ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.22
Committed: Fri Nov 19 08:02:09 2010 UTC (13 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.21: +10 -11 lines
Log Message:
make iterator weakly consistent specs more consistent

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea and Martin Buchholz with assistance from members of
3     * JCP JSR-166 Expert Group and released to the public domain, as explained
4     * at http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractCollection;
10     import java.util.ArrayList;
11     import java.util.Collection;
12     import java.util.Deque;
13     import java.util.Iterator;
14     import java.util.NoSuchElementException;
15 jsr166 1.12 import java.util.Queue;
16 jsr166 1.1
17     /**
18 jsr166 1.3 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
19     * Concurrent insertion, removal, and access operations execute safely
20     * across multiple threads.
21     * A {@code ConcurrentLinkedDeque} is an appropriate choice when
22     * many threads will share access to a common collection.
23     * Like most other concurrent collection implementations, this class
24     * does not permit the use of {@code null} elements.
25     *
26     * <p>Iterators are <i>weakly consistent</i>, returning elements
27     * reflecting the state of the deque at some point at or since the
28     * creation of the iterator. They do <em>not</em> throw {@link
29     * java.util.ConcurrentModificationException
30 jsr166 1.1 * ConcurrentModificationException}, and may proceed concurrently with
31     * other operations.
32     *
33 jsr166 1.3 * <p>Beware that, unlike in most collections, the {@code size}
34 jsr166 1.1 * method is <em>NOT</em> a constant-time operation. Because of the
35     * asynchronous nature of these deques, determining the current number
36 jsr166 1.3 * of elements requires a traversal of the elements.
37     *
38     * <p>This class and its iterator implement all of the <em>optional</em>
39     * methods of the {@link Deque} and {@link Iterator} interfaces.
40 jsr166 1.1 *
41 jsr166 1.3 * <p>Memory consistency effects: As with other concurrent collections,
42     * actions in a thread prior to placing an object into a
43     * {@code ConcurrentLinkedDeque}
44     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
45     * actions subsequent to the access or removal of that element from
46     * the {@code ConcurrentLinkedDeque} in another thread.
47 jsr166 1.1 *
48 jsr166 1.3 * <p>This class is a member of the
49     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
50     * Java Collections Framework</a>.
51     *
52     * @since 1.7
53     * @author Doug Lea
54     * @author Martin Buchholz
55 jsr166 1.1 * @param <E> the type of elements held in this collection
56     */
57    
58     public class ConcurrentLinkedDeque<E>
59     extends AbstractCollection<E>
60     implements Deque<E>, java.io.Serializable {
61    
62     /*
63     * This is an implementation of a concurrent lock-free deque
64     * supporting interior removes but not interior insertions, as
65 jsr166 1.3 * required to support the entire Deque interface.
66     *
67     * We extend the techniques developed for ConcurrentLinkedQueue and
68     * LinkedTransferQueue (see the internal docs for those classes).
69 jsr166 1.5 * Understanding the ConcurrentLinkedQueue implementation is a
70     * prerequisite for understanding the implementation of this class.
71 jsr166 1.3 *
72     * The data structure is a symmetrical doubly-linked "GC-robust"
73     * linked list of nodes. We minimize the number of volatile writes
74     * using two techniques: advancing multiple hops with a single CAS
75     * and mixing volatile and non-volatile writes of the same memory
76     * locations.
77     *
78     * A node contains the expected E ("item") and links to predecessor
79     * ("prev") and successor ("next") nodes:
80     *
81     * class Node<E> { volatile Node<E> prev, next; volatile E item; }
82     *
83     * A node p is considered "live" if it contains a non-null item
84     * (p.item != null). When an item is CASed to null, the item is
85     * atomically logically deleted from the collection.
86     *
87     * At any time, there is precisely one "first" node with a null
88     * prev reference that terminates any chain of prev references
89     * starting at a live node. Similarly there is precisely one
90     * "last" node terminating any chain of next references starting at
91     * a live node. The "first" and "last" nodes may or may not be live.
92     * The "first" and "last" nodes are always mutually reachable.
93     *
94     * A new element is added atomically by CASing the null prev or
95     * next reference in the first or last node to a fresh node
96 jsr166 1.6 * containing the element. The element's node atomically becomes
97     * "live" at that point.
98 jsr166 1.3 *
99     * A node is considered "active" if it is a live node, or the
100     * first or last node. Active nodes cannot be unlinked.
101     *
102     * A "self-link" is a next or prev reference that is the same node:
103     * p.prev == p or p.next == p
104     * Self-links are used in the node unlinking process. Active nodes
105     * never have self-links.
106 jsr166 1.1 *
107 jsr166 1.3 * A node p is active if and only if:
108 jsr166 1.1 *
109     * p.item != null ||
110     * (p.prev == null && p.next != p) ||
111     * (p.next == null && p.prev != p)
112     *
113 jsr166 1.3 * The deque object has two node references, "head" and "tail".
114     * The head and tail are only approximations to the first and last
115     * nodes of the deque. The first node can always be found by
116 jsr166 1.1 * following prev pointers from head; likewise for tail. However,
117 jsr166 1.3 * it is permissible for head and tail to be referring to deleted
118     * nodes that have been unlinked and so may not be reachable from
119     * any live node.
120     *
121     * There are 3 stages of node deletion;
122     * "logical deletion", "unlinking", and "gc-unlinking".
123     *
124     * 1. "logical deletion" by CASing item to null atomically removes
125     * the element from the collection, and makes the containing node
126     * eligible for unlinking.
127     *
128     * 2. "unlinking" makes a deleted node unreachable from active
129     * nodes, and thus eventually reclaimable by GC. Unlinked nodes
130     * may remain reachable indefinitely from an iterator.
131     *
132     * Physical node unlinking is merely an optimization (albeit a
133     * critical one), and so can be performed at our convenience. At
134     * any time, the set of live nodes maintained by prev and next
135     * links are identical, that is, the live nodes found via next
136     * links from the first node is equal to the elements found via
137     * prev links from the last node. However, this is not true for
138     * nodes that have already been logically deleted - such nodes may
139     * be reachable in one direction only.
140     *
141     * 3. "gc-unlinking" takes unlinking further by making active
142     * nodes unreachable from deleted nodes, making it easier for the
143     * GC to reclaim future deleted nodes. This step makes the data
144     * structure "gc-robust", as first described in detail by Boehm
145     * (http://portal.acm.org/citation.cfm?doid=503272.503282).
146     *
147     * GC-unlinked nodes may remain reachable indefinitely from an
148     * iterator, but unlike unlinked nodes, are never reachable from
149     * head or tail.
150     *
151     * Making the data structure GC-robust will eliminate the risk of
152     * unbounded memory retention with conservative GCs and is likely
153     * to improve performance with generational GCs.
154     *
155     * When a node is dequeued at either end, e.g. via poll(), we would
156     * like to break any references from the node to active nodes. We
157     * develop further the use of self-links that was very effective in
158     * other concurrent collection classes. The idea is to replace
159     * prev and next pointers with special values that are interpreted
160     * to mean off-the-list-at-one-end. These are approximations, but
161     * good enough to preserve the properties we want in our
162     * traversals, e.g. we guarantee that a traversal will never visit
163     * the same element twice, but we don't guarantee whether a
164     * traversal that runs out of elements will be able to see more
165     * elements later after enqueues at that end. Doing gc-unlinking
166     * safely is particularly tricky, since any node can be in use
167     * indefinitely (for example by an iterator). We must ensure that
168     * the nodes pointed at by head/tail never get gc-unlinked, since
169     * head/tail are needed to get "back on track" by other nodes that
170     * are gc-unlinked. gc-unlinking accounts for much of the
171     * implementation complexity.
172 jsr166 1.1 *
173     * Since neither unlinking nor gc-unlinking are necessary for
174     * correctness, there are many implementation choices regarding
175     * frequency (eagerness) of these operations. Since volatile
176     * reads are likely to be much cheaper than CASes, saving CASes by
177     * unlinking multiple adjacent nodes at a time may be a win.
178     * gc-unlinking can be performed rarely and still be effective,
179     * since it is most important that long chains of deleted nodes
180     * are occasionally broken.
181     *
182     * The actual representation we use is that p.next == p means to
183 jsr166 1.3 * goto the first node (which in turn is reached by following prev
184     * pointers from head), and p.next == null && p.prev == p means
185 jsr166 1.18 * that the iteration is at an end and that p is a (static final)
186 jsr166 1.1 * dummy node, NEXT_TERMINATOR, and not the last active node.
187     * Finishing the iteration when encountering such a TERMINATOR is
188 jsr166 1.3 * good enough for read-only traversals, so such traversals can use
189     * p.next == null as the termination condition. When we need to
190     * find the last (active) node, for enqueueing a new node, we need
191     * to check whether we have reached a TERMINATOR node; if so,
192     * restart traversal from tail.
193 jsr166 1.1 *
194     * The implementation is completely directionally symmetrical,
195     * except that most public methods that iterate through the list
196     * follow next pointers ("forward" direction).
197     *
198 jsr166 1.5 * We believe (without full proof) that all single-element deque
199     * operations (e.g., addFirst, peekLast, pollLast) are linearizable
200     * (see Herlihy and Shavit's book). However, some combinations of
201     * operations are known not to be linearizable. In particular,
202     * when an addFirst(A) is racing with pollFirst() removing B, it is
203     * possible for an observer iterating over the elements to observe
204     * A B C and subsequently observe A C, even though no interior
205     * removes are ever performed. Nevertheless, iterators behave
206     * reasonably, providing the "weakly consistent" guarantees.
207 jsr166 1.1 *
208     * Empirically, microbenchmarks suggest that this class adds about
209     * 40% overhead relative to ConcurrentLinkedQueue, which feels as
210     * good as we can hope for.
211     */
212    
213 jsr166 1.3 private static final long serialVersionUID = 876323262645176354L;
214    
215 jsr166 1.1 /**
216 jsr166 1.3 * A node from which the first node on list (that is, the unique node p
217     * with p.prev == null && p.next != p) can be reached in O(1) time.
218 jsr166 1.1 * Invariants:
219     * - the first node is always O(1) reachable from head via prev links
220     * - all live nodes are reachable from the first node via succ()
221     * - head != null
222     * - (tmp = head).next != tmp || tmp != head
223 jsr166 1.3 * - head is never gc-unlinked (but may be unlinked)
224 jsr166 1.1 * Non-invariants:
225     * - head.item may or may not be null
226     * - head may not be reachable from the first or last node, or from tail
227     */
228 jsr166 1.3 private transient volatile Node<E> head;
229    
230     /**
231     * A node from which the last node on list (that is, the unique node p
232     * with p.next == null && p.prev != p) can be reached in O(1) time.
233     * Invariants:
234     * - the last node is always O(1) reachable from tail via next links
235     * - all live nodes are reachable from the last node via pred()
236     * - tail != null
237     * - tail is never gc-unlinked (but may be unlinked)
238     * Non-invariants:
239     * - tail.item may or may not be null
240     * - tail may not be reachable from the first or last node, or from head
241     */
242     private transient volatile Node<E> tail;
243 jsr166 1.1
244 jsr166 1.18 private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
245 jsr166 1.1
246     static {
247     PREV_TERMINATOR = new Node<Object>(null);
248     PREV_TERMINATOR.next = PREV_TERMINATOR;
249     NEXT_TERMINATOR = new Node<Object>(null);
250     NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
251     }
252    
253     @SuppressWarnings("unchecked")
254     Node<E> prevTerminator() {
255     return (Node<E>) PREV_TERMINATOR;
256     }
257    
258     @SuppressWarnings("unchecked")
259     Node<E> nextTerminator() {
260     return (Node<E>) NEXT_TERMINATOR;
261     }
262    
263     static final class Node<E> {
264     volatile Node<E> prev;
265     volatile E item;
266     volatile Node<E> next;
267    
268 jsr166 1.4 /**
269     * Constructs a new node. Uses relaxed write because item can
270     * only be seen after publication via casNext or casPrev.
271     */
272 jsr166 1.1 Node(E item) {
273 jsr166 1.4 UNSAFE.putObject(this, itemOffset, item);
274 jsr166 1.1 }
275    
276     boolean casItem(E cmp, E val) {
277     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
278     }
279    
280     void lazySetNext(Node<E> val) {
281     UNSAFE.putOrderedObject(this, nextOffset, val);
282     }
283    
284     boolean casNext(Node<E> cmp, Node<E> val) {
285     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
286     }
287    
288     void lazySetPrev(Node<E> val) {
289     UNSAFE.putOrderedObject(this, prevOffset, val);
290     }
291    
292     boolean casPrev(Node<E> cmp, Node<E> val) {
293     return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
294     }
295    
296     // Unsafe mechanics
297    
298     private static final sun.misc.Unsafe UNSAFE =
299     sun.misc.Unsafe.getUnsafe();
300     private static final long prevOffset =
301     objectFieldOffset(UNSAFE, "prev", Node.class);
302     private static final long itemOffset =
303     objectFieldOffset(UNSAFE, "item", Node.class);
304     private static final long nextOffset =
305     objectFieldOffset(UNSAFE, "next", Node.class);
306     }
307    
308     /**
309     * Links e as first element.
310     */
311     private void linkFirst(E e) {
312     checkNotNull(e);
313     final Node<E> newNode = new Node<E>(e);
314    
315 jsr166 1.7 restartFromHead:
316 jsr166 1.15 for (;;)
317     for (Node<E> h = head, p = h, q;;) {
318     if ((q = p.prev) != null &&
319     (q = (p = q).prev) != null)
320     // Check for head updates every other hop.
321     // If p == q, we are sure to follow head instead.
322     p = (h != (h = head)) ? h : q;
323     else if (p.next == p) // PREV_TERMINATOR
324     continue restartFromHead;
325     else {
326 jsr166 1.3 // p is first node
327 jsr166 1.1 newNode.lazySetNext(p); // CAS piggyback
328     if (p.casPrev(null, newNode)) {
329 jsr166 1.6 // Successful CAS is the linearization point
330     // for e to become an element of this deque,
331     // and for newNode to become "live".
332 jsr166 1.1 if (p != h) // hop two nodes at a time
333 jsr166 1.10 casHead(h, newNode); // Failure is OK.
334 jsr166 1.1 return;
335     }
336 jsr166 1.11 // Lost CAS race to another thread; re-read prev
337 jsr166 1.1 }
338     }
339     }
340    
341     /**
342     * Links e as last element.
343     */
344     private void linkLast(E e) {
345     checkNotNull(e);
346     final Node<E> newNode = new Node<E>(e);
347    
348 jsr166 1.7 restartFromTail:
349 jsr166 1.15 for (;;)
350     for (Node<E> t = tail, p = t, q;;) {
351     if ((q = p.next) != null &&
352     (q = (p = q).next) != null)
353     // Check for tail updates every other hop.
354     // If p == q, we are sure to follow tail instead.
355     p = (t != (t = tail)) ? t : q;
356     else if (p.prev == p) // NEXT_TERMINATOR
357     continue restartFromTail;
358     else {
359 jsr166 1.3 // p is last node
360 jsr166 1.1 newNode.lazySetPrev(p); // CAS piggyback
361     if (p.casNext(null, newNode)) {
362 jsr166 1.6 // Successful CAS is the linearization point
363     // for e to become an element of this deque,
364     // and for newNode to become "live".
365 jsr166 1.1 if (p != t) // hop two nodes at a time
366 jsr166 1.10 casTail(t, newNode); // Failure is OK.
367 jsr166 1.1 return;
368     }
369 jsr166 1.11 // Lost CAS race to another thread; re-read next
370 jsr166 1.1 }
371     }
372     }
373    
374 jsr166 1.18 private static final int HOPS = 2;
375 jsr166 1.1
376     /**
377     * Unlinks non-null node x.
378     */
379     void unlink(Node<E> x) {
380 jsr166 1.3 // assert x != null;
381     // assert x.item == null;
382     // assert x != PREV_TERMINATOR;
383     // assert x != NEXT_TERMINATOR;
384 jsr166 1.1
385     final Node<E> prev = x.prev;
386     final Node<E> next = x.next;
387     if (prev == null) {
388     unlinkFirst(x, next);
389     } else if (next == null) {
390     unlinkLast(x, prev);
391     } else {
392     // Unlink interior node.
393     //
394     // This is the common case, since a series of polls at the
395     // same end will be "interior" removes, except perhaps for
396 jsr166 1.3 // the first one, since end nodes cannot be unlinked.
397 jsr166 1.1 //
398     // At any time, all active nodes are mutually reachable by
399     // following a sequence of either next or prev pointers.
400     //
401     // Our strategy is to find the unique active predecessor
402     // and successor of x. Try to fix up their links so that
403     // they point to each other, leaving x unreachable from
404     // active nodes. If successful, and if x has no live
405 jsr166 1.3 // predecessor/successor, we additionally try to gc-unlink,
406     // leaving active nodes unreachable from x, by rechecking
407     // that the status of predecessor and successor are
408     // unchanged and ensuring that x is not reachable from
409     // tail/head, before setting x's prev/next links to their
410     // logical approximate replacements, self/TERMINATOR.
411 jsr166 1.1 Node<E> activePred, activeSucc;
412     boolean isFirst, isLast;
413     int hops = 1;
414    
415     // Find active predecessor
416 jsr166 1.3 for (Node<E> p = prev; ; ++hops) {
417 jsr166 1.1 if (p.item != null) {
418     activePred = p;
419     isFirst = false;
420     break;
421     }
422     Node<E> q = p.prev;
423     if (q == null) {
424 jsr166 1.3 if (p.next == p)
425 jsr166 1.1 return;
426     activePred = p;
427     isFirst = true;
428     break;
429     }
430     else if (p == q)
431     return;
432     else
433     p = q;
434     }
435    
436     // Find active successor
437 jsr166 1.3 for (Node<E> p = next; ; ++hops) {
438 jsr166 1.1 if (p.item != null) {
439     activeSucc = p;
440     isLast = false;
441     break;
442     }
443     Node<E> q = p.next;
444     if (q == null) {
445 jsr166 1.3 if (p.prev == p)
446 jsr166 1.1 return;
447     activeSucc = p;
448     isLast = true;
449     break;
450     }
451     else if (p == q)
452     return;
453     else
454     p = q;
455     }
456    
457     // TODO: better HOP heuristics
458     if (hops < HOPS
459     // always squeeze out interior deleted nodes
460     && (isFirst | isLast))
461     return;
462    
463     // Squeeze out deleted nodes between activePred and
464     // activeSucc, including x.
465     skipDeletedSuccessors(activePred);
466     skipDeletedPredecessors(activeSucc);
467    
468     // Try to gc-unlink, if possible
469     if ((isFirst | isLast) &&
470    
471     // Recheck expected state of predecessor and successor
472     (activePred.next == activeSucc) &&
473     (activeSucc.prev == activePred) &&
474     (isFirst ? activePred.prev == null : activePred.item != null) &&
475     (isLast ? activeSucc.next == null : activeSucc.item != null)) {
476    
477 jsr166 1.5 updateHead(); // Ensure x is not reachable from head
478     updateTail(); // Ensure x is not reachable from tail
479 jsr166 1.3
480     // Finally, actually gc-unlink
481 jsr166 1.1 x.lazySetPrev(isFirst ? prevTerminator() : x);
482     x.lazySetNext(isLast ? nextTerminator() : x);
483     }
484     }
485     }
486    
487     /**
488     * Unlinks non-null first node.
489     */
490     private void unlinkFirst(Node<E> first, Node<E> next) {
491 jsr166 1.9 // assert first != null;
492     // assert next != null;
493     // assert first.item == null;
494 jsr166 1.15 for (Node<E> o = null, p = next, q;;) {
495 jsr166 1.1 if (p.item != null || (q = p.next) == null) {
496 jsr166 1.15 if (o != null && p.prev != p && first.casNext(next, p)) {
497 jsr166 1.3 skipDeletedPredecessors(p);
498     if (first.prev == null &&
499     (p.next == null || p.item != null) &&
500     p.prev == first) {
501    
502 jsr166 1.5 updateHead(); // Ensure o is not reachable from head
503     updateTail(); // Ensure o is not reachable from tail
504    
505     // Finally, actually gc-unlink
506 jsr166 1.3 o.lazySetNext(o);
507     o.lazySetPrev(prevTerminator());
508 jsr166 1.1 }
509     }
510     return;
511     }
512     else if (p == q)
513     return;
514     else {
515     o = p;
516     p = q;
517     }
518     }
519     }
520    
521     /**
522     * Unlinks non-null last node.
523     */
524     private void unlinkLast(Node<E> last, Node<E> prev) {
525 jsr166 1.9 // assert last != null;
526     // assert prev != null;
527     // assert last.item == null;
528 jsr166 1.15 for (Node<E> o = null, p = prev, q;;) {
529 jsr166 1.1 if (p.item != null || (q = p.prev) == null) {
530 jsr166 1.15 if (o != null && p.next != p && last.casPrev(prev, p)) {
531 jsr166 1.3 skipDeletedSuccessors(p);
532     if (last.next == null &&
533     (p.prev == null || p.item != null) &&
534     p.next == last) {
535    
536 jsr166 1.5 updateHead(); // Ensure o is not reachable from head
537     updateTail(); // Ensure o is not reachable from tail
538    
539     // Finally, actually gc-unlink
540 jsr166 1.3 o.lazySetPrev(o);
541     o.lazySetNext(nextTerminator());
542 jsr166 1.1 }
543     }
544     return;
545     }
546     else if (p == q)
547     return;
548     else {
549     o = p;
550     p = q;
551     }
552     }
553     }
554    
555 jsr166 1.3 /**
556 jsr166 1.15 * Guarantees that any node which was unlinked before a call to
557     * this method will be unreachable from head after it returns.
558     * Does not guarantee to eliminate slack, only that head will
559 jsr166 1.17 * point to a node that was active while this method was running.
560 jsr166 1.3 */
561 jsr166 1.1 private final void updateHead() {
562 jsr166 1.17 // Either head already points to an active node, or we keep
563     // trying to cas it to the first node until it does.
564     Node<E> h, p, q;
565     restartFromHead:
566     while ((h = head).item == null && (p = h.prev) != null) {
567     for (;;) {
568     if ((q = p.prev) == null ||
569     (q = (p = q).prev) == null) {
570     // It is possible that p is PREV_TERMINATOR,
571     // but if so, the CAS is guaranteed to fail.
572     if (casHead(h, p))
573     return;
574     else
575     continue restartFromHead;
576     }
577     else if (h != head)
578     continue restartFromHead;
579     else
580     p = q;
581 jsr166 1.15 }
582     }
583 jsr166 1.1 }
584    
585 jsr166 1.3 /**
586 jsr166 1.15 * Guarantees that any node which was unlinked before a call to
587     * this method will be unreachable from tail after it returns.
588     * Does not guarantee to eliminate slack, only that tail will
589 jsr166 1.17 * point to a node that was active while this method was running.
590 jsr166 1.3 */
591 jsr166 1.1 private final void updateTail() {
592 jsr166 1.17 // Either tail already points to an active node, or we keep
593     // trying to cas it to the last node until it does.
594     Node<E> t, p, q;
595     restartFromTail:
596     while ((t = tail).item == null && (p = t.next) != null) {
597     for (;;) {
598     if ((q = p.next) == null ||
599     (q = (p = q).next) == null) {
600     // It is possible that p is NEXT_TERMINATOR,
601     // but if so, the CAS is guaranteed to fail.
602     if (casTail(t, p))
603     return;
604     else
605     continue restartFromTail;
606     }
607     else if (t != tail)
608     continue restartFromTail;
609     else
610     p = q;
611 jsr166 1.15 }
612     }
613 jsr166 1.1 }
614    
615     private void skipDeletedPredecessors(Node<E> x) {
616     whileActive:
617     do {
618     Node<E> prev = x.prev;
619 jsr166 1.3 // assert prev != null;
620     // assert x != NEXT_TERMINATOR;
621     // assert x != PREV_TERMINATOR;
622 jsr166 1.1 Node<E> p = prev;
623     findActive:
624     for (;;) {
625     if (p.item != null)
626     break findActive;
627     Node<E> q = p.prev;
628     if (q == null) {
629     if (p.next == p)
630     continue whileActive;
631     break findActive;
632     }
633     else if (p == q)
634     continue whileActive;
635     else
636     p = q;
637     }
638    
639     // found active CAS target
640     if (prev == p || x.casPrev(prev, p))
641     return;
642    
643     } while (x.item != null || x.next == null);
644     }
645    
646     private void skipDeletedSuccessors(Node<E> x) {
647     whileActive:
648     do {
649     Node<E> next = x.next;
650 jsr166 1.3 // assert next != null;
651     // assert x != NEXT_TERMINATOR;
652     // assert x != PREV_TERMINATOR;
653 jsr166 1.1 Node<E> p = next;
654     findActive:
655     for (;;) {
656     if (p.item != null)
657     break findActive;
658     Node<E> q = p.next;
659     if (q == null) {
660     if (p.prev == p)
661     continue whileActive;
662     break findActive;
663     }
664     else if (p == q)
665     continue whileActive;
666     else
667     p = q;
668     }
669    
670     // found active CAS target
671     if (next == p || x.casNext(next, p))
672     return;
673    
674     } while (x.item != null || x.prev == null);
675     }
676    
677     /**
678     * Returns the successor of p, or the first node if p.next has been
679     * linked to self, which will only be true if traversing with a
680     * stale pointer that is now off the list.
681     */
682     final Node<E> succ(Node<E> p) {
683     // TODO: should we skip deleted nodes here?
684     Node<E> q = p.next;
685     return (p == q) ? first() : q;
686     }
687    
688     /**
689     * Returns the predecessor of p, or the last node if p.prev has been
690     * linked to self, which will only be true if traversing with a
691     * stale pointer that is now off the list.
692     */
693     final Node<E> pred(Node<E> p) {
694     Node<E> q = p.prev;
695     return (p == q) ? last() : q;
696     }
697    
698     /**
699 jsr166 1.3 * Returns the first node, the unique node p for which:
700     * p.prev == null && p.next != p
701 jsr166 1.1 * The returned node may or may not be logically deleted.
702     * Guarantees that head is set to the returned node.
703     */
704     Node<E> first() {
705 jsr166 1.7 restartFromHead:
706 jsr166 1.15 for (;;)
707     for (Node<E> h = head, p = h, q;;) {
708     if ((q = p.prev) != null &&
709     (q = (p = q).prev) != null)
710     // Check for head updates every other hop.
711     // If p == q, we are sure to follow head instead.
712     p = (h != (h = head)) ? h : q;
713     else if (p == h
714     // It is possible that p is PREV_TERMINATOR,
715     // but if so, the CAS is guaranteed to fail.
716     || casHead(h, p))
717     return p;
718     else
719 jsr166 1.7 continue restartFromHead;
720 jsr166 1.1 }
721     }
722    
723     /**
724 jsr166 1.3 * Returns the last node, the unique node p for which:
725     * p.next == null && p.prev != p
726 jsr166 1.1 * The returned node may or may not be logically deleted.
727     * Guarantees that tail is set to the returned node.
728     */
729     Node<E> last() {
730 jsr166 1.7 restartFromTail:
731 jsr166 1.15 for (;;)
732     for (Node<E> t = tail, p = t, q;;) {
733     if ((q = p.next) != null &&
734     (q = (p = q).next) != null)
735     // Check for tail updates every other hop.
736     // If p == q, we are sure to follow tail instead.
737     p = (t != (t = tail)) ? t : q;
738     else if (p == t
739     // It is possible that p is NEXT_TERMINATOR,
740     // but if so, the CAS is guaranteed to fail.
741     || casTail(t, p))
742     return p;
743     else
744 jsr166 1.7 continue restartFromTail;
745 jsr166 1.1 }
746     }
747    
748     // Minor convenience utilities
749    
750     /**
751     * Throws NullPointerException if argument is null.
752     *
753     * @param v the element
754     */
755     private static void checkNotNull(Object v) {
756     if (v == null)
757     throw new NullPointerException();
758     }
759    
760     /**
761     * Returns element unless it is null, in which case throws
762     * NoSuchElementException.
763     *
764     * @param v the element
765     * @return the element
766     */
767     private E screenNullResult(E v) {
768     if (v == null)
769     throw new NoSuchElementException();
770     return v;
771     }
772    
773     /**
774     * Creates an array list and fills it with elements of this list.
775     * Used by toArray.
776     *
777     * @return the arrayList
778     */
779     private ArrayList<E> toArrayList() {
780 jsr166 1.3 ArrayList<E> list = new ArrayList<E>();
781 jsr166 1.1 for (Node<E> p = first(); p != null; p = succ(p)) {
782     E item = p.item;
783     if (item != null)
784 jsr166 1.3 list.add(item);
785 jsr166 1.1 }
786 jsr166 1.3 return list;
787 jsr166 1.1 }
788    
789     /**
790     * Constructs an empty deque.
791     */
792 jsr166 1.3 public ConcurrentLinkedDeque() {
793     head = tail = new Node<E>(null);
794     }
795 jsr166 1.1
796     /**
797     * Constructs a deque initially containing the elements of
798     * the given collection, added in traversal order of the
799     * collection's iterator.
800     *
801     * @param c the collection of elements to initially contain
802     * @throws NullPointerException if the specified collection or any
803     * of its elements are null
804     */
805 jsr166 1.3 public ConcurrentLinkedDeque(Collection<? extends E> c) {
806     // Copy c into a private chain of Nodes
807     Node<E> h = null, t = null;
808     for (E e : c) {
809     checkNotNull(e);
810     Node<E> newNode = new Node<E>(e);
811     if (h == null)
812     h = t = newNode;
813     else {
814 jsr166 1.8 t.lazySetNext(newNode);
815     newNode.lazySetPrev(t);
816 jsr166 1.3 t = newNode;
817     }
818     }
819 jsr166 1.9 initHeadTail(h, t);
820     }
821    
822     /**
823     * Initializes head and tail, ensuring invariants hold.
824     */
825     private void initHeadTail(Node<E> h, Node<E> t) {
826     if (h == t) {
827     if (h == null)
828     h = t = new Node<E>(null);
829     else {
830     // Avoid edge case of a single Node with non-null item.
831     Node<E> newNode = new Node<E>(null);
832     t.lazySetNext(newNode);
833     newNode.lazySetPrev(t);
834     t = newNode;
835     }
836     }
837 jsr166 1.3 head = h;
838     tail = t;
839     }
840 jsr166 1.1
841     /**
842     * Inserts the specified element at the front of this deque.
843 jsr166 1.19 * As the deque is unbounded, this method will never throw
844     * {@link IllegalStateException}.
845 jsr166 1.1 *
846 jsr166 1.19 * @throws NullPointerException if the specified element is null
847 jsr166 1.1 */
848     public void addFirst(E e) {
849     linkFirst(e);
850     }
851    
852     /**
853     * Inserts the specified element at the end of this deque.
854 jsr166 1.19 * As the deque is unbounded, this method will never throw
855     * {@link IllegalStateException}.
856 jsr166 1.3 *
857     * <p>This method is equivalent to {@link #add}.
858 jsr166 1.1 *
859 jsr166 1.19 * @throws NullPointerException if the specified element is null
860 jsr166 1.1 */
861     public void addLast(E e) {
862     linkLast(e);
863     }
864    
865     /**
866     * Inserts the specified element at the front of this deque.
867 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
868 jsr166 1.1 *
869 jsr166 1.19 * @return {@code true} (as specified by {@link Deque#offerFirst})
870     * @throws NullPointerException if the specified element is null
871 jsr166 1.1 */
872     public boolean offerFirst(E e) {
873     linkFirst(e);
874     return true;
875     }
876    
877     /**
878     * Inserts the specified element at the end of this deque.
879 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
880 jsr166 1.1 *
881     * <p>This method is equivalent to {@link #add}.
882     *
883 jsr166 1.19 * @return {@code true} (as specified by {@link Deque#offerLast})
884     * @throws NullPointerException if the specified element is null
885 jsr166 1.1 */
886     public boolean offerLast(E e) {
887     linkLast(e);
888     return true;
889     }
890    
891     public E peekFirst() {
892     for (Node<E> p = first(); p != null; p = succ(p)) {
893     E item = p.item;
894     if (item != null)
895     return item;
896     }
897     return null;
898     }
899    
900     public E peekLast() {
901     for (Node<E> p = last(); p != null; p = pred(p)) {
902     E item = p.item;
903     if (item != null)
904     return item;
905     }
906     return null;
907     }
908    
909     /**
910     * @throws NoSuchElementException {@inheritDoc}
911     */
912     public E getFirst() {
913     return screenNullResult(peekFirst());
914     }
915    
916     /**
917     * @throws NoSuchElementException {@inheritDoc}
918     */
919 jsr166 1.21 public E getLast() {
920 jsr166 1.1 return screenNullResult(peekLast());
921     }
922    
923     public E pollFirst() {
924     for (Node<E> p = first(); p != null; p = succ(p)) {
925     E item = p.item;
926     if (item != null && p.casItem(item, null)) {
927     unlink(p);
928     return item;
929     }
930     }
931     return null;
932     }
933    
934     public E pollLast() {
935     for (Node<E> p = last(); p != null; p = pred(p)) {
936     E item = p.item;
937     if (item != null && p.casItem(item, null)) {
938     unlink(p);
939     return item;
940     }
941     }
942     return null;
943     }
944    
945     /**
946     * @throws NoSuchElementException {@inheritDoc}
947     */
948     public E removeFirst() {
949     return screenNullResult(pollFirst());
950     }
951    
952     /**
953     * @throws NoSuchElementException {@inheritDoc}
954     */
955     public E removeLast() {
956     return screenNullResult(pollLast());
957     }
958    
959     // *** Queue and stack methods ***
960    
961     /**
962     * Inserts the specified element at the tail of this deque.
963 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
964 jsr166 1.1 *
965     * @return {@code true} (as specified by {@link Queue#offer})
966     * @throws NullPointerException if the specified element is null
967     */
968     public boolean offer(E e) {
969     return offerLast(e);
970     }
971    
972     /**
973     * Inserts the specified element at the tail of this deque.
974 jsr166 1.19 * As the deque is unbounded, this method will never throw
975     * {@link IllegalStateException} or return {@code false}.
976 jsr166 1.1 *
977     * @return {@code true} (as specified by {@link Collection#add})
978     * @throws NullPointerException if the specified element is null
979     */
980     public boolean add(E e) {
981     return offerLast(e);
982     }
983    
984     public E poll() { return pollFirst(); }
985     public E remove() { return removeFirst(); }
986     public E peek() { return peekFirst(); }
987     public E element() { return getFirst(); }
988     public void push(E e) { addFirst(e); }
989     public E pop() { return removeFirst(); }
990    
991     /**
992     * Removes the first element {@code e} such that
993     * {@code o.equals(e)}, if such an element exists in this deque.
994     * If the deque does not contain the element, it is unchanged.
995     *
996     * @param o element to be removed from this deque, if present
997     * @return {@code true} if the deque contained the specified element
998 jsr166 1.19 * @throws NullPointerException if the specified element is null
999 jsr166 1.1 */
1000     public boolean removeFirstOccurrence(Object o) {
1001     checkNotNull(o);
1002     for (Node<E> p = first(); p != null; p = succ(p)) {
1003     E item = p.item;
1004     if (item != null && o.equals(item) && p.casItem(item, null)) {
1005     unlink(p);
1006     return true;
1007     }
1008     }
1009     return false;
1010     }
1011    
1012     /**
1013     * Removes the last element {@code e} such that
1014     * {@code o.equals(e)}, if such an element exists in this deque.
1015     * If the deque does not contain the element, it is unchanged.
1016     *
1017     * @param o element to be removed from this deque, if present
1018     * @return {@code true} if the deque contained the specified element
1019 jsr166 1.19 * @throws NullPointerException if the specified element is null
1020 jsr166 1.1 */
1021     public boolean removeLastOccurrence(Object o) {
1022     checkNotNull(o);
1023     for (Node<E> p = last(); p != null; p = pred(p)) {
1024     E item = p.item;
1025     if (item != null && o.equals(item) && p.casItem(item, null)) {
1026     unlink(p);
1027     return true;
1028     }
1029     }
1030     return false;
1031     }
1032    
1033     /**
1034     * Returns {@code true} if this deque contains at least one
1035     * element {@code e} such that {@code o.equals(e)}.
1036     *
1037     * @param o element whose presence in this deque is to be tested
1038     * @return {@code true} if this deque contains the specified element
1039     */
1040     public boolean contains(Object o) {
1041     if (o == null) return false;
1042     for (Node<E> p = first(); p != null; p = succ(p)) {
1043     E item = p.item;
1044     if (item != null && o.equals(item))
1045     return true;
1046     }
1047     return false;
1048     }
1049    
1050     /**
1051     * Returns {@code true} if this collection contains no elements.
1052     *
1053     * @return {@code true} if this collection contains no elements
1054     */
1055     public boolean isEmpty() {
1056     return peekFirst() == null;
1057     }
1058    
1059     /**
1060     * Returns the number of elements in this deque. If this deque
1061     * contains more than {@code Integer.MAX_VALUE} elements, it
1062     * returns {@code Integer.MAX_VALUE}.
1063     *
1064     * <p>Beware that, unlike in most collections, this method is
1065     * <em>NOT</em> a constant-time operation. Because of the
1066     * asynchronous nature of these deques, determining the current
1067     * number of elements requires traversing them all to count them.
1068     * Additionally, it is possible for the size to change during
1069     * execution of this method, in which case the returned result
1070     * will be inaccurate. Thus, this method is typically not very
1071     * useful in concurrent applications.
1072     *
1073     * @return the number of elements in this deque
1074     */
1075     public int size() {
1076 jsr166 1.13 int count = 0;
1077 jsr166 1.1 for (Node<E> p = first(); p != null; p = succ(p))
1078     if (p.item != null)
1079 jsr166 1.13 // Collection.size() spec says to max out
1080     if (++count == Integer.MAX_VALUE)
1081     break;
1082     return count;
1083 jsr166 1.1 }
1084    
1085     /**
1086     * Removes the first element {@code e} such that
1087     * {@code o.equals(e)}, if such an element exists in this deque.
1088     * If the deque does not contain the element, it is unchanged.
1089     *
1090     * @param o element to be removed from this deque, if present
1091     * @return {@code true} if the deque contained the specified element
1092 jsr166 1.19 * @throws NullPointerException if the specified element is null
1093 jsr166 1.1 */
1094     public boolean remove(Object o) {
1095     return removeFirstOccurrence(o);
1096     }
1097    
1098     /**
1099     * Appends all of the elements in the specified collection to the end of
1100     * this deque, in the order that they are returned by the specified
1101 jsr166 1.3 * collection's iterator. Attempts to {@code addAll} of a deque to
1102     * itself result in {@code IllegalArgumentException}.
1103 jsr166 1.1 *
1104     * @param c the elements to be inserted into this deque
1105     * @return {@code true} if this deque changed as a result of the call
1106 jsr166 1.3 * @throws NullPointerException if the specified collection or any
1107     * of its elements are null
1108     * @throws IllegalArgumentException if the collection is this deque
1109 jsr166 1.1 */
1110     public boolean addAll(Collection<? extends E> c) {
1111 jsr166 1.3 if (c == this)
1112     // As historically specified in AbstractQueue#addAll
1113     throw new IllegalArgumentException();
1114    
1115     // Copy c into a private chain of Nodes
1116 jsr166 1.14 Node<E> beginningOfTheEnd = null, last = null;
1117 jsr166 1.3 for (E e : c) {
1118     checkNotNull(e);
1119     Node<E> newNode = new Node<E>(e);
1120 jsr166 1.14 if (beginningOfTheEnd == null)
1121     beginningOfTheEnd = last = newNode;
1122 jsr166 1.3 else {
1123 jsr166 1.8 last.lazySetNext(newNode);
1124     newNode.lazySetPrev(last);
1125 jsr166 1.3 last = newNode;
1126     }
1127     }
1128 jsr166 1.14 if (beginningOfTheEnd == null)
1129 jsr166 1.1 return false;
1130 jsr166 1.3
1131 jsr166 1.14 // Atomically append the chain at the tail of this collection
1132 jsr166 1.7 restartFromTail:
1133 jsr166 1.15 for (;;)
1134     for (Node<E> t = tail, p = t, q;;) {
1135     if ((q = p.next) != null &&
1136     (q = (p = q).next) != null)
1137     // Check for tail updates every other hop.
1138     // If p == q, we are sure to follow tail instead.
1139     p = (t != (t = tail)) ? t : q;
1140     else if (p.prev == p) // NEXT_TERMINATOR
1141     continue restartFromTail;
1142     else {
1143 jsr166 1.3 // p is last node
1144 jsr166 1.14 beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
1145     if (p.casNext(null, beginningOfTheEnd)) {
1146     // Successful CAS is the linearization point
1147 jsr166 1.20 // for all elements to be added to this deque.
1148 jsr166 1.14 if (!casTail(t, last)) {
1149 jsr166 1.3 // Try a little harder to update tail,
1150     // since we may be adding many elements.
1151     t = tail;
1152     if (last.next == null)
1153     casTail(t, last);
1154     }
1155     return true;
1156     }
1157 jsr166 1.11 // Lost CAS race to another thread; re-read next
1158 jsr166 1.3 }
1159     }
1160 jsr166 1.1 }
1161    
1162     /**
1163     * Removes all of the elements from this deque.
1164     */
1165     public void clear() {
1166     while (pollFirst() != null)
1167     ;
1168     }
1169    
1170     /**
1171     * Returns an array containing all of the elements in this deque, in
1172     * proper sequence (from first to last element).
1173     *
1174     * <p>The returned array will be "safe" in that no references to it are
1175     * maintained by this deque. (In other words, this method must allocate
1176     * a new array). The caller is thus free to modify the returned array.
1177     *
1178     * <p>This method acts as bridge between array-based and collection-based
1179     * APIs.
1180     *
1181     * @return an array containing all of the elements in this deque
1182     */
1183     public Object[] toArray() {
1184     return toArrayList().toArray();
1185     }
1186    
1187     /**
1188     * Returns an array containing all of the elements in this deque,
1189     * in proper sequence (from first to last element); the runtime
1190     * type of the returned array is that of the specified array. If
1191     * the deque fits in the specified array, it is returned therein.
1192     * Otherwise, a new array is allocated with the runtime type of
1193     * the specified array and the size of this deque.
1194     *
1195     * <p>If this deque fits in the specified array with room to spare
1196     * (i.e., the array has more elements than this deque), the element in
1197     * the array immediately following the end of the deque is set to
1198     * {@code null}.
1199     *
1200 jsr166 1.3 * <p>Like the {@link #toArray()} method, this method acts as
1201     * bridge between array-based and collection-based APIs. Further,
1202     * this method allows precise control over the runtime type of the
1203     * output array, and may, under certain circumstances, be used to
1204     * save allocation costs.
1205 jsr166 1.1 *
1206     * <p>Suppose {@code x} is a deque known to contain only strings.
1207     * The following code can be used to dump the deque into a newly
1208     * allocated array of {@code String}:
1209     *
1210     * <pre>
1211     * String[] y = x.toArray(new String[0]);</pre>
1212     *
1213     * Note that {@code toArray(new Object[0])} is identical in function to
1214     * {@code toArray()}.
1215     *
1216     * @param a the array into which the elements of the deque are to
1217     * be stored, if it is big enough; otherwise, a new array of the
1218     * same runtime type is allocated for this purpose
1219     * @return an array containing all of the elements in this deque
1220     * @throws ArrayStoreException if the runtime type of the specified array
1221     * is not a supertype of the runtime type of every element in
1222     * this deque
1223     * @throws NullPointerException if the specified array is null
1224     */
1225     public <T> T[] toArray(T[] a) {
1226     return toArrayList().toArray(a);
1227     }
1228    
1229     /**
1230     * Returns an iterator over the elements in this deque in proper sequence.
1231     * The elements will be returned in order from first (head) to last (tail).
1232     *
1233 jsr166 1.22 * <p>The returned iterator is a "weakly consistent" iterator that
1234 jsr166 1.1 * will never throw {@link java.util.ConcurrentModificationException
1235 jsr166 1.22 * ConcurrentModificationException}, and guarantees to traverse
1236     * elements as they existed upon construction of the iterator, and
1237     * may (but is not guaranteed to) reflect any modifications
1238     * subsequent to construction.
1239 jsr166 1.1 *
1240     * @return an iterator over the elements in this deque in proper sequence
1241     */
1242     public Iterator<E> iterator() {
1243     return new Itr();
1244     }
1245    
1246     /**
1247     * Returns an iterator over the elements in this deque in reverse
1248     * sequential order. The elements will be returned in order from
1249     * last (tail) to first (head).
1250     *
1251 jsr166 1.22 * <p>The returned iterator is a "weakly consistent" iterator that
1252 jsr166 1.1 * will never throw {@link java.util.ConcurrentModificationException
1253 jsr166 1.22 * ConcurrentModificationException}, and guarantees to traverse
1254     * elements as they existed upon construction of the iterator, and
1255     * may (but is not guaranteed to) reflect any modifications
1256     * subsequent to construction.
1257 jsr166 1.3 *
1258     * @return an iterator over the elements in this deque in reverse order
1259 jsr166 1.1 */
1260     public Iterator<E> descendingIterator() {
1261     return new DescendingItr();
1262     }
1263    
1264     private abstract class AbstractItr implements Iterator<E> {
1265     /**
1266     * Next node to return item for.
1267     */
1268     private Node<E> nextNode;
1269    
1270     /**
1271     * nextItem holds on to item fields because once we claim
1272     * that an element exists in hasNext(), we must return it in
1273     * the following next() call even if it was in the process of
1274     * being removed when hasNext() was called.
1275     */
1276     private E nextItem;
1277    
1278     /**
1279     * Node returned by most recent call to next. Needed by remove.
1280     * Reset to null if this element is deleted by a call to remove.
1281     */
1282     private Node<E> lastRet;
1283    
1284     abstract Node<E> startNode();
1285     abstract Node<E> nextNode(Node<E> p);
1286    
1287     AbstractItr() {
1288     advance();
1289     }
1290    
1291     /**
1292     * Sets nextNode and nextItem to next valid node, or to null
1293     * if no such.
1294     */
1295     private void advance() {
1296     lastRet = nextNode;
1297    
1298     Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1299     for (;; p = nextNode(p)) {
1300     if (p == null) {
1301     // p might be active end or TERMINATOR node; both are OK
1302     nextNode = null;
1303     nextItem = null;
1304     break;
1305     }
1306     E item = p.item;
1307     if (item != null) {
1308     nextNode = p;
1309     nextItem = item;
1310     break;
1311     }
1312     }
1313     }
1314    
1315     public boolean hasNext() {
1316     return nextItem != null;
1317     }
1318    
1319     public E next() {
1320     E item = nextItem;
1321     if (item == null) throw new NoSuchElementException();
1322     advance();
1323     return item;
1324     }
1325    
1326     public void remove() {
1327     Node<E> l = lastRet;
1328     if (l == null) throw new IllegalStateException();
1329     l.item = null;
1330     unlink(l);
1331     lastRet = null;
1332     }
1333     }
1334    
1335     /** Forward iterator */
1336     private class Itr extends AbstractItr {
1337     Node<E> startNode() { return first(); }
1338     Node<E> nextNode(Node<E> p) { return succ(p); }
1339     }
1340    
1341     /** Descending iterator */
1342     private class DescendingItr extends AbstractItr {
1343     Node<E> startNode() { return last(); }
1344     Node<E> nextNode(Node<E> p) { return pred(p); }
1345     }
1346    
1347     /**
1348 jsr166 1.3 * Saves the state to a stream (that is, serializes it).
1349 jsr166 1.1 *
1350     * @serialData All of the elements (each an {@code E}) in
1351     * the proper order, followed by a null
1352     * @param s the stream
1353     */
1354     private void writeObject(java.io.ObjectOutputStream s)
1355     throws java.io.IOException {
1356    
1357     // Write out any hidden stuff
1358     s.defaultWriteObject();
1359    
1360     // Write out all elements in the proper order.
1361     for (Node<E> p = first(); p != null; p = succ(p)) {
1362 jsr166 1.14 E item = p.item;
1363 jsr166 1.1 if (item != null)
1364     s.writeObject(item);
1365     }
1366    
1367     // Use trailing null as sentinel
1368     s.writeObject(null);
1369     }
1370    
1371     /**
1372 jsr166 1.3 * Reconstitutes the instance from a stream (that is, deserializes it).
1373 jsr166 1.1 * @param s the stream
1374     */
1375     private void readObject(java.io.ObjectInputStream s)
1376     throws java.io.IOException, ClassNotFoundException {
1377     s.defaultReadObject();
1378 jsr166 1.3
1379     // Read in elements until trailing null sentinel found
1380     Node<E> h = null, t = null;
1381     Object item;
1382     while ((item = s.readObject()) != null) {
1383 jsr166 1.1 @SuppressWarnings("unchecked")
1384 jsr166 1.3 Node<E> newNode = new Node<E>((E) item);
1385     if (h == null)
1386     h = t = newNode;
1387     else {
1388 jsr166 1.8 t.lazySetNext(newNode);
1389     newNode.lazySetPrev(t);
1390 jsr166 1.3 t = newNode;
1391     }
1392 jsr166 1.1 }
1393 jsr166 1.9 initHeadTail(h, t);
1394 jsr166 1.1 }
1395    
1396     // Unsafe mechanics
1397    
1398     private static final sun.misc.Unsafe UNSAFE =
1399     sun.misc.Unsafe.getUnsafe();
1400     private static final long headOffset =
1401     objectFieldOffset(UNSAFE, "head", ConcurrentLinkedDeque.class);
1402     private static final long tailOffset =
1403     objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedDeque.class);
1404    
1405     private boolean casHead(Node<E> cmp, Node<E> val) {
1406     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1407     }
1408    
1409     private boolean casTail(Node<E> cmp, Node<E> val) {
1410     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1411     }
1412    
1413     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1414     String field, Class<?> klazz) {
1415     try {
1416     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1417     } catch (NoSuchFieldException e) {
1418     // Convert Exception to corresponding Error
1419     NoSuchFieldError error = new NoSuchFieldError(field);
1420     error.initCause(e);
1421     throw error;
1422     }
1423     }
1424     }