ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.92 by dl, Sat Dec 2 20:55:01 2006 UTC vs.
Revision 1.236 by dl, Thu Jul 11 10:38:10 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Comparator;
17 > import java.util.ConcurrentModificationException;
18 > import java.util.Enumeration;
19 > import java.util.HashMap;
20 > import java.util.Hashtable;
21 > import java.util.Iterator;
22 > import java.util.Map;
23 > import java.util.NoSuchElementException;
24 > import java.util.Set;
25 > import java.util.Spliterator;
26 > import java.util.concurrent.ConcurrentMap;
27 > import java.util.concurrent.ForkJoinPool;
28 > import java.util.concurrent.atomic.AtomicReference;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31 > import java.util.function.BiConsumer;
32 > import java.util.function.BiFunction;
33 > import java.util.function.BinaryOperator;
34 > import java.util.function.Consumer;
35 > import java.util.function.DoubleBinaryOperator;
36 > import java.util.function.Function;
37 > import java.util.function.IntBinaryOperator;
38 > import java.util.function.LongBinaryOperator;
39 > import java.util.function.ToDoubleBiFunction;
40 > import java.util.function.ToDoubleFunction;
41 > import java.util.function.ToIntBiFunction;
42 > import java.util.function.ToIntFunction;
43 > import java.util.function.ToLongBiFunction;
44 > import java.util.function.ToLongFunction;
45 > import java.util.stream.Stream;
46  
47   /**
48   * A hash table supporting full concurrency of retrievals and
49 < * adjustable expected concurrency for updates. This class obeys the
49 > * high expected concurrency for updates. This class obeys the
50   * same functional specification as {@link java.util.Hashtable}, and
51   * includes versions of methods corresponding to each method of
52 < * <tt>Hashtable</tt>. However, even though all operations are
52 > * {@code Hashtable}. However, even though all operations are
53   * thread-safe, retrieval operations do <em>not</em> entail locking,
54   * and there is <em>not</em> any support for locking the entire table
55   * in a way that prevents all access.  This class is fully
56 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
56 > * interoperable with {@code Hashtable} in programs that rely on its
57   * thread safety but not on its synchronization details.
58   *
59 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
60 < * block, so may overlap with update operations (including
61 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
62 < * of the most recently <em>completed</em> update operations holding
63 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
64 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
65 < * removal of only some entries.  Similarly, Iterators and
66 < * Enumerations return elements reflecting the state of the hash table
67 < * at some point at or since the creation of the iterator/enumeration.
68 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
69 < * However, iterators are designed to be used by only one thread at a time.
70 < *
71 < * <p> The allowed concurrency among update operations is guided by
72 < * the optional <tt>concurrencyLevel</tt> constructor argument
73 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
74 < * table is internally partitioned to try to permit the indicated
75 < * number of concurrent updates without contention. Because placement
76 < * in hash tables is essentially random, the actual concurrency will
77 < * vary.  Ideally, you should choose a value to accommodate as many
78 < * threads as will ever concurrently modify the table. Using a
79 < * significantly higher value than you need can waste space and time,
80 < * and a significantly lower value can lead to thread contention. But
81 < * overestimates and underestimates within an order of magnitude do
82 < * not usually have much noticeable impact. A value of one is
83 < * appropriate when it is known that only one thread will modify and
84 < * all others will only read. Also, resizing this or any other kind of
85 < * hash table is a relatively slow operation, so, when possible, it is
86 < * a good idea to provide estimates of expected table sizes in
87 < * constructors.
59 > * <p>Retrieval operations (including {@code get}) generally do not
60 > * block, so may overlap with update operations (including {@code put}
61 > * and {@code remove}). Retrievals reflect the results of the most
62 > * recently <em>completed</em> update operations holding upon their
63 > * onset. (More formally, an update operation for a given key bears a
64 > * <em>happens-before</em> relation with any (non-null) retrieval for
65 > * that key reporting the updated value.)  For aggregate operations
66 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
67 > * reflect insertion or removal of only some entries.  Similarly,
68 > * Iterators and Enumerations return elements reflecting the state of
69 > * the hash table at some point at or since the creation of the
70 > * iterator/enumeration.  They do <em>not</em> throw {@link
71 > * ConcurrentModificationException}.  However, iterators are designed
72 > * to be used by only one thread at a time.  Bear in mind that the
73 > * results of aggregate status methods including {@code size}, {@code
74 > * isEmpty}, and {@code containsValue} are typically useful only when
75 > * a map is not undergoing concurrent updates in other threads.
76 > * Otherwise the results of these methods reflect transient states
77 > * that may be adequate for monitoring or estimation purposes, but not
78 > * for program control.
79 > *
80 > * <p>The table is dynamically expanded when there are too many
81 > * collisions (i.e., keys that have distinct hash codes but fall into
82 > * the same slot modulo the table size), with the expected average
83 > * effect of maintaining roughly two bins per mapping (corresponding
84 > * to a 0.75 load factor threshold for resizing). There may be much
85 > * variance around this average as mappings are added and removed, but
86 > * overall, this maintains a commonly accepted time/space tradeoff for
87 > * hash tables.  However, resizing this or any other kind of hash
88 > * table may be a relatively slow operation. When possible, it is a
89 > * good idea to provide a size estimate as an optional {@code
90 > * initialCapacity} constructor argument. An additional optional
91 > * {@code loadFactor} constructor argument provides a further means of
92 > * customizing initial table capacity by specifying the table density
93 > * to be used in calculating the amount of space to allocate for the
94 > * given number of elements.  Also, for compatibility with previous
95 > * versions of this class, constructors may optionally specify an
96 > * expected {@code concurrencyLevel} as an additional hint for
97 > * internal sizing.  Note that using many keys with exactly the same
98 > * {@code hashCode()} is a sure way to slow down performance of any
99 > * hash table. To ameliorate impact, when keys are {@link Comparable},
100 > * this class may use comparison order among keys to help break ties.
101 > *
102 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
103 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
104 > * (using {@link #keySet(Object)} when only keys are of interest, and the
105 > * mapped values are (perhaps transiently) not used or all take the
106 > * same mapping value.
107 > *
108 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
109 > * form of histogram or multiset) by using {@link
110 > * java.util.concurrent.atomic.LongAdder} values and initializing via
111 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
112 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
113 > * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
114   *
115   * <p>This class and its views and iterators implement all of the
116   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
117   * interfaces.
118   *
119 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
120 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
119 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
120 > * does <em>not</em> allow {@code null} to be used as a key or value.
121 > *
122 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
123 > * operations that, unlike most {@link Stream} methods, are designed
124 > * to be safely, and often sensibly, applied even with maps that are
125 > * being concurrently updated by other threads; for example, when
126 > * computing a snapshot summary of the values in a shared registry.
127 > * There are three kinds of operation, each with four forms, accepting
128 > * functions with Keys, Values, Entries, and (Key, Value) arguments
129 > * and/or return values. Because the elements of a ConcurrentHashMap
130 > * are not ordered in any particular way, and may be processed in
131 > * different orders in different parallel executions, the correctness
132 > * of supplied functions should not depend on any ordering, or on any
133 > * other objects or values that may transiently change while
134 > * computation is in progress; and except for forEach actions, should
135 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
136 > * objects do not support method {@code setValue}.
137 > *
138 > * <ul>
139 > * <li> forEach: Perform a given action on each element.
140 > * A variant form applies a given transformation on each element
141 > * before performing the action.</li>
142 > *
143 > * <li> search: Return the first available non-null result of
144 > * applying a given function on each element; skipping further
145 > * search when a result is found.</li>
146 > *
147 > * <li> reduce: Accumulate each element.  The supplied reduction
148 > * function cannot rely on ordering (more formally, it should be
149 > * both associative and commutative).  There are five variants:
150 > *
151 > * <ul>
152 > *
153 > * <li> Plain reductions. (There is not a form of this method for
154 > * (key, value) function arguments since there is no corresponding
155 > * return type.)</li>
156 > *
157 > * <li> Mapped reductions that accumulate the results of a given
158 > * function applied to each element.</li>
159 > *
160 > * <li> Reductions to scalar doubles, longs, and ints, using a
161 > * given basis value.</li>
162 > *
163 > * </ul>
164 > * </li>
165 > * </ul>
166 > *
167 > * <p>These bulk operations accept a {@code parallelismThreshold}
168 > * argument. Methods proceed sequentially if the current map size is
169 > * estimated to be less than the given threshold. Using a value of
170 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
171 > * of {@code 1} results in maximal parallelism by partitioning into
172 > * enough subtasks to fully utilize the {@link
173 > * ForkJoinPool#commonPool()} that is used for all parallel
174 > * computations. Normally, you would initially choose one of these
175 > * extreme values, and then measure performance of using in-between
176 > * values that trade off overhead versus throughput.
177 > *
178 > * <p>The concurrency properties of bulk operations follow
179 > * from those of ConcurrentHashMap: Any non-null result returned
180 > * from {@code get(key)} and related access methods bears a
181 > * happens-before relation with the associated insertion or
182 > * update.  The result of any bulk operation reflects the
183 > * composition of these per-element relations (but is not
184 > * necessarily atomic with respect to the map as a whole unless it
185 > * is somehow known to be quiescent).  Conversely, because keys
186 > * and values in the map are never null, null serves as a reliable
187 > * atomic indicator of the current lack of any result.  To
188 > * maintain this property, null serves as an implicit basis for
189 > * all non-scalar reduction operations. For the double, long, and
190 > * int versions, the basis should be one that, when combined with
191 > * any other value, returns that other value (more formally, it
192 > * should be the identity element for the reduction). Most common
193 > * reductions have these properties; for example, computing a sum
194 > * with basis 0 or a minimum with basis MAX_VALUE.
195 > *
196 > * <p>Search and transformation functions provided as arguments
197 > * should similarly return null to indicate the lack of any result
198 > * (in which case it is not used). In the case of mapped
199 > * reductions, this also enables transformations to serve as
200 > * filters, returning null (or, in the case of primitive
201 > * specializations, the identity basis) if the element should not
202 > * be combined. You can create compound transformations and
203 > * filterings by composing them yourself under this "null means
204 > * there is nothing there now" rule before using them in search or
205 > * reduce operations.
206 > *
207 > * <p>Methods accepting and/or returning Entry arguments maintain
208 > * key-value associations. They may be useful for example when
209 > * finding the key for the greatest value. Note that "plain" Entry
210 > * arguments can be supplied using {@code new
211 > * AbstractMap.SimpleEntry(k,v)}.
212 > *
213 > * <p>Bulk operations may complete abruptly, throwing an
214 > * exception encountered in the application of a supplied
215 > * function. Bear in mind when handling such exceptions that other
216 > * concurrently executing functions could also have thrown
217 > * exceptions, or would have done so if the first exception had
218 > * not occurred.
219 > *
220 > * <p>Speedups for parallel compared to sequential forms are common
221 > * but not guaranteed.  Parallel operations involving brief functions
222 > * on small maps may execute more slowly than sequential forms if the
223 > * underlying work to parallelize the computation is more expensive
224 > * than the computation itself.  Similarly, parallelization may not
225 > * lead to much actual parallelism if all processors are busy
226 > * performing unrelated tasks.
227 > *
228 > * <p>All arguments to all task methods must be non-null.
229   *
230   * <p>This class is a member of the
231   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 236 | import java.io.ObjectOutputStream;
236   * @param <K> the type of keys maintained by this map
237   * @param <V> the type of mapped values
238   */
239 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74 <        implements ConcurrentMap<K, V>, Serializable {
239 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> implements ConcurrentMap<K,V>, Serializable {
240      private static final long serialVersionUID = 7249069246763182397L;
241  
242      /*
243 <     * The basic strategy is to subdivide the table among Segments,
244 <     * each of which itself is a concurrently readable hash table.
243 >     * Overview:
244 >     *
245 >     * The primary design goal of this hash table is to maintain
246 >     * concurrent readability (typically method get(), but also
247 >     * iterators and related methods) while minimizing update
248 >     * contention. Secondary goals are to keep space consumption about
249 >     * the same or better than java.util.HashMap, and to support high
250 >     * initial insertion rates on an empty table by many threads.
251 >     *
252 >     * This map usually acts as a binned (bucketed) hash table.  Each
253 >     * key-value mapping is held in a Node.  Most nodes are instances
254 >     * of the basic Node class with hash, key, value, and next
255 >     * fields. However, various subclasses exist: TreeNodes are
256 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
257 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 >     * of bins during resizing. ReservationNodes are used as
259 >     * placeholders while establishing values in computeIfAbsent and
260 >     * related methods.  The types TreeBin, ForwardingNode, and
261 >     * ReservationNode do not hold normal user keys, values, or
262 >     * hashes, and are readily distinguishable during search etc
263 >     * because they have negative hash fields and null key and value
264 >     * fields. (These special nodes are either uncommon or transient,
265 >     * so the impact of carrying around some unused fields is
266 >     * insignificant.)
267 >     *
268 >     * The table is lazily initialized to a power-of-two size upon the
269 >     * first insertion.  Each bin in the table normally contains a
270 >     * list of Nodes (most often, the list has only zero or one Node).
271 >     * Table accesses require volatile/atomic reads, writes, and
272 >     * CASes.  Because there is no other way to arrange this without
273 >     * adding further indirections, we use intrinsics
274 >     * (sun.misc.Unsafe) operations.
275 >     *
276 >     * We use the top (sign) bit of Node hash fields for control
277 >     * purposes -- it is available anyway because of addressing
278 >     * constraints.  Nodes with negative hash fields are specially
279 >     * handled or ignored in map methods.
280 >     *
281 >     * Insertion (via put or its variants) of the first node in an
282 >     * empty bin is performed by just CASing it to the bin.  This is
283 >     * by far the most common case for put operations under most
284 >     * key/hash distributions.  Other update operations (insert,
285 >     * delete, and replace) require locks.  We do not want to waste
286 >     * the space required to associate a distinct lock object with
287 >     * each bin, so instead use the first node of a bin list itself as
288 >     * a lock. Locking support for these locks relies on builtin
289 >     * "synchronized" monitors.
290 >     *
291 >     * Using the first node of a list as a lock does not by itself
292 >     * suffice though: When a node is locked, any update must first
293 >     * validate that it is still the first node after locking it, and
294 >     * retry if not. Because new nodes are always appended to lists,
295 >     * once a node is first in a bin, it remains first until deleted
296 >     * or the bin becomes invalidated (upon resizing).
297 >     *
298 >     * The main disadvantage of per-bin locks is that other update
299 >     * operations on other nodes in a bin list protected by the same
300 >     * lock can stall, for example when user equals() or mapping
301 >     * functions take a long time.  However, statistically, under
302 >     * random hash codes, this is not a common problem.  Ideally, the
303 >     * frequency of nodes in bins follows a Poisson distribution
304 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 >     * parameter of about 0.5 on average, given the resizing threshold
306 >     * of 0.75, although with a large variance because of resizing
307 >     * granularity. Ignoring variance, the expected occurrences of
308 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 >     * first values are:
310 >     *
311 >     * 0:    0.60653066
312 >     * 1:    0.30326533
313 >     * 2:    0.07581633
314 >     * 3:    0.01263606
315 >     * 4:    0.00157952
316 >     * 5:    0.00015795
317 >     * 6:    0.00001316
318 >     * 7:    0.00000094
319 >     * 8:    0.00000006
320 >     * more: less than 1 in ten million
321 >     *
322 >     * Lock contention probability for two threads accessing distinct
323 >     * elements is roughly 1 / (8 * #elements) under random hashes.
324 >     *
325 >     * Actual hash code distributions encountered in practice
326 >     * sometimes deviate significantly from uniform randomness.  This
327 >     * includes the case when N > (1<<30), so some keys MUST collide.
328 >     * Similarly for dumb or hostile usages in which multiple keys are
329 >     * designed to have identical hash codes or ones that differs only
330 >     * in masked-out high bits. So we use a secondary strategy that
331 >     * applies when the number of nodes in a bin exceeds a
332 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
333 >     * specialized form of red-black trees), bounding search time to
334 >     * O(log N).  Each search step in a TreeBin is at least twice as
335 >     * slow as in a regular list, but given that N cannot exceed
336 >     * (1<<64) (before running out of addresses) this bounds search
337 >     * steps, lock hold times, etc, to reasonable constants (roughly
338 >     * 100 nodes inspected per operation worst case) so long as keys
339 >     * are Comparable (which is very common -- String, Long, etc).
340 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
341 >     * traversal pointers as regular nodes, so can be traversed in
342 >     * iterators in the same way.
343 >     *
344 >     * The table is resized when occupancy exceeds a percentage
345 >     * threshold (nominally, 0.75, but see below).  Any thread
346 >     * noticing an overfull bin may assist in resizing after the
347 >     * initiating thread allocates and sets up the replacement
348 >     * array. However, rather than stalling, these other threads may
349 >     * proceed with insertions etc.  The use of TreeBins shields us
350 >     * from the worst case effects of overfilling while resizes are in
351 >     * progress.  Resizing proceeds by transferring bins, one by one,
352 >     * from the table to the next table. To enable concurrency, the
353 >     * next table must be (incrementally) prefilled with place-holders
354 >     * serving as reverse forwarders to the old table.  Because we are
355 >     * using power-of-two expansion, the elements from each bin must
356 >     * either stay at same index, or move with a power of two
357 >     * offset. We eliminate unnecessary node creation by catching
358 >     * cases where old nodes can be reused because their next fields
359 >     * won't change.  On average, only about one-sixth of them need
360 >     * cloning when a table doubles. The nodes they replace will be
361 >     * garbage collectable as soon as they are no longer referenced by
362 >     * any reader thread that may be in the midst of concurrently
363 >     * traversing table.  Upon transfer, the old table bin contains
364 >     * only a special forwarding node (with hash field "MOVED") that
365 >     * contains the next table as its key. On encountering a
366 >     * forwarding node, access and update operations restart, using
367 >     * the new table.
368 >     *
369 >     * Each bin transfer requires its bin lock, which can stall
370 >     * waiting for locks while resizing. However, because other
371 >     * threads can join in and help resize rather than contend for
372 >     * locks, average aggregate waits become shorter as resizing
373 >     * progresses.  The transfer operation must also ensure that all
374 >     * accessible bins in both the old and new table are usable by any
375 >     * traversal.  This is arranged by proceeding from the last bin
376 >     * (table.length - 1) up towards the first.  Upon seeing a
377 >     * forwarding node, traversals (see class Traverser) arrange to
378 >     * move to the new table without revisiting nodes.  However, to
379 >     * ensure that no intervening nodes are skipped, bin splitting can
380 >     * only begin after the associated reverse-forwarders are in
381 >     * place.
382 >     *
383 >     * The traversal scheme also applies to partial traversals of
384 >     * ranges of bins (via an alternate Traverser constructor)
385 >     * to support partitioned aggregate operations.  Also, read-only
386 >     * operations give up if ever forwarded to a null table, which
387 >     * provides support for shutdown-style clearing, which is also not
388 >     * currently implemented.
389 >     *
390 >     * Lazy table initialization minimizes footprint until first use,
391 >     * and also avoids resizings when the first operation is from a
392 >     * putAll, constructor with map argument, or deserialization.
393 >     * These cases attempt to override the initial capacity settings,
394 >     * but harmlessly fail to take effect in cases of races.
395 >     *
396 >     * The element count is maintained using a specialization of
397 >     * LongAdder. We need to incorporate a specialization rather than
398 >     * just use a LongAdder in order to access implicit
399 >     * contention-sensing that leads to creation of multiple
400 >     * CounterCells.  The counter mechanics avoid contention on
401 >     * updates but can encounter cache thrashing if read too
402 >     * frequently during concurrent access. To avoid reading so often,
403 >     * resizing under contention is attempted only upon adding to a
404 >     * bin already holding two or more nodes. Under uniform hash
405 >     * distributions, the probability of this occurring at threshold
406 >     * is around 13%, meaning that only about 1 in 8 puts check
407 >     * threshold (and after resizing, many fewer do so).
408 >     *
409 >     * TreeBins use a special form of comparison for search and
410 >     * related operations (which is the main reason we cannot use
411 >     * existing collections such as TreeMaps). TreeBins contain
412 >     * Comparable elements, but may contain others, as well as
413 >     * elements that are Comparable but not necessarily Comparable
414 >     * for the same T, so we cannot invoke compareTo among them. To
415 >     * handle this, the tree is ordered primarily by hash value, then
416 >     * by Comparable.compareTo order if applicable.  On lookup at a
417 >     * node, if elements are not comparable or compare as 0 then both
418 >     * left and right children may need to be searched in the case of
419 >     * tied hash values. (This corresponds to the full list search
420 >     * that would be necessary if all elements were non-Comparable and
421 >     * had tied hashes.)  The red-black balancing code is updated from
422 >     * pre-jdk-collections
423 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
424 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
425 >     * Algorithms" (CLR).
426 >     *
427 >     * TreeBins also require an additional locking mechanism.  While
428 >     * list traversal is always possible by readers even during
429 >     * updates, tree traversal is not, mainly because of tree-rotations
430 >     * that may change the root node and/or its linkages.  TreeBins
431 >     * include a simple read-write lock mechanism parasitic on the
432 >     * main bin-synchronization strategy: Structural adjustments
433 >     * associated with an insertion or removal are already bin-locked
434 >     * (and so cannot conflict with other writers) but must wait for
435 >     * ongoing readers to finish. Since there can be only one such
436 >     * waiter, we use a simple scheme using a single "waiter" field to
437 >     * block writers.  However, readers need never block.  If the root
438 >     * lock is held, they proceed along the slow traversal path (via
439 >     * next-pointers) until the lock becomes available or the list is
440 >     * exhausted, whichever comes first. These cases are not fast, but
441 >     * maximize aggregate expected throughput.
442 >     *
443 >     * Maintaining API and serialization compatibility with previous
444 >     * versions of this class introduces several oddities. Mainly: We
445 >     * leave untouched but unused constructor arguments refering to
446 >     * concurrencyLevel. We accept a loadFactor constructor argument,
447 >     * but apply it only to initial table capacity (which is the only
448 >     * time that we can guarantee to honor it.) We also declare an
449 >     * unused "Segment" class that is instantiated in minimal form
450 >     * only when serializing.
451 >     *
452 >     * This file is organized to make things a little easier to follow
453 >     * while reading than they might otherwise: First the main static
454 >     * declarations and utilities, then fields, then main public
455 >     * methods (with a few factorings of multiple public methods into
456 >     * internal ones), then sizing methods, trees, traversers, and
457 >     * bulk operations.
458       */
459  
460      /* ---------------- Constants -------------- */
461  
462      /**
463 <     * The default initial capacity for this table,
464 <     * used when not otherwise specified in a constructor.
463 >     * The largest possible table capacity.  This value must be
464 >     * exactly 1<<30 to stay within Java array allocation and indexing
465 >     * bounds for power of two table sizes, and is further required
466 >     * because the top two bits of 32bit hash fields are used for
467 >     * control purposes.
468       */
469 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
469 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
470  
471      /**
472 <     * The default load factor for this table, used when not
473 <     * otherwise specified in a constructor.
472 >     * The default initial table capacity.  Must be a power of 2
473 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
474       */
475 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
475 >    private static final int DEFAULT_CAPACITY = 16;
476  
477      /**
478 <     * The default concurrency level for this table, used when not
479 <     * otherwise specified in a constructor.
478 >     * The largest possible (non-power of two) array size.
479 >     * Needed by toArray and related methods.
480       */
481 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
481 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
482  
483      /**
484 <     * The maximum capacity, used if a higher value is implicitly
485 <     * specified by either of the constructors with arguments.  MUST
105 <     * be a power of two <= 1<<30 to ensure that entries are indexable
106 <     * using ints.
484 >     * The default concurrency level for this table. Unused but
485 >     * defined for compatibility with previous versions of this class.
486       */
487 <    static final int MAXIMUM_CAPACITY = 1 << 30;
487 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
488  
489      /**
490 <     * The maximum number of segments to allow; used to bound
491 <     * constructor arguments.
490 >     * The load factor for this table. Overrides of this value in
491 >     * constructors affect only the initial table capacity.  The
492 >     * actual floating point value isn't normally used -- it is
493 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
494 >     * the associated resizing threshold.
495       */
496 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
496 >    private static final float LOAD_FACTOR = 0.75f;
497  
498      /**
499 <     * Number of unsynchronized retries in size and containsValue
500 <     * methods before resorting to locking. This is used to avoid
501 <     * unbounded retries if tables undergo continuous modification
502 <     * which would make it impossible to obtain an accurate result.
499 >     * The bin count threshold for using a tree rather than list for a
500 >     * bin.  Bins are converted to trees when adding an element to a
501 >     * bin with at least this many nodes. The value must be greater
502 >     * than 2, and should be at least 8 to mesh with assumptions in
503 >     * tree removal about conversion back to plain bins upon
504 >     * shrinkage.
505       */
506 <    static final int RETRIES_BEFORE_LOCK = 2;
123 <
124 <    /* ---------------- Fields -------------- */
506 >    static final int TREEIFY_THRESHOLD = 8;
507  
508      /**
509 <     * Mask value for indexing into segments. The upper bits of a
510 <     * key's hash code are used to choose the segment.
509 >     * The bin count threshold for untreeifying a (split) bin during a
510 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
511 >     * most 6 to mesh with shrinkage detection under removal.
512       */
513 <    final int segmentMask;
513 >    static final int UNTREEIFY_THRESHOLD = 6;
514  
515      /**
516 <     * Shift value for indexing within segments.
516 >     * The smallest table capacity for which bins may be treeified.
517 >     * (Otherwise the table is resized if too many nodes in a bin.)
518 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
519 >     * conflicts between resizing and treeification thresholds.
520       */
521 <    final int segmentShift;
521 >    static final int MIN_TREEIFY_CAPACITY = 64;
522  
523      /**
524 <     * The segments, each of which is a specialized hash table
524 >     * Minimum number of rebinnings per transfer step. Ranges are
525 >     * subdivided to allow multiple resizer threads.  This value
526 >     * serves as a lower bound to avoid resizers encountering
527 >     * excessive memory contention.  The value should be at least
528 >     * DEFAULT_CAPACITY.
529       */
530 <    final Segment<K,V>[] segments;
530 >    private static final int MIN_TRANSFER_STRIDE = 16;
531  
532 <    transient Set<K> keySet;
533 <    transient Set<Map.Entry<K,V>> entrySet;
144 <    transient Collection<V> values;
145 <
146 <    /* ---------------- Small Utilities -------------- */
147 <
148 <    /**
149 <     * Applies a supplemental hash function to a given hashCode, which
150 <     * defends against poor quality hash functions.  This is critical
151 <     * because ConcurrentHashMap uses power-of-two length hash tables,
152 <     * that otherwise encounter collisions for hashCodes that do not
153 <     * differ in lower bits.
154 <     */
155 <    private static int hash(int h) {
156 <        // Spread bits to regularize both segment and index locations,
157 <        // using variant of Jenkins's shift-based hash.
158 <        h += ~(h << 13);
159 <        h ^= h >>> 7;
160 <        h += h << 3;
161 <        h ^= h >>> 17;
162 <        h += h << 5;
163 <        return h;
164 <    }
165 <
166 <    /**
167 <     * Returns the segment that should be used for key with given hash
168 <     * @param hash the hash code for the key
169 <     * @return the segment
532 >    /*
533 >     * Encodings for Node hash fields. See above for explanation.
534       */
535 <    final Segment<K,V> segmentFor(int hash) {
536 <        return segments[(hash >>> segmentShift) & segmentMask];
537 <    }
535 >    static final int MOVED     = -1; // hash for forwarding nodes
536 >    static final int TREEBIN   = -2; // hash for roots of trees
537 >    static final int RESERVED  = -3; // hash for transient reservations
538 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
539 >
540 >    /** Number of CPUS, to place bounds on some sizings */
541 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
542 >
543 >    /** For serialization compatibility. */
544 >    private static final ObjectStreamField[] serialPersistentFields = {
545 >        new ObjectStreamField("segments", Segment[].class),
546 >        new ObjectStreamField("segmentMask", Integer.TYPE),
547 >        new ObjectStreamField("segmentShift", Integer.TYPE)
548 >    };
549  
550 <    /* ---------------- Inner Classes -------------- */
550 >    /* ---------------- Nodes -------------- */
551  
552      /**
553 <     * ConcurrentHashMap list entry. Note that this is never exported
554 <     * out as a user-visible Map.Entry.
555 <     *
556 <     * Because the value field is volatile, not final, it is legal wrt
557 <     * the Java Memory Model for an unsynchronized reader to see null
558 <     * instead of initial value when read via a data race.  Although a
184 <     * reordering leading to this is not likely to ever actually
185 <     * occur, the Segment.readValueUnderLock method is used as a
186 <     * backup in case a null (pre-initialized) value is ever seen in
187 <     * an unsynchronized access method.
553 >     * Key-value entry.  This class is never exported out as a
554 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
555 >     * MapEntry below), but can be used for read-only traversals used
556 >     * in bulk tasks.  Subclasses of Node with a negative hash field
557 >     * are special, and contain null keys and values (but are never
558 >     * exported).  Otherwise, keys and vals are never null.
559       */
560 <    static final class HashEntry<K,V> {
190 <        final K key;
560 >    static class Node<K,V> implements Map.Entry<K,V> {
561          final int hash;
562 <        volatile V value;
563 <        final HashEntry<K,V> next;
562 >        final K key;
563 >        volatile V val;
564 >        volatile Node<K,V> next;
565  
566 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
196 <            this.key = key;
566 >        Node(int hash, K key, V val, Node<K,V> next) {
567              this.hash = hash;
568 +            this.key = key;
569 +            this.val = val;
570              this.next = next;
199            this.value = value;
571          }
572  
573 <        @SuppressWarnings("unchecked")
574 <        static final <K,V> HashEntry<K,V>[] newArray(int i) {
575 <            return new HashEntry[i];
576 <        }
577 <    }
578 <
208 <    /**
209 <     * Segments are specialized versions of hash tables.  This
210 <     * subclasses from ReentrantLock opportunistically, just to
211 <     * simplify some locking and avoid separate construction.
212 <     */
213 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
214 <        /*
215 <         * Segments maintain a table of entry lists that are ALWAYS
216 <         * kept in a consistent state, so can be read without locking.
217 <         * Next fields of nodes are immutable (final).  All list
218 <         * additions are performed at the front of each bin. This
219 <         * makes it easy to check changes, and also fast to traverse.
220 <         * When nodes would otherwise be changed, new nodes are
221 <         * created to replace them. This works well for hash tables
222 <         * since the bin lists tend to be short. (The average length
223 <         * is less than two for the default load factor threshold.)
224 <         *
225 <         * Read operations can thus proceed without locking, but rely
226 <         * on selected uses of volatiles to ensure that completed
227 <         * write operations performed by other threads are
228 <         * noticed. For most purposes, the "count" field, tracking the
229 <         * number of elements, serves as that volatile variable
230 <         * ensuring visibility.  This is convenient because this field
231 <         * needs to be read in many read operations anyway:
232 <         *
233 <         *   - All (unsynchronized) read operations must first read the
234 <         *     "count" field, and should not look at table entries if
235 <         *     it is 0.
236 <         *
237 <         *   - All (synchronized) write operations should write to
238 <         *     the "count" field after structurally changing any bin.
239 <         *     The operations must not take any action that could even
240 <         *     momentarily cause a concurrent read operation to see
241 <         *     inconsistent data. This is made easier by the nature of
242 <         *     the read operations in Map. For example, no operation
243 <         *     can reveal that the table has grown but the threshold
244 <         *     has not yet been updated, so there are no atomicity
245 <         *     requirements for this with respect to reads.
246 <         *
247 <         * As a guide, all critical volatile reads and writes to the
248 <         * count field are marked in code comments.
249 <         */
250 <
251 <        private static final long serialVersionUID = 2249069246763182397L;
252 <
253 <        /**
254 <         * The number of elements in this segment's region.
255 <         */
256 <        transient volatile int count;
257 <
258 <        /**
259 <         * Number of updates that alter the size of the table. This is
260 <         * used during bulk-read methods to make sure they see a
261 <         * consistent snapshot: If modCounts change during a traversal
262 <         * of segments computing size or checking containsValue, then
263 <         * we might have an inconsistent view of state so (usually)
264 <         * must retry.
265 <         */
266 <        transient int modCount;
267 <
268 <        /**
269 <         * The table is rehashed when its size exceeds this threshold.
270 <         * (The value of this field is always <tt>(int)(capacity *
271 <         * loadFactor)</tt>.)
272 <         */
273 <        transient int threshold;
274 <
275 <        /**
276 <         * The per-segment table.
277 <         */
278 <        transient volatile HashEntry<K,V>[] table;
279 <
280 <        /**
281 <         * The load factor for the hash table.  Even though this value
282 <         * is same for all segments, it is replicated to avoid needing
283 <         * links to outer object.
284 <         * @serial
285 <         */
286 <        final float loadFactor;
287 <
288 <        Segment(int initialCapacity, float lf) {
289 <            loadFactor = lf;
290 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
291 <        }
292 <
293 <        @SuppressWarnings("unchecked")
294 <        static final <K,V> Segment<K,V>[] newArray(int i) {
295 <            return new Segment[i];
296 <        }
297 <
298 <        /**
299 <         * Sets table to new HashEntry array.
300 <         * Call only while holding lock or in constructor.
301 <         */
302 <        void setTable(HashEntry<K,V>[] newTable) {
303 <            threshold = (int)(newTable.length * loadFactor);
304 <            table = newTable;
573 >        public final K getKey()       { return key; }
574 >        public final V getValue()     { return val; }
575 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
576 >        public final String toString(){ return key + "=" + val; }
577 >        public final V setValue(V value) {
578 >            throw new UnsupportedOperationException();
579          }
580  
581 <        /**
582 <         * Returns properly casted first entry of bin for given hash.
583 <         */
584 <        HashEntry<K,V> getFirst(int hash) {
585 <            HashEntry<K,V>[] tab = table;
586 <            return tab[hash & (tab.length - 1)];
581 >        public final boolean equals(Object o) {
582 >            Object k, v, u; Map.Entry<?,?> e;
583 >            return ((o instanceof Map.Entry) &&
584 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
585 >                    (v = e.getValue()) != null &&
586 >                    (k == key || k.equals(key)) &&
587 >                    (v == (u = val) || v.equals(u)));
588          }
589  
590          /**
591 <         * Reads value field of an entry under lock. Called if value
317 <         * field ever appears to be null. This is possible only if a
318 <         * compiler happens to reorder a HashEntry initialization with
319 <         * its table assignment, which is legal under memory model
320 <         * but is not known to ever occur.
591 >         * Virtualized support for map.get(); overridden in subclasses.
592           */
593 <        V readValueUnderLock(HashEntry<K,V> e) {
594 <            lock();
595 <            try {
596 <                return e.value;
597 <            } finally {
598 <                unlock();
593 >        Node<K,V> find(int h, Object k) {
594 >            Node<K,V> e = this;
595 >            if (k != null) {
596 >                do {
597 >                    K ek;
598 >                    if (e.hash == h &&
599 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
600 >                        return e;
601 >                } while ((e = e.next) != null);
602              }
603 +            return null;
604          }
605 +    }
606  
607 <        /* Specialized implementations of map methods */
607 >    /* ---------------- Static utilities -------------- */
608  
609 <        V get(Object key, int hash) {
610 <            if (count != 0) { // read-volatile
611 <                HashEntry<K,V> e = getFirst(hash);
612 <                while (e != null) {
613 <                    if (e.hash == hash && key.equals(e.key)) {
614 <                        V v = e.value;
615 <                        if (v != null)
616 <                            return v;
617 <                        return readValueUnderLock(e); // recheck
618 <                    }
619 <                    e = e.next;
620 <                }
621 <            }
622 <            return null;
623 <        }
609 >    /**
610 >     * Spreads (XORs) higher bits of hash to lower and also forces top
611 >     * bit to 0. Because the table uses power-of-two masking, sets of
612 >     * hashes that vary only in bits above the current mask will
613 >     * always collide. (Among known examples are sets of Float keys
614 >     * holding consecutive whole numbers in small tables.)  So we
615 >     * apply a transform that spreads the impact of higher bits
616 >     * downward. There is a tradeoff between speed, utility, and
617 >     * quality of bit-spreading. Because many common sets of hashes
618 >     * are already reasonably distributed (so don't benefit from
619 >     * spreading), and because we use trees to handle large sets of
620 >     * collisions in bins, we just XOR some shifted bits in the
621 >     * cheapest possible way to reduce systematic lossage, as well as
622 >     * to incorporate impact of the highest bits that would otherwise
623 >     * never be used in index calculations because of table bounds.
624 >     */
625 >    static final int spread(int h) {
626 >        return (h ^ (h >>> 16)) & HASH_BITS;
627 >    }
628  
629 <        boolean containsKey(Object key, int hash) {
630 <            if (count != 0) { // read-volatile
631 <                HashEntry<K,V> e = getFirst(hash);
632 <                while (e != null) {
633 <                    if (e.hash == hash && key.equals(e.key))
634 <                        return true;
635 <                    e = e.next;
636 <                }
637 <            }
638 <            return false;
639 <        }
629 >    /**
630 >     * Returns a power of two table size for the given desired capacity.
631 >     * See Hackers Delight, sec 3.2
632 >     */
633 >    private static final int tableSizeFor(int c) {
634 >        int n = c - 1;
635 >        n |= n >>> 1;
636 >        n |= n >>> 2;
637 >        n |= n >>> 4;
638 >        n |= n >>> 8;
639 >        n |= n >>> 16;
640 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
641 >    }
642  
643 <        boolean containsValue(Object value) {
644 <            if (count != 0) { // read-volatile
645 <                HashEntry<K,V>[] tab = table;
646 <                int len = tab.length;
647 <                for (int i = 0 ; i < len; i++) {
648 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
649 <                        V v = e.value;
650 <                        if (v == null) // recheck
651 <                            v = readValueUnderLock(e);
652 <                        if (value.equals(v))
653 <                            return true;
654 <                    }
643 >    /**
644 >     * Returns x's Class if it is of the form "class C implements
645 >     * Comparable<C>", else null.
646 >     */
647 >    static Class<?> comparableClassFor(Object x) {
648 >        if (x instanceof Comparable) {
649 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
650 >            if ((c = x.getClass()) == String.class) // bypass checks
651 >                return c;
652 >            if ((ts = c.getGenericInterfaces()) != null) {
653 >                for (int i = 0; i < ts.length; ++i) {
654 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
655 >                        ((p = (ParameterizedType)t).getRawType() ==
656 >                         Comparable.class) &&
657 >                        (as = p.getActualTypeArguments()) != null &&
658 >                        as.length == 1 && as[0] == c) // type arg is c
659 >                        return c;
660                  }
661              }
375            return false;
662          }
663 +        return null;
664 +    }
665  
666 <        boolean replace(K key, int hash, V oldValue, V newValue) {
667 <            lock();
668 <            try {
669 <                HashEntry<K,V> e = getFirst(hash);
670 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
671 <                    e = e.next;
672 <
673 <                boolean replaced = false;
674 <                if (e != null && oldValue.equals(e.value)) {
387 <                    replaced = true;
388 <                    e.value = newValue;
389 <                }
390 <                return replaced;
391 <            } finally {
392 <                unlock();
393 <            }
394 <        }
666 >    /**
667 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
668 >     * class), else 0.
669 >     */
670 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
671 >    static int compareComparables(Class<?> kc, Object k, Object x) {
672 >        return (x == null || x.getClass() != kc ? 0 :
673 >                ((Comparable)k).compareTo(x));
674 >    }
675  
676 <        V replace(K key, int hash, V newValue) {
397 <            lock();
398 <            try {
399 <                HashEntry<K,V> e = getFirst(hash);
400 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
401 <                    e = e.next;
402 <
403 <                V oldValue = null;
404 <                if (e != null) {
405 <                    oldValue = e.value;
406 <                    e.value = newValue;
407 <                }
408 <                return oldValue;
409 <            } finally {
410 <                unlock();
411 <            }
412 <        }
676 >    /* ---------------- Table element access -------------- */
677  
678 +    /*
679 +     * Volatile access methods are used for table elements as well as
680 +     * elements of in-progress next table while resizing.  All uses of
681 +     * the tab arguments must be null checked by callers.  All callers
682 +     * also paranoically precheck that tab's length is not zero (or an
683 +     * equivalent check), thus ensuring that any index argument taking
684 +     * the form of a hash value anded with (length - 1) is a valid
685 +     * index.  Note that, to be correct wrt arbitrary concurrency
686 +     * errors by users, these checks must operate on local variables,
687 +     * which accounts for some odd-looking inline assignments below.
688 +     * Note that calls to setTabAt always occur within locked regions,
689 +     * and so in principle require only release ordering, not need
690 +     * full volatile semantics, but are currently coded as volatile
691 +     * writes to be conservative.
692 +     */
693 +
694 +    @SuppressWarnings("unchecked")
695 +    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
696 +        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
697 +    }
698  
699 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
700 <            lock();
701 <            try {
702 <                int c = count;
419 <                if (c++ > threshold) // ensure capacity
420 <                    rehash();
421 <                HashEntry<K,V>[] tab = table;
422 <                int index = hash & (tab.length - 1);
423 <                HashEntry<K,V> first = tab[index];
424 <                HashEntry<K,V> e = first;
425 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
426 <                    e = e.next;
427 <
428 <                V oldValue;
429 <                if (e != null) {
430 <                    oldValue = e.value;
431 <                    if (!onlyIfAbsent)
432 <                        e.value = value;
433 <                }
434 <                else {
435 <                    oldValue = null;
436 <                    ++modCount;
437 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
438 <                    count = c; // write-volatile
439 <                }
440 <                return oldValue;
441 <            } finally {
442 <                unlock();
443 <            }
444 <        }
699 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
700 >                                        Node<K,V> c, Node<K,V> v) {
701 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
702 >    }
703  
704 <        void rehash() {
705 <            HashEntry<K,V>[] oldTable = table;
706 <            int oldCapacity = oldTable.length;
449 <            if (oldCapacity >= MAXIMUM_CAPACITY)
450 <                return;
704 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
705 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
706 >    }
707  
708 <            /*
453 <             * Reclassify nodes in each list to new Map.  Because we are
454 <             * using power-of-two expansion, the elements from each bin
455 <             * must either stay at same index, or move with a power of two
456 <             * offset. We eliminate unnecessary node creation by catching
457 <             * cases where old nodes can be reused because their next
458 <             * fields won't change. Statistically, at the default
459 <             * threshold, only about one-sixth of them need cloning when
460 <             * a table doubles. The nodes they replace will be garbage
461 <             * collectable as soon as they are no longer referenced by any
462 <             * reader thread that may be in the midst of traversing table
463 <             * right now.
464 <             */
465 <
466 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
467 <            threshold = (int)(newTable.length * loadFactor);
468 <            int sizeMask = newTable.length - 1;
469 <            for (int i = 0; i < oldCapacity ; i++) {
470 <                // We need to guarantee that any existing reads of old Map can
471 <                //  proceed. So we cannot yet null out each bin.
472 <                HashEntry<K,V> e = oldTable[i];
473 <
474 <                if (e != null) {
475 <                    HashEntry<K,V> next = e.next;
476 <                    int idx = e.hash & sizeMask;
477 <
478 <                    //  Single node on list
479 <                    if (next == null)
480 <                        newTable[idx] = e;
708 >    /* ---------------- Fields -------------- */
709  
710 <                    else {
711 <                        // Reuse trailing consecutive sequence at same slot
712 <                        HashEntry<K,V> lastRun = e;
713 <                        int lastIdx = idx;
714 <                        for (HashEntry<K,V> last = next;
487 <                             last != null;
488 <                             last = last.next) {
489 <                            int k = last.hash & sizeMask;
490 <                            if (k != lastIdx) {
491 <                                lastIdx = k;
492 <                                lastRun = last;
493 <                            }
494 <                        }
495 <                        newTable[lastIdx] = lastRun;
710 >    /**
711 >     * The array of bins. Lazily initialized upon first insertion.
712 >     * Size is always a power of two. Accessed directly by iterators.
713 >     */
714 >    transient volatile Node<K,V>[] table;
715  
716 <                        // Clone all remaining nodes
717 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
718 <                            int k = p.hash & sizeMask;
719 <                            HashEntry<K,V> n = newTable[k];
501 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
502 <                                                             n, p.value);
503 <                        }
504 <                    }
505 <                }
506 <            }
507 <            table = newTable;
508 <        }
716 >    /**
717 >     * The next table to use; non-null only while resizing.
718 >     */
719 >    private transient volatile Node<K,V>[] nextTable;
720  
721 <        /**
722 <         * Remove; match on key only if value null, else match both.
723 <         */
724 <        V remove(Object key, int hash, Object value) {
725 <            lock();
726 <            try {
516 <                int c = count - 1;
517 <                HashEntry<K,V>[] tab = table;
518 <                int index = hash & (tab.length - 1);
519 <                HashEntry<K,V> first = tab[index];
520 <                HashEntry<K,V> e = first;
521 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
522 <                    e = e.next;
523 <
524 <                V oldValue = null;
525 <                if (e != null) {
526 <                    V v = e.value;
527 <                    if (value == null || value.equals(v)) {
528 <                        oldValue = v;
529 <                        // All entries following removed node can stay
530 <                        // in list, but all preceding ones need to be
531 <                        // cloned.
532 <                        ++modCount;
533 <                        HashEntry<K,V> newFirst = e.next;
534 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
535 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
536 <                                                          newFirst, p.value);
537 <                        tab[index] = newFirst;
538 <                        count = c; // write-volatile
539 <                    }
540 <                }
541 <                return oldValue;
542 <            } finally {
543 <                unlock();
544 <            }
545 <        }
721 >    /**
722 >     * Base counter value, used mainly when there is no contention,
723 >     * but also as a fallback during table initialization
724 >     * races. Updated via CAS.
725 >     */
726 >    private transient volatile long baseCount;
727  
728 <        void clear() {
729 <            if (count != 0) {
730 <                lock();
731 <                try {
732 <                    HashEntry<K,V>[] tab = table;
733 <                    for (int i = 0; i < tab.length ; i++)
734 <                        tab[i] = null;
735 <                    ++modCount;
736 <                    count = 0; // write-volatile
556 <                } finally {
557 <                    unlock();
558 <                }
559 <            }
560 <        }
561 <    }
728 >    /**
729 >     * Table initialization and resizing control.  When negative, the
730 >     * table is being initialized or resized: -1 for initialization,
731 >     * else -(1 + the number of active resizing threads).  Otherwise,
732 >     * when table is null, holds the initial table size to use upon
733 >     * creation, or 0 for default. After initialization, holds the
734 >     * next element count value upon which to resize the table.
735 >     */
736 >    private transient volatile int sizeCtl;
737  
738 +    /**
739 +     * The next table index (plus one) to split while resizing.
740 +     */
741 +    private transient volatile int transferIndex;
742  
743 +    /**
744 +     * The least available table index to split while resizing.
745 +     */
746 +    private transient volatile int transferOrigin;
747  
748 <    /* ---------------- Public operations -------------- */
748 >    /**
749 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
750 >     */
751 >    private transient volatile int cellsBusy;
752  
753      /**
754 <     * Creates a new, empty map with the specified initial
569 <     * capacity, load factor and concurrency level.
570 <     *
571 <     * @param initialCapacity the initial capacity. The implementation
572 <     * performs internal sizing to accommodate this many elements.
573 <     * @param loadFactor  the load factor threshold, used to control resizing.
574 <     * Resizing may be performed when the average number of elements per
575 <     * bin exceeds this threshold.
576 <     * @param concurrencyLevel the estimated number of concurrently
577 <     * updating threads. The implementation performs internal sizing
578 <     * to try to accommodate this many threads.
579 <     * @throws IllegalArgumentException if the initial capacity is
580 <     * negative or the load factor or concurrencyLevel are
581 <     * nonpositive.
754 >     * Table of counter cells. When non-null, size is a power of 2.
755       */
756 <    public ConcurrentHashMap(int initialCapacity,
584 <                             float loadFactor, int concurrencyLevel) {
585 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
586 <            throw new IllegalArgumentException();
756 >    private transient volatile CounterCell[] counterCells;
757  
758 <        if (concurrencyLevel > MAX_SEGMENTS)
759 <            concurrencyLevel = MAX_SEGMENTS;
758 >    // views
759 >    private transient KeySetView<K,V> keySet;
760 >    private transient ValuesView<K,V> values;
761 >    private transient EntrySetView<K,V> entrySet;
762  
591        // Find power-of-two sizes best matching arguments
592        int sshift = 0;
593        int ssize = 1;
594        while (ssize < concurrencyLevel) {
595            ++sshift;
596            ssize <<= 1;
597        }
598        segmentShift = 32 - sshift;
599        segmentMask = ssize - 1;
600        this.segments = Segment.newArray(ssize);
601
602        if (initialCapacity > MAXIMUM_CAPACITY)
603            initialCapacity = MAXIMUM_CAPACITY;
604        int c = initialCapacity / ssize;
605        if (c * ssize < initialCapacity)
606            ++c;
607        int cap = 1;
608        while (cap < c)
609            cap <<= 1;
763  
764 <        for (int i = 0; i < this.segments.length; ++i)
612 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
613 <    }
764 >    /* ---------------- Public operations -------------- */
765  
766      /**
767 <     * Creates a new, empty map with the specified initial capacity
617 <     * and load factor and with the default concurrencyLevel (16).
618 <     *
619 <     * @param initialCapacity The implementation performs internal
620 <     * sizing to accommodate this many elements.
621 <     * @param loadFactor  the load factor threshold, used to control resizing.
622 <     * Resizing may be performed when the average number of elements per
623 <     * bin exceeds this threshold.
624 <     * @throws IllegalArgumentException if the initial capacity of
625 <     * elements is negative or the load factor is nonpositive
626 <     *
627 <     * @since 1.6
767 >     * Creates a new, empty map with the default initial table size (16).
768       */
769 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
630 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
769 >    public ConcurrentHashMap() {
770      }
771  
772      /**
773 <     * Creates a new, empty map with the specified initial capacity,
774 <     * and with default load factor (0.75) and concurrencyLevel (16).
773 >     * Creates a new, empty map with an initial table size
774 >     * accommodating the specified number of elements without the need
775 >     * to dynamically resize.
776       *
777 <     * @param initialCapacity the initial capacity. The implementation
778 <     * performs internal sizing to accommodate this many elements.
777 >     * @param initialCapacity The implementation performs internal
778 >     * sizing to accommodate this many elements.
779       * @throws IllegalArgumentException if the initial capacity of
780 <     * elements is negative.
780 >     * elements is negative
781       */
782      public ConcurrentHashMap(int initialCapacity) {
783 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
784 <    }
785 <
786 <    /**
787 <     * Creates a new, empty map with a default initial capacity (16),
788 <     * load factor (0.75) and concurrencyLevel (16).
649 <     */
650 <    public ConcurrentHashMap() {
651 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
783 >        if (initialCapacity < 0)
784 >            throw new IllegalArgumentException();
785 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
786 >                   MAXIMUM_CAPACITY :
787 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
788 >        this.sizeCtl = cap;
789      }
790  
791      /**
792       * Creates a new map with the same mappings as the given map.
656     * The map is created with a capacity of 1.5 times the number
657     * of mappings in the given map or 16 (whichever is greater),
658     * and a default load factor (0.75) and concurrencyLevel (16).
793       *
794       * @param m the map
795       */
796      public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
797 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
664 <                      DEFAULT_INITIAL_CAPACITY),
665 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
797 >        this.sizeCtl = DEFAULT_CAPACITY;
798          putAll(m);
799      }
800  
801      /**
802 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
802 >     * Creates a new, empty map with an initial table size based on
803 >     * the given number of elements ({@code initialCapacity}) and
804 >     * initial table density ({@code loadFactor}).
805       *
806 <     * @return <tt>true</tt> if this map contains no key-value mappings
806 >     * @param initialCapacity the initial capacity. The implementation
807 >     * performs internal sizing to accommodate this many elements,
808 >     * given the specified load factor.
809 >     * @param loadFactor the load factor (table density) for
810 >     * establishing the initial table size
811 >     * @throws IllegalArgumentException if the initial capacity of
812 >     * elements is negative or the load factor is nonpositive
813 >     *
814 >     * @since 1.6
815       */
816 <    public boolean isEmpty() {
817 <        final Segment<K,V>[] segments = this.segments;
676 <        /*
677 <         * We keep track of per-segment modCounts to avoid ABA
678 <         * problems in which an element in one segment was added and
679 <         * in another removed during traversal, in which case the
680 <         * table was never actually empty at any point. Note the
681 <         * similar use of modCounts in the size() and containsValue()
682 <         * methods, which are the only other methods also susceptible
683 <         * to ABA problems.
684 <         */
685 <        int[] mc = new int[segments.length];
686 <        int mcsum = 0;
687 <        for (int i = 0; i < segments.length; ++i) {
688 <            if (segments[i].count != 0)
689 <                return false;
690 <            else
691 <                mcsum += mc[i] = segments[i].modCount;
692 <        }
693 <        // If mcsum happens to be zero, then we know we got a snapshot
694 <        // before any modifications at all were made.  This is
695 <        // probably common enough to bother tracking.
696 <        if (mcsum != 0) {
697 <            for (int i = 0; i < segments.length; ++i) {
698 <                if (segments[i].count != 0 ||
699 <                    mc[i] != segments[i].modCount)
700 <                    return false;
701 <            }
702 <        }
703 <        return true;
816 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
817 >        this(initialCapacity, loadFactor, 1);
818      }
819  
820      /**
821 <     * Returns the number of key-value mappings in this map.  If the
822 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
823 <     * <tt>Integer.MAX_VALUE</tt>.
821 >     * Creates a new, empty map with an initial table size based on
822 >     * the given number of elements ({@code initialCapacity}), table
823 >     * density ({@code loadFactor}), and number of concurrently
824 >     * updating threads ({@code concurrencyLevel}).
825       *
826 <     * @return the number of key-value mappings in this map
826 >     * @param initialCapacity the initial capacity. The implementation
827 >     * performs internal sizing to accommodate this many elements,
828 >     * given the specified load factor.
829 >     * @param loadFactor the load factor (table density) for
830 >     * establishing the initial table size
831 >     * @param concurrencyLevel the estimated number of concurrently
832 >     * updating threads. The implementation may use this value as
833 >     * a sizing hint.
834 >     * @throws IllegalArgumentException if the initial capacity is
835 >     * negative or the load factor or concurrencyLevel are
836 >     * nonpositive
837 >     */
838 >    public ConcurrentHashMap(int initialCapacity,
839 >                             float loadFactor, int concurrencyLevel) {
840 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
841 >            throw new IllegalArgumentException();
842 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
843 >            initialCapacity = concurrencyLevel;   // as estimated threads
844 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
845 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
846 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
847 >        this.sizeCtl = cap;
848 >    }
849 >
850 >    // Original (since JDK1.2) Map methods
851 >
852 >    /**
853 >     * {@inheritDoc}
854       */
855      public int size() {
856 <        final Segment<K,V>[] segments = this.segments;
857 <        long sum = 0;
858 <        long check = 0;
859 <        int[] mc = new int[segments.length];
860 <        // Try a few times to get accurate count. On failure due to
861 <        // continuous async changes in table, resort to locking.
862 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
863 <            check = 0;
864 <            sum = 0;
865 <            int mcsum = 0;
866 <            for (int i = 0; i < segments.length; ++i) {
725 <                sum += segments[i].count;
726 <                mcsum += mc[i] = segments[i].modCount;
727 <            }
728 <            if (mcsum != 0) {
729 <                for (int i = 0; i < segments.length; ++i) {
730 <                    check += segments[i].count;
731 <                    if (mc[i] != segments[i].modCount) {
732 <                        check = -1; // force retry
733 <                        break;
734 <                    }
735 <                }
736 <            }
737 <            if (check == sum)
738 <                break;
739 <        }
740 <        if (check != sum) { // Resort to locking all segments
741 <            sum = 0;
742 <            for (int i = 0; i < segments.length; ++i)
743 <                segments[i].lock();
744 <            for (int i = 0; i < segments.length; ++i)
745 <                sum += segments[i].count;
746 <            for (int i = 0; i < segments.length; ++i)
747 <                segments[i].unlock();
748 <        }
749 <        if (sum > Integer.MAX_VALUE)
750 <            return Integer.MAX_VALUE;
751 <        else
752 <            return (int)sum;
856 >        long n = sumCount();
857 >        return ((n < 0L) ? 0 :
858 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
859 >                (int)n);
860 >    }
861 >
862 >    /**
863 >     * {@inheritDoc}
864 >     */
865 >    public boolean isEmpty() {
866 >        return sumCount() <= 0L; // ignore transient negative values
867      }
868  
869      /**
# Line 764 | Line 878 | public class ConcurrentHashMap<K, V> ext
878       * @throws NullPointerException if the specified key is null
879       */
880      public V get(Object key) {
881 <        int hash = hash(key.hashCode());
882 <        return segmentFor(hash).get(key, hash);
881 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
882 >        int h = spread(key.hashCode());
883 >        if ((tab = table) != null && (n = tab.length) > 0 &&
884 >            (e = tabAt(tab, (n - 1) & h)) != null) {
885 >            if ((eh = e.hash) == h) {
886 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
887 >                    return e.val;
888 >            }
889 >            else if (eh < 0)
890 >                return (p = e.find(h, key)) != null ? p.val : null;
891 >            while ((e = e.next) != null) {
892 >                if (e.hash == h &&
893 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
894 >                    return e.val;
895 >            }
896 >        }
897 >        return null;
898      }
899  
900      /**
901       * Tests if the specified object is a key in this table.
902       *
903 <     * @param  key   possible key
904 <     * @return <tt>true</tt> if and only if the specified object
903 >     * @param  key possible key
904 >     * @return {@code true} if and only if the specified object
905       *         is a key in this table, as determined by the
906 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
906 >     *         {@code equals} method; {@code false} otherwise
907       * @throws NullPointerException if the specified key is null
908       */
909      public boolean containsKey(Object key) {
910 <        int hash = hash(key.hashCode());
782 <        return segmentFor(hash).containsKey(key, hash);
910 >        return get(key) != null;
911      }
912  
913      /**
914 <     * Returns <tt>true</tt> if this map maps one or more keys to the
915 <     * specified value. Note: This method requires a full internal
916 <     * traversal of the hash table, and so is much slower than
789 <     * method <tt>containsKey</tt>.
914 >     * Returns {@code true} if this map maps one or more keys to the
915 >     * specified value. Note: This method may require a full traversal
916 >     * of the map, and is much slower than method {@code containsKey}.
917       *
918       * @param value value whose presence in this map is to be tested
919 <     * @return <tt>true</tt> if this map maps one or more keys to the
919 >     * @return {@code true} if this map maps one or more keys to the
920       *         specified value
921       * @throws NullPointerException if the specified value is null
922       */
923      public boolean containsValue(Object value) {
924          if (value == null)
925              throw new NullPointerException();
926 <
927 <        // See explanation of modCount use above
928 <
929 <        final Segment<K,V>[] segments = this.segments;
930 <        int[] mc = new int[segments.length];
931 <
805 <        // Try a few times without locking
806 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
807 <            int sum = 0;
808 <            int mcsum = 0;
809 <            for (int i = 0; i < segments.length; ++i) {
810 <                int c = segments[i].count;
811 <                mcsum += mc[i] = segments[i].modCount;
812 <                if (segments[i].containsValue(value))
926 >        Node<K,V>[] t;
927 >        if ((t = table) != null) {
928 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
929 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
930 >                V v;
931 >                if ((v = p.val) == value || (v != null && value.equals(v)))
932                      return true;
933              }
815            boolean cleanSweep = true;
816            if (mcsum != 0) {
817                for (int i = 0; i < segments.length; ++i) {
818                    int c = segments[i].count;
819                    if (mc[i] != segments[i].modCount) {
820                        cleanSweep = false;
821                        break;
822                    }
823                }
824            }
825            if (cleanSweep)
826                return false;
934          }
935 <        // Resort to locking all segments
829 <        for (int i = 0; i < segments.length; ++i)
830 <            segments[i].lock();
831 <        boolean found = false;
832 <        try {
833 <            for (int i = 0; i < segments.length; ++i) {
834 <                if (segments[i].containsValue(value)) {
835 <                    found = true;
836 <                    break;
837 <                }
838 <            }
839 <        } finally {
840 <            for (int i = 0; i < segments.length; ++i)
841 <                segments[i].unlock();
842 <        }
843 <        return found;
844 <    }
845 <
846 <    /**
847 <     * Legacy method testing if some key maps into the specified value
848 <     * in this table.  This method is identical in functionality to
849 <     * {@link #containsValue}, and exists solely to ensure
850 <     * full compatibility with class {@link java.util.Hashtable},
851 <     * which supported this method prior to introduction of the
852 <     * Java Collections framework.
853 <
854 <     * @param  value a value to search for
855 <     * @return <tt>true</tt> if and only if some key maps to the
856 <     *         <tt>value</tt> argument in this table as
857 <     *         determined by the <tt>equals</tt> method;
858 <     *         <tt>false</tt> otherwise
859 <     * @throws NullPointerException if the specified value is null
860 <     */
861 <    public boolean contains(Object value) {
862 <        return containsValue(value);
935 >        return false;
936      }
937  
938      /**
939       * Maps the specified key to the specified value in this table.
940       * Neither the key nor the value can be null.
941       *
942 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
942 >     * <p>The value can be retrieved by calling the {@code get} method
943       * with a key that is equal to the original key.
944       *
945       * @param key key with which the specified value is to be associated
946       * @param value value to be associated with the specified key
947 <     * @return the previous value associated with <tt>key</tt>, or
948 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
947 >     * @return the previous value associated with {@code key}, or
948 >     *         {@code null} if there was no mapping for {@code key}
949       * @throws NullPointerException if the specified key or value is null
950       */
951      public V put(K key, V value) {
952 <        if (value == null)
880 <            throw new NullPointerException();
881 <        int hash = hash(key.hashCode());
882 <        return segmentFor(hash).put(key, hash, value, false);
952 >        return putVal(key, value, false);
953      }
954  
955 <    /**
956 <     * {@inheritDoc}
957 <     *
958 <     * @return the previous value associated with the specified key,
959 <     *         or <tt>null</tt> if there was no mapping for the key
960 <     * @throws NullPointerException if the specified key or value is null
961 <     */
962 <    public V putIfAbsent(K key, V value) {
963 <        if (value == null)
964 <            throw new NullPointerException();
965 <        int hash = hash(key.hashCode());
966 <        return segmentFor(hash).put(key, hash, value, true);
955 >    /** Implementation for put and putIfAbsent */
956 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
957 >        if (key == null || value == null) throw new NullPointerException();
958 >        int hash = spread(key.hashCode());
959 >        int binCount = 0;
960 >        for (Node<K,V>[] tab = table;;) {
961 >            Node<K,V> f; int n, i, fh;
962 >            if (tab == null || (n = tab.length) == 0)
963 >                tab = initTable();
964 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
965 >                if (casTabAt(tab, i, null,
966 >                             new Node<K,V>(hash, key, value, null)))
967 >                    break;                   // no lock when adding to empty bin
968 >            }
969 >            else if ((fh = f.hash) == MOVED)
970 >                tab = helpTransfer(tab, f);
971 >            else {
972 >                V oldVal = null;
973 >                synchronized (f) {
974 >                    if (tabAt(tab, i) == f) {
975 >                        if (fh >= 0) {
976 >                            binCount = 1;
977 >                            for (Node<K,V> e = f;; ++binCount) {
978 >                                K ek;
979 >                                if (e.hash == hash &&
980 >                                    ((ek = e.key) == key ||
981 >                                     (ek != null && key.equals(ek)))) {
982 >                                    oldVal = e.val;
983 >                                    if (!onlyIfAbsent)
984 >                                        e.val = value;
985 >                                    break;
986 >                                }
987 >                                Node<K,V> pred = e;
988 >                                if ((e = e.next) == null) {
989 >                                    pred.next = new Node<K,V>(hash, key,
990 >                                                              value, null);
991 >                                    break;
992 >                                }
993 >                            }
994 >                        }
995 >                        else if (f instanceof TreeBin) {
996 >                            Node<K,V> p;
997 >                            binCount = 2;
998 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
999 >                                                           value)) != null) {
1000 >                                oldVal = p.val;
1001 >                                if (!onlyIfAbsent)
1002 >                                    p.val = value;
1003 >                            }
1004 >                        }
1005 >                    }
1006 >                }
1007 >                if (binCount != 0) {
1008 >                    if (binCount >= TREEIFY_THRESHOLD)
1009 >                        treeifyBin(tab, i);
1010 >                    if (oldVal != null)
1011 >                        return oldVal;
1012 >                    break;
1013 >                }
1014 >            }
1015 >        }
1016 >        addCount(1L, binCount);
1017 >        return null;
1018      }
1019  
1020      /**
# Line 904 | Line 1025 | public class ConcurrentHashMap<K, V> ext
1025       * @param m mappings to be stored in this map
1026       */
1027      public void putAll(Map<? extends K, ? extends V> m) {
1028 +        tryPresize(m.size());
1029          for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1030 <            put(e.getKey(), e.getValue());
1030 >            putVal(e.getKey(), e.getValue(), false);
1031      }
1032  
1033      /**
# Line 913 | Line 1035 | public class ConcurrentHashMap<K, V> ext
1035       * This method does nothing if the key is not in the map.
1036       *
1037       * @param  key the key that needs to be removed
1038 <     * @return the previous value associated with <tt>key</tt>, or
1039 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1038 >     * @return the previous value associated with {@code key}, or
1039 >     *         {@code null} if there was no mapping for {@code key}
1040       * @throws NullPointerException if the specified key is null
1041       */
1042      public V remove(Object key) {
1043 <        int hash = hash(key.hashCode());
922 <        return segmentFor(hash).remove(key, hash, null);
923 <    }
924 <
925 <    /**
926 <     * {@inheritDoc}
927 <     *
928 <     * @throws NullPointerException if the specified key is null
929 <     */
930 <    public boolean remove(Object key, Object value) {
931 <        int hash = hash(key.hashCode());
932 <        if (value == null)
933 <            return false;
934 <        return segmentFor(hash).remove(key, hash, value) != null;
935 <    }
936 <
937 <    /**
938 <     * {@inheritDoc}
939 <     *
940 <     * @throws NullPointerException if any of the arguments are null
941 <     */
942 <    public boolean replace(K key, V oldValue, V newValue) {
943 <        if (oldValue == null || newValue == null)
944 <            throw new NullPointerException();
945 <        int hash = hash(key.hashCode());
946 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
1043 >        return replaceNode(key, null, null);
1044      }
1045  
1046      /**
1047 <     * {@inheritDoc}
1048 <     *
1049 <     * @return the previous value associated with the specified key,
1050 <     *         or <tt>null</tt> if there was no mapping for the key
1051 <     * @throws NullPointerException if the specified key or value is null
1052 <     */
1053 <    public V replace(K key, V value) {
1054 <        if (value == null)
1055 <            throw new NullPointerException();
1056 <        int hash = hash(key.hashCode());
1057 <        return segmentFor(hash).replace(key, hash, value);
1047 >     * Implementation for the four public remove/replace methods:
1048 >     * Replaces node value with v, conditional upon match of cv if
1049 >     * non-null.  If resulting value is null, delete.
1050 >     */
1051 >    final V replaceNode(Object key, V value, Object cv) {
1052 >        int hash = spread(key.hashCode());
1053 >        for (Node<K,V>[] tab = table;;) {
1054 >            Node<K,V> f; int n, i, fh;
1055 >            if (tab == null || (n = tab.length) == 0 ||
1056 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1057 >                break;
1058 >            else if ((fh = f.hash) == MOVED)
1059 >                tab = helpTransfer(tab, f);
1060 >            else {
1061 >                V oldVal = null;
1062 >                boolean validated = false;
1063 >                synchronized (f) {
1064 >                    if (tabAt(tab, i) == f) {
1065 >                        if (fh >= 0) {
1066 >                            validated = true;
1067 >                            for (Node<K,V> e = f, pred = null;;) {
1068 >                                K ek;
1069 >                                if (e.hash == hash &&
1070 >                                    ((ek = e.key) == key ||
1071 >                                     (ek != null && key.equals(ek)))) {
1072 >                                    V ev = e.val;
1073 >                                    if (cv == null || cv == ev ||
1074 >                                        (ev != null && cv.equals(ev))) {
1075 >                                        oldVal = ev;
1076 >                                        if (value != null)
1077 >                                            e.val = value;
1078 >                                        else if (pred != null)
1079 >                                            pred.next = e.next;
1080 >                                        else
1081 >                                            setTabAt(tab, i, e.next);
1082 >                                    }
1083 >                                    break;
1084 >                                }
1085 >                                pred = e;
1086 >                                if ((e = e.next) == null)
1087 >                                    break;
1088 >                            }
1089 >                        }
1090 >                        else if (f instanceof TreeBin) {
1091 >                            validated = true;
1092 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1093 >                            TreeNode<K,V> r, p;
1094 >                            if ((r = t.root) != null &&
1095 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1096 >                                V pv = p.val;
1097 >                                if (cv == null || cv == pv ||
1098 >                                    (pv != null && cv.equals(pv))) {
1099 >                                    oldVal = pv;
1100 >                                    if (value != null)
1101 >                                        p.val = value;
1102 >                                    else if (t.removeTreeNode(p))
1103 >                                        setTabAt(tab, i, untreeify(t.first));
1104 >                                }
1105 >                            }
1106 >                        }
1107 >                    }
1108 >                }
1109 >                if (validated) {
1110 >                    if (oldVal != null) {
1111 >                        if (value == null)
1112 >                            addCount(-1L, -1);
1113 >                        return oldVal;
1114 >                    }
1115 >                    break;
1116 >                }
1117 >            }
1118 >        }
1119 >        return null;
1120      }
1121  
1122      /**
1123       * Removes all of the mappings from this map.
1124       */
1125      public void clear() {
1126 <        for (int i = 0; i < segments.length; ++i)
1127 <            segments[i].clear();
1126 >        long delta = 0L; // negative number of deletions
1127 >        int i = 0;
1128 >        Node<K,V>[] tab = table;
1129 >        while (tab != null && i < tab.length) {
1130 >            int fh;
1131 >            Node<K,V> f = tabAt(tab, i);
1132 >            if (f == null)
1133 >                ++i;
1134 >            else if ((fh = f.hash) == MOVED) {
1135 >                tab = helpTransfer(tab, f);
1136 >                i = 0; // restart
1137 >            }
1138 >            else {
1139 >                synchronized (f) {
1140 >                    if (tabAt(tab, i) == f) {
1141 >                        Node<K,V> p = (fh >= 0 ? f :
1142 >                                       (f instanceof TreeBin) ?
1143 >                                       ((TreeBin<K,V>)f).first : null);
1144 >                        while (p != null) {
1145 >                            --delta;
1146 >                            p = p.next;
1147 >                        }
1148 >                        setTabAt(tab, i++, null);
1149 >                    }
1150 >                }
1151 >            }
1152 >        }
1153 >        if (delta != 0L)
1154 >            addCount(delta, -1);
1155      }
1156  
1157      /**
1158       * Returns a {@link Set} view of the keys contained in this map.
1159       * The set is backed by the map, so changes to the map are
1160 <     * reflected in the set, and vice-versa.  The set supports element
1160 >     * reflected in the set, and vice-versa. The set supports element
1161       * removal, which removes the corresponding mapping from this map,
1162 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1163 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1164 <     * operations.  It does not support the <tt>add</tt> or
1165 <     * <tt>addAll</tt> operations.
1162 >     * via the {@code Iterator.remove}, {@code Set.remove},
1163 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1164 >     * operations.  It does not support the {@code add} or
1165 >     * {@code addAll} operations.
1166       *
1167 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1167 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1168       * that will never throw {@link ConcurrentModificationException},
1169       * and guarantees to traverse elements as they existed upon
1170       * construction of the iterator, and may (but is not guaranteed to)
1171       * reflect any modifications subsequent to construction.
1172 +     *
1173 +     * @return the set view
1174       */
1175 <    public Set<K> keySet() {
1176 <        Set<K> ks = keySet;
1177 <        return (ks != null) ? ks : (keySet = new KeySet());
1175 >    public KeySetView<K,V> keySet() {
1176 >        KeySetView<K,V> ks;
1177 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1178      }
1179  
1180      /**
# Line 994 | Line 1182 | public class ConcurrentHashMap<K, V> ext
1182       * The collection is backed by the map, so changes to the map are
1183       * reflected in the collection, and vice-versa.  The collection
1184       * supports element removal, which removes the corresponding
1185 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1186 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1187 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1188 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1185 >     * mapping from this map, via the {@code Iterator.remove},
1186 >     * {@code Collection.remove}, {@code removeAll},
1187 >     * {@code retainAll}, and {@code clear} operations.  It does not
1188 >     * support the {@code add} or {@code addAll} operations.
1189       *
1190 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1190 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1191       * that will never throw {@link ConcurrentModificationException},
1192       * and guarantees to traverse elements as they existed upon
1193       * construction of the iterator, and may (but is not guaranteed to)
1194       * reflect any modifications subsequent to construction.
1195 +     *
1196 +     * @return the collection view
1197       */
1198      public Collection<V> values() {
1199 <        Collection<V> vs = values;
1200 <        return (vs != null) ? vs : (values = new Values());
1199 >        ValuesView<K,V> vs;
1200 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1201      }
1202  
1203      /**
# Line 1015 | Line 1205 | public class ConcurrentHashMap<K, V> ext
1205       * The set is backed by the map, so changes to the map are
1206       * reflected in the set, and vice-versa.  The set supports element
1207       * removal, which removes the corresponding mapping from the map,
1208 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1209 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1210 <     * operations.  It does not support the <tt>add</tt> or
1021 <     * <tt>addAll</tt> operations.
1208 >     * via the {@code Iterator.remove}, {@code Set.remove},
1209 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1210 >     * operations.
1211       *
1212 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1212 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1213       * that will never throw {@link ConcurrentModificationException},
1214       * and guarantees to traverse elements as they existed upon
1215       * construction of the iterator, and may (but is not guaranteed to)
1216       * reflect any modifications subsequent to construction.
1217 +     *
1218 +     * @return the set view
1219       */
1220      public Set<Map.Entry<K,V>> entrySet() {
1221 <        Set<Map.Entry<K,V>> es = entrySet;
1222 <        return (es != null) ? es : (entrySet = new EntrySet());
1221 >        EntrySetView<K,V> es;
1222 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1223 >    }
1224 >
1225 >    /**
1226 >     * Returns the hash code value for this {@link Map}, i.e.,
1227 >     * the sum of, for each key-value pair in the map,
1228 >     * {@code key.hashCode() ^ value.hashCode()}.
1229 >     *
1230 >     * @return the hash code value for this map
1231 >     */
1232 >    public int hashCode() {
1233 >        int h = 0;
1234 >        Node<K,V>[] t;
1235 >        if ((t = table) != null) {
1236 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1237 >            for (Node<K,V> p; (p = it.advance()) != null; )
1238 >                h += p.key.hashCode() ^ p.val.hashCode();
1239 >        }
1240 >        return h;
1241 >    }
1242 >
1243 >    /**
1244 >     * Returns a string representation of this map.  The string
1245 >     * representation consists of a list of key-value mappings (in no
1246 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1247 >     * mappings are separated by the characters {@code ", "} (comma
1248 >     * and space).  Each key-value mapping is rendered as the key
1249 >     * followed by an equals sign ("{@code =}") followed by the
1250 >     * associated value.
1251 >     *
1252 >     * @return a string representation of this map
1253 >     */
1254 >    public String toString() {
1255 >        Node<K,V>[] t;
1256 >        int f = (t = table) == null ? 0 : t.length;
1257 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1258 >        StringBuilder sb = new StringBuilder();
1259 >        sb.append('{');
1260 >        Node<K,V> p;
1261 >        if ((p = it.advance()) != null) {
1262 >            for (;;) {
1263 >                K k = p.key;
1264 >                V v = p.val;
1265 >                sb.append(k == this ? "(this Map)" : k);
1266 >                sb.append('=');
1267 >                sb.append(v == this ? "(this Map)" : v);
1268 >                if ((p = it.advance()) == null)
1269 >                    break;
1270 >                sb.append(',').append(' ');
1271 >            }
1272 >        }
1273 >        return sb.append('}').toString();
1274 >    }
1275 >
1276 >    /**
1277 >     * Compares the specified object with this map for equality.
1278 >     * Returns {@code true} if the given object is a map with the same
1279 >     * mappings as this map.  This operation may return misleading
1280 >     * results if either map is concurrently modified during execution
1281 >     * of this method.
1282 >     *
1283 >     * @param o object to be compared for equality with this map
1284 >     * @return {@code true} if the specified object is equal to this map
1285 >     */
1286 >    public boolean equals(Object o) {
1287 >        if (o != this) {
1288 >            if (!(o instanceof Map))
1289 >                return false;
1290 >            Map<?,?> m = (Map<?,?>) o;
1291 >            Node<K,V>[] t;
1292 >            int f = (t = table) == null ? 0 : t.length;
1293 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1294 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1295 >                V val = p.val;
1296 >                Object v = m.get(p.key);
1297 >                if (v == null || (v != val && !v.equals(val)))
1298 >                    return false;
1299 >            }
1300 >            for (Map.Entry<?,?> e : m.entrySet()) {
1301 >                Object mk, mv, v;
1302 >                if ((mk = e.getKey()) == null ||
1303 >                    (mv = e.getValue()) == null ||
1304 >                    (v = get(mk)) == null ||
1305 >                    (mv != v && !mv.equals(v)))
1306 >                    return false;
1307 >            }
1308 >        }
1309 >        return true;
1310 >    }
1311 >
1312 >    /**
1313 >     * Stripped-down version of helper class used in previous version,
1314 >     * declared for the sake of serialization compatibility
1315 >     */
1316 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1317 >        private static final long serialVersionUID = 2249069246763182397L;
1318 >        final float loadFactor;
1319 >        Segment(float lf) { this.loadFactor = lf; }
1320 >    }
1321 >
1322 >    /**
1323 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1324 >     * stream (i.e., serializes it).
1325 >     * @param s the stream
1326 >     * @serialData
1327 >     * the key (Object) and value (Object)
1328 >     * for each key-value mapping, followed by a null pair.
1329 >     * The key-value mappings are emitted in no particular order.
1330 >     */
1331 >    private void writeObject(java.io.ObjectOutputStream s)
1332 >        throws java.io.IOException {
1333 >        // For serialization compatibility
1334 >        // Emulate segment calculation from previous version of this class
1335 >        int sshift = 0;
1336 >        int ssize = 1;
1337 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1338 >            ++sshift;
1339 >            ssize <<= 1;
1340 >        }
1341 >        int segmentShift = 32 - sshift;
1342 >        int segmentMask = ssize - 1;
1343 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1344 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1345 >        for (int i = 0; i < segments.length; ++i)
1346 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1347 >        s.putFields().put("segments", segments);
1348 >        s.putFields().put("segmentShift", segmentShift);
1349 >        s.putFields().put("segmentMask", segmentMask);
1350 >        s.writeFields();
1351 >
1352 >        Node<K,V>[] t;
1353 >        if ((t = table) != null) {
1354 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1355 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1356 >                s.writeObject(p.key);
1357 >                s.writeObject(p.val);
1358 >            }
1359 >        }
1360 >        s.writeObject(null);
1361 >        s.writeObject(null);
1362 >        segments = null; // throw away
1363 >    }
1364 >
1365 >    /**
1366 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1367 >     * @param s the stream
1368 >     */
1369 >    private void readObject(java.io.ObjectInputStream s)
1370 >        throws java.io.IOException, ClassNotFoundException {
1371 >        /*
1372 >         * To improve performance in typical cases, we create nodes
1373 >         * while reading, then place in table once size is known.
1374 >         * However, we must also validate uniqueness and deal with
1375 >         * overpopulated bins while doing so, which requires
1376 >         * specialized versions of putVal mechanics.
1377 >         */
1378 >        sizeCtl = -1; // force exclusion for table construction
1379 >        s.defaultReadObject();
1380 >        long size = 0L;
1381 >        Node<K,V> p = null;
1382 >        for (;;) {
1383 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1384 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1385 >            if (k != null && v != null) {
1386 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1387 >                ++size;
1388 >            }
1389 >            else
1390 >                break;
1391 >        }
1392 >        if (size == 0L)
1393 >            sizeCtl = 0;
1394 >        else {
1395 >            int n;
1396 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1397 >                n = MAXIMUM_CAPACITY;
1398 >            else {
1399 >                int sz = (int)size;
1400 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1401 >            }
1402 >            @SuppressWarnings({"rawtypes","unchecked"})
1403 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1404 >            int mask = n - 1;
1405 >            long added = 0L;
1406 >            while (p != null) {
1407 >                boolean insertAtFront;
1408 >                Node<K,V> next = p.next, first;
1409 >                int h = p.hash, j = h & mask;
1410 >                if ((first = tabAt(tab, j)) == null)
1411 >                    insertAtFront = true;
1412 >                else {
1413 >                    K k = p.key;
1414 >                    if (first.hash < 0) {
1415 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1416 >                        if (t.putTreeVal(h, k, p.val) == null)
1417 >                            ++added;
1418 >                        insertAtFront = false;
1419 >                    }
1420 >                    else {
1421 >                        int binCount = 0;
1422 >                        insertAtFront = true;
1423 >                        Node<K,V> q; K qk;
1424 >                        for (q = first; q != null; q = q.next) {
1425 >                            if (q.hash == h &&
1426 >                                ((qk = q.key) == k ||
1427 >                                 (qk != null && k.equals(qk)))) {
1428 >                                insertAtFront = false;
1429 >                                break;
1430 >                            }
1431 >                            ++binCount;
1432 >                        }
1433 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1434 >                            insertAtFront = false;
1435 >                            ++added;
1436 >                            p.next = first;
1437 >                            TreeNode<K,V> hd = null, tl = null;
1438 >                            for (q = p; q != null; q = q.next) {
1439 >                                TreeNode<K,V> t = new TreeNode<K,V>
1440 >                                    (q.hash, q.key, q.val, null, null);
1441 >                                if ((t.prev = tl) == null)
1442 >                                    hd = t;
1443 >                                else
1444 >                                    tl.next = t;
1445 >                                tl = t;
1446 >                            }
1447 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1448 >                        }
1449 >                    }
1450 >                }
1451 >                if (insertAtFront) {
1452 >                    ++added;
1453 >                    p.next = first;
1454 >                    setTabAt(tab, j, p);
1455 >                }
1456 >                p = next;
1457 >            }
1458 >            table = tab;
1459 >            sizeCtl = n - (n >>> 2);
1460 >            baseCount = added;
1461 >        }
1462 >    }
1463 >
1464 >    // ConcurrentMap methods
1465 >
1466 >    /**
1467 >     * {@inheritDoc}
1468 >     *
1469 >     * @return the previous value associated with the specified key,
1470 >     *         or {@code null} if there was no mapping for the key
1471 >     * @throws NullPointerException if the specified key or value is null
1472 >     */
1473 >    public V putIfAbsent(K key, V value) {
1474 >        return putVal(key, value, true);
1475 >    }
1476 >
1477 >    /**
1478 >     * {@inheritDoc}
1479 >     *
1480 >     * @throws NullPointerException if the specified key is null
1481 >     */
1482 >    public boolean remove(Object key, Object value) {
1483 >        if (key == null)
1484 >            throw new NullPointerException();
1485 >        return value != null && replaceNode(key, null, value) != null;
1486 >    }
1487 >
1488 >    /**
1489 >     * {@inheritDoc}
1490 >     *
1491 >     * @throws NullPointerException if any of the arguments are null
1492 >     */
1493 >    public boolean replace(K key, V oldValue, V newValue) {
1494 >        if (key == null || oldValue == null || newValue == null)
1495 >            throw new NullPointerException();
1496 >        return replaceNode(key, newValue, oldValue) != null;
1497 >    }
1498 >
1499 >    /**
1500 >     * {@inheritDoc}
1501 >     *
1502 >     * @return the previous value associated with the specified key,
1503 >     *         or {@code null} if there was no mapping for the key
1504 >     * @throws NullPointerException if the specified key or value is null
1505 >     */
1506 >    public V replace(K key, V value) {
1507 >        if (key == null || value == null)
1508 >            throw new NullPointerException();
1509 >        return replaceNode(key, value, null);
1510 >    }
1511 >
1512 >    // Overrides of JDK8+ Map extension method defaults
1513 >
1514 >    /**
1515 >     * Returns the value to which the specified key is mapped, or the
1516 >     * given default value if this map contains no mapping for the
1517 >     * key.
1518 >     *
1519 >     * @param key the key whose associated value is to be returned
1520 >     * @param defaultValue the value to return if this map contains
1521 >     * no mapping for the given key
1522 >     * @return the mapping for the key, if present; else the default value
1523 >     * @throws NullPointerException if the specified key is null
1524 >     */
1525 >    public V getOrDefault(Object key, V defaultValue) {
1526 >        V v;
1527 >        return (v = get(key)) == null ? defaultValue : v;
1528 >    }
1529 >
1530 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1531 >        if (action == null) throw new NullPointerException();
1532 >        Node<K,V>[] t;
1533 >        if ((t = table) != null) {
1534 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1535 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1536 >                action.accept(p.key, p.val);
1537 >            }
1538 >        }
1539 >    }
1540 >
1541 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1542 >        if (function == null) throw new NullPointerException();
1543 >        Node<K,V>[] t;
1544 >        if ((t = table) != null) {
1545 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1546 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1547 >                V oldValue = p.val;
1548 >                for (K key = p.key;;) {
1549 >                    V newValue = function.apply(key, oldValue);
1550 >                    if (newValue == null)
1551 >                        throw new NullPointerException();
1552 >                    if (replaceNode(key, newValue, oldValue) != null ||
1553 >                        (oldValue = get(key)) == null)
1554 >                        break;
1555 >                }
1556 >            }
1557 >        }
1558 >    }
1559 >
1560 >    /**
1561 >     * If the specified key is not already associated with a value,
1562 >     * attempts to compute its value using the given mapping function
1563 >     * and enters it into this map unless {@code null}.  The entire
1564 >     * method invocation is performed atomically, so the function is
1565 >     * applied at most once per key.  Some attempted update operations
1566 >     * on this map by other threads may be blocked while computation
1567 >     * is in progress, so the computation should be short and simple,
1568 >     * and must not attempt to update any other mappings of this map.
1569 >     *
1570 >     * @param key key with which the specified value is to be associated
1571 >     * @param mappingFunction the function to compute a value
1572 >     * @return the current (existing or computed) value associated with
1573 >     *         the specified key, or null if the computed value is null
1574 >     * @throws NullPointerException if the specified key or mappingFunction
1575 >     *         is null
1576 >     * @throws IllegalStateException if the computation detectably
1577 >     *         attempts a recursive update to this map that would
1578 >     *         otherwise never complete
1579 >     * @throws RuntimeException or Error if the mappingFunction does so,
1580 >     *         in which case the mapping is left unestablished
1581 >     */
1582 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1583 >        if (key == null || mappingFunction == null)
1584 >            throw new NullPointerException();
1585 >        int h = spread(key.hashCode());
1586 >        V val = null;
1587 >        int binCount = 0;
1588 >        for (Node<K,V>[] tab = table;;) {
1589 >            Node<K,V> f; int n, i, fh;
1590 >            if (tab == null || (n = tab.length) == 0)
1591 >                tab = initTable();
1592 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1593 >                Node<K,V> r = new ReservationNode<K,V>();
1594 >                synchronized (r) {
1595 >                    if (casTabAt(tab, i, null, r)) {
1596 >                        binCount = 1;
1597 >                        Node<K,V> node = null;
1598 >                        try {
1599 >                            if ((val = mappingFunction.apply(key)) != null)
1600 >                                node = new Node<K,V>(h, key, val, null);
1601 >                        } finally {
1602 >                            setTabAt(tab, i, node);
1603 >                        }
1604 >                    }
1605 >                }
1606 >                if (binCount != 0)
1607 >                    break;
1608 >            }
1609 >            else if ((fh = f.hash) == MOVED)
1610 >                tab = helpTransfer(tab, f);
1611 >            else {
1612 >                boolean added = false;
1613 >                synchronized (f) {
1614 >                    if (tabAt(tab, i) == f) {
1615 >                        if (fh >= 0) {
1616 >                            binCount = 1;
1617 >                            for (Node<K,V> e = f;; ++binCount) {
1618 >                                K ek; V ev;
1619 >                                if (e.hash == h &&
1620 >                                    ((ek = e.key) == key ||
1621 >                                     (ek != null && key.equals(ek)))) {
1622 >                                    val = e.val;
1623 >                                    break;
1624 >                                }
1625 >                                Node<K,V> pred = e;
1626 >                                if ((e = e.next) == null) {
1627 >                                    if ((val = mappingFunction.apply(key)) != null) {
1628 >                                        added = true;
1629 >                                        pred.next = new Node<K,V>(h, key, val, null);
1630 >                                    }
1631 >                                    break;
1632 >                                }
1633 >                            }
1634 >                        }
1635 >                        else if (f instanceof TreeBin) {
1636 >                            binCount = 2;
1637 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1638 >                            TreeNode<K,V> r, p;
1639 >                            if ((r = t.root) != null &&
1640 >                                (p = r.findTreeNode(h, key, null)) != null)
1641 >                                val = p.val;
1642 >                            else if ((val = mappingFunction.apply(key)) != null) {
1643 >                                added = true;
1644 >                                t.putTreeVal(h, key, val);
1645 >                            }
1646 >                        }
1647 >                    }
1648 >                }
1649 >                if (binCount != 0) {
1650 >                    if (binCount >= TREEIFY_THRESHOLD)
1651 >                        treeifyBin(tab, i);
1652 >                    if (!added)
1653 >                        return val;
1654 >                    break;
1655 >                }
1656 >            }
1657 >        }
1658 >        if (val != null)
1659 >            addCount(1L, binCount);
1660 >        return val;
1661 >    }
1662 >
1663 >    /**
1664 >     * If the value for the specified key is present, attempts to
1665 >     * compute a new mapping given the key and its current mapped
1666 >     * value.  The entire method invocation is performed atomically.
1667 >     * Some attempted update operations on this map by other threads
1668 >     * may be blocked while computation is in progress, so the
1669 >     * computation should be short and simple, and must not attempt to
1670 >     * update any other mappings of this map.
1671 >     *
1672 >     * @param key key with which a value may be associated
1673 >     * @param remappingFunction the function to compute a value
1674 >     * @return the new value associated with the specified key, or null if none
1675 >     * @throws NullPointerException if the specified key or remappingFunction
1676 >     *         is null
1677 >     * @throws IllegalStateException if the computation detectably
1678 >     *         attempts a recursive update to this map that would
1679 >     *         otherwise never complete
1680 >     * @throws RuntimeException or Error if the remappingFunction does so,
1681 >     *         in which case the mapping is unchanged
1682 >     */
1683 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1684 >        if (key == null || remappingFunction == null)
1685 >            throw new NullPointerException();
1686 >        int h = spread(key.hashCode());
1687 >        V val = null;
1688 >        int delta = 0;
1689 >        int binCount = 0;
1690 >        for (Node<K,V>[] tab = table;;) {
1691 >            Node<K,V> f; int n, i, fh;
1692 >            if (tab == null || (n = tab.length) == 0)
1693 >                tab = initTable();
1694 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1695 >                break;
1696 >            else if ((fh = f.hash) == MOVED)
1697 >                tab = helpTransfer(tab, f);
1698 >            else {
1699 >                synchronized (f) {
1700 >                    if (tabAt(tab, i) == f) {
1701 >                        if (fh >= 0) {
1702 >                            binCount = 1;
1703 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1704 >                                K ek;
1705 >                                if (e.hash == h &&
1706 >                                    ((ek = e.key) == key ||
1707 >                                     (ek != null && key.equals(ek)))) {
1708 >                                    val = remappingFunction.apply(key, e.val);
1709 >                                    if (val != null)
1710 >                                        e.val = val;
1711 >                                    else {
1712 >                                        delta = -1;
1713 >                                        Node<K,V> en = e.next;
1714 >                                        if (pred != null)
1715 >                                            pred.next = en;
1716 >                                        else
1717 >                                            setTabAt(tab, i, en);
1718 >                                    }
1719 >                                    break;
1720 >                                }
1721 >                                pred = e;
1722 >                                if ((e = e.next) == null)
1723 >                                    break;
1724 >                            }
1725 >                        }
1726 >                        else if (f instanceof TreeBin) {
1727 >                            binCount = 2;
1728 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1729 >                            TreeNode<K,V> r, p;
1730 >                            if ((r = t.root) != null &&
1731 >                                (p = r.findTreeNode(h, key, null)) != null) {
1732 >                                val = remappingFunction.apply(key, p.val);
1733 >                                if (val != null)
1734 >                                    p.val = val;
1735 >                                else {
1736 >                                    delta = -1;
1737 >                                    if (t.removeTreeNode(p))
1738 >                                        setTabAt(tab, i, untreeify(t.first));
1739 >                                }
1740 >                            }
1741 >                        }
1742 >                    }
1743 >                }
1744 >                if (binCount != 0)
1745 >                    break;
1746 >            }
1747 >        }
1748 >        if (delta != 0)
1749 >            addCount((long)delta, binCount);
1750 >        return val;
1751 >    }
1752 >
1753 >    /**
1754 >     * Attempts to compute a mapping for the specified key and its
1755 >     * current mapped value (or {@code null} if there is no current
1756 >     * mapping). The entire method invocation is performed atomically.
1757 >     * Some attempted update operations on this map by other threads
1758 >     * may be blocked while computation is in progress, so the
1759 >     * computation should be short and simple, and must not attempt to
1760 >     * update any other mappings of this Map.
1761 >     *
1762 >     * @param key key with which the specified value is to be associated
1763 >     * @param remappingFunction the function to compute a value
1764 >     * @return the new value associated with the specified key, or null if none
1765 >     * @throws NullPointerException if the specified key or remappingFunction
1766 >     *         is null
1767 >     * @throws IllegalStateException if the computation detectably
1768 >     *         attempts a recursive update to this map that would
1769 >     *         otherwise never complete
1770 >     * @throws RuntimeException or Error if the remappingFunction does so,
1771 >     *         in which case the mapping is unchanged
1772 >     */
1773 >    public V compute(K key,
1774 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1775 >        if (key == null || remappingFunction == null)
1776 >            throw new NullPointerException();
1777 >        int h = spread(key.hashCode());
1778 >        V val = null;
1779 >        int delta = 0;
1780 >        int binCount = 0;
1781 >        for (Node<K,V>[] tab = table;;) {
1782 >            Node<K,V> f; int n, i, fh;
1783 >            if (tab == null || (n = tab.length) == 0)
1784 >                tab = initTable();
1785 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1786 >                Node<K,V> r = new ReservationNode<K,V>();
1787 >                synchronized (r) {
1788 >                    if (casTabAt(tab, i, null, r)) {
1789 >                        binCount = 1;
1790 >                        Node<K,V> node = null;
1791 >                        try {
1792 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1793 >                                delta = 1;
1794 >                                node = new Node<K,V>(h, key, val, null);
1795 >                            }
1796 >                        } finally {
1797 >                            setTabAt(tab, i, node);
1798 >                        }
1799 >                    }
1800 >                }
1801 >                if (binCount != 0)
1802 >                    break;
1803 >            }
1804 >            else if ((fh = f.hash) == MOVED)
1805 >                tab = helpTransfer(tab, f);
1806 >            else {
1807 >                synchronized (f) {
1808 >                    if (tabAt(tab, i) == f) {
1809 >                        if (fh >= 0) {
1810 >                            binCount = 1;
1811 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1812 >                                K ek;
1813 >                                if (e.hash == h &&
1814 >                                    ((ek = e.key) == key ||
1815 >                                     (ek != null && key.equals(ek)))) {
1816 >                                    val = remappingFunction.apply(key, e.val);
1817 >                                    if (val != null)
1818 >                                        e.val = val;
1819 >                                    else {
1820 >                                        delta = -1;
1821 >                                        Node<K,V> en = e.next;
1822 >                                        if (pred != null)
1823 >                                            pred.next = en;
1824 >                                        else
1825 >                                            setTabAt(tab, i, en);
1826 >                                    }
1827 >                                    break;
1828 >                                }
1829 >                                pred = e;
1830 >                                if ((e = e.next) == null) {
1831 >                                    val = remappingFunction.apply(key, null);
1832 >                                    if (val != null) {
1833 >                                        delta = 1;
1834 >                                        pred.next =
1835 >                                            new Node<K,V>(h, key, val, null);
1836 >                                    }
1837 >                                    break;
1838 >                                }
1839 >                            }
1840 >                        }
1841 >                        else if (f instanceof TreeBin) {
1842 >                            binCount = 1;
1843 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1844 >                            TreeNode<K,V> r, p;
1845 >                            if ((r = t.root) != null)
1846 >                                p = r.findTreeNode(h, key, null);
1847 >                            else
1848 >                                p = null;
1849 >                            V pv = (p == null) ? null : p.val;
1850 >                            val = remappingFunction.apply(key, pv);
1851 >                            if (val != null) {
1852 >                                if (p != null)
1853 >                                    p.val = val;
1854 >                                else {
1855 >                                    delta = 1;
1856 >                                    t.putTreeVal(h, key, val);
1857 >                                }
1858 >                            }
1859 >                            else if (p != null) {
1860 >                                delta = -1;
1861 >                                if (t.removeTreeNode(p))
1862 >                                    setTabAt(tab, i, untreeify(t.first));
1863 >                            }
1864 >                        }
1865 >                    }
1866 >                }
1867 >                if (binCount != 0) {
1868 >                    if (binCount >= TREEIFY_THRESHOLD)
1869 >                        treeifyBin(tab, i);
1870 >                    break;
1871 >                }
1872 >            }
1873 >        }
1874 >        if (delta != 0)
1875 >            addCount((long)delta, binCount);
1876 >        return val;
1877 >    }
1878 >
1879 >    /**
1880 >     * If the specified key is not already associated with a
1881 >     * (non-null) value, associates it with the given value.
1882 >     * Otherwise, replaces the value with the results of the given
1883 >     * remapping function, or removes if {@code null}. The entire
1884 >     * method invocation is performed atomically.  Some attempted
1885 >     * update operations on this map by other threads may be blocked
1886 >     * while computation is in progress, so the computation should be
1887 >     * short and simple, and must not attempt to update any other
1888 >     * mappings of this Map.
1889 >     *
1890 >     * @param key key with which the specified value is to be associated
1891 >     * @param value the value to use if absent
1892 >     * @param remappingFunction the function to recompute a value if present
1893 >     * @return the new value associated with the specified key, or null if none
1894 >     * @throws NullPointerException if the specified key or the
1895 >     *         remappingFunction is null
1896 >     * @throws RuntimeException or Error if the remappingFunction does so,
1897 >     *         in which case the mapping is unchanged
1898 >     */
1899 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1900 >        if (key == null || value == null || remappingFunction == null)
1901 >            throw new NullPointerException();
1902 >        int h = spread(key.hashCode());
1903 >        V val = null;
1904 >        int delta = 0;
1905 >        int binCount = 0;
1906 >        for (Node<K,V>[] tab = table;;) {
1907 >            Node<K,V> f; int n, i, fh;
1908 >            if (tab == null || (n = tab.length) == 0)
1909 >                tab = initTable();
1910 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1911 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1912 >                    delta = 1;
1913 >                    val = value;
1914 >                    break;
1915 >                }
1916 >            }
1917 >            else if ((fh = f.hash) == MOVED)
1918 >                tab = helpTransfer(tab, f);
1919 >            else {
1920 >                synchronized (f) {
1921 >                    if (tabAt(tab, i) == f) {
1922 >                        if (fh >= 0) {
1923 >                            binCount = 1;
1924 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1925 >                                K ek;
1926 >                                if (e.hash == h &&
1927 >                                    ((ek = e.key) == key ||
1928 >                                     (ek != null && key.equals(ek)))) {
1929 >                                    val = remappingFunction.apply(e.val, value);
1930 >                                    if (val != null)
1931 >                                        e.val = val;
1932 >                                    else {
1933 >                                        delta = -1;
1934 >                                        Node<K,V> en = e.next;
1935 >                                        if (pred != null)
1936 >                                            pred.next = en;
1937 >                                        else
1938 >                                            setTabAt(tab, i, en);
1939 >                                    }
1940 >                                    break;
1941 >                                }
1942 >                                pred = e;
1943 >                                if ((e = e.next) == null) {
1944 >                                    delta = 1;
1945 >                                    val = value;
1946 >                                    pred.next =
1947 >                                        new Node<K,V>(h, key, val, null);
1948 >                                    break;
1949 >                                }
1950 >                            }
1951 >                        }
1952 >                        else if (f instanceof TreeBin) {
1953 >                            binCount = 2;
1954 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1955 >                            TreeNode<K,V> r = t.root;
1956 >                            TreeNode<K,V> p = (r == null) ? null :
1957 >                                r.findTreeNode(h, key, null);
1958 >                            val = (p == null) ? value :
1959 >                                remappingFunction.apply(p.val, value);
1960 >                            if (val != null) {
1961 >                                if (p != null)
1962 >                                    p.val = val;
1963 >                                else {
1964 >                                    delta = 1;
1965 >                                    t.putTreeVal(h, key, val);
1966 >                                }
1967 >                            }
1968 >                            else if (p != null) {
1969 >                                delta = -1;
1970 >                                if (t.removeTreeNode(p))
1971 >                                    setTabAt(tab, i, untreeify(t.first));
1972 >                            }
1973 >                        }
1974 >                    }
1975 >                }
1976 >                if (binCount != 0) {
1977 >                    if (binCount >= TREEIFY_THRESHOLD)
1978 >                        treeifyBin(tab, i);
1979 >                    break;
1980 >                }
1981 >            }
1982 >        }
1983 >        if (delta != 0)
1984 >            addCount((long)delta, binCount);
1985 >        return val;
1986 >    }
1987 >
1988 >    // Hashtable legacy methods
1989 >
1990 >    /**
1991 >     * Legacy method testing if some key maps into the specified value
1992 >     * in this table.  This method is identical in functionality to
1993 >     * {@link #containsValue(Object)}, and exists solely to ensure
1994 >     * full compatibility with class {@link java.util.Hashtable},
1995 >     * which supported this method prior to introduction of the
1996 >     * Java Collections framework.
1997 >     *
1998 >     * @param  value a value to search for
1999 >     * @return {@code true} if and only if some key maps to the
2000 >     *         {@code value} argument in this table as
2001 >     *         determined by the {@code equals} method;
2002 >     *         {@code false} otherwise
2003 >     * @throws NullPointerException if the specified value is null
2004 >     */
2005 >    @Deprecated public boolean contains(Object value) {
2006 >        return containsValue(value);
2007      }
2008  
2009      /**
2010       * Returns an enumeration of the keys in this table.
2011       *
2012       * @return an enumeration of the keys in this table
2013 <     * @see #keySet
2013 >     * @see #keySet()
2014       */
2015      public Enumeration<K> keys() {
2016 <        return new KeyIterator();
2016 >        Node<K,V>[] t;
2017 >        int f = (t = table) == null ? 0 : t.length;
2018 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2019      }
2020  
2021      /**
2022       * Returns an enumeration of the values in this table.
2023       *
2024       * @return an enumeration of the values in this table
2025 <     * @see #values
2025 >     * @see #values()
2026       */
2027      public Enumeration<V> elements() {
2028 <        return new ValueIterator();
2028 >        Node<K,V>[] t;
2029 >        int f = (t = table) == null ? 0 : t.length;
2030 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2031      }
2032  
2033 <    /* ---------------- Iterator Support -------------- */
2033 >    // ConcurrentHashMap-only methods
2034  
2035 <    abstract class HashIterator {
2036 <        int nextSegmentIndex;
2037 <        int nextTableIndex;
2038 <        HashEntry<K,V>[] currentTable;
2039 <        HashEntry<K, V> nextEntry;
2040 <        HashEntry<K, V> lastReturned;
2035 >    /**
2036 >     * Returns the number of mappings. This method should be used
2037 >     * instead of {@link #size} because a ConcurrentHashMap may
2038 >     * contain more mappings than can be represented as an int. The
2039 >     * value returned is an estimate; the actual count may differ if
2040 >     * there are concurrent insertions or removals.
2041 >     *
2042 >     * @return the number of mappings
2043 >     * @since 1.8
2044 >     */
2045 >    public long mappingCount() {
2046 >        long n = sumCount();
2047 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2048 >    }
2049  
2050 <        HashIterator() {
2051 <            nextSegmentIndex = segments.length - 1;
2052 <            nextTableIndex = -1;
2053 <            advance();
2050 >    /**
2051 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2052 >     * from the given type to {@code Boolean.TRUE}.
2053 >     *
2054 >     * @return the new set
2055 >     * @since 1.8
2056 >     */
2057 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2058 >        return new KeySetView<K,Boolean>
2059 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2060 >    }
2061 >
2062 >    /**
2063 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2064 >     * from the given type to {@code Boolean.TRUE}.
2065 >     *
2066 >     * @param initialCapacity The implementation performs internal
2067 >     * sizing to accommodate this many elements.
2068 >     * @throws IllegalArgumentException if the initial capacity of
2069 >     * elements is negative
2070 >     * @return the new set
2071 >     * @since 1.8
2072 >     */
2073 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2074 >        return new KeySetView<K,Boolean>
2075 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2076 >    }
2077 >
2078 >    /**
2079 >     * Returns a {@link Set} view of the keys in this map, using the
2080 >     * given common mapped value for any additions (i.e., {@link
2081 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2082 >     * This is of course only appropriate if it is acceptable to use
2083 >     * the same value for all additions from this view.
2084 >     *
2085 >     * @param mappedValue the mapped value to use for any additions
2086 >     * @return the set view
2087 >     * @throws NullPointerException if the mappedValue is null
2088 >     */
2089 >    public KeySetView<K,V> keySet(V mappedValue) {
2090 >        if (mappedValue == null)
2091 >            throw new NullPointerException();
2092 >        return new KeySetView<K,V>(this, mappedValue);
2093 >    }
2094 >
2095 >    /* ---------------- Special Nodes -------------- */
2096 >
2097 >    /**
2098 >     * A node inserted at head of bins during transfer operations.
2099 >     */
2100 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2101 >        final Node<K,V>[] nextTable;
2102 >        ForwardingNode(Node<K,V>[] tab) {
2103 >            super(MOVED, null, null, null);
2104 >            this.nextTable = tab;
2105 >        }
2106 >
2107 >        Node<K,V> find(int h, Object k) {
2108 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2109 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2110 >                Node<K,V> e; int n;
2111 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2112 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2113 >                    return null;
2114 >                for (;;) {
2115 >                    int eh; K ek;
2116 >                    if ((eh = e.hash) == h &&
2117 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2118 >                        return e;
2119 >                    if (eh < 0) {
2120 >                        if (e instanceof ForwardingNode) {
2121 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2122 >                            continue outer;
2123 >                        }
2124 >                        else
2125 >                            return e.find(h, k);
2126 >                    }
2127 >                    if ((e = e.next) == null)
2128 >                        return null;
2129 >                }
2130 >            }
2131 >        }
2132 >    }
2133 >
2134 >    /**
2135 >     * A place-holder node used in computeIfAbsent and compute
2136 >     */
2137 >    static final class ReservationNode<K,V> extends Node<K,V> {
2138 >        ReservationNode() {
2139 >            super(RESERVED, null, null, null);
2140 >        }
2141 >
2142 >        Node<K,V> find(int h, Object k) {
2143 >            return null;
2144          }
2145 +    }
2146  
2147 <        public boolean hasMoreElements() { return hasNext(); }
2147 >    /* ---------------- Table Initialization and Resizing -------------- */
2148  
2149 <        final void advance() {
2150 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
2149 >    /**
2150 >     * Initializes table, using the size recorded in sizeCtl.
2151 >     */
2152 >    private final Node<K,V>[] initTable() {
2153 >        Node<K,V>[] tab; int sc;
2154 >        while ((tab = table) == null || tab.length == 0) {
2155 >            if ((sc = sizeCtl) < 0)
2156 >                Thread.yield(); // lost initialization race; just spin
2157 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2158 >                try {
2159 >                    if ((tab = table) == null || tab.length == 0) {
2160 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2161 >                        @SuppressWarnings({"rawtypes","unchecked"})
2162 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2163 >                        table = tab = nt;
2164 >                        sc = n - (n >>> 2);
2165 >                    }
2166 >                } finally {
2167 >                    sizeCtl = sc;
2168 >                }
2169 >                break;
2170 >            }
2171 >        }
2172 >        return tab;
2173 >    }
2174 >
2175 >    /**
2176 >     * Adds to count, and if table is too small and not already
2177 >     * resizing, initiates transfer. If already resizing, helps
2178 >     * perform transfer if work is available.  Rechecks occupancy
2179 >     * after a transfer to see if another resize is already needed
2180 >     * because resizings are lagging additions.
2181 >     *
2182 >     * @param x the count to add
2183 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2184 >     */
2185 >    private final void addCount(long x, int check) {
2186 >        CounterCell[] as; long b, s;
2187 >        if ((as = counterCells) != null ||
2188 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2189 >            CounterCell a; long v; int m;
2190 >            boolean uncontended = true;
2191 >            if (as == null || (m = as.length - 1) < 0 ||
2192 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2193 >                !(uncontended =
2194 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2195 >                fullAddCount(x, uncontended);
2196 >                return;
2197 >            }
2198 >            if (check <= 1)
2199                  return;
2200 +            s = sumCount();
2201 +        }
2202 +        if (check >= 0) {
2203 +            Node<K,V>[] tab, nt; int sc;
2204 +            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2205 +                   tab.length < MAXIMUM_CAPACITY) {
2206 +                if (sc < 0) {
2207 +                    if (sc == -1 || transferIndex <= transferOrigin ||
2208 +                        (nt = nextTable) == null)
2209 +                        break;
2210 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2211 +                        transfer(tab, nt);
2212 +                }
2213 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2214 +                    transfer(tab, null);
2215 +                s = sumCount();
2216 +            }
2217 +        }
2218 +    }
2219  
2220 <            while (nextTableIndex >= 0) {
2221 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
2222 <                    return;
2220 >    /**
2221 >     * Helps transfer if a resize is in progress.
2222 >     */
2223 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2224 >        Node<K,V>[] nextTab; int sc;
2225 >        if ((f instanceof ForwardingNode) &&
2226 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2227 >            if (nextTab == nextTable && tab == table &&
2228 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2229 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2230 >                transfer(tab, nextTab);
2231 >            return nextTab;
2232 >        }
2233 >        return table;
2234 >    }
2235 >
2236 >    /**
2237 >     * Tries to presize table to accommodate the given number of elements.
2238 >     *
2239 >     * @param size number of elements (doesn't need to be perfectly accurate)
2240 >     */
2241 >    private final void tryPresize(int size) {
2242 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2243 >            tableSizeFor(size + (size >>> 1) + 1);
2244 >        int sc;
2245 >        while ((sc = sizeCtl) >= 0) {
2246 >            Node<K,V>[] tab = table; int n;
2247 >            if (tab == null || (n = tab.length) == 0) {
2248 >                n = (sc > c) ? sc : c;
2249 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2250 >                    try {
2251 >                        if (table == tab) {
2252 >                            @SuppressWarnings({"rawtypes","unchecked"})
2253 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2254 >                            table = nt;
2255 >                            sc = n - (n >>> 2);
2256 >                        }
2257 >                    } finally {
2258 >                        sizeCtl = sc;
2259 >                    }
2260 >                }
2261              }
2262 +            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2263 +                break;
2264 +            else if (tab == table &&
2265 +                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2266 +                transfer(tab, null);
2267 +        }
2268 +    }
2269  
2270 <            while (nextSegmentIndex >= 0) {
2271 <                Segment<K,V> seg = segments[nextSegmentIndex--];
2272 <                if (seg.count != 0) {
2273 <                    currentTable = seg.table;
2274 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
2275 <                        if ( (nextEntry = currentTable[j]) != null) {
2276 <                            nextTableIndex = j - 1;
2270 >    /**
2271 >     * Moves and/or copies the nodes in each bin to new table. See
2272 >     * above for explanation.
2273 >     */
2274 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2275 >        int n = tab.length, stride;
2276 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2277 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2278 >        if (nextTab == null) {            // initiating
2279 >            try {
2280 >                @SuppressWarnings({"rawtypes","unchecked"})
2281 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2282 >                nextTab = nt;
2283 >            } catch (Throwable ex) {      // try to cope with OOME
2284 >                sizeCtl = Integer.MAX_VALUE;
2285 >                return;
2286 >            }
2287 >            nextTable = nextTab;
2288 >            transferOrigin = n;
2289 >            transferIndex = n;
2290 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2291 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2292 >                int nextk = (k > stride) ? k - stride : 0;
2293 >                for (int m = nextk; m < k; ++m)
2294 >                    nextTab[m] = rev;
2295 >                for (int m = n + nextk; m < n + k; ++m)
2296 >                    nextTab[m] = rev;
2297 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2298 >            }
2299 >        }
2300 >        int nextn = nextTab.length;
2301 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2302 >        boolean advance = true;
2303 >        boolean finishing = false; // to ensure sweep before committing nextTab
2304 >        for (int i = 0, bound = 0;;) {
2305 >            int nextIndex, nextBound, fh; Node<K,V> f;
2306 >            while (advance) {
2307 >                if (--i >= bound || finishing)
2308 >                    advance = false;
2309 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2310 >                    i = -1;
2311 >                    advance = false;
2312 >                }
2313 >                else if (U.compareAndSwapInt
2314 >                         (this, TRANSFERINDEX, nextIndex,
2315 >                          nextBound = (nextIndex > stride ?
2316 >                                       nextIndex - stride : 0))) {
2317 >                    bound = nextBound;
2318 >                    i = nextIndex - 1;
2319 >                    advance = false;
2320 >                }
2321 >            }
2322 >            if (i < 0 || i >= n || i + n >= nextn) {
2323 >                if (finishing) {
2324 >                    nextTable = null;
2325 >                    table = nextTab;
2326 >                    sizeCtl = (n << 1) - (n >>> 1);
2327 >                    return;
2328 >                }
2329 >                for (int sc;;) {
2330 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2331 >                        if (sc != -1)
2332                              return;
2333 +                        finishing = advance = true;
2334 +                        i = n; // recheck before commit
2335 +                        break;
2336 +                    }
2337 +                }
2338 +            }
2339 +            else if ((f = tabAt(tab, i)) == null) {
2340 +                if (casTabAt(tab, i, null, fwd)) {
2341 +                    setTabAt(nextTab, i, null);
2342 +                    setTabAt(nextTab, i + n, null);
2343 +                    advance = true;
2344 +                }
2345 +            }
2346 +            else if ((fh = f.hash) == MOVED)
2347 +                advance = true; // already processed
2348 +            else {
2349 +                synchronized (f) {
2350 +                    if (tabAt(tab, i) == f) {
2351 +                        Node<K,V> ln, hn;
2352 +                        if (fh >= 0) {
2353 +                            int runBit = fh & n;
2354 +                            Node<K,V> lastRun = f;
2355 +                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2356 +                                int b = p.hash & n;
2357 +                                if (b != runBit) {
2358 +                                    runBit = b;
2359 +                                    lastRun = p;
2360 +                                }
2361 +                            }
2362 +                            if (runBit == 0) {
2363 +                                ln = lastRun;
2364 +                                hn = null;
2365 +                            }
2366 +                            else {
2367 +                                hn = lastRun;
2368 +                                ln = null;
2369 +                            }
2370 +                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2371 +                                int ph = p.hash; K pk = p.key; V pv = p.val;
2372 +                                if ((ph & n) == 0)
2373 +                                    ln = new Node<K,V>(ph, pk, pv, ln);
2374 +                                else
2375 +                                    hn = new Node<K,V>(ph, pk, pv, hn);
2376 +                            }
2377 +                            setTabAt(nextTab, i, ln);
2378 +                            setTabAt(nextTab, i + n, hn);
2379 +                            setTabAt(tab, i, fwd);
2380 +                            advance = true;
2381 +                        }
2382 +                        else if (f instanceof TreeBin) {
2383 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2384 +                            TreeNode<K,V> lo = null, loTail = null;
2385 +                            TreeNode<K,V> hi = null, hiTail = null;
2386 +                            int lc = 0, hc = 0;
2387 +                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2388 +                                int h = e.hash;
2389 +                                TreeNode<K,V> p = new TreeNode<K,V>
2390 +                                    (h, e.key, e.val, null, null);
2391 +                                if ((h & n) == 0) {
2392 +                                    if ((p.prev = loTail) == null)
2393 +                                        lo = p;
2394 +                                    else
2395 +                                        loTail.next = p;
2396 +                                    loTail = p;
2397 +                                    ++lc;
2398 +                                }
2399 +                                else {
2400 +                                    if ((p.prev = hiTail) == null)
2401 +                                        hi = p;
2402 +                                    else
2403 +                                        hiTail.next = p;
2404 +                                    hiTail = p;
2405 +                                    ++hc;
2406 +                                }
2407 +                            }
2408 +                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2409 +                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2410 +                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2411 +                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2412 +                            setTabAt(nextTab, i, ln);
2413 +                            setTabAt(nextTab, i + n, hn);
2414 +                            setTabAt(tab, i, fwd);
2415 +                            advance = true;
2416                          }
2417                      }
2418                  }
2419              }
2420          }
2421 +    }
2422  
2423 <        public boolean hasNext() { return nextEntry != null; }
2423 >    /* ---------------- Counter support -------------- */
2424  
2425 <        HashEntry<K,V> nextEntry() {
2426 <            if (nextEntry == null)
2427 <                throw new NoSuchElementException();
2428 <            lastReturned = nextEntry;
2425 >    /**
2426 >     * A padded cell for distributing counts.  Adapted from LongAdder
2427 >     * and Striped64.  See their internal docs for explanation.
2428 >     */
2429 >    @sun.misc.Contended static final class CounterCell {
2430 >        volatile long value;
2431 >        CounterCell(long x) { value = x; }
2432 >    }
2433 >
2434 >    final long sumCount() {
2435 >        CounterCell[] as = counterCells; CounterCell a;
2436 >        long sum = baseCount;
2437 >        if (as != null) {
2438 >            for (int i = 0; i < as.length; ++i) {
2439 >                if ((a = as[i]) != null)
2440 >                    sum += a.value;
2441 >            }
2442 >        }
2443 >        return sum;
2444 >    }
2445 >
2446 >    // See LongAdder version for explanation
2447 >    private final void fullAddCount(long x, boolean wasUncontended) {
2448 >        int h;
2449 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2450 >            ThreadLocalRandom.localInit();      // force initialization
2451 >            h = ThreadLocalRandom.getProbe();
2452 >            wasUncontended = true;
2453 >        }
2454 >        boolean collide = false;                // True if last slot nonempty
2455 >        for (;;) {
2456 >            CounterCell[] as; CounterCell a; int n; long v;
2457 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2458 >                if ((a = as[(n - 1) & h]) == null) {
2459 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2460 >                        CounterCell r = new CounterCell(x); // Optimistic create
2461 >                        if (cellsBusy == 0 &&
2462 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2463 >                            boolean created = false;
2464 >                            try {               // Recheck under lock
2465 >                                CounterCell[] rs; int m, j;
2466 >                                if ((rs = counterCells) != null &&
2467 >                                    (m = rs.length) > 0 &&
2468 >                                    rs[j = (m - 1) & h] == null) {
2469 >                                    rs[j] = r;
2470 >                                    created = true;
2471 >                                }
2472 >                            } finally {
2473 >                                cellsBusy = 0;
2474 >                            }
2475 >                            if (created)
2476 >                                break;
2477 >                            continue;           // Slot is now non-empty
2478 >                        }
2479 >                    }
2480 >                    collide = false;
2481 >                }
2482 >                else if (!wasUncontended)       // CAS already known to fail
2483 >                    wasUncontended = true;      // Continue after rehash
2484 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2485 >                    break;
2486 >                else if (counterCells != as || n >= NCPU)
2487 >                    collide = false;            // At max size or stale
2488 >                else if (!collide)
2489 >                    collide = true;
2490 >                else if (cellsBusy == 0 &&
2491 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2492 >                    try {
2493 >                        if (counterCells == as) {// Expand table unless stale
2494 >                            CounterCell[] rs = new CounterCell[n << 1];
2495 >                            for (int i = 0; i < n; ++i)
2496 >                                rs[i] = as[i];
2497 >                            counterCells = rs;
2498 >                        }
2499 >                    } finally {
2500 >                        cellsBusy = 0;
2501 >                    }
2502 >                    collide = false;
2503 >                    continue;                   // Retry with expanded table
2504 >                }
2505 >                h = ThreadLocalRandom.advanceProbe(h);
2506 >            }
2507 >            else if (cellsBusy == 0 && counterCells == as &&
2508 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2509 >                boolean init = false;
2510 >                try {                           // Initialize table
2511 >                    if (counterCells == as) {
2512 >                        CounterCell[] rs = new CounterCell[2];
2513 >                        rs[h & 1] = new CounterCell(x);
2514 >                        counterCells = rs;
2515 >                        init = true;
2516 >                    }
2517 >                } finally {
2518 >                    cellsBusy = 0;
2519 >                }
2520 >                if (init)
2521 >                    break;
2522 >            }
2523 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2524 >                break;                          // Fall back on using base
2525 >        }
2526 >    }
2527 >
2528 >    /* ---------------- Conversion from/to TreeBins -------------- */
2529 >
2530 >    /**
2531 >     * Replaces all linked nodes in bin at given index unless table is
2532 >     * too small, in which case resizes instead.
2533 >     */
2534 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2535 >        Node<K,V> b; int n, sc;
2536 >        if (tab != null) {
2537 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2538 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2539 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2540 >                    transfer(tab, null);
2541 >            }
2542 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2543 >                synchronized (b) {
2544 >                    if (tabAt(tab, index) == b) {
2545 >                        TreeNode<K,V> hd = null, tl = null;
2546 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2547 >                            TreeNode<K,V> p =
2548 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2549 >                                                  null, null);
2550 >                            if ((p.prev = tl) == null)
2551 >                                hd = p;
2552 >                            else
2553 >                                tl.next = p;
2554 >                            tl = p;
2555 >                        }
2556 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2557 >                    }
2558 >                }
2559 >            }
2560 >        }
2561 >    }
2562 >
2563 >    /**
2564 >     * Returns a list on non-TreeNodes replacing those in given list.
2565 >     */
2566 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2567 >        Node<K,V> hd = null, tl = null;
2568 >        for (Node<K,V> q = b; q != null; q = q.next) {
2569 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2570 >            if (tl == null)
2571 >                hd = p;
2572 >            else
2573 >                tl.next = p;
2574 >            tl = p;
2575 >        }
2576 >        return hd;
2577 >    }
2578 >
2579 >    /* ---------------- TreeNodes -------------- */
2580 >
2581 >    /**
2582 >     * Nodes for use in TreeBins
2583 >     */
2584 >    static final class TreeNode<K,V> extends Node<K,V> {
2585 >        TreeNode<K,V> parent;  // red-black tree links
2586 >        TreeNode<K,V> left;
2587 >        TreeNode<K,V> right;
2588 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2589 >        boolean red;
2590 >
2591 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2592 >                 TreeNode<K,V> parent) {
2593 >            super(hash, key, val, next);
2594 >            this.parent = parent;
2595 >        }
2596 >
2597 >        Node<K,V> find(int h, Object k) {
2598 >            return findTreeNode(h, k, null);
2599 >        }
2600 >
2601 >        /**
2602 >         * Returns the TreeNode (or null if not found) for the given key
2603 >         * starting at given root.
2604 >         */
2605 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2606 >            if (k != null) {
2607 >                TreeNode<K,V> p = this;
2608 >                do  {
2609 >                    int ph, dir; K pk; TreeNode<K,V> q;
2610 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2611 >                    if ((ph = p.hash) > h)
2612 >                        p = pl;
2613 >                    else if (ph < h)
2614 >                        p = pr;
2615 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2616 >                        return p;
2617 >                    else if (pl == null && pr == null)
2618 >                        break;
2619 >                    else if ((kc != null ||
2620 >                              (kc = comparableClassFor(k)) != null) &&
2621 >                             (dir = compareComparables(kc, k, pk)) != 0)
2622 >                        p = (dir < 0) ? pl : pr;
2623 >                    else if (pl == null)
2624 >                        p = pr;
2625 >                    else if (pr == null ||
2626 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2627 >                        p = pl;
2628 >                    else
2629 >                        return q;
2630 >                } while (p != null);
2631 >            }
2632 >            return null;
2633 >        }
2634 >    }
2635 >
2636 >    /* ---------------- TreeBins -------------- */
2637 >
2638 >    /**
2639 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2640 >     * keys or values, but instead point to list of TreeNodes and
2641 >     * their root. They also maintain a parasitic read-write lock
2642 >     * forcing writers (who hold bin lock) to wait for readers (who do
2643 >     * not) to complete before tree restructuring operations.
2644 >     */
2645 >    static final class TreeBin<K,V> extends Node<K,V> {
2646 >        TreeNode<K,V> root;
2647 >        volatile TreeNode<K,V> first;
2648 >        volatile Thread waiter;
2649 >        volatile int lockState;
2650 >        // values for lockState
2651 >        static final int WRITER = 1; // set while holding write lock
2652 >        static final int WAITER = 2; // set when waiting for write lock
2653 >        static final int READER = 4; // increment value for setting read lock
2654 >
2655 >        /**
2656 >         * Creates bin with initial set of nodes headed by b.
2657 >         */
2658 >        TreeBin(TreeNode<K,V> b) {
2659 >            super(TREEBIN, null, null, null);
2660 >            this.first = b;
2661 >            TreeNode<K,V> r = null;
2662 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2663 >                next = (TreeNode<K,V>)x.next;
2664 >                x.left = x.right = null;
2665 >                if (r == null) {
2666 >                    x.parent = null;
2667 >                    x.red = false;
2668 >                    r = x;
2669 >                }
2670 >                else {
2671 >                    Object key = x.key;
2672 >                    int hash = x.hash;
2673 >                    Class<?> kc = null;
2674 >                    for (TreeNode<K,V> p = r;;) {
2675 >                        int dir, ph;
2676 >                        if ((ph = p.hash) > hash)
2677 >                            dir = -1;
2678 >                        else if (ph < hash)
2679 >                            dir = 1;
2680 >                        else if ((kc != null ||
2681 >                                  (kc = comparableClassFor(key)) != null))
2682 >                            dir = compareComparables(kc, key, p.key);
2683 >                        else
2684 >                            dir = 0;
2685 >                        TreeNode<K,V> xp = p;
2686 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2687 >                            x.parent = xp;
2688 >                            if (dir <= 0)
2689 >                                xp.left = x;
2690 >                            else
2691 >                                xp.right = x;
2692 >                            r = balanceInsertion(r, x);
2693 >                            break;
2694 >                        }
2695 >                    }
2696 >                }
2697 >            }
2698 >            this.root = r;
2699 >        }
2700 >
2701 >        /**
2702 >         * Acquires write lock for tree restructuring.
2703 >         */
2704 >        private final void lockRoot() {
2705 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2706 >                contendedLock(); // offload to separate method
2707 >        }
2708 >
2709 >        /**
2710 >         * Releases write lock for tree restructuring.
2711 >         */
2712 >        private final void unlockRoot() {
2713 >            lockState = 0;
2714 >        }
2715 >
2716 >        /**
2717 >         * Possibly blocks awaiting root lock.
2718 >         */
2719 >        private final void contendedLock() {
2720 >            boolean waiting = false;
2721 >            for (int s;;) {
2722 >                if (((s = lockState) & WRITER) == 0) {
2723 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2724 >                        if (waiting)
2725 >                            waiter = null;
2726 >                        return;
2727 >                    }
2728 >                }
2729 >                else if ((s | WAITER) == 0) {
2730 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2731 >                        waiting = true;
2732 >                        waiter = Thread.currentThread();
2733 >                    }
2734 >                }
2735 >                else if (waiting)
2736 >                    LockSupport.park(this);
2737 >            }
2738 >        }
2739 >
2740 >        /**
2741 >         * Returns matching node or null if none. Tries to search
2742 >         * using tree comparisons from root, but continues linear
2743 >         * search when lock not available.
2744 >         */
2745 >        final Node<K,V> find(int h, Object k) {
2746 >            if (k != null) {
2747 >                for (Node<K,V> e = first; e != null; e = e.next) {
2748 >                    int s; K ek;
2749 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2750 >                        if (e.hash == h &&
2751 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2752 >                            return e;
2753 >                    }
2754 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2755 >                                                 s + READER)) {
2756 >                        TreeNode<K,V> r, p;
2757 >                        try {
2758 >                            p = ((r = root) == null ? null :
2759 >                                 r.findTreeNode(h, k, null));
2760 >                        } finally {
2761 >                            Thread w;
2762 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2763 >                                (READER|WAITER) && (w = waiter) != null)
2764 >                                LockSupport.unpark(w);
2765 >                        }
2766 >                        return p;
2767 >                    }
2768 >                }
2769 >            }
2770 >            return null;
2771 >        }
2772 >
2773 >        /**
2774 >         * Finds or adds a node.
2775 >         * @return null if added
2776 >         */
2777 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2778 >            Class<?> kc = null;
2779 >            for (TreeNode<K,V> p = root;;) {
2780 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2781 >                if (p == null) {
2782 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2783 >                    break;
2784 >                }
2785 >                else if ((ph = p.hash) > h)
2786 >                    dir = -1;
2787 >                else if (ph < h)
2788 >                    dir = 1;
2789 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2790 >                    return p;
2791 >                else if ((kc == null &&
2792 >                          (kc = comparableClassFor(k)) == null) ||
2793 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2794 >                    if (p.left == null)
2795 >                        dir = 1;
2796 >                    else if ((pr = p.right) == null ||
2797 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2798 >                        dir = -1;
2799 >                    else
2800 >                        return q;
2801 >                }
2802 >                TreeNode<K,V> xp = p;
2803 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2804 >                    TreeNode<K,V> x, f = first;
2805 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2806 >                    if (f != null)
2807 >                        f.prev = x;
2808 >                    if (dir < 0)
2809 >                        xp.left = x;
2810 >                    else
2811 >                        xp.right = x;
2812 >                    if (!xp.red)
2813 >                        x.red = true;
2814 >                    else {
2815 >                        lockRoot();
2816 >                        try {
2817 >                            root = balanceInsertion(root, x);
2818 >                        } finally {
2819 >                            unlockRoot();
2820 >                        }
2821 >                    }
2822 >                    break;
2823 >                }
2824 >            }
2825 >            assert checkInvariants(root);
2826 >            return null;
2827 >        }
2828 >
2829 >        /**
2830 >         * Removes the given node, that must be present before this
2831 >         * call.  This is messier than typical red-black deletion code
2832 >         * because we cannot swap the contents of an interior node
2833 >         * with a leaf successor that is pinned by "next" pointers
2834 >         * that are accessible independently of lock. So instead we
2835 >         * swap the tree linkages.
2836 >         *
2837 >         * @return true if now too small, so should be untreeified
2838 >         */
2839 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2840 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2841 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2842 >            TreeNode<K,V> r, rl;
2843 >            if (pred == null)
2844 >                first = next;
2845 >            else
2846 >                pred.next = next;
2847 >            if (next != null)
2848 >                next.prev = pred;
2849 >            if (first == null) {
2850 >                root = null;
2851 >                return true;
2852 >            }
2853 >            if ((r = root) == null || r.right == null || // too small
2854 >                (rl = r.left) == null || rl.left == null)
2855 >                return true;
2856 >            lockRoot();
2857 >            try {
2858 >                TreeNode<K,V> replacement;
2859 >                TreeNode<K,V> pl = p.left;
2860 >                TreeNode<K,V> pr = p.right;
2861 >                if (pl != null && pr != null) {
2862 >                    TreeNode<K,V> s = pr, sl;
2863 >                    while ((sl = s.left) != null) // find successor
2864 >                        s = sl;
2865 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2866 >                    TreeNode<K,V> sr = s.right;
2867 >                    TreeNode<K,V> pp = p.parent;
2868 >                    if (s == pr) { // p was s's direct parent
2869 >                        p.parent = s;
2870 >                        s.right = p;
2871 >                    }
2872 >                    else {
2873 >                        TreeNode<K,V> sp = s.parent;
2874 >                        if ((p.parent = sp) != null) {
2875 >                            if (s == sp.left)
2876 >                                sp.left = p;
2877 >                            else
2878 >                                sp.right = p;
2879 >                        }
2880 >                        if ((s.right = pr) != null)
2881 >                            pr.parent = s;
2882 >                    }
2883 >                    p.left = null;
2884 >                    if ((p.right = sr) != null)
2885 >                        sr.parent = p;
2886 >                    if ((s.left = pl) != null)
2887 >                        pl.parent = s;
2888 >                    if ((s.parent = pp) == null)
2889 >                        r = s;
2890 >                    else if (p == pp.left)
2891 >                        pp.left = s;
2892 >                    else
2893 >                        pp.right = s;
2894 >                    if (sr != null)
2895 >                        replacement = sr;
2896 >                    else
2897 >                        replacement = p;
2898 >                }
2899 >                else if (pl != null)
2900 >                    replacement = pl;
2901 >                else if (pr != null)
2902 >                    replacement = pr;
2903 >                else
2904 >                    replacement = p;
2905 >                if (replacement != p) {
2906 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2907 >                    if (pp == null)
2908 >                        r = replacement;
2909 >                    else if (p == pp.left)
2910 >                        pp.left = replacement;
2911 >                    else
2912 >                        pp.right = replacement;
2913 >                    p.left = p.right = p.parent = null;
2914 >                }
2915 >
2916 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2917 >
2918 >                if (p == replacement) {  // detach pointers
2919 >                    TreeNode<K,V> pp;
2920 >                    if ((pp = p.parent) != null) {
2921 >                        if (p == pp.left)
2922 >                            pp.left = null;
2923 >                        else if (p == pp.right)
2924 >                            pp.right = null;
2925 >                        p.parent = null;
2926 >                    }
2927 >                }
2928 >            } finally {
2929 >                unlockRoot();
2930 >            }
2931 >            assert checkInvariants(root);
2932 >            return false;
2933 >        }
2934 >
2935 >        /* ------------------------------------------------------------ */
2936 >        // Red-black tree methods, all adapted from CLR
2937 >
2938 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2939 >                                              TreeNode<K,V> p) {
2940 >            TreeNode<K,V> r, pp, rl;
2941 >            if (p != null && (r = p.right) != null) {
2942 >                if ((rl = p.right = r.left) != null)
2943 >                    rl.parent = p;
2944 >                if ((pp = r.parent = p.parent) == null)
2945 >                    (root = r).red = false;
2946 >                else if (pp.left == p)
2947 >                    pp.left = r;
2948 >                else
2949 >                    pp.right = r;
2950 >                r.left = p;
2951 >                p.parent = r;
2952 >            }
2953 >            return root;
2954 >        }
2955 >
2956 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2957 >                                               TreeNode<K,V> p) {
2958 >            TreeNode<K,V> l, pp, lr;
2959 >            if (p != null && (l = p.left) != null) {
2960 >                if ((lr = p.left = l.right) != null)
2961 >                    lr.parent = p;
2962 >                if ((pp = l.parent = p.parent) == null)
2963 >                    (root = l).red = false;
2964 >                else if (pp.right == p)
2965 >                    pp.right = l;
2966 >                else
2967 >                    pp.left = l;
2968 >                l.right = p;
2969 >                p.parent = l;
2970 >            }
2971 >            return root;
2972 >        }
2973 >
2974 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2975 >                                                    TreeNode<K,V> x) {
2976 >            x.red = true;
2977 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2978 >                if ((xp = x.parent) == null) {
2979 >                    x.red = false;
2980 >                    return x;
2981 >                }
2982 >                else if (!xp.red || (xpp = xp.parent) == null)
2983 >                    return root;
2984 >                if (xp == (xppl = xpp.left)) {
2985 >                    if ((xppr = xpp.right) != null && xppr.red) {
2986 >                        xppr.red = false;
2987 >                        xp.red = false;
2988 >                        xpp.red = true;
2989 >                        x = xpp;
2990 >                    }
2991 >                    else {
2992 >                        if (x == xp.right) {
2993 >                            root = rotateLeft(root, x = xp);
2994 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2995 >                        }
2996 >                        if (xp != null) {
2997 >                            xp.red = false;
2998 >                            if (xpp != null) {
2999 >                                xpp.red = true;
3000 >                                root = rotateRight(root, xpp);
3001 >                            }
3002 >                        }
3003 >                    }
3004 >                }
3005 >                else {
3006 >                    if (xppl != null && xppl.red) {
3007 >                        xppl.red = false;
3008 >                        xp.red = false;
3009 >                        xpp.red = true;
3010 >                        x = xpp;
3011 >                    }
3012 >                    else {
3013 >                        if (x == xp.left) {
3014 >                            root = rotateRight(root, x = xp);
3015 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3016 >                        }
3017 >                        if (xp != null) {
3018 >                            xp.red = false;
3019 >                            if (xpp != null) {
3020 >                                xpp.red = true;
3021 >                                root = rotateLeft(root, xpp);
3022 >                            }
3023 >                        }
3024 >                    }
3025 >                }
3026 >            }
3027 >        }
3028 >
3029 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3030 >                                                   TreeNode<K,V> x) {
3031 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3032 >                if (x == null || x == root)
3033 >                    return root;
3034 >                else if ((xp = x.parent) == null) {
3035 >                    x.red = false;
3036 >                    return x;
3037 >                }
3038 >                else if (x.red) {
3039 >                    x.red = false;
3040 >                    return root;
3041 >                }
3042 >                else if ((xpl = xp.left) == x) {
3043 >                    if ((xpr = xp.right) != null && xpr.red) {
3044 >                        xpr.red = false;
3045 >                        xp.red = true;
3046 >                        root = rotateLeft(root, xp);
3047 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3048 >                    }
3049 >                    if (xpr == null)
3050 >                        x = xp;
3051 >                    else {
3052 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3053 >                        if ((sr == null || !sr.red) &&
3054 >                            (sl == null || !sl.red)) {
3055 >                            xpr.red = true;
3056 >                            x = xp;
3057 >                        }
3058 >                        else {
3059 >                            if (sr == null || !sr.red) {
3060 >                                if (sl != null)
3061 >                                    sl.red = false;
3062 >                                xpr.red = true;
3063 >                                root = rotateRight(root, xpr);
3064 >                                xpr = (xp = x.parent) == null ?
3065 >                                    null : xp.right;
3066 >                            }
3067 >                            if (xpr != null) {
3068 >                                xpr.red = (xp == null) ? false : xp.red;
3069 >                                if ((sr = xpr.right) != null)
3070 >                                    sr.red = false;
3071 >                            }
3072 >                            if (xp != null) {
3073 >                                xp.red = false;
3074 >                                root = rotateLeft(root, xp);
3075 >                            }
3076 >                            x = root;
3077 >                        }
3078 >                    }
3079 >                }
3080 >                else { // symmetric
3081 >                    if (xpl != null && xpl.red) {
3082 >                        xpl.red = false;
3083 >                        xp.red = true;
3084 >                        root = rotateRight(root, xp);
3085 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3086 >                    }
3087 >                    if (xpl == null)
3088 >                        x = xp;
3089 >                    else {
3090 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3091 >                        if ((sl == null || !sl.red) &&
3092 >                            (sr == null || !sr.red)) {
3093 >                            xpl.red = true;
3094 >                            x = xp;
3095 >                        }
3096 >                        else {
3097 >                            if (sl == null || !sl.red) {
3098 >                                if (sr != null)
3099 >                                    sr.red = false;
3100 >                                xpl.red = true;
3101 >                                root = rotateLeft(root, xpl);
3102 >                                xpl = (xp = x.parent) == null ?
3103 >                                    null : xp.left;
3104 >                            }
3105 >                            if (xpl != null) {
3106 >                                xpl.red = (xp == null) ? false : xp.red;
3107 >                                if ((sl = xpl.left) != null)
3108 >                                    sl.red = false;
3109 >                            }
3110 >                            if (xp != null) {
3111 >                                xp.red = false;
3112 >                                root = rotateRight(root, xp);
3113 >                            }
3114 >                            x = root;
3115 >                        }
3116 >                    }
3117 >                }
3118 >            }
3119 >        }
3120 >
3121 >        /**
3122 >         * Recursive invariant check
3123 >         */
3124 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3125 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3126 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3127 >            if (tb != null && tb.next != t)
3128 >                return false;
3129 >            if (tn != null && tn.prev != t)
3130 >                return false;
3131 >            if (tp != null && t != tp.left && t != tp.right)
3132 >                return false;
3133 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3134 >                return false;
3135 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3136 >                return false;
3137 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3138 >                return false;
3139 >            if (tl != null && !checkInvariants(tl))
3140 >                return false;
3141 >            if (tr != null && !checkInvariants(tr))
3142 >                return false;
3143 >            return true;
3144 >        }
3145 >
3146 >        private static final sun.misc.Unsafe U;
3147 >        private static final long LOCKSTATE;
3148 >        static {
3149 >            try {
3150 >                U = sun.misc.Unsafe.getUnsafe();
3151 >                Class<?> k = TreeBin.class;
3152 >                LOCKSTATE = U.objectFieldOffset
3153 >                    (k.getDeclaredField("lockState"));
3154 >            } catch (Exception e) {
3155 >                throw new Error(e);
3156 >            }
3157 >        }
3158 >    }
3159 >
3160 >    /* ----------------Table Traversal -------------- */
3161 >
3162 >    /**
3163 >     * Encapsulates traversal for methods such as containsValue; also
3164 >     * serves as a base class for other iterators and spliterators.
3165 >     *
3166 >     * Method advance visits once each still-valid node that was
3167 >     * reachable upon iterator construction. It might miss some that
3168 >     * were added to a bin after the bin was visited, which is OK wrt
3169 >     * consistency guarantees. Maintaining this property in the face
3170 >     * of possible ongoing resizes requires a fair amount of
3171 >     * bookkeeping state that is difficult to optimize away amidst
3172 >     * volatile accesses.  Even so, traversal maintains reasonable
3173 >     * throughput.
3174 >     *
3175 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3176 >     * However, if the table has been resized, then all future steps
3177 >     * must traverse both the bin at the current index as well as at
3178 >     * (index + baseSize); and so on for further resizings. To
3179 >     * paranoically cope with potential sharing by users of iterators
3180 >     * across threads, iteration terminates if a bounds checks fails
3181 >     * for a table read.
3182 >     */
3183 >    static class Traverser<K,V> {
3184 >        Node<K,V>[] tab;        // current table; updated if resized
3185 >        Node<K,V> next;         // the next entry to use
3186 >        int index;              // index of bin to use next
3187 >        int baseIndex;          // current index of initial table
3188 >        int baseLimit;          // index bound for initial table
3189 >        final int baseSize;     // initial table size
3190 >
3191 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3192 >            this.tab = tab;
3193 >            this.baseSize = size;
3194 >            this.baseIndex = this.index = index;
3195 >            this.baseLimit = limit;
3196 >            this.next = null;
3197 >        }
3198 >
3199 >        /**
3200 >         * Advances if possible, returning next valid node, or null if none.
3201 >         */
3202 >        final Node<K,V> advance() {
3203 >            Node<K,V> e;
3204 >            if ((e = next) != null)
3205 >                e = e.next;
3206 >            for (;;) {
3207 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3208 >                if (e != null)
3209 >                    return next = e;
3210 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3211 >                    (n = t.length) <= (i = index) || i < 0)
3212 >                    return next = null;
3213 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3214 >                    if (e instanceof ForwardingNode) {
3215 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3216 >                        e = null;
3217 >                        continue;
3218 >                    }
3219 >                    else if (e instanceof TreeBin)
3220 >                        e = ((TreeBin<K,V>)e).first;
3221 >                    else
3222 >                        e = null;
3223 >                }
3224 >                if ((index += baseSize) >= n)
3225 >                    index = ++baseIndex;    // visit upper slots if present
3226 >            }
3227 >        }
3228 >    }
3229 >
3230 >    /**
3231 >     * Base of key, value, and entry Iterators. Adds fields to
3232 >     * Traverser to support iterator.remove.
3233 >     */
3234 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3235 >        final ConcurrentHashMap<K,V> map;
3236 >        Node<K,V> lastReturned;
3237 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3238 >                    ConcurrentHashMap<K,V> map) {
3239 >            super(tab, size, index, limit);
3240 >            this.map = map;
3241              advance();
1101            return lastReturned;
3242          }
3243  
3244 <        public void remove() {
3245 <            if (lastReturned == null)
3244 >        public final boolean hasNext() { return next != null; }
3245 >        public final boolean hasMoreElements() { return next != null; }
3246 >
3247 >        public final void remove() {
3248 >            Node<K,V> p;
3249 >            if ((p = lastReturned) == null)
3250                  throw new IllegalStateException();
1107            ConcurrentHashMap.this.remove(lastReturned.key);
3251              lastReturned = null;
3252 +            map.replaceNode(p.key, null, null);
3253          }
3254      }
3255  
3256 <    final class KeyIterator
3257 <        extends HashIterator
3258 <        implements Iterator<K>, Enumeration<K>
3259 <    {
3260 <        public K next()        { return super.nextEntry().key; }
3261 <        public K nextElement() { return super.nextEntry().key; }
3256 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3257 >        implements Iterator<K>, Enumeration<K> {
3258 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3259 >                    ConcurrentHashMap<K,V> map) {
3260 >            super(tab, index, size, limit, map);
3261 >        }
3262 >
3263 >        public final K next() {
3264 >            Node<K,V> p;
3265 >            if ((p = next) == null)
3266 >                throw new NoSuchElementException();
3267 >            K k = p.key;
3268 >            lastReturned = p;
3269 >            advance();
3270 >            return k;
3271 >        }
3272 >
3273 >        public final K nextElement() { return next(); }
3274      }
3275  
3276 <    final class ValueIterator
3277 <        extends HashIterator
3278 <        implements Iterator<V>, Enumeration<V>
3279 <    {
3280 <        public V next()        { return super.nextEntry().value; }
3281 <        public V nextElement() { return super.nextEntry().value; }
3276 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3277 >        implements Iterator<V>, Enumeration<V> {
3278 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3279 >                      ConcurrentHashMap<K,V> map) {
3280 >            super(tab, index, size, limit, map);
3281 >        }
3282 >
3283 >        public final V next() {
3284 >            Node<K,V> p;
3285 >            if ((p = next) == null)
3286 >                throw new NoSuchElementException();
3287 >            V v = p.val;
3288 >            lastReturned = p;
3289 >            advance();
3290 >            return v;
3291 >        }
3292 >
3293 >        public final V nextElement() { return next(); }
3294 >    }
3295 >
3296 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3297 >        implements Iterator<Map.Entry<K,V>> {
3298 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3299 >                      ConcurrentHashMap<K,V> map) {
3300 >            super(tab, index, size, limit, map);
3301 >        }
3302 >
3303 >        public final Map.Entry<K,V> next() {
3304 >            Node<K,V> p;
3305 >            if ((p = next) == null)
3306 >                throw new NoSuchElementException();
3307 >            K k = p.key;
3308 >            V v = p.val;
3309 >            lastReturned = p;
3310 >            advance();
3311 >            return new MapEntry<K,V>(k, v, map);
3312 >        }
3313      }
3314  
3315      /**
3316 <     * Custom Entry class used by EntryIterator.next(), that relays
1130 <     * setValue changes to the underlying map.
3316 >     * Exported Entry for EntryIterator
3317       */
3318 <    final class WriteThroughEntry
3319 <        extends AbstractMap.SimpleEntry<K,V>
3320 <    {
3321 <        WriteThroughEntry(K k, V v) {
3322 <            super(k,v);
3318 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3319 >        final K key; // non-null
3320 >        V val;       // non-null
3321 >        final ConcurrentHashMap<K,V> map;
3322 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3323 >            this.key = key;
3324 >            this.val = val;
3325 >            this.map = map;
3326 >        }
3327 >        public K getKey()        { return key; }
3328 >        public V getValue()      { return val; }
3329 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3330 >        public String toString() { return key + "=" + val; }
3331 >
3332 >        public boolean equals(Object o) {
3333 >            Object k, v; Map.Entry<?,?> e;
3334 >            return ((o instanceof Map.Entry) &&
3335 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3336 >                    (v = e.getValue()) != null &&
3337 >                    (k == key || k.equals(key)) &&
3338 >                    (v == val || v.equals(val)));
3339          }
3340  
3341          /**
3342 <         * Set our entry's value and write through to the map. The
3343 <         * value to return is somewhat arbitrary here. Since a
3344 <         * WriteThroughEntry does not necessarily track asynchronous
3345 <         * changes, the most recent "previous" value could be
3346 <         * different from what we return (or could even have been
3347 <         * removed in which case the put will re-establish). We do not
1146 <         * and cannot guarantee more.
3342 >         * Sets our entry's value and writes through to the map. The
3343 >         * value to return is somewhat arbitrary here. Since we do not
3344 >         * necessarily track asynchronous changes, the most recent
3345 >         * "previous" value could be different from what we return (or
3346 >         * could even have been removed, in which case the put will
3347 >         * re-establish). We do not and cannot guarantee more.
3348           */
3349 <        public V setValue(V value) {
3349 >        public V setValue(V value) {
3350              if (value == null) throw new NullPointerException();
3351 <            V v = super.setValue(value);
3352 <            ConcurrentHashMap.this.put(getKey(), value);
3351 >            V v = val;
3352 >            val = value;
3353 >            map.put(key, value);
3354              return v;
3355          }
3356      }
3357  
3358 <    final class EntryIterator
3359 <        extends HashIterator
3360 <        implements Iterator<Entry<K,V>>
3361 <    {
3362 <        public Map.Entry<K,V> next() {
3363 <            HashEntry<K,V> e = super.nextEntry();
3364 <            return new WriteThroughEntry(e.key, e.value);
3358 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3359 >        implements Spliterator<K> {
3360 >        long est;               // size estimate
3361 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3362 >                       long est) {
3363 >            super(tab, size, index, limit);
3364 >            this.est = est;
3365 >        }
3366 >
3367 >        public Spliterator<K> trySplit() {
3368 >            int i, f, h;
3369 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3370 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3371 >                                        f, est >>>= 1);
3372 >        }
3373 >
3374 >        public void forEachRemaining(Consumer<? super K> action) {
3375 >            if (action == null) throw new NullPointerException();
3376 >            for (Node<K,V> p; (p = advance()) != null;)
3377 >                action.accept(p.key);
3378 >        }
3379 >
3380 >        public boolean tryAdvance(Consumer<? super K> action) {
3381 >            if (action == null) throw new NullPointerException();
3382 >            Node<K,V> p;
3383 >            if ((p = advance()) == null)
3384 >                return false;
3385 >            action.accept(p.key);
3386 >            return true;
3387 >        }
3388 >
3389 >        public long estimateSize() { return est; }
3390 >
3391 >        public int characteristics() {
3392 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3393 >                Spliterator.NONNULL;
3394          }
3395      }
3396  
3397 <    final class KeySet extends AbstractSet<K> {
3398 <        public Iterator<K> iterator() {
3399 <            return new KeyIterator();
3397 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3398 >        implements Spliterator<V> {
3399 >        long est;               // size estimate
3400 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3401 >                         long est) {
3402 >            super(tab, size, index, limit);
3403 >            this.est = est;
3404 >        }
3405 >
3406 >        public Spliterator<V> trySplit() {
3407 >            int i, f, h;
3408 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3409 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3410 >                                          f, est >>>= 1);
3411 >        }
3412 >
3413 >        public void forEachRemaining(Consumer<? super V> action) {
3414 >            if (action == null) throw new NullPointerException();
3415 >            for (Node<K,V> p; (p = advance()) != null;)
3416 >                action.accept(p.val);
3417 >        }
3418 >
3419 >        public boolean tryAdvance(Consumer<? super V> action) {
3420 >            if (action == null) throw new NullPointerException();
3421 >            Node<K,V> p;
3422 >            if ((p = advance()) == null)
3423 >                return false;
3424 >            action.accept(p.val);
3425 >            return true;
3426          }
3427 <        public int size() {
3428 <            return ConcurrentHashMap.this.size();
3427 >
3428 >        public long estimateSize() { return est; }
3429 >
3430 >        public int characteristics() {
3431 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3432          }
3433 <        public boolean contains(Object o) {
3434 <            return ConcurrentHashMap.this.containsKey(o);
3433 >    }
3434 >
3435 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3436 >        implements Spliterator<Map.Entry<K,V>> {
3437 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3438 >        long est;               // size estimate
3439 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3440 >                         long est, ConcurrentHashMap<K,V> map) {
3441 >            super(tab, size, index, limit);
3442 >            this.map = map;
3443 >            this.est = est;
3444 >        }
3445 >
3446 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3447 >            int i, f, h;
3448 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3449 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3450 >                                          f, est >>>= 1, map);
3451 >        }
3452 >
3453 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3454 >            if (action == null) throw new NullPointerException();
3455 >            for (Node<K,V> p; (p = advance()) != null; )
3456 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3457 >        }
3458 >
3459 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3460 >            if (action == null) throw new NullPointerException();
3461 >            Node<K,V> p;
3462 >            if ((p = advance()) == null)
3463 >                return false;
3464 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3465 >            return true;
3466          }
3467 <        public boolean remove(Object o) {
3468 <            return ConcurrentHashMap.this.remove(o) != null;
3467 >
3468 >        public long estimateSize() { return est; }
3469 >
3470 >        public int characteristics() {
3471 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3472 >                Spliterator.NONNULL;
3473 >        }
3474 >    }
3475 >
3476 >    // Parallel bulk operations
3477 >
3478 >    /**
3479 >     * Computes initial batch value for bulk tasks. The returned value
3480 >     * is approximately exp2 of the number of times (minus one) to
3481 >     * split task by two before executing leaf action. This value is
3482 >     * faster to compute and more convenient to use as a guide to
3483 >     * splitting than is the depth, since it is used while dividing by
3484 >     * two anyway.
3485 >     */
3486 >    final int batchFor(long b) {
3487 >        long n;
3488 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3489 >            return 0;
3490 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3491 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3492 >    }
3493 >
3494 >    /**
3495 >     * Performs the given action for each (key, value).
3496 >     *
3497 >     * @param parallelismThreshold the (estimated) number of elements
3498 >     * needed for this operation to be executed in parallel
3499 >     * @param action the action
3500 >     * @since 1.8
3501 >     */
3502 >    public void forEach(long parallelismThreshold,
3503 >                        BiConsumer<? super K,? super V> action) {
3504 >        if (action == null) throw new NullPointerException();
3505 >        new ForEachMappingTask<K,V>
3506 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3507 >             action).invoke();
3508 >    }
3509 >
3510 >    /**
3511 >     * Performs the given action for each non-null transformation
3512 >     * of each (key, value).
3513 >     *
3514 >     * @param parallelismThreshold the (estimated) number of elements
3515 >     * needed for this operation to be executed in parallel
3516 >     * @param transformer a function returning the transformation
3517 >     * for an element, or null if there is no transformation (in
3518 >     * which case the action is not applied)
3519 >     * @param action the action
3520 >     * @since 1.8
3521 >     */
3522 >    public <U> void forEach(long parallelismThreshold,
3523 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3524 >                            Consumer<? super U> action) {
3525 >        if (transformer == null || action == null)
3526 >            throw new NullPointerException();
3527 >        new ForEachTransformedMappingTask<K,V,U>
3528 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3529 >             transformer, action).invoke();
3530 >    }
3531 >
3532 >    /**
3533 >     * Returns a non-null result from applying the given search
3534 >     * function on each (key, value), or null if none.  Upon
3535 >     * success, further element processing is suppressed and the
3536 >     * results of any other parallel invocations of the search
3537 >     * function are ignored.
3538 >     *
3539 >     * @param parallelismThreshold the (estimated) number of elements
3540 >     * needed for this operation to be executed in parallel
3541 >     * @param searchFunction a function returning a non-null
3542 >     * result on success, else null
3543 >     * @return a non-null result from applying the given search
3544 >     * function on each (key, value), or null if none
3545 >     * @since 1.8
3546 >     */
3547 >    public <U> U search(long parallelismThreshold,
3548 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3549 >        if (searchFunction == null) throw new NullPointerException();
3550 >        return new SearchMappingsTask<K,V,U>
3551 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3552 >             searchFunction, new AtomicReference<U>()).invoke();
3553 >    }
3554 >
3555 >    /**
3556 >     * Returns the result of accumulating the given transformation
3557 >     * of all (key, value) pairs using the given reducer to
3558 >     * combine values, or null if none.
3559 >     *
3560 >     * @param parallelismThreshold the (estimated) number of elements
3561 >     * needed for this operation to be executed in parallel
3562 >     * @param transformer a function returning the transformation
3563 >     * for an element, or null if there is no transformation (in
3564 >     * which case it is not combined)
3565 >     * @param reducer a commutative associative combining function
3566 >     * @return the result of accumulating the given transformation
3567 >     * of all (key, value) pairs
3568 >     * @since 1.8
3569 >     */
3570 >    public <U> U reduce(long parallelismThreshold,
3571 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3572 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3573 >        if (transformer == null || reducer == null)
3574 >            throw new NullPointerException();
3575 >        return new MapReduceMappingsTask<K,V,U>
3576 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3577 >             null, transformer, reducer).invoke();
3578 >    }
3579 >
3580 >    /**
3581 >     * Returns the result of accumulating the given transformation
3582 >     * of all (key, value) pairs using the given reducer to
3583 >     * combine values, and the given basis as an identity value.
3584 >     *
3585 >     * @param parallelismThreshold the (estimated) number of elements
3586 >     * needed for this operation to be executed in parallel
3587 >     * @param transformer a function returning the transformation
3588 >     * for an element
3589 >     * @param basis the identity (initial default value) for the reduction
3590 >     * @param reducer a commutative associative combining function
3591 >     * @return the result of accumulating the given transformation
3592 >     * of all (key, value) pairs
3593 >     * @since 1.8
3594 >     */
3595 >    public double reduceToDouble(long parallelismThreshold,
3596 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3597 >                                 double basis,
3598 >                                 DoubleBinaryOperator reducer) {
3599 >        if (transformer == null || reducer == null)
3600 >            throw new NullPointerException();
3601 >        return new MapReduceMappingsToDoubleTask<K,V>
3602 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3603 >             null, transformer, basis, reducer).invoke();
3604 >    }
3605 >
3606 >    /**
3607 >     * Returns the result of accumulating the given transformation
3608 >     * of all (key, value) pairs using the given reducer to
3609 >     * combine values, and the given basis as an identity value.
3610 >     *
3611 >     * @param parallelismThreshold the (estimated) number of elements
3612 >     * needed for this operation to be executed in parallel
3613 >     * @param transformer a function returning the transformation
3614 >     * for an element
3615 >     * @param basis the identity (initial default value) for the reduction
3616 >     * @param reducer a commutative associative combining function
3617 >     * @return the result of accumulating the given transformation
3618 >     * of all (key, value) pairs
3619 >     * @since 1.8
3620 >     */
3621 >    public long reduceToLong(long parallelismThreshold,
3622 >                             ToLongBiFunction<? super K, ? super V> transformer,
3623 >                             long basis,
3624 >                             LongBinaryOperator reducer) {
3625 >        if (transformer == null || reducer == null)
3626 >            throw new NullPointerException();
3627 >        return new MapReduceMappingsToLongTask<K,V>
3628 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3629 >             null, transformer, basis, reducer).invoke();
3630 >    }
3631 >
3632 >    /**
3633 >     * Returns the result of accumulating the given transformation
3634 >     * of all (key, value) pairs using the given reducer to
3635 >     * combine values, and the given basis as an identity value.
3636 >     *
3637 >     * @param parallelismThreshold the (estimated) number of elements
3638 >     * needed for this operation to be executed in parallel
3639 >     * @param transformer a function returning the transformation
3640 >     * for an element
3641 >     * @param basis the identity (initial default value) for the reduction
3642 >     * @param reducer a commutative associative combining function
3643 >     * @return the result of accumulating the given transformation
3644 >     * of all (key, value) pairs
3645 >     * @since 1.8
3646 >     */
3647 >    public int reduceToInt(long parallelismThreshold,
3648 >                           ToIntBiFunction<? super K, ? super V> transformer,
3649 >                           int basis,
3650 >                           IntBinaryOperator reducer) {
3651 >        if (transformer == null || reducer == null)
3652 >            throw new NullPointerException();
3653 >        return new MapReduceMappingsToIntTask<K,V>
3654 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3655 >             null, transformer, basis, reducer).invoke();
3656 >    }
3657 >
3658 >    /**
3659 >     * Performs the given action for each key.
3660 >     *
3661 >     * @param parallelismThreshold the (estimated) number of elements
3662 >     * needed for this operation to be executed in parallel
3663 >     * @param action the action
3664 >     * @since 1.8
3665 >     */
3666 >    public void forEachKey(long parallelismThreshold,
3667 >                           Consumer<? super K> action) {
3668 >        if (action == null) throw new NullPointerException();
3669 >        new ForEachKeyTask<K,V>
3670 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3671 >             action).invoke();
3672 >    }
3673 >
3674 >    /**
3675 >     * Performs the given action for each non-null transformation
3676 >     * of each key.
3677 >     *
3678 >     * @param parallelismThreshold the (estimated) number of elements
3679 >     * needed for this operation to be executed in parallel
3680 >     * @param transformer a function returning the transformation
3681 >     * for an element, or null if there is no transformation (in
3682 >     * which case the action is not applied)
3683 >     * @param action the action
3684 >     * @since 1.8
3685 >     */
3686 >    public <U> void forEachKey(long parallelismThreshold,
3687 >                               Function<? super K, ? extends U> transformer,
3688 >                               Consumer<? super U> action) {
3689 >        if (transformer == null || action == null)
3690 >            throw new NullPointerException();
3691 >        new ForEachTransformedKeyTask<K,V,U>
3692 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3693 >             transformer, action).invoke();
3694 >    }
3695 >
3696 >    /**
3697 >     * Returns a non-null result from applying the given search
3698 >     * function on each key, or null if none. Upon success,
3699 >     * further element processing is suppressed and the results of
3700 >     * any other parallel invocations of the search function are
3701 >     * ignored.
3702 >     *
3703 >     * @param parallelismThreshold the (estimated) number of elements
3704 >     * needed for this operation to be executed in parallel
3705 >     * @param searchFunction a function returning a non-null
3706 >     * result on success, else null
3707 >     * @return a non-null result from applying the given search
3708 >     * function on each key, or null if none
3709 >     * @since 1.8
3710 >     */
3711 >    public <U> U searchKeys(long parallelismThreshold,
3712 >                            Function<? super K, ? extends U> searchFunction) {
3713 >        if (searchFunction == null) throw new NullPointerException();
3714 >        return new SearchKeysTask<K,V,U>
3715 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3716 >             searchFunction, new AtomicReference<U>()).invoke();
3717 >    }
3718 >
3719 >    /**
3720 >     * Returns the result of accumulating all keys using the given
3721 >     * reducer to combine values, or null if none.
3722 >     *
3723 >     * @param parallelismThreshold the (estimated) number of elements
3724 >     * needed for this operation to be executed in parallel
3725 >     * @param reducer a commutative associative combining function
3726 >     * @return the result of accumulating all keys using the given
3727 >     * reducer to combine values, or null if none
3728 >     * @since 1.8
3729 >     */
3730 >    public K reduceKeys(long parallelismThreshold,
3731 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3732 >        if (reducer == null) throw new NullPointerException();
3733 >        return new ReduceKeysTask<K,V>
3734 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3735 >             null, reducer).invoke();
3736 >    }
3737 >
3738 >    /**
3739 >     * Returns the result of accumulating the given transformation
3740 >     * of all keys using the given reducer to combine values, or
3741 >     * null if none.
3742 >     *
3743 >     * @param parallelismThreshold the (estimated) number of elements
3744 >     * needed for this operation to be executed in parallel
3745 >     * @param transformer a function returning the transformation
3746 >     * for an element, or null if there is no transformation (in
3747 >     * which case it is not combined)
3748 >     * @param reducer a commutative associative combining function
3749 >     * @return the result of accumulating the given transformation
3750 >     * of all keys
3751 >     * @since 1.8
3752 >     */
3753 >    public <U> U reduceKeys(long parallelismThreshold,
3754 >                            Function<? super K, ? extends U> transformer,
3755 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3756 >        if (transformer == null || reducer == null)
3757 >            throw new NullPointerException();
3758 >        return new MapReduceKeysTask<K,V,U>
3759 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3760 >             null, transformer, reducer).invoke();
3761 >    }
3762 >
3763 >    /**
3764 >     * Returns the result of accumulating the given transformation
3765 >     * of all keys using the given reducer to combine values, and
3766 >     * the given basis as an identity value.
3767 >     *
3768 >     * @param parallelismThreshold the (estimated) number of elements
3769 >     * needed for this operation to be executed in parallel
3770 >     * @param transformer a function returning the transformation
3771 >     * for an element
3772 >     * @param basis the identity (initial default value) for the reduction
3773 >     * @param reducer a commutative associative combining function
3774 >     * @return the result of accumulating the given transformation
3775 >     * of all keys
3776 >     * @since 1.8
3777 >     */
3778 >    public double reduceKeysToDouble(long parallelismThreshold,
3779 >                                     ToDoubleFunction<? super K> transformer,
3780 >                                     double basis,
3781 >                                     DoubleBinaryOperator reducer) {
3782 >        if (transformer == null || reducer == null)
3783 >            throw new NullPointerException();
3784 >        return new MapReduceKeysToDoubleTask<K,V>
3785 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3786 >             null, transformer, basis, reducer).invoke();
3787 >    }
3788 >
3789 >    /**
3790 >     * Returns the result of accumulating the given transformation
3791 >     * of all keys using the given reducer to combine values, and
3792 >     * the given basis as an identity value.
3793 >     *
3794 >     * @param parallelismThreshold the (estimated) number of elements
3795 >     * needed for this operation to be executed in parallel
3796 >     * @param transformer a function returning the transformation
3797 >     * for an element
3798 >     * @param basis the identity (initial default value) for the reduction
3799 >     * @param reducer a commutative associative combining function
3800 >     * @return the result of accumulating the given transformation
3801 >     * of all keys
3802 >     * @since 1.8
3803 >     */
3804 >    public long reduceKeysToLong(long parallelismThreshold,
3805 >                                 ToLongFunction<? super K> transformer,
3806 >                                 long basis,
3807 >                                 LongBinaryOperator reducer) {
3808 >        if (transformer == null || reducer == null)
3809 >            throw new NullPointerException();
3810 >        return new MapReduceKeysToLongTask<K,V>
3811 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3812 >             null, transformer, basis, reducer).invoke();
3813 >    }
3814 >
3815 >    /**
3816 >     * Returns the result of accumulating the given transformation
3817 >     * of all keys using the given reducer to combine values, and
3818 >     * the given basis as an identity value.
3819 >     *
3820 >     * @param parallelismThreshold the (estimated) number of elements
3821 >     * needed for this operation to be executed in parallel
3822 >     * @param transformer a function returning the transformation
3823 >     * for an element
3824 >     * @param basis the identity (initial default value) for the reduction
3825 >     * @param reducer a commutative associative combining function
3826 >     * @return the result of accumulating the given transformation
3827 >     * of all keys
3828 >     * @since 1.8
3829 >     */
3830 >    public int reduceKeysToInt(long parallelismThreshold,
3831 >                               ToIntFunction<? super K> transformer,
3832 >                               int basis,
3833 >                               IntBinaryOperator reducer) {
3834 >        if (transformer == null || reducer == null)
3835 >            throw new NullPointerException();
3836 >        return new MapReduceKeysToIntTask<K,V>
3837 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3838 >             null, transformer, basis, reducer).invoke();
3839 >    }
3840 >
3841 >    /**
3842 >     * Performs the given action for each value.
3843 >     *
3844 >     * @param parallelismThreshold the (estimated) number of elements
3845 >     * needed for this operation to be executed in parallel
3846 >     * @param action the action
3847 >     * @since 1.8
3848 >     */
3849 >    public void forEachValue(long parallelismThreshold,
3850 >                             Consumer<? super V> action) {
3851 >        if (action == null)
3852 >            throw new NullPointerException();
3853 >        new ForEachValueTask<K,V>
3854 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3855 >             action).invoke();
3856 >    }
3857 >
3858 >    /**
3859 >     * Performs the given action for each non-null transformation
3860 >     * of each value.
3861 >     *
3862 >     * @param parallelismThreshold the (estimated) number of elements
3863 >     * needed for this operation to be executed in parallel
3864 >     * @param transformer a function returning the transformation
3865 >     * for an element, or null if there is no transformation (in
3866 >     * which case the action is not applied)
3867 >     * @param action the action
3868 >     * @since 1.8
3869 >     */
3870 >    public <U> void forEachValue(long parallelismThreshold,
3871 >                                 Function<? super V, ? extends U> transformer,
3872 >                                 Consumer<? super U> action) {
3873 >        if (transformer == null || action == null)
3874 >            throw new NullPointerException();
3875 >        new ForEachTransformedValueTask<K,V,U>
3876 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3877 >             transformer, action).invoke();
3878 >    }
3879 >
3880 >    /**
3881 >     * Returns a non-null result from applying the given search
3882 >     * function on each value, or null if none.  Upon success,
3883 >     * further element processing is suppressed and the results of
3884 >     * any other parallel invocations of the search function are
3885 >     * ignored.
3886 >     *
3887 >     * @param parallelismThreshold the (estimated) number of elements
3888 >     * needed for this operation to be executed in parallel
3889 >     * @param searchFunction a function returning a non-null
3890 >     * result on success, else null
3891 >     * @return a non-null result from applying the given search
3892 >     * function on each value, or null if none
3893 >     * @since 1.8
3894 >     */
3895 >    public <U> U searchValues(long parallelismThreshold,
3896 >                              Function<? super V, ? extends U> searchFunction) {
3897 >        if (searchFunction == null) throw new NullPointerException();
3898 >        return new SearchValuesTask<K,V,U>
3899 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3900 >             searchFunction, new AtomicReference<U>()).invoke();
3901 >    }
3902 >
3903 >    /**
3904 >     * Returns the result of accumulating all values using the
3905 >     * given reducer to combine values, or null if none.
3906 >     *
3907 >     * @param parallelismThreshold the (estimated) number of elements
3908 >     * needed for this operation to be executed in parallel
3909 >     * @param reducer a commutative associative combining function
3910 >     * @return the result of accumulating all values
3911 >     * @since 1.8
3912 >     */
3913 >    public V reduceValues(long parallelismThreshold,
3914 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
3915 >        if (reducer == null) throw new NullPointerException();
3916 >        return new ReduceValuesTask<K,V>
3917 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3918 >             null, reducer).invoke();
3919 >    }
3920 >
3921 >    /**
3922 >     * Returns the result of accumulating the given transformation
3923 >     * of all values using the given reducer to combine values, or
3924 >     * null if none.
3925 >     *
3926 >     * @param parallelismThreshold the (estimated) number of elements
3927 >     * needed for this operation to be executed in parallel
3928 >     * @param transformer a function returning the transformation
3929 >     * for an element, or null if there is no transformation (in
3930 >     * which case it is not combined)
3931 >     * @param reducer a commutative associative combining function
3932 >     * @return the result of accumulating the given transformation
3933 >     * of all values
3934 >     * @since 1.8
3935 >     */
3936 >    public <U> U reduceValues(long parallelismThreshold,
3937 >                              Function<? super V, ? extends U> transformer,
3938 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
3939 >        if (transformer == null || reducer == null)
3940 >            throw new NullPointerException();
3941 >        return new MapReduceValuesTask<K,V,U>
3942 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3943 >             null, transformer, reducer).invoke();
3944 >    }
3945 >
3946 >    /**
3947 >     * Returns the result of accumulating the given transformation
3948 >     * of all values using the given reducer to combine values,
3949 >     * and the given basis as an identity value.
3950 >     *
3951 >     * @param parallelismThreshold the (estimated) number of elements
3952 >     * needed for this operation to be executed in parallel
3953 >     * @param transformer a function returning the transformation
3954 >     * for an element
3955 >     * @param basis the identity (initial default value) for the reduction
3956 >     * @param reducer a commutative associative combining function
3957 >     * @return the result of accumulating the given transformation
3958 >     * of all values
3959 >     * @since 1.8
3960 >     */
3961 >    public double reduceValuesToDouble(long parallelismThreshold,
3962 >                                       ToDoubleFunction<? super V> transformer,
3963 >                                       double basis,
3964 >                                       DoubleBinaryOperator reducer) {
3965 >        if (transformer == null || reducer == null)
3966 >            throw new NullPointerException();
3967 >        return new MapReduceValuesToDoubleTask<K,V>
3968 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3969 >             null, transformer, basis, reducer).invoke();
3970 >    }
3971 >
3972 >    /**
3973 >     * Returns the result of accumulating the given transformation
3974 >     * of all values using the given reducer to combine values,
3975 >     * and the given basis as an identity value.
3976 >     *
3977 >     * @param parallelismThreshold the (estimated) number of elements
3978 >     * needed for this operation to be executed in parallel
3979 >     * @param transformer a function returning the transformation
3980 >     * for an element
3981 >     * @param basis the identity (initial default value) for the reduction
3982 >     * @param reducer a commutative associative combining function
3983 >     * @return the result of accumulating the given transformation
3984 >     * of all values
3985 >     * @since 1.8
3986 >     */
3987 >    public long reduceValuesToLong(long parallelismThreshold,
3988 >                                   ToLongFunction<? super V> transformer,
3989 >                                   long basis,
3990 >                                   LongBinaryOperator reducer) {
3991 >        if (transformer == null || reducer == null)
3992 >            throw new NullPointerException();
3993 >        return new MapReduceValuesToLongTask<K,V>
3994 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3995 >             null, transformer, basis, reducer).invoke();
3996 >    }
3997 >
3998 >    /**
3999 >     * Returns the result of accumulating the given transformation
4000 >     * of all values using the given reducer to combine values,
4001 >     * and the given basis as an identity value.
4002 >     *
4003 >     * @param parallelismThreshold the (estimated) number of elements
4004 >     * needed for this operation to be executed in parallel
4005 >     * @param transformer a function returning the transformation
4006 >     * for an element
4007 >     * @param basis the identity (initial default value) for the reduction
4008 >     * @param reducer a commutative associative combining function
4009 >     * @return the result of accumulating the given transformation
4010 >     * of all values
4011 >     * @since 1.8
4012 >     */
4013 >    public int reduceValuesToInt(long parallelismThreshold,
4014 >                                 ToIntFunction<? super V> transformer,
4015 >                                 int basis,
4016 >                                 IntBinaryOperator reducer) {
4017 >        if (transformer == null || reducer == null)
4018 >            throw new NullPointerException();
4019 >        return new MapReduceValuesToIntTask<K,V>
4020 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4021 >             null, transformer, basis, reducer).invoke();
4022 >    }
4023 >
4024 >    /**
4025 >     * Performs the given action for each entry.
4026 >     *
4027 >     * @param parallelismThreshold the (estimated) number of elements
4028 >     * needed for this operation to be executed in parallel
4029 >     * @param action the action
4030 >     * @since 1.8
4031 >     */
4032 >    public void forEachEntry(long parallelismThreshold,
4033 >                             Consumer<? super Map.Entry<K,V>> action) {
4034 >        if (action == null) throw new NullPointerException();
4035 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4036 >                                  action).invoke();
4037 >    }
4038 >
4039 >    /**
4040 >     * Performs the given action for each non-null transformation
4041 >     * of each entry.
4042 >     *
4043 >     * @param parallelismThreshold the (estimated) number of elements
4044 >     * needed for this operation to be executed in parallel
4045 >     * @param transformer a function returning the transformation
4046 >     * for an element, or null if there is no transformation (in
4047 >     * which case the action is not applied)
4048 >     * @param action the action
4049 >     * @since 1.8
4050 >     */
4051 >    public <U> void forEachEntry(long parallelismThreshold,
4052 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4053 >                                 Consumer<? super U> action) {
4054 >        if (transformer == null || action == null)
4055 >            throw new NullPointerException();
4056 >        new ForEachTransformedEntryTask<K,V,U>
4057 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4058 >             transformer, action).invoke();
4059 >    }
4060 >
4061 >    /**
4062 >     * Returns a non-null result from applying the given search
4063 >     * function on each entry, or null if none.  Upon success,
4064 >     * further element processing is suppressed and the results of
4065 >     * any other parallel invocations of the search function are
4066 >     * ignored.
4067 >     *
4068 >     * @param parallelismThreshold the (estimated) number of elements
4069 >     * needed for this operation to be executed in parallel
4070 >     * @param searchFunction a function returning a non-null
4071 >     * result on success, else null
4072 >     * @return a non-null result from applying the given search
4073 >     * function on each entry, or null if none
4074 >     * @since 1.8
4075 >     */
4076 >    public <U> U searchEntries(long parallelismThreshold,
4077 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4078 >        if (searchFunction == null) throw new NullPointerException();
4079 >        return new SearchEntriesTask<K,V,U>
4080 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4081 >             searchFunction, new AtomicReference<U>()).invoke();
4082 >    }
4083 >
4084 >    /**
4085 >     * Returns the result of accumulating all entries using the
4086 >     * given reducer to combine values, or null if none.
4087 >     *
4088 >     * @param parallelismThreshold the (estimated) number of elements
4089 >     * needed for this operation to be executed in parallel
4090 >     * @param reducer a commutative associative combining function
4091 >     * @return the result of accumulating all entries
4092 >     * @since 1.8
4093 >     */
4094 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4095 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4096 >        if (reducer == null) throw new NullPointerException();
4097 >        return new ReduceEntriesTask<K,V>
4098 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4099 >             null, reducer).invoke();
4100 >    }
4101 >
4102 >    /**
4103 >     * Returns the result of accumulating the given transformation
4104 >     * of all entries using the given reducer to combine values,
4105 >     * or null if none.
4106 >     *
4107 >     * @param parallelismThreshold the (estimated) number of elements
4108 >     * needed for this operation to be executed in parallel
4109 >     * @param transformer a function returning the transformation
4110 >     * for an element, or null if there is no transformation (in
4111 >     * which case it is not combined)
4112 >     * @param reducer a commutative associative combining function
4113 >     * @return the result of accumulating the given transformation
4114 >     * of all entries
4115 >     * @since 1.8
4116 >     */
4117 >    public <U> U reduceEntries(long parallelismThreshold,
4118 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4119 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4120 >        if (transformer == null || reducer == null)
4121 >            throw new NullPointerException();
4122 >        return new MapReduceEntriesTask<K,V,U>
4123 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4124 >             null, transformer, reducer).invoke();
4125 >    }
4126 >
4127 >    /**
4128 >     * Returns the result of accumulating the given transformation
4129 >     * of all entries using the given reducer to combine values,
4130 >     * and the given basis as an identity value.
4131 >     *
4132 >     * @param parallelismThreshold the (estimated) number of elements
4133 >     * needed for this operation to be executed in parallel
4134 >     * @param transformer a function returning the transformation
4135 >     * for an element
4136 >     * @param basis the identity (initial default value) for the reduction
4137 >     * @param reducer a commutative associative combining function
4138 >     * @return the result of accumulating the given transformation
4139 >     * of all entries
4140 >     * @since 1.8
4141 >     */
4142 >    public double reduceEntriesToDouble(long parallelismThreshold,
4143 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4144 >                                        double basis,
4145 >                                        DoubleBinaryOperator reducer) {
4146 >        if (transformer == null || reducer == null)
4147 >            throw new NullPointerException();
4148 >        return new MapReduceEntriesToDoubleTask<K,V>
4149 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4150 >             null, transformer, basis, reducer).invoke();
4151 >    }
4152 >
4153 >    /**
4154 >     * Returns the result of accumulating the given transformation
4155 >     * of all entries using the given reducer to combine values,
4156 >     * and the given basis as an identity value.
4157 >     *
4158 >     * @param parallelismThreshold the (estimated) number of elements
4159 >     * needed for this operation to be executed in parallel
4160 >     * @param transformer a function returning the transformation
4161 >     * for an element
4162 >     * @param basis the identity (initial default value) for the reduction
4163 >     * @param reducer a commutative associative combining function
4164 >     * @return the result of accumulating the given transformation
4165 >     * of all entries
4166 >     * @since 1.8
4167 >     */
4168 >    public long reduceEntriesToLong(long parallelismThreshold,
4169 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4170 >                                    long basis,
4171 >                                    LongBinaryOperator reducer) {
4172 >        if (transformer == null || reducer == null)
4173 >            throw new NullPointerException();
4174 >        return new MapReduceEntriesToLongTask<K,V>
4175 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4176 >             null, transformer, basis, reducer).invoke();
4177 >    }
4178 >
4179 >    /**
4180 >     * Returns the result of accumulating the given transformation
4181 >     * of all entries using the given reducer to combine values,
4182 >     * and the given basis as an identity value.
4183 >     *
4184 >     * @param parallelismThreshold the (estimated) number of elements
4185 >     * needed for this operation to be executed in parallel
4186 >     * @param transformer a function returning the transformation
4187 >     * for an element
4188 >     * @param basis the identity (initial default value) for the reduction
4189 >     * @param reducer a commutative associative combining function
4190 >     * @return the result of accumulating the given transformation
4191 >     * of all entries
4192 >     * @since 1.8
4193 >     */
4194 >    public int reduceEntriesToInt(long parallelismThreshold,
4195 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4196 >                                  int basis,
4197 >                                  IntBinaryOperator reducer) {
4198 >        if (transformer == null || reducer == null)
4199 >            throw new NullPointerException();
4200 >        return new MapReduceEntriesToIntTask<K,V>
4201 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4202 >             null, transformer, basis, reducer).invoke();
4203 >    }
4204 >
4205 >
4206 >    /* ----------------Views -------------- */
4207 >
4208 >    /**
4209 >     * Base class for views.
4210 >     */
4211 >    abstract static class CollectionView<K,V,E>
4212 >        implements Collection<E>, java.io.Serializable {
4213 >        private static final long serialVersionUID = 7249069246763182397L;
4214 >        final ConcurrentHashMap<K,V> map;
4215 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4216 >
4217 >        /**
4218 >         * Returns the map backing this view.
4219 >         *
4220 >         * @return the map backing this view
4221 >         */
4222 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4223 >
4224 >        /**
4225 >         * Removes all of the elements from this view, by removing all
4226 >         * the mappings from the map backing this view.
4227 >         */
4228 >        public final void clear()      { map.clear(); }
4229 >        public final int size()        { return map.size(); }
4230 >        public final boolean isEmpty() { return map.isEmpty(); }
4231 >
4232 >        // implementations below rely on concrete classes supplying these
4233 >        // abstract methods
4234 >        /**
4235 >         * Returns a "weakly consistent" iterator that will never
4236 >         * throw {@link ConcurrentModificationException}, and
4237 >         * guarantees to traverse elements as they existed upon
4238 >         * construction of the iterator, and may (but is not
4239 >         * guaranteed to) reflect any modifications subsequent to
4240 >         * construction.
4241 >         */
4242 >        public abstract Iterator<E> iterator();
4243 >        public abstract boolean contains(Object o);
4244 >        public abstract boolean remove(Object o);
4245 >
4246 >        private static final String oomeMsg = "Required array size too large";
4247 >
4248 >        public final Object[] toArray() {
4249 >            long sz = map.mappingCount();
4250 >            if (sz > MAX_ARRAY_SIZE)
4251 >                throw new OutOfMemoryError(oomeMsg);
4252 >            int n = (int)sz;
4253 >            Object[] r = new Object[n];
4254 >            int i = 0;
4255 >            for (E e : this) {
4256 >                if (i == n) {
4257 >                    if (n >= MAX_ARRAY_SIZE)
4258 >                        throw new OutOfMemoryError(oomeMsg);
4259 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4260 >                        n = MAX_ARRAY_SIZE;
4261 >                    else
4262 >                        n += (n >>> 1) + 1;
4263 >                    r = Arrays.copyOf(r, n);
4264 >                }
4265 >                r[i++] = e;
4266 >            }
4267 >            return (i == n) ? r : Arrays.copyOf(r, i);
4268          }
4269 <        public void clear() {
4270 <            ConcurrentHashMap.this.clear();
4269 >
4270 >        @SuppressWarnings("unchecked")
4271 >        public final <T> T[] toArray(T[] a) {
4272 >            long sz = map.mappingCount();
4273 >            if (sz > MAX_ARRAY_SIZE)
4274 >                throw new OutOfMemoryError(oomeMsg);
4275 >            int m = (int)sz;
4276 >            T[] r = (a.length >= m) ? a :
4277 >                (T[])java.lang.reflect.Array
4278 >                .newInstance(a.getClass().getComponentType(), m);
4279 >            int n = r.length;
4280 >            int i = 0;
4281 >            for (E e : this) {
4282 >                if (i == n) {
4283 >                    if (n >= MAX_ARRAY_SIZE)
4284 >                        throw new OutOfMemoryError(oomeMsg);
4285 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4286 >                        n = MAX_ARRAY_SIZE;
4287 >                    else
4288 >                        n += (n >>> 1) + 1;
4289 >                    r = Arrays.copyOf(r, n);
4290 >                }
4291 >                r[i++] = (T)e;
4292 >            }
4293 >            if (a == r && i < n) {
4294 >                r[i] = null; // null-terminate
4295 >                return r;
4296 >            }
4297 >            return (i == n) ? r : Arrays.copyOf(r, i);
4298          }
4299 +
4300 +        /**
4301 +         * Returns a string representation of this collection.
4302 +         * The string representation consists of the string representations
4303 +         * of the collection's elements in the order they are returned by
4304 +         * its iterator, enclosed in square brackets ({@code "[]"}).
4305 +         * Adjacent elements are separated by the characters {@code ", "}
4306 +         * (comma and space).  Elements are converted to strings as by
4307 +         * {@link String#valueOf(Object)}.
4308 +         *
4309 +         * @return a string representation of this collection
4310 +         */
4311 +        public final String toString() {
4312 +            StringBuilder sb = new StringBuilder();
4313 +            sb.append('[');
4314 +            Iterator<E> it = iterator();
4315 +            if (it.hasNext()) {
4316 +                for (;;) {
4317 +                    Object e = it.next();
4318 +                    sb.append(e == this ? "(this Collection)" : e);
4319 +                    if (!it.hasNext())
4320 +                        break;
4321 +                    sb.append(',').append(' ');
4322 +                }
4323 +            }
4324 +            return sb.append(']').toString();
4325 +        }
4326 +
4327 +        public final boolean containsAll(Collection<?> c) {
4328 +            if (c != this) {
4329 +                for (Object e : c) {
4330 +                    if (e == null || !contains(e))
4331 +                        return false;
4332 +                }
4333 +            }
4334 +            return true;
4335 +        }
4336 +
4337 +        public final boolean removeAll(Collection<?> c) {
4338 +            boolean modified = false;
4339 +            for (Iterator<E> it = iterator(); it.hasNext();) {
4340 +                if (c.contains(it.next())) {
4341 +                    it.remove();
4342 +                    modified = true;
4343 +                }
4344 +            }
4345 +            return modified;
4346 +        }
4347 +
4348 +        public final boolean retainAll(Collection<?> c) {
4349 +            boolean modified = false;
4350 +            for (Iterator<E> it = iterator(); it.hasNext();) {
4351 +                if (!c.contains(it.next())) {
4352 +                    it.remove();
4353 +                    modified = true;
4354 +                }
4355 +            }
4356 +            return modified;
4357 +        }
4358 +
4359      }
4360  
4361 <    final class Values extends AbstractCollection<V> {
4362 <        public Iterator<V> iterator() {
4363 <            return new ValueIterator();
4361 >    /**
4362 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4363 >     * which additions may optionally be enabled by mapping to a
4364 >     * common value.  This class cannot be directly instantiated.
4365 >     * See {@link #keySet() keySet()},
4366 >     * {@link #keySet(Object) keySet(V)},
4367 >     * {@link #newKeySet() newKeySet()},
4368 >     * {@link #newKeySet(int) newKeySet(int)}.
4369 >     *
4370 >     * @since 1.8
4371 >     */
4372 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4373 >        implements Set<K>, java.io.Serializable {
4374 >        private static final long serialVersionUID = 7249069246763182397L;
4375 >        private final V value;
4376 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4377 >            super(map);
4378 >            this.value = value;
4379          }
4380 <        public int size() {
4381 <            return ConcurrentHashMap.this.size();
4380 >
4381 >        /**
4382 >         * Returns the default mapped value for additions,
4383 >         * or {@code null} if additions are not supported.
4384 >         *
4385 >         * @return the default mapped value for additions, or {@code null}
4386 >         * if not supported
4387 >         */
4388 >        public V getMappedValue() { return value; }
4389 >
4390 >        /**
4391 >         * {@inheritDoc}
4392 >         * @throws NullPointerException if the specified key is null
4393 >         */
4394 >        public boolean contains(Object o) { return map.containsKey(o); }
4395 >
4396 >        /**
4397 >         * Removes the key from this map view, by removing the key (and its
4398 >         * corresponding value) from the backing map.  This method does
4399 >         * nothing if the key is not in the map.
4400 >         *
4401 >         * @param  o the key to be removed from the backing map
4402 >         * @return {@code true} if the backing map contained the specified key
4403 >         * @throws NullPointerException if the specified key is null
4404 >         */
4405 >        public boolean remove(Object o) { return map.remove(o) != null; }
4406 >
4407 >        /**
4408 >         * @return an iterator over the keys of the backing map
4409 >         */
4410 >        public Iterator<K> iterator() {
4411 >            Node<K,V>[] t;
4412 >            ConcurrentHashMap<K,V> m = map;
4413 >            int f = (t = m.table) == null ? 0 : t.length;
4414 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4415          }
4416 <        public boolean contains(Object o) {
4417 <            return ConcurrentHashMap.this.containsValue(o);
4416 >
4417 >        /**
4418 >         * Adds the specified key to this set view by mapping the key to
4419 >         * the default mapped value in the backing map, if defined.
4420 >         *
4421 >         * @param e key to be added
4422 >         * @return {@code true} if this set changed as a result of the call
4423 >         * @throws NullPointerException if the specified key is null
4424 >         * @throws UnsupportedOperationException if no default mapped value
4425 >         * for additions was provided
4426 >         */
4427 >        public boolean add(K e) {
4428 >            V v;
4429 >            if ((v = value) == null)
4430 >                throw new UnsupportedOperationException();
4431 >            return map.putVal(e, v, true) == null;
4432          }
4433 <        public void clear() {
4434 <            ConcurrentHashMap.this.clear();
4433 >
4434 >        /**
4435 >         * Adds all of the elements in the specified collection to this set,
4436 >         * as if by calling {@link #add} on each one.
4437 >         *
4438 >         * @param c the elements to be inserted into this set
4439 >         * @return {@code true} if this set changed as a result of the call
4440 >         * @throws NullPointerException if the collection or any of its
4441 >         * elements are {@code null}
4442 >         * @throws UnsupportedOperationException if no default mapped value
4443 >         * for additions was provided
4444 >         */
4445 >        public boolean addAll(Collection<? extends K> c) {
4446 >            boolean added = false;
4447 >            V v;
4448 >            if ((v = value) == null)
4449 >                throw new UnsupportedOperationException();
4450 >            for (K e : c) {
4451 >                if (map.putVal(e, v, true) == null)
4452 >                    added = true;
4453 >            }
4454 >            return added;
4455 >        }
4456 >
4457 >        public int hashCode() {
4458 >            int h = 0;
4459 >            for (K e : this)
4460 >                h += e.hashCode();
4461 >            return h;
4462 >        }
4463 >
4464 >        public boolean equals(Object o) {
4465 >            Set<?> c;
4466 >            return ((o instanceof Set) &&
4467 >                    ((c = (Set<?>)o) == this ||
4468 >                     (containsAll(c) && c.containsAll(this))));
4469 >        }
4470 >
4471 >        public Spliterator<K> spliterator() {
4472 >            Node<K,V>[] t;
4473 >            ConcurrentHashMap<K,V> m = map;
4474 >            long n = m.sumCount();
4475 >            int f = (t = m.table) == null ? 0 : t.length;
4476 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4477 >        }
4478 >
4479 >        public void forEach(Consumer<? super K> action) {
4480 >            if (action == null) throw new NullPointerException();
4481 >            Node<K,V>[] t;
4482 >            if ((t = map.table) != null) {
4483 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4484 >                for (Node<K,V> p; (p = it.advance()) != null; )
4485 >                    action.accept(p.key);
4486 >            }
4487          }
4488      }
4489  
4490 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4491 <        public Iterator<Map.Entry<K,V>> iterator() {
4492 <            return new EntryIterator();
4490 >    /**
4491 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4492 >     * values, in which additions are disabled. This class cannot be
4493 >     * directly instantiated. See {@link #values()}.
4494 >     */
4495 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4496 >        implements Collection<V>, java.io.Serializable {
4497 >        private static final long serialVersionUID = 2249069246763182397L;
4498 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4499 >        public final boolean contains(Object o) {
4500 >            return map.containsValue(o);
4501          }
4502 +
4503 +        public final boolean remove(Object o) {
4504 +            if (o != null) {
4505 +                for (Iterator<V> it = iterator(); it.hasNext();) {
4506 +                    if (o.equals(it.next())) {
4507 +                        it.remove();
4508 +                        return true;
4509 +                    }
4510 +                }
4511 +            }
4512 +            return false;
4513 +        }
4514 +
4515 +        public final Iterator<V> iterator() {
4516 +            ConcurrentHashMap<K,V> m = map;
4517 +            Node<K,V>[] t;
4518 +            int f = (t = m.table) == null ? 0 : t.length;
4519 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4520 +        }
4521 +
4522 +        public final boolean add(V e) {
4523 +            throw new UnsupportedOperationException();
4524 +        }
4525 +        public final boolean addAll(Collection<? extends V> c) {
4526 +            throw new UnsupportedOperationException();
4527 +        }
4528 +
4529 +        public Spliterator<V> spliterator() {
4530 +            Node<K,V>[] t;
4531 +            ConcurrentHashMap<K,V> m = map;
4532 +            long n = m.sumCount();
4533 +            int f = (t = m.table) == null ? 0 : t.length;
4534 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4535 +        }
4536 +
4537 +        public void forEach(Consumer<? super V> action) {
4538 +            if (action == null) throw new NullPointerException();
4539 +            Node<K,V>[] t;
4540 +            if ((t = map.table) != null) {
4541 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4542 +                for (Node<K,V> p; (p = it.advance()) != null; )
4543 +                    action.accept(p.val);
4544 +            }
4545 +        }
4546 +    }
4547 +
4548 +    /**
4549 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4550 +     * entries.  This class cannot be directly instantiated. See
4551 +     * {@link #entrySet()}.
4552 +     */
4553 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4554 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4555 +        private static final long serialVersionUID = 2249069246763182397L;
4556 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4557 +
4558          public boolean contains(Object o) {
4559 <            if (!(o instanceof Map.Entry))
4560 <                return false;
4561 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4562 <            V v = ConcurrentHashMap.this.get(e.getKey());
4563 <            return v != null && v.equals(e.getValue());
4559 >            Object k, v, r; Map.Entry<?,?> e;
4560 >            return ((o instanceof Map.Entry) &&
4561 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4562 >                    (r = map.get(k)) != null &&
4563 >                    (v = e.getValue()) != null &&
4564 >                    (v == r || v.equals(r)));
4565          }
4566 +
4567          public boolean remove(Object o) {
4568 <            if (!(o instanceof Map.Entry))
4569 <                return false;
4570 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4571 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4568 >            Object k, v; Map.Entry<?,?> e;
4569 >            return ((o instanceof Map.Entry) &&
4570 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4571 >                    (v = e.getValue()) != null &&
4572 >                    map.remove(k, v));
4573          }
4574 <        public int size() {
4575 <            return ConcurrentHashMap.this.size();
4574 >
4575 >        /**
4576 >         * @return an iterator over the entries of the backing map
4577 >         */
4578 >        public Iterator<Map.Entry<K,V>> iterator() {
4579 >            ConcurrentHashMap<K,V> m = map;
4580 >            Node<K,V>[] t;
4581 >            int f = (t = m.table) == null ? 0 : t.length;
4582 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4583          }
4584 <        public void clear() {
4585 <            ConcurrentHashMap.this.clear();
4584 >
4585 >        public boolean add(Entry<K,V> e) {
4586 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4587          }
4588 +
4589 +        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4590 +            boolean added = false;
4591 +            for (Entry<K,V> e : c) {
4592 +                if (add(e))
4593 +                    added = true;
4594 +            }
4595 +            return added;
4596 +        }
4597 +
4598 +        public final int hashCode() {
4599 +            int h = 0;
4600 +            Node<K,V>[] t;
4601 +            if ((t = map.table) != null) {
4602 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4603 +                for (Node<K,V> p; (p = it.advance()) != null; ) {
4604 +                    h += p.hashCode();
4605 +                }
4606 +            }
4607 +            return h;
4608 +        }
4609 +
4610 +        public final boolean equals(Object o) {
4611 +            Set<?> c;
4612 +            return ((o instanceof Set) &&
4613 +                    ((c = (Set<?>)o) == this ||
4614 +                     (containsAll(c) && c.containsAll(this))));
4615 +        }
4616 +
4617 +        public Spliterator<Map.Entry<K,V>> spliterator() {
4618 +            Node<K,V>[] t;
4619 +            ConcurrentHashMap<K,V> m = map;
4620 +            long n = m.sumCount();
4621 +            int f = (t = m.table) == null ? 0 : t.length;
4622 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4623 +        }
4624 +
4625 +        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4626 +            if (action == null) throw new NullPointerException();
4627 +            Node<K,V>[] t;
4628 +            if ((t = map.table) != null) {
4629 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4630 +                for (Node<K,V> p; (p = it.advance()) != null; )
4631 +                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4632 +            }
4633 +        }
4634 +
4635      }
4636  
4637 <    /* ---------------- Serialization Support -------------- */
4637 >    // -------------------------------------------------------
4638  
4639      /**
4640 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
4641 <     * stream (i.e., serialize it).
1229 <     * @param s the stream
1230 <     * @serialData
1231 <     * the key (Object) and value (Object)
1232 <     * for each key-value mapping, followed by a null pair.
1233 <     * The key-value mappings are emitted in no particular order.
4640 >     * Base class for bulk tasks. Repeats some fields and code from
4641 >     * class Traverser, because we need to subclass CountedCompleter.
4642       */
4643 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
4644 <        s.defaultWriteObject();
4643 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4644 >        Node<K,V>[] tab;        // same as Traverser
4645 >        Node<K,V> next;
4646 >        int index;
4647 >        int baseIndex;
4648 >        int baseLimit;
4649 >        final int baseSize;
4650 >        int batch;              // split control
4651 >
4652 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4653 >            super(par);
4654 >            this.batch = b;
4655 >            this.index = this.baseIndex = i;
4656 >            if ((this.tab = t) == null)
4657 >                this.baseSize = this.baseLimit = 0;
4658 >            else if (par == null)
4659 >                this.baseSize = this.baseLimit = t.length;
4660 >            else {
4661 >                this.baseLimit = f;
4662 >                this.baseSize = par.baseSize;
4663 >            }
4664 >        }
4665  
4666 <        for (int k = 0; k < segments.length; ++k) {
4667 <            Segment<K,V> seg = segments[k];
4668 <            seg.lock();
4669 <            try {
4670 <                HashEntry<K,V>[] tab = seg.table;
4671 <                for (int i = 0; i < tab.length; ++i) {
4672 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
4673 <                        s.writeObject(e.key);
4674 <                        s.writeObject(e.value);
4666 >        /**
4667 >         * Same as Traverser version
4668 >         */
4669 >        final Node<K,V> advance() {
4670 >            Node<K,V> e;
4671 >            if ((e = next) != null)
4672 >                e = e.next;
4673 >            for (;;) {
4674 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4675 >                if (e != null)
4676 >                    return next = e;
4677 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4678 >                    (n = t.length) <= (i = index) || i < 0)
4679 >                    return next = null;
4680 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4681 >                    if (e instanceof ForwardingNode) {
4682 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4683 >                        e = null;
4684 >                        continue;
4685                      }
4686 +                    else if (e instanceof TreeBin)
4687 +                        e = ((TreeBin<K,V>)e).first;
4688 +                    else
4689 +                        e = null;
4690                  }
4691 <            } finally {
4692 <                seg.unlock();
4691 >                if ((index += baseSize) >= n)
4692 >                    index = ++baseIndex;    // visit upper slots if present
4693              }
4694          }
1253        s.writeObject(null);
1254        s.writeObject(null);
4695      }
4696  
4697 <    /**
4698 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
4699 <     * stream (i.e., deserialize it).
4700 <     * @param s the stream
4701 <     */
4702 <    private void readObject(java.io.ObjectInputStream s)
4703 <        throws IOException, ClassNotFoundException  {
4704 <        s.defaultReadObject();
4697 >    /*
4698 >     * Task classes. Coded in a regular but ugly format/style to
4699 >     * simplify checks that each variant differs in the right way from
4700 >     * others. The null screenings exist because compilers cannot tell
4701 >     * that we've already null-checked task arguments, so we force
4702 >     * simplest hoisted bypass to help avoid convoluted traps.
4703 >     */
4704 >    @SuppressWarnings("serial")
4705 >    static final class ForEachKeyTask<K,V>
4706 >        extends BulkTask<K,V,Void> {
4707 >        final Consumer<? super K> action;
4708 >        ForEachKeyTask
4709 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4710 >             Consumer<? super K> action) {
4711 >            super(p, b, i, f, t);
4712 >            this.action = action;
4713 >        }
4714 >        public final void compute() {
4715 >            final Consumer<? super K> action;
4716 >            if ((action = this.action) != null) {
4717 >                for (int i = baseIndex, f, h; batch > 0 &&
4718 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4719 >                    addToPendingCount(1);
4720 >                    new ForEachKeyTask<K,V>
4721 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4722 >                         action).fork();
4723 >                }
4724 >                for (Node<K,V> p; (p = advance()) != null;)
4725 >                    action.accept(p.key);
4726 >                propagateCompletion();
4727 >            }
4728 >        }
4729 >    }
4730  
4731 <        // Initialize each segment to be minimally sized, and let grow.
4732 <        for (int i = 0; i < segments.length; ++i) {
4733 <            segments[i].setTable(new HashEntry[1]);
4731 >    @SuppressWarnings("serial")
4732 >    static final class ForEachValueTask<K,V>
4733 >        extends BulkTask<K,V,Void> {
4734 >        final Consumer<? super V> action;
4735 >        ForEachValueTask
4736 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4737 >             Consumer<? super V> action) {
4738 >            super(p, b, i, f, t);
4739 >            this.action = action;
4740 >        }
4741 >        public final void compute() {
4742 >            final Consumer<? super V> action;
4743 >            if ((action = this.action) != null) {
4744 >                for (int i = baseIndex, f, h; batch > 0 &&
4745 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4746 >                    addToPendingCount(1);
4747 >                    new ForEachValueTask<K,V>
4748 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4749 >                         action).fork();
4750 >                }
4751 >                for (Node<K,V> p; (p = advance()) != null;)
4752 >                    action.accept(p.val);
4753 >                propagateCompletion();
4754 >            }
4755          }
4756 +    }
4757  
4758 <        // Read the keys and values, and put the mappings in the table
4759 <        for (;;) {
4760 <            K key = (K) s.readObject();
4761 <            V value = (V) s.readObject();
4762 <            if (key == null)
4763 <                break;
4764 <            put(key, value);
4758 >    @SuppressWarnings("serial")
4759 >    static final class ForEachEntryTask<K,V>
4760 >        extends BulkTask<K,V,Void> {
4761 >        final Consumer<? super Entry<K,V>> action;
4762 >        ForEachEntryTask
4763 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4764 >             Consumer<? super Entry<K,V>> action) {
4765 >            super(p, b, i, f, t);
4766 >            this.action = action;
4767 >        }
4768 >        public final void compute() {
4769 >            final Consumer<? super Entry<K,V>> action;
4770 >            if ((action = this.action) != null) {
4771 >                for (int i = baseIndex, f, h; batch > 0 &&
4772 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4773 >                    addToPendingCount(1);
4774 >                    new ForEachEntryTask<K,V>
4775 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4776 >                         action).fork();
4777 >                }
4778 >                for (Node<K,V> p; (p = advance()) != null; )
4779 >                    action.accept(p);
4780 >                propagateCompletion();
4781 >            }
4782 >        }
4783 >    }
4784 >
4785 >    @SuppressWarnings("serial")
4786 >    static final class ForEachMappingTask<K,V>
4787 >        extends BulkTask<K,V,Void> {
4788 >        final BiConsumer<? super K, ? super V> action;
4789 >        ForEachMappingTask
4790 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4791 >             BiConsumer<? super K,? super V> action) {
4792 >            super(p, b, i, f, t);
4793 >            this.action = action;
4794 >        }
4795 >        public final void compute() {
4796 >            final BiConsumer<? super K, ? super V> action;
4797 >            if ((action = this.action) != null) {
4798 >                for (int i = baseIndex, f, h; batch > 0 &&
4799 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4800 >                    addToPendingCount(1);
4801 >                    new ForEachMappingTask<K,V>
4802 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4803 >                         action).fork();
4804 >                }
4805 >                for (Node<K,V> p; (p = advance()) != null; )
4806 >                    action.accept(p.key, p.val);
4807 >                propagateCompletion();
4808 >            }
4809 >        }
4810 >    }
4811 >
4812 >    @SuppressWarnings("serial")
4813 >    static final class ForEachTransformedKeyTask<K,V,U>
4814 >        extends BulkTask<K,V,Void> {
4815 >        final Function<? super K, ? extends U> transformer;
4816 >        final Consumer<? super U> action;
4817 >        ForEachTransformedKeyTask
4818 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4819 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4820 >            super(p, b, i, f, t);
4821 >            this.transformer = transformer; this.action = action;
4822 >        }
4823 >        public final void compute() {
4824 >            final Function<? super K, ? extends U> transformer;
4825 >            final Consumer<? super U> action;
4826 >            if ((transformer = this.transformer) != null &&
4827 >                (action = this.action) != null) {
4828 >                for (int i = baseIndex, f, h; batch > 0 &&
4829 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4830 >                    addToPendingCount(1);
4831 >                    new ForEachTransformedKeyTask<K,V,U>
4832 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4833 >                         transformer, action).fork();
4834 >                }
4835 >                for (Node<K,V> p; (p = advance()) != null; ) {
4836 >                    U u;
4837 >                    if ((u = transformer.apply(p.key)) != null)
4838 >                        action.accept(u);
4839 >                }
4840 >                propagateCompletion();
4841 >            }
4842 >        }
4843 >    }
4844 >
4845 >    @SuppressWarnings("serial")
4846 >    static final class ForEachTransformedValueTask<K,V,U>
4847 >        extends BulkTask<K,V,Void> {
4848 >        final Function<? super V, ? extends U> transformer;
4849 >        final Consumer<? super U> action;
4850 >        ForEachTransformedValueTask
4851 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4852 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4853 >            super(p, b, i, f, t);
4854 >            this.transformer = transformer; this.action = action;
4855 >        }
4856 >        public final void compute() {
4857 >            final Function<? super V, ? extends U> transformer;
4858 >            final Consumer<? super U> action;
4859 >            if ((transformer = this.transformer) != null &&
4860 >                (action = this.action) != null) {
4861 >                for (int i = baseIndex, f, h; batch > 0 &&
4862 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4863 >                    addToPendingCount(1);
4864 >                    new ForEachTransformedValueTask<K,V,U>
4865 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4866 >                         transformer, action).fork();
4867 >                }
4868 >                for (Node<K,V> p; (p = advance()) != null; ) {
4869 >                    U u;
4870 >                    if ((u = transformer.apply(p.val)) != null)
4871 >                        action.accept(u);
4872 >                }
4873 >                propagateCompletion();
4874 >            }
4875 >        }
4876 >    }
4877 >
4878 >    @SuppressWarnings("serial")
4879 >    static final class ForEachTransformedEntryTask<K,V,U>
4880 >        extends BulkTask<K,V,Void> {
4881 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
4882 >        final Consumer<? super U> action;
4883 >        ForEachTransformedEntryTask
4884 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4885 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4886 >            super(p, b, i, f, t);
4887 >            this.transformer = transformer; this.action = action;
4888 >        }
4889 >        public final void compute() {
4890 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
4891 >            final Consumer<? super U> action;
4892 >            if ((transformer = this.transformer) != null &&
4893 >                (action = this.action) != null) {
4894 >                for (int i = baseIndex, f, h; batch > 0 &&
4895 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4896 >                    addToPendingCount(1);
4897 >                    new ForEachTransformedEntryTask<K,V,U>
4898 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4899 >                         transformer, action).fork();
4900 >                }
4901 >                for (Node<K,V> p; (p = advance()) != null; ) {
4902 >                    U u;
4903 >                    if ((u = transformer.apply(p)) != null)
4904 >                        action.accept(u);
4905 >                }
4906 >                propagateCompletion();
4907 >            }
4908 >        }
4909 >    }
4910 >
4911 >    @SuppressWarnings("serial")
4912 >    static final class ForEachTransformedMappingTask<K,V,U>
4913 >        extends BulkTask<K,V,Void> {
4914 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
4915 >        final Consumer<? super U> action;
4916 >        ForEachTransformedMappingTask
4917 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4918 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4919 >             Consumer<? super U> action) {
4920 >            super(p, b, i, f, t);
4921 >            this.transformer = transformer; this.action = action;
4922 >        }
4923 >        public final void compute() {
4924 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
4925 >            final Consumer<? super U> action;
4926 >            if ((transformer = this.transformer) != null &&
4927 >                (action = this.action) != null) {
4928 >                for (int i = baseIndex, f, h; batch > 0 &&
4929 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4930 >                    addToPendingCount(1);
4931 >                    new ForEachTransformedMappingTask<K,V,U>
4932 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4933 >                         transformer, action).fork();
4934 >                }
4935 >                for (Node<K,V> p; (p = advance()) != null; ) {
4936 >                    U u;
4937 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4938 >                        action.accept(u);
4939 >                }
4940 >                propagateCompletion();
4941 >            }
4942 >        }
4943 >    }
4944 >
4945 >    @SuppressWarnings("serial")
4946 >    static final class SearchKeysTask<K,V,U>
4947 >        extends BulkTask<K,V,U> {
4948 >        final Function<? super K, ? extends U> searchFunction;
4949 >        final AtomicReference<U> result;
4950 >        SearchKeysTask
4951 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4952 >             Function<? super K, ? extends U> searchFunction,
4953 >             AtomicReference<U> result) {
4954 >            super(p, b, i, f, t);
4955 >            this.searchFunction = searchFunction; this.result = result;
4956 >        }
4957 >        public final U getRawResult() { return result.get(); }
4958 >        public final void compute() {
4959 >            final Function<? super K, ? extends U> searchFunction;
4960 >            final AtomicReference<U> result;
4961 >            if ((searchFunction = this.searchFunction) != null &&
4962 >                (result = this.result) != null) {
4963 >                for (int i = baseIndex, f, h; batch > 0 &&
4964 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4965 >                    if (result.get() != null)
4966 >                        return;
4967 >                    addToPendingCount(1);
4968 >                    new SearchKeysTask<K,V,U>
4969 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4970 >                         searchFunction, result).fork();
4971 >                }
4972 >                while (result.get() == null) {
4973 >                    U u;
4974 >                    Node<K,V> p;
4975 >                    if ((p = advance()) == null) {
4976 >                        propagateCompletion();
4977 >                        break;
4978 >                    }
4979 >                    if ((u = searchFunction.apply(p.key)) != null) {
4980 >                        if (result.compareAndSet(null, u))
4981 >                            quietlyCompleteRoot();
4982 >                        break;
4983 >                    }
4984 >                }
4985 >            }
4986 >        }
4987 >    }
4988 >
4989 >    @SuppressWarnings("serial")
4990 >    static final class SearchValuesTask<K,V,U>
4991 >        extends BulkTask<K,V,U> {
4992 >        final Function<? super V, ? extends U> searchFunction;
4993 >        final AtomicReference<U> result;
4994 >        SearchValuesTask
4995 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4996 >             Function<? super V, ? extends U> searchFunction,
4997 >             AtomicReference<U> result) {
4998 >            super(p, b, i, f, t);
4999 >            this.searchFunction = searchFunction; this.result = result;
5000 >        }
5001 >        public final U getRawResult() { return result.get(); }
5002 >        public final void compute() {
5003 >            final Function<? super V, ? extends U> searchFunction;
5004 >            final AtomicReference<U> result;
5005 >            if ((searchFunction = this.searchFunction) != null &&
5006 >                (result = this.result) != null) {
5007 >                for (int i = baseIndex, f, h; batch > 0 &&
5008 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5009 >                    if (result.get() != null)
5010 >                        return;
5011 >                    addToPendingCount(1);
5012 >                    new SearchValuesTask<K,V,U>
5013 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5014 >                         searchFunction, result).fork();
5015 >                }
5016 >                while (result.get() == null) {
5017 >                    U u;
5018 >                    Node<K,V> p;
5019 >                    if ((p = advance()) == null) {
5020 >                        propagateCompletion();
5021 >                        break;
5022 >                    }
5023 >                    if ((u = searchFunction.apply(p.val)) != null) {
5024 >                        if (result.compareAndSet(null, u))
5025 >                            quietlyCompleteRoot();
5026 >                        break;
5027 >                    }
5028 >                }
5029 >            }
5030 >        }
5031 >    }
5032 >
5033 >    @SuppressWarnings("serial")
5034 >    static final class SearchEntriesTask<K,V,U>
5035 >        extends BulkTask<K,V,U> {
5036 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5037 >        final AtomicReference<U> result;
5038 >        SearchEntriesTask
5039 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5040 >             Function<Entry<K,V>, ? extends U> searchFunction,
5041 >             AtomicReference<U> result) {
5042 >            super(p, b, i, f, t);
5043 >            this.searchFunction = searchFunction; this.result = result;
5044 >        }
5045 >        public final U getRawResult() { return result.get(); }
5046 >        public final void compute() {
5047 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5048 >            final AtomicReference<U> result;
5049 >            if ((searchFunction = this.searchFunction) != null &&
5050 >                (result = this.result) != null) {
5051 >                for (int i = baseIndex, f, h; batch > 0 &&
5052 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5053 >                    if (result.get() != null)
5054 >                        return;
5055 >                    addToPendingCount(1);
5056 >                    new SearchEntriesTask<K,V,U>
5057 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5058 >                         searchFunction, result).fork();
5059 >                }
5060 >                while (result.get() == null) {
5061 >                    U u;
5062 >                    Node<K,V> p;
5063 >                    if ((p = advance()) == null) {
5064 >                        propagateCompletion();
5065 >                        break;
5066 >                    }
5067 >                    if ((u = searchFunction.apply(p)) != null) {
5068 >                        if (result.compareAndSet(null, u))
5069 >                            quietlyCompleteRoot();
5070 >                        return;
5071 >                    }
5072 >                }
5073 >            }
5074 >        }
5075 >    }
5076 >
5077 >    @SuppressWarnings("serial")
5078 >    static final class SearchMappingsTask<K,V,U>
5079 >        extends BulkTask<K,V,U> {
5080 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5081 >        final AtomicReference<U> result;
5082 >        SearchMappingsTask
5083 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5084 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5085 >             AtomicReference<U> result) {
5086 >            super(p, b, i, f, t);
5087 >            this.searchFunction = searchFunction; this.result = result;
5088 >        }
5089 >        public final U getRawResult() { return result.get(); }
5090 >        public final void compute() {
5091 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5092 >            final AtomicReference<U> result;
5093 >            if ((searchFunction = this.searchFunction) != null &&
5094 >                (result = this.result) != null) {
5095 >                for (int i = baseIndex, f, h; batch > 0 &&
5096 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5097 >                    if (result.get() != null)
5098 >                        return;
5099 >                    addToPendingCount(1);
5100 >                    new SearchMappingsTask<K,V,U>
5101 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5102 >                         searchFunction, result).fork();
5103 >                }
5104 >                while (result.get() == null) {
5105 >                    U u;
5106 >                    Node<K,V> p;
5107 >                    if ((p = advance()) == null) {
5108 >                        propagateCompletion();
5109 >                        break;
5110 >                    }
5111 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5112 >                        if (result.compareAndSet(null, u))
5113 >                            quietlyCompleteRoot();
5114 >                        break;
5115 >                    }
5116 >                }
5117 >            }
5118 >        }
5119 >    }
5120 >
5121 >    @SuppressWarnings("serial")
5122 >    static final class ReduceKeysTask<K,V>
5123 >        extends BulkTask<K,V,K> {
5124 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5125 >        K result;
5126 >        ReduceKeysTask<K,V> rights, nextRight;
5127 >        ReduceKeysTask
5128 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5129 >             ReduceKeysTask<K,V> nextRight,
5130 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5131 >            super(p, b, i, f, t); this.nextRight = nextRight;
5132 >            this.reducer = reducer;
5133 >        }
5134 >        public final K getRawResult() { return result; }
5135 >        public final void compute() {
5136 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5137 >            if ((reducer = this.reducer) != null) {
5138 >                for (int i = baseIndex, f, h; batch > 0 &&
5139 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5140 >                    addToPendingCount(1);
5141 >                    (rights = new ReduceKeysTask<K,V>
5142 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5143 >                      rights, reducer)).fork();
5144 >                }
5145 >                K r = null;
5146 >                for (Node<K,V> p; (p = advance()) != null; ) {
5147 >                    K u = p.key;
5148 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5149 >                }
5150 >                result = r;
5151 >                CountedCompleter<?> c;
5152 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5153 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5154 >                        t = (ReduceKeysTask<K,V>)c,
5155 >                        s = t.rights;
5156 >                    while (s != null) {
5157 >                        K tr, sr;
5158 >                        if ((sr = s.result) != null)
5159 >                            t.result = (((tr = t.result) == null) ? sr :
5160 >                                        reducer.apply(tr, sr));
5161 >                        s = t.rights = s.nextRight;
5162 >                    }
5163 >                }
5164 >            }
5165 >        }
5166 >    }
5167 >
5168 >    @SuppressWarnings("serial")
5169 >    static final class ReduceValuesTask<K,V>
5170 >        extends BulkTask<K,V,V> {
5171 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5172 >        V result;
5173 >        ReduceValuesTask<K,V> rights, nextRight;
5174 >        ReduceValuesTask
5175 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5176 >             ReduceValuesTask<K,V> nextRight,
5177 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5178 >            super(p, b, i, f, t); this.nextRight = nextRight;
5179 >            this.reducer = reducer;
5180 >        }
5181 >        public final V getRawResult() { return result; }
5182 >        public final void compute() {
5183 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5184 >            if ((reducer = this.reducer) != null) {
5185 >                for (int i = baseIndex, f, h; batch > 0 &&
5186 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5187 >                    addToPendingCount(1);
5188 >                    (rights = new ReduceValuesTask<K,V>
5189 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5190 >                      rights, reducer)).fork();
5191 >                }
5192 >                V r = null;
5193 >                for (Node<K,V> p; (p = advance()) != null; ) {
5194 >                    V v = p.val;
5195 >                    r = (r == null) ? v : reducer.apply(r, v);
5196 >                }
5197 >                result = r;
5198 >                CountedCompleter<?> c;
5199 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5200 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5201 >                        t = (ReduceValuesTask<K,V>)c,
5202 >                        s = t.rights;
5203 >                    while (s != null) {
5204 >                        V tr, sr;
5205 >                        if ((sr = s.result) != null)
5206 >                            t.result = (((tr = t.result) == null) ? sr :
5207 >                                        reducer.apply(tr, sr));
5208 >                        s = t.rights = s.nextRight;
5209 >                    }
5210 >                }
5211 >            }
5212 >        }
5213 >    }
5214 >
5215 >    @SuppressWarnings("serial")
5216 >    static final class ReduceEntriesTask<K,V>
5217 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5218 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5219 >        Map.Entry<K,V> result;
5220 >        ReduceEntriesTask<K,V> rights, nextRight;
5221 >        ReduceEntriesTask
5222 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5223 >             ReduceEntriesTask<K,V> nextRight,
5224 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5225 >            super(p, b, i, f, t); this.nextRight = nextRight;
5226 >            this.reducer = reducer;
5227 >        }
5228 >        public final Map.Entry<K,V> getRawResult() { return result; }
5229 >        public final void compute() {
5230 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5231 >            if ((reducer = this.reducer) != null) {
5232 >                for (int i = baseIndex, f, h; batch > 0 &&
5233 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5234 >                    addToPendingCount(1);
5235 >                    (rights = new ReduceEntriesTask<K,V>
5236 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5237 >                      rights, reducer)).fork();
5238 >                }
5239 >                Map.Entry<K,V> r = null;
5240 >                for (Node<K,V> p; (p = advance()) != null; )
5241 >                    r = (r == null) ? p : reducer.apply(r, p);
5242 >                result = r;
5243 >                CountedCompleter<?> c;
5244 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5245 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5246 >                        t = (ReduceEntriesTask<K,V>)c,
5247 >                        s = t.rights;
5248 >                    while (s != null) {
5249 >                        Map.Entry<K,V> tr, sr;
5250 >                        if ((sr = s.result) != null)
5251 >                            t.result = (((tr = t.result) == null) ? sr :
5252 >                                        reducer.apply(tr, sr));
5253 >                        s = t.rights = s.nextRight;
5254 >                    }
5255 >                }
5256 >            }
5257 >        }
5258 >    }
5259 >
5260 >    @SuppressWarnings("serial")
5261 >    static final class MapReduceKeysTask<K,V,U>
5262 >        extends BulkTask<K,V,U> {
5263 >        final Function<? super K, ? extends U> transformer;
5264 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5265 >        U result;
5266 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5267 >        MapReduceKeysTask
5268 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5269 >             MapReduceKeysTask<K,V,U> nextRight,
5270 >             Function<? super K, ? extends U> transformer,
5271 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5272 >            super(p, b, i, f, t); this.nextRight = nextRight;
5273 >            this.transformer = transformer;
5274 >            this.reducer = reducer;
5275 >        }
5276 >        public final U getRawResult() { return result; }
5277 >        public final void compute() {
5278 >            final Function<? super K, ? extends U> transformer;
5279 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5280 >            if ((transformer = this.transformer) != null &&
5281 >                (reducer = this.reducer) != null) {
5282 >                for (int i = baseIndex, f, h; batch > 0 &&
5283 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5284 >                    addToPendingCount(1);
5285 >                    (rights = new MapReduceKeysTask<K,V,U>
5286 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5287 >                      rights, transformer, reducer)).fork();
5288 >                }
5289 >                U r = null;
5290 >                for (Node<K,V> p; (p = advance()) != null; ) {
5291 >                    U u;
5292 >                    if ((u = transformer.apply(p.key)) != null)
5293 >                        r = (r == null) ? u : reducer.apply(r, u);
5294 >                }
5295 >                result = r;
5296 >                CountedCompleter<?> c;
5297 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5298 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5299 >                        t = (MapReduceKeysTask<K,V,U>)c,
5300 >                        s = t.rights;
5301 >                    while (s != null) {
5302 >                        U tr, sr;
5303 >                        if ((sr = s.result) != null)
5304 >                            t.result = (((tr = t.result) == null) ? sr :
5305 >                                        reducer.apply(tr, sr));
5306 >                        s = t.rights = s.nextRight;
5307 >                    }
5308 >                }
5309 >            }
5310 >        }
5311 >    }
5312 >
5313 >    @SuppressWarnings("serial")
5314 >    static final class MapReduceValuesTask<K,V,U>
5315 >        extends BulkTask<K,V,U> {
5316 >        final Function<? super V, ? extends U> transformer;
5317 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5318 >        U result;
5319 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5320 >        MapReduceValuesTask
5321 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5322 >             MapReduceValuesTask<K,V,U> nextRight,
5323 >             Function<? super V, ? extends U> transformer,
5324 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5325 >            super(p, b, i, f, t); this.nextRight = nextRight;
5326 >            this.transformer = transformer;
5327 >            this.reducer = reducer;
5328 >        }
5329 >        public final U getRawResult() { return result; }
5330 >        public final void compute() {
5331 >            final Function<? super V, ? extends U> transformer;
5332 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5333 >            if ((transformer = this.transformer) != null &&
5334 >                (reducer = this.reducer) != null) {
5335 >                for (int i = baseIndex, f, h; batch > 0 &&
5336 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5337 >                    addToPendingCount(1);
5338 >                    (rights = new MapReduceValuesTask<K,V,U>
5339 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5340 >                      rights, transformer, reducer)).fork();
5341 >                }
5342 >                U r = null;
5343 >                for (Node<K,V> p; (p = advance()) != null; ) {
5344 >                    U u;
5345 >                    if ((u = transformer.apply(p.val)) != null)
5346 >                        r = (r == null) ? u : reducer.apply(r, u);
5347 >                }
5348 >                result = r;
5349 >                CountedCompleter<?> c;
5350 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5351 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5352 >                        t = (MapReduceValuesTask<K,V,U>)c,
5353 >                        s = t.rights;
5354 >                    while (s != null) {
5355 >                        U tr, sr;
5356 >                        if ((sr = s.result) != null)
5357 >                            t.result = (((tr = t.result) == null) ? sr :
5358 >                                        reducer.apply(tr, sr));
5359 >                        s = t.rights = s.nextRight;
5360 >                    }
5361 >                }
5362 >            }
5363 >        }
5364 >    }
5365 >
5366 >    @SuppressWarnings("serial")
5367 >    static final class MapReduceEntriesTask<K,V,U>
5368 >        extends BulkTask<K,V,U> {
5369 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5370 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5371 >        U result;
5372 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5373 >        MapReduceEntriesTask
5374 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5375 >             MapReduceEntriesTask<K,V,U> nextRight,
5376 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5377 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5378 >            super(p, b, i, f, t); this.nextRight = nextRight;
5379 >            this.transformer = transformer;
5380 >            this.reducer = reducer;
5381 >        }
5382 >        public final U getRawResult() { return result; }
5383 >        public final void compute() {
5384 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5385 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5386 >            if ((transformer = this.transformer) != null &&
5387 >                (reducer = this.reducer) != null) {
5388 >                for (int i = baseIndex, f, h; batch > 0 &&
5389 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5390 >                    addToPendingCount(1);
5391 >                    (rights = new MapReduceEntriesTask<K,V,U>
5392 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5393 >                      rights, transformer, reducer)).fork();
5394 >                }
5395 >                U r = null;
5396 >                for (Node<K,V> p; (p = advance()) != null; ) {
5397 >                    U u;
5398 >                    if ((u = transformer.apply(p)) != null)
5399 >                        r = (r == null) ? u : reducer.apply(r, u);
5400 >                }
5401 >                result = r;
5402 >                CountedCompleter<?> c;
5403 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5404 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5405 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5406 >                        s = t.rights;
5407 >                    while (s != null) {
5408 >                        U tr, sr;
5409 >                        if ((sr = s.result) != null)
5410 >                            t.result = (((tr = t.result) == null) ? sr :
5411 >                                        reducer.apply(tr, sr));
5412 >                        s = t.rights = s.nextRight;
5413 >                    }
5414 >                }
5415 >            }
5416 >        }
5417 >    }
5418 >
5419 >    @SuppressWarnings("serial")
5420 >    static final class MapReduceMappingsTask<K,V,U>
5421 >        extends BulkTask<K,V,U> {
5422 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5423 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5424 >        U result;
5425 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5426 >        MapReduceMappingsTask
5427 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5428 >             MapReduceMappingsTask<K,V,U> nextRight,
5429 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5430 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5431 >            super(p, b, i, f, t); this.nextRight = nextRight;
5432 >            this.transformer = transformer;
5433 >            this.reducer = reducer;
5434 >        }
5435 >        public final U getRawResult() { return result; }
5436 >        public final void compute() {
5437 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5438 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5439 >            if ((transformer = this.transformer) != null &&
5440 >                (reducer = this.reducer) != null) {
5441 >                for (int i = baseIndex, f, h; batch > 0 &&
5442 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5443 >                    addToPendingCount(1);
5444 >                    (rights = new MapReduceMappingsTask<K,V,U>
5445 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5446 >                      rights, transformer, reducer)).fork();
5447 >                }
5448 >                U r = null;
5449 >                for (Node<K,V> p; (p = advance()) != null; ) {
5450 >                    U u;
5451 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5452 >                        r = (r == null) ? u : reducer.apply(r, u);
5453 >                }
5454 >                result = r;
5455 >                CountedCompleter<?> c;
5456 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5457 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5458 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5459 >                        s = t.rights;
5460 >                    while (s != null) {
5461 >                        U tr, sr;
5462 >                        if ((sr = s.result) != null)
5463 >                            t.result = (((tr = t.result) == null) ? sr :
5464 >                                        reducer.apply(tr, sr));
5465 >                        s = t.rights = s.nextRight;
5466 >                    }
5467 >                }
5468 >            }
5469 >        }
5470 >    }
5471 >
5472 >    @SuppressWarnings("serial")
5473 >    static final class MapReduceKeysToDoubleTask<K,V>
5474 >        extends BulkTask<K,V,Double> {
5475 >        final ToDoubleFunction<? super K> transformer;
5476 >        final DoubleBinaryOperator reducer;
5477 >        final double basis;
5478 >        double result;
5479 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5480 >        MapReduceKeysToDoubleTask
5481 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5482 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5483 >             ToDoubleFunction<? super K> transformer,
5484 >             double basis,
5485 >             DoubleBinaryOperator reducer) {
5486 >            super(p, b, i, f, t); this.nextRight = nextRight;
5487 >            this.transformer = transformer;
5488 >            this.basis = basis; this.reducer = reducer;
5489 >        }
5490 >        public final Double getRawResult() { return result; }
5491 >        public final void compute() {
5492 >            final ToDoubleFunction<? super K> transformer;
5493 >            final DoubleBinaryOperator reducer;
5494 >            if ((transformer = this.transformer) != null &&
5495 >                (reducer = this.reducer) != null) {
5496 >                double r = this.basis;
5497 >                for (int i = baseIndex, f, h; batch > 0 &&
5498 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5499 >                    addToPendingCount(1);
5500 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5501 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5502 >                      rights, transformer, r, reducer)).fork();
5503 >                }
5504 >                for (Node<K,V> p; (p = advance()) != null; )
5505 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5506 >                result = r;
5507 >                CountedCompleter<?> c;
5508 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5509 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5510 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5511 >                        s = t.rights;
5512 >                    while (s != null) {
5513 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5514 >                        s = t.rights = s.nextRight;
5515 >                    }
5516 >                }
5517 >            }
5518 >        }
5519 >    }
5520 >
5521 >    @SuppressWarnings("serial")
5522 >    static final class MapReduceValuesToDoubleTask<K,V>
5523 >        extends BulkTask<K,V,Double> {
5524 >        final ToDoubleFunction<? super V> transformer;
5525 >        final DoubleBinaryOperator reducer;
5526 >        final double basis;
5527 >        double result;
5528 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5529 >        MapReduceValuesToDoubleTask
5530 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5531 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5532 >             ToDoubleFunction<? super V> transformer,
5533 >             double basis,
5534 >             DoubleBinaryOperator reducer) {
5535 >            super(p, b, i, f, t); this.nextRight = nextRight;
5536 >            this.transformer = transformer;
5537 >            this.basis = basis; this.reducer = reducer;
5538 >        }
5539 >        public final Double getRawResult() { return result; }
5540 >        public final void compute() {
5541 >            final ToDoubleFunction<? super V> transformer;
5542 >            final DoubleBinaryOperator reducer;
5543 >            if ((transformer = this.transformer) != null &&
5544 >                (reducer = this.reducer) != null) {
5545 >                double r = this.basis;
5546 >                for (int i = baseIndex, f, h; batch > 0 &&
5547 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5548 >                    addToPendingCount(1);
5549 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5550 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5551 >                      rights, transformer, r, reducer)).fork();
5552 >                }
5553 >                for (Node<K,V> p; (p = advance()) != null; )
5554 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5555 >                result = r;
5556 >                CountedCompleter<?> c;
5557 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5558 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5559 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5560 >                        s = t.rights;
5561 >                    while (s != null) {
5562 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5563 >                        s = t.rights = s.nextRight;
5564 >                    }
5565 >                }
5566 >            }
5567 >        }
5568 >    }
5569 >
5570 >    @SuppressWarnings("serial")
5571 >    static final class MapReduceEntriesToDoubleTask<K,V>
5572 >        extends BulkTask<K,V,Double> {
5573 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5574 >        final DoubleBinaryOperator reducer;
5575 >        final double basis;
5576 >        double result;
5577 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5578 >        MapReduceEntriesToDoubleTask
5579 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5580 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5581 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5582 >             double basis,
5583 >             DoubleBinaryOperator reducer) {
5584 >            super(p, b, i, f, t); this.nextRight = nextRight;
5585 >            this.transformer = transformer;
5586 >            this.basis = basis; this.reducer = reducer;
5587 >        }
5588 >        public final Double getRawResult() { return result; }
5589 >        public final void compute() {
5590 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5591 >            final DoubleBinaryOperator reducer;
5592 >            if ((transformer = this.transformer) != null &&
5593 >                (reducer = this.reducer) != null) {
5594 >                double r = this.basis;
5595 >                for (int i = baseIndex, f, h; batch > 0 &&
5596 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5597 >                    addToPendingCount(1);
5598 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5599 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5600 >                      rights, transformer, r, reducer)).fork();
5601 >                }
5602 >                for (Node<K,V> p; (p = advance()) != null; )
5603 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5604 >                result = r;
5605 >                CountedCompleter<?> c;
5606 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5607 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5608 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5609 >                        s = t.rights;
5610 >                    while (s != null) {
5611 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5612 >                        s = t.rights = s.nextRight;
5613 >                    }
5614 >                }
5615 >            }
5616 >        }
5617 >    }
5618 >
5619 >    @SuppressWarnings("serial")
5620 >    static final class MapReduceMappingsToDoubleTask<K,V>
5621 >        extends BulkTask<K,V,Double> {
5622 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5623 >        final DoubleBinaryOperator reducer;
5624 >        final double basis;
5625 >        double result;
5626 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5627 >        MapReduceMappingsToDoubleTask
5628 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5629 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5630 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5631 >             double basis,
5632 >             DoubleBinaryOperator reducer) {
5633 >            super(p, b, i, f, t); this.nextRight = nextRight;
5634 >            this.transformer = transformer;
5635 >            this.basis = basis; this.reducer = reducer;
5636 >        }
5637 >        public final Double getRawResult() { return result; }
5638 >        public final void compute() {
5639 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5640 >            final DoubleBinaryOperator reducer;
5641 >            if ((transformer = this.transformer) != null &&
5642 >                (reducer = this.reducer) != null) {
5643 >                double r = this.basis;
5644 >                for (int i = baseIndex, f, h; batch > 0 &&
5645 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5646 >                    addToPendingCount(1);
5647 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5648 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5649 >                      rights, transformer, r, reducer)).fork();
5650 >                }
5651 >                for (Node<K,V> p; (p = advance()) != null; )
5652 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5653 >                result = r;
5654 >                CountedCompleter<?> c;
5655 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5656 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5657 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5658 >                        s = t.rights;
5659 >                    while (s != null) {
5660 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5661 >                        s = t.rights = s.nextRight;
5662 >                    }
5663 >                }
5664 >            }
5665 >        }
5666 >    }
5667 >
5668 >    @SuppressWarnings("serial")
5669 >    static final class MapReduceKeysToLongTask<K,V>
5670 >        extends BulkTask<K,V,Long> {
5671 >        final ToLongFunction<? super K> transformer;
5672 >        final LongBinaryOperator reducer;
5673 >        final long basis;
5674 >        long result;
5675 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5676 >        MapReduceKeysToLongTask
5677 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5678 >             MapReduceKeysToLongTask<K,V> nextRight,
5679 >             ToLongFunction<? super K> transformer,
5680 >             long basis,
5681 >             LongBinaryOperator reducer) {
5682 >            super(p, b, i, f, t); this.nextRight = nextRight;
5683 >            this.transformer = transformer;
5684 >            this.basis = basis; this.reducer = reducer;
5685 >        }
5686 >        public final Long getRawResult() { return result; }
5687 >        public final void compute() {
5688 >            final ToLongFunction<? super K> transformer;
5689 >            final LongBinaryOperator reducer;
5690 >            if ((transformer = this.transformer) != null &&
5691 >                (reducer = this.reducer) != null) {
5692 >                long r = this.basis;
5693 >                for (int i = baseIndex, f, h; batch > 0 &&
5694 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5695 >                    addToPendingCount(1);
5696 >                    (rights = new MapReduceKeysToLongTask<K,V>
5697 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5698 >                      rights, transformer, r, reducer)).fork();
5699 >                }
5700 >                for (Node<K,V> p; (p = advance()) != null; )
5701 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5702 >                result = r;
5703 >                CountedCompleter<?> c;
5704 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5705 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5706 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5707 >                        s = t.rights;
5708 >                    while (s != null) {
5709 >                        t.result = reducer.applyAsLong(t.result, s.result);
5710 >                        s = t.rights = s.nextRight;
5711 >                    }
5712 >                }
5713 >            }
5714 >        }
5715 >    }
5716 >
5717 >    @SuppressWarnings("serial")
5718 >    static final class MapReduceValuesToLongTask<K,V>
5719 >        extends BulkTask<K,V,Long> {
5720 >        final ToLongFunction<? super V> transformer;
5721 >        final LongBinaryOperator reducer;
5722 >        final long basis;
5723 >        long result;
5724 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5725 >        MapReduceValuesToLongTask
5726 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5727 >             MapReduceValuesToLongTask<K,V> nextRight,
5728 >             ToLongFunction<? super V> transformer,
5729 >             long basis,
5730 >             LongBinaryOperator reducer) {
5731 >            super(p, b, i, f, t); this.nextRight = nextRight;
5732 >            this.transformer = transformer;
5733 >            this.basis = basis; this.reducer = reducer;
5734 >        }
5735 >        public final Long getRawResult() { return result; }
5736 >        public final void compute() {
5737 >            final ToLongFunction<? super V> transformer;
5738 >            final LongBinaryOperator reducer;
5739 >            if ((transformer = this.transformer) != null &&
5740 >                (reducer = this.reducer) != null) {
5741 >                long r = this.basis;
5742 >                for (int i = baseIndex, f, h; batch > 0 &&
5743 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5744 >                    addToPendingCount(1);
5745 >                    (rights = new MapReduceValuesToLongTask<K,V>
5746 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5747 >                      rights, transformer, r, reducer)).fork();
5748 >                }
5749 >                for (Node<K,V> p; (p = advance()) != null; )
5750 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5751 >                result = r;
5752 >                CountedCompleter<?> c;
5753 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5754 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5755 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5756 >                        s = t.rights;
5757 >                    while (s != null) {
5758 >                        t.result = reducer.applyAsLong(t.result, s.result);
5759 >                        s = t.rights = s.nextRight;
5760 >                    }
5761 >                }
5762 >            }
5763 >        }
5764 >    }
5765 >
5766 >    @SuppressWarnings("serial")
5767 >    static final class MapReduceEntriesToLongTask<K,V>
5768 >        extends BulkTask<K,V,Long> {
5769 >        final ToLongFunction<Map.Entry<K,V>> transformer;
5770 >        final LongBinaryOperator reducer;
5771 >        final long basis;
5772 >        long result;
5773 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5774 >        MapReduceEntriesToLongTask
5775 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5776 >             MapReduceEntriesToLongTask<K,V> nextRight,
5777 >             ToLongFunction<Map.Entry<K,V>> transformer,
5778 >             long basis,
5779 >             LongBinaryOperator reducer) {
5780 >            super(p, b, i, f, t); this.nextRight = nextRight;
5781 >            this.transformer = transformer;
5782 >            this.basis = basis; this.reducer = reducer;
5783 >        }
5784 >        public final Long getRawResult() { return result; }
5785 >        public final void compute() {
5786 >            final ToLongFunction<Map.Entry<K,V>> transformer;
5787 >            final LongBinaryOperator reducer;
5788 >            if ((transformer = this.transformer) != null &&
5789 >                (reducer = this.reducer) != null) {
5790 >                long r = this.basis;
5791 >                for (int i = baseIndex, f, h; batch > 0 &&
5792 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5793 >                    addToPendingCount(1);
5794 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5795 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5796 >                      rights, transformer, r, reducer)).fork();
5797 >                }
5798 >                for (Node<K,V> p; (p = advance()) != null; )
5799 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5800 >                result = r;
5801 >                CountedCompleter<?> c;
5802 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5803 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5804 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5805 >                        s = t.rights;
5806 >                    while (s != null) {
5807 >                        t.result = reducer.applyAsLong(t.result, s.result);
5808 >                        s = t.rights = s.nextRight;
5809 >                    }
5810 >                }
5811 >            }
5812 >        }
5813 >    }
5814 >
5815 >    @SuppressWarnings("serial")
5816 >    static final class MapReduceMappingsToLongTask<K,V>
5817 >        extends BulkTask<K,V,Long> {
5818 >        final ToLongBiFunction<? super K, ? super V> transformer;
5819 >        final LongBinaryOperator reducer;
5820 >        final long basis;
5821 >        long result;
5822 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5823 >        MapReduceMappingsToLongTask
5824 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5825 >             MapReduceMappingsToLongTask<K,V> nextRight,
5826 >             ToLongBiFunction<? super K, ? super V> transformer,
5827 >             long basis,
5828 >             LongBinaryOperator reducer) {
5829 >            super(p, b, i, f, t); this.nextRight = nextRight;
5830 >            this.transformer = transformer;
5831 >            this.basis = basis; this.reducer = reducer;
5832 >        }
5833 >        public final Long getRawResult() { return result; }
5834 >        public final void compute() {
5835 >            final ToLongBiFunction<? super K, ? super V> transformer;
5836 >            final LongBinaryOperator reducer;
5837 >            if ((transformer = this.transformer) != null &&
5838 >                (reducer = this.reducer) != null) {
5839 >                long r = this.basis;
5840 >                for (int i = baseIndex, f, h; batch > 0 &&
5841 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5842 >                    addToPendingCount(1);
5843 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5844 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5845 >                      rights, transformer, r, reducer)).fork();
5846 >                }
5847 >                for (Node<K,V> p; (p = advance()) != null; )
5848 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5849 >                result = r;
5850 >                CountedCompleter<?> c;
5851 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5852 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5853 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5854 >                        s = t.rights;
5855 >                    while (s != null) {
5856 >                        t.result = reducer.applyAsLong(t.result, s.result);
5857 >                        s = t.rights = s.nextRight;
5858 >                    }
5859 >                }
5860 >            }
5861 >        }
5862 >    }
5863 >
5864 >    @SuppressWarnings("serial")
5865 >    static final class MapReduceKeysToIntTask<K,V>
5866 >        extends BulkTask<K,V,Integer> {
5867 >        final ToIntFunction<? super K> transformer;
5868 >        final IntBinaryOperator reducer;
5869 >        final int basis;
5870 >        int result;
5871 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5872 >        MapReduceKeysToIntTask
5873 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5874 >             MapReduceKeysToIntTask<K,V> nextRight,
5875 >             ToIntFunction<? super K> transformer,
5876 >             int basis,
5877 >             IntBinaryOperator reducer) {
5878 >            super(p, b, i, f, t); this.nextRight = nextRight;
5879 >            this.transformer = transformer;
5880 >            this.basis = basis; this.reducer = reducer;
5881 >        }
5882 >        public final Integer getRawResult() { return result; }
5883 >        public final void compute() {
5884 >            final ToIntFunction<? super K> transformer;
5885 >            final IntBinaryOperator reducer;
5886 >            if ((transformer = this.transformer) != null &&
5887 >                (reducer = this.reducer) != null) {
5888 >                int r = this.basis;
5889 >                for (int i = baseIndex, f, h; batch > 0 &&
5890 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5891 >                    addToPendingCount(1);
5892 >                    (rights = new MapReduceKeysToIntTask<K,V>
5893 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5894 >                      rights, transformer, r, reducer)).fork();
5895 >                }
5896 >                for (Node<K,V> p; (p = advance()) != null; )
5897 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5898 >                result = r;
5899 >                CountedCompleter<?> c;
5900 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5901 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5902 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5903 >                        s = t.rights;
5904 >                    while (s != null) {
5905 >                        t.result = reducer.applyAsInt(t.result, s.result);
5906 >                        s = t.rights = s.nextRight;
5907 >                    }
5908 >                }
5909 >            }
5910 >        }
5911 >    }
5912 >
5913 >    @SuppressWarnings("serial")
5914 >    static final class MapReduceValuesToIntTask<K,V>
5915 >        extends BulkTask<K,V,Integer> {
5916 >        final ToIntFunction<? super V> transformer;
5917 >        final IntBinaryOperator reducer;
5918 >        final int basis;
5919 >        int result;
5920 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5921 >        MapReduceValuesToIntTask
5922 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5923 >             MapReduceValuesToIntTask<K,V> nextRight,
5924 >             ToIntFunction<? super V> transformer,
5925 >             int basis,
5926 >             IntBinaryOperator reducer) {
5927 >            super(p, b, i, f, t); this.nextRight = nextRight;
5928 >            this.transformer = transformer;
5929 >            this.basis = basis; this.reducer = reducer;
5930 >        }
5931 >        public final Integer getRawResult() { return result; }
5932 >        public final void compute() {
5933 >            final ToIntFunction<? super V> transformer;
5934 >            final IntBinaryOperator reducer;
5935 >            if ((transformer = this.transformer) != null &&
5936 >                (reducer = this.reducer) != null) {
5937 >                int r = this.basis;
5938 >                for (int i = baseIndex, f, h; batch > 0 &&
5939 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5940 >                    addToPendingCount(1);
5941 >                    (rights = new MapReduceValuesToIntTask<K,V>
5942 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5943 >                      rights, transformer, r, reducer)).fork();
5944 >                }
5945 >                for (Node<K,V> p; (p = advance()) != null; )
5946 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5947 >                result = r;
5948 >                CountedCompleter<?> c;
5949 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5950 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5951 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5952 >                        s = t.rights;
5953 >                    while (s != null) {
5954 >                        t.result = reducer.applyAsInt(t.result, s.result);
5955 >                        s = t.rights = s.nextRight;
5956 >                    }
5957 >                }
5958 >            }
5959 >        }
5960 >    }
5961 >
5962 >    @SuppressWarnings("serial")
5963 >    static final class MapReduceEntriesToIntTask<K,V>
5964 >        extends BulkTask<K,V,Integer> {
5965 >        final ToIntFunction<Map.Entry<K,V>> transformer;
5966 >        final IntBinaryOperator reducer;
5967 >        final int basis;
5968 >        int result;
5969 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
5970 >        MapReduceEntriesToIntTask
5971 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5972 >             MapReduceEntriesToIntTask<K,V> nextRight,
5973 >             ToIntFunction<Map.Entry<K,V>> transformer,
5974 >             int basis,
5975 >             IntBinaryOperator reducer) {
5976 >            super(p, b, i, f, t); this.nextRight = nextRight;
5977 >            this.transformer = transformer;
5978 >            this.basis = basis; this.reducer = reducer;
5979 >        }
5980 >        public final Integer getRawResult() { return result; }
5981 >        public final void compute() {
5982 >            final ToIntFunction<Map.Entry<K,V>> transformer;
5983 >            final IntBinaryOperator reducer;
5984 >            if ((transformer = this.transformer) != null &&
5985 >                (reducer = this.reducer) != null) {
5986 >                int r = this.basis;
5987 >                for (int i = baseIndex, f, h; batch > 0 &&
5988 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5989 >                    addToPendingCount(1);
5990 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5991 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5992 >                      rights, transformer, r, reducer)).fork();
5993 >                }
5994 >                for (Node<K,V> p; (p = advance()) != null; )
5995 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5996 >                result = r;
5997 >                CountedCompleter<?> c;
5998 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5999 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6000 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6001 >                        s = t.rights;
6002 >                    while (s != null) {
6003 >                        t.result = reducer.applyAsInt(t.result, s.result);
6004 >                        s = t.rights = s.nextRight;
6005 >                    }
6006 >                }
6007 >            }
6008 >        }
6009 >    }
6010 >
6011 >    @SuppressWarnings("serial")
6012 >    static final class MapReduceMappingsToIntTask<K,V>
6013 >        extends BulkTask<K,V,Integer> {
6014 >        final ToIntBiFunction<? super K, ? super V> transformer;
6015 >        final IntBinaryOperator reducer;
6016 >        final int basis;
6017 >        int result;
6018 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6019 >        MapReduceMappingsToIntTask
6020 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6021 >             MapReduceMappingsToIntTask<K,V> nextRight,
6022 >             ToIntBiFunction<? super K, ? super V> transformer,
6023 >             int basis,
6024 >             IntBinaryOperator reducer) {
6025 >            super(p, b, i, f, t); this.nextRight = nextRight;
6026 >            this.transformer = transformer;
6027 >            this.basis = basis; this.reducer = reducer;
6028 >        }
6029 >        public final Integer getRawResult() { return result; }
6030 >        public final void compute() {
6031 >            final ToIntBiFunction<? super K, ? super V> transformer;
6032 >            final IntBinaryOperator reducer;
6033 >            if ((transformer = this.transformer) != null &&
6034 >                (reducer = this.reducer) != null) {
6035 >                int r = this.basis;
6036 >                for (int i = baseIndex, f, h; batch > 0 &&
6037 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6038 >                    addToPendingCount(1);
6039 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6040 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6041 >                      rights, transformer, r, reducer)).fork();
6042 >                }
6043 >                for (Node<K,V> p; (p = advance()) != null; )
6044 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6045 >                result = r;
6046 >                CountedCompleter<?> c;
6047 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6048 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6049 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6050 >                        s = t.rights;
6051 >                    while (s != null) {
6052 >                        t.result = reducer.applyAsInt(t.result, s.result);
6053 >                        s = t.rights = s.nextRight;
6054 >                    }
6055 >                }
6056 >            }
6057 >        }
6058 >    }
6059 >
6060 >    // Unsafe mechanics
6061 >    private static final sun.misc.Unsafe U;
6062 >    private static final long SIZECTL;
6063 >    private static final long TRANSFERINDEX;
6064 >    private static final long TRANSFERORIGIN;
6065 >    private static final long BASECOUNT;
6066 >    private static final long CELLSBUSY;
6067 >    private static final long CELLVALUE;
6068 >    private static final long ABASE;
6069 >    private static final int ASHIFT;
6070 >
6071 >    static {
6072 >        try {
6073 >            U = sun.misc.Unsafe.getUnsafe();
6074 >            Class<?> k = ConcurrentHashMap.class;
6075 >            SIZECTL = U.objectFieldOffset
6076 >                (k.getDeclaredField("sizeCtl"));
6077 >            TRANSFERINDEX = U.objectFieldOffset
6078 >                (k.getDeclaredField("transferIndex"));
6079 >            TRANSFERORIGIN = U.objectFieldOffset
6080 >                (k.getDeclaredField("transferOrigin"));
6081 >            BASECOUNT = U.objectFieldOffset
6082 >                (k.getDeclaredField("baseCount"));
6083 >            CELLSBUSY = U.objectFieldOffset
6084 >                (k.getDeclaredField("cellsBusy"));
6085 >            Class<?> ck = CounterCell.class;
6086 >            CELLVALUE = U.objectFieldOffset
6087 >                (ck.getDeclaredField("value"));
6088 >            Class<?> ak = Node[].class;
6089 >            ABASE = U.arrayBaseOffset(ak);
6090 >            int scale = U.arrayIndexScale(ak);
6091 >            if ((scale & (scale - 1)) != 0)
6092 >                throw new Error("data type scale not a power of two");
6093 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6094 >        } catch (Exception e) {
6095 >            throw new Error(e);
6096          }
6097      }
6098   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines