ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.4
Committed: Wed Sep 1 22:49:09 2010 UTC (13 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.3: +5 -6 lines
Log Message:
Use relaxed Unsafe.putObject in Node constructors

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea and Martin Buchholz with assistance from members of
3     * JCP JSR-166 Expert Group and released to the public domain, as explained
4     * at http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractCollection;
10     import java.util.ArrayList;
11     import java.util.Collection;
12     import java.util.Deque;
13     import java.util.Iterator;
14     import java.util.ConcurrentModificationException;
15     import java.util.NoSuchElementException;
16     import java.util.concurrent.atomic.AtomicReference;
17    
18     /**
19 jsr166 1.3 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
20     * Concurrent insertion, removal, and access operations execute safely
21     * across multiple threads.
22     * A {@code ConcurrentLinkedDeque} is an appropriate choice when
23     * many threads will share access to a common collection.
24     * Like most other concurrent collection implementations, this class
25     * does not permit the use of {@code null} elements.
26     *
27     * <p>Iterators are <i>weakly consistent</i>, returning elements
28     * reflecting the state of the deque at some point at or since the
29     * creation of the iterator. They do <em>not</em> throw {@link
30     * java.util.ConcurrentModificationException
31 jsr166 1.1 * ConcurrentModificationException}, and may proceed concurrently with
32     * other operations.
33     *
34 jsr166 1.3 * <p>Beware that, unlike in most collections, the {@code size}
35 jsr166 1.1 * method is <em>NOT</em> a constant-time operation. Because of the
36     * asynchronous nature of these deques, determining the current number
37 jsr166 1.3 * of elements requires a traversal of the elements.
38     *
39     * <p>This class and its iterator implement all of the <em>optional</em>
40     * methods of the {@link Deque} and {@link Iterator} interfaces.
41 jsr166 1.1 *
42 jsr166 1.3 * <p>Memory consistency effects: As with other concurrent collections,
43     * actions in a thread prior to placing an object into a
44     * {@code ConcurrentLinkedDeque}
45     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
46     * actions subsequent to the access or removal of that element from
47     * the {@code ConcurrentLinkedDeque} in another thread.
48 jsr166 1.1 *
49 jsr166 1.3 * <p>This class is a member of the
50     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
51     * Java Collections Framework</a>.
52     *
53     * @since 1.7
54     * @author Doug Lea
55     * @author Martin Buchholz
56 jsr166 1.1 * @param <E> the type of elements held in this collection
57     */
58    
59     public class ConcurrentLinkedDeque<E>
60     extends AbstractCollection<E>
61     implements Deque<E>, java.io.Serializable {
62    
63     /*
64     * This is an implementation of a concurrent lock-free deque
65     * supporting interior removes but not interior insertions, as
66 jsr166 1.3 * required to support the entire Deque interface.
67     *
68     * We extend the techniques developed for ConcurrentLinkedQueue and
69     * LinkedTransferQueue (see the internal docs for those classes).
70     *
71     * The data structure is a symmetrical doubly-linked "GC-robust"
72     * linked list of nodes. We minimize the number of volatile writes
73     * using two techniques: advancing multiple hops with a single CAS
74     * and mixing volatile and non-volatile writes of the same memory
75     * locations.
76     *
77     * A node contains the expected E ("item") and links to predecessor
78     * ("prev") and successor ("next") nodes:
79     *
80     * class Node<E> { volatile Node<E> prev, next; volatile E item; }
81     *
82     * A node p is considered "live" if it contains a non-null item
83     * (p.item != null). When an item is CASed to null, the item is
84     * atomically logically deleted from the collection.
85     *
86     * At any time, there is precisely one "first" node with a null
87     * prev reference that terminates any chain of prev references
88     * starting at a live node. Similarly there is precisely one
89     * "last" node terminating any chain of next references starting at
90     * a live node. The "first" and "last" nodes may or may not be live.
91     * The "first" and "last" nodes are always mutually reachable.
92     *
93     * A new element is added atomically by CASing the null prev or
94     * next reference in the first or last node to a fresh node
95     * containing the element.
96     *
97     * A node is considered "active" if it is a live node, or the
98     * first or last node. Active nodes cannot be unlinked.
99     *
100     * A "self-link" is a next or prev reference that is the same node:
101     * p.prev == p or p.next == p
102     * Self-links are used in the node unlinking process. Active nodes
103     * never have self-links.
104 jsr166 1.1 *
105 jsr166 1.3 * A node p is active if and only if:
106 jsr166 1.1 *
107     * p.item != null ||
108     * (p.prev == null && p.next != p) ||
109     * (p.next == null && p.prev != p)
110     *
111 jsr166 1.3 * The deque object has two node references, "head" and "tail".
112     * The head and tail are only approximations to the first and last
113     * nodes of the deque. The first node can always be found by
114 jsr166 1.1 * following prev pointers from head; likewise for tail. However,
115 jsr166 1.3 * it is permissible for head and tail to be referring to deleted
116     * nodes that have been unlinked and so may not be reachable from
117     * any live node.
118     *
119     * There are 3 stages of node deletion;
120     * "logical deletion", "unlinking", and "gc-unlinking".
121     *
122     * 1. "logical deletion" by CASing item to null atomically removes
123     * the element from the collection, and makes the containing node
124     * eligible for unlinking.
125     *
126     * 2. "unlinking" makes a deleted node unreachable from active
127     * nodes, and thus eventually reclaimable by GC. Unlinked nodes
128     * may remain reachable indefinitely from an iterator.
129     *
130     * Physical node unlinking is merely an optimization (albeit a
131     * critical one), and so can be performed at our convenience. At
132     * any time, the set of live nodes maintained by prev and next
133     * links are identical, that is, the live nodes found via next
134     * links from the first node is equal to the elements found via
135     * prev links from the last node. However, this is not true for
136     * nodes that have already been logically deleted - such nodes may
137     * be reachable in one direction only.
138     *
139     * 3. "gc-unlinking" takes unlinking further by making active
140     * nodes unreachable from deleted nodes, making it easier for the
141     * GC to reclaim future deleted nodes. This step makes the data
142     * structure "gc-robust", as first described in detail by Boehm
143     * (http://portal.acm.org/citation.cfm?doid=503272.503282).
144     *
145     * GC-unlinked nodes may remain reachable indefinitely from an
146     * iterator, but unlike unlinked nodes, are never reachable from
147     * head or tail.
148     *
149     * Making the data structure GC-robust will eliminate the risk of
150     * unbounded memory retention with conservative GCs and is likely
151     * to improve performance with generational GCs.
152     *
153     * When a node is dequeued at either end, e.g. via poll(), we would
154     * like to break any references from the node to active nodes. We
155     * develop further the use of self-links that was very effective in
156     * other concurrent collection classes. The idea is to replace
157     * prev and next pointers with special values that are interpreted
158     * to mean off-the-list-at-one-end. These are approximations, but
159     * good enough to preserve the properties we want in our
160     * traversals, e.g. we guarantee that a traversal will never visit
161     * the same element twice, but we don't guarantee whether a
162     * traversal that runs out of elements will be able to see more
163     * elements later after enqueues at that end. Doing gc-unlinking
164     * safely is particularly tricky, since any node can be in use
165     * indefinitely (for example by an iterator). We must ensure that
166     * the nodes pointed at by head/tail never get gc-unlinked, since
167     * head/tail are needed to get "back on track" by other nodes that
168     * are gc-unlinked. gc-unlinking accounts for much of the
169     * implementation complexity.
170 jsr166 1.1 *
171     * Since neither unlinking nor gc-unlinking are necessary for
172     * correctness, there are many implementation choices regarding
173     * frequency (eagerness) of these operations. Since volatile
174     * reads are likely to be much cheaper than CASes, saving CASes by
175     * unlinking multiple adjacent nodes at a time may be a win.
176     * gc-unlinking can be performed rarely and still be effective,
177     * since it is most important that long chains of deleted nodes
178     * are occasionally broken.
179     *
180     * The actual representation we use is that p.next == p means to
181 jsr166 1.3 * goto the first node (which in turn is reached by following prev
182     * pointers from head), and p.next == null && p.prev == p means
183 jsr166 1.1 * that the iteration is at an end and that p is a (final static)
184     * dummy node, NEXT_TERMINATOR, and not the last active node.
185     * Finishing the iteration when encountering such a TERMINATOR is
186 jsr166 1.3 * good enough for read-only traversals, so such traversals can use
187     * p.next == null as the termination condition. When we need to
188     * find the last (active) node, for enqueueing a new node, we need
189     * to check whether we have reached a TERMINATOR node; if so,
190     * restart traversal from tail.
191 jsr166 1.1 *
192     * The implementation is completely directionally symmetrical,
193     * except that most public methods that iterate through the list
194     * follow next pointers ("forward" direction).
195     *
196     * There is one desirable property we would like to have, but
197     * don't: it is possible, when an addFirst(A) is racing with
198     * pollFirst() removing B, for an iterating observer to see A B C
199     * and subsequently see A C, even though no interior removes are
200     * ever performed. I believe this wart can only be removed at
201     * significant runtime cost.
202     *
203     * Empirically, microbenchmarks suggest that this class adds about
204     * 40% overhead relative to ConcurrentLinkedQueue, which feels as
205     * good as we can hope for.
206     */
207    
208 jsr166 1.3 private static final long serialVersionUID = 876323262645176354L;
209    
210 jsr166 1.1 /**
211 jsr166 1.3 * A node from which the first node on list (that is, the unique node p
212     * with p.prev == null && p.next != p) can be reached in O(1) time.
213 jsr166 1.1 * Invariants:
214     * - the first node is always O(1) reachable from head via prev links
215     * - all live nodes are reachable from the first node via succ()
216     * - head != null
217     * - (tmp = head).next != tmp || tmp != head
218 jsr166 1.3 * - head is never gc-unlinked (but may be unlinked)
219 jsr166 1.1 * Non-invariants:
220     * - head.item may or may not be null
221     * - head may not be reachable from the first or last node, or from tail
222     */
223 jsr166 1.3 private transient volatile Node<E> head;
224    
225     /**
226     * A node from which the last node on list (that is, the unique node p
227     * with p.next == null && p.prev != p) can be reached in O(1) time.
228     * Invariants:
229     * - the last node is always O(1) reachable from tail via next links
230     * - all live nodes are reachable from the last node via pred()
231     * - tail != null
232     * - tail is never gc-unlinked (but may be unlinked)
233     * Non-invariants:
234     * - tail.item may or may not be null
235     * - tail may not be reachable from the first or last node, or from head
236     */
237     private transient volatile Node<E> tail;
238 jsr166 1.1
239     private final static Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
240    
241     static {
242     PREV_TERMINATOR = new Node<Object>(null);
243     PREV_TERMINATOR.next = PREV_TERMINATOR;
244     NEXT_TERMINATOR = new Node<Object>(null);
245     NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
246     }
247    
248     @SuppressWarnings("unchecked")
249     Node<E> prevTerminator() {
250     return (Node<E>) PREV_TERMINATOR;
251     }
252    
253     @SuppressWarnings("unchecked")
254     Node<E> nextTerminator() {
255     return (Node<E>) NEXT_TERMINATOR;
256     }
257    
258     static final class Node<E> {
259     volatile Node<E> prev;
260     volatile E item;
261     volatile Node<E> next;
262    
263 jsr166 1.4 /**
264     * Constructs a new node. Uses relaxed write because item can
265     * only be seen after publication via casNext or casPrev.
266     */
267 jsr166 1.1 Node(E item) {
268 jsr166 1.4 UNSAFE.putObject(this, itemOffset, item);
269 jsr166 1.1 }
270    
271     boolean casItem(E cmp, E val) {
272     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
273     }
274    
275     void lazySetNext(Node<E> val) {
276     UNSAFE.putOrderedObject(this, nextOffset, val);
277     }
278    
279     boolean casNext(Node<E> cmp, Node<E> val) {
280     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
281     }
282    
283     void lazySetPrev(Node<E> val) {
284     UNSAFE.putOrderedObject(this, prevOffset, val);
285     }
286    
287     boolean casPrev(Node<E> cmp, Node<E> val) {
288     return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
289     }
290    
291     // Unsafe mechanics
292    
293     private static final sun.misc.Unsafe UNSAFE =
294     sun.misc.Unsafe.getUnsafe();
295     private static final long prevOffset =
296     objectFieldOffset(UNSAFE, "prev", Node.class);
297     private static final long itemOffset =
298     objectFieldOffset(UNSAFE, "item", Node.class);
299     private static final long nextOffset =
300     objectFieldOffset(UNSAFE, "next", Node.class);
301     }
302    
303     /**
304     * Links e as first element.
305     */
306     private void linkFirst(E e) {
307     checkNotNull(e);
308     final Node<E> newNode = new Node<E>(e);
309    
310     retry:
311     for (;;) {
312     for (Node<E> h = head, p = h;;) {
313     Node<E> q = p.prev;
314     if (q == null) {
315 jsr166 1.3 if (p.next == p) // PREV_TERMINATOR
316 jsr166 1.1 continue retry;
317 jsr166 1.3 // p is first node
318 jsr166 1.1 newNode.lazySetNext(p); // CAS piggyback
319     if (p.casPrev(null, newNode)) {
320     if (p != h) // hop two nodes at a time
321     casHead(h, newNode);
322     return;
323     } else {
324     p = p.prev; // lost CAS race to another thread
325     }
326     }
327     else if (p == q)
328     continue retry;
329     else
330     p = q;
331     }
332     }
333     }
334    
335     /**
336     * Links e as last element.
337     */
338     private void linkLast(E e) {
339     checkNotNull(e);
340     final Node<E> newNode = new Node<E>(e);
341    
342     retry:
343     for (;;) {
344     for (Node<E> t = tail, p = t;;) {
345     Node<E> q = p.next;
346     if (q == null) {
347 jsr166 1.3 if (p.prev == p) // NEXT_TERMINATOR
348 jsr166 1.1 continue retry;
349 jsr166 1.3 // p is last node
350 jsr166 1.1 newNode.lazySetPrev(p); // CAS piggyback
351     if (p.casNext(null, newNode)) {
352     if (p != t) // hop two nodes at a time
353     casTail(t, newNode);
354     return;
355     } else {
356     p = p.next; // lost CAS race to another thread
357     }
358     }
359     else if (p == q)
360     continue retry;
361     else
362     p = q;
363     }
364     }
365     }
366    
367     private final static int HOPS = 2;
368    
369     /**
370     * Unlinks non-null node x.
371     */
372     void unlink(Node<E> x) {
373 jsr166 1.3 // assert x != null;
374     // assert x.item == null;
375     // assert x != PREV_TERMINATOR;
376     // assert x != NEXT_TERMINATOR;
377 jsr166 1.1
378     final Node<E> prev = x.prev;
379     final Node<E> next = x.next;
380     if (prev == null) {
381     unlinkFirst(x, next);
382     } else if (next == null) {
383     unlinkLast(x, prev);
384     } else {
385     // Unlink interior node.
386     //
387     // This is the common case, since a series of polls at the
388     // same end will be "interior" removes, except perhaps for
389 jsr166 1.3 // the first one, since end nodes cannot be unlinked.
390 jsr166 1.1 //
391     // At any time, all active nodes are mutually reachable by
392     // following a sequence of either next or prev pointers.
393     //
394     // Our strategy is to find the unique active predecessor
395     // and successor of x. Try to fix up their links so that
396     // they point to each other, leaving x unreachable from
397     // active nodes. If successful, and if x has no live
398 jsr166 1.3 // predecessor/successor, we additionally try to gc-unlink,
399     // leaving active nodes unreachable from x, by rechecking
400     // that the status of predecessor and successor are
401     // unchanged and ensuring that x is not reachable from
402     // tail/head, before setting x's prev/next links to their
403     // logical approximate replacements, self/TERMINATOR.
404 jsr166 1.1 Node<E> activePred, activeSucc;
405     boolean isFirst, isLast;
406     int hops = 1;
407    
408     // Find active predecessor
409 jsr166 1.3 for (Node<E> p = prev; ; ++hops) {
410 jsr166 1.1 if (p.item != null) {
411     activePred = p;
412     isFirst = false;
413     break;
414     }
415     Node<E> q = p.prev;
416     if (q == null) {
417 jsr166 1.3 if (p.next == p)
418 jsr166 1.1 return;
419     activePred = p;
420     isFirst = true;
421     break;
422     }
423     else if (p == q)
424     return;
425     else
426     p = q;
427     }
428    
429     // Find active successor
430 jsr166 1.3 for (Node<E> p = next; ; ++hops) {
431 jsr166 1.1 if (p.item != null) {
432     activeSucc = p;
433     isLast = false;
434     break;
435     }
436     Node<E> q = p.next;
437     if (q == null) {
438 jsr166 1.3 if (p.prev == p)
439 jsr166 1.1 return;
440     activeSucc = p;
441     isLast = true;
442     break;
443     }
444     else if (p == q)
445     return;
446     else
447     p = q;
448     }
449    
450     // TODO: better HOP heuristics
451     if (hops < HOPS
452     // always squeeze out interior deleted nodes
453     && (isFirst | isLast))
454     return;
455    
456     // Squeeze out deleted nodes between activePred and
457     // activeSucc, including x.
458     skipDeletedSuccessors(activePred);
459     skipDeletedPredecessors(activeSucc);
460    
461     // Try to gc-unlink, if possible
462     if ((isFirst | isLast) &&
463    
464     // Recheck expected state of predecessor and successor
465     (activePred.next == activeSucc) &&
466     (activeSucc.prev == activePred) &&
467     (isFirst ? activePred.prev == null : activePred.item != null) &&
468     (isLast ? activeSucc.next == null : activeSucc.item != null)) {
469    
470     // Ensure x is not reachable from head or tail
471     updateHead();
472     updateTail();
473 jsr166 1.3
474     // Finally, actually gc-unlink
475 jsr166 1.1 x.lazySetPrev(isFirst ? prevTerminator() : x);
476     x.lazySetNext(isLast ? nextTerminator() : x);
477     }
478     }
479     }
480    
481     /**
482     * Unlinks non-null first node.
483     */
484     private void unlinkFirst(Node<E> first, Node<E> next) {
485 jsr166 1.3 // assert first != null && next != null && first.item == null;
486 jsr166 1.1 Node<E> o = null, p = next;
487 jsr166 1.3 for (int hops = 0; ; ++hops) {
488 jsr166 1.1 Node<E> q;
489     if (p.item != null || (q = p.next) == null) {
490 jsr166 1.3 if (hops >= HOPS && p.prev != p && first.casNext(next, p)) {
491     skipDeletedPredecessors(p);
492     if (first.prev == null &&
493     (p.next == null || p.item != null) &&
494     p.prev == first) {
495    
496     updateHead();
497     updateTail();
498     o.lazySetNext(o);
499     o.lazySetPrev(prevTerminator());
500 jsr166 1.1 }
501     }
502     return;
503     }
504     else if (p == q)
505     return;
506     else {
507     o = p;
508     p = q;
509     }
510     }
511     }
512    
513     /**
514     * Unlinks non-null last node.
515     */
516     private void unlinkLast(Node<E> last, Node<E> prev) {
517 jsr166 1.3 // assert last != null && prev != null && last.item == null;
518 jsr166 1.1 Node<E> o = null, p = prev;
519 jsr166 1.3 for (int hops = 0; ; ++hops) {
520 jsr166 1.1 Node<E> q;
521     if (p.item != null || (q = p.prev) == null) {
522 jsr166 1.3 if (hops >= HOPS && p.next != p && last.casPrev(prev, p)) {
523     skipDeletedSuccessors(p);
524     if (last.next == null &&
525     (p.prev == null || p.item != null) &&
526     p.next == last) {
527    
528     updateHead();
529     updateTail();
530     o.lazySetPrev(o);
531     o.lazySetNext(nextTerminator());
532 jsr166 1.1 }
533     }
534     return;
535     }
536     else if (p == q)
537     return;
538     else {
539     o = p;
540     p = q;
541     }
542     }
543     }
544    
545 jsr166 1.3 /**
546     * Sets head to first node. Guarantees that any node which was
547     * unlinked before a call to this method will be unreachable from
548     * head after it returns.
549     */
550 jsr166 1.1 private final void updateHead() {
551     first();
552     }
553    
554 jsr166 1.3 /**
555     * Sets tail to last node. Guarantees that any node which was
556     * unlinked before a call to this method will be unreachable from
557     * tail after it returns.
558     */
559 jsr166 1.1 private final void updateTail() {
560     last();
561     }
562    
563     private void skipDeletedPredecessors(Node<E> x) {
564     whileActive:
565     do {
566     Node<E> prev = x.prev;
567 jsr166 1.3 // assert prev != null;
568     // assert x != NEXT_TERMINATOR;
569     // assert x != PREV_TERMINATOR;
570 jsr166 1.1 Node<E> p = prev;
571     findActive:
572     for (;;) {
573     if (p.item != null)
574     break findActive;
575     Node<E> q = p.prev;
576     if (q == null) {
577     if (p.next == p)
578     continue whileActive;
579     break findActive;
580     }
581     else if (p == q)
582     continue whileActive;
583     else
584     p = q;
585     }
586    
587     // found active CAS target
588     if (prev == p || x.casPrev(prev, p))
589     return;
590    
591     } while (x.item != null || x.next == null);
592     }
593    
594     private void skipDeletedSuccessors(Node<E> x) {
595     whileActive:
596     do {
597     Node<E> next = x.next;
598 jsr166 1.3 // assert next != null;
599     // assert x != NEXT_TERMINATOR;
600     // assert x != PREV_TERMINATOR;
601 jsr166 1.1 Node<E> p = next;
602     findActive:
603     for (;;) {
604     if (p.item != null)
605     break findActive;
606     Node<E> q = p.next;
607     if (q == null) {
608     if (p.prev == p)
609     continue whileActive;
610     break findActive;
611     }
612     else if (p == q)
613     continue whileActive;
614     else
615     p = q;
616     }
617    
618     // found active CAS target
619     if (next == p || x.casNext(next, p))
620     return;
621    
622     } while (x.item != null || x.prev == null);
623     }
624    
625     /**
626     * Returns the successor of p, or the first node if p.next has been
627     * linked to self, which will only be true if traversing with a
628     * stale pointer that is now off the list.
629     */
630     final Node<E> succ(Node<E> p) {
631     // TODO: should we skip deleted nodes here?
632     Node<E> q = p.next;
633     return (p == q) ? first() : q;
634     }
635    
636     /**
637     * Returns the predecessor of p, or the last node if p.prev has been
638     * linked to self, which will only be true if traversing with a
639     * stale pointer that is now off the list.
640     */
641     final Node<E> pred(Node<E> p) {
642     Node<E> q = p.prev;
643     return (p == q) ? last() : q;
644     }
645    
646     /**
647 jsr166 1.3 * Returns the first node, the unique node p for which:
648     * p.prev == null && p.next != p
649 jsr166 1.1 * The returned node may or may not be logically deleted.
650     * Guarantees that head is set to the returned node.
651     */
652     Node<E> first() {
653     retry:
654     for (;;) {
655     for (Node<E> h = head, p = h;;) {
656     Node<E> q = p.prev;
657     if (q == null) {
658     if (p == h
659     // It is possible that p is PREV_TERMINATOR,
660 jsr166 1.3 // but if so, the CAS is guaranteed to fail.
661 jsr166 1.1 || casHead(h, p))
662     return p;
663     else
664     continue retry;
665     } else if (p == q) {
666     continue retry;
667     } else {
668     p = q;
669     }
670     }
671     }
672     }
673    
674     /**
675 jsr166 1.3 * Returns the last node, the unique node p for which:
676     * p.next == null && p.prev != p
677 jsr166 1.1 * The returned node may or may not be logically deleted.
678     * Guarantees that tail is set to the returned node.
679     */
680     Node<E> last() {
681     retry:
682     for (;;) {
683     for (Node<E> t = tail, p = t;;) {
684     Node<E> q = p.next;
685     if (q == null) {
686     if (p == t
687     // It is possible that p is NEXT_TERMINATOR,
688 jsr166 1.3 // but if so, the CAS is guaranteed to fail.
689 jsr166 1.1 || casTail(t, p))
690     return p;
691     else
692     continue retry;
693     } else if (p == q) {
694     continue retry;
695     } else {
696     p = q;
697     }
698     }
699     }
700     }
701    
702     // Minor convenience utilities
703    
704     /**
705     * Throws NullPointerException if argument is null.
706     *
707     * @param v the element
708     */
709     private static void checkNotNull(Object v) {
710     if (v == null)
711     throw new NullPointerException();
712     }
713    
714     /**
715     * Returns element unless it is null, in which case throws
716     * NoSuchElementException.
717     *
718     * @param v the element
719     * @return the element
720     */
721     private E screenNullResult(E v) {
722     if (v == null)
723     throw new NoSuchElementException();
724     return v;
725     }
726    
727     /**
728     * Creates an array list and fills it with elements of this list.
729     * Used by toArray.
730     *
731     * @return the arrayList
732     */
733     private ArrayList<E> toArrayList() {
734 jsr166 1.3 ArrayList<E> list = new ArrayList<E>();
735 jsr166 1.1 for (Node<E> p = first(); p != null; p = succ(p)) {
736     E item = p.item;
737     if (item != null)
738 jsr166 1.3 list.add(item);
739 jsr166 1.1 }
740 jsr166 1.3 return list;
741 jsr166 1.1 }
742    
743     /**
744     * Constructs an empty deque.
745     */
746 jsr166 1.3 public ConcurrentLinkedDeque() {
747     head = tail = new Node<E>(null);
748     }
749 jsr166 1.1
750     /**
751     * Constructs a deque initially containing the elements of
752     * the given collection, added in traversal order of the
753     * collection's iterator.
754     *
755     * @param c the collection of elements to initially contain
756     * @throws NullPointerException if the specified collection or any
757     * of its elements are null
758     */
759 jsr166 1.3 public ConcurrentLinkedDeque(Collection<? extends E> c) {
760     // Copy c into a private chain of Nodes
761     Node<E> h = null, t = null;
762     for (E e : c) {
763     checkNotNull(e);
764     Node<E> newNode = new Node<E>(e);
765     if (h == null)
766     h = t = newNode;
767     else {
768     t.next = newNode;
769     newNode.prev = t;
770     t = newNode;
771     }
772     }
773     if (h == null)
774     h = t = new Node<E>(null);
775     head = h;
776     tail = t;
777     }
778 jsr166 1.1
779     /**
780     * Inserts the specified element at the front of this deque.
781     *
782     * @throws NullPointerException {@inheritDoc}
783     */
784     public void addFirst(E e) {
785     linkFirst(e);
786     }
787    
788     /**
789     * Inserts the specified element at the end of this deque.
790 jsr166 1.3 *
791     * <p>This method is equivalent to {@link #add}.
792 jsr166 1.1 *
793     * @throws NullPointerException {@inheritDoc}
794     */
795     public void addLast(E e) {
796     linkLast(e);
797     }
798    
799     /**
800     * Inserts the specified element at the front of this deque.
801     *
802     * @return {@code true} always
803     * @throws NullPointerException {@inheritDoc}
804     */
805     public boolean offerFirst(E e) {
806     linkFirst(e);
807     return true;
808     }
809    
810     /**
811     * Inserts the specified element at the end of this deque.
812     *
813     * <p>This method is equivalent to {@link #add}.
814     *
815     * @return {@code true} always
816     * @throws NullPointerException {@inheritDoc}
817     */
818     public boolean offerLast(E e) {
819     linkLast(e);
820     return true;
821     }
822    
823     public E peekFirst() {
824     for (Node<E> p = first(); p != null; p = succ(p)) {
825     E item = p.item;
826     if (item != null)
827     return item;
828     }
829     return null;
830     }
831    
832     public E peekLast() {
833     for (Node<E> p = last(); p != null; p = pred(p)) {
834     E item = p.item;
835     if (item != null)
836     return item;
837     }
838     return null;
839     }
840    
841     /**
842     * @throws NoSuchElementException {@inheritDoc}
843     */
844     public E getFirst() {
845     return screenNullResult(peekFirst());
846     }
847    
848     /**
849     * @throws NoSuchElementException {@inheritDoc}
850     */
851     public E getLast() {
852     return screenNullResult(peekLast());
853     }
854    
855     public E pollFirst() {
856     for (Node<E> p = first(); p != null; p = succ(p)) {
857     E item = p.item;
858     if (item != null && p.casItem(item, null)) {
859     unlink(p);
860     return item;
861     }
862     }
863     return null;
864     }
865    
866     public E pollLast() {
867     for (Node<E> p = last(); p != null; p = pred(p)) {
868     E item = p.item;
869     if (item != null && p.casItem(item, null)) {
870     unlink(p);
871     return item;
872     }
873     }
874     return null;
875     }
876    
877     /**
878     * @throws NoSuchElementException {@inheritDoc}
879     */
880     public E removeFirst() {
881     return screenNullResult(pollFirst());
882     }
883    
884     /**
885     * @throws NoSuchElementException {@inheritDoc}
886     */
887     public E removeLast() {
888     return screenNullResult(pollLast());
889     }
890    
891     // *** Queue and stack methods ***
892    
893     /**
894     * Inserts the specified element at the tail of this deque.
895     *
896     * @return {@code true} (as specified by {@link Queue#offer})
897     * @throws NullPointerException if the specified element is null
898     */
899     public boolean offer(E e) {
900     return offerLast(e);
901     }
902    
903     /**
904     * Inserts the specified element at the tail of this deque.
905     *
906     * @return {@code true} (as specified by {@link Collection#add})
907     * @throws NullPointerException if the specified element is null
908     */
909     public boolean add(E e) {
910     return offerLast(e);
911     }
912    
913     public E poll() { return pollFirst(); }
914     public E remove() { return removeFirst(); }
915     public E peek() { return peekFirst(); }
916     public E element() { return getFirst(); }
917     public void push(E e) { addFirst(e); }
918     public E pop() { return removeFirst(); }
919    
920     /**
921     * Removes the first element {@code e} such that
922     * {@code o.equals(e)}, if such an element exists in this deque.
923     * If the deque does not contain the element, it is unchanged.
924     *
925     * @param o element to be removed from this deque, if present
926     * @return {@code true} if the deque contained the specified element
927     * @throws NullPointerException if the specified element is {@code null}
928     */
929     public boolean removeFirstOccurrence(Object o) {
930     checkNotNull(o);
931     for (Node<E> p = first(); p != null; p = succ(p)) {
932     E item = p.item;
933     if (item != null && o.equals(item) && p.casItem(item, null)) {
934     unlink(p);
935     return true;
936     }
937     }
938     return false;
939     }
940    
941     /**
942     * Removes the last element {@code e} such that
943     * {@code o.equals(e)}, if such an element exists in this deque.
944     * If the deque does not contain the element, it is unchanged.
945     *
946     * @param o element to be removed from this deque, if present
947     * @return {@code true} if the deque contained the specified element
948     * @throws NullPointerException if the specified element is {@code null}
949     */
950     public boolean removeLastOccurrence(Object o) {
951     checkNotNull(o);
952     for (Node<E> p = last(); p != null; p = pred(p)) {
953     E item = p.item;
954     if (item != null && o.equals(item) && p.casItem(item, null)) {
955     unlink(p);
956     return true;
957     }
958     }
959     return false;
960     }
961    
962     /**
963     * Returns {@code true} if this deque contains at least one
964     * element {@code e} such that {@code o.equals(e)}.
965     *
966     * @param o element whose presence in this deque is to be tested
967     * @return {@code true} if this deque contains the specified element
968     */
969     public boolean contains(Object o) {
970     if (o == null) return false;
971     for (Node<E> p = first(); p != null; p = succ(p)) {
972     E item = p.item;
973     if (item != null && o.equals(item))
974     return true;
975     }
976     return false;
977     }
978    
979     /**
980     * Returns {@code true} if this collection contains no elements.
981     *
982     * @return {@code true} if this collection contains no elements
983     */
984     public boolean isEmpty() {
985     return peekFirst() == null;
986     }
987    
988     /**
989     * Returns the number of elements in this deque. If this deque
990     * contains more than {@code Integer.MAX_VALUE} elements, it
991     * returns {@code Integer.MAX_VALUE}.
992     *
993     * <p>Beware that, unlike in most collections, this method is
994     * <em>NOT</em> a constant-time operation. Because of the
995     * asynchronous nature of these deques, determining the current
996     * number of elements requires traversing them all to count them.
997     * Additionally, it is possible for the size to change during
998     * execution of this method, in which case the returned result
999     * will be inaccurate. Thus, this method is typically not very
1000     * useful in concurrent applications.
1001     *
1002     * @return the number of elements in this deque
1003     */
1004     public int size() {
1005     long count = 0;
1006     for (Node<E> p = first(); p != null; p = succ(p))
1007     if (p.item != null)
1008     ++count;
1009     return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1010     }
1011    
1012     /**
1013     * Removes the first element {@code e} such that
1014     * {@code o.equals(e)}, if such an element exists in this deque.
1015     * If the deque does not contain the element, it is unchanged.
1016     *
1017     * @param o element to be removed from this deque, if present
1018     * @return {@code true} if the deque contained the specified element
1019     * @throws NullPointerException if the specified element is {@code null}
1020     */
1021     public boolean remove(Object o) {
1022     return removeFirstOccurrence(o);
1023     }
1024    
1025     /**
1026     * Appends all of the elements in the specified collection to the end of
1027     * this deque, in the order that they are returned by the specified
1028 jsr166 1.3 * collection's iterator. Attempts to {@code addAll} of a deque to
1029     * itself result in {@code IllegalArgumentException}.
1030 jsr166 1.1 *
1031     * @param c the elements to be inserted into this deque
1032     * @return {@code true} if this deque changed as a result of the call
1033 jsr166 1.3 * @throws NullPointerException if the specified collection or any
1034     * of its elements are null
1035     * @throws IllegalArgumentException if the collection is this deque
1036 jsr166 1.1 */
1037     public boolean addAll(Collection<? extends E> c) {
1038 jsr166 1.3 if (c == this)
1039     // As historically specified in AbstractQueue#addAll
1040     throw new IllegalArgumentException();
1041    
1042     // Copy c into a private chain of Nodes
1043     Node<E> splice = null, last = null;
1044     for (E e : c) {
1045     checkNotNull(e);
1046     Node<E> newNode = new Node<E>(e);
1047     if (splice == null)
1048     splice = last = newNode;
1049     else {
1050     last.next = newNode;
1051     newNode.prev = last;
1052     last = newNode;
1053     }
1054     }
1055     if (splice == null)
1056 jsr166 1.1 return false;
1057 jsr166 1.3
1058     // Atomically splice the chain as the tail of this collection
1059     retry:
1060     for (;;) {
1061     for (Node<E> t = tail, p = t;;) {
1062     Node<E> q = p.next;
1063     if (q == null) {
1064     if (p.prev == p) // NEXT_TERMINATOR
1065     continue retry;
1066     // p is last node
1067     splice.lazySetPrev(p); // CAS piggyback
1068     if (p.casNext(null, splice)) {
1069     if (! casTail(t, last)) {
1070     // Try a little harder to update tail,
1071     // since we may be adding many elements.
1072     t = tail;
1073     if (last.next == null)
1074     casTail(t, last);
1075     }
1076     return true;
1077     } else {
1078     p = p.next; // lost CAS race to another thread
1079     }
1080     }
1081     else if (p == q)
1082     continue retry;
1083     else
1084     p = q;
1085     }
1086     }
1087 jsr166 1.1 }
1088    
1089     /**
1090     * Removes all of the elements from this deque.
1091     */
1092     public void clear() {
1093     while (pollFirst() != null)
1094     ;
1095     }
1096    
1097     /**
1098     * Returns an array containing all of the elements in this deque, in
1099     * proper sequence (from first to last element).
1100     *
1101     * <p>The returned array will be "safe" in that no references to it are
1102     * maintained by this deque. (In other words, this method must allocate
1103     * a new array). The caller is thus free to modify the returned array.
1104     *
1105     * <p>This method acts as bridge between array-based and collection-based
1106     * APIs.
1107     *
1108     * @return an array containing all of the elements in this deque
1109     */
1110     public Object[] toArray() {
1111     return toArrayList().toArray();
1112     }
1113    
1114     /**
1115     * Returns an array containing all of the elements in this deque,
1116     * in proper sequence (from first to last element); the runtime
1117     * type of the returned array is that of the specified array. If
1118     * the deque fits in the specified array, it is returned therein.
1119     * Otherwise, a new array is allocated with the runtime type of
1120     * the specified array and the size of this deque.
1121     *
1122     * <p>If this deque fits in the specified array with room to spare
1123     * (i.e., the array has more elements than this deque), the element in
1124     * the array immediately following the end of the deque is set to
1125     * {@code null}.
1126     *
1127 jsr166 1.3 * <p>Like the {@link #toArray()} method, this method acts as
1128     * bridge between array-based and collection-based APIs. Further,
1129     * this method allows precise control over the runtime type of the
1130     * output array, and may, under certain circumstances, be used to
1131     * save allocation costs.
1132 jsr166 1.1 *
1133     * <p>Suppose {@code x} is a deque known to contain only strings.
1134     * The following code can be used to dump the deque into a newly
1135     * allocated array of {@code String}:
1136     *
1137     * <pre>
1138     * String[] y = x.toArray(new String[0]);</pre>
1139     *
1140     * Note that {@code toArray(new Object[0])} is identical in function to
1141     * {@code toArray()}.
1142     *
1143     * @param a the array into which the elements of the deque are to
1144     * be stored, if it is big enough; otherwise, a new array of the
1145     * same runtime type is allocated for this purpose
1146     * @return an array containing all of the elements in this deque
1147     * @throws ArrayStoreException if the runtime type of the specified array
1148     * is not a supertype of the runtime type of every element in
1149     * this deque
1150     * @throws NullPointerException if the specified array is null
1151     */
1152     public <T> T[] toArray(T[] a) {
1153     return toArrayList().toArray(a);
1154     }
1155    
1156     /**
1157     * Returns an iterator over the elements in this deque in proper sequence.
1158     * The elements will be returned in order from first (head) to last (tail).
1159     *
1160     * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
1161     * will never throw {@link java.util.ConcurrentModificationException
1162     * ConcurrentModificationException},
1163     * and guarantees to traverse elements as they existed upon
1164     * construction of the iterator, and may (but is not guaranteed to)
1165     * reflect any modifications subsequent to construction.
1166     *
1167     * @return an iterator over the elements in this deque in proper sequence
1168     */
1169     public Iterator<E> iterator() {
1170     return new Itr();
1171     }
1172    
1173     /**
1174     * Returns an iterator over the elements in this deque in reverse
1175     * sequential order. The elements will be returned in order from
1176     * last (tail) to first (head).
1177     *
1178     * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
1179     * will never throw {@link java.util.ConcurrentModificationException
1180     * ConcurrentModificationException},
1181     * and guarantees to traverse elements as they existed upon
1182     * construction of the iterator, and may (but is not guaranteed to)
1183     * reflect any modifications subsequent to construction.
1184 jsr166 1.3 *
1185     * @return an iterator over the elements in this deque in reverse order
1186 jsr166 1.1 */
1187     public Iterator<E> descendingIterator() {
1188     return new DescendingItr();
1189     }
1190    
1191     private abstract class AbstractItr implements Iterator<E> {
1192     /**
1193     * Next node to return item for.
1194     */
1195     private Node<E> nextNode;
1196    
1197     /**
1198     * nextItem holds on to item fields because once we claim
1199     * that an element exists in hasNext(), we must return it in
1200     * the following next() call even if it was in the process of
1201     * being removed when hasNext() was called.
1202     */
1203     private E nextItem;
1204    
1205     /**
1206     * Node returned by most recent call to next. Needed by remove.
1207     * Reset to null if this element is deleted by a call to remove.
1208     */
1209     private Node<E> lastRet;
1210    
1211     abstract Node<E> startNode();
1212     abstract Node<E> nextNode(Node<E> p);
1213    
1214     AbstractItr() {
1215     advance();
1216     }
1217    
1218     /**
1219     * Sets nextNode and nextItem to next valid node, or to null
1220     * if no such.
1221     */
1222     private void advance() {
1223     lastRet = nextNode;
1224    
1225     Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1226     for (;; p = nextNode(p)) {
1227     if (p == null) {
1228     // p might be active end or TERMINATOR node; both are OK
1229     nextNode = null;
1230     nextItem = null;
1231     break;
1232     }
1233     E item = p.item;
1234     if (item != null) {
1235     nextNode = p;
1236     nextItem = item;
1237     break;
1238     }
1239     }
1240     }
1241    
1242     public boolean hasNext() {
1243     return nextItem != null;
1244     }
1245    
1246     public E next() {
1247     E item = nextItem;
1248     if (item == null) throw new NoSuchElementException();
1249     advance();
1250     return item;
1251     }
1252    
1253     public void remove() {
1254     Node<E> l = lastRet;
1255     if (l == null) throw new IllegalStateException();
1256     l.item = null;
1257     unlink(l);
1258     lastRet = null;
1259     }
1260     }
1261    
1262     /** Forward iterator */
1263     private class Itr extends AbstractItr {
1264     Node<E> startNode() { return first(); }
1265     Node<E> nextNode(Node<E> p) { return succ(p); }
1266     }
1267    
1268     /** Descending iterator */
1269     private class DescendingItr extends AbstractItr {
1270     Node<E> startNode() { return last(); }
1271     Node<E> nextNode(Node<E> p) { return pred(p); }
1272     }
1273    
1274     /**
1275 jsr166 1.3 * Saves the state to a stream (that is, serializes it).
1276 jsr166 1.1 *
1277     * @serialData All of the elements (each an {@code E}) in
1278     * the proper order, followed by a null
1279     * @param s the stream
1280     */
1281     private void writeObject(java.io.ObjectOutputStream s)
1282     throws java.io.IOException {
1283    
1284     // Write out any hidden stuff
1285     s.defaultWriteObject();
1286    
1287     // Write out all elements in the proper order.
1288     for (Node<E> p = first(); p != null; p = succ(p)) {
1289     Object item = p.item;
1290     if (item != null)
1291     s.writeObject(item);
1292     }
1293    
1294     // Use trailing null as sentinel
1295     s.writeObject(null);
1296     }
1297    
1298     /**
1299 jsr166 1.3 * Reconstitutes the instance from a stream (that is, deserializes it).
1300 jsr166 1.1 * @param s the stream
1301     */
1302     private void readObject(java.io.ObjectInputStream s)
1303     throws java.io.IOException, ClassNotFoundException {
1304     s.defaultReadObject();
1305 jsr166 1.3
1306     // Read in elements until trailing null sentinel found
1307     Node<E> h = null, t = null;
1308     Object item;
1309     while ((item = s.readObject()) != null) {
1310 jsr166 1.1 @SuppressWarnings("unchecked")
1311 jsr166 1.3 Node<E> newNode = new Node<E>((E) item);
1312     if (h == null)
1313     h = t = newNode;
1314     else {
1315     t.next = newNode;
1316     newNode.prev = t;
1317     t = newNode;
1318     }
1319 jsr166 1.1 }
1320 jsr166 1.3 if (h == null)
1321     h = t = new Node<E>(null);
1322     head = h;
1323     tail = t;
1324 jsr166 1.1 }
1325    
1326     // Unsafe mechanics
1327    
1328     private static final sun.misc.Unsafe UNSAFE =
1329     sun.misc.Unsafe.getUnsafe();
1330     private static final long headOffset =
1331     objectFieldOffset(UNSAFE, "head", ConcurrentLinkedDeque.class);
1332     private static final long tailOffset =
1333     objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedDeque.class);
1334    
1335     private boolean casHead(Node<E> cmp, Node<E> val) {
1336     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1337     }
1338    
1339     private boolean casTail(Node<E> cmp, Node<E> val) {
1340     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1341     }
1342    
1343     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1344     String field, Class<?> klazz) {
1345     try {
1346     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1347     } catch (NoSuchFieldException e) {
1348     // Convert Exception to corresponding Error
1349     NoSuchFieldError error = new NoSuchFieldError(field);
1350     error.initCause(e);
1351     throw error;
1352     }
1353     }
1354     }