            super(p, b, i, f, t);
4720 >            this.action = action;
4721 >        }
4722 >        public final void compute() {
4723 >            final Consumer<? super V> action;
4724 >            if ((action = this.action) != null) {
4725 >                for (int i = baseIndex, f, h; batch > 0 &&
4726 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4727 >                    addToPendingCount(1);
4728 >                    new ForEachValueTask<K,V>
4729 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4730 >                         action).fork();
4731 >                }
4732 >                for (Node<K,V> p; (p = advance()) != null;)
4733 >                    action.accept(p.val);
4734 >                propagateCompletion();
4735 >            }
4736          }
4737 +    }
4738  
4739 <        // Read the keys and values, and put the mappings in the table
4740 <        for (;;) {
4741 <            K key = (K) s.readObject();
4742 <            V value = (V) s.readObject();
4743 <            if (key == null)
4744 <                break;
4745 <            put(key, value);
4739 >    @SuppressWarnings("serial")
4740 >    static final class ForEachEntryTask<K,V>
4741 >        extends BulkTask<K,V,Void> {
4742 >        final Consumer<? super Entry<K,V>> action;
4743 >        ForEachEntryTask
4744 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4745 >             Consumer<? super Entry<K,V>> action) {
4746 >            super(p, b, i, f, t);
4747 >            this.action = action;
4748 >        }
4749 >        public final void compute() {
4750 >            final Consumer<? super Entry<K,V>> action;
4751 >            if ((action = this.action) != null) {
4752 >                for (int i = baseIndex, f, h; batch > 0 &&
4753 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4754 >                    addToPendingCount(1);
4755 >                    new ForEachEntryTask<K,V>
4756 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4757 >                         action).fork();
4758 >                }
4759 >                for (Node<K,V> p; (p = advance()) != null; )
4760 >                    action.accept(p);
4761 >                propagateCompletion();
4762 >            }
4763 >        }
4764 >    }
4765 >
4766 >    @SuppressWarnings("serial")
4767 >    static final class ForEachMappingTask<K,V>
4768 >        extends BulkTask<K,V,Void> {
4769 >        final BiConsumer<? super K, ? super V> action;
4770 >        ForEachMappingTask
4771 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4772 >             BiConsumer<? super K,? super V> action) {
4773 >            super(p, b, i, f, t);
4774 >            this.action = action;
4775 >        }
4776 >        public final void compute() {
4777 >            final BiConsumer<? super K, ? super V> action;
4778 >            if ((action = this.action) != null) {
4779 >                for (int i = baseIndex, f, h; batch > 0 &&
4780 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4781 >                    addToPendingCount(1);
4782 >                    new ForEachMappingTask<K,V>
4783 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4784 >                         action).fork();
4785 >                }
4786 >                for (Node<K,V> p; (p = advance()) != null; )
4787 >                    action.accept(p.key, p.val);
4788 >                propagateCompletion();
4789 >            }
4790 >        }
4791 >    }
4792 >
4793 >    @SuppressWarnings("serial")
4794 >    static final class ForEachTransformedKeyTask<K,V,U>
4795 >        extends BulkTask<K,V,Void> {
4796 >        final Function<? super K, ? extends U> transformer;
4797 >        final Consumer<? super U> action;
4798 >        ForEachTransformedKeyTask
4799 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4800 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4801 >            super(p, b, i, f, t);
4802 >            this.transformer = transformer; this.action = action;
4803 >        }
4804 >        public final void compute() {
4805 >            final Function<? super K, ? extends U> transformer;
4806 >            final Consumer<? super U> action;
4807 >            if ((transformer = this.transformer) != null &&
4808 >                (action = this.action) != null) {
4809 >                for (int i = baseIndex, f, h; batch > 0 &&
4810 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4811 >                    addToPendingCount(1);
4812 >                    new ForEachTransformedKeyTask<K,V,U>
4813 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4814 >                         transformer, action).fork();
4815 >                }
4816 >                for (Node<K,V> p; (p = advance()) != null; ) {
4817 >                    U u;
4818 >                    if ((u = transformer.apply(p.key)) != null)
4819 >                        action.accept(u);
4820 >                }
4821 >                propagateCompletion();
4822 >            }
4823 >        }
4824 >    }
4825 >
4826 >    @SuppressWarnings("serial")
4827 >    static final class ForEachTransformedValueTask<K,V,U>
4828 >        extends BulkTask<K,V,Void> {
4829 >        final Function<? super V, ? extends U> transformer;
4830 >        final Consumer<? super U> action;
4831 >        ForEachTransformedValueTask
4832 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4833 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4834 >            super(p, b, i, f, t);
4835 >            this.transformer = transformer; this.action = action;
4836 >        }
4837 >        public final void compute() {
4838 >            final Function<? super V, ? extends U> transformer;
4839 >            final Consumer<? super U> action;
4840 >            if ((transformer = this.transformer) != null &&
4841 >                (action = this.action) != null) {
4842 >                for (int i = baseIndex, f, h; batch > 0 &&
4843 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4844 >                    addToPendingCount(1);
4845 >                    new ForEachTransformedValueTask<K,V,U>
4846 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4847 >                         transformer, action).fork();
4848 >                }
4849 >                for (Node<K,V> p; (p = advance()) != null; ) {
4850 >                    U u;
4851 >                    if ((u = transformer.apply(p.val)) != null)
4852 >                        action.accept(u);
4853 >                }
4854 >                propagateCompletion();
4855 >            }
4856 >        }
4857 >    }
4858 >
4859 >    @SuppressWarnings("serial")
4860 >    static final class ForEachTransformedEntryTask<K,V,U>
4861 >        extends BulkTask<K,V,Void> {
4862 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
4863 >        final Consumer<? super U> action;
4864 >        ForEachTransformedEntryTask
4865 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4866 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4867 >            super(p, b, i, f, t);
4868 >            this.transformer = transformer; this.action = action;
4869 >        }
4870 >        public final void compute() {
4871 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
4872 >            final Consumer<? super U> action;
4873 >            if ((transformer = this.transformer) != null &&
4874 >                (action = this.action) != null) {
4875 >                for (int i = baseIndex, f, h; batch > 0 &&
4876 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4877 >                    addToPendingCount(1);
4878 >                    new ForEachTransformedEntryTask<K,V,U>
4879 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4880 >                         transformer, action).fork();
4881 >                }
4882 >                for (Node<K,V> p; (p = advance()) != null; ) {
4883 >                    U u;
4884 >                    if ((u = transformer.apply(p)) != null)
4885 >                        action.accept(u);
4886 >                }
4887 >                propagateCompletion();
4888 >            }
4889 >        }
4890 >    }
4891 >
4892 >    @SuppressWarnings("serial")
4893 >    static final class ForEachTransformedMappingTask<K,V,U>
4894 >        extends BulkTask<K,V,Void> {
4895 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
4896 >        final Consumer<? super U> action;
4897 >        ForEachTransformedMappingTask
4898 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4899 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4900 >             Consumer<? super U> action) {
4901 >            super(p, b, i, f, t);
4902 >            this.transformer = transformer; this.action = action;
4903 >        }
4904 >        public final void compute() {
4905 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
4906 >            final Consumer<? super U> action;
4907 >            if ((transformer = this.transformer) != null &&
4908 >                (action = this.action) != null) {
4909 >                for (int i = baseIndex, f, h; batch > 0 &&
4910 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4911 >                    addToPendingCount(1);
4912 >                    new ForEachTransformedMappingTask<K,V,U>
4913 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4914 >                         transformer, action).fork();
4915 >                }
4916 >                for (Node<K,V> p; (p = advance()) != null; ) {
4917 >                    U u;
4918 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4919 >                        action.accept(u);
4920 >                }
4921 >                propagateCompletion();
4922 >            }
4923 >        }
4924 >    }
4925 >
4926 >    @SuppressWarnings("serial")
4927 >    static final class SearchKeysTask<K,V,U>
4928 >        extends BulkTask<K,V,U> {
4929 >        final Function<? super K, ? extends U> searchFunction;
4930 >        final AtomicReference<U> result;
4931 >        SearchKeysTask
4932 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4933 >             Function<? super K, ? extends U> searchFunction,
4934 >             AtomicReference<U> result) {
4935 >            super(p, b, i, f, t);
4936 >            this.searchFunction = searchFunction; this.result = result;
4937 >        }
4938 >        public final U getRawResult() { return result.get(); }
4939 >        public final void compute() {
4940 >            final Function<? super K, ? extends U> searchFunction;
4941 >            final AtomicReference<U> result;
4942 >            if ((searchFunction = this.searchFunction) != null &&
4943 >                (result = this.result) != null) {
4944 >                for (int i = baseIndex, f, h; batch > 0 &&
4945 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4946 >                    if (result.get() != null)
4947 >                        return;
4948 >                    addToPendingCount(1);
4949 >                    new SearchKeysTask<K,V,U>
4950 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4951 >                         searchFunction, result).fork();
4952 >                }
4953 >                while (result.get() == null) {
4954 >                    U u;
4955 >                    Node<K,V> p;
4956 >                    if ((p = advance()) == null) {
4957 >                        propagateCompletion();
4958 >                        break;
4959 >                    }
4960 >                    if ((u = searchFunction.apply(p.key)) != null) {
4961 >                        if (result.compareAndSet(null, u))
4962 >                            quietlyCompleteRoot();
4963 >                        break;
4964 >                    }
4965 >                }
4966 >            }
4967 >        }
4968 >    }
4969 >
4970 >    @SuppressWarnings("serial")
4971 >    static final class SearchValuesTask<K,V,U>
4972 >        extends BulkTask<K,V,U> {
4973 >        final Function<? super V, ? extends U> searchFunction;
4974 >        final AtomicReference<U> result;
4975 >        SearchValuesTask
4976 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4977 >             Function<? super V, ? extends U> searchFunction,
4978 >             AtomicReference<U> result) {
4979 >            super(p, b, i, f, t);
4980 >            this.searchFunction = searchFunction; this.result = result;
4981 >        }
4982 >        public final U getRawResult() { return result.get(); }
4983 >        public final void compute() {
4984 >            final Function<? super V, ? extends U> searchFunction;
4985 >            final AtomicReference<U> result;
4986 >            if ((searchFunction = this.searchFunction) != null &&
4987 >                (result = this.result) != null) {
4988 >                for (int i = baseIndex, f, h; batch > 0 &&
4989 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4990 >                    if (result.get() != null)
4991 >                        return;
4992 >                    addToPendingCount(1);
4993 >                    new SearchValuesTask<K,V,U>
4994 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4995 >                         searchFunction, result).fork();
4996 >                }
4997 >                while (result.get() == null) {
4998 >                    U u;
4999 >                    Node<K,V> p;
5000 >                    if ((p = advance()) == null) {
5001 >                        propagateCompletion();
5002 >                        break;
5003 >                    }
5004 >                    if ((u = searchFunction.apply(p.val)) != null) {
5005 >                        if (result.compareAndSet(null, u))
5006 >                            quietlyCompleteRoot();
5007 >                        break;
5008 >                    }
5009 >                }
5010 >            }
5011 >        }
5012 >    }
5013 >
5014 >    @SuppressWarnings("serial")
5015 >    static final class SearchEntriesTask<K,V,U>
5016 >        extends BulkTask<K,V,U> {
5017 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5018 >        final AtomicReference<U> result;
5019 >        SearchEntriesTask
5020 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5021 >             Function<Entry<K,V>, ? extends U> searchFunction,
5022 >             AtomicReference<U> result) {
5023 >            super(p, b, i, f, t);
5024 >            this.searchFunction = searchFunction; this.result = result;
5025 >        }
5026 >        public final U getRawResult() { return result.get(); }
5027 >        public final void compute() {
5028 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5029 >            final AtomicReference<U> result;
5030 >            if ((searchFunction = this.searchFunction) != null &&
5031 >                (result = this.result) != null) {
5032 >                for (int i = baseIndex, f, h; batch > 0 &&
5033 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5034 >                    if (result.get() != null)
5035 >                        return;
5036 >                    addToPendingCount(1);
5037 >                    new SearchEntriesTask<K,V,U>
5038 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5039 >                         searchFunction, result).fork();
5040 >                }
5041 >                while (result.get() == null) {
5042 >                    U u;
5043 >                    Node<K,V> p;
5044 >                    if ((p = advance()) == null) {
5045 >                        propagateCompletion();
5046 >                        break;
5047 >                    }
5048 >                    if ((u = searchFunction.apply(p)) != null) {
5049 >                        if (result.compareAndSet(null, u))
5050 >                            quietlyCompleteRoot();
5051 >                        return;
5052 >                    }
5053 >                }
5054 >            }
5055 >        }
5056 >    }
5057 >
5058 >    @SuppressWarnings("serial")
5059 >    static final class SearchMappingsTask<K,V,U>
5060 >        extends BulkTask<K,V,U> {
5061 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5062 >        final AtomicReference<U> result;
5063 >        SearchMappingsTask
5064 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5065 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5066 >             AtomicReference<U> result) {
5067 >            super(p, b, i, f, t);
5068 >            this.searchFunction = searchFunction; this.result = result;
5069 >        }
5070 >        public final U getRawResult() { return result.get(); }
5071 >        public final void compute() {
5072 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5073 >            final AtomicReference<U> result;
5074 >            if ((searchFunction = this.searchFunction) != null &&
5075 >                (result = this.result) != null) {
5076 >                for (int i = baseIndex, f, h; batch > 0 &&
5077 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5078 >                    if (result.get() != null)
5079 >                        return;
5080 >                    addToPendingCount(1);
5081 >                    new SearchMappingsTask<K,V,U>
5082 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5083 >                         searchFunction, result).fork();
5084 >                }
5085 >                while (result.get() == null) {
5086 >                    U u;
5087 >                    Node<K,V> p;
5088 >                    if ((p = advance()) == null) {
5089 >                        propagateCompletion();
5090 >                        break;
5091 >                    }
5092 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5093 >                        if (result.compareAndSet(null, u))
5094 >                            quietlyCompleteRoot();
5095 >                        break;
5096 >                    }
5097 >                }
5098 >            }
5099 >        }
5100 >    }
5101 >
5102 >    @SuppressWarnings("serial")
5103 >    static final class ReduceKeysTask<K,V>
5104 >        extends BulkTask<K,V,K> {
5105 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5106 >        K result;
5107 >        ReduceKeysTask<K,V> rights, nextRight;
5108 >        ReduceKeysTask
5109 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5110 >             ReduceKeysTask<K,V> nextRight,
5111 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5112 >            super(p, b, i, f, t); this.nextRight = nextRight;
5113 >            this.reducer = reducer;
5114 >        }
5115 >        public final K getRawResult() { return result; }
5116 >        public final void compute() {
5117 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5118 >            if ((reducer = this.reducer) != null) {
5119 >                for (int i = baseIndex, f, h; batch > 0 &&
5120 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5121 >                    addToPendingCount(1);
5122 >                    (rights = new ReduceKeysTask<K,V>
5123 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5124 >                      rights, reducer)).fork();
5125 >                }
5126 >                K r = null;
5127 >                for (Node<K,V> p; (p = advance()) != null; ) {
5128 >                    K u = p.key;
5129 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5130 >                }
5131 >                result = r;
5132 >                CountedCompleter<?> c;
5133 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5134 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5135 >                        t = (ReduceKeysTask<K,V>)c,
5136 >                        s = t.rights;
5137 >                    while (s != null) {
5138 >                        K tr, sr;
5139 >                        if ((sr = s.result) != null)
5140 >                            t.result = (((tr = t.result) == null) ? sr :
5141 >                                        reducer.apply(tr, sr));
5142 >                        s = t.rights = s.nextRight;
5143 >                    }
5144 >                }
5145 >            }
5146 >        }
5147 >    }
5148 >
5149 >    @SuppressWarnings("serial")
5150 >    static final class ReduceValuesTask<K,V>
5151 >        extends BulkTask<K,V,V> {
5152 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5153 >        V result;
5154 >        ReduceValuesTask<K,V> rights, nextRight;
5155 >        ReduceValuesTask
5156 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5157 >             ReduceValuesTask<K,V> nextRight,
5158 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5159 >            super(p, b, i, f, t); this.nextRight = nextRight;
5160 >            this.reducer = reducer;
5161 >        }
5162 >        public final V getRawResult() { return result; }
5163 >        public final void compute() {
5164 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5165 >            if ((reducer = this.reducer) != null) {
5166 >                for (int i = baseIndex, f, h; batch > 0 &&
5167 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5168 >                    addToPendingCount(1);
5169 >                    (rights = new ReduceValuesTask<K,V>
5170 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5171 >                      rights, reducer)).fork();
5172 >                }
5173 >                V r = null;
5174 >                for (Node<K,V> p; (p = advance()) != null; ) {
5175 >                    V v = p.val;
5176 >                    r = (r == null) ? v : reducer.apply(r, v);
5177 >                }
5178 >                result = r;
5179 >                CountedCompleter<?> c;
5180 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5181 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5182 >                        t = (ReduceValuesTask<K,V>)c,
5183 >                        s = t.rights;
5184 >                    while (s != null) {
5185 >                        V tr, sr;
5186 >                        if ((sr = s.result) != null)
5187 >                            t.result = (((tr = t.result) == null) ? sr :
5188 >                                        reducer.apply(tr, sr));
5189 >                        s = t.rights = s.nextRight;
5190 >                    }
5191 >                }
5192 >            }
5193 >        }
5194 >    }
5195 >
5196 >    @SuppressWarnings("serial")
5197 >    static final class ReduceEntriesTask<K,V>
5198 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5199 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5200 >        Map.Entry<K,V> result;
5201 >        ReduceEntriesTask<K,V> rights, nextRight;
5202 >        ReduceEntriesTask
5203 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5204 >             ReduceEntriesTask<K,V> nextRight,
5205 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5206 >            super(p, b, i, f, t); this.nextRight = nextRight;
5207 >            this.reducer = reducer;
5208 >        }
5209 >        public final Map.Entry<K,V> getRawResult() { return result; }
5210 >        public final void compute() {
5211 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5212 >            if ((reducer = this.reducer) != null) {
5213 >                for (int i = baseIndex, f, h; batch > 0 &&
5214 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5215 >                    addToPendingCount(1);
5216 >                    (rights = new ReduceEntriesTask<K,V>
5217 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5218 >                      rights, reducer)).fork();
5219 >                }
5220 >                Map.Entry<K,V> r = null;
5221 >                for (Node<K,V> p; (p = advance()) != null; )
5222 >                    r = (r == null) ? p : reducer.apply(r, p);
5223 >                result = r;
5224 >                CountedCompleter<?> c;
5225 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5226 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5227 >                        t = (ReduceEntriesTask<K,V>)c,
5228 >                        s = t.rights;
5229 >                    while (s != null) {
5230 >                        Map.Entry<K,V> tr, sr;
5231 >                        if ((sr = s.result) != null)
5232 >                            t.result = (((tr = t.result) == null) ? sr :
5233 >                                        reducer.apply(tr, sr));
5234 >                        s = t.rights = s.nextRight;
5235 >                    }
5236 >                }
5237 >            }
5238 >        }
5239 >    }
5240 >
5241 >    @SuppressWarnings("serial")
5242 >    static final class MapReduceKeysTask<K,V,U>
5243 >        extends BulkTask<K,V,U> {
5244 >        final Function<? super K, ? extends U> transformer;
5245 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5246 >        U result;
5247 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5248 >        MapReduceKeysTask
5249 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5250 >             MapReduceKeysTask<K,V,U> nextRight,
5251 >             Function<? super K, ? extends U> transformer,
5252 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5253 >            super(p, b, i, f, t); this.nextRight = nextRight;
5254 >            this.transformer = transformer;
5255 >            this.reducer = reducer;
5256 >        }
5257 >        public final U getRawResult() { return result; }
5258 >        public final void compute() {
5259 >            final Function<? super K, ? extends U> transformer;
5260 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5261 >            if ((transformer = this.transformer) != null &&
5262 >                (reducer = this.reducer) != null) {
5263 >                for (int i = baseIndex, f, h; batch > 0 &&
5264 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5265 >                    addToPendingCount(1);
5266 >                    (rights = new MapReduceKeysTask<K,V,U>
5267 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5268 >                      rights, transformer, reducer)).fork();
5269 >                }
5270 >                U r = null;
5271 >                for (Node<K,V> p; (p = advance()) != null; ) {
5272 >                    U u;
5273 >                    if ((u = transformer.apply(p.key)) != null)
5274 >                        r = (r == null) ? u : reducer.apply(r, u);
5275 >                }
5276 >                result = r;
5277 >                CountedCompleter<?> c;
5278 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5279 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5280 >                        t = (MapReduceKeysTask<K,V,U>)c,
5281 >                        s = t.rights;
5282 >                    while (s != null) {
5283 >                        U tr, sr;
5284 >                        if ((sr = s.result) != null)
5285 >                            t.result = (((tr = t.result) == null) ? sr :
5286 >                                        reducer.apply(tr, sr));
5287 >                        s = t.rights = s.nextRight;
5288 >                    }
5289 >                }
5290 >            }
5291 >        }
5292 >    }
5293 >
5294 >    @SuppressWarnings("serial")
5295 >    static final class MapReduceValuesTask<K,V,U>
5296 >        extends BulkTask<K,V,U> {
5297 >        final Function<? super V, ? extends U> transformer;
5298 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5299 >        U result;
5300 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5301 >        MapReduceValuesTask
5302 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5303 >             MapReduceValuesTask<K,V,U> nextRight,
5304 >             Function<? super V, ? extends U> transformer,
5305 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5306 >            super(p, b, i, f, t); this.nextRight = nextRight;
5307 >            this.transformer = transformer;
5308 >            this.reducer = reducer;
5309 >        }
5310 >        public final U getRawResult() { return result; }
5311 >        public final void compute() {
5312 >            final Function<? super V, ? extends U> transformer;
5313 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5314 >            if ((transformer = this.transformer) != null &&
5315 >                (reducer = this.reducer) != null) {
5316 >                for (int i = baseIndex, f, h; batch > 0 &&
5317 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5318 >                    addToPendingCount(1);
5319 >                    (rights = new MapReduceValuesTask<K,V,U>
5320 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5321 >                      rights, transformer, reducer)).fork();
5322 >                }
5323 >                U r = null;
5324 >                for (Node<K,V> p; (p = advance()) != null; ) {
5325 >                    U u;
5326 >                    if ((u = transformer.apply(p.val)) != null)
5327 >                        r = (r == null) ? u : reducer.apply(r, u);
5328 >                }
5329 >                result = r;
5330 >                CountedCompleter<?> c;
5331 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5332 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5333 >                        t = (MapReduceValuesTask<K,V,U>)c,
5334 >                        s = t.rights;
5335 >                    while (s != null) {
5336 >                        U tr, sr;
5337 >                        if ((sr = s.result) != null)
5338 >                            t.result = (((tr = t.result) == null) ? sr :
5339 >                                        reducer.apply(tr, sr));
5340 >                        s = t.rights = s.nextRight;
5341 >                    }
5342 >                }
5343 >            }
5344 >        }
5345 >    }
5346 >
5347 >    @SuppressWarnings("serial")
5348 >    static final class MapReduceEntriesTask<K,V,U>
5349 >        extends BulkTask<K,V,U> {
5350 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5351 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5352 >        U result;
5353 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5354 >        MapReduceEntriesTask
5355 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5356 >             MapReduceEntriesTask<K,V,U> nextRight,
5357 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5358 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5359 >            super(p, b, i, f, t); this.nextRight = nextRight;
5360 >            this.transformer = transformer;
5361 >            this.reducer = reducer;
5362 >        }
5363 >        public final U getRawResult() { return result; }
5364 >        public final void compute() {
5365 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5366 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5367 >            if ((transformer = this.transformer) != null &&
5368 >                (reducer = this.reducer) != null) {
5369 >                for (int i = baseIndex, f, h; batch > 0 &&
5370 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5371 >                    addToPendingCount(1);
5372 >                    (rights = new MapReduceEntriesTask<K,V,U>
5373 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5374 >                      rights, transformer, reducer)).fork();
5375 >                }
5376 >                U r = null;
5377 >                for (Node<K,V> p; (p = advance()) != null; ) {
5378 >                    U u;
5379 >                    if ((u = transformer.apply(p)) != null)
5380 >                        r = (r == null) ? u : reducer.apply(r, u);
5381 >                }
5382 >                result = r;
5383 >                CountedCompleter<?> c;
5384 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5385 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5386 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5387 >                        s = t.rights;
5388 >                    while (s != null) {
5389 >                        U tr, sr;
5390 >                        if ((sr = s.result) != null)
5391 >                            t.result = (((tr = t.result) == null) ? sr :
5392 >                                        reducer.apply(tr, sr));
5393 >                        s = t.rights = s.nextRight;
5394 >                    }
5395 >                }
5396 >            }
5397 >        }
5398 >    }
5399 >
5400 >    @SuppressWarnings("serial")
5401 >    static final class MapReduceMappingsTask<K,V,U>
5402 >        extends BulkTask<K,V,U> {
5403 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5404 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5405 >        U result;
5406 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5407 >        MapReduceMappingsTask
5408 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5409 >             MapReduceMappingsTask<K,V,U> nextRight,
5410 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5411 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5412 >            super(p, b, i, f, t); this.nextRight = nextRight;
5413 >            this.transformer = transformer;
5414 >            this.reducer = reducer;
5415 >        }
5416 >        public final U getRawResult() { return result; }
5417 >        public final void compute() {
5418 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5419 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5420 >            if ((transformer = this.transformer) != null &&
5421 >                (reducer = this.reducer) != null) {
5422 >                for (int i = baseIndex, f, h; batch > 0 &&
5423 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5424 >                    addToPendingCount(1);
5425 >                    (rights = new MapReduceMappingsTask<K,V,U>
5426 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5427 >                      rights, transformer, reducer)).fork();
5428 >                }
5429 >                U r = null;
5430 >                for (Node<K,V> p; (p = advance()) != null; ) {
5431 >                    U u;
5432 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5433 >                        r = (r == null) ? u : reducer.apply(r, u);
5434 >                }
5435 >                result = r;
5436 >                CountedCompleter<?> c;
5437 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5438 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5439 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5440 >                        s = t.rights;
5441 >                    while (s != null) {
5442 >                        U tr, sr;
5443 >                        if ((sr = s.result) != null)
5444 >                            t.result = (((tr = t.result) == null) ? sr :
5445 >                                        reducer.apply(tr, sr));
5446 >                        s = t.rights = s.nextRight;
5447 >                    }
5448 >                }
5449 >            }
5450 >        }
5451 >    }
5452 >
5453 >    @SuppressWarnings("serial")
5454 >    static final class MapReduceKeysToDoubleTask<K,V>
5455 >        extends BulkTask<K,V,Double> {
5456 >        final ToDoubleFunction<? super K> transformer;
5457 >        final DoubleBinaryOperator reducer;
5458 >        final double basis;
5459 >        double result;
5460 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5461 >        MapReduceKeysToDoubleTask
5462 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5463 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5464 >             ToDoubleFunction<? super K> transformer,
5465 >             double basis,
5466 >             DoubleBinaryOperator reducer) {
5467 >            super(p, b, i, f, t); this.nextRight = nextRight;
5468 >            this.transformer = transformer;
5469 >            this.basis = basis; this.reducer = reducer;
5470 >        }
5471 >        public final Double getRawResult() { return result; }
5472 >        public final void compute() {
5473 >            final ToDoubleFunction<? super K> transformer;
5474 >            final DoubleBinaryOperator reducer;
5475 >            if ((transformer = this.transformer) != null &&
5476 >                (reducer = this.reducer) != null) {
5477 >                double r = this.basis;
5478 >                for (int i = baseIndex, f, h; batch > 0 &&
5479 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5480 >                    addToPendingCount(1);
5481 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5482 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5483 >                      rights, transformer, r, reducer)).fork();
5484 >                }
5485 >                for (Node<K,V> p; (p = advance()) != null; )
5486 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5487 >                result = r;
5488 >                CountedCompleter<?> c;
5489 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5490 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5491 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5492 >                        s = t.rights;
5493 >                    while (s != null) {
5494 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5495 >                        s = t.rights = s.nextRight;
5496 >                    }
5497 >                }
5498 >            }
5499 >        }
5500 >    }
5501 >
5502 >    @SuppressWarnings("serial")
5503 >    static final class MapReduceValuesToDoubleTask<K,V>
5504 >        extends BulkTask<K,V,Double> {
5505 >        final ToDoubleFunction<? super V> transformer;
5506 >        final DoubleBinaryOperator reducer;
5507 >        final double basis;
5508 >        double result;
5509 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5510 >        MapReduceValuesToDoubleTask
5511 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5512 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5513 >             ToDoubleFunction<? super V> transformer,
5514 >             double basis,
5515 >             DoubleBinaryOperator reducer) {
5516 >            super(p, b, i, f, t); this.nextRight = nextRight;
5517 >            this.transformer = transformer;
5518 >            this.basis = basis; this.reducer = reducer;
5519 >        }
5520 >        public final Double getRawResult() { return result; }
5521 >        public final void compute() {
5522 >            final ToDoubleFunction<? super V> transformer;
5523 >            final DoubleBinaryOperator reducer;
5524 >            if ((transformer = this.transformer) != null &&
5525 >                (reducer = this.reducer) != null) {
5526 >                double r = this.basis;
5527 >                for (int i = baseIndex, f, h; batch > 0 &&
5528 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5529 >                    addToPendingCount(1);
5530 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5531 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5532 >                      rights, transformer, r, reducer)).fork();
5533 >                }
5534 >                for (Node<K,V> p; (p = advance()) != null; )
5535 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5536 >                result = r;
5537 >                CountedCompleter<?> c;
5538 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5539 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5540 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5541 >                        s = t.rights;
5542 >                    while (s != null) {
5543 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5544 >                        s = t.rights = s.nextRight;
5545 >                    }
5546 >                }
5547 >            }
5548 >        }
5549 >    }
5550 >
5551 >    @SuppressWarnings("serial")
5552 >    static final class MapReduceEntriesToDoubleTask<K,V>
5553 >        extends BulkTask<K,V,Double> {
5554 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5555 >        final DoubleBinaryOperator reducer;
5556 >        final double basis;
5557 >        double result;
5558 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5559 >        MapReduceEntriesToDoubleTask
5560 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5561 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5562 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5563 >             double basis,
5564 >             DoubleBinaryOperator reducer) {
5565 >            super(p, b, i, f, t); this.nextRight = nextRight;
5566 >            this.transformer = transformer;
5567 >            this.basis = basis; this.reducer = reducer;
5568 >        }
5569 >        public final Double getRawResult() { return result; }
5570 >        public final void compute() {
5571 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5572 >            final DoubleBinaryOperator reducer;
5573 >            if ((transformer = this.transformer) != null &&
5574 >                (reducer = this.reducer) != null) {
5575 >                double r = this.basis;
5576 >                for (int i = baseIndex, f, h; batch > 0 &&
5577 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5578 >                    addToPendingCount(1);
5579 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5580 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5581 >                      rights, transformer, r, reducer)).fork();
5582 >                }
5583 >                for (Node<K,V> p; (p = advance()) != null; )
5584 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5585 >                result = r;
5586 >                CountedCompleter<?> c;
5587 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5588 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5589 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5590 >                        s = t.rights;
5591 >                    while (s != null) {
5592 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5593 >                        s = t.rights = s.nextRight;
5594 >                    }
5595 >                }
5596 >            }
5597 >        }
5598 >    }
5599 >
5600 >    @SuppressWarnings("serial")
5601 >    static final class MapReduceMappingsToDoubleTask<K,V>
5602 >        extends BulkTask<K,V,Double> {
5603 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5604 >        final DoubleBinaryOperator reducer;
5605 >        final double basis;
5606 >        double result;
5607 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5608 >        MapReduceMappingsToDoubleTask
5609 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5610 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5611 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5612 >             double basis,
5613 >             DoubleBinaryOperator reducer) {
5614 >            super(p, b, i, f, t); this.nextRight = nextRight;
5615 >            this.transformer = transformer;
5616 >            this.basis = basis; this.reducer = reducer;
5617 >        }
5618 >        public final Double getRawResult() { return result; }
5619 >        public final void compute() {
5620 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5621 >            final DoubleBinaryOperator reducer;
5622 >            if ((transformer = this.transformer) != null &&
5623 >                (reducer = this.reducer) != null) {
5624 >                double r = this.basis;
5625 >                for (int i = baseIndex, f, h; batch > 0 &&
5626 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5627 >                    addToPendingCount(1);
5628 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5629 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5630 >                      rights, transformer, r, reducer)).fork();
5631 >                }
5632 >                for (Node<K,V> p; (p = advance()) != null; )
5633 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5634 >                result = r;
5635 >                CountedCompleter<?> c;
5636 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5637 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5638 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5639 >                        s = t.rights;
5640 >                    while (s != null) {
5641 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5642 >                        s = t.rights = s.nextRight;
5643 >                    }
5644 >                }
5645 >            }
5646 >        }
5647 >    }
5648 >
5649 >    @SuppressWarnings("serial")
5650 >    static final class MapReduceKeysToLongTask<K,V>
5651 >        extends BulkTask<K,V,Long> {
5652 >        final ToLongFunction<? super K> transformer;
5653 >        final LongBinaryOperator reducer;
5654 >        final long basis;
5655 >        long result;
5656 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5657 >        MapReduceKeysToLongTask
5658 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5659 >             MapReduceKeysToLongTask<K,V> nextRight,
5660 >             ToLongFunction<? super K> transformer,
5661 >             long basis,
5662 >             LongBinaryOperator reducer) {
5663 >            super(p, b, i, f, t); this.nextRight = nextRight;
5664 >            this.transformer = transformer;
5665 >            this.basis = basis; this.reducer = reducer;
5666 >        }
5667 >        public final Long getRawResult() { return result; }
5668 >        public final void compute() {
5669 >            final ToLongFunction<? super K> transformer;
5670 >            final LongBinaryOperator reducer;
5671 >            if ((transformer = this.transformer) != null &&
5672 >                (reducer = this.reducer) != null) {
5673 >                long r = this.basis;
5674 >                for (int i = baseIndex, f, h; batch > 0 &&
5675 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5676 >                    addToPendingCount(1);
5677 >                    (rights = new MapReduceKeysToLongTask<K,V>
5678 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5679 >                      rights, transformer, r, reducer)).fork();
5680 >                }
5681 >                for (Node<K,V> p; (p = advance()) != null; )
5682 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5683 >                result = r;
5684 >                CountedCompleter<?> c;
5685 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5686 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5687 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5688 >                        s = t.rights;
5689 >                    while (s != null) {
5690 >                        t.result = reducer.applyAsLong(t.result, s.result);
5691 >                        s = t.rights = s.nextRight;
5692 >                    }
5693 >                }
5694 >            }
5695 >        }
5696 >    }
5697 >
5698 >    @SuppressWarnings("serial")
5699 >    static final class MapReduceValuesToLongTask<K,V>
5700 >        extends BulkTask<K,V,Long> {
5701 >        final ToLongFunction<? super V> transformer;
5702 >        final LongBinaryOperator reducer;
5703 >        final long basis;
5704 >        long result;
5705 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5706 >        MapReduceValuesToLongTask
5707 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5708 >             MapReduceValuesToLongTask<K,V> nextRight,
5709 >             ToLongFunction<? super V> transformer,
5710 >             long basis,
5711 >             LongBinaryOperator reducer) {
5712 >            super(p, b, i, f, t); this.nextRight = nextRight;
5713 >            this.transformer = transformer;
5714 >            this.basis = basis; this.reducer = reducer;
5715 >        }
5716 >        public final Long getRawResult() { return result; }
5717 >        public final void compute() {
5718 >            final ToLongFunction<? super V> transformer;
5719 >            final LongBinaryOperator reducer;
5720 >            if ((transformer = this.transformer) != null &&
5721 >                (reducer = this.reducer) != null) {
5722 >                long r = this.basis;
5723 >                for (int i = baseIndex, f, h; batch > 0 &&
5724 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5725 >                    addToPendingCount(1);
5726 >                    (rights = new MapReduceValuesToLongTask<K,V>
5727 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5728 >                      rights, transformer, r, reducer)).fork();
5729 >                }
5730 >                for (Node<K,V> p; (p = advance()) != null; )
5731 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5732 >                result = r;
5733 >                CountedCompleter<?> c;
5734 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5735 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5736 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5737 >                        s = t.rights;
5738 >                    while (s != null) {
5739 >                        t.result = reducer.applyAsLong(t.result, s.result);
5740 >                        s = t.rights = s.nextRight;
5741 >                    }
5742 >                }
5743 >            }
5744 >        }
5745 >    }
5746 >
5747 >    @SuppressWarnings("serial")
5748 >    static final class MapReduceEntriesToLongTask<K,V>
5749 >        extends BulkTask<K,V,Long> {
5750 >        final ToLongFunction<Map.Entry<K,V>> transformer;
5751 >        final LongBinaryOperator reducer;
5752 >        final long basis;
5753 >        long result;
5754 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5755 >        MapReduceEntriesToLongTask
5756 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5757 >             MapReduceEntriesToLongTask<K,V> nextRight,
5758 >             ToLongFunction<Map.Entry<K,V>> transformer,
5759 >             long basis,
5760 >             LongBinaryOperator reducer) {
5761 >            super(p, b, i, f, t); this.nextRight = nextRight;
5762 >            this.transformer = transformer;
5763 >            this.basis = basis; this.reducer = reducer;
5764 >        }
5765 >        public final Long getRawResult() { return result; }
5766 >        public final void compute() {
5767 >            final ToLongFunction<Map.Entry<K,V>> transformer;
5768 >            final LongBinaryOperator reducer;
5769 >            if ((transformer = this.transformer) != null &&
5770 >                (reducer = this.reducer) != null) {
5771 >                long r = this.basis;
5772 >                for (int i = baseIndex, f, h; batch > 0 &&
5773 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5774 >                    addToPendingCount(1);
5775 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5776 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5777 >                      rights, transformer, r, reducer)).fork();
5778 >                }
5779 >                for (Node<K,V> p; (p = advance()) != null; )
5780 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5781 >                result = r;
5782 >                CountedCompleter<?> c;
5783 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5784 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5785 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5786 >                        s = t.rights;
5787 >                    while (s != null) {
5788 >                        t.result = reducer.applyAsLong(t.result, s.result);
5789 >                        s = t.rights = s.nextRight;
5790 >                    }
5791 >                }
5792 >            }
5793 >        }
5794 >    }
5795 >
5796 >    @SuppressWarnings("serial")
5797 >    static final class MapReduceMappingsToLongTask<K,V>
5798 >        extends BulkTask<K,V,Long> {
5799 >        final ToLongBiFunction<? super K, ? super V> transformer;
5800 >        final LongBinaryOperator reducer;
5801 >        final long basis;
5802 >        long result;
5803 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5804 >        MapReduceMappingsToLongTask
5805 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5806 >             MapReduceMappingsToLongTask<K,V> nextRight,
5807 >             ToLongBiFunction<? super K, ? super V> transformer,
5808 >             long basis,
5809 >             LongBinaryOperator reducer) {
5810 >            super(p, b, i, f, t); this.nextRight = nextRight;
5811 >            this.transformer = transformer;
5812 >            this.basis = basis; this.reducer = reducer;
5813 >        }
5814 >        public final Long getRawResult() { return result; }
5815 >        public final void compute() {
5816 >            final ToLongBiFunction<? super K, ? super V> transformer;
5817 >            final LongBinaryOperator reducer;
5818 >            if ((transformer = this.transformer) != null &&
5819 >                (reducer = this.reducer) != null) {
5820 >                long r = this.basis;
5821 >                for (int i = baseIndex, f, h; batch > 0 &&
5822 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5823 >                    addToPendingCount(1);
5824 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5825 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5826 >                      rights, transformer, r, reducer)).fork();
5827 >                }
5828 >                for (Node<K,V> p; (p = advance()) != null; )
5829 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5830 >                result = r;
5831 >                CountedCompleter<?> c;
5832 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5833 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5834 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5835 >                        s = t.rights;
5836 >                    while (s != null) {
5837 >                        t.result = reducer.applyAsLong(t.result, s.result);
5838 >                        s = t.rights = s.nextRight;
5839 >                    }
5840 >                }
5841 >            }
5842 >        }
5843 >    }
5844 >
5845 >    @SuppressWarnings("serial")
5846 >    static final class MapReduceKeysToIntTask<K,V>
5847 >        extends BulkTask<K,V,Integer> {
5848 >        final ToIntFunction<? super K> transformer;
5849 >        final IntBinaryOperator reducer;
5850 >        final int basis;
5851 >        int result;
5852 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5853 >        MapReduceKeysToIntTask
5854 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5855 >             MapReduceKeysToIntTask<K,V> nextRight,
5856 >             ToIntFunction<? super K> transformer,
5857 >             int basis,
5858 >             IntBinaryOperator reducer) {
5859 >            super(p, b, i, f, t); this.nextRight = nextRight;
5860 >            this.transformer = transformer;
5861 >            this.basis = basis; this.reducer = reducer;
5862 >        }
5863 >        public final Integer getRawResult() { return result; }
5864 >        public final void compute() {
5865 >            final ToIntFunction<? super K> transformer;
5866 >            final IntBinaryOperator reducer;
5867 >            if ((transformer = this.transformer) != null &&
5868 >                (reducer = this.reducer) != null) {
5869 >                int r = this.basis;
5870 >                for (int i = baseIndex, f, h; batch > 0 &&
5871 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5872 >                    addToPendingCount(1);
5873 >                    (rights = new MapReduceKeysToIntTask<K,V>
5874 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5875 >                      rights, transformer, r, reducer)).fork();
5876 >                }
5877 >                for (Node<K,V> p; (p = advance()) != null; )
5878 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5879 >                result = r;
5880 >                CountedCompleter<?> c;
5881 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5882 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5883 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5884 >                        s = t.rights;
5885 >                    while (s != null) {
5886 >                        t.result = reducer.applyAsInt(t.result, s.result);
5887 >                        s = t.rights = s.nextRight;
5888 >                    }
5889 >                }
5890 >            }
5891 >        }
5892 >    }
5893 >
5894 >    @SuppressWarnings("serial")
5895 >    static final class MapReduceValuesToIntTask<K,V>
5896 >        extends BulkTask<K,V,Integer> {
5897 >        final ToIntFunction<? super V> transformer;
5898 >        final IntBinaryOperator reducer;
5899 >        final int basis;
5900 >        int result;
5901 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5902 >        MapReduceValuesToIntTask
5903 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5904 >             MapReduceValuesToIntTask<K,V> nextRight,
5905 >             ToIntFunction<? super V> transformer,
5906 >             int basis,
5907 >             IntBinaryOperator reducer) {
5908 >            super(p, b, i, f, t); this.nextRight = nextRight;
5909 >            this.transformer = transformer;
5910 >            this.basis = basis; this.reducer = reducer;
5911 >        }
5912 >        public final Integer getRawResult() { return result; }
5913 >        public final void compute() {
5914 >            final ToIntFunction<? super V> transformer;
5915 >            final IntBinaryOperator reducer;
5916 >            if ((transformer = this.transformer) != null &&
5917 >                (reducer = this.reducer) != null) {
5918 >                int r = this.basis;
5919 >                for (int i = baseIndex, f, h; batch > 0 &&
5920 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5921 >                    addToPendingCount(1);
5922 >                    (rights = new MapReduceValuesToIntTask<K,V>
5923 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5924 >                      rights, transformer, r, reducer)).fork();
5925 >                }
5926 >                for (Node<K,V> p; (p = advance()) != null; )
5927 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5928 >                result = r;
5929 >                CountedCompleter<?> c;
5930 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5931 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5932 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5933 >                        s = t.rights;
5934 >                    while (s != null) {
5935 >                        t.result = reducer.applyAsInt(t.result, s.result);
5936 >                        s = t.rights = s.nextRight;
5937 >                    }
5938 >                }
5939 >            }
5940 >        }
5941 >    }
5942 >
5943 >    @SuppressWarnings("serial")
5944 >    static final class MapReduceEntriesToIntTask<K,V>
5945 >        extends BulkTask<K,V,Integer> {
5946 >        final ToIntFunction<Map.Entry<K,V>> transformer;
5947 >        final IntBinaryOperator reducer;
5948 >        final int basis;
5949 >        int result;
5950 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
5951 >        MapReduceEntriesToIntTask
5952 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5953 >             MapReduceEntriesToIntTask<K,V> nextRight,
5954 >             ToIntFunction<Map.Entry<K,V>> transformer,
5955 >             int basis,
5956 >             IntBinaryOperator reducer) {
5957 >            super(p, b, i, f, t); this.nextRight = nextRight;
5958 >            this.transformer = transformer;
5959 >            this.basis = basis; this.reducer = reducer;
5960 >        }
5961 >        public final Integer getRawResult() { return result; }
5962 >        public final void compute() {
5963 >            final ToIntFunction<Map.Entry<K,V>> transformer;
5964 >            final IntBinaryOperator reducer;
5965 >            if ((transformer = this.transformer) != null &&
5966 >                (reducer = this.reducer) != null) {
5967 >                int r = this.basis;
5968 >                for (int i = baseIndex, f, h; batch > 0 &&
5969 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5970 >                    addToPendingCount(1);
5971 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5972 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5973 >                      rights, transformer, r, reducer)).fork();
5974 >                }
5975 >                for (Node<K,V> p; (p = advance()) != null; )
5976 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5977 >                result = r;
5978 >                CountedCompleter<?> c;
5979 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5980 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5981 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5982 >                        s = t.rights;
5983 >                    while (s != null) {
5984 >                        t.result = reducer.applyAsInt(t.result, s.result);
5985 >                        s = t.rights = s.nextRight;
5986 >                    }
5987 >                }
5988 >            }
5989 >        }
5990 >    }
5991 >
5992 >    @SuppressWarnings("serial")
5993 >    static final class MapReduceMappingsToIntTask<K,V>
5994 >        extends BulkTask<K,V,Integer> {
5995 >        final ToIntBiFunction<? super K, ? super V> transformer;
5996 >        final IntBinaryOperator reducer;
5997 >        final int basis;
5998 >        int result;
5999 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6000 >        MapReduceMappingsToIntTask
6001 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6002 >             MapReduceMappingsToIntTask<K,V> nextRight,
6003 >             ToIntBiFunction<? super K, ? super V> transformer,
6004 >             int basis,
6005 >             IntBinaryOperator reducer) {
6006 >            super(p, b, i, f, t); this.nextRight = nextRight;
6007 >            this.transformer = transformer;
6008 >            this.basis = basis; this.reducer = reducer;
6009 >        }
6010 >        public final Integer getRawResult() { return result; }
6011 >        public final void compute() {
6012 >            final ToIntBiFunction<? super K, ? super V> transformer;
6013 >            final IntBinaryOperator reducer;
6014 >            if ((transformer = this.transformer) != null &&
6015 >                (reducer = this.reducer) != null) {
6016 >                int r = this.basis;
6017 >                for (int i = baseIndex, f, h; batch > 0 &&
6018 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6019 >                    addToPendingCount(1);
6020 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6021 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6022 >                      rights, transformer, r, reducer)).fork();
6023 >                }
6024 >                for (Node<K,V> p; (p = advance()) != null; )
6025 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6026 >                result = r;
6027 >                CountedCompleter<?> c;
6028 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6029 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6030 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6031 >                        s = t.rights;
6032 >                    while (s != null) {
6033 >                        t.result = reducer.applyAsInt(t.result, s.result);
6034 >                        s = t.rights = s.nextRight;
6035 >                    }
6036 >                }
6037 >            }
6038 >        }
6039 >    }
6040 >
6041 >    // Unsafe mechanics
6042 >    private static final sun.misc.Unsafe U;
6043 >    private static final long SIZECTL;
6044 >    private static final long TRANSFERINDEX;
6045 >    private static final long TRANSFERORIGIN;
6046 >    private static final long BASECOUNT;
6047 >    private static final long CELLSBUSY;
6048 >    private static final long CELLVALUE;
6049 >    private static final long ABASE;
6050 >    private static final int ASHIFT;
6051 >
6052 >    static {
6053 >        try {
6054 >            U = sun.misc.Unsafe.getUnsafe();
6055 >            Class<?> k = ConcurrentHashMap.class;
6056 >            SIZECTL = U.objectFieldOffset
6057 >                (k.getDeclaredField("sizeCtl"));
6058 >            TRANSFERINDEX = U.objectFieldOffset
6059 >                (k.getDeclaredField("transferIndex"));
6060 >            TRANSFERORIGIN = U.objectFieldOffset
6061 >                (k.getDeclaredField("transferOrigin"));
6062 >            BASECOUNT = U.objectFieldOffset
6063 >                (k.getDeclaredField("baseCount"));
6064 >            CELLSBUSY = U.objectFieldOffset
6065 >                (k.getDeclaredField("cellsBusy"));
6066 >            Class<?> ck = CounterCell.class;
6067 >            CELLVALUE = U.objectFieldOffset
6068 >                (ck.getDeclaredField("value"));
6069 >            Class<?> ak = Node[].class;
6070 >            ABASE = U.arrayBaseOffset(ak);
6071 >            int scale = U.arrayIndexScale(ak);
6072 >            if ((scale & (scale - 1)) != 0)
6073 >                throw new Error("data type scale not a power of two");
6074 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6075 >        } catch (Exception e) {
6076 >            throw new Error(e);
6077          }
6078      }
6079   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines