ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.92 by dl, Sat Dec 2 20:55:01 2006 UTC vs.
Revision 1.292 by jsr166, Sat Apr 23 20:13:21 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.atomic.AtomicReference;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.Predicate;
35 > import java.util.function.ToDoubleBiFunction;
36 > import java.util.function.ToDoubleFunction;
37 > import java.util.function.ToIntBiFunction;
38 > import java.util.function.ToIntFunction;
39 > import java.util.function.ToLongBiFunction;
40 > import java.util.function.ToLongFunction;
41 > import java.util.stream.Stream;
42  
43   /**
44   * A hash table supporting full concurrency of retrievals and
45 < * adjustable expected concurrency for updates. This class obeys the
45 > * high expected concurrency for updates. This class obeys the
46   * same functional specification as {@link java.util.Hashtable}, and
47   * includes versions of methods corresponding to each method of
48 < * <tt>Hashtable</tt>. However, even though all operations are
48 > * {@code Hashtable}. However, even though all operations are
49   * thread-safe, retrieval operations do <em>not</em> entail locking,
50   * and there is <em>not</em> any support for locking the entire table
51   * in a way that prevents all access.  This class is fully
52 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
52 > * interoperable with {@code Hashtable} in programs that rely on its
53   * thread safety but not on its synchronization details.
54   *
55 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
56 < * block, so may overlap with update operations (including
57 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
58 < * of the most recently <em>completed</em> update operations holding
59 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
60 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
61 < * removal of only some entries.  Similarly, Iterators and
62 < * Enumerations return elements reflecting the state of the hash table
63 < * at some point at or since the creation of the iterator/enumeration.
64 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
55 > * <p>Retrieval operations (including {@code get}) generally do not
56 > * block, so may overlap with update operations (including {@code put}
57 > * and {@code remove}). Retrievals reflect the results of the most
58 > * recently <em>completed</em> update operations holding upon their
59 > * onset. (More formally, an update operation for a given key bears a
60 > * <em>happens-before</em> relation with any (non-null) retrieval for
61 > * that key reporting the updated value.)  For aggregate operations
62 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
63 > * reflect insertion or removal of only some entries.  Similarly,
64 > * Iterators, Spliterators and Enumerations return elements reflecting the
65 > * state of the hash table at some point at or since the creation of the
66 > * iterator/enumeration.  They do <em>not</em> throw {@link
67 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
68   * However, iterators are designed to be used by only one thread at a time.
69 + * Bear in mind that the results of aggregate status methods including
70 + * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 + * useful only when a map is not undergoing concurrent updates in other threads.
72 + * Otherwise the results of these methods reflect transient states
73 + * that may be adequate for monitoring or estimation purposes, but not
74 + * for program control.
75 + *
76 + * <p>The table is dynamically expanded when there are too many
77 + * collisions (i.e., keys that have distinct hash codes but fall into
78 + * the same slot modulo the table size), with the expected average
79 + * effect of maintaining roughly two bins per mapping (corresponding
80 + * to a 0.75 load factor threshold for resizing). There may be much
81 + * variance around this average as mappings are added and removed, but
82 + * overall, this maintains a commonly accepted time/space tradeoff for
83 + * hash tables.  However, resizing this or any other kind of hash
84 + * table may be a relatively slow operation. When possible, it is a
85 + * good idea to provide a size estimate as an optional {@code
86 + * initialCapacity} constructor argument. An additional optional
87 + * {@code loadFactor} constructor argument provides a further means of
88 + * customizing initial table capacity by specifying the table density
89 + * to be used in calculating the amount of space to allocate for the
90 + * given number of elements.  Also, for compatibility with previous
91 + * versions of this class, constructors may optionally specify an
92 + * expected {@code concurrencyLevel} as an additional hint for
93 + * internal sizing.  Note that using many keys with exactly the same
94 + * {@code hashCode()} is a sure way to slow down performance of any
95 + * hash table. To ameliorate impact, when keys are {@link Comparable},
96 + * this class may use comparison order among keys to help break ties.
97 + *
98 + * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100 + * (using {@link #keySet(Object)} when only keys are of interest, and the
101 + * mapped values are (perhaps transiently) not used or all take the
102 + * same mapping value.
103   *
104 < * <p> The allowed concurrency among update operations is guided by
105 < * the optional <tt>concurrencyLevel</tt> constructor argument
106 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
107 < * table is internally partitioned to try to permit the indicated
108 < * number of concurrent updates without contention. Because placement
109 < * in hash tables is essentially random, the actual concurrency will
45 < * vary.  Ideally, you should choose a value to accommodate as many
46 < * threads as will ever concurrently modify the table. Using a
47 < * significantly higher value than you need can waste space and time,
48 < * and a significantly lower value can lead to thread contention. But
49 < * overestimates and underestimates within an order of magnitude do
50 < * not usually have much noticeable impact. A value of one is
51 < * appropriate when it is known that only one thread will modify and
52 < * all others will only read. Also, resizing this or any other kind of
53 < * hash table is a relatively slow operation, so, when possible, it is
54 < * a good idea to provide estimates of expected table sizes in
55 < * constructors.
104 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 > * form of histogram or multiset) by using {@link
106 > * java.util.concurrent.atomic.LongAdder} values and initializing via
107 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110   *
111   * <p>This class and its views and iterators implement all of the
112   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113   * interfaces.
114   *
115 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
116 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
115 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 > * does <em>not</em> allow {@code null} to be used as a key or value.
117 > *
118 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 > * operations that, unlike most {@link Stream} methods, are designed
120 > * to be safely, and often sensibly, applied even with maps that are
121 > * being concurrently updated by other threads; for example, when
122 > * computing a snapshot summary of the values in a shared registry.
123 > * There are three kinds of operation, each with four forms, accepting
124 > * functions with keys, values, entries, and (key, value) pairs as
125 > * arguments and/or return values. Because the elements of a
126 > * ConcurrentHashMap are not ordered in any particular way, and may be
127 > * processed in different orders in different parallel executions, the
128 > * correctness of supplied functions should not depend on any
129 > * ordering, or on any other objects or values that may transiently
130 > * change while computation is in progress; and except for forEach
131 > * actions, should ideally be side-effect-free. Bulk operations on
132 > * {@link java.util.Map.Entry} objects do not support method {@code
133 > * setValue}.
134 > *
135 > * <ul>
136 > * <li>forEach: Performs a given action on each element.
137 > * A variant form applies a given transformation on each element
138 > * before performing the action.
139 > *
140 > * <li>search: Returns the first available non-null result of
141 > * applying a given function on each element; skipping further
142 > * search when a result is found.
143 > *
144 > * <li>reduce: Accumulates each element.  The supplied reduction
145 > * function cannot rely on ordering (more formally, it should be
146 > * both associative and commutative).  There are five variants:
147 > *
148 > * <ul>
149 > *
150 > * <li>Plain reductions. (There is not a form of this method for
151 > * (key, value) function arguments since there is no corresponding
152 > * return type.)
153 > *
154 > * <li>Mapped reductions that accumulate the results of a given
155 > * function applied to each element.
156 > *
157 > * <li>Reductions to scalar doubles, longs, and ints, using a
158 > * given basis value.
159 > *
160 > * </ul>
161 > * </ul>
162 > *
163 > * <p>These bulk operations accept a {@code parallelismThreshold}
164 > * argument. Methods proceed sequentially if the current map size is
165 > * estimated to be less than the given threshold. Using a value of
166 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
167 > * of {@code 1} results in maximal parallelism by partitioning into
168 > * enough subtasks to fully utilize the {@link
169 > * ForkJoinPool#commonPool()} that is used for all parallel
170 > * computations. Normally, you would initially choose one of these
171 > * extreme values, and then measure performance of using in-between
172 > * values that trade off overhead versus throughput.
173 > *
174 > * <p>The concurrency properties of bulk operations follow
175 > * from those of ConcurrentHashMap: Any non-null result returned
176 > * from {@code get(key)} and related access methods bears a
177 > * happens-before relation with the associated insertion or
178 > * update.  The result of any bulk operation reflects the
179 > * composition of these per-element relations (but is not
180 > * necessarily atomic with respect to the map as a whole unless it
181 > * is somehow known to be quiescent).  Conversely, because keys
182 > * and values in the map are never null, null serves as a reliable
183 > * atomic indicator of the current lack of any result.  To
184 > * maintain this property, null serves as an implicit basis for
185 > * all non-scalar reduction operations. For the double, long, and
186 > * int versions, the basis should be one that, when combined with
187 > * any other value, returns that other value (more formally, it
188 > * should be the identity element for the reduction). Most common
189 > * reductions have these properties; for example, computing a sum
190 > * with basis 0 or a minimum with basis MAX_VALUE.
191 > *
192 > * <p>Search and transformation functions provided as arguments
193 > * should similarly return null to indicate the lack of any result
194 > * (in which case it is not used). In the case of mapped
195 > * reductions, this also enables transformations to serve as
196 > * filters, returning null (or, in the case of primitive
197 > * specializations, the identity basis) if the element should not
198 > * be combined. You can create compound transformations and
199 > * filterings by composing them yourself under this "null means
200 > * there is nothing there now" rule before using them in search or
201 > * reduce operations.
202 > *
203 > * <p>Methods accepting and/or returning Entry arguments maintain
204 > * key-value associations. They may be useful for example when
205 > * finding the key for the greatest value. Note that "plain" Entry
206 > * arguments can be supplied using {@code new
207 > * AbstractMap.SimpleEntry(k,v)}.
208 > *
209 > * <p>Bulk operations may complete abruptly, throwing an
210 > * exception encountered in the application of a supplied
211 > * function. Bear in mind when handling such exceptions that other
212 > * concurrently executing functions could also have thrown
213 > * exceptions, or would have done so if the first exception had
214 > * not occurred.
215 > *
216 > * <p>Speedups for parallel compared to sequential forms are common
217 > * but not guaranteed.  Parallel operations involving brief functions
218 > * on small maps may execute more slowly than sequential forms if the
219 > * underlying work to parallelize the computation is more expensive
220 > * than the computation itself.  Similarly, parallelization may not
221 > * lead to much actual parallelism if all processors are busy
222 > * performing unrelated tasks.
223 > *
224 > * <p>All arguments to all task methods must be non-null.
225   *
226   * <p>This class is a member of the
227   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 232 | import java.io.ObjectOutputStream;
232   * @param <K> the type of keys maintained by this map
233   * @param <V> the type of mapped values
234   */
235 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
236 <        implements ConcurrentMap<K, V>, Serializable {
235 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 >    implements ConcurrentMap<K,V>, Serializable {
237      private static final long serialVersionUID = 7249069246763182397L;
238  
239      /*
240 <     * The basic strategy is to subdivide the table among Segments,
241 <     * each of which itself is a concurrently readable hash table.
240 >     * Overview:
241 >     *
242 >     * The primary design goal of this hash table is to maintain
243 >     * concurrent readability (typically method get(), but also
244 >     * iterators and related methods) while minimizing update
245 >     * contention. Secondary goals are to keep space consumption about
246 >     * the same or better than java.util.HashMap, and to support high
247 >     * initial insertion rates on an empty table by many threads.
248 >     *
249 >     * This map usually acts as a binned (bucketed) hash table.  Each
250 >     * key-value mapping is held in a Node.  Most nodes are instances
251 >     * of the basic Node class with hash, key, value, and next
252 >     * fields. However, various subclasses exist: TreeNodes are
253 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
254 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 >     * of bins during resizing. ReservationNodes are used as
256 >     * placeholders while establishing values in computeIfAbsent and
257 >     * related methods.  The types TreeBin, ForwardingNode, and
258 >     * ReservationNode do not hold normal user keys, values, or
259 >     * hashes, and are readily distinguishable during search etc
260 >     * because they have negative hash fields and null key and value
261 >     * fields. (These special nodes are either uncommon or transient,
262 >     * so the impact of carrying around some unused fields is
263 >     * insignificant.)
264 >     *
265 >     * The table is lazily initialized to a power-of-two size upon the
266 >     * first insertion.  Each bin in the table normally contains a
267 >     * list of Nodes (most often, the list has only zero or one Node).
268 >     * Table accesses require volatile/atomic reads, writes, and
269 >     * CASes.  Because there is no other way to arrange this without
270 >     * adding further indirections, we use intrinsics
271 >     * (jdk.internal.misc.Unsafe) operations.
272 >     *
273 >     * We use the top (sign) bit of Node hash fields for control
274 >     * purposes -- it is available anyway because of addressing
275 >     * constraints.  Nodes with negative hash fields are specially
276 >     * handled or ignored in map methods.
277 >     *
278 >     * Insertion (via put or its variants) of the first node in an
279 >     * empty bin is performed by just CASing it to the bin.  This is
280 >     * by far the most common case for put operations under most
281 >     * key/hash distributions.  Other update operations (insert,
282 >     * delete, and replace) require locks.  We do not want to waste
283 >     * the space required to associate a distinct lock object with
284 >     * each bin, so instead use the first node of a bin list itself as
285 >     * a lock. Locking support for these locks relies on builtin
286 >     * "synchronized" monitors.
287 >     *
288 >     * Using the first node of a list as a lock does not by itself
289 >     * suffice though: When a node is locked, any update must first
290 >     * validate that it is still the first node after locking it, and
291 >     * retry if not. Because new nodes are always appended to lists,
292 >     * once a node is first in a bin, it remains first until deleted
293 >     * or the bin becomes invalidated (upon resizing).
294 >     *
295 >     * The main disadvantage of per-bin locks is that other update
296 >     * operations on other nodes in a bin list protected by the same
297 >     * lock can stall, for example when user equals() or mapping
298 >     * functions take a long time.  However, statistically, under
299 >     * random hash codes, this is not a common problem.  Ideally, the
300 >     * frequency of nodes in bins follows a Poisson distribution
301 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 >     * parameter of about 0.5 on average, given the resizing threshold
303 >     * of 0.75, although with a large variance because of resizing
304 >     * granularity. Ignoring variance, the expected occurrences of
305 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 >     * first values are:
307 >     *
308 >     * 0:    0.60653066
309 >     * 1:    0.30326533
310 >     * 2:    0.07581633
311 >     * 3:    0.01263606
312 >     * 4:    0.00157952
313 >     * 5:    0.00015795
314 >     * 6:    0.00001316
315 >     * 7:    0.00000094
316 >     * 8:    0.00000006
317 >     * more: less than 1 in ten million
318 >     *
319 >     * Lock contention probability for two threads accessing distinct
320 >     * elements is roughly 1 / (8 * #elements) under random hashes.
321 >     *
322 >     * Actual hash code distributions encountered in practice
323 >     * sometimes deviate significantly from uniform randomness.  This
324 >     * includes the case when N > (1<<30), so some keys MUST collide.
325 >     * Similarly for dumb or hostile usages in which multiple keys are
326 >     * designed to have identical hash codes or ones that differs only
327 >     * in masked-out high bits. So we use a secondary strategy that
328 >     * applies when the number of nodes in a bin exceeds a
329 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
330 >     * specialized form of red-black trees), bounding search time to
331 >     * O(log N).  Each search step in a TreeBin is at least twice as
332 >     * slow as in a regular list, but given that N cannot exceed
333 >     * (1<<64) (before running out of addresses) this bounds search
334 >     * steps, lock hold times, etc, to reasonable constants (roughly
335 >     * 100 nodes inspected per operation worst case) so long as keys
336 >     * are Comparable (which is very common -- String, Long, etc).
337 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
338 >     * traversal pointers as regular nodes, so can be traversed in
339 >     * iterators in the same way.
340 >     *
341 >     * The table is resized when occupancy exceeds a percentage
342 >     * threshold (nominally, 0.75, but see below).  Any thread
343 >     * noticing an overfull bin may assist in resizing after the
344 >     * initiating thread allocates and sets up the replacement array.
345 >     * However, rather than stalling, these other threads may proceed
346 >     * with insertions etc.  The use of TreeBins shields us from the
347 >     * worst case effects of overfilling while resizes are in
348 >     * progress.  Resizing proceeds by transferring bins, one by one,
349 >     * from the table to the next table. However, threads claim small
350 >     * blocks of indices to transfer (via field transferIndex) before
351 >     * doing so, reducing contention.  A generation stamp in field
352 >     * sizeCtl ensures that resizings do not overlap. Because we are
353 >     * using power-of-two expansion, the elements from each bin must
354 >     * either stay at same index, or move with a power of two
355 >     * offset. We eliminate unnecessary node creation by catching
356 >     * cases where old nodes can be reused because their next fields
357 >     * won't change.  On average, only about one-sixth of them need
358 >     * cloning when a table doubles. The nodes they replace will be
359 >     * garbage collectable as soon as they are no longer referenced by
360 >     * any reader thread that may be in the midst of concurrently
361 >     * traversing table.  Upon transfer, the old table bin contains
362 >     * only a special forwarding node (with hash field "MOVED") that
363 >     * contains the next table as its key. On encountering a
364 >     * forwarding node, access and update operations restart, using
365 >     * the new table.
366 >     *
367 >     * Each bin transfer requires its bin lock, which can stall
368 >     * waiting for locks while resizing. However, because other
369 >     * threads can join in and help resize rather than contend for
370 >     * locks, average aggregate waits become shorter as resizing
371 >     * progresses.  The transfer operation must also ensure that all
372 >     * accessible bins in both the old and new table are usable by any
373 >     * traversal.  This is arranged in part by proceeding from the
374 >     * last bin (table.length - 1) up towards the first.  Upon seeing
375 >     * a forwarding node, traversals (see class Traverser) arrange to
376 >     * move to the new table without revisiting nodes.  To ensure that
377 >     * no intervening nodes are skipped even when moved out of order,
378 >     * a stack (see class TableStack) is created on first encounter of
379 >     * a forwarding node during a traversal, to maintain its place if
380 >     * later processing the current table. The need for these
381 >     * save/restore mechanics is relatively rare, but when one
382 >     * forwarding node is encountered, typically many more will be.
383 >     * So Traversers use a simple caching scheme to avoid creating so
384 >     * many new TableStack nodes. (Thanks to Peter Levart for
385 >     * suggesting use of a stack here.)
386 >     *
387 >     * The traversal scheme also applies to partial traversals of
388 >     * ranges of bins (via an alternate Traverser constructor)
389 >     * to support partitioned aggregate operations.  Also, read-only
390 >     * operations give up if ever forwarded to a null table, which
391 >     * provides support for shutdown-style clearing, which is also not
392 >     * currently implemented.
393 >     *
394 >     * Lazy table initialization minimizes footprint until first use,
395 >     * and also avoids resizings when the first operation is from a
396 >     * putAll, constructor with map argument, or deserialization.
397 >     * These cases attempt to override the initial capacity settings,
398 >     * but harmlessly fail to take effect in cases of races.
399 >     *
400 >     * The element count is maintained using a specialization of
401 >     * LongAdder. We need to incorporate a specialization rather than
402 >     * just use a LongAdder in order to access implicit
403 >     * contention-sensing that leads to creation of multiple
404 >     * CounterCells.  The counter mechanics avoid contention on
405 >     * updates but can encounter cache thrashing if read too
406 >     * frequently during concurrent access. To avoid reading so often,
407 >     * resizing under contention is attempted only upon adding to a
408 >     * bin already holding two or more nodes. Under uniform hash
409 >     * distributions, the probability of this occurring at threshold
410 >     * is around 13%, meaning that only about 1 in 8 puts check
411 >     * threshold (and after resizing, many fewer do so).
412 >     *
413 >     * TreeBins use a special form of comparison for search and
414 >     * related operations (which is the main reason we cannot use
415 >     * existing collections such as TreeMaps). TreeBins contain
416 >     * Comparable elements, but may contain others, as well as
417 >     * elements that are Comparable but not necessarily Comparable for
418 >     * the same T, so we cannot invoke compareTo among them. To handle
419 >     * this, the tree is ordered primarily by hash value, then by
420 >     * Comparable.compareTo order if applicable.  On lookup at a node,
421 >     * if elements are not comparable or compare as 0 then both left
422 >     * and right children may need to be searched in the case of tied
423 >     * hash values. (This corresponds to the full list search that
424 >     * would be necessary if all elements were non-Comparable and had
425 >     * tied hashes.) On insertion, to keep a total ordering (or as
426 >     * close as is required here) across rebalancings, we compare
427 >     * classes and identityHashCodes as tie-breakers. The red-black
428 >     * balancing code is updated from pre-jdk-collections
429 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 >     * Algorithms" (CLR).
432 >     *
433 >     * TreeBins also require an additional locking mechanism.  While
434 >     * list traversal is always possible by readers even during
435 >     * updates, tree traversal is not, mainly because of tree-rotations
436 >     * that may change the root node and/or its linkages.  TreeBins
437 >     * include a simple read-write lock mechanism parasitic on the
438 >     * main bin-synchronization strategy: Structural adjustments
439 >     * associated with an insertion or removal are already bin-locked
440 >     * (and so cannot conflict with other writers) but must wait for
441 >     * ongoing readers to finish. Since there can be only one such
442 >     * waiter, we use a simple scheme using a single "waiter" field to
443 >     * block writers.  However, readers need never block.  If the root
444 >     * lock is held, they proceed along the slow traversal path (via
445 >     * next-pointers) until the lock becomes available or the list is
446 >     * exhausted, whichever comes first. These cases are not fast, but
447 >     * maximize aggregate expected throughput.
448 >     *
449 >     * Maintaining API and serialization compatibility with previous
450 >     * versions of this class introduces several oddities. Mainly: We
451 >     * leave untouched but unused constructor arguments referring to
452 >     * concurrencyLevel. We accept a loadFactor constructor argument,
453 >     * but apply it only to initial table capacity (which is the only
454 >     * time that we can guarantee to honor it.) We also declare an
455 >     * unused "Segment" class that is instantiated in minimal form
456 >     * only when serializing.
457 >     *
458 >     * Also, solely for compatibility with previous versions of this
459 >     * class, it extends AbstractMap, even though all of its methods
460 >     * are overridden, so it is just useless baggage.
461 >     *
462 >     * This file is organized to make things a little easier to follow
463 >     * while reading than they might otherwise: First the main static
464 >     * declarations and utilities, then fields, then main public
465 >     * methods (with a few factorings of multiple public methods into
466 >     * internal ones), then sizing methods, trees, traversers, and
467 >     * bulk operations.
468       */
469  
470      /* ---------------- Constants -------------- */
471  
472      /**
473 <     * The default initial capacity for this table,
474 <     * used when not otherwise specified in a constructor.
473 >     * The largest possible table capacity.  This value must be
474 >     * exactly 1<<30 to stay within Java array allocation and indexing
475 >     * bounds for power of two table sizes, and is further required
476 >     * because the top two bits of 32bit hash fields are used for
477 >     * control purposes.
478       */
479 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
479 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
480  
481      /**
482 <     * The default load factor for this table, used when not
483 <     * otherwise specified in a constructor.
482 >     * The default initial table capacity.  Must be a power of 2
483 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484       */
485 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
485 >    private static final int DEFAULT_CAPACITY = 16;
486  
487      /**
488 <     * The default concurrency level for this table, used when not
489 <     * otherwise specified in a constructor.
488 >     * The largest possible (non-power of two) array size.
489 >     * Needed by toArray and related methods.
490       */
491 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
491 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492  
493      /**
494 <     * The maximum capacity, used if a higher value is implicitly
495 <     * specified by either of the constructors with arguments.  MUST
105 <     * be a power of two <= 1<<30 to ensure that entries are indexable
106 <     * using ints.
494 >     * The default concurrency level for this table. Unused but
495 >     * defined for compatibility with previous versions of this class.
496       */
497 <    static final int MAXIMUM_CAPACITY = 1 << 30;
497 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498  
499      /**
500 <     * The maximum number of segments to allow; used to bound
501 <     * constructor arguments.
500 >     * The load factor for this table. Overrides of this value in
501 >     * constructors affect only the initial table capacity.  The
502 >     * actual floating point value isn't normally used -- it is
503 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
504 >     * the associated resizing threshold.
505       */
506 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
506 >    private static final float LOAD_FACTOR = 0.75f;
507  
508      /**
509 <     * Number of unsynchronized retries in size and containsValue
510 <     * methods before resorting to locking. This is used to avoid
511 <     * unbounded retries if tables undergo continuous modification
512 <     * which would make it impossible to obtain an accurate result.
509 >     * The bin count threshold for using a tree rather than list for a
510 >     * bin.  Bins are converted to trees when adding an element to a
511 >     * bin with at least this many nodes. The value must be greater
512 >     * than 2, and should be at least 8 to mesh with assumptions in
513 >     * tree removal about conversion back to plain bins upon
514 >     * shrinkage.
515       */
516 <    static final int RETRIES_BEFORE_LOCK = 2;
123 <
124 <    /* ---------------- Fields -------------- */
516 >    static final int TREEIFY_THRESHOLD = 8;
517  
518      /**
519 <     * Mask value for indexing into segments. The upper bits of a
520 <     * key's hash code are used to choose the segment.
519 >     * The bin count threshold for untreeifying a (split) bin during a
520 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 >     * most 6 to mesh with shrinkage detection under removal.
522       */
523 <    final int segmentMask;
523 >    static final int UNTREEIFY_THRESHOLD = 6;
524  
525      /**
526 <     * Shift value for indexing within segments.
526 >     * The smallest table capacity for which bins may be treeified.
527 >     * (Otherwise the table is resized if too many nodes in a bin.)
528 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 >     * conflicts between resizing and treeification thresholds.
530       */
531 <    final int segmentShift;
531 >    static final int MIN_TREEIFY_CAPACITY = 64;
532  
533      /**
534 <     * The segments, each of which is a specialized hash table
534 >     * Minimum number of rebinnings per transfer step. Ranges are
535 >     * subdivided to allow multiple resizer threads.  This value
536 >     * serves as a lower bound to avoid resizers encountering
537 >     * excessive memory contention.  The value should be at least
538 >     * DEFAULT_CAPACITY.
539       */
540 <    final Segment<K,V>[] segments;
141 <
142 <    transient Set<K> keySet;
143 <    transient Set<Map.Entry<K,V>> entrySet;
144 <    transient Collection<V> values;
145 <
146 <    /* ---------------- Small Utilities -------------- */
540 >    private static final int MIN_TRANSFER_STRIDE = 16;
541  
542      /**
543 <     * Applies a supplemental hash function to a given hashCode, which
544 <     * defends against poor quality hash functions.  This is critical
151 <     * because ConcurrentHashMap uses power-of-two length hash tables,
152 <     * that otherwise encounter collisions for hashCodes that do not
153 <     * differ in lower bits.
543 >     * The number of bits used for generation stamp in sizeCtl.
544 >     * Must be at least 6 for 32bit arrays.
545       */
546 <    private static int hash(int h) {
156 <        // Spread bits to regularize both segment and index locations,
157 <        // using variant of Jenkins's shift-based hash.
158 <        h += ~(h << 13);
159 <        h ^= h >>> 7;
160 <        h += h << 3;
161 <        h ^= h >>> 17;
162 <        h += h << 5;
163 <        return h;
164 <    }
546 >    private static final int RESIZE_STAMP_BITS = 16;
547  
548      /**
549 <     * Returns the segment that should be used for key with given hash
550 <     * @param hash the hash code for the key
169 <     * @return the segment
549 >     * The maximum number of threads that can help resize.
550 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551       */
552 <    final Segment<K,V> segmentFor(int hash) {
172 <        return segments[(hash >>> segmentShift) & segmentMask];
173 <    }
174 <
175 <    /* ---------------- Inner Classes -------------- */
552 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553  
554      /**
555 <     * ConcurrentHashMap list entry. Note that this is never exported
179 <     * out as a user-visible Map.Entry.
180 <     *
181 <     * Because the value field is volatile, not final, it is legal wrt
182 <     * the Java Memory Model for an unsynchronized reader to see null
183 <     * instead of initial value when read via a data race.  Although a
184 <     * reordering leading to this is not likely to ever actually
185 <     * occur, the Segment.readValueUnderLock method is used as a
186 <     * backup in case a null (pre-initialized) value is ever seen in
187 <     * an unsynchronized access method.
555 >     * The bit shift for recording size stamp in sizeCtl.
556       */
557 <    static final class HashEntry<K,V> {
190 <        final K key;
191 <        final int hash;
192 <        volatile V value;
193 <        final HashEntry<K,V> next;
194 <
195 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
196 <            this.key = key;
197 <            this.hash = hash;
198 <            this.next = next;
199 <            this.value = value;
200 <        }
557 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558  
559 <        @SuppressWarnings("unchecked")
560 <        static final <K,V> HashEntry<K,V>[] newArray(int i) {
204 <            return new HashEntry[i];
205 <        }
206 <    }
207 <
208 <    /**
209 <     * Segments are specialized versions of hash tables.  This
210 <     * subclasses from ReentrantLock opportunistically, just to
211 <     * simplify some locking and avoid separate construction.
559 >    /*
560 >     * Encodings for Node hash fields. See above for explanation.
561       */
562 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
563 <        /*
564 <         * Segments maintain a table of entry lists that are ALWAYS
565 <         * kept in a consistent state, so can be read without locking.
217 <         * Next fields of nodes are immutable (final).  All list
218 <         * additions are performed at the front of each bin. This
219 <         * makes it easy to check changes, and also fast to traverse.
220 <         * When nodes would otherwise be changed, new nodes are
221 <         * created to replace them. This works well for hash tables
222 <         * since the bin lists tend to be short. (The average length
223 <         * is less than two for the default load factor threshold.)
224 <         *
225 <         * Read operations can thus proceed without locking, but rely
226 <         * on selected uses of volatiles to ensure that completed
227 <         * write operations performed by other threads are
228 <         * noticed. For most purposes, the "count" field, tracking the
229 <         * number of elements, serves as that volatile variable
230 <         * ensuring visibility.  This is convenient because this field
231 <         * needs to be read in many read operations anyway:
232 <         *
233 <         *   - All (unsynchronized) read operations must first read the
234 <         *     "count" field, and should not look at table entries if
235 <         *     it is 0.
236 <         *
237 <         *   - All (synchronized) write operations should write to
238 <         *     the "count" field after structurally changing any bin.
239 <         *     The operations must not take any action that could even
240 <         *     momentarily cause a concurrent read operation to see
241 <         *     inconsistent data. This is made easier by the nature of
242 <         *     the read operations in Map. For example, no operation
243 <         *     can reveal that the table has grown but the threshold
244 <         *     has not yet been updated, so there are no atomicity
245 <         *     requirements for this with respect to reads.
246 <         *
247 <         * As a guide, all critical volatile reads and writes to the
248 <         * count field are marked in code comments.
249 <         */
250 <
251 <        private static final long serialVersionUID = 2249069246763182397L;
252 <
253 <        /**
254 <         * The number of elements in this segment's region.
255 <         */
256 <        transient volatile int count;
562 >    static final int MOVED     = -1; // hash for forwarding nodes
563 >    static final int TREEBIN   = -2; // hash for roots of trees
564 >    static final int RESERVED  = -3; // hash for transient reservations
565 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566  
567 <        /**
568 <         * Number of updates that alter the size of the table. This is
260 <         * used during bulk-read methods to make sure they see a
261 <         * consistent snapshot: If modCounts change during a traversal
262 <         * of segments computing size or checking containsValue, then
263 <         * we might have an inconsistent view of state so (usually)
264 <         * must retry.
265 <         */
266 <        transient int modCount;
567 >    /** Number of CPUS, to place bounds on some sizings */
568 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
569  
570 <        /**
571 <         * The table is rehashed when its size exceeds this threshold.
572 <         * (The value of this field is always <tt>(int)(capacity *
573 <         * loadFactor)</tt>.)
574 <         */
575 <        transient int threshold;
570 >    /**
571 >     * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 >     * @serialField segments Segment[]
573 >     *   The segments, each of which is a specialized hash table.
574 >     * @serialField segmentMask int
575 >     *   Mask value for indexing into segments. The upper bits of a
576 >     *   key's hash code are used to choose the segment.
577 >     * @serialField segmentShift int
578 >     *   Shift value for indexing within segments.
579 >     */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE),
584 >    };
585  
586 <        /**
276 <         * The per-segment table.
277 <         */
278 <        transient volatile HashEntry<K,V>[] table;
586 >    /* ---------------- Nodes -------------- */
587  
588 <        /**
589 <         * The load factor for the hash table.  Even though this value
590 <         * is same for all segments, it is replicated to avoid needing
591 <         * links to outer object.
592 <         * @serial
593 <         */
594 <        final float loadFactor;
588 >    /**
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595 >     */
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597 >        final int hash;
598 >        final K key;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601  
602 <        Segment(int initialCapacity, float lf) {
603 <            loadFactor = lf;
604 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
602 >        Node(int hash, K key, V val) {
603 >            this.hash = hash;
604 >            this.key = key;
605 >            this.val = val;
606          }
607  
608 <        @SuppressWarnings("unchecked")
609 <        static final <K,V> Segment<K,V>[] newArray(int i) {
610 <            return new Segment[i];
608 >        Node(int hash, K key, V val, Node<K,V> next) {
609 >            this(hash, key, val);
610 >            this.next = next;
611          }
612  
613 <        /**
614 <         * Sets table to new HashEntry array.
615 <         * Call only while holding lock or in constructor.
