ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.20
Committed: Tue Oct 12 05:30:34 2010 UTC (13 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.19: +1 -1 lines
Log Message:
very small comment fix

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea and Martin Buchholz with assistance from members of
3     * JCP JSR-166 Expert Group and released to the public domain, as explained
4     * at http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractCollection;
10     import java.util.ArrayList;
11     import java.util.Collection;
12 jsr166 1.12 import java.util.ConcurrentModificationException;
13 jsr166 1.1 import java.util.Deque;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.12 import java.util.Queue;
17 jsr166 1.1
18     /**
19 jsr166 1.3 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
20     * Concurrent insertion, removal, and access operations execute safely
21     * across multiple threads.
22     * A {@code ConcurrentLinkedDeque} is an appropriate choice when
23     * many threads will share access to a common collection.
24     * Like most other concurrent collection implementations, this class
25     * does not permit the use of {@code null} elements.
26     *
27     * <p>Iterators are <i>weakly consistent</i>, returning elements
28     * reflecting the state of the deque at some point at or since the
29     * creation of the iterator. They do <em>not</em> throw {@link
30     * java.util.ConcurrentModificationException
31 jsr166 1.1 * ConcurrentModificationException}, and may proceed concurrently with
32     * other operations.
33     *
34 jsr166 1.3 * <p>Beware that, unlike in most collections, the {@code size}
35 jsr166 1.1 * method is <em>NOT</em> a constant-time operation. Because of the
36     * asynchronous nature of these deques, determining the current number
37 jsr166 1.3 * of elements requires a traversal of the elements.
38     *
39     * <p>This class and its iterator implement all of the <em>optional</em>
40     * methods of the {@link Deque} and {@link Iterator} interfaces.
41 jsr166 1.1 *
42 jsr166 1.3 * <p>Memory consistency effects: As with other concurrent collections,
43     * actions in a thread prior to placing an object into a
44     * {@code ConcurrentLinkedDeque}
45     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
46     * actions subsequent to the access or removal of that element from
47     * the {@code ConcurrentLinkedDeque} in another thread.
48 jsr166 1.1 *
49 jsr166 1.3 * <p>This class is a member of the
50     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
51     * Java Collections Framework</a>.
52     *
53     * @since 1.7
54     * @author Doug Lea
55     * @author Martin Buchholz
56 jsr166 1.1 * @param <E> the type of elements held in this collection
57     */
58    
59     public class ConcurrentLinkedDeque<E>
60     extends AbstractCollection<E>
61     implements Deque<E>, java.io.Serializable {
62    
63     /*
64     * This is an implementation of a concurrent lock-free deque
65     * supporting interior removes but not interior insertions, as
66 jsr166 1.3 * required to support the entire Deque interface.
67     *
68     * We extend the techniques developed for ConcurrentLinkedQueue and
69     * LinkedTransferQueue (see the internal docs for those classes).
70 jsr166 1.5 * Understanding the ConcurrentLinkedQueue implementation is a
71     * prerequisite for understanding the implementation of this class.
72 jsr166 1.3 *
73     * The data structure is a symmetrical doubly-linked "GC-robust"
74     * linked list of nodes. We minimize the number of volatile writes
75     * using two techniques: advancing multiple hops with a single CAS
76     * and mixing volatile and non-volatile writes of the same memory
77     * locations.
78     *
79     * A node contains the expected E ("item") and links to predecessor
80     * ("prev") and successor ("next") nodes:
81     *
82     * class Node<E> { volatile Node<E> prev, next; volatile E item; }
83     *
84     * A node p is considered "live" if it contains a non-null item
85     * (p.item != null). When an item is CASed to null, the item is
86     * atomically logically deleted from the collection.
87     *
88     * At any time, there is precisely one "first" node with a null
89     * prev reference that terminates any chain of prev references
90     * starting at a live node. Similarly there is precisely one
91     * "last" node terminating any chain of next references starting at
92     * a live node. The "first" and "last" nodes may or may not be live.
93     * The "first" and "last" nodes are always mutually reachable.
94     *
95     * A new element is added atomically by CASing the null prev or
96     * next reference in the first or last node to a fresh node
97 jsr166 1.6 * containing the element. The element's node atomically becomes
98     * "live" at that point.
99 jsr166 1.3 *
100     * A node is considered "active" if it is a live node, or the
101     * first or last node. Active nodes cannot be unlinked.
102     *
103     * A "self-link" is a next or prev reference that is the same node:
104     * p.prev == p or p.next == p
105     * Self-links are used in the node unlinking process. Active nodes
106     * never have self-links.
107 jsr166 1.1 *
108 jsr166 1.3 * A node p is active if and only if:
109 jsr166 1.1 *
110     * p.item != null ||
111     * (p.prev == null && p.next != p) ||
112     * (p.next == null && p.prev != p)
113     *
114 jsr166 1.3 * The deque object has two node references, "head" and "tail".
115     * The head and tail are only approximations to the first and last
116     * nodes of the deque. The first node can always be found by
117 jsr166 1.1 * following prev pointers from head; likewise for tail. However,
118 jsr166 1.3 * it is permissible for head and tail to be referring to deleted
119     * nodes that have been unlinked and so may not be reachable from
120     * any live node.
121     *
122     * There are 3 stages of node deletion;
123     * "logical deletion", "unlinking", and "gc-unlinking".
124     *
125     * 1. "logical deletion" by CASing item to null atomically removes
126     * the element from the collection, and makes the containing node
127     * eligible for unlinking.
128     *
129     * 2. "unlinking" makes a deleted node unreachable from active
130     * nodes, and thus eventually reclaimable by GC. Unlinked nodes
131     * may remain reachable indefinitely from an iterator.
132     *
133     * Physical node unlinking is merely an optimization (albeit a
134     * critical one), and so can be performed at our convenience. At
135     * any time, the set of live nodes maintained by prev and next
136     * links are identical, that is, the live nodes found via next
137     * links from the first node is equal to the elements found via
138     * prev links from the last node. However, this is not true for
139     * nodes that have already been logically deleted - such nodes may
140     * be reachable in one direction only.
141     *
142     * 3. "gc-unlinking" takes unlinking further by making active
143     * nodes unreachable from deleted nodes, making it easier for the
144     * GC to reclaim future deleted nodes. This step makes the data
145     * structure "gc-robust", as first described in detail by Boehm
146     * (http://portal.acm.org/citation.cfm?doid=503272.503282).
147     *
148     * GC-unlinked nodes may remain reachable indefinitely from an
149     * iterator, but unlike unlinked nodes, are never reachable from
150     * head or tail.
151     *
152     * Making the data structure GC-robust will eliminate the risk of
153     * unbounded memory retention with conservative GCs and is likely
154     * to improve performance with generational GCs.
155     *
156     * When a node is dequeued at either end, e.g. via poll(), we would
157     * like to break any references from the node to active nodes. We
158     * develop further the use of self-links that was very effective in
159     * other concurrent collection classes. The idea is to replace
160     * prev and next pointers with special values that are interpreted
161     * to mean off-the-list-at-one-end. These are approximations, but
162     * good enough to preserve the properties we want in our
163     * traversals, e.g. we guarantee that a traversal will never visit
164     * the same element twice, but we don't guarantee whether a
165     * traversal that runs out of elements will be able to see more
166     * elements later after enqueues at that end. Doing gc-unlinking
167     * safely is particularly tricky, since any node can be in use
168     * indefinitely (for example by an iterator). We must ensure that
169     * the nodes pointed at by head/tail never get gc-unlinked, since
170     * head/tail are needed to get "back on track" by other nodes that
171     * are gc-unlinked. gc-unlinking accounts for much of the
172     * implementation complexity.
173 jsr166 1.1 *
174     * Since neither unlinking nor gc-unlinking are necessary for
175     * correctness, there are many implementation choices regarding
176     * frequency (eagerness) of these operations. Since volatile
177     * reads are likely to be much cheaper than CASes, saving CASes by
178     * unlinking multiple adjacent nodes at a time may be a win.
179     * gc-unlinking can be performed rarely and still be effective,
180     * since it is most important that long chains of deleted nodes
181     * are occasionally broken.
182     *
183     * The actual representation we use is that p.next == p means to
184 jsr166 1.3 * goto the first node (which in turn is reached by following prev
185     * pointers from head), and p.next == null && p.prev == p means
186 jsr166 1.18 * that the iteration is at an end and that p is a (static final)
187 jsr166 1.1 * dummy node, NEXT_TERMINATOR, and not the last active node.
188     * Finishing the iteration when encountering such a TERMINATOR is
189 jsr166 1.3 * good enough for read-only traversals, so such traversals can use
190     * p.next == null as the termination condition. When we need to
191     * find the last (active) node, for enqueueing a new node, we need
192     * to check whether we have reached a TERMINATOR node; if so,
193     * restart traversal from tail.
194 jsr166 1.1 *
195     * The implementation is completely directionally symmetrical,
196     * except that most public methods that iterate through the list
197     * follow next pointers ("forward" direction).
198     *
199 jsr166 1.5 * We believe (without full proof) that all single-element deque
200     * operations (e.g., addFirst, peekLast, pollLast) are linearizable
201     * (see Herlihy and Shavit's book). However, some combinations of
202     * operations are known not to be linearizable. In particular,
203     * when an addFirst(A) is racing with pollFirst() removing B, it is
204     * possible for an observer iterating over the elements to observe
205     * A B C and subsequently observe A C, even though no interior
206     * removes are ever performed. Nevertheless, iterators behave
207     * reasonably, providing the "weakly consistent" guarantees.
208 jsr166 1.1 *
209     * Empirically, microbenchmarks suggest that this class adds about
210     * 40% overhead relative to ConcurrentLinkedQueue, which feels as
211     * good as we can hope for.
212     */
213    
214 jsr166 1.3 private static final long serialVersionUID = 876323262645176354L;
215    
216 jsr166 1.1 /**
217 jsr166 1.3 * A node from which the first node on list (that is, the unique node p
218     * with p.prev == null && p.next != p) can be reached in O(1) time.
219 jsr166 1.1 * Invariants:
220     * - the first node is always O(1) reachable from head via prev links
221     * - all live nodes are reachable from the first node via succ()
222     * - head != null
223     * - (tmp = head).next != tmp || tmp != head
224 jsr166 1.3 * - head is never gc-unlinked (but may be unlinked)
225 jsr166 1.1 * Non-invariants:
226     * - head.item may or may not be null
227     * - head may not be reachable from the first or last node, or from tail
228     */
229 jsr166 1.3 private transient volatile Node<E> head;
230    
231     /**
232     * A node from which the last node on list (that is, the unique node p
233     * with p.next == null && p.prev != p) can be reached in O(1) time.
234     * Invariants:
235     * - the last node is always O(1) reachable from tail via next links
236     * - all live nodes are reachable from the last node via pred()
237     * - tail != null
238     * - tail is never gc-unlinked (but may be unlinked)
239     * Non-invariants:
240     * - tail.item may or may not be null
241     * - tail may not be reachable from the first or last node, or from head
242     */
243     private transient volatile Node<E> tail;
244 jsr166 1.1
245 jsr166 1.18 private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
246 jsr166 1.1
247     static {
248     PREV_TERMINATOR = new Node<Object>(null);
249     PREV_TERMINATOR.next = PREV_TERMINATOR;
250     NEXT_TERMINATOR = new Node<Object>(null);
251     NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
252     }
253    
254     @SuppressWarnings("unchecked")
255     Node<E> prevTerminator() {
256     return (Node<E>) PREV_TERMINATOR;
257     }
258    
259     @SuppressWarnings("unchecked")
260     Node<E> nextTerminator() {
261     return (Node<E>) NEXT_TERMINATOR;
262     }
263    
264     static final class Node<E> {
265     volatile Node<E> prev;
266     volatile E item;
267     volatile Node<E> next;
268    
269 jsr166 1.4 /**
270     * Constructs a new node. Uses relaxed write because item can
271     * only be seen after publication via casNext or casPrev.
272     */
273 jsr166 1.1 Node(E item) {
274 jsr166 1.4 UNSAFE.putObject(this, itemOffset, item);
275 jsr166 1.1 }
276    
277     boolean casItem(E cmp, E val) {
278     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
279     }
280    
281     void lazySetNext(Node<E> val) {
282     UNSAFE.putOrderedObject(this, nextOffset, val);
283     }
284    
285     boolean casNext(Node<E> cmp, Node<E> val) {
286     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
287     }
288    
289     void lazySetPrev(Node<E> val) {
290     UNSAFE.putOrderedObject(this, prevOffset, val);
291     }
292    
293     boolean casPrev(Node<E> cmp, Node<E> val) {
294     return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
295     }
296    
297     // Unsafe mechanics
298    
299     private static final sun.misc.Unsafe UNSAFE =
300     sun.misc.Unsafe.getUnsafe();
301     private static final long prevOffset =
302     objectFieldOffset(UNSAFE, "prev", Node.class);
303     private static final long itemOffset =
304     objectFieldOffset(UNSAFE, "item", Node.class);
305     private static final long nextOffset =
306     objectFieldOffset(UNSAFE, "next", Node.class);
307     }
308    
309     /**
310     * Links e as first element.
311     */
312     private void linkFirst(E e) {
313     checkNotNull(e);
314     final Node<E> newNode = new Node<E>(e);
315    
316 jsr166 1.7 restartFromHead:
317 jsr166 1.15 for (;;)
318     for (Node<E> h = head, p = h, q;;) {
319     if ((q = p.prev) != null &&
320     (q = (p = q).prev) != null)
321     // Check for head updates every other hop.
322     // If p == q, we are sure to follow head instead.
323     p = (h != (h = head)) ? h : q;
324     else if (p.next == p) // PREV_TERMINATOR
325     continue restartFromHead;
326     else {
327 jsr166 1.3 // p is first node
328 jsr166 1.1 newNode.lazySetNext(p); // CAS piggyback
329     if (p.casPrev(null, newNode)) {
330 jsr166 1.6 // Successful CAS is the linearization point
331     // for e to become an element of this deque,
332     // and for newNode to become "live".
333 jsr166 1.1 if (p != h) // hop two nodes at a time
334 jsr166 1.10 casHead(h, newNode); // Failure is OK.
335 jsr166 1.1 return;
336     }
337 jsr166 1.11 // Lost CAS race to another thread; re-read prev
338 jsr166 1.1 }
339     }
340     }
341    
342     /**
343     * Links e as last element.
344     */
345     private void linkLast(E e) {
346     checkNotNull(e);
347     final Node<E> newNode = new Node<E>(e);
348    
349 jsr166 1.7 restartFromTail:
350 jsr166 1.15 for (;;)
351     for (Node<E> t = tail, p = t, q;;) {
352     if ((q = p.next) != null &&
353     (q = (p = q).next) != null)
354     // Check for tail updates every other hop.
355     // If p == q, we are sure to follow tail instead.
356     p = (t != (t = tail)) ? t : q;
357     else if (p.prev == p) // NEXT_TERMINATOR
358     continue restartFromTail;
359     else {
360 jsr166 1.3 // p is last node
361 jsr166 1.1 newNode.lazySetPrev(p); // CAS piggyback
362     if (p.casNext(null, newNode)) {
363 jsr166 1.6 // Successful CAS is the linearization point
364     // for e to become an element of this deque,
365     // and for newNode to become "live".
366 jsr166 1.1 if (p != t) // hop two nodes at a time
367 jsr166 1.10 casTail(t, newNode); // Failure is OK.
368 jsr166 1.1 return;
369     }
370 jsr166 1.11 // Lost CAS race to another thread; re-read next
371 jsr166 1.1 }
372     }
373     }
374    
375 jsr166 1.18 private static final int HOPS = 2;
376 jsr166 1.1
377     /**
378     * Unlinks non-null node x.
379     */
380     void unlink(Node<E> x) {
381 jsr166 1.3 // assert x != null;
382     // assert x.item == null;
383     // assert x != PREV_TERMINATOR;
384     // assert x != NEXT_TERMINATOR;
385 jsr166 1.1
386     final Node<E> prev = x.prev;
387     final Node<E> next = x.next;
388     if (prev == null) {
389     unlinkFirst(x, next);
390     } else if (next == null) {
391     unlinkLast(x, prev);
392     } else {
393     // Unlink interior node.
394     //
395     // This is the common case, since a series of polls at the
396     // same end will be "interior" removes, except perhaps for
397 jsr166 1.3 // the first one, since end nodes cannot be unlinked.
398 jsr166 1.1 //
399     // At any time, all active nodes are mutually reachable by
400     // following a sequence of either next or prev pointers.
401     //
402     // Our strategy is to find the unique active predecessor
403     // and successor of x. Try to fix up their links so that
404     // they point to each other, leaving x unreachable from
405     // active nodes. If successful, and if x has no live
406 jsr166 1.3 // predecessor/successor, we additionally try to gc-unlink,
407     // leaving active nodes unreachable from x, by rechecking
408     // that the status of predecessor and successor are
409     // unchanged and ensuring that x is not reachable from
410     // tail/head, before setting x's prev/next links to their
411     // logical approximate replacements, self/TERMINATOR.
412 jsr166 1.1 Node<E> activePred, activeSucc;
413     boolean isFirst, isLast;
414     int hops = 1;
415    
416     // Find active predecessor
417 jsr166 1.3 for (Node<E> p = prev; ; ++hops) {
418 jsr166 1.1 if (p.item != null) {
419     activePred = p;
420     isFirst = false;
421     break;
422     }
423     Node<E> q = p.prev;
424     if (q == null) {
425 jsr166 1.3 if (p.next == p)
426 jsr166 1.1 return;
427     activePred = p;
428     isFirst = true;
429     break;
430     }
431     else if (p == q)
432     return;
433     else
434     p = q;
435     }
436    
437     // Find active successor
438 jsr166 1.3 for (Node<E> p = next; ; ++hops) {
439 jsr166 1.1 if (p.item != null) {
440     activeSucc = p;
441     isLast = false;
442     break;
443     }
444     Node<E> q = p.next;
445     if (q == null) {
446 jsr166 1.3 if (p.prev == p)
447 jsr166 1.1 return;
448     activeSucc = p;
449     isLast = true;
450     break;
451     }
452     else if (p == q)
453     return;
454     else
455     p = q;
456     }
457    
458     // TODO: better HOP heuristics
459     if (hops < HOPS
460     // always squeeze out interior deleted nodes
461     && (isFirst | isLast))
462     return;
463    
464     // Squeeze out deleted nodes between activePred and
465     // activeSucc, including x.
466     skipDeletedSuccessors(activePred);
467     skipDeletedPredecessors(activeSucc);
468    
469     // Try to gc-unlink, if possible
470     if ((isFirst | isLast) &&
471    
472     // Recheck expected state of predecessor and successor
473     (activePred.next == activeSucc) &&
474     (activeSucc.prev == activePred) &&
475     (isFirst ? activePred.prev == null : activePred.item != null) &&
476     (isLast ? activeSucc.next == null : activeSucc.item != null)) {
477    
478 jsr166 1.5 updateHead(); // Ensure x is not reachable from head
479     updateTail(); // Ensure x is not reachable from tail
480 jsr166 1.3
481     // Finally, actually gc-unlink
482 jsr166 1.1 x.lazySetPrev(isFirst ? prevTerminator() : x);
483     x.lazySetNext(isLast ? nextTerminator() : x);
484     }
485     }
486     }
487    
488     /**
489     * Unlinks non-null first node.
490     */
491     private void unlinkFirst(Node<E> first, Node<E> next) {
492 jsr166 1.9 // assert first != null;
493     // assert next != null;
494     // assert first.item == null;
495 jsr166 1.15 for (Node<E> o = null, p = next, q;;) {
496 jsr166 1.1 if (p.item != null || (q = p.next) == null) {
497 jsr166 1.15 if (o != null && p.prev != p && first.casNext(next, p)) {
498 jsr166 1.3 skipDeletedPredecessors(p);
499     if (first.prev == null &&
500     (p.next == null || p.item != null) &&
501     p.prev == first) {
502    
503 jsr166 1.5 updateHead(); // Ensure o is not reachable from head
504     updateTail(); // Ensure o is not reachable from tail
505    
506     // Finally, actually gc-unlink
507 jsr166 1.3 o.lazySetNext(o);
508     o.lazySetPrev(prevTerminator());
509 jsr166 1.1 }
510     }
511     return;
512     }
513     else if (p == q)
514     return;
515     else {
516     o = p;
517     p = q;
518     }
519     }
520     }
521    
522     /**
523     * Unlinks non-null last node.
524     */
525     private void unlinkLast(Node<E> last, Node<E> prev) {
526 jsr166 1.9 // assert last != null;
527     // assert prev != null;
528     // assert last.item == null;
529 jsr166 1.15 for (Node<E> o = null, p = prev, q;;) {
530 jsr166 1.1 if (p.item != null || (q = p.prev) == null) {
531 jsr166 1.15 if (o != null && p.next != p && last.casPrev(prev, p)) {
532 jsr166 1.3 skipDeletedSuccessors(p);
533     if (last.next == null &&
534     (p.prev == null || p.item != null) &&
535     p.next == last) {
536    
537 jsr166 1.5 updateHead(); // Ensure o is not reachable from head
538     updateTail(); // Ensure o is not reachable from tail
539    
540     // Finally, actually gc-unlink
541 jsr166 1.3 o.lazySetPrev(o);
542     o.lazySetNext(nextTerminator());
543 jsr166 1.1 }
544     }
545     return;
546     }
547     else if (p == q)
548     return;
549     else {
550     o = p;
551     p = q;
552     }
553     }
554     }
555    
556 jsr166 1.3 /**
557 jsr166 1.15 * Guarantees that any node which was unlinked before a call to
558     * this method will be unreachable from head after it returns.
559     * Does not guarantee to eliminate slack, only that head will
560 jsr166 1.17 * point to a node that was active while this method was running.
561 jsr166 1.3 */
562 jsr166 1.1 private final void updateHead() {
563 jsr166 1.17 // Either head already points to an active node, or we keep
564     // trying to cas it to the first node until it does.
565     Node<E> h, p, q;
566     restartFromHead:
567     while ((h = head).item == null && (p = h.prev) != null) {
568     for (;;) {
569     if ((q = p.prev) == null ||
570     (q = (p = q).prev) == null) {
571     // It is possible that p is PREV_TERMINATOR,
572     // but if so, the CAS is guaranteed to fail.
573     if (casHead(h, p))
574     return;
575     else
576     continue restartFromHead;
577     }
578     else if (h != head)
579     continue restartFromHead;
580     else
581     p = q;
582 jsr166 1.15 }
583     }
584 jsr166 1.1 }
585    
586 jsr166 1.3 /**
587 jsr166 1.15 * Guarantees that any node which was unlinked before a call to
588     * this method will be unreachable from tail after it returns.
589     * Does not guarantee to eliminate slack, only that tail will
590 jsr166 1.17 * point to a node that was active while this method was running.
591 jsr166 1.3 */
592 jsr166 1.1 private final void updateTail() {
593 jsr166 1.17 // Either tail already points to an active node, or we keep
594     // trying to cas it to the last node until it does.
595     Node<E> t, p, q;
596     restartFromTail:
597     while ((t = tail).item == null && (p = t.next) != null) {
598     for (;;) {
599     if ((q = p.next) == null ||
600     (q = (p = q).next) == null) {
601     // It is possible that p is NEXT_TERMINATOR,
602     // but if so, the CAS is guaranteed to fail.
603     if (casTail(t, p))
604     return;
605     else
606     continue restartFromTail;
607     }
608     else if (t != tail)
609     continue restartFromTail;
610     else
611     p = q;
612 jsr166 1.15 }
613     }
614 jsr166 1.1 }
615    
616     private void skipDeletedPredecessors(Node<E> x) {
617     whileActive:
618     do {
619     Node<E> prev = x.prev;
620 jsr166 1.3 // assert prev != null;
621     // assert x != NEXT_TERMINATOR;
622     // assert x != PREV_TERMINATOR;
623 jsr166 1.1 Node<E> p = prev;
624     findActive:
625     for (;;) {
626     if (p.item != null)
627     break findActive;
628     Node<E> q = p.prev;
629     if (q == null) {
630     if (p.next == p)
631     continue whileActive;
632     break findActive;
633     }
634     else if (p == q)
635     continue whileActive;
636     else
637     p = q;
638     }
639    
640     // found active CAS target
641     if (prev == p || x.casPrev(prev, p))
642     return;
643    
644     } while (x.item != null || x.next == null);
645     }
646    
647     private void skipDeletedSuccessors(Node<E> x) {
648     whileActive:
649     do {
650     Node<E> next = x.next;
651 jsr166 1.3 // assert next != null;
652     // assert x != NEXT_TERMINATOR;
653     // assert x != PREV_TERMINATOR;
654 jsr166 1.1 Node<E> p = next;
655     findActive:
656     for (;;) {
657     if (p.item != null)
658     break findActive;
659     Node<E> q = p.next;
660     if (q == null) {
661     if (p.prev == p)
662     continue whileActive;
663     break findActive;
664     }
665     else if (p == q)
666     continue whileActive;
667     else
668     p = q;
669     }
670    
671     // found active CAS target
672     if (next == p || x.casNext(next, p))
673     return;
674    
675     } while (x.item != null || x.prev == null);
676     }
677    
678     /**
679     * Returns the successor of p, or the first node if p.next has been
680     * linked to self, which will only be true if traversing with a
681     * stale pointer that is now off the list.
682     */
683     final Node<E> succ(Node<E> p) {
684     // TODO: should we skip deleted nodes here?
685     Node<E> q = p.next;
686     return (p == q) ? first() : q;
687     }
688    
689     /**
690     * Returns the predecessor of p, or the last node if p.prev has been
691     * linked to self, which will only be true if traversing with a
692     * stale pointer that is now off the list.
693     */
694     final Node<E> pred(Node<E> p) {
695     Node<E> q = p.prev;
696     return (p == q) ? last() : q;
697     }
698    
699     /**
700 jsr166 1.3 * Returns the first node, the unique node p for which:
701     * p.prev == null && p.next != p
702 jsr166 1.1 * The returned node may or may not be logically deleted.
703     * Guarantees that head is set to the returned node.
704     */
705     Node<E> first() {
706 jsr166 1.7 restartFromHead:
707 jsr166 1.15 for (;;)
708     for (Node<E> h = head, p = h, q;;) {
709     if ((q = p.prev) != null &&
710     (q = (p = q).prev) != null)
711     // Check for head updates every other hop.
712     // If p == q, we are sure to follow head instead.
713     p = (h != (h = head)) ? h : q;
714     else if (p == h
715     // It is possible that p is PREV_TERMINATOR,
716     // but if so, the CAS is guaranteed to fail.
717     || casHead(h, p))
718     return p;
719     else
720 jsr166 1.7 continue restartFromHead;
721 jsr166 1.1 }
722     }
723    
724     /**
725 jsr166 1.3 * Returns the last node, the unique node p for which:
726     * p.next == null && p.prev != p
727 jsr166 1.1 * The returned node may or may not be logically deleted.
728     * Guarantees that tail is set to the returned node.
729     */
730     Node<E> last() {
731 jsr166 1.7 restartFromTail:
732 jsr166 1.15 for (;;)
733     for (Node<E> t = tail, p = t, q;;) {
734     if ((q = p.next) != null &&
735     (q = (p = q).next) != null)
736     // Check for tail updates every other hop.
737     // If p == q, we are sure to follow tail instead.
738     p = (t != (t = tail)) ? t : q;
739     else if (p == t
740     // It is possible that p is NEXT_TERMINATOR,
741     // but if so, the CAS is guaranteed to fail.
742     || casTail(t, p))
743     return p;
744     else
745 jsr166 1.7 continue restartFromTail;
746 jsr166 1.1 }
747     }
748    
749     // Minor convenience utilities
750    
751     /**
752     * Throws NullPointerException if argument is null.
753     *
754     * @param v the element
755     */
756     private static void checkNotNull(Object v) {
757     if (v == null)
758     throw new NullPointerException();
759     }
760    
761     /**
762     * Returns element unless it is null, in which case throws
763     * NoSuchElementException.
764     *
765     * @param v the element
766     * @return the element
767     */
768     private E screenNullResult(E v) {
769     if (v == null)
770     throw new NoSuchElementException();
771     return v;
772     }
773    
774     /**
775     * Creates an array list and fills it with elements of this list.
776     * Used by toArray.
777     *
778     * @return the arrayList
779     */
780     private ArrayList<E> toArrayList() {
781 jsr166 1.3 ArrayList<E> list = new ArrayList<E>();
782 jsr166 1.1 for (Node<E> p = first(); p != null; p = succ(p)) {
783     E item = p.item;
784     if (item != null)
785 jsr166 1.3 list.add(item);
786 jsr166 1.1 }
787 jsr166 1.3 return list;
788 jsr166 1.1 }
789    
790     /**
791     * Constructs an empty deque.
792     */
793 jsr166 1.3 public ConcurrentLinkedDeque() {
794     head = tail = new Node<E>(null);
795     }
796 jsr166 1.1
797     /**
798     * Constructs a deque initially containing the elements of
799     * the given collection, added in traversal order of the
800     * collection's iterator.
801     *
802     * @param c the collection of elements to initially contain
803     * @throws NullPointerException if the specified collection or any
804     * of its elements are null
805     */
806 jsr166 1.3 public ConcurrentLinkedDeque(Collection<? extends E> c) {
807     // Copy c into a private chain of Nodes
808     Node<E> h = null, t = null;
809     for (E e : c) {
810     checkNotNull(e);
811     Node<E> newNode = new Node<E>(e);
812     if (h == null)
813     h = t = newNode;
814     else {
815 jsr166 1.8 t.lazySetNext(newNode);
816     newNode.lazySetPrev(t);
817 jsr166 1.3 t = newNode;
818     }
819     }
820 jsr166 1.9 initHeadTail(h, t);
821     }
822    
823     /**
824     * Initializes head and tail, ensuring invariants hold.
825     */
826     private void initHeadTail(Node<E> h, Node<E> t) {
827     if (h == t) {
828     if (h == null)
829     h = t = new Node<E>(null);
830     else {
831     // Avoid edge case of a single Node with non-null item.
832     Node<E> newNode = new Node<E>(null);
833     t.lazySetNext(newNode);
834     newNode.lazySetPrev(t);
835     t = newNode;
836     }
837     }
838 jsr166 1.3 head = h;
839     tail = t;
840     }
841 jsr166 1.1
842     /**
843     * Inserts the specified element at the front of this deque.
844 jsr166 1.19 * As the deque is unbounded, this method will never throw
845     * {@link IllegalStateException}.
846 jsr166 1.1 *
847 jsr166 1.19 * @throws NullPointerException if the specified element is null
848 jsr166 1.1 */
849     public void addFirst(E e) {
850     linkFirst(e);
851     }
852    
853     /**
854     * Inserts the specified element at the end of this deque.
855 jsr166 1.19 * As the deque is unbounded, this method will never throw
856     * {@link IllegalStateException}.
857 jsr166 1.3 *
858     * <p>This method is equivalent to {@link #add}.
859 jsr166 1.1 *
860 jsr166 1.19 * @throws NullPointerException if the specified element is null
861 jsr166 1.1 */
862     public void addLast(E e) {
863     linkLast(e);
864     }
865    
866     /**
867     * Inserts the specified element at the front of this deque.
868 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
869 jsr166 1.1 *
870 jsr166 1.19 * @return {@code true} (as specified by {@link Deque#offerFirst})
871     * @throws NullPointerException if the specified element is null
872 jsr166 1.1 */
873     public boolean offerFirst(E e) {
874     linkFirst(e);
875     return true;
876     }
877    
878     /**
879     * Inserts the specified element at the end of this deque.
880 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
881 jsr166 1.1 *
882     * <p>This method is equivalent to {@link #add}.
883     *
884 jsr166 1.19 * @return {@code true} (as specified by {@link Deque#offerLast})
885     * @throws NullPointerException if the specified element is null
886 jsr166 1.1 */
887     public boolean offerLast(E e) {
888     linkLast(e);
889     return true;
890     }
891    
892     public E peekFirst() {
893     for (Node<E> p = first(); p != null; p = succ(p)) {
894     E item = p.item;
895     if (item != null)
896     return item;
897     }
898     return null;
899     }
900    
901     public E peekLast() {
902     for (Node<E> p = last(); p != null; p = pred(p)) {
903     E item = p.item;
904     if (item != null)
905     return item;
906     }
907     return null;
908     }
909    
910     /**
911     * @throws NoSuchElementException {@inheritDoc}
912     */
913     public E getFirst() {
914     return screenNullResult(peekFirst());
915     }
916    
917     /**
918     * @throws NoSuchElementException {@inheritDoc}
919     */
920     public E getLast() {
921     return screenNullResult(peekLast());
922     }
923    
924     public E pollFirst() {
925     for (Node<E> p = first(); p != null; p = succ(p)) {
926     E item = p.item;
927     if (item != null && p.casItem(item, null)) {
928     unlink(p);
929     return item;
930     }
931     }
932     return null;
933     }
934    
935     public E pollLast() {
936     for (Node<E> p = last(); p != null; p = pred(p)) {
937     E item = p.item;
938     if (item != null && p.casItem(item, null)) {
939     unlink(p);
940     return item;
941     }
942     }
943     return null;
944     }
945    
946     /**
947     * @throws NoSuchElementException {@inheritDoc}
948     */
949     public E removeFirst() {
950     return screenNullResult(pollFirst());
951     }
952    
953     /**
954     * @throws NoSuchElementException {@inheritDoc}
955     */
956     public E removeLast() {
957     return screenNullResult(pollLast());
958     }
959    
960     // *** Queue and stack methods ***
961    
962     /**
963     * Inserts the specified element at the tail of this deque.
964 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
965 jsr166 1.1 *
966     * @return {@code true} (as specified by {@link Queue#offer})
967     * @throws NullPointerException if the specified element is null
968     */
969     public boolean offer(E e) {
970     return offerLast(e);
971     }
972    
973     /**
974     * Inserts the specified element at the tail of this deque.
975 jsr166 1.19 * As the deque is unbounded, this method will never throw
976     * {@link IllegalStateException} or return {@code false}.
977 jsr166 1.1 *
978     * @return {@code true} (as specified by {@link Collection#add})
979     * @throws NullPointerException if the specified element is null
980     */
981     public boolean add(E e) {
982     return offerLast(e);
983     }
984    
985     public E poll() { return pollFirst(); }
986     public E remove() { return removeFirst(); }
987     public E peek() { return peekFirst(); }
988     public E element() { return getFirst(); }
989     public void push(E e) { addFirst(e); }
990     public E pop() { return removeFirst(); }
991    
992     /**
993     * Removes the first element {@code e} such that
994     * {@code o.equals(e)}, if such an element exists in this deque.
995     * If the deque does not contain the element, it is unchanged.
996     *
997     * @param o element to be removed from this deque, if present
998     * @return {@code true} if the deque contained the specified element
999 jsr166 1.19 * @throws NullPointerException if the specified element is null
1000 jsr166 1.1 */
1001     public boolean removeFirstOccurrence(Object o) {
1002     checkNotNull(o);
1003     for (Node<E> p = first(); p != null; p = succ(p)) {
1004     E item = p.item;
1005     if (item != null && o.equals(item) && p.casItem(item, null)) {
1006     unlink(p);
1007     return true;
1008     }
1009     }
1010     return false;
1011     }
1012    
1013     /**
1014     * Removes the last element {@code e} such that
1015     * {@code o.equals(e)}, if such an element exists in this deque.
1016     * If the deque does not contain the element, it is unchanged.
1017     *
1018     * @param o element to be removed from this deque, if present
1019     * @return {@code true} if the deque contained the specified element
1020 jsr166 1.19 * @throws NullPointerException if the specified element is null
1021 jsr166 1.1 */
1022     public boolean removeLastOccurrence(Object o) {
1023     checkNotNull(o);
1024     for (Node<E> p = last(); p != null; p = pred(p)) {
1025     E item = p.item;
1026     if (item != null && o.equals(item) && p.casItem(item, null)) {
1027     unlink(p);
1028     return true;
1029     }
1030     }
1031     return false;
1032     }
1033    
1034     /**
1035     * Returns {@code true} if this deque contains at least one
1036     * element {@code e} such that {@code o.equals(e)}.
1037     *
1038     * @param o element whose presence in this deque is to be tested
1039     * @return {@code true} if this deque contains the specified element
1040     */
1041     public boolean contains(Object o) {
1042     if (o == null) return false;
1043     for (Node<E> p = first(); p != null; p = succ(p)) {
1044     E item = p.item;
1045     if (item != null && o.equals(item))
1046     return true;
1047     }
1048     return false;
1049     }
1050    
1051     /**
1052     * Returns {@code true} if this collection contains no elements.
1053     *
1054     * @return {@code true} if this collection contains no elements
1055     */
1056     public boolean isEmpty() {
1057     return peekFirst() == null;
1058     }
1059    
1060     /**
1061     * Returns the number of elements in this deque. If this deque
1062     * contains more than {@code Integer.MAX_VALUE} elements, it
1063     * returns {@code Integer.MAX_VALUE}.
1064     *
1065     * <p>Beware that, unlike in most collections, this method is
1066     * <em>NOT</em> a constant-time operation. Because of the
1067     * asynchronous nature of these deques, determining the current
1068     * number of elements requires traversing them all to count them.
1069     * Additionally, it is possible for the size to change during
1070     * execution of this method, in which case the returned result
1071     * will be inaccurate. Thus, this method is typically not very
1072     * useful in concurrent applications.
1073     *
1074     * @return the number of elements in this deque
1075     */
1076     public int size() {
1077 jsr166 1.13 int count = 0;
1078 jsr166 1.1 for (Node<E> p = first(); p != null; p = succ(p))
1079     if (p.item != null)
1080 jsr166 1.13 // Collection.size() spec says to max out
1081     if (++count == Integer.MAX_VALUE)
1082     break;
1083     return count;
1084 jsr166 1.1 }
1085    
1086     /**
1087     * Removes the first element {@code e} such that
1088     * {@code o.equals(e)}, if such an element exists in this deque.
1089     * If the deque does not contain the element, it is unchanged.
1090     *
1091     * @param o element to be removed from this deque, if present
1092     * @return {@code true} if the deque contained the specified element
1093 jsr166 1.19 * @throws NullPointerException if the specified element is null
1094 jsr166 1.1 */
1095     public boolean remove(Object o) {
1096     return removeFirstOccurrence(o);
1097     }
1098    
1099     /**
1100     * Appends all of the elements in the specified collection to the end of
1101     * this deque, in the order that they are returned by the specified
1102 jsr166 1.3 * collection's iterator. Attempts to {@code addAll} of a deque to
1103     * itself result in {@code IllegalArgumentException}.
1104 jsr166 1.1 *
1105     * @param c the elements to be inserted into this deque
1106     * @return {@code true} if this deque changed as a result of the call
1107 jsr166 1.3 * @throws NullPointerException if the specified collection or any
1108     * of its elements are null
1109     * @throws IllegalArgumentException if the collection is this deque
1110 jsr166 1.1 */
1111     public boolean addAll(Collection<? extends E> c) {
1112 jsr166 1.3 if (c == this)
1113     // As historically specified in AbstractQueue#addAll
1114     throw new IllegalArgumentException();
1115    
1116     // Copy c into a private chain of Nodes
1117 jsr166 1.14 Node<E> beginningOfTheEnd = null, last = null;
1118 jsr166 1.3 for (E e : c) {
1119     checkNotNull(e);
1120     Node<E> newNode = new Node<E>(e);
1121 jsr166 1.14 if (beginningOfTheEnd == null)
1122     beginningOfTheEnd = last = newNode;
1123 jsr166 1.3 else {
1124 jsr166 1.8 last.lazySetNext(newNode);
1125     newNode.lazySetPrev(last);
1126 jsr166 1.3 last = newNode;
1127     }
1128     }
1129 jsr166 1.14 if (beginningOfTheEnd == null)
1130 jsr166 1.1 return false;
1131 jsr166 1.3
1132 jsr166 1.14 // Atomically append the chain at the tail of this collection
1133 jsr166 1.7 restartFromTail:
1134 jsr166 1.15 for (;;)
1135     for (Node<E> t = tail, p = t, q;;) {
1136     if ((q = p.next) != null &&
1137     (q = (p = q).next) != null)
1138     // Check for tail updates every other hop.
1139     // If p == q, we are sure to follow tail instead.
1140     p = (t != (t = tail)) ? t : q;
1141     else if (p.prev == p) // NEXT_TERMINATOR
1142     continue restartFromTail;
1143     else {
1144 jsr166 1.3 // p is last node
1145 jsr166 1.14 beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
1146     if (p.casNext(null, beginningOfTheEnd)) {
1147     // Successful CAS is the linearization point
1148 jsr166 1.20 // for all elements to be added to this deque.
1149 jsr166 1.14 if (!casTail(t, last)) {
1150 jsr166 1.3 // Try a little harder to update tail,
1151     // since we may be adding many elements.
1152     t = tail;
1153     if (last.next == null)
1154     casTail(t, last);
1155     }
1156     return true;
1157     }
1158 jsr166 1.11 // Lost CAS race to another thread; re-read next
1159 jsr166 1.3 }
1160     }
1161 jsr166 1.1 }
1162    
1163     /**
1164     * Removes all of the elements from this deque.
1165     */
1166     public void clear() {
1167     while (pollFirst() != null)
1168     ;
1169     }
1170    
1171     /**
1172     * Returns an array containing all of the elements in this deque, in
1173     * proper sequence (from first to last element).
1174     *
1175     * <p>The returned array will be "safe" in that no references to it are
1176     * maintained by this deque. (In other words, this method must allocate
1177     * a new array). The caller is thus free to modify the returned array.
1178     *
1179     * <p>This method acts as bridge between array-based and collection-based
1180     * APIs.
1181     *
1182     * @return an array containing all of the elements in this deque
1183     */
1184     public Object[] toArray() {
1185     return toArrayList().toArray();
1186     }
1187    
1188     /**
1189     * Returns an array containing all of the elements in this deque,
1190     * in proper sequence (from first to last element); the runtime
1191     * type of the returned array is that of the specified array. If
1192     * the deque fits in the specified array, it is returned therein.
1193     * Otherwise, a new array is allocated with the runtime type of
1194     * the specified array and the size of this deque.
1195     *
1196     * <p>If this deque fits in the specified array with room to spare
1197     * (i.e., the array has more elements than this deque), the element in
1198     * the array immediately following the end of the deque is set to
1199     * {@code null}.
1200     *
1201 jsr166 1.3 * <p>Like the {@link #toArray()} method, this method acts as
1202     * bridge between array-based and collection-based APIs. Further,
1203     * this method allows precise control over the runtime type of the
1204     * output array, and may, under certain circumstances, be used to
1205     * save allocation costs.
1206 jsr166 1.1 *
1207     * <p>Suppose {@code x} is a deque known to contain only strings.
1208     * The following code can be used to dump the deque into a newly
1209     * allocated array of {@code String}:
1210     *
1211     * <pre>
1212     * String[] y = x.toArray(new String[0]);</pre>
1213     *
1214     * Note that {@code toArray(new Object[0])} is identical in function to
1215     * {@code toArray()}.
1216     *
1217     * @param a the array into which the elements of the deque are to
1218     * be stored, if it is big enough; otherwise, a new array of the
1219     * same runtime type is allocated for this purpose
1220     * @return an array containing all of the elements in this deque
1221     * @throws ArrayStoreException if the runtime type of the specified array
1222     * is not a supertype of the runtime type of every element in
1223     * this deque
1224     * @throws NullPointerException if the specified array is null
1225     */
1226     public <T> T[] toArray(T[] a) {
1227     return toArrayList().toArray(a);
1228     }
1229    
1230     /**
1231     * Returns an iterator over the elements in this deque in proper sequence.
1232     * The elements will be returned in order from first (head) to last (tail).
1233     *
1234     * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
1235     * will never throw {@link java.util.ConcurrentModificationException
1236     * ConcurrentModificationException},
1237     * and guarantees to traverse elements as they existed upon
1238     * construction of the iterator, and may (but is not guaranteed to)
1239     * reflect any modifications subsequent to construction.
1240     *
1241     * @return an iterator over the elements in this deque in proper sequence
1242     */
1243     public Iterator<E> iterator() {
1244     return new Itr();
1245     }
1246    
1247     /**
1248     * Returns an iterator over the elements in this deque in reverse
1249     * sequential order. The elements will be returned in order from
1250     * last (tail) to first (head).
1251     *
1252     * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
1253     * will never throw {@link java.util.ConcurrentModificationException
1254     * ConcurrentModificationException},
1255     * and guarantees to traverse elements as they existed upon
1256     * construction of the iterator, and may (but is not guaranteed to)
1257     * reflect any modifications subsequent to construction.
1258 jsr166 1.3 *
1259     * @return an iterator over the elements in this deque in reverse order
1260 jsr166 1.1 */
1261     public Iterator<E> descendingIterator() {
1262     return new DescendingItr();
1263     }
1264    
1265     private abstract class AbstractItr implements Iterator<E> {
1266     /**
1267     * Next node to return item for.
1268     */
1269     private Node<E> nextNode;
1270    
1271     /**
1272     * nextItem holds on to item fields because once we claim
1273     * that an element exists in hasNext(), we must return it in
1274     * the following next() call even if it was in the process of
1275     * being removed when hasNext() was called.
1276     */
1277     private E nextItem;
1278    
1279     /**
1280     * Node returned by most recent call to next. Needed by remove.
1281     * Reset to null if this element is deleted by a call to remove.
1282     */
1283     private Node<E> lastRet;
1284    
1285     abstract Node<E> startNode();
1286     abstract Node<E> nextNode(Node<E> p);
1287    
1288     AbstractItr() {
1289     advance();
1290     }
1291    
1292     /**
1293     * Sets nextNode and nextItem to next valid node, or to null
1294     * if no such.
1295     */
1296     private void advance() {
1297     lastRet = nextNode;
1298    
1299     Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1300     for (;; p = nextNode(p)) {
1301     if (p == null) {
1302     // p might be active end or TERMINATOR node; both are OK
1303     nextNode = null;
1304     nextItem = null;
1305     break;
1306     }
1307     E item = p.item;
1308     if (item != null) {
1309     nextNode = p;
1310     nextItem = item;
1311     break;
1312     }
1313     }
1314     }
1315    
1316     public boolean hasNext() {
1317     return nextItem != null;
1318     }
1319    
1320     public E next() {
1321     E item = nextItem;
1322     if (item == null) throw new NoSuchElementException();
1323     advance();
1324     return item;
1325     }
1326    
1327     public void remove() {
1328     Node<E> l = lastRet;
1329     if (l == null) throw new IllegalStateException();
1330     l.item = null;
1331     unlink(l);
1332     lastRet = null;
1333     }
1334     }
1335    
1336     /** Forward iterator */
1337     private class Itr extends AbstractItr {
1338     Node<E> startNode() { return first(); }
1339     Node<E> nextNode(Node<E> p) { return succ(p); }
1340     }
1341    
1342     /** Descending iterator */
1343     private class DescendingItr extends AbstractItr {
1344     Node<E> startNode() { return last(); }
1345     Node<E> nextNode(Node<E> p) { return pred(p); }
1346     }
1347    
1348     /**
1349 jsr166 1.3 * Saves the state to a stream (that is, serializes it).
1350 jsr166 1.1 *
1351     * @serialData All of the elements (each an {@code E}) in
1352     * the proper order, followed by a null
1353     * @param s the stream
1354     */
1355     private void writeObject(java.io.ObjectOutputStream s)
1356     throws java.io.IOException {
1357    
1358     // Write out any hidden stuff
1359     s.defaultWriteObject();
1360    
1361     // Write out all elements in the proper order.
1362     for (Node<E> p = first(); p != null; p = succ(p)) {
1363 jsr166 1.14 E item = p.item;
1364 jsr166 1.1 if (item != null)
1365     s.writeObject(item);
1366     }
1367    
1368     // Use trailing null as sentinel
1369     s.writeObject(null);
1370     }
1371    
1372     /**
1373 jsr166 1.3 * Reconstitutes the instance from a stream (that is, deserializes it).
1374 jsr166 1.1 * @param s the stream
1375     */
1376     private void readObject(java.io.ObjectInputStream s)
1377     throws java.io.IOException, ClassNotFoundException {
1378     s.defaultReadObject();
1379 jsr166 1.3
1380     // Read in elements until trailing null sentinel found
1381     Node<E> h = null, t = null;
1382     Object item;
1383     while ((item = s.readObject()) != null) {
1384 jsr166 1.1 @SuppressWarnings("unchecked")
1385 jsr166 1.3 Node<E> newNode = new Node<E>((E) item);
1386     if (h == null)
1387     h = t = newNode;
1388     else {
1389 jsr166 1.8 t.lazySetNext(newNode);
1390     newNode.lazySetPrev(t);
1391 jsr166 1.3 t = newNode;
1392     }
1393 jsr166 1.1 }
1394 jsr166 1.9 initHeadTail(h, t);
1395 jsr166 1.1 }
1396    
1397     // Unsafe mechanics
1398    
1399     private static final sun.misc.Unsafe UNSAFE =
1400     sun.misc.Unsafe.getUnsafe();
1401     private static final long headOffset =
1402     objectFieldOffset(UNSAFE, "head", ConcurrentLinkedDeque.class);
1403     private static final long tailOffset =
1404     objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedDeque.class);
1405    
1406     private boolean casHead(Node<E> cmp, Node<E> val) {
1407     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1408     }
1409    
1410     private boolean casTail(Node<E> cmp, Node<E> val) {
1411     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1412     }
1413    
1414     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1415     String field, Class<?> klazz) {
1416     try {
1417     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1418     } catch (NoSuchFieldException e) {
1419     // Convert Exception to corresponding Error
1420     NoSuchFieldError error = new NoSuchFieldError(field);
1421     error.initCause(e);
1422     throw error;
1423     }
1424     }
1425     }