616 <         */
617 <        void setTable(HashEntry<K,V>[] newTable) {
618 <            threshold = (int)(newTable.length * loadFactor);
619 <            table = newTable;
613 >        public final K getKey()     { return key; }
614 >        public final V getValue()   { return val; }
615 >        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 >        public final String toString() {
617 >            return Helpers.mapEntryToString(key, val);
618 >        }
619 >        public final V setValue(V value) {
620 >            throw new UnsupportedOperationException();
621 >        }
622 >
623 >        public final boolean equals(Object o) {
624 >            Object k, v, u; Map.Entry<?,?> e;
625 >            return ((o instanceof Map.Entry) &&
626 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 >                    (v = e.getValue()) != null &&
628 >                    (k == key || k.equals(key)) &&
629 >                    (v == (u = val) || v.equals(u)));
630          }
631  
632          /**
633 <         * Returns properly casted first entry of bin for given hash.
633 >         * Virtualized support for map.get(); overridden in subclasses.
634           */
635 <        HashEntry<K,V> getFirst(int hash) {
636 <            HashEntry<K,V>[] tab = table;
637 <            return tab[hash & (tab.length - 1)];
638 <        }
639 <
640 <        /**
641 <         * Reads value field of an entry under lock. Called if value
642 <         * field ever appears to be null. This is possible only if a
643 <         * compiler happens to reorder a HashEntry initialization with
319 <         * its table assignment, which is legal under memory model
320 <         * but is not known to ever occur.
321 <         */
322 <        V readValueUnderLock(HashEntry<K,V> e) {
323 <            lock();
324 <            try {
325 <                return e.value;
326 <            } finally {
327 <                unlock();
328 <            }
329 <        }
330 <
331 <        /* Specialized implementations of map methods */
332 <
333 <        V get(Object key, int hash) {
334 <            if (count != 0) { // read-volatile
335 <                HashEntry<K,V> e = getFirst(hash);
336 <                while (e != null) {
337 <                    if (e.hash == hash && key.equals(e.key)) {
338 <                        V v = e.value;
339 <                        if (v != null)
340 <                            return v;
341 <                        return readValueUnderLock(e); // recheck
342 <                    }
343 <                    e = e.next;
344 <                }
635 >        Node<K,V> find(int h, Object k) {
636 >            Node<K,V> e = this;
637 >            if (k != null) {
638 >                do {
639 >                    K ek;
640 >                    if (e.hash == h &&
641 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 >                        return e;
643 >                } while ((e = e.next) != null);
644              }
645              return null;
646          }
647 +    }
648  
649 <        boolean containsKey(Object key, int hash) {
350 <            if (count != 0) { // read-volatile
351 <                HashEntry<K,V> e = getFirst(hash);
352 <                while (e != null) {
353 <                    if (e.hash == hash && key.equals(e.key))
354 <                        return true;
355 <                    e = e.next;
356 <                }
357 <            }
358 <            return false;
359 <        }
649 >    /* ---------------- Static utilities -------------- */
650  
651 <        boolean containsValue(Object value) {
652 <            if (count != 0) { // read-volatile
653 <                HashEntry<K,V>[] tab = table;
654 <                int len = tab.length;
655 <                for (int i = 0 ; i < len; i++) {
656 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
657 <                        V v = e.value;
658 <                        if (v == null) // recheck
659 <                            v = readValueUnderLock(e);
660 <                        if (value.equals(v))
661 <                            return true;
662 <                    }
663 <                }
664 <            }
665 <            return false;
666 <        }
651 >    /**
652 >     * Spreads (XORs) higher bits of hash to lower and also forces top
653 >     * bit to 0. Because the table uses power-of-two masking, sets of
654 >     * hashes that vary only in bits above the current mask will
655 >     * always collide. (Among known examples are sets of Float keys
656 >     * holding consecutive whole numbers in small tables.)  So we
657 >     * apply a transform that spreads the impact of higher bits
658 >     * downward. There is a tradeoff between speed, utility, and
659 >     * quality of bit-spreading. Because many common sets of hashes
660 >     * are already reasonably distributed (so don't benefit from
661 >     * spreading), and because we use trees to handle large sets of
662 >     * collisions in bins, we just XOR some shifted bits in the
663 >     * cheapest possible way to reduce systematic lossage, as well as
664 >     * to incorporate impact of the highest bits that would otherwise
665 >     * never be used in index calculations because of table bounds.
666 >     */
667 >    static final int spread(int h) {
668 >        return (h ^ (h >>> 16)) & HASH_BITS;
669 >    }
670  
671 <        boolean replace(K key, int hash, V oldValue, V newValue) {
672 <            lock();
673 <            try {
674 <                HashEntry<K,V> e = getFirst(hash);
675 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
676 <                    e = e.next;
677 <
678 <                boolean replaced = false;
679 <                if (e != null && oldValue.equals(e.value)) {
680 <                    replaced = true;
681 <                    e.value = newValue;
682 <                }
683 <                return replaced;
391 <            } finally {
392 <                unlock();
393 <            }
394 <        }
671 >    /**
672 >     * Returns a power of two table size for the given desired capacity.
673 >     * See Hackers Delight, sec 3.2
674 >     */
675 >    private static final int tableSizeFor(int c) {
676 >        int n = c - 1;
677 >        n |= n >>> 1;
678 >        n |= n >>> 2;
679 >        n |= n >>> 4;
680 >        n |= n >>> 8;
681 >        n |= n >>> 16;
682 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
683 >    }
684  
685 <        V replace(K key, int hash, V newValue) {
686 <            lock();
687 <            try {
688 <                HashEntry<K,V> e = getFirst(hash);
689 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
690 <                    e = e.next;
691 <
692 <                V oldValue = null;
693 <                if (e != null) {
694 <                    oldValue = e.value;
695 <                    e.value = newValue;
685 >    /**
686 >     * Returns x's Class if it is of the form "class C implements
687 >     * Comparable<C>", else null.
688 >     */
689 >    static Class<?> comparableClassFor(Object x) {
690 >        if (x instanceof Comparable) {
691 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
692 >            if ((c = x.getClass()) == String.class) // bypass checks
693 >                return c;
694 >            if ((ts = c.getGenericInterfaces()) != null) {
695 >                for (int i = 0; i < ts.length; ++i) {
696 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
697 >                        ((p = (ParameterizedType)t).getRawType() ==
698 >                         Comparable.class) &&
699 >                        (as = p.getActualTypeArguments()) != null &&
700 >                        as.length == 1 && as[0] == c) // type arg is c
701 >                        return c;
702                  }
408                return oldValue;
409            } finally {
410                unlock();
703              }
704          }
705 +        return null;
706 +    }
707  
708 +    /**
709 +     * Returns k.compareTo(x) if x matches kc (k's screened comparable
710 +     * class), else 0.
711 +     */
712 +    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
713 +    static int compareComparables(Class<?> kc, Object k, Object x) {
714 +        return (x == null || x.getClass() != kc ? 0 :
715 +                ((Comparable)k).compareTo(x));
716 +    }
717  
718 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
416 <            lock();
417 <            try {
418 <                int c = count;
419 <                if (c++ > threshold) // ensure capacity
420 <                    rehash();
421 <                HashEntry<K,V>[] tab = table;
422 <                int index = hash & (tab.length - 1);
423 <                HashEntry<K,V> first = tab[index];
424 <                HashEntry<K,V> e = first;
425 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
426 <                    e = e.next;
427 <
428 <                V oldValue;
429 <                if (e != null) {
430 <                    oldValue = e.value;
431 <                    if (!onlyIfAbsent)
432 <                        e.value = value;
433 <                }
434 <                else {
435 <                    oldValue = null;
436 <                    ++modCount;
437 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
438 <                    count = c; // write-volatile
439 <                }
440 <                return oldValue;
441 <            } finally {
442 <                unlock();
443 <            }
444 <        }
718 >    /* ---------------- Table element access -------------- */
719  
720 <        void rehash() {
721 <            HashEntry<K,V>[] oldTable = table;
722 <            int oldCapacity = oldTable.length;
723 <            if (oldCapacity >= MAXIMUM_CAPACITY)
724 <                return;
720 >    /*
721 >     * Volatile access methods are used for table elements as well as
722 >     * elements of in-progress next table while resizing.  All uses of
723 >     * the tab arguments must be null checked by callers.  All callers
724 >     * also paranoically precheck that tab's length is not zero (or an
725 >     * equivalent check), thus ensuring that any index argument taking
726 >     * the form of a hash value anded with (length - 1) is a valid
727 >     * index.  Note that, to be correct wrt arbitrary concurrency
728 >     * errors by users, these checks must operate on local variables,
729 >     * which accounts for some odd-looking inline assignments below.
730 >     * Note that calls to setTabAt always occur within locked regions,
731 >     * and so in principle require only release ordering, not
732 >     * full volatile semantics, but are currently coded as volatile
733 >     * writes to be conservative.
734 >     */
735 >
736 >    @SuppressWarnings("unchecked")
737 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
738 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
739 >    }
740  
741 <            /*
742 <             * Reclassify nodes in each list to new Map.  Because we are
743 <             * using power-of-two expansion, the elements from each bin
744 <             * must either stay at same index, or move with a power of two
456 <             * offset. We eliminate unnecessary node creation by catching
457 <             * cases where old nodes can be reused because their next
458 <             * fields won't change. Statistically, at the default
459 <             * threshold, only about one-sixth of them need cloning when
460 <             * a table doubles. The nodes they replace will be garbage
461 <             * collectable as soon as they are no longer referenced by any
462 <             * reader thread that may be in the midst of traversing table
463 <             * right now.
464 <             */
465 <
466 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
467 <            threshold = (int)(newTable.length * loadFactor);
468 <            int sizeMask = newTable.length - 1;
469 <            for (int i = 0; i < oldCapacity ; i++) {
470 <                // We need to guarantee that any existing reads of old Map can
471 <                //  proceed. So we cannot yet null out each bin.
472 <                HashEntry<K,V> e = oldTable[i];
473 <
474 <                if (e != null) {
475 <                    HashEntry<K,V> next = e.next;
476 <                    int idx = e.hash & sizeMask;
477 <
478 <                    //  Single node on list
479 <                    if (next == null)
480 <                        newTable[idx] = e;
741 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
742 >                                        Node<K,V> c, Node<K,V> v) {
743 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
744 >    }
745  
746 <                    else {
747 <                        // Reuse trailing consecutive sequence at same slot
748 <                        HashEntry<K,V> lastRun = e;
485 <                        int lastIdx = idx;
486 <                        for (HashEntry<K,V> last = next;
487 <                             last != null;
488 <                             last = last.next) {
489 <                            int k = last.hash & sizeMask;
490 <                            if (k != lastIdx) {
491 <                                lastIdx = k;
492 <                                lastRun = last;
493 <                            }
494 <                        }
495 <                        newTable[lastIdx] = lastRun;
746 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
747 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
748 >    }
749  
750 <                        // Clone all remaining nodes
498 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
499 <                            int k = p.hash & sizeMask;
500 <                            HashEntry<K,V> n = newTable[k];
501 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
502 <                                                             n, p.value);
503 <                        }
504 <                    }
505 <                }
506 <            }
507 <            table = newTable;
508 <        }
750 >    /* ---------------- Fields -------------- */
751  
752 <        /**
753 <         * Remove; match on key only if value null, else match both.
754 <         */
755 <        V remove(Object key, int hash, Object value) {
756 <            lock();
515 <            try {
516 <                int c = count - 1;
517 <                HashEntry<K,V>[] tab = table;
518 <                int index = hash & (tab.length - 1);
519 <                HashEntry<K,V> first = tab[index];
520 <                HashEntry<K,V> e = first;
521 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
522 <                    e = e.next;
523 <
524 <                V oldValue = null;
525 <                if (e != null) {
526 <                    V v = e.value;
527 <                    if (value == null || value.equals(v)) {
528 <                        oldValue = v;
529 <                        // All entries following removed node can stay
530 <                        // in list, but all preceding ones need to be
531 <                        // cloned.
532 <                        ++modCount;
533 <                        HashEntry<K,V> newFirst = e.next;
534 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
535 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
536 <                                                          newFirst, p.value);
537 <                        tab[index] = newFirst;
538 <                        count = c; // write-volatile
539 <                    }
540 <                }
541 <                return oldValue;
542 <            } finally {
543 <                unlock();
544 <            }
545 <        }
752 >    /**
753 >     * The array of bins. Lazily initialized upon first insertion.
754 >     * Size is always a power of two. Accessed directly by iterators.
755 >     */
756 >    transient volatile Node<K,V>[] table;
757  
758 <        void clear() {
759 <            if (count != 0) {
760 <                lock();
761 <                try {
551 <                    HashEntry<K,V>[] tab = table;
552 <                    for (int i = 0; i < tab.length ; i++)
553 <                        tab[i] = null;
554 <                    ++modCount;
555 <                    count = 0; // write-volatile
556 <                } finally {
557 <                    unlock();
558 <                }
559 <            }
560 <        }
561 <    }
758 >    /**
759 >     * The next table to use; non-null only while resizing.
760 >     */
761 >    private transient volatile Node<K,V>[] nextTable;
762  
763 +    /**
764 +     * Base counter value, used mainly when there is no contention,
765 +     * but also as a fallback during table initialization
766 +     * races. Updated via CAS.
767 +     */
768 +    private transient volatile long baseCount;
769  
770 +    /**
771 +     * Table initialization and resizing control.  When negative, the
772 +     * table is being initialized or resized: -1 for initialization,
773 +     * else -(1 + the number of active resizing threads).  Otherwise,
774 +     * when table is null, holds the initial table size to use upon
775 +     * creation, or 0 for default. After initialization, holds the
776 +     * next element count value upon which to resize the table.
777 +     */
778 +    private transient volatile int sizeCtl;
779  
780 <    /* ---------------- Public operations -------------- */
780 >    /**
781 >     * The next table index (plus one) to split while resizing.
782 >     */
783 >    private transient volatile int transferIndex;
784  
785      /**
786 <     * Creates a new, empty map with the specified initial
569 <     * capacity, load factor and concurrency level.
570 <     *
571 <     * @param initialCapacity the initial capacity. The implementation
572 <     * performs internal sizing to accommodate this many elements.
573 <     * @param loadFactor  the load factor threshold, used to control resizing.
574 <     * Resizing may be performed when the average number of elements per
575 <     * bin exceeds this threshold.
576 <     * @param concurrencyLevel the estimated number of concurrently
577 <     * updating threads. The implementation performs internal sizing
578 <     * to try to accommodate this many threads.
579 <     * @throws IllegalArgumentException if the initial capacity is
580 <     * negative or the load factor or concurrencyLevel are
581 <     * nonpositive.
786 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
787       */
788 <    public ConcurrentHashMap(int initialCapacity,
584 <                             float loadFactor, int concurrencyLevel) {
585 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
586 <            throw new IllegalArgumentException();
788 >    private transient volatile int cellsBusy;
789  
790 <        if (concurrencyLevel > MAX_SEGMENTS)
791 <            concurrencyLevel = MAX_SEGMENTS;
790 >    /**
791 >     * Table of counter cells. When non-null, size is a power of 2.
792 >     */
793 >    private transient volatile CounterCell[] counterCells;
794  
795 <        // Find power-of-two sizes best matching arguments
796 <        int sshift = 0;
797 <        int ssize = 1;
798 <        while (ssize < concurrencyLevel) {
595 <            ++sshift;
596 <            ssize <<= 1;
597 <        }
598 <        segmentShift = 32 - sshift;
599 <        segmentMask = ssize - 1;
600 <        this.segments = Segment.newArray(ssize);
601 <
602 <        if (initialCapacity > MAXIMUM_CAPACITY)
603 <            initialCapacity = MAXIMUM_CAPACITY;
604 <        int c = initialCapacity / ssize;
605 <        if (c * ssize < initialCapacity)
606 <            ++c;
607 <        int cap = 1;
608 <        while (cap < c)
609 <            cap <<= 1;
795 >    // views
796 >    private transient KeySetView<K,V> keySet;
797 >    private transient ValuesView<K,V> values;
798 >    private transient EntrySetView<K,V> entrySet;
799  
800 <        for (int i = 0; i < this.segments.length; ++i)
801 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
613 <    }
800 >
801 >    /* ---------------- Public operations -------------- */
802  
803      /**
804 <     * Creates a new, empty map with the specified initial capacity
617 <     * and load factor and with the default concurrencyLevel (16).
618 <     *
619 <     * @param initialCapacity The implementation performs internal
620 <     * sizing to accommodate this many elements.
621 <     * @param loadFactor  the load factor threshold, used to control resizing.
622 <     * Resizing may be performed when the average number of elements per
623 <     * bin exceeds this threshold.
624 <     * @throws IllegalArgumentException if the initial capacity of
625 <     * elements is negative or the load factor is nonpositive
626 <     *
627 <     * @since 1.6
804 >     * Creates a new, empty map with the default initial table size (16).
805       */
806 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
630 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
806 >    public ConcurrentHashMap() {
807      }
808  
809      /**
810 <     * Creates a new, empty map with the specified initial capacity,
811 <     * and with default load factor (0.75) and concurrencyLevel (16).
810 >     * Creates a new, empty map with an initial table size
811 >     * accommodating the specified number of elements without the need
812 >     * to dynamically resize.
813       *
814 <     * @param initialCapacity the initial capacity. The implementation
815 <     * performs internal sizing to accommodate this many elements.
814 >     * @param initialCapacity The implementation performs internal
815 >     * sizing to accommodate this many elements.
816       * @throws IllegalArgumentException if the initial capacity of
817 <     * elements is negative.
817 >     * elements is negative
818       */
819      public ConcurrentHashMap(int initialCapacity) {
820 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
821 <    }
822 <
823 <    /**
824 <     * Creates a new, empty map with a default initial capacity (16),
825 <     * load factor (0.75) and concurrencyLevel (16).
649 <     */
650 <    public ConcurrentHashMap() {
651 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
820 >        if (initialCapacity < 0)
821 >            throw new IllegalArgumentException();
822 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
823 >                   MAXIMUM_CAPACITY :
824 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
825 >        this.sizeCtl = cap;
826      }
827  
828      /**
829       * Creates a new map with the same mappings as the given map.
656     * The map is created with a capacity of 1.5 times the number
657     * of mappings in the given map or 16 (whichever is greater),
658     * and a default load factor (0.75) and concurrencyLevel (16).
830       *
831       * @param m the map
832       */
833      public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
834 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
664 <                      DEFAULT_INITIAL_CAPACITY),
665 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
834 >        this.sizeCtl = DEFAULT_CAPACITY;
835          putAll(m);
836      }
837  
838      /**
839 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
839 >     * Creates a new, empty map with an initial table size based on
840 >     * the given number of elements ({@code initialCapacity}) and
841 >     * initial table density ({@code loadFactor}).
842 >     *
843 >     * @param initialCapacity the initial capacity. The implementation
844 >     * performs internal sizing to accommodate this many elements,
845 >     * given the specified load factor.
846 >     * @param loadFactor the load factor (table density) for
847 >     * establishing the initial table size
848 >     * @throws IllegalArgumentException if the initial capacity of
849 >     * elements is negative or the load factor is nonpositive
850       *
851 <     * @return <tt>true</tt> if this map contains no key-value mappings
851 >     * @since 1.6
852       */
853 <    public boolean isEmpty() {
854 <        final Segment<K,V>[] segments = this.segments;
676 <        /*
677 <         * We keep track of per-segment modCounts to avoid ABA
678 <         * problems in which an element in one segment was added and
679 <         * in another removed during traversal, in which case the
680 <         * table was never actually empty at any point. Note the
681 <         * similar use of modCounts in the size() and containsValue()
682 <         * methods, which are the only other methods also susceptible
683 <         * to ABA problems.
684 <         */
685 <        int[] mc = new int[segments.length];
686 <        int mcsum = 0;
687 <        for (int i = 0; i < segments.length; ++i) {
688 <            if (segments[i].count != 0)
689 <                return false;
690 <            else
691 <                mcsum += mc[i] = segments[i].modCount;
692 <        }
693 <        // If mcsum happens to be zero, then we know we got a snapshot
694 <        // before any modifications at all were made.  This is
695 <        // probably common enough to bother tracking.
696 <        if (mcsum != 0) {
697 <            for (int i = 0; i < segments.length; ++i) {
698 <                if (segments[i].count != 0 ||
699 <                    mc[i] != segments[i].modCount)
700 <                    return false;
701 <            }
702 <        }
703 <        return true;
853 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
854 >        this(initialCapacity, loadFactor, 1);
855      }
856  
857      /**
858 <     * Returns the number of key-value mappings in this map.  If the
859 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
860 <     * <tt>Integer.MAX_VALUE</tt>.
858 >     * Creates a new, empty map with an initial table size based on
859 >     * the given number of elements ({@code initialCapacity}), table
860 >     * density ({@code loadFactor}), and number of concurrently
861 >     * updating threads ({@code concurrencyLevel}).
862       *
863 <     * @return the number of key-value mappings in this map
863 >     * @param initialCapacity the initial capacity. The implementation
864 >     * performs internal sizing to accommodate this many elements,
865 >     * given the specified load factor.
866 >     * @param loadFactor the load factor (table density) for
867 >     * establishing the initial table size
868 >     * @param concurrencyLevel the estimated number of concurrently
869 >     * updating threads. The implementation may use this value as
870 >     * a sizing hint.
871 >     * @throws IllegalArgumentException if the initial capacity is
872 >     * negative or the load factor or concurrencyLevel are
873 >     * nonpositive
874 >     */
875 >    public ConcurrentHashMap(int initialCapacity,
876 >                             float loadFactor, int concurrencyLevel) {
877 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
878 >            throw new IllegalArgumentException();
879 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
880 >            initialCapacity = concurrencyLevel;   // as estimated threads
881 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
882 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
883 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
884 >        this.sizeCtl = cap;
885 >    }
886 >
887 >    // Original (since JDK1.2) Map methods
888 >
889 >    /**
890 >     * {@inheritDoc}
891       */
892      public int size() {
893 <        final Segment<K,V>[] segments = this.segments;
894 <        long sum = 0;
895 <        long check = 0;
896 <        int[] mc = new int[segments.length];
897 <        // Try a few times to get accurate count. On failure due to
898 <        // continuous async changes in table, resort to locking.
899 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
900 <            check = 0;
901 <            sum = 0;
902 <            int mcsum = 0;
903 <            for (int i = 0; i < segments.length; ++i) {
725 <                sum += segments[i].count;
726 <                mcsum += mc[i] = segments[i].modCount;
727 <            }
728 <            if (mcsum != 0) {
729 <                for (int i = 0; i < segments.length; ++i) {
730 <                    check += segments[i].count;
731 <                    if (mc[i] != segments[i].modCount) {
732 <                        check = -1; // force retry
733 <                        break;
734 <                    }
735 <                }
736 <            }
737 <            if (check == sum)
738 <                break;
739 <        }
740 <        if (check != sum) { // Resort to locking all segments
741 <            sum = 0;
742 <            for (int i = 0; i < segments.length; ++i)
743 <                segments[i].lock();
744 <            for (int i = 0; i < segments.length; ++i)
745 <                sum += segments[i].count;
746 <            for (int i = 0; i < segments.length; ++i)
747 <                segments[i].unlock();
748 <        }
749 <        if (sum > Integer.MAX_VALUE)
750 <            return Integer.MAX_VALUE;
751 <        else
752 <            return (int)sum;
893 >        long n = sumCount();
894 >        return ((n < 0L) ? 0 :
895 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
896 >                (int)n);
897 >    }
898 >
899 >    /**
900 >     * {@inheritDoc}
901 >     */
902 >    public boolean isEmpty() {
903 >        return sumCount() <= 0L; // ignore transient negative values
904      }
905  
906      /**
# Line 764 | Line 915 | public class ConcurrentHashMap<K, V> ext
915       * @throws NullPointerException if the specified key is null
916       */
917      public V get(Object key) {
918 <        int hash = hash(key.hashCode());
919 <        return segmentFor(hash).get(key, hash);
918 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
919 >        int h = spread(key.hashCode());
920 >        if ((tab = table) != null && (n = tab.length) > 0 &&
921 >            (e = tabAt(tab, (n - 1) & h)) != null) {
922 >            if ((eh = e.hash) == h) {
923 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
924 >                    return e.val;
925 >            }
926 >            else if (eh < 0)
927 >                return (p = e.find(h, key)) != null ? p.val : null;
928 >            while ((e = e.next) != null) {
929 >                if (e.hash == h &&
930 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
931 >                    return e.val;
932 >            }
933 >        }
934 >        return null;
935      }
936  
937      /**
938       * Tests if the specified object is a key in this table.
939       *
940 <     * @param  key   possible key
941 <     * @return <tt>true</tt> if and only if the specified object
940 >     * @param  key possible key
941 >     * @return {@code true} if and only if the specified object
942       *         is a key in this table, as determined by the
943 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
943 >     *         {@code equals} method; {@code false} otherwise
944       * @throws NullPointerException if the specified key is null
945       */
946      public boolean containsKey(Object key) {
947 <        int hash = hash(key.hashCode());
782 <        return segmentFor(hash).containsKey(key, hash);
947 >        return get(key) != null;
948      }
949  
950      /**
951 <     * Returns <tt>true</tt> if this map maps one or more keys to the
952 <     * specified value. Note: This method requires a full internal
953 <     * traversal of the hash table, and so is much slower than
789 <     * method <tt>containsKey</tt>.
951 >     * Returns {@code true} if this map maps one or more keys to the
952 >     * specified value. Note: This method may require a full traversal
953 >     * of the map, and is much slower than method {@code containsKey}.
954       *
955       * @param value value whose presence in this map is to be tested
956 <     * @return <tt>true</tt> if this map maps one or more keys to the
956 >     * @return {@code true} if this map maps one or more keys to the
957       *         specified value
958       * @throws NullPointerException if the specified value is null
959       */
960      public boolean containsValue(Object value) {
961          if (value == null)
962              throw new NullPointerException();
963 <
964 <        // See explanation of modCount use above
965 <
966 <        final Segment<K,V>[] segments = this.segments;
967 <        int[] mc = new int[segments.length];
968 <
805 <        // Try a few times without locking
806 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
807 <            int sum = 0;
808 <            int mcsum = 0;
809 <            for (int i = 0; i < segments.length; ++i) {
810 <                int c = segments[i].count;
811 <                mcsum += mc[i] = segments[i].modCount;
812 <                if (segments[i].containsValue(value))
963 >        Node<K,V>[] t;
964 >        if ((t = table) != null) {
965 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
966 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
967 >                V v;
968 >                if ((v = p.val) == value || (v != null && value.equals(v)))
969                      return true;
970              }
815            boolean cleanSweep = true;
816            if (mcsum != 0) {
817                for (int i = 0; i < segments.length; ++i) {
818                    int c = segments[i].count;
819                    if (mc[i] != segments[i].modCount) {
820                        cleanSweep = false;
821                        break;
822                    }
823                }
824            }
825            if (cleanSweep)
826                return false;
971          }
972 <        // Resort to locking all segments
829 <        for (int i = 0; i < segments.length; ++i)
830 <            segments[i].lock();
831 <        boolean found = false;
832 <        try {
833 <            for (int i = 0; i < segments.length; ++i) {
834 <                if (segments[i].containsValue(value)) {
835 <                    found = true;
836 <                    break;
837 <                }
838 <            }
839 <        } finally {
840 <            for (int i = 0; i < segments.length; ++i)
841 <                segments[i].unlock();
842 <        }
843 <        return found;
844 <    }
845 <
846 <    /**
847 <     * Legacy method testing if some key maps into the specified value
848 <     * in this table.  This method is identical in functionality to
849 <     * {@link #containsValue}, and exists solely to ensure
850 <     * full compatibility with class {@link java.util.Hashtable},
851 <     * which supported this method prior to introduction of the
852 <     * Java Collections framework.
853 <
854 <     * @param  value a value to search for
855 <     * @return <tt>true</tt> if and only if some key maps to the
856 <     *         <tt>value</tt> argument in this table as
857 <     *         determined by the <tt>equals</tt> method;
858 <     *         <tt>false</tt> otherwise
859 <     * @throws NullPointerException if the specified value is null
860 <     */
861 <    public boolean contains(Object value) {
862 <        return containsValue(value);
972 >        return false;
973      }
974  
975      /**
976       * Maps the specified key to the specified value in this table.
977       * Neither the key nor the value can be null.
978       *
979 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
979 >     * <p>The value can be retrieved by calling the {@code get} method
980       * with a key that is equal to the original key.
981       *
982       * @param key key with which the specified value is to be associated
983       * @param value value to be associated with the specified key
984 <     * @return the previous value associated with <tt>key</tt>, or
985 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
984 >     * @return the previous value associated with {@code key}, or
985 >     *         {@code null} if there was no mapping for {@code key}
986       * @throws NullPointerException if the specified key or value is null
987       */
988      public V put(K key, V value) {
989 <        if (value == null)
880 <            throw new NullPointerException();
881 <        int hash = hash(key.hashCode());
882 <        return segmentFor(hash).put(key, hash, value, false);
989 >        return putVal(key, value, false);
990      }
991  
992 <    /**
993 <     * {@inheritDoc}
994 <     *
995 <     * @return the previous value associated with the specified key,
996 <     *         or <tt>null</tt> if there was no mapping for the key
997 <     * @throws NullPointerException if the specified key or value is null
998 <     */
999 <    public V putIfAbsent(K key, V value) {
1000 <        if (value == null)
1001 <            throw new NullPointerException();
1002 <        int hash = hash(key.hashCode());
1003 <        return segmentFor(hash).put(key, hash, value, true);
992 >    /** Implementation for put and putIfAbsent */
993 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
994 >        if (key == null || value == null) throw new NullPointerException();
995 >        int hash = spread(key.hashCode());
996 >        int binCount = 0;
997 >        for (Node<K,V>[] tab = table;;) {
998 >            Node<K,V> f; int n, i, fh;
999 >            if (tab == null || (n = tab.length) == 0)
1000 >                tab = initTable();
1001 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1002 >                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
1003 >                    break;                   // no lock when adding to empty bin
1004 >            }
1005 >            else if ((fh = f.hash) == MOVED)
1006 >                tab = helpTransfer(tab, f);
1007 >            else {
1008 >                V oldVal = null;
1009 >                synchronized (f) {
1010 >                    if (tabAt(tab, i) == f) {
1011 >                        if (fh >= 0) {
1012 >                            binCount = 1;
1013 >                            for (Node<K,V> e = f;; ++binCount) {
1014 >                                K ek;
1015 >                                if (e.hash == hash &&
1016 >                                    ((ek = e.key) == key ||
1017 >                                     (ek != null && key.equals(ek)))) {
1018 >                                    oldVal = e.val;
1019 >                                    if (!onlyIfAbsent)
1020 >                                        e.val = value;
1021 >                                    break;
1022 >                                }
1023 >                                Node<K,V> pred = e;
1024 >                                if ((e = e.next) == null) {
1025 >                                    pred.next = new Node<K,V>(hash, key, value);
1026 >                                    break;
1027 >                                }
1028 >                            }
1029 >                        }
1030 >                        else if (f instanceof TreeBin) {
1031 >                            Node<K,V> p;
1032 >                            binCount = 2;
1033 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1034 >                                                           value)) != null) {
1035 >                                oldVal = p.val;
1036 >                                if (!onlyIfAbsent)
1037 >                                    p.val = value;
1038 >                            }
1039 >                        }
1040 >                        else if (f instanceof ReservationNode)
1041 >                            throw new IllegalStateException("Recursive update");
1042 >                    }
1043 >                }
1044 >                if (binCount != 0) {
1045 >                    if (binCount >= TREEIFY_THRESHOLD)
1046 >                        treeifyBin(tab, i);
1047 >                    if (oldVal != null)
1048 >                        return oldVal;
1049 >                    break;
1050 >                }
1051 >            }
1052 >        }
1053 >        addCount(1L, binCount);
1054 >        return null;
1055      }
1056  
1057      /**
# Line 904 | Line 1062 | public class ConcurrentHashMap<K, V> ext
1062       * @param m mappings to be stored in this map
1063       */
1064      public void putAll(Map<? extends K, ? extends V> m) {
1065 +        tryPresize(m.size());
1066          for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1067 <            put(e.getKey(), e.getValue());
1067 >            putVal(e.getKey(), e.getValue(), false);
1068      }
1069  
1070      /**
# Line 913 | Line 1072 | public class ConcurrentHashMap<K, V> ext
1072       * This method does nothing if the key is not in the map.
1073       *
1074       * @param  key the key that needs to be removed
1075 <     * @return the previous value associated with <tt>key</tt>, or
1076 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1075 >     * @return the previous value associated with {@code key}, or
1076 >     *         {@code null} if there was no mapping for {@code key}
1077       * @throws NullPointerException if the specified key is null
1078       */
1079      public V remove(Object key) {
1080 <        int hash = hash(key.hashCode());
1081 <        return segmentFor(hash).remove(key, hash, null);
1080 >        return replaceNode(key, null, null);
1081 >    }
1082 >
1083 >    /**
1084 >     * Implementation for the four public remove/replace methods:
1085 >     * Replaces node value with v, conditional upon match of cv if
1086 >     * non-null.  If resulting value is null, delete.
1087 >     */
1088 >    final V replaceNode(Object key, V value, Object cv) {
1089 >        int hash = spread(key.hashCode());
1090 >        for (Node<K,V>[] tab = table;;) {
1091 >            Node<K,V> f; int n, i, fh;
1092 >            if (tab == null || (n = tab.length) == 0 ||
1093 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1094 >                break;
1095 >            else if ((fh = f.hash) == MOVED)
1096 >                tab = helpTransfer(tab, f);
1097 >            else {
1098 >                V oldVal = null;
1099 >                boolean validated = false;
1100 >                synchronized (f) {
1101 >                    if (tabAt(tab, i) == f) {
1102 >                        if (fh >= 0) {
1103 >                            validated = true;
1104 >                            for (Node<K,V> e = f, pred = null;;) {
1105 >                                K ek;
1106 >                                if (e.hash == hash &&
1107 >                                    ((ek = e.key) == key ||
1108 >                                     (ek != null && key.equals(ek)))) {
1109 >                                    V ev = e.val;
1110 >                                    if (cv == null || cv == ev ||
1111 >                                        (ev != null && cv.equals(ev))) {
1112 >                                        oldVal = ev;
1113 >                                        if (value != null)
1114 >                                            e.val = value;
1115 >                                        else if (pred != null)
1116 >                                            pred.next = e.next;
1117 >                                        else
1118 >                                            setTabAt(tab, i, e.next);
1119 >                                    }
1120 >                                    break;
1121 >                                }
1122 >                                pred = e;
1123 >                                if ((e = e.next) == null)
1124 >                                    break;
1125 >                            }
1126 >                        }
1127 >                        else if (f instanceof TreeBin) {
1128 >                            validated = true;
1129 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1130 >                            TreeNode<K,V> r, p;
1131 >                            if ((r = t.root) != null &&
1132 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1133 >                                V pv = p.val;
1134 >                                if (cv == null || cv == pv ||
1135 >                                    (pv != null && cv.equals(pv))) {
1136 >                                    oldVal = pv;
1137 >                                    if (value != null)
1138 >                                        p.val = value;
1139 >                                    else if (t.removeTreeNode(p))
1140 >                                        setTabAt(tab, i, untreeify(t.first));
1141 >                                }
1142 >                            }
1143 >                        }
1144 >                        else if (f instanceof ReservationNode)
1145 >                            throw new IllegalStateException("Recursive update");
1146 >                    }
1147 >                }
1148 >                if (validated) {
1149 >                    if (oldVal != null) {
1150 >                        if (value == null)
1151 >                            addCount(-1L, -1);
1152 >                        return oldVal;
1153 >                    }
1154 >                    break;
1155 >                }
1156 >            }
1157 >        }
1158 >        return null;
1159 >    }
1160 >
1161 >    /**
1162 >     * Removes all of the mappings from this map.
1163 >     */
1164 >    public void clear() {
1165 >        long delta = 0L; // negative number of deletions
1166 >        int i = 0;
1167 >        Node<K,V>[] tab = table;
1168 >        while (tab != null && i < tab.length) {
1169 >            int fh;
1170 >            Node<K,V> f = tabAt(tab, i);
1171 >            if (f == null)
1172 >                ++i;
1173 >            else if ((fh = f.hash) == MOVED) {
1174 >                tab = helpTransfer(tab, f);
1175 >                i = 0; // restart
1176 >            }
1177 >            else {
1178 >                synchronized (f) {
1179 >                    if (tabAt(tab, i) == f) {
1180 >                        Node<K,V> p = (fh >= 0 ? f :
1181 >                                       (f instanceof TreeBin) ?
1182 >                                       ((TreeBin<K,V>)f).first : null);
1183 >                        while (p != null) {
1184 >                            --delta;
1185 >                            p = p.next;
1186 >                        }
1187 >                        setTabAt(tab, i++, null);
1188 >                    }
1189 >                }
1190 >            }
1191 >        }
1192 >        if (delta != 0L)
1193 >            addCount(delta, -1);
1194 >    }
1195 >
1196 >    /**
1197 >     * Returns a {@link Set} view of the keys contained in this map.
1198 >     * The set is backed by the map, so changes to the map are
1199 >     * reflected in the set, and vice-versa. The set supports element
1200 >     * removal, which removes the corresponding mapping from this map,
1201 >     * via the {@code Iterator.remove}, {@code Set.remove},
1202 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1203 >     * operations.  It does not support the {@code add} or
1204 >     * {@code addAll} operations.
1205 >     *
1206 >     * <p>The view's iterators and spliterators are
1207 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1208 >     *
1209 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1210 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1211 >     *
1212 >     * @return the set view
1213 >     */
1214 >    public KeySetView<K,V> keySet() {
1215 >        KeySetView<K,V> ks;
1216 >        if ((ks = keySet) != null) return ks;
1217 >        return keySet = new KeySetView<K,V>(this, null);
1218 >    }
1219 >
1220 >    /**
1221 >     * Returns a {@link Collection} view of the values contained in this map.
1222 >     * The collection is backed by the map, so changes to the map are
1223 >     * reflected in the collection, and vice-versa.  The collection
1224 >     * supports element removal, which removes the corresponding
1225 >     * mapping from this map, via the {@code Iterator.remove},
1226 >     * {@code Collection.remove}, {@code removeAll},
1227 >     * {@code retainAll}, and {@code clear} operations.  It does not
1228 >     * support the {@code add} or {@code addAll} operations.
1229 >     *
1230 >     * <p>The view's iterators and spliterators are
1231 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1232 >     *
1233 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1234 >     * and {@link Spliterator#NONNULL}.
1235 >     *
1236 >     * @return the collection view
1237 >     */
1238 >    public Collection<V> values() {
1239 >        ValuesView<K,V> vs;
1240 >        if ((vs = values) != null) return vs;
1241 >        return values = new ValuesView<K,V>(this);
1242 >    }
1243 >
1244 >    /**
1245 >     * Returns a {@link Set} view of the mappings contained in this map.
1246 >     * The set is backed by the map, so changes to the map are
1247 >     * reflected in the set, and vice-versa.  The set supports element
1248 >     * removal, which removes the corresponding mapping from the map,
1249 >     * via the {@code Iterator.remove}, {@code Set.remove},
1250 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1251 >     * operations.
1252 >     *
1253 >     * <p>The view's iterators and spliterators are
1254 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1255 >     *
1256 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1257 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1258 >     *
1259 >     * @return the set view
1260 >     */
1261 >    public Set<Map.Entry<K,V>> entrySet() {
1262 >        EntrySetView<K,V> es;
1263 >        if ((es = entrySet) != null) return es;
1264 >        return entrySet = new EntrySetView<K,V>(this);
1265 >    }
1266 >
1267 >    /**
1268 >     * Returns the hash code value for this {@link Map}, i.e.,
1269 >     * the sum of, for each key-value pair in the map,
1270 >     * {@code key.hashCode() ^ value.hashCode()}.
1271 >     *
1272 >     * @return the hash code value for this map
1273 >     */
1274 >    public int hashCode() {
1275 >        int h = 0;
1276 >        Node<K,V>[] t;
1277 >        if ((t = table) != null) {
1278 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1279 >            for (Node<K,V> p; (p = it.advance()) != null; )
1280 >                h += p.key.hashCode() ^ p.val.hashCode();
1281 >        }
1282 >        return h;
1283 >    }
1284 >
1285 >    /**
1286 >     * Returns a string representation of this map.  The string
1287 >     * representation consists of a list of key-value mappings (in no
1288 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1289 >     * mappings are separated by the characters {@code ", "} (comma
1290 >     * and space).  Each key-value mapping is rendered as the key
1291 >     * followed by an equals sign ("{@code =}") followed by the
1292 >     * associated value.
1293 >     *
1294 >     * @return a string representation of this map
1295 >     */
1296 >    public String toString() {
1297 >        Node<K,V>[] t;
1298 >        int f = (t = table) == null ? 0 : t.length;
1299 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1300 >        StringBuilder sb = new StringBuilder();
1301 >        sb.append('{');
1302 >        Node<K,V> p;
1303 >        if ((p = it.advance()) != null) {
1304 >            for (;;) {
1305 >                K k = p.key;
1306 >                V v = p.val;
1307 >                sb.append(k == this ? "(this Map)" : k);
1308 >                sb.append('=');
1309 >                sb.append(v == this ? "(this Map)" : v);
1310 >                if ((p = it.advance()) == null)
1311 >                    break;
1312 >                sb.append(',').append(' ');
1313 >            }
1314 >        }
1315 >        return sb.append('}').toString();
1316 >    }
1317 >
1318 >    /**
1319 >     * Compares the specified object with this map for equality.
1320 >     * Returns {@code true} if the given object is a map with the same
1321 >     * mappings as this map.  This operation may return misleading
1322 >     * results if either map is concurrently modified during execution
1323 >     * of this method.
1324 >     *
1325 >     * @param o object to be compared for equality with this map
1326 >     * @return {@code true} if the specified object is equal to this map
1327 >     */
1328 >    public boolean equals(Object o) {
1329 >        if (o != this) {
1330 >            if (!(o instanceof Map))
1331 >                return false;
1332 >            Map<?,?> m = (Map<?,?>) o;
1333 >            Node<K,V>[] t;
1334 >            int f = (t = table) == null ? 0 : t.length;
1335 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1336 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1337 >                V val = p.val;
1338 >                Object v = m.get(p.key);
1339 >                if (v == null || (v != val && !v.equals(val)))
1340 >                    return false;
1341 >            }
1342 >            for (Map.Entry<?,?> e : m.entrySet()) {
1343 >                Object mk, mv, v;
1344 >                if ((mk = e.getKey()) == null ||
1345 >                    (mv = e.getValue()) == null ||
1346 >                    (v = get(mk)) == null ||
1347 >                    (mv != v && !mv.equals(v)))
1348 >                    return false;
1349 >            }
1350 >        }
1351 >        return true;
1352 >    }
1353 >
1354 >    /**
1355 >     * Stripped-down version of helper class used in previous version,
1356 >     * declared for the sake of serialization compatibility.
1357 >     */
1358 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1359 >        private static final long serialVersionUID = 2249069246763182397L;
1360 >        final float loadFactor;
1361 >        Segment(float lf) { this.loadFactor = lf; }
1362 >    }
1363 >
1364 >    /**
1365 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1366 >     * stream (i.e., serializes it).
1367 >     * @param s the stream
1368 >     * @throws java.io.IOException if an I/O error occurs
1369 >     * @serialData
1370 >     * the serialized fields, followed by the key (Object) and value
1371 >     * (Object) for each key-value mapping, followed by a null pair.
1372 >     * The key-value mappings are emitted in no particular order.
1373 >     */
1374 >    private void writeObject(java.io.ObjectOutputStream s)
1375 >        throws java.io.IOException {
1376 >        // For serialization compatibility
1377 >        // Emulate segment calculation from previous version of this class
1378 >        int sshift = 0;
1379 >        int ssize = 1;
1380 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1381 >            ++sshift;
1382 >            ssize <<= 1;
1383 >        }
1384 >        int segmentShift = 32 - sshift;
1385 >        int segmentMask = ssize - 1;
1386 >        @SuppressWarnings("unchecked")
1387 >        Segment<K,V>[] segments = (Segment<K,V>[])
1388 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1389 >        for (int i = 0; i < segments.length; ++i)
1390 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1391 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1392 >        streamFields.put("segments", segments);
1393 >        streamFields.put("segmentShift", segmentShift);
1394 >        streamFields.put("segmentMask", segmentMask);
1395 >        s.writeFields();
1396 >
1397 >        Node<K,V>[] t;
1398 >        if ((t = table) != null) {
1399 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1400 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1401 >                s.writeObject(p.key);
1402 >                s.writeObject(p.val);
1403 >            }
1404 >        }
1405 >        s.writeObject(null);
1406 >        s.writeObject(null);
1407 >    }
1408 >
1409 >    /**
1410 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1411 >     * @param s the stream
1412 >     * @throws ClassNotFoundException if the class of a serialized object
1413 >     *         could not be found
1414 >     * @throws java.io.IOException if an I/O error occurs
1415 >     */
1416 >    private void readObject(java.io.ObjectInputStream s)
1417 >        throws java.io.IOException, ClassNotFoundException {
1418 >        /*
1419 >         * To improve performance in typical cases, we create nodes
1420 >         * while reading, then place in table once size is known.
1421 >         * However, we must also validate uniqueness and deal with
1422 >         * overpopulated bins while doing so, which requires
1423 >         * specialized versions of putVal mechanics.
1424 >         */
1425 >        sizeCtl = -1; // force exclusion for table construction
1426 >        s.defaultReadObject();
1427 >        long size = 0L;
1428 >        Node<K,V> p = null;
1429 >        for (;;) {
1430 >            @SuppressWarnings("unchecked")
1431 >            K k = (K) s.readObject();
1432 >            @SuppressWarnings("unchecked")
1433 >            V v = (V) s.readObject();
1434 >            if (k != null && v != null) {
1435 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1436 >                ++size;
1437 >            }
1438 >            else
1439 >                break;
1440 >        }
1441 >        if (size == 0L)
1442 >            sizeCtl = 0;
1443 >        else {
1444 >            int n;
1445 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1446 >                n = MAXIMUM_CAPACITY;
1447 >            else {
1448 >                int sz = (int)size;
1449 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1450 >            }
1451 >            @SuppressWarnings("unchecked")
1452 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1453 >            int mask = n - 1;
1454 >            long added = 0L;
1455 >            while (p != null) {
1456 >                boolean insertAtFront;
1457 >                Node<K,V> next = p.next, first;
1458 >                int h = p.hash, j = h & mask;
1459 >                if ((first = tabAt(tab, j)) == null)
1460 >                    insertAtFront = true;
1461 >                else {
1462 >                    K k = p.key;
1463 >                    if (first.hash < 0) {
1464 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1465 >                        if (t.putTreeVal(h, k, p.val) == null)
1466 >                            ++added;
1467 >                        insertAtFront = false;
1468 >                    }
1469 >                    else {
1470 >                        int binCount = 0;
1471 >                        insertAtFront = true;
1472 >                        Node<K,V> q; K qk;
1473 >                        for (q = first; q != null; q = q.next) {
1474 >                            if (q.hash == h &&
1475 >                                ((qk = q.key) == k ||
1476 >                                 (qk != null && k.equals(qk)))) {
1477 >                                insertAtFront = false;
1478 >                                break;
1479 >                            }
1480 >                            ++binCount;
1481 >                        }
1482 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1483 >                            insertAtFront = false;
1484 >                            ++added;
1485 >                            p.next = first;
1486 >                            TreeNode<K,V> hd = null, tl = null;
1487 >                            for (q = p; q != null; q = q.next) {
1488 >                                TreeNode<K,V> t = new TreeNode<K,V>
1489 >                                    (q.hash, q.key, q.val, null, null);
1490 >                                if ((t.prev = tl) == null)
1491 >                                    hd = t;
1492 >                                else
1493 >                                    tl.next = t;
1494 >                                tl = t;
1495 >                            }
1496 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1497 >                        }
1498 >                    }
1499 >                }
1500 >                if (insertAtFront) {
1501 >                    ++added;
1502 >                    p.next = first;
1503 >                    setTabAt(tab, j, p);
1504 >                }
1505 >                p = next;
1506 >            }
1507 >            table = tab;
1508 >            sizeCtl = n - (n >>> 2);
1509 >            baseCount = added;
1510 >        }
1511 >    }
1512 >
1513 >    // ConcurrentMap methods
1514 >
1515 >    /**
1516 >     * {@inheritDoc}
1517 >     *
1518 >     * @return the previous value associated with the specified key,
1519 >     *         or {@code null} if there was no mapping for the key
1520 >     * @throws NullPointerException if the specified key or value is null
1521 >     */
1522 >    public V putIfAbsent(K key, V value) {
1523 >        return putVal(key, value, true);
1524      }
1525  
1526      /**
# Line 928 | Line 1529 | public class ConcurrentHashMap<K, V> ext
1529       * @throws NullPointerException if the specified key is null
1530       */
1531      public boolean remove(Object key, Object value) {
1532 <        int hash = hash(key.hashCode());
1533 <        if (value == null)
1534 <            return false;
934 <        return segmentFor(hash).remove(key, hash, value) != null;
1532 >        if (key == null)
1533 >            throw new NullPointerException();
1534 >        return value != null && replaceNode(key, null, value) != null;
1535      }
1536  
1537      /**
# Line 940 | Line 1540 | public class ConcurrentHashMap<K, V> ext
1540       * @throws NullPointerException if any of the arguments are null
1541       */
1542      public boolean replace(K key, V oldValue, V newValue) {
1543 <        if (oldValue == null || newValue == null)
1543 >        if (key == null || oldValue == null || newValue == null)
1544              throw new NullPointerException();
1545 <        int hash = hash(key.hashCode());
946 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
1545 >        return replaceNode(key, newValue, oldValue) != null;
1546      }
1547  
1548      /**
1549       * {@inheritDoc}
1550       *
1551       * @return the previous value associated with the specified key,
1552 <     *         or <tt>null</tt> if there was no mapping for the key
1552 >     *         or {@code null} if there was no mapping for the key
1553       * @throws NullPointerException if the specified key or value is null
1554       */
1555      public V replace(K key, V value) {
1556 <        if (value == null)
1556 >        if (key == null || value == null)
1557              throw new NullPointerException();
1558 <        int hash = hash(key.hashCode());
960 <        return segmentFor(hash).replace(key, hash, value);
1558 >        return replaceNode(key, value, null);
1559      }
1560  
1561 +    // Overrides of JDK8+ Map extension method defaults
1562 +
1563      /**
1564 <     * Removes all of the mappings from this map.
1564 >     * Returns the value to which the specified key is mapped, or the
1565 >     * given default value if this map contains no mapping for the
1566 >     * key.
1567 >     *
1568 >     * @param key the key whose associated value is to be returned
1569 >     * @param defaultValue the value to return if this map contains
1570 >     * no mapping for the given key
1571 >     * @return the mapping for the key, if present; else the default value
1572 >     * @throws NullPointerException if the specified key is null
1573       */
1574 <    public void clear() {
1575 <        for (int i = 0; i < segments.length; ++i)
1576 <            segments[i].clear();
1574 >    public V getOrDefault(Object key, V defaultValue) {
1575 >        V v;
1576 >        return (v = get(key)) == null ? defaultValue : v;
1577 >    }
1578 >
1579 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1580 >        if (action == null) throw new NullPointerException();
1581 >        Node<K,V>[] t;
1582 >        if ((t = table) != null) {
1583 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 >                action.accept(p.key, p.val);
1586 >            }
1587 >        }
1588 >    }
1589 >
1590 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1591 >        if (function == null) throw new NullPointerException();
1592 >        Node<K,V>[] t;
1593 >        if ((t = table) != null) {
1594 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1595 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1596 >                V oldValue = p.val;
1597 >                for (K key = p.key;;) {
1598 >                    V newValue = function.apply(key, oldValue);
1599 >                    if (newValue == null)
1600 >                        throw new NullPointerException();
1601 >                    if (replaceNode(key, newValue, oldValue) != null ||
1602 >                        (oldValue = get(key)) == null)
1603 >                        break;
1604 >                }
1605 >            }
1606 >        }
1607      }
1608  
1609      /**
1610 <     * Returns a {@link Set} view of the keys contained in this map.
1611 <     * The set is backed by the map, so changes to the map are
1612 <     * reflected in the set, and vice-versa.  The set supports element
1613 <     * removal, which removes the corresponding mapping from this map,
1614 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1615 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1616 <     * operations.  It does not support the <tt>add</tt> or
1617 <     * <tt>addAll</tt> operations.
1618 <     *
1619 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1620 <     * that will never throw {@link ConcurrentModificationException},
1621 <     * and guarantees to traverse elements as they existed upon
1622 <     * construction of the iterator, and may (but is not guaranteed to)
1623 <     * reflect any modifications subsequent to construction.
1624 <     */
1625 <    public Set<K> keySet() {
1626 <        Set<K> ks = keySet;
989 <        return (ks != null) ? ks : (keySet = new KeySet());
1610 >     * Helper method for EntrySetView.removeIf.
1611 >     */
1612 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1613 >        if (function == null) throw new NullPointerException();
1614 >        Node<K,V>[] t;
1615 >        boolean removed = false;
1616 >        if ((t = table) != null) {
1617 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1618 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1619 >                K k = p.key;
1620 >                V v = p.val;
1621 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1622 >                if (function.test(e) && replaceNode(k, null, v) != null)
1623 >                    removed = true;
1624 >            }
1625 >        }
1626 >        return removed;
1627      }
1628  
1629      /**
1630 <     * Returns a {@link Collection} view of the values contained in this map.
994 <     * The collection is backed by the map, so changes to the map are
995 <     * reflected in the collection, and vice-versa.  The collection
996 <     * supports element removal, which removes the corresponding
997 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
998 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
999 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1000 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1001 <     *
1002 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1003 <     * that will never throw {@link ConcurrentModificationException},
1004 <     * and guarantees to traverse elements as they existed upon
1005 <     * construction of the iterator, and may (but is not guaranteed to)
1006 <     * reflect any modifications subsequent to construction.
1630 >     * Helper method for ValuesView.removeIf.
1631       */
1632 <    public Collection<V> values() {
1633 <        Collection<V> vs = values;
1634 <        return (vs != null) ? vs : (values = new Values());
1632 >    boolean removeValueIf(Predicate<? super V> function) {
1633 >        if (function == null) throw new NullPointerException();
1634 >        Node<K,V>[] t;
1635 >        boolean removed = false;
1636 >        if ((t = table) != null) {
1637 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1638 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1639 >                K k = p.key;
1640 >                V v = p.val;
1641 >                if (function.test(v) && replaceNode(k, null, v) != null)
1642 >                    removed = true;
1643 >            }
1644 >        }
1645 >        return removed;
1646      }
1647  
1648      /**
1649 <     * Returns a {@link Set} view of the mappings contained in this map.
1650 <     * The set is backed by the map, so changes to the map are
1651 <     * reflected in the set, and vice-versa.  The set supports element
1652 <     * removal, which removes the corresponding mapping from the map,
1653 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1654 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1655 <     * operations.  It does not support the <tt>add</tt> or
1656 <     * <tt>addAll</tt> operations.
1657 <     *
1658 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1659 <     * that will never throw {@link ConcurrentModificationException},
1660 <     * and guarantees to traverse elements as they existed upon
1661 <     * construction of the iterator, and may (but is not guaranteed to)
1662 <     * reflect any modifications subsequent to construction.
1649 >     * If the specified key is not already associated with a value,
1650 >     * attempts to compute its value using the given mapping function
1651 >     * and enters it into this map unless {@code null}.  The entire
1652 >     * method invocation is performed atomically, so the function is
1653 >     * applied at most once per key.  Some attempted update operations
1654 >     * on this map by other threads may be blocked while computation
1655 >     * is in progress, so the computation should be short and simple,
1656 >     * and must not attempt to update any other mappings of this map.
1657 >     *
1658 >     * @param key key with which the specified value is to be associated
1659 >     * @param mappingFunction the function to compute a value
1660 >     * @return the current (existing or computed) value associated with
1661 >     *         the specified key, or null if the computed value is null
1662 >     * @throws NullPointerException if the specified key or mappingFunction
1663 >     *         is null
1664 >     * @throws IllegalStateException if the computation detectably
1665 >     *         attempts a recursive update to this map that would
1666 >     *         otherwise never complete
1667 >     * @throws RuntimeException or Error if the mappingFunction does so,
1668 >     *         in which case the mapping is left unestablished
1669       */
1670 <    public Set<Map.Entry<K,V>> entrySet() {
1671 <        Set<Map.Entry<K,V>> es = entrySet;
1672 <        return (es != null) ? es : (entrySet = new EntrySet());
1670 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1671 >        if (key == null || mappingFunction == null)
1672 >            throw new NullPointerException();
1673 >        int h = spread(key.hashCode());
1674 >        V val = null;
1675 >        int binCount = 0;
1676 >        for (Node<K,V>[] tab = table;;) {
1677 >            Node<K,V> f; int n, i, fh;
1678 >            if (tab == null || (n = tab.length) == 0)
1679 >                tab = initTable();
1680 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1681 >                Node<K,V> r = new ReservationNode<K,V>();
1682 >                synchronized (r) {
1683 >                    if (casTabAt(tab, i, null, r)) {
1684 >                        binCount = 1;
1685 >                        Node<K,V> node = null;
1686 >                        try {
1687 >                            if ((val = mappingFunction.apply(key)) != null)
1688 >                                node = new Node<K,V>(h, key, val);
1689 >                        } finally {
1690 >                            setTabAt(tab, i, node);
1691 >                        }
1692 >                    }
1693 >                }
1694 >                if (binCount != 0)
1695 >                    break;
1696 >            }
1697 >            else if ((fh = f.hash) == MOVED)
1698 >                tab = helpTransfer(tab, f);
1699 >            else {
1700 >                boolean added = false;
1701 >                synchronized (f) {
1702 >                    if (tabAt(tab, i) == f) {
1703 >                        if (fh >= 0) {
1704 >                            binCount = 1;
1705 >                            for (Node<K,V> e = f;; ++binCount) {
1706 >                                K ek;
1707 >                                if (e.hash == h &&
1708 >                                    ((ek = e.key) == key ||
1709 >                                     (ek != null && key.equals(ek)))) {
1710 >                                    val = e.val;
1711 >                                    break;
1712 >                                }
1713 >                                Node<K,V> pred = e;
1714 >                                if ((e = e.next) == null) {
1715 >                                    if ((val = mappingFunction.apply(key)) != null) {
1716 >                                        if (pred.next != null)
1717 >                                            throw new IllegalStateException("Recursive update");
1718 >                                        added = true;
1719 >                                        pred.next = new Node<K,V>(h, key, val);
1720 >                                    }
1721 >                                    break;
1722 >                                }
1723 >                            }
1724 >                        }
1725 >                        else if (f instanceof TreeBin) {
1726 >                            binCount = 2;
1727 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1728 >                            TreeNode<K,V> r, p;
1729 >                            if ((r = t.root) != null &&
1730 >                                (p = r.findTreeNode(h, key, null)) != null)
1731 >                                val = p.val;
1732 >                            else if ((val = mappingFunction.apply(key)) != null) {
1733 >                                added = true;
1734 >                                t.putTreeVal(h, key, val);
1735 >                            }
1736 >                        }
1737 >                        else if (f instanceof ReservationNode)
1738 >                            throw new IllegalStateException("Recursive update");
1739 >                    }
1740 >                }
1741 >                if (binCount != 0) {
1742 >                    if (binCount >= TREEIFY_THRESHOLD)
1743 >                        treeifyBin(tab, i);
1744 >                    if (!added)
1745 >                        return val;
1746 >                    break;
1747 >                }
1748 >            }
1749 >        }
1750 >        if (val != null)
1751 >            addCount(1L, binCount);
1752 >        return val;
1753 >    }
1754 >
1755 >    /**
1756 >     * If the value for the specified key is present, attempts to
1757 >     * compute a new mapping given the key and its current mapped
1758 >     * value.  The entire method invocation is performed atomically.
1759 >     * Some attempted update operations on this map by other threads
1760 >     * may be blocked while computation is in progress, so the
1761 >     * computation should be short and simple, and must not attempt to
1762 >     * update any other mappings of this map.
1763 >     *
1764 >     * @param key key with which a value may be associated
1765 >     * @param remappingFunction the function to compute a value
1766 >     * @return the new value associated with the specified key, or null if none
1767 >     * @throws NullPointerException if the specified key or remappingFunction
1768 >     *         is null
1769 >     * @throws IllegalStateException if the computation detectably
1770 >     *         attempts a recursive update to this map that would
1771 >     *         otherwise never complete
1772 >     * @throws RuntimeException or Error if the remappingFunction does so,
1773 >     *         in which case the mapping is unchanged
1774 >     */
1775 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1776 >        if (key == null || remappingFunction == null)
1777 >            throw new NullPointerException();
1778 >        int h = spread(key.hashCode());
1779 >        V val = null;
1780 >        int delta = 0;
1781 >        int binCount = 0;
1782 >        for (Node<K,V>[] tab = table;;) {
1783 >            Node<K,V> f; int n, i, fh;
1784 >            if (tab == null || (n = tab.length) == 0)
1785 >                tab = initTable();
1786 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1787 >                break;
1788 >            else if ((fh = f.hash) == MOVED)
1789 >                tab = helpTransfer(tab, f);
1790 >            else {
1791 >                synchronized (f) {
1792 >                    if (tabAt(tab, i) == f) {
1793 >                        if (fh >= 0) {
1794 >                            binCount = 1;
1795 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1796 >                                K ek;
1797 >                                if (e.hash == h &&
1798 >                                    ((ek = e.key) == key ||
1799 >                                     (ek != null && key.equals(ek)))) {
1800 >                                    val = remappingFunction.apply(key, e.val);
1801 >                                    if (val != null)
1802 >                                        e.val = val;
1803 >                                    else {
1804 >                                        delta = -1;
1805 >                                        Node<K,V> en = e.next;
1806 >                                        if (pred != null)
1807 >                                            pred.next = en;
1808 >                                        else
1809 >                                            setTabAt(tab, i, en);
1810 >                                    }
1811 >                                    break;
1812 >                                }
1813 >                                pred = e;
1814 >                                if ((e = e.next) == null)
1815 >                                    break;
1816 >                            }
1817 >                        }
1818 >                        else if (f instanceof TreeBin) {
1819 >                            binCount = 2;
1820 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1821 >                            TreeNode<K,V> r, p;
1822 >                            if ((r = t.root) != null &&
1823 >                                (p = r.findTreeNode(h, key, null)) != null) {
1824 >                                val = remappingFunction.apply(key, p.val);
1825 >                                if (val != null)
1826 >                                    p.val = val;
1827 >                                else {
1828 >                                    delta = -1;
1829 >                                    if (t.removeTreeNode(p))
1830 >                                        setTabAt(tab, i, untreeify(t.first));
1831 >                                }
1832 >                            }
1833 >                        }
1834 >                        else if (f instanceof ReservationNode)
1835 >                            throw new IllegalStateException("Recursive update");
1836 >                    }
1837 >                }
1838 >                if (binCount != 0)
1839 >                    break;
1840 >            }
1841 >        }
1842 >        if (delta != 0)
1843 >            addCount((long)delta, binCount);
1844 >        return val;
1845 >    }
1846 >
1847 >    /**
1848 >     * Attempts to compute a mapping for the specified key and its
1849 >     * current mapped value (or {@code null} if there is no current
1850 >     * mapping). The entire method invocation is performed atomically.
1851 >     * Some attempted update operations on this map by other threads
1852 >     * may be blocked while computation is in progress, so the
1853 >     * computation should be short and simple, and must not attempt to
1854 >     * update any other mappings of this Map.
1855 >     *
1856 >     * @param key key with which the specified value is to be associated
1857 >     * @param remappingFunction the function to compute a value
1858 >     * @return the new value associated with the specified key, or null if none
1859 >     * @throws NullPointerException if the specified key or remappingFunction
1860 >     *         is null
1861 >     * @throws IllegalStateException if the computation detectably
1862 >     *         attempts a recursive update to this map that would
1863 >     *         otherwise never complete
1864 >     * @throws RuntimeException or Error if the remappingFunction does so,
1865 >     *         in which case the mapping is unchanged
1866 >     */
1867 >    public V compute(K key,
1868 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1869 >        if (key == null || remappingFunction == null)
1870 >            throw new NullPointerException();
1871 >        int h = spread(key.hashCode());
1872 >        V val = null;
1873 >        int delta = 0;
1874 >        int binCount = 0;
1875 >        for (Node<K,V>[] tab = table;;) {
1876 >            Node<K,V> f; int n, i, fh;
1877 >            if (tab == null || (n = tab.length) == 0)
1878 >                tab = initTable();
1879 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1880 >                Node<K,V> r = new ReservationNode<K,V>();
1881 >                synchronized (r) {
1882 >                    if (casTabAt(tab, i, null, r)) {
1883 >                        binCount = 1;
1884 >                        Node<K,V> node = null;
1885 >                        try {
1886 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1887 >                                delta = 1;
1888 >                                node = new Node<K,V>(h, key, val);
1889 >                            }
1890 >                        } finally {
1891 >                            setTabAt(tab, i, node);
1892 >                        }
1893 >                    }
1894 >                }
1895 >                if (binCount != 0)
1896 >                    break;
1897 >            }
1898 >            else if ((fh = f.hash) == MOVED)
1899 >                tab = helpTransfer(tab, f);
1900 >            else {
1901 >                synchronized (f) {
1902 >                    if (tabAt(tab, i) == f) {
1903 >                        if (fh >= 0) {
1904 >                            binCount = 1;
1905 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1906 >                                K ek;
1907 >                                if (e.hash == h &&
1908 >                                    ((ek = e.key) == key ||
1909 >                                     (ek != null && key.equals(ek)))) {
1910 >                                    val = remappingFunction.apply(key, e.val);
1911 >                                    if (val != null)
1912 >                                        e.val = val;
1913 >                                    else {
1914 >                                        delta = -1;
1915 >                                        Node<K,V> en = e.next;
1916 >                                        if (pred != null)
1917 >                                            pred.next = en;
1918 >                                        else
1919 >                                            setTabAt(tab, i, en);
1920 >                                    }
1921 >                                    break;
1922 >                                }
1923 >                                pred = e;
1924 >                                if ((e = e.next) == null) {
1925 >                                    val = remappingFunction.apply(key, null);
1926 >                                    if (val != null) {
1927 >                                        if (pred.next != null)
1928 >                                            throw new IllegalStateException("Recursive update");
1929 >                                        delta = 1;
1930 >                                        pred.next = new Node<K,V>(h, key, val);
1931 >                                    }
1932 >                                    break;
1933 >                                }
1934 >                            }
1935 >                        }
1936 >                        else if (f instanceof TreeBin) {
1937 >                            binCount = 1;
1938 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1939 >                            TreeNode<K,V> r, p;
1940 >                            if ((r = t.root) != null)
1941 >                                p = r.findTreeNode(h, key, null);
1942 >                            else
1943 >                                p = null;
1944 >                            V pv = (p == null) ? null : p.val;
1945 >                            val = remappingFunction.apply(key, pv);
1946 >                            if (val != null) {
1947 >                                if (p != null)
1948 >                                    p.val = val;
1949 >                                else {
1950 >                                    delta = 1;
1951 >                                    t.putTreeVal(h, key, val);
1952 >                                }
1953 >                            }
1954 >                            else if (p != null) {
1955 >                                delta = -1;
1956 >                                if (t.removeTreeNode(p))
1957 >                                    setTabAt(tab, i, untreeify(t.first));
1958 >                            }
1959 >                        }
1960 >                        else if (f instanceof ReservationNode)
1961 >                            throw new IllegalStateException("Recursive update");
1962 >                    }
1963 >                }
1964 >                if (binCount != 0) {
1965 >                    if (binCount >= TREEIFY_THRESHOLD)
1966 >                        treeifyBin(tab, i);
1967 >                    break;
1968 >                }
1969 >            }
1970 >        }
1971 >        if (delta != 0)
1972 >            addCount((long)delta, binCount);
1973 >        return val;
1974 >    }
1975 >
1976 >    /**
1977 >     * If the specified key is not already associated with a
1978 >     * (non-null) value, associates it with the given value.
1979 >     * Otherwise, replaces the value with the results of the given
1980 >     * remapping function, or removes if {@code null}. The entire
1981 >     * method invocation is performed atomically.  Some attempted
1982 >     * update operations on this map by other threads may be blocked
1983 >     * while computation is in progress, so the computation should be
1984 >     * short and simple, and must not attempt to update any other
1985 >     * mappings of this Map.
1986 >     *
1987 >     * @param key key with which the specified value is to be associated
1988 >     * @param value the value to use if absent
1989 >     * @param remappingFunction the function to recompute a value if present
1990 >     * @return the new value associated with the specified key, or null if none
1991 >     * @throws NullPointerException if the specified key or the
1992 >     *         remappingFunction is null
1993 >     * @throws RuntimeException or Error if the remappingFunction does so,
1994 >     *         in which case the mapping is unchanged
1995 >     */
1996 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1997 >        if (key == null || value == null || remappingFunction == null)
1998 >            throw new NullPointerException();
1999 >        int h = spread(key.hashCode());
2000 >        V val = null;
2001 >        int delta = 0;
2002 >        int binCount = 0;
2003 >        for (Node<K,V>[] tab = table;;) {
2004 >            Node<K,V> f; int n, i, fh;
2005 >            if (tab == null || (n = tab.length) == 0)
2006 >                tab = initTable();
2007 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2008 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2009 >                    delta = 1;
2010 >                    val = value;
2011 >                    break;
2012 >                }
2013 >            }
2014 >            else if ((fh = f.hash) == MOVED)
2015 >                tab = helpTransfer(tab, f);
2016 >            else {
2017 >                synchronized (f) {
2018 >                    if (tabAt(tab, i) == f) {
2019 >                        if (fh >= 0) {
2020 >                            binCount = 1;
2021 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2022 >                                K ek;
2023 >                                if (e.hash == h &&
2024 >                                    ((ek = e.key) == key ||
2025 >                                     (ek != null && key.equals(ek)))) {
2026 >                                    val = remappingFunction.apply(e.val, value);
2027 >                                    if (val != null)
2028 >                                        e.val = val;
2029 >                                    else {
2030 >                                        delta = -1;
2031 >                                        Node<K,V> en = e.next;
2032 >                                        if (pred != null)
2033 >                                            pred.next = en;
2034 >                                        else
2035 >                                            setTabAt(tab, i, en);
2036 >                                    }
2037 >                                    break;
2038 >                                }
2039 >                                pred = e;
2040 >                                if ((e = e.next) == null) {
2041 >                                    delta = 1;
2042 >                                    val = value;
2043 >                                    pred.next = new Node<K,V>(h, key, val);
2044 >                                    break;
2045 >                                }
2046 >                            }
2047 >                        }
2048 >                        else if (f instanceof TreeBin) {
2049 >                            binCount = 2;
2050 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2051 >                            TreeNode<K,V> r = t.root;
2052 >                            TreeNode<K,V> p = (r == null) ? null :
2053 >                                r.findTreeNode(h, key, null);
2054 >                            val = (p == null) ? value :
2055 >                                remappingFunction.apply(p.val, value);
2056 >                            if (val != null) {
2057 >                                if (p != null)
2058 >                                    p.val = val;
2059 >                                else {
2060 >                                    delta = 1;
2061 >                                    t.putTreeVal(h, key, val);
2062 >                                }
2063 >                            }
2064 >                            else if (p != null) {
2065 >                                delta = -1;
2066 >                                if (t.removeTreeNode(p))
2067 >                                    setTabAt(tab, i, untreeify(t.first));
2068 >                            }
2069 >                        }
2070 >                        else if (f instanceof ReservationNode)
2071 >                            throw new IllegalStateException("Recursive update");
2072 >                    }
2073 >                }
2074 >                if (binCount != 0) {
2075 >                    if (binCount >= TREEIFY_THRESHOLD)
2076 >                        treeifyBin(tab, i);
2077 >                    break;
2078 >                }
2079 >            }
2080 >        }
2081 >        if (delta != 0)
2082 >            addCount((long)delta, binCount);
2083 >        return val;
2084 >    }
2085 >
2086 >    // Hashtable legacy methods
2087 >
2088 >    /**
2089 >     * Tests if some key maps into the specified value in this table.
2090 >     *
2091 >     * <p>Note that this method is identical in functionality to
2092 >     * {@link #containsValue(Object)}, and exists solely to ensure
2093 >     * full compatibility with class {@link java.util.Hashtable},
2094 >     * which supported this method prior to introduction of the
2095 >     * Java Collections Framework.
2096 >     *
2097 >     * @param  value a value to search for
2098 >     * @return {@code true} if and only if some key maps to the
2099 >     *         {@code value} argument in this table as
2100 >     *         determined by the {@code equals} method;
2101 >     *         {@code false} otherwise
2102 >     * @throws NullPointerException if the specified value is null
2103 >     */
2104 >    public boolean contains(Object value) {
2105 >        return containsValue(value);
2106      }
2107  
2108      /**
2109       * Returns an enumeration of the keys in this table.
2110       *
2111       * @return an enumeration of the keys in this table
2112 <     * @see #keySet
2112 >     * @see #keySet()
2113       */
2114      public Enumeration<K> keys() {
2115 <        return new KeyIterator();
2115 >        Node<K,V>[] t;
2116 >        int f = (t = table) == null ? 0 : t.length;
2117 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2118      }
2119  
2120      /**
2121       * Returns an enumeration of the values in this table.
2122       *
2123       * @return an enumeration of the values in this table
2124 <     * @see #values
2124 >     * @see #values()
2125       */
2126      public Enumeration<V> elements() {
2127 <        return new ValueIterator();
2127 >        Node<K,V>[] t;
2128 >        int f = (t = table) == null ? 0 : t.length;
2129 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2130      }
2131  
2132 <    /* ---------------- Iterator Support -------------- */
2132 >    // ConcurrentHashMap-only methods
2133  
2134 <    abstract class HashIterator {
2135 <        int nextSegmentIndex;
2136 <        int nextTableIndex;
2137 <        HashEntry<K,V>[] currentTable;
2138 <        HashEntry<K, V> nextEntry;
2139 <        HashEntry<K, V> lastReturned;
2134 >    /**
2135 >     * Returns the number of mappings. This method should be used
2136 >     * instead of {@link #size} because a ConcurrentHashMap may
2137 >     * contain more mappings than can be represented as an int. The
2138 >     * value returned is an estimate; the actual count may differ if
2139 >     * there are concurrent insertions or removals.
2140 >     *
2141 >     * @return the number of mappings
2142 >     * @since 1.8
2143 >     */
2144 >    public long mappingCount() {
2145 >        long n = sumCount();
2146 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2147 >    }
2148  
2149 <        HashIterator() {
2150 <            nextSegmentIndex = segments.length - 1;
2151 <            nextTableIndex = -1;
2152 <            advance();
2149 >    /**
2150 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2151 >     * from the given type to {@code Boolean.TRUE}.
2152 >     *
2153 >     * @param <K> the element type of the returned set
2154 >     * @return the new set
2155 >     * @since 1.8
2156 >     */
2157 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2158 >        return new KeySetView<K,Boolean>
2159 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2160 >    }
2161 >
2162 >    /**
2163 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2164 >     * from the given type to {@code Boolean.TRUE}.
2165 >     *
2166 >     * @param initialCapacity The implementation performs internal
2167 >     * sizing to accommodate this many elements.
2168 >     * @param <K> the element type of the returned set
2169 >     * @return the new set
2170 >     * @throws IllegalArgumentException if the initial capacity of
2171 >     * elements is negative
2172 >     * @since 1.8
2173 >     */
2174 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2175 >        return new KeySetView<K,Boolean>
2176 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2177 >    }
2178 >
2179 >    /**
2180 >     * Returns a {@link Set} view of the keys in this map, using the
2181 >     * given common mapped value for any additions (i.e., {@link
2182 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2183 >     * This is of course only appropriate if it is acceptable to use
2184 >     * the same value for all additions from this view.
2185 >     *
2186 >     * @param mappedValue the mapped value to use for any additions
2187 >     * @return the set view
2188 >     * @throws NullPointerException if the mappedValue is null
2189 >     */
2190 >    public KeySetView<K,V> keySet(V mappedValue) {
2191 >        if (mappedValue == null)
2192 >            throw new NullPointerException();
2193 >        return new KeySetView<K,V>(this, mappedValue);
2194 >    }
2195 >
2196 >    /* ---------------- Special Nodes -------------- */
2197 >
2198 >    /**
2199 >     * A node inserted at head of bins during transfer operations.
2200 >     */
2201 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2202 >        final Node<K,V>[] nextTable;
2203 >        ForwardingNode(Node<K,V>[] tab) {
2204 >            super(MOVED, null, null);
2205 >            this.nextTable = tab;
2206 >        }
2207 >
2208 >        Node<K,V> find(int h, Object k) {
2209 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2210 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2211 >                Node<K,V> e; int n;
2212 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2213 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2214 >                    return null;
2215 >                for (;;) {
2216 >                    int eh; K ek;
2217 >                    if ((eh = e.hash) == h &&
2218 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2219 >                        return e;
2220 >                    if (eh < 0) {
2221 >                        if (e instanceof ForwardingNode) {
2222 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2223 >                            continue outer;
2224 >                        }
2225 >                        else
2226 >                            return e.find(h, k);
2227 >                    }
2228 >                    if ((e = e.next) == null)
2229 >                        return null;
2230 >                }
2231 >            }
2232          }
2233 +    }
2234 +
2235 +    /**
2236 +     * A place-holder node used in computeIfAbsent and compute.
2237 +     */
2238 +    static final class ReservationNode<K,V> extends Node<K,V> {
2239 +        ReservationNode() {
2240 +            super(RESERVED, null, null);
2241 +        }
2242 +
2243 +        Node<K,V> find(int h, Object k) {
2244 +            return null;
2245 +        }
2246 +    }
2247 +
2248 +    /* ---------------- Table Initialization and Resizing -------------- */
2249 +
2250 +    /**
2251 +     * Returns the stamp bits for resizing a table of size n.
2252 +     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2253 +     */
2254 +    static final int resizeStamp(int n) {
2255 +        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2256 +    }
2257  
2258 <        public boolean hasMoreElements() { return hasNext(); }
2258 >    /**
2259 >     * Initializes table, using the size recorded in sizeCtl.
2260 >     */
2261 >    private final Node<K,V>[] initTable() {
2262 >        Node<K,V>[] tab; int sc;
2263 >        while ((tab = table) == null || tab.length == 0) {
2264 >            if ((sc = sizeCtl) < 0)
2265 >                Thread.yield(); // lost initialization race; just spin
2266 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2267 >                try {
2268 >                    if ((tab = table) == null || tab.length == 0) {
2269 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2270 >                        @SuppressWarnings("unchecked")
2271 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2272 >                        table = tab = nt;
2273 >                        sc = n - (n >>> 2);
2274 >                    }
2275 >                } finally {
2276 >                    sizeCtl = sc;
2277 >                }
2278 >                break;
2279 >            }
2280 >        }
2281 >        return tab;
2282 >    }
2283  
2284 <        final void advance() {
2285 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
2284 >    /**
2285 >     * Adds to count, and if table is too small and not already
2286 >     * resizing, initiates transfer. If already resizing, helps
2287 >     * perform transfer if work is available.  Rechecks occupancy
2288 >     * after a transfer to see if another resize is already needed
2289 >     * because resizings are lagging additions.
2290 >     *
2291 >     * @param x the count to add
2292 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2293 >     */
2294 >    private final void addCount(long x, int check) {
2295 >        CounterCell[] as; long b, s;
2296 >        if ((as = counterCells) != null ||
2297 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2298 >            CounterCell a; long v; int m;
2299 >            boolean uncontended = true;
2300 >            if (as == null || (m = as.length - 1) < 0 ||
2301 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2302 >                !(uncontended =
2303 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2304 >                fullAddCount(x, uncontended);
2305                  return;
2306 +            }
2307 +            if (check <= 1)
2308 +                return;
2309 +            s = sumCount();
2310 +        }
2311 +        if (check >= 0) {
2312 +            Node<K,V>[] tab, nt; int n, sc;
2313 +            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2314 +                   (n = tab.length) < MAXIMUM_CAPACITY) {
2315 +                int rs = resizeStamp(n);
2316 +                if (sc < 0) {
2317 +                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2318 +                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2319 +                        transferIndex <= 0)
2320 +                        break;
2321 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2322 +                        transfer(tab, nt);
2323 +                }
2324 +                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2325 +                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2326 +                    transfer(tab, null);
2327 +                s = sumCount();
2328 +            }
2329 +        }
2330 +    }
2331  
2332 <            while (nextTableIndex >= 0) {
2333 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
2332 >    /**
2333 >     * Helps transfer if a resize is in progress.
2334 >     */
2335 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2336 >        Node<K,V>[] nextTab; int sc;
2337 >        if (tab != null && (f instanceof ForwardingNode) &&
2338 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2339 >            int rs = resizeStamp(tab.length);
2340 >            while (nextTab == nextTable && table == tab &&
2341 >                   (sc = sizeCtl) < 0) {
2342 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2343 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2344 >                    break;
2345 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2346 >                    transfer(tab, nextTab);
2347 >                    break;
2348 >                }
2349 >            }
2350 >            return nextTab;
2351 >        }
2352 >        return table;
2353 >    }
2354 >
2355 >    /**
2356 >     * Tries to presize table to accommodate the given number of elements.
2357 >     *
2358 >     * @param size number of elements (doesn't need to be perfectly accurate)
2359 >     */
2360 >    private final void tryPresize(int size) {
2361 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2362 >            tableSizeFor(size + (size >>> 1) + 1);
2363 >        int sc;
2364 >        while ((sc = sizeCtl) >= 0) {
2365 >            Node<K,V>[] tab = table; int n;
2366 >            if (tab == null || (n = tab.length) == 0) {
2367 >                n = (sc > c) ? sc : c;
2368 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2369 >                    try {
2370 >                        if (table == tab) {
2371 >                            @SuppressWarnings("unchecked")
2372 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2373 >                            table = nt;
2374 >                            sc = n - (n >>> 2);
2375 >                        }
2376 >                    } finally {
2377 >                        sizeCtl = sc;
2378 >                    }
2379 >                }
2380 >            }
2381 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2382 >                break;
2383 >            else if (tab == table) {
2384 >                int rs = resizeStamp(n);
2385 >                if (U.compareAndSwapInt(this, SIZECTL, sc,
2386 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2387 >                    transfer(tab, null);
2388 >            }
2389 >        }
2390 >    }
2391 >
2392 >    /**
2393 >     * Moves and/or copies the nodes in each bin to new table. See
2394 >     * above for explanation.
2395 >     */
2396 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2397 >        int n = tab.length, stride;
2398 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2399 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2400 >        if (nextTab == null) {            // initiating
2401 >            try {
2402 >                @SuppressWarnings("unchecked")
2403 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2404 >                nextTab = nt;
2405 >            } catch (Throwable ex) {      // try to cope with OOME
2406 >                sizeCtl = Integer.MAX_VALUE;
2407 >                return;
2408 >            }
2409 >            nextTable = nextTab;
2410 >            transferIndex = n;
2411 >        }
2412 >        int nextn = nextTab.length;
2413 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2414 >        boolean advance = true;
2415 >        boolean finishing = false; // to ensure sweep before committing nextTab
2416 >        for (int i = 0, bound = 0;;) {
2417 >            Node<K,V> f; int fh;
2418 >            while (advance) {
2419 >                int nextIndex, nextBound;
2420 >                if (--i >= bound || finishing)
2421 >                    advance = false;
2422 >                else if ((nextIndex = transferIndex) <= 0) {
2423 >                    i = -1;
2424 >                    advance = false;
2425 >                }
2426 >                else if (U.compareAndSwapInt
2427 >                         (this, TRANSFERINDEX, nextIndex,
2428 >                          nextBound = (nextIndex > stride ?
2429 >                                       nextIndex - stride : 0))) {
2430 >                    bound = nextBound;
2431 >                    i = nextIndex - 1;
2432 >                    advance = false;
2433 >                }
2434 >            }
2435 >            if (i < 0 || i >= n || i + n >= nextn) {
2436 >                int sc;
2437 >                if (finishing) {
2438 >                    nextTable = null;
2439 >                    table = nextTab;
2440 >                    sizeCtl = (n << 1) - (n >>> 1);
2441                      return;
2442 +                }
2443 +                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2444 +                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2445 +                        return;
2446 +                    finishing = advance = true;
2447 +                    i = n; // recheck before commit
2448 +                }
2449 +            }
2450 +            else if ((f = tabAt(tab, i)) == null)
2451 +                advance = casTabAt(tab, i, null, fwd);
2452 +            else if ((fh = f.hash) == MOVED)
2453 +                advance = true; // already processed
2454 +            else {
2455 +                synchronized (f) {
2456 +                    if (tabAt(tab, i) == f) {
2457 +                        Node<K,V> ln, hn;
2458 +                        if (fh >= 0) {
2459 +                            int runBit = fh & n;
2460 +                            Node<K,V> lastRun = f;
2461 +                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2462 +                                int b = p.hash & n;
2463 +                                if (b != runBit) {
2464 +                                    runBit = b;
2465 +                                    lastRun = p;
2466 +                                }
2467 +                            }
2468 +                            if (runBit == 0) {
2469 +                                ln = lastRun;
2470 +                                hn = null;
2471 +                            }
2472 +                            else {
2473 +                                hn = lastRun;
2474 +                                ln = null;
2475 +                            }
2476 +                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2477 +                                int ph = p.hash; K pk = p.key; V pv = p.val;
2478 +                                if ((ph & n) == 0)
2479 +                                    ln = new Node<K,V>(ph, pk, pv, ln);
2480 +                                else
2481 +                                    hn = new Node<K,V>(ph, pk, pv, hn);
2482 +                            }
2483 +                            setTabAt(nextTab, i, ln);
2484 +                            setTabAt(nextTab, i + n, hn);
2485 +                            setTabAt(tab, i, fwd);
2486 +                            advance = true;
2487 +                        }
2488 +                        else if (f instanceof TreeBin) {
2489 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2490 +                            TreeNode<K,V> lo = null, loTail = null;
2491 +                            TreeNode<K,V> hi = null, hiTail = null;
2492 +                            int lc = 0, hc = 0;
2493 +                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2494 +                                int h = e.hash;
2495 +                                TreeNode<K,V> p = new TreeNode<K,V>
2496 +                                    (h, e.key, e.val, null, null);
2497 +                                if ((h & n) == 0) {
2498 +                                    if ((p.prev = loTail) == null)
2499 +                                        lo = p;
2500 +                                    else
2501 +                                        loTail.next = p;
2502 +                                    loTail = p;
2503 +                                    ++lc;
2504 +                                }
2505 +                                else {
2506 +                                    if ((p.prev = hiTail) == null)
2507 +                                        hi = p;
2508 +                                    else
2509 +                                        hiTail.next = p;
2510 +                                    hiTail = p;
2511 +                                    ++hc;
2512 +                                }
2513 +                            }
2514 +                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2515 +                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2516 +                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2517 +                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2518 +                            setTabAt(nextTab, i, ln);
2519 +                            setTabAt(nextTab, i + n, hn);
2520 +                            setTabAt(tab, i, fwd);
2521 +                            advance = true;
2522 +                        }
2523 +                    }
2524 +                }
2525 +            }
2526 +        }
2527 +    }
2528 +
2529 +    /* ---------------- Counter support -------------- */
2530 +
2531 +    /**
2532 +     * A padded cell for distributing counts.  Adapted from LongAdder
2533 +     * and Striped64.  See their internal docs for explanation.
2534 +     */
2535 +    @jdk.internal.vm.annotation.Contended static final class CounterCell {
2536 +        volatile long value;
2537 +        CounterCell(long x) { value = x; }
2538 +    }
2539 +
2540 +    final long sumCount() {
2541 +        CounterCell[] as = counterCells; CounterCell a;
2542 +        long sum = baseCount;
2543 +        if (as != null) {
2544 +            for (int i = 0; i < as.length; ++i) {
2545 +                if ((a = as[i]) != null)
2546 +                    sum += a.value;
2547              }
2548 +        }
2549 +        return sum;
2550 +    }
2551  
2552 <            while (nextSegmentIndex >= 0) {
2553 <                Segment<K,V> seg = segments[nextSegmentIndex--];
2554 <                if (seg.count != 0) {
2555 <                    currentTable = seg.table;
2556 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
2557 <                        if ( (nextEntry = currentTable[j]) != null) {
2558 <                            nextTableIndex = j - 1;
2559 <                            return;
2552 >    // See LongAdder version for explanation
2553 >    private final void fullAddCount(long x, boolean wasUncontended) {
2554 >        int h;
2555 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2556 >            ThreadLocalRandom.localInit();      // force initialization
2557 >            h = ThreadLocalRandom.getProbe();
2558 >            wasUncontended = true;
2559 >        }
2560 >        boolean collide = false;                // True if last slot nonempty
2561 >        for (;;) {
2562 >            CounterCell[] as; CounterCell a; int n; long v;
2563 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2564 >                if ((a = as[(n - 1) & h]) == null) {
2565 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2566 >                        CounterCell r = new CounterCell(x); // Optimistic create
2567 >                        if (cellsBusy == 0 &&
2568 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2569 >                            boolean created = false;
2570 >                            try {               // Recheck under lock
2571 >                                CounterCell[] rs; int m, j;
2572 >                                if ((rs = counterCells) != null &&
2573 >                                    (m = rs.length) > 0 &&
2574 >                                    rs[j = (m - 1) & h] == null) {
2575 >                                    rs[j] = r;
2576 >                                    created = true;
2577 >                                }
2578 >                            } finally {
2579 >                                cellsBusy = 0;
2580 >                            }
2581 >                            if (created)
2582 >                                break;
2583 >                            continue;           // Slot is now non-empty
2584                          }
2585                      }
2586 +                    collide = false;
2587                  }
2588 +                else if (!wasUncontended)       // CAS already known to fail
2589 +                    wasUncontended = true;      // Continue after rehash
2590 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2591 +                    break;
2592 +                else if (counterCells != as || n >= NCPU)
2593 +                    collide = false;            // At max size or stale
2594 +                else if (!collide)
2595 +                    collide = true;
2596 +                else if (cellsBusy == 0 &&
2597 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2598 +                    try {
2599 +                        if (counterCells == as) {// Expand table unless stale
2600 +                            CounterCell[] rs = new CounterCell[n << 1];
2601 +                            for (int i = 0; i < n; ++i)
2602 +                                rs[i] = as[i];
2603 +                            counterCells = rs;
2604 +                        }
2605 +                    } finally {
2606 +                        cellsBusy = 0;
2607 +                    }
2608 +                    collide = false;
2609 +                    continue;                   // Retry with expanded table
2610 +                }
2611 +                h = ThreadLocalRandom.advanceProbe(h);
2612              }
2613 +            else if (cellsBusy == 0 && counterCells == as &&
2614 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2615 +                boolean init = false;
2616 +                try {                           // Initialize table
2617 +                    if (counterCells == as) {
2618 +                        CounterCell[] rs = new CounterCell[2];
2619 +                        rs[h & 1] = new CounterCell(x);
2620 +                        counterCells = rs;
2621 +                        init = true;
2622 +                    }
2623 +                } finally {
2624 +                    cellsBusy = 0;
2625 +                }
2626 +                if (init)
2627 +                    break;
2628 +            }
2629 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2630 +                break;                          // Fall back on using base
2631          }
2632 +    }
2633  
2634 <        public boolean hasNext() { return nextEntry != null; }
2634 >    /* ---------------- Conversion from/to TreeBins -------------- */
2635  
2636 <        HashEntry<K,V> nextEntry() {
2637 <            if (nextEntry == null)
2638 <                throw new NoSuchElementException();
2639 <            lastReturned = nextEntry;
2636 >    /**
2637 >     * Replaces all linked nodes in bin at given index unless table is
2638 >     * too small, in which case resizes instead.
2639 >     */
2640 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2641 >        Node<K,V> b; int n;
2642 >        if (tab != null) {
2643 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2644 >                tryPresize(n << 1);
2645 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2646 >                synchronized (b) {
2647 >                    if (tabAt(tab, index) == b) {
2648 >                        TreeNode<K,V> hd = null, tl = null;
2649 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2650 >                            TreeNode<K,V> p =
2651 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2652 >                                                  null, null);
2653 >                            if ((p.prev = tl) == null)
2654 >                                hd = p;
2655 >                            else
2656 >                                tl.next = p;
2657 >                            tl = p;
2658 >                        }
2659 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2660 >                    }
2661 >                }
2662 >            }
2663 >        }
2664 >    }
2665 >
2666 >    /**
2667 >     * Returns a list of non-TreeNodes replacing those in given list.
2668 >     */
2669 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2670 >        Node<K,V> hd = null, tl = null;
2671 >        for (Node<K,V> q = b; q != null; q = q.next) {
2672 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2673 >            if (tl == null)
2674 >                hd = p;
2675 >            else
2676 >                tl.next = p;
2677 >            tl = p;
2678 >        }
2679 >        return hd;
2680 >    }
2681 >
2682 >    /* ---------------- TreeNodes -------------- */
2683 >
2684 >    /**
2685 >     * Nodes for use in TreeBins.
2686 >     */
2687 >    static final class TreeNode<K,V> extends Node<K,V> {
2688 >        TreeNode<K,V> parent;  // red-black tree links
2689 >        TreeNode<K,V> left;
2690 >        TreeNode<K,V> right;
2691 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2692 >        boolean red;
2693 >
2694 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2695 >                 TreeNode<K,V> parent) {
2696 >            super(hash, key, val, next);
2697 >            this.parent = parent;
2698 >        }
2699 >
2700 >        Node<K,V> find(int h, Object k) {
2701 >            return findTreeNode(h, k, null);
2702 >        }
2703 >
2704 >        /**
2705 >         * Returns the TreeNode (or null if not found) for the given key
2706 >         * starting at given root.
2707 >         */
2708 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2709 >            if (k != null) {
2710 >                TreeNode<K,V> p = this;
2711 >                do {
2712 >                    int ph, dir; K pk; TreeNode<K,V> q;
2713 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2714 >                    if ((ph = p.hash) > h)
2715 >                        p = pl;
2716 >                    else if (ph < h)
2717 >                        p = pr;
2718 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2719 >                        return p;
2720 >                    else if (pl == null)
2721 >                        p = pr;
2722 >                    else if (pr == null)
2723 >                        p = pl;
2724 >                    else if ((kc != null ||
2725 >                              (kc = comparableClassFor(k)) != null) &&
2726 >                             (dir = compareComparables(kc, k, pk)) != 0)
2727 >                        p = (dir < 0) ? pl : pr;
2728 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2729 >                        return q;
2730 >                    else
2731 >                        p = pl;
2732 >                } while (p != null);
2733 >            }
2734 >            return null;
2735 >        }
2736 >    }
2737 >
2738 >    /* ---------------- TreeBins -------------- */
2739 >
2740 >    /**
2741 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2742 >     * keys or values, but instead point to list of TreeNodes and
2743 >     * their root. They also maintain a parasitic read-write lock
2744 >     * forcing writers (who hold bin lock) to wait for readers (who do
2745 >     * not) to complete before tree restructuring operations.
2746 >     */
2747 >    static final class TreeBin<K,V> extends Node<K,V> {
2748 >        TreeNode<K,V> root;
2749 >        volatile TreeNode<K,V> first;
2750 >        volatile Thread waiter;
2751 >        volatile int lockState;
2752 >        // values for lockState
2753 >        static final int WRITER = 1; // set while holding write lock
2754 >        static final int WAITER = 2; // set when waiting for write lock
2755 >        static final int READER = 4; // increment value for setting read lock
2756 >
2757 >        /**
2758 >         * Tie-breaking utility for ordering insertions when equal
2759 >         * hashCodes and non-comparable. We don't require a total
2760 >         * order, just a consistent insertion rule to maintain
2761 >         * equivalence across rebalancings. Tie-breaking further than
2762 >         * necessary simplifies testing a bit.
2763 >         */
2764 >        static int tieBreakOrder(Object a, Object b) {
2765 >            int d;
2766 >            if (a == null || b == null ||
2767 >                (d = a.getClass().getName().
2768 >                 compareTo(b.getClass().getName())) == 0)
2769 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2770 >                     -1 : 1);
2771 >            return d;
2772 >        }
2773 >
2774 >        /**
2775 >         * Creates bin with initial set of nodes headed by b.
2776 >         */
2777 >        TreeBin(TreeNode<K,V> b) {
2778 >            super(TREEBIN, null, null);
2779 >            this.first = b;
2780 >            TreeNode<K,V> r = null;
2781 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2782 >                next = (TreeNode<K,V>)x.next;
2783 >                x.left = x.right = null;
2784 >                if (r == null) {
2785 >                    x.parent = null;
2786 >                    x.red = false;
2787 >                    r = x;
2788 >                }
2789 >                else {
2790 >                    K k = x.key;
2791 >                    int h = x.hash;
2792 >                    Class<?> kc = null;
2793 >                    for (TreeNode<K,V> p = r;;) {
2794 >                        int dir, ph;
2795 >                        K pk = p.key;
2796 >                        if ((ph = p.hash) > h)
2797 >                            dir = -1;
2798 >                        else if (ph < h)
2799 >                            dir = 1;
2800 >                        else if ((kc == null &&
2801 >                                  (kc = comparableClassFor(k)) == null) ||
2802 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2803 >                            dir = tieBreakOrder(k, pk);
2804 >                        TreeNode<K,V> xp = p;
2805 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2806 >                            x.parent = xp;
2807 >                            if (dir <= 0)
2808 >                                xp.left = x;
2809 >                            else
2810 >                                xp.right = x;
2811 >                            r = balanceInsertion(r, x);
2812 >                            break;
2813 >                        }
2814 >                    }
2815 >                }
2816 >            }
2817 >            this.root = r;
2818 >            assert checkInvariants(root);
2819 >        }
2820 >
2821 >        /**
2822 >         * Acquires write lock for tree restructuring.
2823 >         */
2824 >        private final void lockRoot() {
2825 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2826 >                contendedLock(); // offload to separate method
2827 >        }
2828 >
2829 >        /**
2830 >         * Releases write lock for tree restructuring.
2831 >         */
2832 >        private final void unlockRoot() {
2833 >            lockState = 0;
2834 >        }
2835 >
2836 >        /**
2837 >         * Possibly blocks awaiting root lock.
2838 >         */
2839 >        private final void contendedLock() {
2840 >            boolean waiting = false;
2841 >            for (int s;;) {
2842 >                if (((s = lockState) & ~WAITER) == 0) {
2843 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2844 >                        if (waiting)
2845 >                            waiter = null;
2846 >                        return;
2847 >                    }
2848 >                }
2849 >                else if ((s & WAITER) == 0) {
2850 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2851 >                        waiting = true;
2852 >                        waiter = Thread.currentThread();
2853 >                    }
2854 >                }
2855 >                else if (waiting)
2856 >                    LockSupport.park(this);
2857 >            }
2858 >        }
2859 >
2860 >        /**
2861 >         * Returns matching node or null if none. Tries to search
2862 >         * using tree comparisons from root, but continues linear
2863 >         * search when lock not available.
2864 >         */
2865 >        final Node<K,V> find(int h, Object k) {
2866 >            if (k != null) {
2867 >                for (Node<K,V> e = first; e != null; ) {
2868 >                    int s; K ek;
2869 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2870 >                        if (e.hash == h &&
2871 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2872 >                            return e;
2873 >                        e = e.next;
2874 >                    }
2875 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2876 >                                                 s + READER)) {
2877 >                        TreeNode<K,V> r, p;
2878 >                        try {
2879 >                            p = ((r = root) == null ? null :
2880 >                                 r.findTreeNode(h, k, null));
2881 >                        } finally {
2882 >                            Thread w;
2883 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2884 >                                (READER|WAITER) && (w = waiter) != null)
2885 >                                LockSupport.unpark(w);
2886 >                        }
2887 >                        return p;
2888 >                    }
2889 >                }
2890 >            }
2891 >            return null;
2892 >        }
2893 >
2894 >        /**
2895 >         * Finds or adds a node.
2896 >         * @return null if added
2897 >         */
2898 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2899 >            Class<?> kc = null;
2900 >            boolean searched = false;
2901 >            for (TreeNode<K,V> p = root;;) {
2902 >                int dir, ph; K pk;
2903 >                if (p == null) {
2904 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2905 >                    break;
2906 >                }
2907 >                else if ((ph = p.hash) > h)
2908 >                    dir = -1;
2909 >                else if (ph < h)
2910 >                    dir = 1;
2911 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2912 >                    return p;
2913 >                else if ((kc == null &&
2914 >                          (kc = comparableClassFor(k)) == null) ||
2915 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2916 >                    if (!searched) {
2917 >                        TreeNode<K,V> q, ch;
2918 >                        searched = true;
2919 >                        if (((ch = p.left) != null &&
2920 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2921 >                            ((ch = p.right) != null &&
2922 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2923 >                            return q;
2924 >                    }
2925 >                    dir = tieBreakOrder(k, pk);
2926 >                }
2927 >
2928 >                TreeNode<K,V> xp = p;
2929 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2930 >                    TreeNode<K,V> x, f = first;
2931 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2932 >                    if (f != null)
2933 >                        f.prev = x;
2934 >                    if (dir <= 0)
2935 >                        xp.left = x;
2936 >                    else
2937 >                        xp.right = x;
2938 >                    if (!xp.red)
2939 >                        x.red = true;
2940 >                    else {
2941 >                        lockRoot();
2942 >                        try {
2943 >                            root = balanceInsertion(root, x);
2944 >                        } finally {
2945 >                            unlockRoot();
2946 >                        }
2947 >                    }
2948 >                    break;
2949 >                }
2950 >            }
2951 >            assert checkInvariants(root);
2952 >            return null;
2953 >        }
2954 >
2955 >        /**
2956 >         * Removes the given node, that must be present before this
2957 >         * call.  This is messier than typical red-black deletion code
2958 >         * because we cannot swap the contents of an interior node
2959 >         * with a leaf successor that is pinned by "next" pointers
2960 >         * that are accessible independently of lock. So instead we
2961 >         * swap the tree linkages.
2962 >         *
2963 >         * @return true if now too small, so should be untreeified
2964 >         */
2965 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2966 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2967 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2968 >            TreeNode<K,V> r, rl;
2969 >            if (pred == null)
2970 >                first = next;
2971 >            else
2972 >                pred.next = next;
2973 >            if (next != null)
2974 >                next.prev = pred;
2975 >            if (first == null) {
2976 >                root = null;
2977 >                return true;
2978 >            }
2979 >            if ((r = root) == null || r.right == null || // too small
2980 >                (rl = r.left) == null || rl.left == null)
2981 >                return true;
2982 >            lockRoot();
2983 >            try {
2984 >                TreeNode<K,V> replacement;
2985 >                TreeNode<K,V> pl = p.left;
2986 >                TreeNode<K,V> pr = p.right;
2987 >                if (pl != null && pr != null) {
2988 >                    TreeNode<K,V> s = pr, sl;
2989 >                    while ((sl = s.left) != null) // find successor
2990 >                        s = sl;
2991 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2992 >                    TreeNode<K,V> sr = s.right;
2993 >                    TreeNode<K,V> pp = p.parent;
2994 >                    if (s == pr) { // p was s's direct parent
2995 >                        p.parent = s;
2996 >                        s.right = p;
2997 >                    }
2998 >                    else {
2999 >                        TreeNode<K,V> sp = s.parent;
3000 >                        if ((p.parent = sp) != null) {
3001 >                            if (s == sp.left)
3002 >                                sp.left = p;
3003 >                            else
3004 >                                sp.right = p;
3005 >                        }
3006 >                        if ((s.right = pr) != null)
3007 >                            pr.parent = s;
3008 >                    }
3009 >                    p.left = null;
3010 >                    if ((p.right = sr) != null)
3011 >                        sr.parent = p;
3012 >                    if ((s.left = pl) != null)
3013 >                        pl.parent = s;
3014 >                    if ((s.parent = pp) == null)
3015 >                        r = s;
3016 >                    else if (p == pp.left)
3017 >                        pp.left = s;
3018 >                    else
3019 >                        pp.right = s;
3020 >                    if (sr != null)
3021 >                        replacement = sr;
3022 >                    else
3023 >                        replacement = p;
3024 >                }
3025 >                else if (pl != null)
3026 >                    replacement = pl;
3027 >                else if (pr != null)
3028 >                    replacement = pr;
3029 >                else
3030 >                    replacement = p;
3031 >                if (replacement != p) {
3032 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
3033 >                    if (pp == null)
3034 >                        r = replacement;
3035 >                    else if (p == pp.left)
3036 >                        pp.left = replacement;
3037 >                    else
3038 >                        pp.right = replacement;
3039 >                    p.left = p.right = p.parent = null;
3040 >                }
3041 >
3042 >                root = (p.red) ? r : balanceDeletion(r, replacement);
3043 >
3044 >                if (p == replacement) {  // detach pointers
3045 >                    TreeNode<K,V> pp;
3046 >                    if ((pp = p.parent) != null) {
3047 >                        if (p == pp.left)
3048 >                            pp.left = null;
3049 >                        else if (p == pp.right)
3050 >                            pp.right = null;
3051 >                        p.parent = null;
3052 >                    }
3053 >                }
3054 >            } finally {
3055 >                unlockRoot();
3056 >            }
3057 >            assert checkInvariants(root);
3058 >            return false;
3059 >        }
3060 >
3061 >        /* ------------------------------------------------------------ */
3062 >        // Red-black tree methods, all adapted from CLR
3063 >
3064 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3065 >                                              TreeNode<K,V> p) {
3066 >            TreeNode<K,V> r, pp, rl;
3067 >            if (p != null && (r = p.right) != null) {
3068 >                if ((rl = p.right = r.left) != null)
3069 >                    rl.parent = p;
3070 >                if ((pp = r.parent = p.parent) == null)
3071 >                    (root = r).red = false;
3072 >                else if (pp.left == p)
3073 >                    pp.left = r;
3074 >                else
3075 >                    pp.right = r;
3076 >                r.left = p;
3077 >                p.parent = r;
3078 >            }
3079 >            return root;
3080 >        }
3081 >
3082 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3083 >                                               TreeNode<K,V> p) {
3084 >            TreeNode<K,V> l, pp, lr;
3085 >            if (p != null && (l = p.left) != null) {
3086 >                if ((lr = p.left = l.right) != null)
3087 >                    lr.parent = p;
3088 >                if ((pp = l.parent = p.parent) == null)
3089 >                    (root = l).red = false;
3090 >                else if (pp.right == p)
3091 >                    pp.right = l;
3092 >                else
3093 >                    pp.left = l;
3094 >                l.right = p;
3095 >                p.parent = l;
3096 >            }
3097 >            return root;
3098 >        }
3099 >
3100 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3101 >                                                    TreeNode<K,V> x) {
3102 >            x.red = true;
3103 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3104 >                if ((xp = x.parent) == null) {
3105 >                    x.red = false;
3106 >                    return x;
3107 >                }
3108 >                else if (!xp.red || (xpp = xp.parent) == null)
3109 >                    return root;
3110 >                if (xp == (xppl = xpp.left)) {
3111 >                    if ((xppr = xpp.right) != null && xppr.red) {
3112 >                        xppr.red = false;
3113 >                        xp.red = false;
3114 >                        xpp.red = true;
3115 >                        x = xpp;
3116 >                    }
3117 >                    else {
3118 >                        if (x == xp.right) {
3119 >                            root = rotateLeft(root, x = xp);
3120 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3121 >                        }
3122 >                        if (xp != null) {
3123 >                            xp.red = false;
3124 >                            if (xpp != null) {
3125 >                                xpp.red = true;
3126 >                                root = rotateRight(root, xpp);
3127 >                            }
3128 >                        }
3129 >                    }
3130 >                }
3131 >                else {
3132 >                    if (xppl != null && xppl.red) {
3133 >                        xppl.red = false;
3134 >                        xp.red = false;
3135 >                        xpp.red = true;
3136 >                        x = xpp;
3137 >                    }
3138 >                    else {
3139 >                        if (x == xp.left) {
3140 >                            root = rotateRight(root, x = xp);
3141 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3142 >                        }
3143 >                        if (xp != null) {
3144 >                            xp.red = false;
3145 >                            if (xpp != null) {
3146 >                                xpp.red = true;
3147 >                                root = rotateLeft(root, xpp);
3148 >                            }
3149 >                        }
3150 >                    }
3151 >                }
3152 >            }
3153 >        }
3154 >
3155 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3156 >                                                   TreeNode<K,V> x) {
3157 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3158 >                if (x == null || x == root)
3159 >                    return root;
3160 >                else if ((xp = x.parent) == null) {
3161 >                    x.red = false;
3162 >                    return x;
3163 >                }
3164 >                else if (x.red) {
3165 >                    x.red = false;
3166 >                    return root;
3167 >                }
3168 >                else if ((xpl = xp.left) == x) {
3169 >                    if ((xpr = xp.right) != null && xpr.red) {
3170 >                        xpr.red = false;
3171 >                        xp.red = true;
3172 >                        root = rotateLeft(root, xp);
3173 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3174 >                    }
3175 >                    if (xpr == null)
3176 >                        x = xp;
3177 >                    else {
3178 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3179 >                        if ((sr == null || !sr.red) &&
3180 >                            (sl == null || !sl.red)) {
3181 >                            xpr.red = true;
3182 >                            x = xp;
3183 >                        }
3184 >                        else {
3185 >                            if (sr == null || !sr.red) {
3186 >                                if (sl != null)
3187 >                                    sl.red = false;
3188 >                                xpr.red = true;
3189 >                                root = rotateRight(root, xpr);
3190 >                                xpr = (xp = x.parent) == null ?
3191 >                                    null : xp.right;
3192 >                            }
3193 >                            if (xpr != null) {
3194 >                                xpr.red = (xp == null) ? false : xp.red;
3195 >                                if ((sr = xpr.right) != null)
3196 >                                    sr.red = false;
3197 >                            }
3198 >                            if (xp != null) {
3199 >                                xp.red = false;
3200 >                                root = rotateLeft(root, xp);
3201 >                            }
3202 >                            x = root;
3203 >                        }
3204 >                    }
3205 >                }
3206 >                else { // symmetric
3207 >                    if (xpl != null && xpl.red) {
3208 >                        xpl.red = false;
3209 >                        xp.red = true;
3210 >                        root = rotateRight(root, xp);
3211 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3212 >                    }
3213 >                    if (xpl == null)
3214 >                        x = xp;
3215 >                    else {
3216 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3217 >                        if ((sl == null || !sl.red) &&
3218 >                            (sr == null || !sr.red)) {
3219 >                            xpl.red = true;
3220 >                            x = xp;
3221 >                        }
3222 >                        else {
3223 >                            if (sl == null || !sl.red) {
3224 >                                if (sr != null)
3225 >                                    sr.red = false;
3226 >                                xpl.red = true;
3227 >                                root = rotateLeft(root, xpl);
3228 >                                xpl = (xp = x.parent) == null ?
3229 >                                    null : xp.left;
3230 >                            }
3231 >                            if (xpl != null) {
3232 >                                xpl.red = (xp == null) ? false : xp.red;
3233 >                                if ((sl = xpl.left) != null)
3234 >                                    sl.red = false;
3235 >                            }
3236 >                            if (xp != null) {
3237 >                                xp.red = false;
3238 >                                root = rotateRight(root, xp);
3239 >                            }
3240 >                            x = root;
3241 >                        }
3242 >                    }
3243 >                }
3244 >            }
3245 >        }
3246 >
3247 >        /**
3248 >         * Checks invariants recursively for the tree of Nodes rooted at t.
3249 >         */
3250 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3251 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3252 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3253 >            if (tb != null && tb.next != t)
3254 >                return false;
3255 >            if (tn != null && tn.prev != t)
3256 >                return false;
3257 >            if (tp != null && t != tp.left && t != tp.right)
3258 >                return false;
3259 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3260 >                return false;
3261 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3262 >                return false;
3263 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3264 >                return false;
3265 >            if (tl != null && !checkInvariants(tl))
3266 >                return false;
3267 >            if (tr != null && !checkInvariants(tr))
3268 >                return false;
3269 >            return true;
3270 >        }
3271 >
3272 >        private static final jdk.internal.misc.Unsafe U = jdk.internal.misc.Unsafe.getUnsafe();
3273 >        private static final long LOCKSTATE;
3274 >        static {
3275 >            try {
3276 >                LOCKSTATE = U.objectFieldOffset
3277 >                    (TreeBin.class.getDeclaredField("lockState"));
3278 >            } catch (ReflectiveOperationException e) {
3279 >                throw new Error(e);
3280 >            }
3281 >        }
3282 >    }
3283 >
3284 >    /* ----------------Table Traversal -------------- */
3285 >
3286 >    /**
3287 >     * Records the table, its length, and current traversal index for a
3288 >     * traverser that must process a region of a forwarded table before
3289 >     * proceeding with current table.
3290 >     */
3291 >    static final class TableStack<K,V> {
3292 >        int length;
3293 >        int index;
3294 >        Node<K,V>[] tab;
3295 >        TableStack<K,V> next;
3296 >    }
3297 >
3298 >    /**
3299 >     * Encapsulates traversal for methods such as containsValue; also
3300 >     * serves as a base class for other iterators and spliterators.
3301 >     *
3302 >     * Method advance visits once each still-valid node that was
3303 >     * reachable upon iterator construction. It might miss some that
3304 >     * were added to a bin after the bin was visited, which is OK wrt
3305 >     * consistency guarantees. Maintaining this property in the face
3306 >     * of possible ongoing resizes requires a fair amount of
3307 >     * bookkeeping state that is difficult to optimize away amidst
3308 >     * volatile accesses.  Even so, traversal maintains reasonable
3309 >     * throughput.
3310 >     *
3311 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3312 >     * However, if the table has been resized, then all future steps
3313 >     * must traverse both the bin at the current index as well as at
3314 >     * (index + baseSize); and so on for further resizings. To
3315 >     * paranoically cope with potential sharing by users of iterators
3316 >     * across threads, iteration terminates if a bounds checks fails
3317 >     * for a table read.
3318 >     */
3319 >    static class Traverser<K,V> {
3320 >        Node<K,V>[] tab;        // current table; updated if resized
3321 >        Node<K,V> next;         // the next entry to use
3322 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3323 >        int index;              // index of bin to use next
3324 >        int baseIndex;          // current index of initial table
3325 >        int baseLimit;          // index bound for initial table
3326 >        final int baseSize;     // initial table size
3327 >
3328 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3329 >            this.tab = tab;
3330 >            this.baseSize = size;
3331 >            this.baseIndex = this.index = index;
3332 >            this.baseLimit = limit;
3333 >            this.next = null;
3334 >        }
3335 >
3336 >        /**
3337 >         * Advances if possible, returning next valid node, or null if none.
3338 >         */
3339 >        final Node<K,V> advance() {
3340 >            Node<K,V> e;
3341 >            if ((e = next) != null)
3342 >                e = e.next;
3343 >            for (;;) {
3344 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3345 >                if (e != null)
3346 >                    return next = e;
3347 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3348 >                    (n = t.length) <= (i = index) || i < 0)
3349 >                    return next = null;
3350 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3351 >                    if (e instanceof ForwardingNode) {
3352 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3353 >                        e = null;
3354 >                        pushState(t, i, n);
3355 >                        continue;
3356 >                    }
3357 >                    else if (e instanceof TreeBin)
3358 >                        e = ((TreeBin<K,V>)e).first;
3359 >                    else
3360 >                        e = null;
3361 >                }
3362 >                if (stack != null)
3363 >                    recoverState(n);
3364 >                else if ((index = i + baseSize) >= n)
3365 >                    index = ++baseIndex; // visit upper slots if present
3366 >            }
3367 >        }
3368 >
3369 >        /**
3370 >         * Saves traversal state upon encountering a forwarding node.
3371 >         */
3372 >        private void pushState(Node<K,V>[] t, int i, int n) {
3373 >            TableStack<K,V> s = spare;  // reuse if possible
3374 >            if (s != null)
3375 >                spare = s.next;
3376 >            else
3377 >                s = new TableStack<K,V>();
3378 >            s.tab = t;
3379 >            s.length = n;
3380 >            s.index = i;
3381 >            s.next = stack;
3382 >            stack = s;
3383 >        }
3384 >
3385 >        /**
3386 >         * Possibly pops traversal state.
3387 >         *
3388 >         * @param n length of current table
3389 >         */
3390 >        private void recoverState(int n) {
3391 >            TableStack<K,V> s; int len;
3392 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3393 >                n = len;
3394 >                index = s.index;
3395 >                tab = s.tab;
3396 >                s.tab = null;
3397 >                TableStack<K,V> next = s.next;
3398 >                s.next = spare; // save for reuse
3399 >                stack = next;
3400 >                spare = s;
3401 >            }
3402 >            if (s == null && (index += baseSize) >= n)
3403 >                index = ++baseIndex;
3404 >        }
3405 >    }
3406 >
3407 >    /**
3408 >     * Base of key, value, and entry Iterators. Adds fields to
3409 >     * Traverser to support iterator.remove.
3410 >     */
3411 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3412 >        final ConcurrentHashMap<K,V> map;
3413 >        Node<K,V> lastReturned;
3414 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3415 >                    ConcurrentHashMap<K,V> map) {
3416 >            super(tab, size, index, limit);
3417 >            this.map = map;
3418              advance();
1101            return lastReturned;
3419          }
3420  
3421 <        public void remove() {
3422 <            if (lastReturned == null)
3421 >        public final boolean hasNext() { return next != null; }
3422 >        public final boolean hasMoreElements() { return next != null; }
3423 >
3424 >        public final void remove() {
3425 >            Node<K,V> p;
3426 >            if ((p = lastReturned) == null)
3427                  throw new IllegalStateException();
1107            ConcurrentHashMap.this.remove(lastReturned.key);
3428              lastReturned = null;
3429 +            map.replaceNode(p.key, null, null);
3430 +        }
3431 +    }
3432 +
3433 +    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3434 +        implements Iterator<K>, Enumeration<K> {
3435 +        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3436 +                    ConcurrentHashMap<K,V> map) {
3437 +            super(tab, index, size, limit, map);
3438          }
3439 +
3440 +        public final K next() {
3441 +            Node<K,V> p;
3442 +            if ((p = next) == null)
3443 +                throw new NoSuchElementException();
3444 +            K k = p.key;
3445 +            lastReturned = p;
3446 +            advance();
3447 +            return k;
3448 +        }
3449 +
3450 +        public final K nextElement() { return next(); }
3451      }
3452  
3453 <    final class KeyIterator
3454 <        extends HashIterator
3455 <        implements Iterator<K>, Enumeration<K>
3456 <    {
3457 <        public K next()        { return super.nextEntry().key; }
3458 <        public K nextElement() { return super.nextEntry().key; }
3453 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3454 >        implements Iterator<V>, Enumeration<V> {
3455 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3456 >                      ConcurrentHashMap<K,V> map) {
3457 >            super(tab, index, size, limit, map);
3458 >        }
3459 >
3460 >        public final V next() {
3461 >            Node<K,V> p;
3462 >            if ((p = next) == null)
3463 >                throw new NoSuchElementException();
3464 >            V v = p.val;
3465 >            lastReturned = p;
3466 >            advance();
3467 >            return v;
3468 >        }
3469 >
3470 >        public final V nextElement() { return next(); }
3471      }
3472  
3473 <    final class ValueIterator
3474 <        extends HashIterator
3475 <        implements Iterator<V>, Enumeration<V>
3476 <    {
3477 <        public V next()        { return super.nextEntry().value; }
3478 <        public V nextElement() { return super.nextEntry().value; }
3473 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3474 >        implements Iterator<Map.Entry<K,V>> {
3475 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3476 >                      ConcurrentHashMap<K,V> map) {
3477 >            super(tab, index, size, limit, map);
3478 >        }
3479 >
3480 >        public final Map.Entry<K,V> next() {
3481 >            Node<K,V> p;
3482 >            if ((p = next) == null)
3483 >                throw new NoSuchElementException();
3484 >            K k = p.key;
3485 >            V v = p.val;
3486 >            lastReturned = p;
3487 >            advance();
3488 >            return new MapEntry<K,V>(k, v, map);
3489 >        }
3490      }
3491  
3492      /**
3493 <     * Custom Entry class used by EntryIterator.next(), that relays
1130 <     * setValue changes to the underlying map.
3493 >     * Exported Entry for EntryIterator.
3494       */
3495 <    final class WriteThroughEntry
3496 <        extends AbstractMap.SimpleEntry<K,V>
3497 <    {
3498 <        WriteThroughEntry(K k, V v) {
3499 <            super(k,v);
3495 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3496 >        final K key; // non-null
3497 >        V val;       // non-null
3498 >        final ConcurrentHashMap<K,V> map;
3499 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3500 >            this.key = key;
3501 >            this.val = val;
3502 >            this.map = map;
3503 >        }
3504 >        public K getKey()        { return key; }
3505 >        public V getValue()      { return val; }
3506 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3507 >        public String toString() {
3508 >            return Helpers.mapEntryToString(key, val);
3509 >        }
3510 >
3511 >        public boolean equals(Object o) {
3512 >            Object k, v; Map.Entry<?,?> e;
3513 >            return ((o instanceof Map.Entry) &&
3514 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3515 >                    (v = e.getValue()) != null &&
3516 >                    (k == key || k.equals(key)) &&
3517 >                    (v == val || v.equals(val)));
3518          }
3519  
3520          /**
3521 <         * Set our entry's value and write through to the map. The
3522 <         * value to return is somewhat arbitrary here. Since a
3523 <         * WriteThroughEntry does not necessarily track asynchronous
3524 <         * changes, the most recent "previous" value could be
3525 <         * different from what we return (or could even have been
3526 <         * removed in which case the put will re-establish). We do not
1146 <         * and cannot guarantee more.
3521 >         * Sets our entry's value and writes through to the map. The
3522 >         * value to return is somewhat arbitrary here. Since we do not
3523 >         * necessarily track asynchronous changes, the most recent
3524 >         * "previous" value could be different from what we return (or
3525 >         * could even have been removed, in which case the put will
3526 >         * re-establish). We do not and cannot guarantee more.
3527           */
3528 <        public V setValue(V value) {
3528 >        public V setValue(V value) {
3529              if (value == null) throw new NullPointerException();
3530 <            V v = super.setValue(value);
3531 <            ConcurrentHashMap.this.put(getKey(), value);
3530 >            V v = val;
3531 >            val = value;
3532 >            map.put(key, value);
3533              return v;
3534          }
3535      }
3536  
3537 <    final class EntryIterator
3538 <        extends HashIterator
3539 <        implements Iterator<Entry<K,V>>
3540 <    {
3541 <        public Map.Entry<K,V> next() {
3542 <            HashEntry<K,V> e = super.nextEntry();
3543 <            return new WriteThroughEntry(e.key, e.value);
3537 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3538 >        implements Spliterator<K> {
3539 >        long est;               // size estimate
3540 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3541 >                       long est) {
3542 >            super(tab, size, index, limit);
3543 >            this.est = est;
3544 >        }
3545 >
3546 >        public KeySpliterator<K,V> trySplit() {
3547 >            int i, f, h;
3548 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3549 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3550 >                                        f, est >>>= 1);
3551 >        }
3552 >
3553 >        public void forEachRemaining(Consumer<? super K> action) {
3554 >            if (action == null) throw new NullPointerException();
3555 >            for (Node<K,V> p; (p = advance()) != null;)
3556 >                action.accept(p.key);
3557 >        }
3558 >
3559 >        public boolean tryAdvance(Consumer<? super K> action) {
3560 >            if (action == null) throw new NullPointerException();
3561 >            Node<K,V> p;
3562 >            if ((p = advance()) == null)
3563 >                return false;
3564 >            action.accept(p.key);
3565 >            return true;
3566 >        }
3567 >
3568 >        public long estimateSize() { return est; }
3569 >
3570 >        public int characteristics() {
3571 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3572 >                Spliterator.NONNULL;
3573          }
3574      }
3575  
3576 <    final class KeySet extends AbstractSet<K> {
3577 <        public Iterator<K> iterator() {
3578 <            return new KeyIterator();
3576 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3577 >        implements Spliterator<V> {
3578 >        long est;               // size estimate
3579 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3580 >                         long est) {
3581 >            super(tab, size, index, limit);
3582 >            this.est = est;
3583 >        }
3584 >
3585 >        public ValueSpliterator<K,V> trySplit() {
3586 >            int i, f, h;
3587 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3588 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3589 >                                          f, est >>>= 1);
3590 >        }
3591 >
3592 >        public void forEachRemaining(Consumer<? super V> action) {
3593 >            if (action == null) throw new NullPointerException();
3594 >            for (Node<K,V> p; (p = advance()) != null;)
3595 >                action.accept(p.val);
3596 >        }
3597 >
3598 >        public boolean tryAdvance(Consumer<? super V> action) {
3599 >            if (action == null) throw new NullPointerException();
3600 >            Node<K,V> p;
3601 >            if ((p = advance()) == null)
3602 >                return false;
3603 >            action.accept(p.val);
3604 >            return true;
3605          }
3606 <        public int size() {
3607 <            return ConcurrentHashMap.this.size();
3606 >
3607 >        public long estimateSize() { return est; }
3608 >
3609 >        public int characteristics() {
3610 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3611          }
3612 <        public boolean contains(Object o) {
3613 <            return ConcurrentHashMap.this.containsKey(o);
3612 >    }
3613 >
3614 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3615 >        implements Spliterator<Map.Entry<K,V>> {
3616 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3617 >        long est;               // size estimate
3618 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3619 >                         long est, ConcurrentHashMap<K,V> map) {
3620 >            super(tab, size, index, limit);
3621 >            this.map = map;
3622 >            this.est = est;
3623 >        }
3624 >
3625 >        public EntrySpliterator<K,V> trySplit() {
3626 >            int i, f, h;
3627 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3628 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3629 >                                          f, est >>>= 1, map);
3630 >        }
3631 >
3632 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3633 >            if (action == null) throw new NullPointerException();
3634 >            for (Node<K,V> p; (p = advance()) != null; )
3635 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3636 >        }
3637 >
3638 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3639 >            if (action == null) throw new NullPointerException();
3640 >            Node<K,V> p;
3641 >            if ((p = advance()) == null)
3642 >                return false;
3643 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3644 >            return true;
3645          }
3646 <        public boolean remove(Object o) {
3647 <            return ConcurrentHashMap.this.remove(o) != null;
3646 >
3647 >        public long estimateSize() { return est; }
3648 >
3649 >        public int characteristics() {
3650 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3651 >                Spliterator.NONNULL;
3652          }
3653 <        public void clear() {
3654 <            ConcurrentHashMap.this.clear();
3653 >    }
3654 >
3655 >    // Parallel bulk operations
3656 >
3657 >    /**
3658 >     * Computes initial batch value for bulk tasks. The returned value
3659 >     * is approximately exp2 of the number of times (minus one) to
3660 >     * split task by two before executing leaf action. This value is
3661 >     * faster to compute and more convenient to use as a guide to
3662 >     * splitting than is the depth, since it is used while dividing by
3663 >     * two anyway.
3664 >     */
3665 >    final int batchFor(long b) {
3666 >        long n;
3667 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3668 >            return 0;
3669 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3670 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3671 >    }
3672 >
3673 >    /**
3674 >     * Performs the given action for each (key, value).
3675 >     *
3676 >     * @param parallelismThreshold the (estimated) number of elements
3677 >     * needed for this operation to be executed in parallel
3678 >     * @param action the action
3679 >     * @since 1.8
3680 >     */
3681 >    public void forEach(long parallelismThreshold,
3682 >                        BiConsumer<? super K,? super V> action) {
3683 >        if (action == null) throw new NullPointerException();
3684 >        new ForEachMappingTask<K,V>
3685 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3686 >             action).invoke();
3687 >    }
3688 >
3689 >    /**
3690 >     * Performs the given action for each non-null transformation
3691 >     * of each (key, value).
3692 >     *
3693 >     * @param parallelismThreshold the (estimated) number of elements
3694 >     * needed for this operation to be executed in parallel
3695 >     * @param transformer a function returning the transformation
3696 >     * for an element, or null if there is no transformation (in
3697 >     * which case the action is not applied)
3698 >     * @param action the action
3699 >     * @param <U> the return type of the transformer
3700 >     * @since 1.8
3701 >     */
3702 >    public <U> void forEach(long parallelismThreshold,
3703 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3704 >                            Consumer<? super U> action) {
3705 >        if (transformer == null || action == null)
3706 >            throw new NullPointerException();
3707 >        new ForEachTransformedMappingTask<K,V,U>
3708 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3709 >             transformer, action).invoke();
3710 >    }
3711 >
3712 >    /**
3713 >     * Returns a non-null result from applying the given search
3714 >     * function on each (key, value), or null if none.  Upon
3715 >     * success, further element processing is suppressed and the
3716 >     * results of any other parallel invocations of the search
3717 >     * function are ignored.
3718 >     *
3719 >     * @param parallelismThreshold the (estimated) number of elements
3720 >     * needed for this operation to be executed in parallel
3721 >     * @param searchFunction a function returning a non-null
3722 >     * result on success, else null
3723 >     * @param <U> the return type of the search function
3724 >     * @return a non-null result from applying the given search
3725 >     * function on each (key, value), or null if none
3726 >     * @since 1.8
3727 >     */
3728 >    public <U> U search(long parallelismThreshold,
3729 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3730 >        if (searchFunction == null) throw new NullPointerException();
3731 >        return new SearchMappingsTask<K,V,U>
3732 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3733 >             searchFunction, new AtomicReference<U>()).invoke();
3734 >    }
3735 >
3736 >    /**
3737 >     * Returns the result of accumulating the given transformation
3738 >     * of all (key, value) pairs using the given reducer to
3739 >     * combine values, or null if none.
3740 >     *
3741 >     * @param parallelismThreshold the (estimated) number of elements
3742 >     * needed for this operation to be executed in parallel
3743 >     * @param transformer a function returning the transformation
3744 >     * for an element, or null if there is no transformation (in
3745 >     * which case it is not combined)
3746 >     * @param reducer a commutative associative combining function
3747 >     * @param <U> the return type of the transformer
3748 >     * @return the result of accumulating the given transformation
3749 >     * of all (key, value) pairs
3750 >     * @since 1.8
3751 >     */
3752 >    public <U> U reduce(long parallelismThreshold,
3753 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3754 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3755 >        if (transformer == null || reducer == null)
3756 >            throw new NullPointerException();
3757 >        return new MapReduceMappingsTask<K,V,U>
3758 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3759 >             null, transformer, reducer).invoke();
3760 >    }
3761 >
3762 >    /**
3763 >     * Returns the result of accumulating the given transformation
3764 >     * of all (key, value) pairs using the given reducer to
3765 >     * combine values, and the given basis as an identity value.
3766 >     *
3767 >     * @param parallelismThreshold the (estimated) number of elements
3768 >     * needed for this operation to be executed in parallel
3769 >     * @param transformer a function returning the transformation
3770 >     * for an element
3771 >     * @param basis the identity (initial default value) for the reduction
3772 >     * @param reducer a commutative associative combining function
3773 >     * @return the result of accumulating the given transformation
3774 >     * of all (key, value) pairs
3775 >     * @since 1.8
3776 >     */
3777 >    public double reduceToDouble(long parallelismThreshold,
3778 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3779 >                                 double basis,
3780 >                                 DoubleBinaryOperator reducer) {
3781 >        if (transformer == null || reducer == null)
3782 >            throw new NullPointerException();
3783 >        return new MapReduceMappingsToDoubleTask<K,V>
3784 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3785 >             null, transformer, basis, reducer).invoke();
3786 >    }
3787 >
3788 >    /**
3789 >     * Returns the result of accumulating the given transformation
3790 >     * of all (key, value) pairs using the given reducer to
3791 >     * combine values, and the given basis as an identity value.
3792 >     *
3793 >     * @param parallelismThreshold the (estimated) number of elements
3794 >     * needed for this operation to be executed in parallel
3795 >     * @param transformer a function returning the transformation
3796 >     * for an element
3797 >     * @param basis the identity (initial default value) for the reduction
3798 >     * @param reducer a commutative associative combining function
3799 >     * @return the result of accumulating the given transformation
3800 >     * of all (key, value) pairs
3801 >     * @since 1.8
3802 >     */
3803 >    public long reduceToLong(long parallelismThreshold,
3804 >                             ToLongBiFunction<? super K, ? super V> transformer,
3805 >                             long basis,
3806 >                             LongBinaryOperator reducer) {
3807 >        if (transformer == null || reducer == null)
3808 >            throw new NullPointerException();
3809 >        return new MapReduceMappingsToLongTask<K,V>
3810 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3811 >             null, transformer, basis, reducer).invoke();
3812 >    }
3813 >
3814 >    /**
3815 >     * Returns the result of accumulating the given transformation
3816 >     * of all (key, value) pairs using the given reducer to
3817 >     * combine values, and the given basis as an identity value.
3818 >     *
3819 >     * @param parallelismThreshold the (estimated) number of elements
3820 >     * needed for this operation to be executed in parallel
3821 >     * @param transformer a function returning the transformation
3822 >     * for an element
3823 >     * @param basis the identity (initial default value) for the reduction
3824 >     * @param reducer a commutative associative combining function
3825 >     * @return the result of accumulating the given transformation
3826 >     * of all (key, value) pairs
3827 >     * @since 1.8
3828 >     */
3829 >    public int reduceToInt(long parallelismThreshold,
3830 >                           ToIntBiFunction<? super K, ? super V> transformer,
3831 >                           int basis,
3832 >                           IntBinaryOperator reducer) {
3833 >        if (transformer == null || reducer == null)
3834 >            throw new NullPointerException();
3835 >        return new MapReduceMappingsToIntTask<K,V>
3836 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3837 >             null, transformer, basis, reducer).invoke();
3838 >    }
3839 >
3840 >    /**
3841 >     * Performs the given action for each key.
3842 >     *
3843 >     * @param parallelismThreshold the (estimated) number of elements
3844 >     * needed for this operation to be executed in parallel
3845 >     * @param action the action
3846 >     * @since 1.8
3847 >     */
3848 >    public void forEachKey(long parallelismThreshold,
3849 >                           Consumer<? super K> action) {
3850 >        if (action == null) throw new NullPointerException();
3851 >        new ForEachKeyTask<K,V>
3852 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3853 >             action).invoke();
3854 >    }
3855 >
3856 >    /**
3857 >     * Performs the given action for each non-null transformation
3858 >     * of each key.
3859 >     *
3860 >     * @param parallelismThreshold the (estimated) number of elements
3861 >     * needed for this operation to be executed in parallel
3862 >     * @param transformer a function returning the transformation
3863 >     * for an element, or null if there is no transformation (in
3864 >     * which case the action is not applied)
3865 >     * @param action the action
3866 >     * @param <U> the return type of the transformer
3867 >     * @since 1.8
3868 >     */
3869 >    public <U> void forEachKey(long parallelismThreshold,
3870 >                               Function<? super K, ? extends U> transformer,
3871 >                               Consumer<? super U> action) {
3872 >        if (transformer == null || action == null)
3873 >            throw new NullPointerException();
3874 >        new ForEachTransformedKeyTask<K,V,U>
3875 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3876 >             transformer, action).invoke();
3877 >    }
3878 >
3879 >    /**
3880 >     * Returns a non-null result from applying the given search
3881 >     * function on each key, or null if none. Upon success,
3882 >     * further element processing is suppressed and the results of
3883 >     * any other parallel invocations of the search function are
3884 >     * ignored.
3885 >     *
3886 >     * @param parallelismThreshold the (estimated) number of elements
3887 >     * needed for this operation to be executed in parallel
3888 >     * @param searchFunction a function returning a non-null
3889 >     * result on success, else null
3890 >     * @param <U> the return type of the search function
3891 >     * @return a non-null result from applying the given search
3892 >     * function on each key, or null if none
3893 >     * @since 1.8
3894 >     */
3895 >    public <U> U searchKeys(long parallelismThreshold,
3896 >                            Function<? super K, ? extends U> searchFunction) {
3897 >        if (searchFunction == null) throw new NullPointerException();
3898 >        return new SearchKeysTask<K,V,U>
3899 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3900 >             searchFunction, new AtomicReference<U>()).invoke();
3901 >    }
3902 >
3903 >    /**
3904 >     * Returns the result of accumulating all keys using the given
3905 >     * reducer to combine values, or null if none.
3906 >     *
3907 >     * @param parallelismThreshold the (estimated) number of elements
3908 >     * needed for this operation to be executed in parallel
3909 >     * @param reducer a commutative associative combining function
3910 >     * @return the result of accumulating all keys using the given
3911 >     * reducer to combine values, or null if none
3912 >     * @since 1.8
3913 >     */
3914 >    public K reduceKeys(long parallelismThreshold,
3915 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3916 >        if (reducer == null) throw new NullPointerException();
3917 >        return new ReduceKeysTask<K,V>
3918 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3919 >             null, reducer).invoke();
3920 >    }
3921 >
3922 >    /**
3923 >     * Returns the result of accumulating the given transformation
3924 >     * of all keys using the given reducer to combine values, or
3925 >     * null if none.
3926 >     *
3927 >     * @param parallelismThreshold the (estimated) number of elements
3928 >     * needed for this operation to be executed in parallel
3929 >     * @param transformer a function returning the transformation
3930 >     * for an element, or null if there is no transformation (in
3931 >     * which case it is not combined)
3932 >     * @param reducer a commutative associative combining function
3933 >     * @param <U> the return type of the transformer
3934 >     * @return the result of accumulating the given transformation
3935 >     * of all keys
3936 >     * @since 1.8
3937 >     */
3938 >    public <U> U reduceKeys(long parallelismThreshold,
3939 >                            Function<? super K, ? extends U> transformer,
3940 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3941 >        if (transformer == null || reducer == null)
3942 >            throw new NullPointerException();
3943 >        return new MapReduceKeysTask<K,V,U>
3944 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3945 >             null, transformer, reducer).invoke();
3946 >    }
3947 >
3948 >    /**
3949 >     * Returns the result of accumulating the given transformation
3950 >     * of all keys using the given reducer to combine values, and
3951 >     * the given basis as an identity value.
3952 >     *
3953 >     * @param parallelismThreshold the (estimated) number of elements
3954 >     * needed for this operation to be executed in parallel
3955 >     * @param transformer a function returning the transformation
3956 >     * for an element
3957 >     * @param basis the identity (initial default value) for the reduction
3958 >     * @param reducer a commutative associative combining function
3959 >     * @return the result of accumulating the given transformation
3960 >     * of all keys
3961 >     * @since 1.8
3962 >     */
3963 >    public double reduceKeysToDouble(long parallelismThreshold,
3964 >                                     ToDoubleFunction<? super K> transformer,
3965 >                                     double basis,
3966 >                                     DoubleBinaryOperator reducer) {
3967 >        if (transformer == null || reducer == null)
3968 >            throw new NullPointerException();
3969 >        return new MapReduceKeysToDoubleTask<K,V>
3970 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3971 >             null, transformer, basis, reducer).invoke();
3972 >    }
3973 >
3974 >    /**
3975 >     * Returns the result of accumulating the given transformation
3976 >     * of all keys using the given reducer to combine values, and
3977 >     * the given basis as an identity value.
3978 >     *
3979 >     * @param parallelismThreshold the (estimated) number of elements
3980 >     * needed for this operation to be executed in parallel
3981 >     * @param transformer a function returning the transformation
3982 >     * for an element
3983 >     * @param basis the identity (initial default value) for the reduction
3984 >     * @param reducer a commutative associative combining function
3985 >     * @return the result of accumulating the given transformation
3986 >     * of all keys
3987 >     * @since 1.8
3988 >     */
3989 >    public long reduceKeysToLong(long parallelismThreshold,
3990 >                                 ToLongFunction<? super K> transformer,
3991 >                                 long basis,
3992 >                                 LongBinaryOperator reducer) {
3993 >        if (transformer == null || reducer == null)
3994 >            throw new NullPointerException();
3995 >        return new MapReduceKeysToLongTask<K,V>
3996 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3997 >             null, transformer, basis, reducer).invoke();
3998 >    }
3999 >
4000 >    /**
4001 >     * Returns the result of accumulating the given transformation
4002 >     * of all keys using the given reducer to combine values, and
4003 >     * the given basis as an identity value.
4004 >     *
4005 >     * @param parallelismThreshold the (estimated) number of elements
4006 >     * needed for this operation to be executed in parallel
4007 >     * @param transformer a function returning the transformation
4008 >     * for an element
4009 >     * @param basis the identity (initial default value) for the reduction
4010 >     * @param reducer a commutative associative combining function
4011 >     * @return the result of accumulating the given transformation
4012 >     * of all keys
4013 >     * @since 1.8
4014 >     */
4015 >    public int reduceKeysToInt(long parallelismThreshold,
4016 >                               ToIntFunction<? super K> transformer,
4017 >                               int basis,
4018 >                               IntBinaryOperator reducer) {
4019 >        if (transformer == null || reducer == null)
4020 >            throw new NullPointerException();
4021 >        return new MapReduceKeysToIntTask<K,V>
4022 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4023 >             null, transformer, basis, reducer).invoke();
4024 >    }
4025 >
4026 >    /**
4027 >     * Performs the given action for each value.
4028 >     *
4029 >     * @param parallelismThreshold the (estimated) number of elements
4030 >     * needed for this operation to be executed in parallel
4031 >     * @param action the action
4032 >     * @since 1.8
4033 >     */
4034 >    public void forEachValue(long parallelismThreshold,
4035 >                             Consumer<? super V> action) {
4036 >        if (action == null)
4037 >            throw new NullPointerException();
4038 >        new ForEachValueTask<K,V>
4039 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4040 >             action).invoke();
4041 >    }
4042 >
4043 >    /**
4044 >     * Performs the given action for each non-null transformation
4045 >     * of each value.
4046 >     *
4047 >     * @param parallelismThreshold the (estimated) number of elements
4048 >     * needed for this operation to be executed in parallel
4049 >     * @param transformer a function returning the transformation
4050 >     * for an element, or null if there is no transformation (in
4051 >     * which case the action is not applied)
4052 >     * @param action the action
4053 >     * @param <U> the return type of the transformer
4054 >     * @since 1.8
4055 >     */
4056 >    public <U> void forEachValue(long parallelismThreshold,
4057 >                                 Function<? super V, ? extends U> transformer,
4058 >                                 Consumer<? super U> action) {
4059 >        if (transformer == null || action == null)
4060 >            throw new NullPointerException();
4061 >        new ForEachTransformedValueTask<K,V,U>
4062 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4063 >             transformer, action).invoke();
4064 >    }
4065 >
4066 >    /**
4067 >     * Returns a non-null result from applying the given search
4068 >     * function on each value, or null if none.  Upon success,
4069 >     * further element processing is suppressed and the results of
4070 >     * any other parallel invocations of the search function are
4071 >     * ignored.
4072 >     *
4073 >     * @param parallelismThreshold the (estimated) number of elements
4074 >     * needed for this operation to be executed in parallel
4075 >     * @param searchFunction a function returning a non-null
4076 >     * result on success, else null
4077 >     * @param <U> the return type of the search function
4078 >     * @return a non-null result from applying the given search
4079 >     * function on each value, or null if none
4080 >     * @since 1.8
4081 >     */
4082 >    public <U> U searchValues(long parallelismThreshold,
4083 >                              Function<? super V, ? extends U> searchFunction) {
4084 >        if (searchFunction == null) throw new NullPointerException();
4085 >        return new SearchValuesTask<K,V,U>
4086 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4087 >             searchFunction, new AtomicReference<U>()).invoke();
4088 >    }
4089 >
4090 >    /**
4091 >     * Returns the result of accumulating all values using the
4092 >     * given reducer to combine values, or null if none.
4093 >     *
4094 >     * @param parallelismThreshold the (estimated) number of elements
4095 >     * needed for this operation to be executed in parallel
4096 >     * @param reducer a commutative associative combining function
4097 >     * @return the result of accumulating all values
4098 >     * @since 1.8
4099 >     */
4100 >    public V reduceValues(long parallelismThreshold,
4101 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4102 >        if (reducer == null) throw new NullPointerException();
4103 >        return new ReduceValuesTask<K,V>
4104 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4105 >             null, reducer).invoke();
4106 >    }
4107 >
4108 >    /**
4109 >     * Returns the result of accumulating the given transformation
4110 >     * of all values using the given reducer to combine values, or
4111 >     * null if none.
4112 >     *
4113 >     * @param parallelismThreshold the (estimated) number of elements
4114 >     * needed for this operation to be executed in parallel
4115 >     * @param transformer a function returning the transformation
4116 >     * for an element, or null if there is no transformation (in
4117 >     * which case it is not combined)
4118 >     * @param reducer a commutative associative combining function
4119 >     * @param <U> the return type of the transformer
4120 >     * @return the result of accumulating the given transformation
4121 >     * of all values
4122 >     * @since 1.8
4123 >     */
4124 >    public <U> U reduceValues(long parallelismThreshold,
4125 >                              Function<? super V, ? extends U> transformer,
4126 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4127 >        if (transformer == null || reducer == null)
4128 >            throw new NullPointerException();
4129 >        return new MapReduceValuesTask<K,V,U>
4130 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4131 >             null, transformer, reducer).invoke();
4132 >    }
4133 >
4134 >    /**
4135 >     * Returns the result of accumulating the given transformation
4136 >     * of all values using the given reducer to combine values,
4137 >     * and the given basis as an identity value.
4138 >     *
4139 >     * @param parallelismThreshold the (estimated) number of elements
4140 >     * needed for this operation to be executed in parallel
4141 >     * @param transformer a function returning the transformation
4142 >     * for an element
4143 >     * @param basis the identity (initial default value) for the reduction
4144 >     * @param reducer a commutative associative combining function
4145 >     * @return the result of accumulating the given transformation
4146 >     * of all values
4147 >     * @since 1.8
4148 >     */
4149 >    public double reduceValuesToDouble(long parallelismThreshold,
4150 >                                       ToDoubleFunction<? super V> transformer,
4151 >                                       double basis,
4152 >                                       DoubleBinaryOperator reducer) {
4153 >        if (transformer == null || reducer == null)
4154 >            throw new NullPointerException();
4155 >        return new MapReduceValuesToDoubleTask<K,V>
4156 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4157 >             null, transformer, basis, reducer).invoke();
4158 >    }
4159 >
4160 >    /**
4161 >     * Returns the result of accumulating the given transformation
4162 >     * of all values using the given reducer to combine values,
4163 >     * and the given basis as an identity value.
4164 >     *
4165 >     * @param parallelismThreshold the (estimated) number of elements
4166 >     * needed for this operation to be executed in parallel
4167 >     * @param transformer a function returning the transformation
4168 >     * for an element
4169 >     * @param basis the identity (initial default value) for the reduction
4170 >     * @param reducer a commutative associative combining function
4171 >     * @return the result of accumulating the given transformation
4172 >     * of all values
4173 >     * @since 1.8
4174 >     */
4175 >    public long reduceValuesToLong(long parallelismThreshold,
4176 >                                   ToLongFunction<? super V> transformer,
4177 >                                   long basis,
4178 >                                   LongBinaryOperator reducer) {
4179 >        if (transformer == null || reducer == null)
4180 >            throw new NullPointerException();
4181 >        return new MapReduceValuesToLongTask<K,V>
4182 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4183 >             null, transformer, basis, reducer).invoke();
4184 >    }
4185 >
4186 >    /**
4187 >     * Returns the result of accumulating the given transformation
4188 >     * of all values using the given reducer to combine values,
4189 >     * and the given basis as an identity value.
4190 >     *
4191 >     * @param parallelismThreshold the (estimated) number of elements
4192 >     * needed for this operation to be executed in parallel
4193 >     * @param transformer a function returning the transformation
4194 >     * for an element
4195 >     * @param basis the identity (initial default value) for the reduction
4196 >     * @param reducer a commutative associative combining function
4197 >     * @return the result of accumulating the given transformation
4198 >     * of all values
4199 >     * @since 1.8
4200 >     */
4201 >    public int reduceValuesToInt(long parallelismThreshold,
4202 >                                 ToIntFunction<? super V> transformer,
4203 >                                 int basis,
4204 >                                 IntBinaryOperator reducer) {
4205 >        if (transformer == null || reducer == null)
4206 >            throw new NullPointerException();
4207 >        return new MapReduceValuesToIntTask<K,V>
4208 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4209 >             null, transformer, basis, reducer).invoke();
4210 >    }
4211 >
4212 >    /**
4213 >     * Performs the given action for each entry.
4214 >     *
4215 >     * @param parallelismThreshold the (estimated) number of elements
4216 >     * needed for this operation to be executed in parallel
4217 >     * @param action the action
4218 >     * @since 1.8
4219 >     */
4220 >    public void forEachEntry(long parallelismThreshold,
4221 >                             Consumer<? super Map.Entry<K,V>> action) {
4222 >        if (action == null) throw new NullPointerException();
4223 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4224 >                                  action).invoke();
4225 >    }
4226 >
4227 >    /**
4228 >     * Performs the given action for each non-null transformation
4229 >     * of each entry.
4230 >     *
4231 >     * @param parallelismThreshold the (estimated) number of elements
4232 >     * needed for this operation to be executed in parallel
4233 >     * @param transformer a function returning the transformation
4234 >     * for an element, or null if there is no transformation (in
4235 >     * which case the action is not applied)
4236 >     * @param action the action
4237 >     * @param <U> the return type of the transformer
4238 >     * @since 1.8
4239 >     */
4240 >    public <U> void forEachEntry(long parallelismThreshold,
4241 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4242 >                                 Consumer<? super U> action) {
4243 >        if (transformer == null || action == null)
4244 >            throw new NullPointerException();
4245 >        new ForEachTransformedEntryTask<K,V,U>
4246 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4247 >             transformer, action).invoke();
4248 >    }
4249 >
4250 >    /**
4251 >     * Returns a non-null result from applying the given search
4252 >     * function on each entry, or null if none.  Upon success,
4253 >     * further element processing is suppressed and the results of
4254 >     * any other parallel invocations of the search function are
4255 >     * ignored.
4256 >     *
4257 >     * @param parallelismThreshold the (estimated) number of elements
4258 >     * needed for this operation to be executed in parallel
4259 >     * @param searchFunction a function returning a non-null
4260 >     * result on success, else null
4261 >     * @param <U> the return type of the search function
4262 >     * @return a non-null result from applying the given search
4263 >     * function on each entry, or null if none
4264 >     * @since 1.8
4265 >     */
4266 >    public <U> U searchEntries(long parallelismThreshold,
4267 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4268 >        if (searchFunction == null) throw new NullPointerException();
4269 >        return new SearchEntriesTask<K,V,U>
4270 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4271 >             searchFunction, new AtomicReference<U>()).invoke();
4272 >    }
4273 >
4274 >    /**
4275 >     * Returns the result of accumulating all entries using the
4276 >     * given reducer to combine values, or null if none.
4277 >     *
4278 >     * @param parallelismThreshold the (estimated) number of elements
4279 >     * needed for this operation to be executed in parallel
4280 >     * @param reducer a commutative associative combining function
4281 >     * @return the result of accumulating all entries
4282 >     * @since 1.8
4283 >     */
4284 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4285 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4286 >        if (reducer == null) throw new NullPointerException();
4287 >        return new ReduceEntriesTask<K,V>
4288 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4289 >             null, reducer).invoke();
4290 >    }
4291 >
4292 >    /**
4293 >     * Returns the result of accumulating the given transformation
4294 >     * of all entries using the given reducer to combine values,
4295 >     * or null if none.
4296 >     *
4297 >     * @param parallelismThreshold the (estimated) number of elements
4298 >     * needed for this operation to be executed in parallel
4299 >     * @param transformer a function returning the transformation
4300 >     * for an element, or null if there is no transformation (in
4301 >     * which case it is not combined)
4302 >     * @param reducer a commutative associative combining function
4303 >     * @param <U> the return type of the transformer
4304 >     * @return the result of accumulating the given transformation
4305 >     * of all entries
4306 >     * @since 1.8
4307 >     */
4308 >    public <U> U reduceEntries(long parallelismThreshold,
4309 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4310 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4311 >        if (transformer == null || reducer == null)
4312 >            throw new NullPointerException();
4313 >        return new MapReduceEntriesTask<K,V,U>
4314 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4315 >             null, transformer, reducer).invoke();
4316 >    }
4317 >
4318 >    /**
4319 >     * Returns the result of accumulating the given transformation
4320 >     * of all entries using the given reducer to combine values,
4321 >     * and the given basis as an identity value.
4322 >     *
4323 >     * @param parallelismThreshold the (estimated) number of elements
4324 >     * needed for this operation to be executed in parallel
4325 >     * @param transformer a function returning the transformation
4326 >     * for an element
4327 >     * @param basis the identity (initial default value) for the reduction
4328 >     * @param reducer a commutative associative combining function
4329 >     * @return the result of accumulating the given transformation
4330 >     * of all entries
4331 >     * @since 1.8
4332 >     */
4333 >    public double reduceEntriesToDouble(long parallelismThreshold,
4334 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4335 >                                        double basis,
4336 >                                        DoubleBinaryOperator reducer) {
4337 >        if (transformer == null || reducer == null)
4338 >            throw new NullPointerException();
4339 >        return new MapReduceEntriesToDoubleTask<K,V>
4340 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4341 >             null, transformer, basis, reducer).invoke();
4342 >    }
4343 >
4344 >    /**
4345 >     * Returns the result of accumulating the given transformation
4346 >     * of all entries using the given reducer to combine values,
4347 >     * and the given basis as an identity value.
4348 >     *
4349 >     * @param parallelismThreshold the (estimated) number of elements
4350 >     * needed for this operation to be executed in parallel
4351 >     * @param transformer a function returning the transformation
4352 >     * for an element
4353 >     * @param basis the identity (initial default value) for the reduction
4354 >     * @param reducer a commutative associative combining function
4355 >     * @return the result of accumulating the given transformation
4356 >     * of all entries
4357 >     * @since 1.8
4358 >     */
4359 >    public long reduceEntriesToLong(long parallelismThreshold,
4360 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4361 >                                    long basis,
4362 >                                    LongBinaryOperator reducer) {
4363 >        if (transformer == null || reducer == null)
4364 >            throw new NullPointerException();
4365 >        return new MapReduceEntriesToLongTask<K,V>
4366 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4367 >             null, transformer, basis, reducer).invoke();
4368 >    }
4369 >
4370 >    /**
4371 >     * Returns the result of accumulating the given transformation
4372 >     * of all entries using the given reducer to combine values,
4373 >     * and the given basis as an identity value.
4374 >     *
4375 >     * @param parallelismThreshold the (estimated) number of elements
4376 >     * needed for this operation to be executed in parallel
4377 >     * @param transformer a function returning the transformation
4378 >     * for an element
4379 >     * @param basis the identity (initial default value) for the reduction
4380 >     * @param reducer a commutative associative combining function
4381 >     * @return the result of accumulating the given transformation
4382 >     * of all entries
4383 >     * @since 1.8
4384 >     */
4385 >    public int reduceEntriesToInt(long parallelismThreshold,
4386 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4387 >                                  int basis,
4388 >                                  IntBinaryOperator reducer) {
4389 >        if (transformer == null || reducer == null)
4390 >            throw new NullPointerException();
4391 >        return new MapReduceEntriesToIntTask<K,V>
4392 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4393 >             null, transformer, basis, reducer).invoke();
4394 >    }
4395 >
4396 >
4397 >    /* ----------------Views -------------- */
4398 >
4399 >    /**
4400 >     * Base class for views.
4401 >     */
4402 >    abstract static class CollectionView<K,V,E>
4403 >        implements Collection<E>, java.io.Serializable {
4404 >        private static final long serialVersionUID = 7249069246763182397L;
4405 >        final ConcurrentHashMap<K,V> map;
4406 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4407 >
4408 >        /**
4409 >         * Returns the map backing this view.
4410 >         *
4411 >         * @return the map backing this view
4412 >         */
4413 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4414 >
4415 >        /**
4416 >         * Removes all of the elements from this view, by removing all
4417 >         * the mappings from the map backing this view.
4418 >         */
4419 >        public final void clear()      { map.clear(); }
4420 >        public final int size()        { return map.size(); }
4421 >        public final boolean isEmpty() { return map.isEmpty(); }
4422 >
4423 >        // implementations below rely on concrete classes supplying these
4424 >        // abstract methods
4425 >        /**
4426 >         * Returns an iterator over the elements in this collection.
4427 >         *
4428 >         * <p>The returned iterator is
4429 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4430 >         *
4431 >         * @return an iterator over the elements in this collection
4432 >         */
4433 >        public abstract Iterator<E> iterator();
4434 >        public abstract boolean contains(Object o);
4435 >        public abstract boolean remove(Object o);
4436 >
4437 >        private static final String OOME_MSG = "Required array size too large";
4438 >
4439 >        public final Object[] toArray() {
4440 >            long sz = map.mappingCount();
4441 >            if (sz > MAX_ARRAY_SIZE)
4442 >                throw new OutOfMemoryError(OOME_MSG);
4443 >            int n = (int)sz;
4444 >            Object[] r = new Object[n];
4445 >            int i = 0;
4446 >            for (E e : this) {
4447 >                if (i == n) {
4448 >                    if (n >= MAX_ARRAY_SIZE)
4449 >                        throw new OutOfMemoryError(OOME_MSG);
4450 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4451 >                        n = MAX_ARRAY_SIZE;
4452 >                    else
4453 >                        n += (n >>> 1) + 1;
4454 >                    r = Arrays.copyOf(r, n);
4455 >                }
4456 >                r[i++] = e;
4457 >            }
4458 >            return (i == n) ? r : Arrays.copyOf(r, i);
4459          }
4460 +
4461 +        @SuppressWarnings("unchecked")
4462 +        public final <T> T[] toArray(T[] a) {
4463 +            long sz = map.mappingCount();
4464 +            if (sz > MAX_ARRAY_SIZE)
4465 +                throw new OutOfMemoryError(OOME_MSG);
4466 +            int m = (int)sz;
4467 +            T[] r = (a.length >= m) ? a :
4468 +                (T[])java.lang.reflect.Array
4469 +                .newInstance(a.getClass().getComponentType(), m);
4470 +            int n = r.length;
4471 +            int i = 0;
4472 +            for (E e : this) {
4473 +                if (i == n) {
4474 +                    if (n >= MAX_ARRAY_SIZE)
4475 +                        throw new OutOfMemoryError(OOME_MSG);
4476 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4477 +                        n = MAX_ARRAY_SIZE;
4478 +                    else
4479 +                        n += (n >>> 1) + 1;
4480 +                    r = Arrays.copyOf(r, n);
4481 +                }
4482 +                r[i++] = (T)e;
4483 +            }
4484 +            if (a == r && i < n) {
4485 +                r[i] = null; // null-terminate
4486 +                return r;
4487 +            }
4488 +            return (i == n) ? r : Arrays.copyOf(r, i);
4489 +        }
4490 +
4491 +        /**
4492 +         * Returns a string representation of this collection.
4493 +         * The string representation consists of the string representations
4494 +         * of the collection's elements in the order they are returned by
4495 +         * its iterator, enclosed in square brackets ({@code "[]"}).
4496 +         * Adjacent elements are separated by the characters {@code ", "}
4497 +         * (comma and space).  Elements are converted to strings as by
4498 +         * {@link String#valueOf(Object)}.
4499 +         *
4500 +         * @return a string representation of this collection
4501 +         */
4502 +        public final String toString() {
4503 +            StringBuilder sb = new StringBuilder();
4504 +            sb.append('[');
4505 +            Iterator<E> it = iterator();
4506 +            if (it.hasNext()) {
4507 +                for (;;) {
4508 +                    Object e = it.next();
4509 +                    sb.append(e == this ? "(this Collection)" : e);
4510 +                    if (!it.hasNext())
4511 +                        break;
4512 +                    sb.append(',').append(' ');
4513 +                }
4514 +            }
4515 +            return sb.append(']').toString();
4516 +        }
4517 +
4518 +        public final boolean containsAll(Collection<?> c) {
4519 +            if (c != this) {
4520 +                for (Object e : c) {
4521 +                    if (e == null || !contains(e))
4522 +                        return false;
4523 +                }
4524 +            }
4525 +            return true;
4526 +        }
4527 +
4528 +        public final boolean removeAll(Collection<?> c) {
4529 +            if (c == null) throw new NullPointerException();
4530 +            boolean modified = false;
4531 +            for (Iterator<E> it = iterator(); it.hasNext();) {
4532 +                if (c.contains(it.next())) {
4533 +                    it.remove();
4534 +                    modified = true;
4535 +                }
4536 +            }
4537 +            return modified;
4538 +        }
4539 +
4540 +        public final boolean retainAll(Collection<?> c) {
4541 +            if (c == null) throw new NullPointerException();
4542 +            boolean modified = false;
4543 +            for (Iterator<E> it = iterator(); it.hasNext();) {
4544 +                if (!c.contains(it.next())) {
4545 +                    it.remove();
4546 +                    modified = true;
4547 +                }
4548 +            }
4549 +            return modified;
4550 +        }
4551 +
4552      }
4553  
4554 <    final class Values extends AbstractCollection<V> {
4555 <        public Iterator<V> iterator() {
4556 <            return new ValueIterator();
4554 >    /**
4555 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4556 >     * which additions may optionally be enabled by mapping to a
4557 >     * common value.  This class cannot be directly instantiated.
4558 >     * See {@link #keySet() keySet()},
4559 >     * {@link #keySet(Object) keySet(V)},
4560 >     * {@link #newKeySet() newKeySet()},
4561 >     * {@link #newKeySet(int) newKeySet(int)}.
4562 >     *
4563 >     * @since 1.8
4564 >     */
4565 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4566 >        implements Set<K>, java.io.Serializable {
4567 >        private static final long serialVersionUID = 7249069246763182397L;
4568 >        private final V value;
4569 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4570 >            super(map);
4571 >            this.value = value;
4572          }
4573 <        public int size() {
4574 <            return ConcurrentHashMap.this.size();
4573 >
4574 >        /**
4575 >         * Returns the default mapped value for additions,
4576 >         * or {@code null} if additions are not supported.
4577 >         *
4578 >         * @return the default mapped value for additions, or {@code null}
4579 >         * if not supported
4580 >         */
4581 >        public V getMappedValue() { return value; }
4582 >
4583 >        /**
4584 >         * {@inheritDoc}
4585 >         * @throws NullPointerException if the specified key is null
4586 >         */
4587 >        public boolean contains(Object o) { return map.containsKey(o); }
4588 >
4589 >        /**
4590 >         * Removes the key from this map view, by removing the key (and its
4591 >         * corresponding value) from the backing map.  This method does
4592 >         * nothing if the key is not in the map.
4593 >         *
4594 >         * @param  o the key to be removed from the backing map
4595 >         * @return {@code true} if the backing map contained the specified key
4596 >         * @throws NullPointerException if the specified key is null
4597 >         */
4598 >        public boolean remove(Object o) { return map.remove(o) != null; }
4599 >
4600 >        /**
4601 >         * @return an iterator over the keys of the backing map
4602 >         */
4603 >        public Iterator<K> iterator() {
4604 >            Node<K,V>[] t;
4605 >            ConcurrentHashMap<K,V> m = map;
4606 >            int f = (t = m.table) == null ? 0 : t.length;
4607 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4608          }
4609 <        public boolean contains(Object o) {
4610 <            return ConcurrentHashMap.this.containsValue(o);
4609 >
4610 >        /**
4611 >         * Adds the specified key to this set view by mapping the key to
4612 >         * the default mapped value in the backing map, if defined.
4613 >         *
4614 >         * @param e key to be added
4615 >         * @return {@code true} if this set changed as a result of the call
4616 >         * @throws NullPointerException if the specified key is null
4617 >         * @throws UnsupportedOperationException if no default mapped value
4618 >         * for additions was provided
4619 >         */
4620 >        public boolean add(K e) {
4621 >            V v;
4622 >            if ((v = value) == null)
4623 >                throw new UnsupportedOperationException();
4624 >            return map.putVal(e, v, true) == null;
4625 >        }
4626 >
4627 >        /**
4628 >         * Adds all of the elements in the specified collection to this set,
4629 >         * as if by calling {@link #add} on each one.
4630 >         *
4631 >         * @param c the elements to be inserted into this set
4632 >         * @return {@code true} if this set changed as a result of the call
4633 >         * @throws NullPointerException if the collection or any of its
4634 >         * elements are {@code null}
4635 >         * @throws UnsupportedOperationException if no default mapped value
4636 >         * for additions was provided
4637 >         */
4638 >        public boolean addAll(Collection<? extends K> c) {
4639 >            boolean added = false;
4640 >            V v;
4641 >            if ((v = value) == null)
4642 >                throw new UnsupportedOperationException();
4643 >            for (K e : c) {
4644 >                if (map.putVal(e, v, true) == null)
4645 >                    added = true;
4646 >            }
4647 >            return added;
4648          }
4649 <        public void clear() {
4650 <            ConcurrentHashMap.this.clear();
4649 >
4650 >        public int hashCode() {
4651 >            int h = 0;
4652 >            for (K e : this)
4653 >                h += e.hashCode();
4654 >            return h;
4655 >        }
4656 >
4657 >        public boolean equals(Object o) {
4658 >            Set<?> c;
4659 >            return ((o instanceof Set) &&
4660 >                    ((c = (Set<?>)o) == this ||
4661 >                     (containsAll(c) && c.containsAll(this))));
4662 >        }
4663 >
4664 >        public Spliterator<K> spliterator() {
4665 >            Node<K,V>[] t;
4666 >            ConcurrentHashMap<K,V> m = map;
4667 >            long n = m.sumCount();
4668 >            int f = (t = m.table) == null ? 0 : t.length;
4669 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4670 >        }
4671 >
4672 >        public void forEach(Consumer<? super K> action) {
4673 >            if (action == null) throw new NullPointerException();
4674 >            Node<K,V>[] t;
4675 >            if ((t = map.table) != null) {
4676 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4677 >                for (Node<K,V> p; (p = it.advance()) != null; )
4678 >                    action.accept(p.key);
4679 >            }
4680          }
4681      }
4682  
4683 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4684 <        public Iterator<Map.Entry<K,V>> iterator() {
4685 <            return new EntryIterator();
4683 >    /**
4684 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4685 >     * values, in which additions are disabled. This class cannot be
4686 >     * directly instantiated. See {@link #values()}.
4687 >     */
4688 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4689 >        implements Collection<V>, java.io.Serializable {
4690 >        private static final long serialVersionUID = 2249069246763182397L;
4691 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4692 >        public final boolean contains(Object o) {
4693 >            return map.containsValue(o);
4694          }
4695 +
4696 +        public final boolean remove(Object o) {
4697 +            if (o != null) {
4698 +                for (Iterator<V> it = iterator(); it.hasNext();) {
4699 +                    if (o.equals(it.next())) {
4700 +                        it.remove();
4701 +                        return true;
4702 +                    }
4703 +                }
4704 +            }
4705 +            return false;
4706 +        }
4707 +
4708 +        public final Iterator<V> iterator() {
4709 +            ConcurrentHashMap<K,V> m = map;
4710 +            Node<K,V>[] t;
4711 +            int f = (t = m.table) == null ? 0 : t.length;
4712 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4713 +        }
4714 +
4715 +        public final boolean add(V e) {
4716 +            throw new UnsupportedOperationException();
4717 +        }
4718 +        public final boolean addAll(Collection<? extends V> c) {
4719 +            throw new UnsupportedOperationException();
4720 +        }
4721 +
4722 +        public boolean removeIf(Predicate<? super V> filter) {
4723 +            return map.removeValueIf(filter);
4724 +        }
4725 +
4726 +        public Spliterator<V> spliterator() {
4727 +            Node<K,V>[] t;
4728 +            ConcurrentHashMap<K,V> m = map;
4729 +            long n = m.sumCount();
4730 +            int f = (t = m.table) == null ? 0 : t.length;
4731 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4732 +        }
4733 +
4734 +        public void forEach(Consumer<? super V> action) {
4735 +            if (action == null) throw new NullPointerException();
4736 +            Node<K,V>[] t;
4737 +            if ((t = map.table) != null) {
4738 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4739 +                for (Node<K,V> p; (p = it.advance()) != null; )
4740 +                    action.accept(p.val);
4741 +            }
4742 +        }
4743 +    }
4744 +
4745 +    /**
4746 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4747 +     * entries.  This class cannot be directly instantiated. See
4748 +     * {@link #entrySet()}.
4749 +     */
4750 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4751 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4752 +        private static final long serialVersionUID = 2249069246763182397L;
4753 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4754 +
4755          public boolean contains(Object o) {
4756 <            if (!(o instanceof Map.Entry))
4757 <                return false;
4758 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4759 <            V v = ConcurrentHashMap.this.get(e.getKey());
4760 <            return v != null && v.equals(e.getValue());
4756 >            Object k, v, r; Map.Entry<?,?> e;
4757 >            return ((o instanceof Map.Entry) &&
4758 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4759 >                    (r = map.get(k)) != null &&
4760 >                    (v = e.getValue()) != null &&
4761 >                    (v == r || v.equals(r)));
4762          }
4763 +
4764          public boolean remove(Object o) {
4765 <            if (!(o instanceof Map.Entry))
4766 <                return false;
4767 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4768 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4765 >            Object k, v; Map.Entry<?,?> e;
4766 >            return ((o instanceof Map.Entry) &&
4767 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4768 >                    (v = e.getValue()) != null &&
4769 >                    map.remove(k, v));
4770 >        }
4771 >
4772 >        /**
4773 >         * @return an iterator over the entries of the backing map
4774 >         */
4775 >        public Iterator<Map.Entry<K,V>> iterator() {
4776 >            ConcurrentHashMap<K,V> m = map;
4777 >            Node<K,V>[] t;
4778 >            int f = (t = m.table) == null ? 0 : t.length;
4779 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4780 >        }
4781 >
4782 >        public boolean add(Entry<K,V> e) {
4783 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4784 >        }
4785 >
4786 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4787 >            boolean added = false;
4788 >            for (Entry<K,V> e : c) {
4789 >                if (add(e))
4790 >                    added = true;
4791 >            }
4792 >            return added;
4793 >        }
4794 >
4795 >        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4796 >            return map.removeEntryIf(filter);
4797          }
4798 <        public int size() {
4799 <            return ConcurrentHashMap.this.size();
4798 >
4799 >        public final int hashCode() {
4800 >            int h = 0;
4801 >            Node<K,V>[] t;
4802 >            if ((t = map.table) != null) {
4803 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4804 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4805 >                    h += p.hashCode();
4806 >                }
4807 >            }
4808 >            return h;
4809          }
4810 <        public void clear() {
4811 <            ConcurrentHashMap.this.clear();
4810 >
4811 >        public final boolean equals(Object o) {
4812 >            Set<?> c;
4813 >            return ((o instanceof Set) &&
4814 >                    ((c = (Set<?>)o) == this ||
4815 >                     (containsAll(c) && c.containsAll(this))));
4816 >        }
4817 >
4818 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4819 >            Node<K,V>[] t;
4820 >            ConcurrentHashMap<K,V> m = map;
4821 >            long n = m.sumCount();
4822 >            int f = (t = m.table) == null ? 0 : t.length;
4823 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4824 >        }
4825 >
4826 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4827 >            if (action == null) throw new NullPointerException();
4828 >            Node<K,V>[] t;
4829 >            if ((t = map.table) != null) {
4830 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4831 >                for (Node<K,V> p; (p = it.advance()) != null; )
4832 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4833 >            }
4834          }
4835 +
4836      }
4837  
4838 <    /* ---------------- Serialization Support -------------- */
4838 >    // -------------------------------------------------------
4839  
4840      /**
4841 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
4842 <     * stream (i.e., serialize it).
1229 <     * @param s the stream
1230 <     * @serialData
1231 <     * the key (Object) and value (Object)
1232 <     * for each key-value mapping, followed by a null pair.
1233 <     * The key-value mappings are emitted in no particular order.
4841 >     * Base class for bulk tasks. Repeats some fields and code from
4842 >     * class Traverser, because we need to subclass CountedCompleter.
4843       */
4844 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
4845 <        s.defaultWriteObject();
4844 >    @SuppressWarnings("serial")
4845 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4846 >        Node<K,V>[] tab;        // same as Traverser
4847 >        Node<K,V> next;
4848 >        TableStack<K,V> stack, spare;
4849 >        int index;
4850 >        int baseIndex;
4851 >        int baseLimit;
4852 >        final int baseSize;
4853 >        int batch;              // split control
4854 >
4855 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4856 >            super(par);
4857 >            this.batch = b;
4858 >            this.index = this.baseIndex = i;
4859 >            if ((this.tab = t) == null)
4860 >                this.baseSize = this.baseLimit = 0;
4861 >            else if (par == null)
4862 >                this.baseSize = this.baseLimit = t.length;
4863 >            else {
4864 >                this.baseLimit = f;
4865 >                this.baseSize = par.baseSize;
4866 >            }
4867 >        }
4868  
4869 <        for (int k = 0; k < segments.length; ++k) {
4870 <            Segment<K,V> seg = segments[k];
4871 <            seg.lock();
4872 <            try {
4873 <                HashEntry<K,V>[] tab = seg.table;
4874 <                for (int i = 0; i < tab.length; ++i) {
4875 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
4876 <                        s.writeObject(e.key);
4877 <                        s.writeObject(e.value);
4869 >        /**
4870 >         * Same as Traverser version.
4871 >         */
4872 >        final Node<K,V> advance() {
4873 >            Node<K,V> e;
4874 >            if ((e = next) != null)
4875 >                e = e.next;
4876 >            for (;;) {
4877 >                Node<K,V>[] t; int i, n;
4878 >                if (e != null)
4879 >                    return next = e;
4880 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4881 >                    (n = t.length) <= (i = index) || i < 0)
4882 >                    return next = null;
4883 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4884 >                    if (e instanceof ForwardingNode) {
4885 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4886 >                        e = null;
4887 >                        pushState(t, i, n);
4888 >                        continue;
4889                      }
4890 +                    else if (e instanceof TreeBin)
4891 +                        e = ((TreeBin<K,V>)e).first;
4892 +                    else
4893 +                        e = null;
4894                  }
4895 <            } finally {
4896 <                seg.unlock();
4895 >                if (stack != null)
4896 >                    recoverState(n);
4897 >                else if ((index = i + baseSize) >= n)
4898 >                    index = ++baseIndex;
4899              }
4900          }
4901 <        s.writeObject(null);
4902 <        s.writeObject(null);
4901 >
4902 >        private void pushState(Node<K,V>[] t, int i, int n) {
4903 >            TableStack<K,V> s = spare;
4904 >            if (s != null)
4905 >                spare = s.next;
4906 >            else
4907 >                s = new TableStack<K,V>();
4908 >            s.tab = t;
4909 >            s.length = n;
4910 >            s.index = i;
4911 >            s.next = stack;
4912 >            stack = s;
4913 >        }
4914 >
4915 >        private void recoverState(int n) {
4916 >            TableStack<K,V> s; int len;
4917 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4918 >                n = len;
4919 >                index = s.index;
4920 >                tab = s.tab;
4921 >                s.tab = null;
4922 >                TableStack<K,V> next = s.next;
4923 >                s.next = spare; // save for reuse
4924 >                stack = next;
4925 >                spare = s;
4926 >            }
4927 >            if (s == null && (index += baseSize) >= n)
4928 >                index = ++baseIndex;
4929 >        }
4930      }
4931  
4932 <    /**
4933 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
4934 <     * stream (i.e., deserialize it).
4935 <     * @param s the stream
4936 <     */
4937 <    private void readObject(java.io.ObjectInputStream s)
4938 <        throws IOException, ClassNotFoundException  {
4939 <        s.defaultReadObject();
4932 >    /*
4933 >     * Task classes. Coded in a regular but ugly format/style to
4934 >     * simplify checks that each variant differs in the right way from
4935 >     * others. The null screenings exist because compilers cannot tell
4936 >     * that we've already null-checked task arguments, so we force
4937 >     * simplest hoisted bypass to help avoid convoluted traps.
4938 >     */
4939 >    @SuppressWarnings("serial")
4940 >    static final class ForEachKeyTask<K,V>
4941 >        extends BulkTask<K,V,Void> {
4942 >        final Consumer<? super K> action;
4943 >        ForEachKeyTask
4944 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4945 >             Consumer<? super K> action) {
4946 >            super(p, b, i, f, t);
4947 >            this.action = action;
4948 >        }
4949 >        public final void compute() {
4950 >            final Consumer<? super K> action;
4951 >            if ((action = this.action) != null) {
4952 >                for (int i = baseIndex, f, h; batch > 0 &&
4953 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4954 >                    addToPendingCount(1);
4955 >                    new ForEachKeyTask<K,V>
4956 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4957 >                         action).fork();
4958 >                }
4959 >                for (Node<K,V> p; (p = advance()) != null;)
4960 >                    action.accept(p.key);
4961 >                propagateCompletion();
4962 >            }
4963 >        }
4964 >    }
4965  
4966 <        // Initialize each segment to be minimally sized, and let grow.
4967 <        for (int i = 0; i < segments.length; ++i) {
4968 <            segments[i].setTable(new HashEntry[1]);
4966 >    @SuppressWarnings("serial")
4967 >    static final class ForEachValueTask<K,V>
4968 >        extends BulkTask<K,V,Void> {
4969 >        final Consumer<? super V> action;
4970 >        ForEachValueTask
4971 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4972 >             Consumer<? super V> action) {
4973 >            super(p, b, i, f, t);
4974 >            this.action = action;
4975 >        }
4976 >        public final void compute() {
4977 >            final Consumer<? super V> action;
4978 >            if ((action = this.action) != null) {
4979 >                for (int i = baseIndex, f, h; batch > 0 &&
4980 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4981 >                    addToPendingCount(1);
4982 >                    new ForEachValueTask<K,V>
4983 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4984 >                         action).fork();
4985 >                }
4986 >                for (Node<K,V> p; (p = advance()) != null;)
4987 >                    action.accept(p.val);
4988 >                propagateCompletion();
4989 >            }
4990          }
4991 +    }
4992  
4993 <        // Read the keys and values, and put the mappings in the table
4994 <        for (;;) {
4995 <            K key = (K) s.readObject();
4996 <            V value = (V) s.readObject();
4997 <            if (key == null)
4998 <                break;
4999 <            put(key, value);
4993 >    @SuppressWarnings("serial")
4994 >    static final class ForEachEntryTask<K,V>
4995 >        extends BulkTask<K,V,Void> {
4996 >        final Consumer<? super Entry<K,V>> action;
4997 >        ForEachEntryTask
4998 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4999 >             Consumer<? super Entry<K,V>> action) {
5000 >            super(p, b, i, f, t);
5001 >            this.action = action;
5002 >        }
5003 >        public final void compute() {
5004 >            final Consumer<? super Entry<K,V>> action;
5005 >            if ((action = this.action) != null) {
5006 >                for (int i = baseIndex, f, h; batch > 0 &&
5007 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5008 >                    addToPendingCount(1);
5009 >                    new ForEachEntryTask<K,V>
5010 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5011 >                         action).fork();
5012 >                }
5013 >                for (Node<K,V> p; (p = advance()) != null; )
5014 >                    action.accept(p);
5015 >                propagateCompletion();
5016 >            }
5017 >        }
5018 >    }
5019 >
5020 >    @SuppressWarnings("serial")
5021 >    static final class ForEachMappingTask<K,V>
5022 >        extends BulkTask<K,V,Void> {
5023 >        final BiConsumer<? super K, ? super V> action;
5024 >        ForEachMappingTask
5025 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5026 >             BiConsumer<? super K,? super V> action) {
5027 >            super(p, b, i, f, t);
5028 >            this.action = action;
5029 >        }
5030 >        public final void compute() {
5031 >            final BiConsumer<? super K, ? super V> action;
5032 >            if ((action = this.action) != null) {
5033 >                for (int i = baseIndex, f, h; batch > 0 &&
5034 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5035 >                    addToPendingCount(1);
5036 >                    new ForEachMappingTask<K,V>
5037 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5038 >                         action).fork();
5039 >                }
5040 >                for (Node<K,V> p; (p = advance()) != null; )
5041 >                    action.accept(p.key, p.val);
5042 >                propagateCompletion();
5043 >            }
5044 >        }
5045 >    }
5046 >
5047 >    @SuppressWarnings("serial")
5048 >    static final class ForEachTransformedKeyTask<K,V,U>
5049 >        extends BulkTask<K,V,Void> {
5050 >        final Function<? super K, ? extends U> transformer;
5051 >        final Consumer<? super U> action;
5052 >        ForEachTransformedKeyTask
5053 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5054 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5055 >            super(p, b, i, f, t);
5056 >            this.transformer = transformer; this.action = action;
5057 >        }
5058 >        public final void compute() {
5059 >            final Function<? super K, ? extends U> transformer;
5060 >            final Consumer<? super U> action;
5061 >            if ((transformer = this.transformer) != null &&
5062 >                (action = this.action) != null) {
5063 >                for (int i = baseIndex, f, h; batch > 0 &&
5064 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5065 >                    addToPendingCount(1);
5066 >                    new ForEachTransformedKeyTask<K,V,U>
5067 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5068 >                         transformer, action).fork();
5069 >                }
5070 >                for (Node<K,V> p; (p = advance()) != null; ) {
5071 >                    U u;
5072 >                    if ((u = transformer.apply(p.key)) != null)
5073 >                        action.accept(u);
5074 >                }
5075 >                propagateCompletion();
5076 >            }
5077          }
5078      }
5079 +
5080 +    @SuppressWarnings("serial")
5081 +    static final class ForEachTransformedValueTask<K,V,U>
5082 +        extends BulkTask<K,V,Void> {
5083 +        final Function<? super V, ? extends U> transformer;
5084 +        final Consumer<? super U> action;
5085 +        ForEachTransformedValueTask
5086 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5087 +             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5088 +            super(p, b, i, f, t);
5089 +            this.transformer = transformer; this.action = action;
5090 +        }
5091 +        public final void compute() {
5092 +            final Function<? super V, ? extends U> transformer;
5093 +            final Consumer<? super U> action;
5094 +            if ((transformer = this.transformer) != null &&
5095 +                (action = this.action) != null) {
5096 +                for (int i = baseIndex, f, h; batch > 0 &&
5097 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5098 +                    addToPendingCount(1);
5099 +                    new ForEachTransformedValueTask<K,V,U>
5100 +                        (this, batch >>>= 1, baseLimit = h, f, tab,
5101 +                         transformer, action).fork();
5102 +                }
5103 +                for (Node<K,V> p; (p = advance()) != null; ) {
5104 +                    U u;
5105 +                    if ((u = transformer.apply(p.val)) != null)
5106 +                        action.accept(u);
5107 +                }
5108 +                propagateCompletion();
5109 +            }
5110 +        }
5111 +    }
5112 +
5113 +    @SuppressWarnings("serial")
5114 +    static final class ForEachTransformedEntryTask<K,V,U>
5115 +        extends BulkTask<K,V,Void> {
5116 +        final Function<Map.Entry<K,V>, ? extends U> transformer;
5117 +        final Consumer<? super U> action;
5118 +        ForEachTransformedEntryTask
5119 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5120 +             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5121 +            super(p, b, i, f, t);
5122 +            this.transformer = transformer; this.action = action;
5123 +        }
5124 +        public final void compute() {
5125 +            final Function<Map.Entry<K,V>, ? extends U> transformer;
5126 +            final Consumer<? super U> action;
5127 +            if ((transformer = this.transformer) != null &&
5128 +                (action = this.action) != null) {
5129 +                for (int i = baseIndex, f, h; batch > 0 &&
5130 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5131 +                    addToPendingCount(1);
5132 +                    new ForEachTransformedEntryTask<K,V,U>
5133 +                        (this, batch >>>= 1, baseLimit = h, f, tab,
5134 +                         transformer, action).fork();
5135 +                }
5136 +                for (Node<K,V> p; (p = advance()) != null; ) {
5137 +                    U u;
5138 +                    if ((u = transformer.apply(p)) != null)
5139 +                        action.accept(u);
5140 +                }
5141 +                propagateCompletion();
5142 +            }
5143 +        }
5144 +    }
5145 +
5146 +    @SuppressWarnings("serial")
5147 +    static final class ForEachTransformedMappingTask<K,V,U>
5148 +        extends BulkTask<K,V,Void> {
5149 +        final BiFunction<? super K, ? super V, ? extends U> transformer;
5150 +        final Consumer<? super U> action;
5151 +        ForEachTransformedMappingTask
5152 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5153 +             BiFunction<? super K, ? super V, ? extends U> transformer,
5154 +             Consumer<? super U> action) {
5155 +            super(p, b, i, f, t);
5156 +            this.transformer = transformer; this.action = action;
5157 +        }
5158 +        public final void compute() {
5159 +            final BiFunction<? super K, ? super V, ? extends U> transformer;
5160 +            final Consumer<? super U> action;
5161 +            if ((transformer = this.transformer) != null &&
5162 +                (action = this.action) != null) {
5163 +                for (int i = baseIndex, f, h; batch > 0 &&
5164 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5165 +                    addToPendingCount(1);
5166 +                    new ForEachTransformedMappingTask<K,V,U>
5167 +                        (this, batch >>>= 1, baseLimit = h, f, tab,
5168 +                         transformer, action).fork();
5169 +                }
5170 +                for (Node<K,V> p; (p = advance()) != null; ) {
5171 +                    U u;
5172 +                    if ((u = transformer.apply(p.key, p.val)) != null)
5173 +                        action.accept(u);
5174 +                }
5175 +                propagateCompletion();
5176 +            }
5177 +        }
5178 +    }
5179 +
5180 +    @SuppressWarnings("serial")
5181 +    static final class SearchKeysTask<K,V,U>
5182 +        extends BulkTask<K,V,U> {
5183 +        final Function<? super K, ? extends U> searchFunction;
5184 +        final AtomicReference<U> result;
5185 +        SearchKeysTask
5186 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5187 +             Function<? super K, ? extends U> searchFunction,
5188 +             AtomicReference<U> result) {
5189 +            super(p, b, i, f, t);
5190 +            this.searchFunction = searchFunction; this.result = result;
5191 +        }
5192 +        public final U getRawResult() { return result.get(); }
5193 +        public final void compute() {
5194 +            final Function<? super K, ? extends U> searchFunction;
5195 +            final AtomicReference<U> result;
5196 +            if ((searchFunction = this.searchFunction) != null &&
5197 +                (result = this.result) != null) {
5198 +                for (int i = baseIndex, f, h; batch > 0 &&
5199 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5200 +                    if (result.get() != null)
5201 +                        return;
5202 +                    addToPendingCount(1);
5203 +                    new SearchKeysTask<K,V,U>
5204 +                        (this, batch >>>= 1, baseLimit = h, f, tab,
5205 +                         searchFunction, result).fork();
5206 +                }
5207 +                while (result.get() == null) {
5208 +                    U u;
5209 +                    Node<K,V> p;
5210 +                    if ((p = advance()) == null) {
5211 +                        propagateCompletion();
5212 +                        break;
5213 +                    }
5214 +                    if ((u = searchFunction.apply(p.key)) != null) {
5215 +                        if (result.compareAndSet(null, u))
5216 +                            quietlyCompleteRoot();
5217 +                        break;
5218 +                    }
5219 +                }
5220 +            }
5221 +        }
5222 +    }
5223 +
5224 +    @SuppressWarnings("serial")
5225 +    static final class SearchValuesTask<K,V,U>
5226 +        extends BulkTask<K,V,U> {
5227 +        final Function<? super V, ? extends U> searchFunction;
5228 +        final AtomicReference<U> result;
5229 +        SearchValuesTask
5230 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5231 +             Function<? super V, ? extends U> searchFunction,
5232 +             AtomicReference<U> result) {
5233 +            super(p, b, i, f, t);
5234 +            this.searchFunction = searchFunction; this.result = result;
5235 +        }
5236 +        public final U getRawResult() { return result.get(); }
5237 +        public final void compute() {
5238 +            final Function<? super V, ? extends U> searchFunction;
5239 +            final AtomicReference<U> result;
5240 +            if ((searchFunction = this.searchFunction) != null &&
5241 +                (result = this.result) != null) {
5242 +                for (int i = baseIndex, f, h; batch > 0 &&
5243 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5244 +                    if (result.get() != null)
5245 +                        return;
5246 +                    addToPendingCount(1);
5247 +                    new SearchValuesTask<K,V,U>
5248 +                        (this, batch >>>= 1, baseLimit = h, f, tab,
5249 +                         searchFunction, result).fork();
5250 +                }
5251 +                while (result.get() == null) {
5252 +                    U u;
5253 +                    Node<K,V> p;
5254 +                    if ((p = advance()) == null) {
5255 +                        propagateCompletion();
5256 +                        break;
5257 +                    }
5258 +                    if ((u = searchFunction.apply(p.val)) != null) {
5259 +                        if (result.compareAndSet(null, u))
5260 +                            quietlyCompleteRoot();
5261 +                        break;
5262 +                    }
5263 +                }
5264 +            }
5265 +        }
5266 +    }
5267 +
5268 +    @SuppressWarnings("serial")
5269 +    static final class SearchEntriesTask<K,V,U>
5270 +        extends BulkTask<K,V,U> {
5271 +        final Function<Entry<K,V>, ? extends U> searchFunction;
5272 +        final AtomicReference<U> result;
5273 +        SearchEntriesTask
5274 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5275 +             Function<Entry<K,V>, ? extends U> searchFunction,
5276 +             AtomicReference<U> result) {
5277 +            super(p, b, i, f, t);
5278 +            this.searchFunction = searchFunction; this.result = result;
5279 +        }
5280 +        public final U getRawResult() { return result.get(); }
5281 +        public final void compute() {
5282 +            final Function<Entry<K,V>, ? extends U> searchFunction;
5283 +            final AtomicReference<U> result;
5284 +            if ((searchFunction = this.searchFunction) != null &&
5285 +                (result = this.result) != null) {
5286 +                for (int i = baseIndex, f, h; batch > 0 &&
5287 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5288 +                    if (result.get() != null)
5289 +                        return;
5290 +                    addToPendingCount(1);
5291 +                    new SearchEntriesTask<K,V,U>
5292 +                        (this, batch >>>= 1, baseLimit = h, f, tab,
5293 +                         searchFunction, result).fork();
5294 +                }
5295 +                while (result.get() == null) {
5296 +                    U u;
5297 +                    Node<K,V> p;
5298 +                    if ((p = advance()) == null) {
5299 +                        propagateCompletion();
5300 +                        break;
5301 +                    }
5302 +                    if ((u = searchFunction.apply(p)) != null) {
5303 +                        if (result.compareAndSet(null, u))
5304 +                            quietlyCompleteRoot();
5305 +                        return;
5306 +                    }
5307 +                }
5308 +            }
5309 +        }
5310 +    }
5311 +
5312 +    @SuppressWarnings("serial")
5313 +    static final class SearchMappingsTask<K,V,U>
5314 +        extends BulkTask<K,V,U> {
5315 +        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5316 +        final AtomicReference<U> result;
5317 +        SearchMappingsTask
5318 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5319 +             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5320 +             AtomicReference<U> result) {
5321 +            super(p, b, i, f, t);
5322 +            this.searchFunction = searchFunction; this.result = result;
5323 +        }
5324 +        public final U getRawResult() { return result.get(); }
5325 +        public final void compute() {
5326 +            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5327 +            final AtomicReference<U> result;
5328 +            if ((searchFunction = this.searchFunction) != null &&
5329 +                (result = this.result) != null) {
5330 +                for (int i = baseIndex, f, h; batch > 0 &&
5331 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5332 +                    if (result.get() != null)
5333 +                        return;
5334 +                    addToPendingCount(1);
5335 +                    new SearchMappingsTask<K,V,U>
5336 +                        (this, batch >>>= 1, baseLimit = h, f, tab,
5337 +                         searchFunction, result).fork();
5338 +                }
5339 +                while (result.get() == null) {
5340 +                    U u;
5341 +                    Node<K,V> p;
5342 +                    if ((p = advance()) == null) {
5343 +                        propagateCompletion();
5344 +                        break;
5345 +                    }
5346 +                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5347 +                        if (result.compareAndSet(null, u))
5348 +                            quietlyCompleteRoot();
5349 +                        break;
5350 +                    }
5351 +                }
5352 +            }
5353 +        }
5354 +    }
5355 +
5356 +    @SuppressWarnings("serial")
5357 +    static final class ReduceKeysTask<K,V>
5358 +        extends BulkTask<K,V,K> {
5359 +        final BiFunction<? super K, ? super K, ? extends K> reducer;
5360 +        K result;
5361 +        ReduceKeysTask<K,V> rights, nextRight;
5362 +        ReduceKeysTask
5363 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5364 +             ReduceKeysTask<K,V> nextRight,
5365 +             BiFunction<? super K, ? super K, ? extends K> reducer) {
5366 +            super(p, b, i, f, t); this.nextRight = nextRight;
5367 +            this.reducer = reducer;
5368 +        }
5369 +        public final K getRawResult() { return result; }
5370 +        public final void compute() {
5371 +            final BiFunction<? super K, ? super K, ? extends K> reducer;
5372 +            if ((reducer = this.reducer) != null) {
5373 +                for (int i = baseIndex, f, h; batch > 0 &&
5374 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5375 +                    addToPendingCount(1);
5376 +                    (rights = new ReduceKeysTask<K,V>
5377 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5378 +                      rights, reducer)).fork();
5379 +                }
5380 +                K r = null;
5381 +                for (Node<K,V> p; (p = advance()) != null; ) {
5382 +                    K u = p.key;
5383 +                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5384 +                }
5385 +                result = r;
5386 +                CountedCompleter<?> c;
5387 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5388 +                    @SuppressWarnings("unchecked")
5389 +                    ReduceKeysTask<K,V>
5390 +                        t = (ReduceKeysTask<K,V>)c,
5391 +                        s = t.rights;
5392 +                    while (s != null) {
5393 +                        K tr, sr;
5394 +                        if ((sr = s.result) != null)
5395 +                            t.result = (((tr = t.result) == null) ? sr :
5396 +                                        reducer.apply(tr, sr));
5397 +                        s = t.rights = s.nextRight;
5398 +                    }
5399 +                }
5400 +            }
5401 +        }
5402 +    }
5403 +
5404 +    @SuppressWarnings("serial")
5405 +    static final class ReduceValuesTask<K,V>
5406 +        extends BulkTask<K,V,V> {
5407 +        final BiFunction<? super V, ? super V, ? extends V> reducer;
5408 +        V result;
5409 +        ReduceValuesTask<K,V> rights, nextRight;
5410 +        ReduceValuesTask
5411 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5412 +             ReduceValuesTask<K,V> nextRight,
5413 +             BiFunction<? super V, ? super V, ? extends V> reducer) {
5414 +            super(p, b, i, f, t); this.nextRight = nextRight;
5415 +            this.reducer = reducer;
5416 +        }
5417 +        public final V getRawResult() { return result; }
5418 +        public final void compute() {
5419 +            final BiFunction<? super V, ? super V, ? extends V> reducer;
5420 +            if ((reducer = this.reducer) != null) {
5421 +                for (int i = baseIndex, f, h; batch > 0 &&
5422 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5423 +                    addToPendingCount(1);
5424 +                    (rights = new ReduceValuesTask<K,V>
5425 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5426 +                      rights, reducer)).fork();
5427 +                }
5428 +                V r = null;
5429 +                for (Node<K,V> p; (p = advance()) != null; ) {
5430 +                    V v = p.val;
5431 +                    r = (r == null) ? v : reducer.apply(r, v);
5432 +                }
5433 +                result = r;
5434 +                CountedCompleter<?> c;
5435 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5436 +                    @SuppressWarnings("unchecked")
5437 +                    ReduceValuesTask<K,V>
5438 +                        t = (ReduceValuesTask<K,V>)c,
5439 +                        s = t.rights;
5440 +                    while (s != null) {
5441 +                        V tr, sr;
5442 +                        if ((sr = s.result) != null)
5443 +                            t.result = (((tr = t.result) == null) ? sr :
5444 +                                        reducer.apply(tr, sr));
5445 +                        s = t.rights = s.nextRight;
5446 +                    }
5447 +                }
5448 +            }
5449 +        }
5450 +    }
5451 +
5452 +    @SuppressWarnings("serial")
5453 +    static final class ReduceEntriesTask<K,V>
5454 +        extends BulkTask<K,V,Map.Entry<K,V>> {
5455 +        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5456 +        Map.Entry<K,V> result;
5457 +        ReduceEntriesTask<K,V> rights, nextRight;
5458 +        ReduceEntriesTask
5459 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5460 +             ReduceEntriesTask<K,V> nextRight,
5461 +             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5462 +            super(p, b, i, f, t); this.nextRight = nextRight;
5463 +            this.reducer = reducer;
5464 +        }
5465 +        public final Map.Entry<K,V> getRawResult() { return result; }
5466 +        public final void compute() {
5467 +            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5468 +            if ((reducer = this.reducer) != null) {
5469 +                for (int i = baseIndex, f, h; batch > 0 &&
5470 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5471 +                    addToPendingCount(1);
5472 +                    (rights = new ReduceEntriesTask<K,V>
5473 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5474 +                      rights, reducer)).fork();
5475 +                }
5476 +                Map.Entry<K,V> r = null;
5477 +                for (Node<K,V> p; (p = advance()) != null; )
5478 +                    r = (r == null) ? p : reducer.apply(r, p);
5479 +                result = r;
5480 +                CountedCompleter<?> c;
5481 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5482 +                    @SuppressWarnings("unchecked")
5483 +                    ReduceEntriesTask<K,V>
5484 +                        t = (ReduceEntriesTask<K,V>)c,
5485 +                        s = t.rights;
5486 +                    while (s != null) {
5487 +                        Map.Entry<K,V> tr, sr;
5488 +                        if ((sr = s.result) != null)
5489 +                            t.result = (((tr = t.result) == null) ? sr :
5490 +                                        reducer.apply(tr, sr));
5491 +                        s = t.rights = s.nextRight;
5492 +                    }
5493 +                }
5494 +            }
5495 +        }
5496 +    }
5497 +
5498 +    @SuppressWarnings("serial")
5499 +    static final class MapReduceKeysTask<K,V,U>
5500 +        extends BulkTask<K,V,U> {
5501 +        final Function<? super K, ? extends U> transformer;
5502 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
5503 +        U result;
5504 +        MapReduceKeysTask<K,V,U> rights, nextRight;
5505 +        MapReduceKeysTask
5506 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5507 +             MapReduceKeysTask<K,V,U> nextRight,
5508 +             Function<? super K, ? extends U> transformer,
5509 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
5510 +            super(p, b, i, f, t); this.nextRight = nextRight;
5511 +            this.transformer = transformer;
5512 +            this.reducer = reducer;
5513 +        }
5514 +        public final U getRawResult() { return result; }
5515 +        public final void compute() {
5516 +            final Function<? super K, ? extends U> transformer;
5517 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
5518 +            if ((transformer = this.transformer) != null &&
5519 +                (reducer = this.reducer) != null) {
5520 +                for (int i = baseIndex, f, h; batch > 0 &&
5521 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5522 +                    addToPendingCount(1);
5523 +                    (rights = new MapReduceKeysTask<K,V,U>
5524 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5525 +                      rights, transformer, reducer)).fork();
5526 +                }
5527 +                U r = null;
5528 +                for (Node<K,V> p; (p = advance()) != null; ) {
5529 +                    U u;
5530 +                    if ((u = transformer.apply(p.key)) != null)
5531 +                        r = (r == null) ? u : reducer.apply(r, u);
5532 +                }
5533 +                result = r;
5534 +                CountedCompleter<?> c;
5535 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5536 +                    @SuppressWarnings("unchecked")
5537 +                    MapReduceKeysTask<K,V,U>
5538 +                        t = (MapReduceKeysTask<K,V,U>)c,
5539 +                        s = t.rights;
5540 +                    while (s != null) {
5541 +                        U tr, sr;
5542 +                        if ((sr = s.result) != null)
5543 +                            t.result = (((tr = t.result) == null) ? sr :
5544 +                                        reducer.apply(tr, sr));
5545 +                        s = t.rights = s.nextRight;
5546 +                    }
5547 +                }
5548 +            }
5549 +        }
5550 +    }
5551 +
5552 +    @SuppressWarnings("serial")
5553 +    static final class MapReduceValuesTask<K,V,U>
5554 +        extends BulkTask<K,V,U> {
5555 +        final Function<? super V, ? extends U> transformer;
5556 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
5557 +        U result;
5558 +        MapReduceValuesTask<K,V,U> rights, nextRight;
5559 +        MapReduceValuesTask
5560 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5561 +             MapReduceValuesTask<K,V,U> nextRight,
5562 +             Function<? super V, ? extends U> transformer,
5563 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
5564 +            super(p, b, i, f, t); this.nextRight = nextRight;
5565 +            this.transformer = transformer;
5566 +            this.reducer = reducer;
5567 +        }
5568 +        public final U getRawResult() { return result; }
5569 +        public final void compute() {
5570 +            final Function<? super V, ? extends U> transformer;
5571 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
5572 +            if ((transformer = this.transformer) != null &&
5573 +                (reducer = this.reducer) != null) {
5574 +                for (int i = baseIndex, f, h; batch > 0 &&
5575 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5576 +                    addToPendingCount(1);
5577 +                    (rights = new MapReduceValuesTask<K,V,U>
5578 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5579 +                      rights, transformer, reducer)).fork();
5580 +                }
5581 +                U r = null;
5582 +                for (Node<K,V> p; (p = advance()) != null; ) {
5583 +                    U u;
5584 +                    if ((u = transformer.apply(p.val)) != null)
5585 +                        r = (r == null) ? u : reducer.apply(r, u);
5586 +                }
5587 +                result = r;
5588 +                CountedCompleter<?> c;
5589 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5590 +                    @SuppressWarnings("unchecked")
5591 +                    MapReduceValuesTask<K,V,U>
5592 +                        t = (MapReduceValuesTask<K,V,U>)c,
5593 +                        s = t.rights;
5594 +                    while (s != null) {
5595 +                        U tr, sr;
5596 +                        if ((sr = s.result) != null)
5597 +                            t.result = (((tr = t.result) == null) ? sr :
5598 +                                        reducer.apply(tr, sr));
5599 +                        s = t.rights = s.nextRight;
5600 +                    }
5601 +                }
5602 +            }
5603 +        }
5604 +    }
5605 +
5606 +    @SuppressWarnings("serial")
5607 +    static final class MapReduceEntriesTask<K,V,U>
5608 +        extends BulkTask<K,V,U> {
5609 +        final Function<Map.Entry<K,V>, ? extends U> transformer;
5610 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
5611 +        U result;
5612 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
5613 +        MapReduceEntriesTask
5614 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5615 +             MapReduceEntriesTask<K,V,U> nextRight,
5616 +             Function<Map.Entry<K,V>, ? extends U> transformer,
5617 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
5618 +            super(p, b, i, f, t); this.nextRight = nextRight;
5619 +            this.transformer = transformer;
5620 +            this.reducer = reducer;
5621 +        }
5622 +        public final U getRawResult() { return result; }
5623 +        public final void compute() {
5624 +            final Function<Map.Entry<K,V>, ? extends U> transformer;
5625 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
5626 +            if ((transformer = this.transformer) != null &&
5627 +                (reducer = this.reducer) != null) {
5628 +                for (int i = baseIndex, f, h; batch > 0 &&
5629 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5630 +                    addToPendingCount(1);
5631 +                    (rights = new MapReduceEntriesTask<K,V,U>
5632 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5633 +                      rights, transformer, reducer)).fork();
5634 +                }
5635 +                U r = null;
5636 +                for (Node<K,V> p; (p = advance()) != null; ) {
5637 +                    U u;
5638 +                    if ((u = transformer.apply(p)) != null)
5639 +                        r = (r == null) ? u : reducer.apply(r, u);
5640 +                }
5641 +                result = r;
5642 +                CountedCompleter<?> c;
5643 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5644 +                    @SuppressWarnings("unchecked")
5645 +                    MapReduceEntriesTask<K,V,U>
5646 +                        t = (MapReduceEntriesTask<K,V,U>)c,
5647 +                        s = t.rights;
5648 +                    while (s != null) {
5649 +                        U tr, sr;
5650 +                        if ((sr = s.result) != null)
5651 +                            t.result = (((tr = t.result) == null) ? sr :
5652 +                                        reducer.apply(tr, sr));
5653 +                        s = t.rights = s.nextRight;
5654 +                    }
5655 +                }
5656 +            }
5657 +        }
5658 +    }
5659 +
5660 +    @SuppressWarnings("serial")
5661 +    static final class MapReduceMappingsTask<K,V,U>
5662 +        extends BulkTask<K,V,U> {
5663 +        final BiFunction<? super K, ? super V, ? extends U> transformer;
5664 +        final BiFunction<? super U, ? super U, ? extends U> reducer;
5665 +        U result;
5666 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
5667 +        MapReduceMappingsTask
5668 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5669 +             MapReduceMappingsTask<K,V,U> nextRight,
5670 +             BiFunction<? super K, ? super V, ? extends U> transformer,
5671 +             BiFunction<? super U, ? super U, ? extends U> reducer) {
5672 +            super(p, b, i, f, t); this.nextRight = nextRight;
5673 +            this.transformer = transformer;
5674 +            this.reducer = reducer;
5675 +        }
5676 +        public final U getRawResult() { return result; }
5677 +        public final void compute() {
5678 +            final BiFunction<? super K, ? super V, ? extends U> transformer;
5679 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
5680 +            if ((transformer = this.transformer) != null &&
5681 +                (reducer = this.reducer) != null) {
5682 +                for (int i = baseIndex, f, h; batch > 0 &&
5683 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5684 +                    addToPendingCount(1);
5685 +                    (rights = new MapReduceMappingsTask<K,V,U>
5686 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5687 +                      rights, transformer, reducer)).fork();
5688 +                }
5689 +                U r = null;
5690 +                for (Node<K,V> p; (p = advance()) != null; ) {
5691 +                    U u;
5692 +                    if ((u = transformer.apply(p.key, p.val)) != null)
5693 +                        r = (r == null) ? u : reducer.apply(r, u);
5694 +                }
5695 +                result = r;
5696 +                CountedCompleter<?> c;
5697 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5698 +                    @SuppressWarnings("unchecked")
5699 +                    MapReduceMappingsTask<K,V,U>
5700 +                        t = (MapReduceMappingsTask<K,V,U>)c,
5701 +                        s = t.rights;
5702 +                    while (s != null) {
5703 +                        U tr, sr;
5704 +                        if ((sr = s.result) != null)
5705 +                            t.result = (((tr = t.result) == null) ? sr :
5706 +                                        reducer.apply(tr, sr));
5707 +                        s = t.rights = s.nextRight;
5708 +                    }
5709 +                }
5710 +            }
5711 +        }
5712 +    }
5713 +
5714 +    @SuppressWarnings("serial")
5715 +    static final class MapReduceKeysToDoubleTask<K,V>
5716 +        extends BulkTask<K,V,Double> {
5717 +        final ToDoubleFunction<? super K> transformer;
5718 +        final DoubleBinaryOperator reducer;
5719 +        final double basis;
5720 +        double result;
5721 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5722 +        MapReduceKeysToDoubleTask
5723 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5724 +             MapReduceKeysToDoubleTask<K,V> nextRight,
5725 +             ToDoubleFunction<? super K> transformer,
5726 +             double basis,
5727 +             DoubleBinaryOperator reducer) {
5728 +            super(p, b, i, f, t); this.nextRight = nextRight;
5729 +            this.transformer = transformer;
5730 +            this.basis = basis; this.reducer = reducer;
5731 +        }
5732 +        public final Double getRawResult() { return result; }
5733 +        public final void compute() {
5734 +            final ToDoubleFunction<? super K> transformer;
5735 +            final DoubleBinaryOperator reducer;
5736 +            if ((transformer = this.transformer) != null &&
5737 +                (reducer = this.reducer) != null) {
5738 +                double r = this.basis;
5739 +                for (int i = baseIndex, f, h; batch > 0 &&
5740 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5741 +                    addToPendingCount(1);
5742 +                    (rights = new MapReduceKeysToDoubleTask<K,V>
5743 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5744 +                      rights, transformer, r, reducer)).fork();
5745 +                }
5746 +                for (Node<K,V> p; (p = advance()) != null; )
5747 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5748 +                result = r;
5749 +                CountedCompleter<?> c;
5750 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5751 +                    @SuppressWarnings("unchecked")
5752 +                    MapReduceKeysToDoubleTask<K,V>
5753 +                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5754 +                        s = t.rights;
5755 +                    while (s != null) {
5756 +                        t.result = reducer.applyAsDouble(t.result, s.result);
5757 +                        s = t.rights = s.nextRight;
5758 +                    }
5759 +                }
5760 +            }
5761 +        }
5762 +    }
5763 +
5764 +    @SuppressWarnings("serial")
5765 +    static final class MapReduceValuesToDoubleTask<K,V>
5766 +        extends BulkTask<K,V,Double> {
5767 +        final ToDoubleFunction<? super V> transformer;
5768 +        final DoubleBinaryOperator reducer;
5769 +        final double basis;
5770 +        double result;
5771 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5772 +        MapReduceValuesToDoubleTask
5773 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5774 +             MapReduceValuesToDoubleTask<K,V> nextRight,
5775 +             ToDoubleFunction<? super V> transformer,
5776 +             double basis,
5777 +             DoubleBinaryOperator reducer) {
5778 +            super(p, b, i, f, t); this.nextRight = nextRight;
5779 +            this.transformer = transformer;
5780 +            this.basis = basis; this.reducer = reducer;
5781 +        }
5782 +        public final Double getRawResult() { return result; }
5783 +        public final void compute() {
5784 +            final ToDoubleFunction<? super V> transformer;
5785 +            final DoubleBinaryOperator reducer;
5786 +            if ((transformer = this.transformer) != null &&
5787 +                (reducer = this.reducer) != null) {
5788 +                double r = this.basis;
5789 +                for (int i = baseIndex, f, h; batch > 0 &&
5790 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5791 +                    addToPendingCount(1);
5792 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
5793 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5794 +                      rights, transformer, r, reducer)).fork();
5795 +                }
5796 +                for (Node<K,V> p; (p = advance()) != null; )
5797 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5798 +                result = r;
5799 +                CountedCompleter<?> c;
5800 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5801 +                    @SuppressWarnings("unchecked")
5802 +                    MapReduceValuesToDoubleTask<K,V>
5803 +                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5804 +                        s = t.rights;
5805 +                    while (s != null) {
5806 +                        t.result = reducer.applyAsDouble(t.result, s.result);
5807 +                        s = t.rights = s.nextRight;
5808 +                    }
5809 +                }
5810 +            }
5811 +        }
5812 +    }
5813 +
5814 +    @SuppressWarnings("serial")
5815 +    static final class MapReduceEntriesToDoubleTask<K,V>
5816 +        extends BulkTask<K,V,Double> {
5817 +        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5818 +        final DoubleBinaryOperator reducer;
5819 +        final double basis;
5820 +        double result;
5821 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5822 +        MapReduceEntriesToDoubleTask
5823 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5824 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
5825 +             ToDoubleFunction<Map.Entry<K,V>> transformer,
5826 +             double basis,
5827 +             DoubleBinaryOperator reducer) {
5828 +            super(p, b, i, f, t); this.nextRight = nextRight;
5829 +            this.transformer = transformer;
5830 +            this.basis = basis; this.reducer = reducer;
5831 +        }
5832 +        public final Double getRawResult() { return result; }
5833 +        public final void compute() {
5834 +            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5835 +            final DoubleBinaryOperator reducer;
5836 +            if ((transformer = this.transformer) != null &&
5837 +                (reducer = this.reducer) != null) {
5838 +                double r = this.basis;
5839 +                for (int i = baseIndex, f, h; batch > 0 &&
5840 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5841 +                    addToPendingCount(1);
5842 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5843 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5844 +                      rights, transformer, r, reducer)).fork();
5845 +                }
5846 +                for (Node<K,V> p; (p = advance()) != null; )
5847 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5848 +                result = r;
5849 +                CountedCompleter<?> c;
5850 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5851 +                    @SuppressWarnings("unchecked")
5852 +                    MapReduceEntriesToDoubleTask<K,V>
5853 +                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5854 +                        s = t.rights;
5855 +                    while (s != null) {
5856 +                        t.result = reducer.applyAsDouble(t.result, s.result);
5857 +                        s = t.rights = s.nextRight;
5858 +                    }
5859 +                }
5860 +            }
5861 +        }
5862 +    }
5863 +
5864 +    @SuppressWarnings("serial")
5865 +    static final class MapReduceMappingsToDoubleTask<K,V>
5866 +        extends BulkTask<K,V,Double> {
5867 +        final ToDoubleBiFunction<? super K, ? super V> transformer;
5868 +        final DoubleBinaryOperator reducer;
5869 +        final double basis;
5870 +        double result;
5871 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5872 +        MapReduceMappingsToDoubleTask
5873 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5874 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
5875 +             ToDoubleBiFunction<? super K, ? super V> transformer,
5876 +             double basis,
5877 +             DoubleBinaryOperator reducer) {
5878 +            super(p, b, i, f, t); this.nextRight = nextRight;
5879 +            this.transformer = transformer;
5880 +            this.basis = basis; this.reducer = reducer;
5881 +        }
5882 +        public final Double getRawResult() { return result; }
5883 +        public final void compute() {
5884 +            final ToDoubleBiFunction<? super K, ? super V> transformer;
5885 +            final DoubleBinaryOperator reducer;
5886 +            if ((transformer = this.transformer) != null &&
5887 +                (reducer = this.reducer) != null) {
5888 +                double r = this.basis;
5889 +                for (int i = baseIndex, f, h; batch > 0 &&
5890 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5891 +                    addToPendingCount(1);
5892 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5893 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5894 +                      rights, transformer, r, reducer)).fork();
5895 +                }
5896 +                for (Node<K,V> p; (p = advance()) != null; )
5897 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5898 +                result = r;
5899 +                CountedCompleter<?> c;
5900 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5901 +                    @SuppressWarnings("unchecked")
5902 +                    MapReduceMappingsToDoubleTask<K,V>
5903 +                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5904 +                        s = t.rights;
5905 +                    while (s != null) {
5906 +                        t.result = reducer.applyAsDouble(t.result, s.result);
5907 +                        s = t.rights = s.nextRight;
5908 +                    }
5909 +                }
5910 +            }
5911 +        }
5912 +    }
5913 +
5914 +    @SuppressWarnings("serial")
5915 +    static final class MapReduceKeysToLongTask<K,V>
5916 +        extends BulkTask<K,V,Long> {
5917 +        final ToLongFunction<? super K> transformer;
5918 +        final LongBinaryOperator reducer;
5919 +        final long basis;
5920 +        long result;
5921 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
5922 +        MapReduceKeysToLongTask
5923 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5924 +             MapReduceKeysToLongTask<K,V> nextRight,
5925 +             ToLongFunction<? super K> transformer,
5926 +             long basis,
5927 +             LongBinaryOperator reducer) {
5928 +            super(p, b, i, f, t); this.nextRight = nextRight;
5929 +            this.transformer = transformer;
5930 +            this.basis = basis; this.reducer = reducer;
5931 +        }
5932 +        public final Long getRawResult() { return result; }
5933 +        public final void compute() {
5934 +            final ToLongFunction<? super K> transformer;
5935 +            final LongBinaryOperator reducer;
5936 +            if ((transformer = this.transformer) != null &&
5937 +                (reducer = this.reducer) != null) {
5938 +                long r = this.basis;
5939 +                for (int i = baseIndex, f, h; batch > 0 &&
5940 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5941 +                    addToPendingCount(1);
5942 +                    (rights = new MapReduceKeysToLongTask<K,V>
5943 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5944 +                      rights, transformer, r, reducer)).fork();
5945 +                }
5946 +                for (Node<K,V> p; (p = advance()) != null; )
5947 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5948 +                result = r;
5949 +                CountedCompleter<?> c;
5950 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5951 +                    @SuppressWarnings("unchecked")
5952 +                    MapReduceKeysToLongTask<K,V>
5953 +                        t = (MapReduceKeysToLongTask<K,V>)c,
5954 +                        s = t.rights;
5955 +                    while (s != null) {
5956 +                        t.result = reducer.applyAsLong(t.result, s.result);
5957 +                        s = t.rights = s.nextRight;
5958 +                    }
5959 +                }
5960 +            }
5961 +        }
5962 +    }
5963 +
5964 +    @SuppressWarnings("serial")
5965 +    static final class MapReduceValuesToLongTask<K,V>
5966 +        extends BulkTask<K,V,Long> {
5967 +        final ToLongFunction<? super V> transformer;
5968 +        final LongBinaryOperator reducer;
5969 +        final long basis;
5970 +        long result;
5971 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
5972 +        MapReduceValuesToLongTask
5973 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5974 +             MapReduceValuesToLongTask<K,V> nextRight,
5975 +             ToLongFunction<? super V> transformer,
5976 +             long basis,
5977 +             LongBinaryOperator reducer) {
5978 +            super(p, b, i, f, t); this.nextRight = nextRight;
5979 +            this.transformer = transformer;
5980 +            this.basis = basis; this.reducer = reducer;
5981 +        }
5982 +        public final Long getRawResult() { return result; }
5983 +        public final void compute() {
5984 +            final ToLongFunction<? super V> transformer;
5985 +            final LongBinaryOperator reducer;
5986 +            if ((transformer = this.transformer) != null &&
5987 +                (reducer = this.reducer) != null) {
5988 +                long r = this.basis;
5989 +                for (int i = baseIndex, f, h; batch > 0 &&
5990 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5991 +                    addToPendingCount(1);
5992 +                    (rights = new MapReduceValuesToLongTask<K,V>
5993 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5994 +                      rights, transformer, r, reducer)).fork();
5995 +                }
5996 +                for (Node<K,V> p; (p = advance()) != null; )
5997 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5998 +                result = r;
5999 +                CountedCompleter<?> c;
6000 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6001 +                    @SuppressWarnings("unchecked")
6002 +                    MapReduceValuesToLongTask<K,V>
6003 +                        t = (MapReduceValuesToLongTask<K,V>)c,
6004 +                        s = t.rights;
6005 +                    while (s != null) {
6006 +                        t.result = reducer.applyAsLong(t.result, s.result);
6007 +                        s = t.rights = s.nextRight;
6008 +                    }
6009 +                }
6010 +            }
6011 +        }
6012 +    }
6013 +
6014 +    @SuppressWarnings("serial")
6015 +    static final class MapReduceEntriesToLongTask<K,V>
6016 +        extends BulkTask<K,V,Long> {
6017 +        final ToLongFunction<Map.Entry<K,V>> transformer;
6018 +        final LongBinaryOperator reducer;
6019 +        final long basis;
6020 +        long result;
6021 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6022 +        MapReduceEntriesToLongTask
6023 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6024 +             MapReduceEntriesToLongTask<K,V> nextRight,
6025 +             ToLongFunction<Map.Entry<K,V>> transformer,
6026 +             long basis,
6027 +             LongBinaryOperator reducer) {
6028 +            super(p, b, i, f, t); this.nextRight = nextRight;
6029 +            this.transformer = transformer;
6030 +            this.basis = basis; this.reducer = reducer;
6031 +        }
6032 +        public final Long getRawResult() { return result; }
6033 +        public final void compute() {
6034 +            final ToLongFunction<Map.Entry<K,V>> transformer;
6035 +            final LongBinaryOperator reducer;
6036 +            if ((transformer = this.transformer) != null &&
6037 +                (reducer = this.reducer) != null) {
6038 +                long r = this.basis;
6039 +                for (int i = baseIndex, f, h; batch > 0 &&
6040 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6041 +                    addToPendingCount(1);
6042 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6043 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6044 +                      rights, transformer, r, reducer)).fork();
6045 +                }
6046 +                for (Node<K,V> p; (p = advance()) != null; )
6047 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6048 +                result = r;
6049 +                CountedCompleter<?> c;
6050 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6051 +                    @SuppressWarnings("unchecked")
6052 +                    MapReduceEntriesToLongTask<K,V>
6053 +                        t = (MapReduceEntriesToLongTask<K,V>)c,
6054 +                        s = t.rights;
6055 +                    while (s != null) {
6056 +                        t.result = reducer.applyAsLong(t.result, s.result);
6057 +                        s = t.rights = s.nextRight;
6058 +                    }
6059 +                }
6060 +            }
6061 +        }
6062 +    }
6063 +
6064 +    @SuppressWarnings("serial")
6065 +    static final class MapReduceMappingsToLongTask<K,V>
6066 +        extends BulkTask<K,V,Long> {
6067 +        final ToLongBiFunction<? super K, ? super V> transformer;
6068 +        final LongBinaryOperator reducer;
6069 +        final long basis;
6070 +        long result;
6071 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6072 +        MapReduceMappingsToLongTask
6073 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6074 +             MapReduceMappingsToLongTask<K,V> nextRight,
6075 +             ToLongBiFunction<? super K, ? super V> transformer,
6076 +             long basis,
6077 +             LongBinaryOperator reducer) {
6078 +            super(p, b, i, f, t); this.nextRight = nextRight;
6079 +            this.transformer = transformer;
6080 +            this.basis = basis; this.reducer = reducer;
6081 +        }
6082 +        public final Long getRawResult() { return result; }
6083 +        public final void compute() {
6084 +            final ToLongBiFunction<? super K, ? super V> transformer;
6085 +            final LongBinaryOperator reducer;
6086 +            if ((transformer = this.transformer) != null &&
6087 +                (reducer = this.reducer) != null) {
6088 +                long r = this.basis;
6089 +                for (int i = baseIndex, f, h; batch > 0 &&
6090 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6091 +                    addToPendingCount(1);
6092 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6093 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6094 +                      rights, transformer, r, reducer)).fork();
6095 +                }
6096 +                for (Node<K,V> p; (p = advance()) != null; )
6097 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6098 +                result = r;
6099 +                CountedCompleter<?> c;
6100 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6101 +                    @SuppressWarnings("unchecked")
6102 +                    MapReduceMappingsToLongTask<K,V>
6103 +                        t = (MapReduceMappingsToLongTask<K,V>)c,
6104 +                        s = t.rights;
6105 +                    while (s != null) {
6106 +                        t.result = reducer.applyAsLong(t.result, s.result);
6107 +                        s = t.rights = s.nextRight;
6108 +                    }
6109 +                }
6110 +            }
6111 +        }
6112 +    }
6113 +
6114 +    @SuppressWarnings("serial")
6115 +    static final class MapReduceKeysToIntTask<K,V>
6116 +        extends BulkTask<K,V,Integer> {
6117 +        final ToIntFunction<? super K> transformer;
6118 +        final IntBinaryOperator reducer;
6119 +        final int basis;
6120 +        int result;
6121 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6122 +        MapReduceKeysToIntTask
6123 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6124 +             MapReduceKeysToIntTask<K,V> nextRight,
6125 +             ToIntFunction<? super K> transformer,
6126 +             int basis,
6127 +             IntBinaryOperator reducer) {
6128 +            super(p, b, i, f, t); this.nextRight = nextRight;
6129 +            this.transformer = transformer;
6130 +            this.basis = basis; this.reducer = reducer;
6131 +        }
6132 +        public final Integer getRawResult() { return result; }
6133 +        public final void compute() {
6134 +            final ToIntFunction<? super K> transformer;
6135 +            final IntBinaryOperator reducer;
6136 +            if ((transformer = this.transformer) != null &&
6137 +                (reducer = this.reducer) != null) {
6138 +                int r = this.basis;
6139 +                for (int i = baseIndex, f, h; batch > 0 &&
6140 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6141 +                    addToPendingCount(1);
6142 +                    (rights = new MapReduceKeysToIntTask<K,V>
6143 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6144 +                      rights, transformer, r, reducer)).fork();
6145 +                }
6146 +                for (Node<K,V> p; (p = advance()) != null; )
6147 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6148 +                result = r;
6149 +                CountedCompleter<?> c;
6150 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6151 +                    @SuppressWarnings("unchecked")
6152 +                    MapReduceKeysToIntTask<K,V>
6153 +                        t = (MapReduceKeysToIntTask<K,V>)c,
6154 +                        s = t.rights;
6155 +                    while (s != null) {
6156 +                        t.result = reducer.applyAsInt(t.result, s.result);
6157 +                        s = t.rights = s.nextRight;
6158 +                    }
6159 +                }
6160 +            }
6161 +        }
6162 +    }
6163 +
6164 +    @SuppressWarnings("serial")
6165 +    static final class MapReduceValuesToIntTask<K,V>
6166 +        extends BulkTask<K,V,Integer> {
6167 +        final ToIntFunction<? super V> transformer;
6168 +        final IntBinaryOperator reducer;
6169 +        final int basis;
6170 +        int result;
6171 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6172 +        MapReduceValuesToIntTask
6173 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6174 +             MapReduceValuesToIntTask<K,V> nextRight,
6175 +             ToIntFunction<? super V> transformer,
6176 +             int basis,
6177 +             IntBinaryOperator reducer) {
6178 +            super(p, b, i, f, t); this.nextRight = nextRight;
6179 +            this.transformer = transformer;
6180 +            this.basis = basis; this.reducer = reducer;
6181 +        }
6182 +        public final Integer getRawResult() { return result; }
6183 +        public final void compute() {
6184 +            final ToIntFunction<? super V> transformer;
6185 +            final IntBinaryOperator reducer;
6186 +            if ((transformer = this.transformer) != null &&
6187 +                (reducer = this.reducer) != null) {
6188 +                int r = this.basis;
6189 +                for (int i = baseIndex, f, h; batch > 0 &&
6190 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6191 +                    addToPendingCount(1);
6192 +                    (rights = new MapReduceValuesToIntTask<K,V>
6193 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6194 +                      rights, transformer, r, reducer)).fork();
6195 +                }
6196 +                for (Node<K,V> p; (p = advance()) != null; )
6197 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6198 +                result = r;
6199 +                CountedCompleter<?> c;
6200 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6201 +                    @SuppressWarnings("unchecked")
6202 +                    MapReduceValuesToIntTask<K,V>
6203 +                        t = (MapReduceValuesToIntTask<K,V>)c,
6204 +                        s = t.rights;
6205 +                    while (s != null) {
6206 +                        t.result = reducer.applyAsInt(t.result, s.result);
6207 +                        s = t.rights = s.nextRight;
6208 +                    }
6209 +                }
6210 +            }
6211 +        }
6212 +    }
6213 +
6214 +    @SuppressWarnings("serial")
6215 +    static final class MapReduceEntriesToIntTask<K,V>
6216 +        extends BulkTask<K,V,Integer> {
6217 +        final ToIntFunction<Map.Entry<K,V>> transformer;
6218 +        final IntBinaryOperator reducer;
6219 +        final int basis;
6220 +        int result;
6221 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6222 +        MapReduceEntriesToIntTask
6223 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6224 +             MapReduceEntriesToIntTask<K,V> nextRight,
6225 +             ToIntFunction<Map.Entry<K,V>> transformer,
6226 +             int basis,
6227 +             IntBinaryOperator reducer) {
6228 +            super(p, b, i, f, t); this.nextRight = nextRight;
6229 +            this.transformer = transformer;
6230 +            this.basis = basis; this.reducer = reducer;
6231 +        }
6232 +        public final Integer getRawResult() { return result; }
6233 +        public final void compute() {
6234 +            final ToIntFunction<Map.Entry<K,V>> transformer;
6235 +            final IntBinaryOperator reducer;
6236 +            if ((transformer = this.transformer) != null &&
6237 +                (reducer = this.reducer) != null) {
6238 +                int r = this.basis;
6239 +                for (int i = baseIndex, f, h; batch > 0 &&
6240 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6241 +                    addToPendingCount(1);
6242 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6243 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6244 +                      rights, transformer, r, reducer)).fork();
6245 +                }
6246 +                for (Node<K,V> p; (p = advance()) != null; )
6247 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6248 +                result = r;
6249 +                CountedCompleter<?> c;
6250 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6251 +                    @SuppressWarnings("unchecked")
6252 +                    MapReduceEntriesToIntTask<K,V>
6253 +                        t = (MapReduceEntriesToIntTask<K,V>)c,
6254 +                        s = t.rights;
6255 +                    while (s != null) {
6256 +                        t.result = reducer.applyAsInt(t.result, s.result);
6257 +                        s = t.rights = s.nextRight;
6258 +                    }
6259 +                }
6260 +            }
6261 +        }
6262 +    }
6263 +
6264 +    @SuppressWarnings("serial")
6265 +    static final class MapReduceMappingsToIntTask<K,V>
6266 +        extends BulkTask<K,V,Integer> {
6267 +        final ToIntBiFunction<? super K, ? super V> transformer;
6268 +        final IntBinaryOperator reducer;
6269 +        final int basis;
6270 +        int result;
6271 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6272 +        MapReduceMappingsToIntTask
6273 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6274 +             MapReduceMappingsToIntTask<K,V> nextRight,
6275 +             ToIntBiFunction<? super K, ? super V> transformer,
6276 +             int basis,
6277 +             IntBinaryOperator reducer) {
6278 +            super(p, b, i, f, t); this.nextRight = nextRight;
6279 +            this.transformer = transformer;
6280 +            this.basis = basis; this.reducer = reducer;
6281 +        }
6282 +        public final Integer getRawResult() { return result; }
6283 +        public final void compute() {
6284 +            final ToIntBiFunction<? super K, ? super V> transformer;
6285 +            final IntBinaryOperator reducer;
6286 +            if ((transformer = this.transformer) != null &&
6287 +                (reducer = this.reducer) != null) {
6288 +                int r = this.basis;
6289 +                for (int i = baseIndex, f, h; batch > 0 &&
6290 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6291 +                    addToPendingCount(1);
6292 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6293 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6294 +                      rights, transformer, r, reducer)).fork();
6295 +                }
6296 +                for (Node<K,V> p; (p = advance()) != null; )
6297 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6298 +                result = r;
6299 +                CountedCompleter<?> c;
6300 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6301 +                    @SuppressWarnings("unchecked")
6302 +                    MapReduceMappingsToIntTask<K,V>
6303 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
6304 +                        s = t.rights;
6305 +                    while (s != null) {
6306 +                        t.result = reducer.applyAsInt(t.result, s.result);
6307 +                        s = t.rights = s.nextRight;
6308 +                    }
6309 +                }
6310 +            }
6311 +        }
6312 +    }
6313 +
6314 +    // Unsafe mechanics
6315 +    private static final jdk.internal.misc.Unsafe U = jdk.internal.misc.Unsafe.getUnsafe();
6316 +    private static final long SIZECTL;
6317 +    private static final long TRANSFERINDEX;
6318 +    private static final long BASECOUNT;
6319 +    private static final long CELLSBUSY;
6320 +    private static final long CELLVALUE;
6321 +    private static final int ABASE;
6322 +    private static final int ASHIFT;
6323 +
6324 +    static {
6325 +        try {
6326 +            SIZECTL = U.objectFieldOffset
6327 +                (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6328 +            TRANSFERINDEX = U.objectFieldOffset
6329 +                (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6330 +            BASECOUNT = U.objectFieldOffset
6331 +                (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6332 +            CELLSBUSY = U.objectFieldOffset
6333 +                (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6334 +
6335 +            CELLVALUE = U.objectFieldOffset
6336 +                (CounterCell.class.getDeclaredField("value"));
6337 +
6338 +            ABASE = U.arrayBaseOffset(Node[].class);
6339 +            int scale = U.arrayIndexScale(Node[].class);
6340 +            if ((scale & (scale - 1)) != 0)
6341 +                throw new Error("array index scale not a power of two");
6342 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6343 +        } catch (ReflectiveOperationException e) {
6344 +            throw new Error(e);
6345 +        }
6346 +
6347 +        // Reduce the risk of rare disastrous classloading in first call to
6348 +        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6349 +        Class<?> ensureLoaded = LockSupport.class;
6350 +    }
6351   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines