ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.5
Committed: Sat Sep 11 03:53:44 2010 UTC (13 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.4: +21 -13 lines
Log Message:
internal doc improvements

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea and Martin Buchholz with assistance from members of
3     * JCP JSR-166 Expert Group and released to the public domain, as explained
4     * at http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractCollection;
10     import java.util.ArrayList;
11     import java.util.Collection;
12     import java.util.Deque;
13     import java.util.Iterator;
14     import java.util.ConcurrentModificationException;
15     import java.util.NoSuchElementException;
16     import java.util.concurrent.atomic.AtomicReference;
17    
18     /**
19 jsr166 1.3 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
20     * Concurrent insertion, removal, and access operations execute safely
21     * across multiple threads.
22     * A {@code ConcurrentLinkedDeque} is an appropriate choice when
23     * many threads will share access to a common collection.
24     * Like most other concurrent collection implementations, this class
25     * does not permit the use of {@code null} elements.
26     *
27     * <p>Iterators are <i>weakly consistent</i>, returning elements
28     * reflecting the state of the deque at some point at or since the
29     * creation of the iterator. They do <em>not</em> throw {@link
30     * java.util.ConcurrentModificationException
31 jsr166 1.1 * ConcurrentModificationException}, and may proceed concurrently with
32     * other operations.
33     *
34 jsr166 1.3 * <p>Beware that, unlike in most collections, the {@code size}
35 jsr166 1.1 * method is <em>NOT</em> a constant-time operation. Because of the
36     * asynchronous nature of these deques, determining the current number
37 jsr166 1.3 * of elements requires a traversal of the elements.
38     *
39     * <p>This class and its iterator implement all of the <em>optional</em>
40     * methods of the {@link Deque} and {@link Iterator} interfaces.
41 jsr166 1.1 *
42 jsr166 1.3 * <p>Memory consistency effects: As with other concurrent collections,
43     * actions in a thread prior to placing an object into a
44     * {@code ConcurrentLinkedDeque}
45     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
46     * actions subsequent to the access or removal of that element from
47     * the {@code ConcurrentLinkedDeque} in another thread.
48 jsr166 1.1 *
49 jsr166 1.3 * <p>This class is a member of the
50     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
51     * Java Collections Framework</a>.
52     *
53     * @since 1.7
54     * @author Doug Lea
55     * @author Martin Buchholz
56 jsr166 1.1 * @param <E> the type of elements held in this collection
57     */
58    
59     public class ConcurrentLinkedDeque<E>
60     extends AbstractCollection<E>
61     implements Deque<E>, java.io.Serializable {
62    
63     /*
64     * This is an implementation of a concurrent lock-free deque
65     * supporting interior removes but not interior insertions, as
66 jsr166 1.3 * required to support the entire Deque interface.
67     *
68     * We extend the techniques developed for ConcurrentLinkedQueue and
69     * LinkedTransferQueue (see the internal docs for those classes).
70 jsr166 1.5 * Understanding the ConcurrentLinkedQueue implementation is a
71     * prerequisite for understanding the implementation of this class.
72 jsr166 1.3 *
73     * The data structure is a symmetrical doubly-linked "GC-robust"
74     * linked list of nodes. We minimize the number of volatile writes
75     * using two techniques: advancing multiple hops with a single CAS
76     * and mixing volatile and non-volatile writes of the same memory
77     * locations.
78     *
79     * A node contains the expected E ("item") and links to predecessor
80     * ("prev") and successor ("next") nodes:
81     *
82     * class Node<E> { volatile Node<E> prev, next; volatile E item; }
83     *
84     * A node p is considered "live" if it contains a non-null item
85     * (p.item != null). When an item is CASed to null, the item is
86     * atomically logically deleted from the collection.
87     *
88     * At any time, there is precisely one "first" node with a null
89     * prev reference that terminates any chain of prev references
90     * starting at a live node. Similarly there is precisely one
91     * "last" node terminating any chain of next references starting at
92     * a live node. The "first" and "last" nodes may or may not be live.
93     * The "first" and "last" nodes are always mutually reachable.
94     *
95     * A new element is added atomically by CASing the null prev or
96     * next reference in the first or last node to a fresh node
97     * containing the element.
98     *
99     * A node is considered "active" if it is a live node, or the
100     * first or last node. Active nodes cannot be unlinked.
101     *
102     * A "self-link" is a next or prev reference that is the same node:
103     * p.prev == p or p.next == p
104     * Self-links are used in the node unlinking process. Active nodes
105     * never have self-links.
106 jsr166 1.1 *
107 jsr166 1.3 * A node p is active if and only if:
108 jsr166 1.1 *
109     * p.item != null ||
110     * (p.prev == null && p.next != p) ||
111     * (p.next == null && p.prev != p)
112     *
113 jsr166 1.3 * The deque object has two node references, "head" and "tail".
114     * The head and tail are only approximations to the first and last
115     * nodes of the deque. The first node can always be found by
116 jsr166 1.1 * following prev pointers from head; likewise for tail. However,
117 jsr166 1.3 * it is permissible for head and tail to be referring to deleted
118     * nodes that have been unlinked and so may not be reachable from
119     * any live node.
120     *
121     * There are 3 stages of node deletion;
122     * "logical deletion", "unlinking", and "gc-unlinking".
123     *
124     * 1. "logical deletion" by CASing item to null atomically removes
125     * the element from the collection, and makes the containing node
126     * eligible for unlinking.
127     *
128     * 2. "unlinking" makes a deleted node unreachable from active
129     * nodes, and thus eventually reclaimable by GC. Unlinked nodes
130     * may remain reachable indefinitely from an iterator.
131     *
132     * Physical node unlinking is merely an optimization (albeit a
133     * critical one), and so can be performed at our convenience. At
134     * any time, the set of live nodes maintained by prev and next
135     * links are identical, that is, the live nodes found via next
136     * links from the first node is equal to the elements found via
137     * prev links from the last node. However, this is not true for
138     * nodes that have already been logically deleted - such nodes may
139     * be reachable in one direction only.
140     *
141     * 3. "gc-unlinking" takes unlinking further by making active
142     * nodes unreachable from deleted nodes, making it easier for the
143     * GC to reclaim future deleted nodes. This step makes the data
144     * structure "gc-robust", as first described in detail by Boehm
145     * (http://portal.acm.org/citation.cfm?doid=503272.503282).
146     *
147     * GC-unlinked nodes may remain reachable indefinitely from an
148     * iterator, but unlike unlinked nodes, are never reachable from
149     * head or tail.
150     *
151     * Making the data structure GC-robust will eliminate the risk of
152     * unbounded memory retention with conservative GCs and is likely
153     * to improve performance with generational GCs.
154     *
155     * When a node is dequeued at either end, e.g. via poll(), we would
156     * like to break any references from the node to active nodes. We
157     * develop further the use of self-links that was very effective in
158     * other concurrent collection classes. The idea is to replace
159     * prev and next pointers with special values that are interpreted
160     * to mean off-the-list-at-one-end. These are approximations, but
161     * good enough to preserve the properties we want in our
162     * traversals, e.g. we guarantee that a traversal will never visit
163     * the same element twice, but we don't guarantee whether a
164     * traversal that runs out of elements will be able to see more
165     * elements later after enqueues at that end. Doing gc-unlinking
166     * safely is particularly tricky, since any node can be in use
167     * indefinitely (for example by an iterator). We must ensure that
168     * the nodes pointed at by head/tail never get gc-unlinked, since
169     * head/tail are needed to get "back on track" by other nodes that
170     * are gc-unlinked. gc-unlinking accounts for much of the
171     * implementation complexity.
172 jsr166 1.1 *
173     * Since neither unlinking nor gc-unlinking are necessary for
174     * correctness, there are many implementation choices regarding
175     * frequency (eagerness) of these operations. Since volatile
176     * reads are likely to be much cheaper than CASes, saving CASes by
177     * unlinking multiple adjacent nodes at a time may be a win.
178     * gc-unlinking can be performed rarely and still be effective,
179     * since it is most important that long chains of deleted nodes
180     * are occasionally broken.
181     *
182     * The actual representation we use is that p.next == p means to
183 jsr166 1.3 * goto the first node (which in turn is reached by following prev
184     * pointers from head), and p.next == null && p.prev == p means
185 jsr166 1.1 * that the iteration is at an end and that p is a (final static)
186     * dummy node, NEXT_TERMINATOR, and not the last active node.
187     * Finishing the iteration when encountering such a TERMINATOR is
188 jsr166 1.3 * good enough for read-only traversals, so such traversals can use
189     * p.next == null as the termination condition. When we need to
190     * find the last (active) node, for enqueueing a new node, we need
191     * to check whether we have reached a TERMINATOR node; if so,
192     * restart traversal from tail.
193 jsr166 1.1 *
194     * The implementation is completely directionally symmetrical,
195     * except that most public methods that iterate through the list
196     * follow next pointers ("forward" direction).
197     *
198 jsr166 1.5 * We believe (without full proof) that all single-element deque
199     * operations (e.g., addFirst, peekLast, pollLast) are linearizable
200     * (see Herlihy and Shavit's book). However, some combinations of
201     * operations are known not to be linearizable. In particular,
202     * when an addFirst(A) is racing with pollFirst() removing B, it is
203     * possible for an observer iterating over the elements to observe
204     * A B C and subsequently observe A C, even though no interior
205     * removes are ever performed. Nevertheless, iterators behave
206     * reasonably, providing the "weakly consistent" guarantees.
207 jsr166 1.1 *
208     * Empirically, microbenchmarks suggest that this class adds about
209     * 40% overhead relative to ConcurrentLinkedQueue, which feels as
210     * good as we can hope for.
211     */
212    
213 jsr166 1.3 private static final long serialVersionUID = 876323262645176354L;
214    
215 jsr166 1.1 /**
216 jsr166 1.3 * A node from which the first node on list (that is, the unique node p
217     * with p.prev == null && p.next != p) can be reached in O(1) time.
218 jsr166 1.1 * Invariants:
219     * - the first node is always O(1) reachable from head via prev links
220     * - all live nodes are reachable from the first node via succ()
221     * - head != null
222     * - (tmp = head).next != tmp || tmp != head
223 jsr166 1.3 * - head is never gc-unlinked (but may be unlinked)
224 jsr166 1.1 * Non-invariants:
225     * - head.item may or may not be null
226     * - head may not be reachable from the first or last node, or from tail
227     */
228 jsr166 1.3 private transient volatile Node<E> head;
229    
230     /**
231     * A node from which the last node on list (that is, the unique node p
232     * with p.next == null && p.prev != p) can be reached in O(1) time.
233     * Invariants:
234     * - the last node is always O(1) reachable from tail via next links
235     * - all live nodes are reachable from the last node via pred()
236     * - tail != null
237     * - tail is never gc-unlinked (but may be unlinked)
238     * Non-invariants:
239     * - tail.item may or may not be null
240     * - tail may not be reachable from the first or last node, or from head
241     */
242     private transient volatile Node<E> tail;
243 jsr166 1.1
244     private final static Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
245    
246     static {
247     PREV_TERMINATOR = new Node<Object>(null);
248     PREV_TERMINATOR.next = PREV_TERMINATOR;
249     NEXT_TERMINATOR = new Node<Object>(null);
250     NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
251     }
252    
253     @SuppressWarnings("unchecked")
254     Node<E> prevTerminator() {
255     return (Node<E>) PREV_TERMINATOR;
256     }
257    
258     @SuppressWarnings("unchecked")
259     Node<E> nextTerminator() {
260     return (Node<E>) NEXT_TERMINATOR;
261     }
262    
263     static final class Node<E> {
264     volatile Node<E> prev;
265     volatile E item;
266     volatile Node<E> next;
267    
268 jsr166 1.4 /**
269     * Constructs a new node. Uses relaxed write because item can
270     * only be seen after publication via casNext or casPrev.
271     */
272 jsr166 1.1 Node(E item) {
273 jsr166 1.4 UNSAFE.putObject(this, itemOffset, item);
274 jsr166 1.1 }
275    
276     boolean casItem(E cmp, E val) {
277     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
278     }
279    
280     void lazySetNext(Node<E> val) {
281     UNSAFE.putOrderedObject(this, nextOffset, val);
282     }
283    
284     boolean casNext(Node<E> cmp, Node<E> val) {
285     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
286     }
287    
288     void lazySetPrev(Node<E> val) {
289     UNSAFE.putOrderedObject(this, prevOffset, val);
290     }
291    
292     boolean casPrev(Node<E> cmp, Node<E> val) {
293     return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
294     }
295    
296     // Unsafe mechanics
297    
298     private static final sun.misc.Unsafe UNSAFE =
299     sun.misc.Unsafe.getUnsafe();
300     private static final long prevOffset =
301     objectFieldOffset(UNSAFE, "prev", Node.class);
302     private static final long itemOffset =
303     objectFieldOffset(UNSAFE, "item", Node.class);
304     private static final long nextOffset =
305     objectFieldOffset(UNSAFE, "next", Node.class);
306     }
307    
308     /**
309     * Links e as first element.
310     */
311     private void linkFirst(E e) {
312     checkNotNull(e);
313     final Node<E> newNode = new Node<E>(e);
314    
315     retry:
316     for (;;) {
317     for (Node<E> h = head, p = h;;) {
318     Node<E> q = p.prev;
319     if (q == null) {
320 jsr166 1.3 if (p.next == p) // PREV_TERMINATOR
321 jsr166 1.1 continue retry;
322 jsr166 1.3 // p is first node
323 jsr166 1.1 newNode.lazySetNext(p); // CAS piggyback
324     if (p.casPrev(null, newNode)) {
325     if (p != h) // hop two nodes at a time
326     casHead(h, newNode);
327     return;
328     } else {
329     p = p.prev; // lost CAS race to another thread
330     }
331     }
332     else if (p == q)
333     continue retry;
334     else
335     p = q;
336     }
337     }
338     }
339    
340     /**
341     * Links e as last element.
342     */
343     private void linkLast(E e) {
344     checkNotNull(e);
345     final Node<E> newNode = new Node<E>(e);
346    
347     retry:
348     for (;;) {
349     for (Node<E> t = tail, p = t;;) {
350     Node<E> q = p.next;
351     if (q == null) {
352 jsr166 1.3 if (p.prev == p) // NEXT_TERMINATOR
353 jsr166 1.1 continue retry;
354 jsr166 1.3 // p is last node
355 jsr166 1.1 newNode.lazySetPrev(p); // CAS piggyback
356     if (p.casNext(null, newNode)) {
357     if (p != t) // hop two nodes at a time
358     casTail(t, newNode);
359     return;
360     } else {
361     p = p.next; // lost CAS race to another thread
362     }
363     }
364     else if (p == q)
365     continue retry;
366     else
367     p = q;
368     }
369     }
370     }
371    
372     private final static int HOPS = 2;
373    
374     /**
375     * Unlinks non-null node x.
376     */
377     void unlink(Node<E> x) {
378 jsr166 1.3 // assert x != null;
379     // assert x.item == null;
380     // assert x != PREV_TERMINATOR;
381     // assert x != NEXT_TERMINATOR;
382 jsr166 1.1
383     final Node<E> prev = x.prev;
384     final Node<E> next = x.next;
385     if (prev == null) {
386     unlinkFirst(x, next);
387     } else if (next == null) {
388     unlinkLast(x, prev);
389     } else {
390     // Unlink interior node.
391     //
392     // This is the common case, since a series of polls at the
393     // same end will be "interior" removes, except perhaps for
394 jsr166 1.3 // the first one, since end nodes cannot be unlinked.
395 jsr166 1.1 //
396     // At any time, all active nodes are mutually reachable by
397     // following a sequence of either next or prev pointers.
398     //
399     // Our strategy is to find the unique active predecessor
400     // and successor of x. Try to fix up their links so that
401     // they point to each other, leaving x unreachable from
402     // active nodes. If successful, and if x has no live
403 jsr166 1.3 // predecessor/successor, we additionally try to gc-unlink,
404     // leaving active nodes unreachable from x, by rechecking
405     // that the status of predecessor and successor are
406     // unchanged and ensuring that x is not reachable from
407     // tail/head, before setting x's prev/next links to their
408     // logical approximate replacements, self/TERMINATOR.
409 jsr166 1.1 Node<E> activePred, activeSucc;
410     boolean isFirst, isLast;
411     int hops = 1;
412    
413     // Find active predecessor
414 jsr166 1.3 for (Node<E> p = prev; ; ++hops) {
415 jsr166 1.1 if (p.item != null) {
416     activePred = p;
417     isFirst = false;
418     break;
419     }
420     Node<E> q = p.prev;
421     if (q == null) {
422 jsr166 1.3 if (p.next == p)
423 jsr166 1.1 return;
424     activePred = p;
425     isFirst = true;
426     break;
427     }
428     else if (p == q)
429     return;
430     else
431     p = q;
432     }
433    
434     // Find active successor
435 jsr166 1.3 for (Node<E> p = next; ; ++hops) {
436 jsr166 1.1 if (p.item != null) {
437     activeSucc = p;
438     isLast = false;
439     break;
440     }
441     Node<E> q = p.next;
442     if (q == null) {
443 jsr166 1.3 if (p.prev == p)
444 jsr166 1.1 return;
445     activeSucc = p;
446     isLast = true;
447     break;
448     }
449     else if (p == q)
450     return;
451     else
452     p = q;
453     }
454    
455     // TODO: better HOP heuristics
456     if (hops < HOPS
457     // always squeeze out interior deleted nodes
458     && (isFirst | isLast))
459     return;
460    
461     // Squeeze out deleted nodes between activePred and
462     // activeSucc, including x.
463     skipDeletedSuccessors(activePred);
464     skipDeletedPredecessors(activeSucc);
465    
466     // Try to gc-unlink, if possible
467     if ((isFirst | isLast) &&
468    
469     // Recheck expected state of predecessor and successor
470     (activePred.next == activeSucc) &&
471     (activeSucc.prev == activePred) &&
472     (isFirst ? activePred.prev == null : activePred.item != null) &&
473     (isLast ? activeSucc.next == null : activeSucc.item != null)) {
474    
475 jsr166 1.5 updateHead(); // Ensure x is not reachable from head
476     updateTail(); // Ensure x is not reachable from tail
477 jsr166 1.3
478     // Finally, actually gc-unlink
479 jsr166 1.1 x.lazySetPrev(isFirst ? prevTerminator() : x);
480     x.lazySetNext(isLast ? nextTerminator() : x);
481     }
482     }
483     }
484    
485     /**
486     * Unlinks non-null first node.
487     */
488     private void unlinkFirst(Node<E> first, Node<E> next) {
489 jsr166 1.3 // assert first != null && next != null && first.item == null;
490 jsr166 1.1 Node<E> o = null, p = next;
491 jsr166 1.3 for (int hops = 0; ; ++hops) {
492 jsr166 1.1 Node<E> q;
493     if (p.item != null || (q = p.next) == null) {
494 jsr166 1.3 if (hops >= HOPS && p.prev != p && first.casNext(next, p)) {
495     skipDeletedPredecessors(p);
496     if (first.prev == null &&
497     (p.next == null || p.item != null) &&
498     p.prev == first) {
499    
500 jsr166 1.5 updateHead(); // Ensure o is not reachable from head
501     updateTail(); // Ensure o is not reachable from tail
502    
503     // Finally, actually gc-unlink
504 jsr166 1.3 o.lazySetNext(o);
505     o.lazySetPrev(prevTerminator());
506 jsr166 1.1 }
507     }
508     return;
509     }
510     else if (p == q)
511     return;
512     else {
513     o = p;
514     p = q;
515     }
516     }
517     }
518    
519     /**
520     * Unlinks non-null last node.
521     */
522     private void unlinkLast(Node<E> last, Node<E> prev) {
523 jsr166 1.3 // assert last != null && prev != null && last.item == null;
524 jsr166 1.1 Node<E> o = null, p = prev;
525 jsr166 1.3 for (int hops = 0; ; ++hops) {
526 jsr166 1.1 Node<E> q;
527     if (p.item != null || (q = p.prev) == null) {
528 jsr166 1.3 if (hops >= HOPS && p.next != p && last.casPrev(prev, p)) {
529     skipDeletedSuccessors(p);
530     if (last.next == null &&
531     (p.prev == null || p.item != null) &&
532     p.next == last) {
533    
534 jsr166 1.5 updateHead(); // Ensure o is not reachable from head
535     updateTail(); // Ensure o is not reachable from tail
536    
537     // Finally, actually gc-unlink
538 jsr166 1.3 o.lazySetPrev(o);
539     o.lazySetNext(nextTerminator());
540 jsr166 1.1 }
541     }
542     return;
543     }
544     else if (p == q)
545     return;
546     else {
547     o = p;
548     p = q;
549     }
550     }
551     }
552    
553 jsr166 1.3 /**
554     * Sets head to first node. Guarantees that any node which was
555     * unlinked before a call to this method will be unreachable from
556     * head after it returns.
557     */
558 jsr166 1.1 private final void updateHead() {
559     first();
560     }
561    
562 jsr166 1.3 /**
563     * Sets tail to last node. Guarantees that any node which was
564     * unlinked before a call to this method will be unreachable from
565     * tail after it returns.
566     */
567 jsr166 1.1 private final void updateTail() {
568     last();
569     }
570    
571     private void skipDeletedPredecessors(Node<E> x) {
572     whileActive:
573     do {
574     Node<E> prev = x.prev;
575 jsr166 1.3 // assert prev != null;
576     // assert x != NEXT_TERMINATOR;
577     // assert x != PREV_TERMINATOR;
578 jsr166 1.1 Node<E> p = prev;
579     findActive:
580     for (;;) {
581     if (p.item != null)
582     break findActive;
583     Node<E> q = p.prev;
584     if (q == null) {
585     if (p.next == p)
586     continue whileActive;
587     break findActive;
588     }
589     else if (p == q)
590     continue whileActive;
591     else
592     p = q;
593     }
594    
595     // found active CAS target
596     if (prev == p || x.casPrev(prev, p))
597     return;
598    
599     } while (x.item != null || x.next == null);
600     }
601    
602     private void skipDeletedSuccessors(Node<E> x) {
603     whileActive:
604     do {
605     Node<E> next = x.next;
606 jsr166 1.3 // assert next != null;
607     // assert x != NEXT_TERMINATOR;
608     // assert x != PREV_TERMINATOR;
609 jsr166 1.1 Node<E> p = next;
610     findActive:
611     for (;;) {
612     if (p.item != null)
613     break findActive;
614     Node<E> q = p.next;
615     if (q == null) {
616     if (p.prev == p)
617     continue whileActive;
618     break findActive;
619     }
620     else if (p == q)
621     continue whileActive;
622     else
623     p = q;
624     }
625    
626     // found active CAS target
627     if (next == p || x.casNext(next, p))
628     return;
629    
630     } while (x.item != null || x.prev == null);
631     }
632    
633     /**
634     * Returns the successor of p, or the first node if p.next has been
635     * linked to self, which will only be true if traversing with a
636     * stale pointer that is now off the list.
637     */
638     final Node<E> succ(Node<E> p) {
639     // TODO: should we skip deleted nodes here?
640     Node<E> q = p.next;
641     return (p == q) ? first() : q;
642     }
643    
644     /**
645     * Returns the predecessor of p, or the last node if p.prev has been
646     * linked to self, which will only be true if traversing with a
647     * stale pointer that is now off the list.
648     */
649     final Node<E> pred(Node<E> p) {
650     Node<E> q = p.prev;
651     return (p == q) ? last() : q;
652     }
653    
654     /**
655 jsr166 1.3 * Returns the first node, the unique node p for which:
656     * p.prev == null && p.next != p
657 jsr166 1.1 * The returned node may or may not be logically deleted.
658     * Guarantees that head is set to the returned node.
659     */
660     Node<E> first() {
661     retry:
662     for (;;) {
663     for (Node<E> h = head, p = h;;) {
664     Node<E> q = p.prev;
665     if (q == null) {
666     if (p == h
667     // It is possible that p is PREV_TERMINATOR,
668 jsr166 1.3 // but if so, the CAS is guaranteed to fail.
669 jsr166 1.1 || casHead(h, p))
670     return p;
671     else
672     continue retry;
673     } else if (p == q) {
674     continue retry;
675     } else {
676     p = q;
677     }
678     }
679     }
680     }
681    
682     /**
683 jsr166 1.3 * Returns the last node, the unique node p for which:
684     * p.next == null && p.prev != p
685 jsr166 1.1 * The returned node may or may not be logically deleted.
686     * Guarantees that tail is set to the returned node.
687     */
688     Node<E> last() {
689     retry:
690     for (;;) {
691     for (Node<E> t = tail, p = t;;) {
692     Node<E> q = p.next;
693     if (q == null) {
694     if (p == t
695     // It is possible that p is NEXT_TERMINATOR,
696 jsr166 1.3 // but if so, the CAS is guaranteed to fail.
697 jsr166 1.1 || casTail(t, p))
698     return p;
699     else
700     continue retry;
701     } else if (p == q) {
702     continue retry;
703     } else {
704     p = q;
705     }
706     }
707     }
708     }
709    
710     // Minor convenience utilities
711    
712     /**
713     * Throws NullPointerException if argument is null.
714     *
715     * @param v the element
716     */
717     private static void checkNotNull(Object v) {
718     if (v == null)
719     throw new NullPointerException();
720     }
721    
722     /**
723     * Returns element unless it is null, in which case throws
724     * NoSuchElementException.
725     *
726     * @param v the element
727     * @return the element
728     */
729     private E screenNullResult(E v) {
730     if (v == null)
731     throw new NoSuchElementException();
732     return v;
733     }
734    
735     /**
736     * Creates an array list and fills it with elements of this list.
737     * Used by toArray.
738     *
739     * @return the arrayList
740     */
741     private ArrayList<E> toArrayList() {
742 jsr166 1.3 ArrayList<E> list = new ArrayList<E>();
743 jsr166 1.1 for (Node<E> p = first(); p != null; p = succ(p)) {
744     E item = p.item;
745     if (item != null)
746 jsr166 1.3 list.add(item);
747 jsr166 1.1 }
748 jsr166 1.3 return list;
749 jsr166 1.1 }
750    
751     /**
752     * Constructs an empty deque.
753     */
754 jsr166 1.3 public ConcurrentLinkedDeque() {
755     head = tail = new Node<E>(null);
756     }
757 jsr166 1.1
758     /**
759     * Constructs a deque initially containing the elements of
760     * the given collection, added in traversal order of the
761     * collection's iterator.
762     *
763     * @param c the collection of elements to initially contain
764     * @throws NullPointerException if the specified collection or any
765     * of its elements are null
766     */
767 jsr166 1.3 public ConcurrentLinkedDeque(Collection<? extends E> c) {
768     // Copy c into a private chain of Nodes
769     Node<E> h = null, t = null;
770     for (E e : c) {
771     checkNotNull(e);
772     Node<E> newNode = new Node<E>(e);
773     if (h == null)
774     h = t = newNode;
775     else {
776     t.next = newNode;
777     newNode.prev = t;
778     t = newNode;
779     }
780     }
781     if (h == null)
782     h = t = new Node<E>(null);
783     head = h;
784     tail = t;
785     }
786 jsr166 1.1
787     /**
788     * Inserts the specified element at the front of this deque.
789     *
790     * @throws NullPointerException {@inheritDoc}
791     */
792     public void addFirst(E e) {
793     linkFirst(e);
794     }
795    
796     /**
797     * Inserts the specified element at the end of this deque.
798 jsr166 1.3 *
799     * <p>This method is equivalent to {@link #add}.
800 jsr166 1.1 *
801     * @throws NullPointerException {@inheritDoc}
802     */
803     public void addLast(E e) {
804     linkLast(e);
805     }
806    
807     /**
808     * Inserts the specified element at the front of this deque.
809     *
810     * @return {@code true} always
811     * @throws NullPointerException {@inheritDoc}
812     */
813     public boolean offerFirst(E e) {
814     linkFirst(e);
815     return true;
816     }
817    
818     /**
819     * Inserts the specified element at the end of this deque.
820     *
821     * <p>This method is equivalent to {@link #add}.
822     *
823     * @return {@code true} always
824     * @throws NullPointerException {@inheritDoc}
825     */
826     public boolean offerLast(E e) {
827     linkLast(e);
828     return true;
829     }
830    
831     public E peekFirst() {
832     for (Node<E> p = first(); p != null; p = succ(p)) {
833     E item = p.item;
834     if (item != null)
835     return item;
836     }
837     return null;
838     }
839    
840     public E peekLast() {
841     for (Node<E> p = last(); p != null; p = pred(p)) {
842     E item = p.item;
843     if (item != null)
844     return item;
845     }
846     return null;
847     }
848    
849     /**
850     * @throws NoSuchElementException {@inheritDoc}
851     */
852     public E getFirst() {
853     return screenNullResult(peekFirst());
854     }
855    
856     /**
857     * @throws NoSuchElementException {@inheritDoc}
858     */
859     public E getLast() {
860     return screenNullResult(peekLast());
861     }
862    
863     public E pollFirst() {
864     for (Node<E> p = first(); p != null; p = succ(p)) {
865     E item = p.item;
866     if (item != null && p.casItem(item, null)) {
867     unlink(p);
868     return item;
869     }
870     }
871     return null;
872     }
873    
874     public E pollLast() {
875     for (Node<E> p = last(); p != null; p = pred(p)) {
876     E item = p.item;
877     if (item != null && p.casItem(item, null)) {
878     unlink(p);
879     return item;
880     }
881     }
882     return null;
883     }
884    
885     /**
886     * @throws NoSuchElementException {@inheritDoc}
887     */
888     public E removeFirst() {
889     return screenNullResult(pollFirst());
890     }
891    
892     /**
893     * @throws NoSuchElementException {@inheritDoc}
894     */
895     public E removeLast() {
896     return screenNullResult(pollLast());
897     }
898    
899     // *** Queue and stack methods ***
900    
901     /**
902     * Inserts the specified element at the tail of this deque.
903     *
904     * @return {@code true} (as specified by {@link Queue#offer})
905     * @throws NullPointerException if the specified element is null
906     */
907     public boolean offer(E e) {
908     return offerLast(e);
909     }
910    
911     /**
912     * Inserts the specified element at the tail of this deque.
913     *
914     * @return {@code true} (as specified by {@link Collection#add})
915     * @throws NullPointerException if the specified element is null
916     */
917     public boolean add(E e) {
918     return offerLast(e);
919     }
920    
921     public E poll() { return pollFirst(); }
922     public E remove() { return removeFirst(); }
923     public E peek() { return peekFirst(); }
924     public E element() { return getFirst(); }
925     public void push(E e) { addFirst(e); }
926     public E pop() { return removeFirst(); }
927    
928     /**
929     * Removes the first element {@code e} such that
930     * {@code o.equals(e)}, if such an element exists in this deque.
931     * If the deque does not contain the element, it is unchanged.
932     *
933     * @param o element to be removed from this deque, if present
934     * @return {@code true} if the deque contained the specified element
935     * @throws NullPointerException if the specified element is {@code null}
936     */
937     public boolean removeFirstOccurrence(Object o) {
938     checkNotNull(o);
939     for (Node<E> p = first(); p != null; p = succ(p)) {
940     E item = p.item;
941     if (item != null && o.equals(item) && p.casItem(item, null)) {
942     unlink(p);
943     return true;
944     }
945     }
946     return false;
947     }
948    
949     /**
950     * Removes the last element {@code e} such that
951     * {@code o.equals(e)}, if such an element exists in this deque.
952     * If the deque does not contain the element, it is unchanged.
953     *
954     * @param o element to be removed from this deque, if present
955     * @return {@code true} if the deque contained the specified element
956     * @throws NullPointerException if the specified element is {@code null}
957     */
958     public boolean removeLastOccurrence(Object o) {
959     checkNotNull(o);
960     for (Node<E> p = last(); p != null; p = pred(p)) {
961     E item = p.item;
962     if (item != null && o.equals(item) && p.casItem(item, null)) {
963     unlink(p);
964     return true;
965     }
966     }
967     return false;
968     }
969    
970     /**
971     * Returns {@code true} if this deque contains at least one
972     * element {@code e} such that {@code o.equals(e)}.
973     *
974     * @param o element whose presence in this deque is to be tested
975     * @return {@code true} if this deque contains the specified element
976     */
977     public boolean contains(Object o) {
978     if (o == null) return false;
979     for (Node<E> p = first(); p != null; p = succ(p)) {
980     E item = p.item;
981     if (item != null && o.equals(item))
982     return true;
983     }
984     return false;
985     }
986    
987     /**
988     * Returns {@code true} if this collection contains no elements.
989     *
990     * @return {@code true} if this collection contains no elements
991     */
992     public boolean isEmpty() {
993     return peekFirst() == null;
994     }
995    
996     /**
997     * Returns the number of elements in this deque. If this deque
998     * contains more than {@code Integer.MAX_VALUE} elements, it
999     * returns {@code Integer.MAX_VALUE}.
1000     *
1001     * <p>Beware that, unlike in most collections, this method is
1002     * <em>NOT</em> a constant-time operation. Because of the
1003     * asynchronous nature of these deques, determining the current
1004     * number of elements requires traversing them all to count them.
1005     * Additionally, it is possible for the size to change during
1006     * execution of this method, in which case the returned result
1007     * will be inaccurate. Thus, this method is typically not very
1008     * useful in concurrent applications.
1009     *
1010     * @return the number of elements in this deque
1011     */
1012     public int size() {
1013     long count = 0;
1014     for (Node<E> p = first(); p != null; p = succ(p))
1015     if (p.item != null)
1016     ++count;
1017     return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1018     }
1019    
1020     /**
1021     * Removes the first element {@code e} such that
1022     * {@code o.equals(e)}, if such an element exists in this deque.
1023     * If the deque does not contain the element, it is unchanged.
1024     *
1025     * @param o element to be removed from this deque, if present
1026     * @return {@code true} if the deque contained the specified element
1027     * @throws NullPointerException if the specified element is {@code null}
1028     */
1029     public boolean remove(Object o) {
1030     return removeFirstOccurrence(o);
1031     }
1032    
1033     /**
1034     * Appends all of the elements in the specified collection to the end of
1035     * this deque, in the order that they are returned by the specified
1036 jsr166 1.3 * collection's iterator. Attempts to {@code addAll} of a deque to
1037     * itself result in {@code IllegalArgumentException}.
1038 jsr166 1.1 *
1039     * @param c the elements to be inserted into this deque
1040     * @return {@code true} if this deque changed as a result of the call
1041 jsr166 1.3 * @throws NullPointerException if the specified collection or any
1042     * of its elements are null
1043     * @throws IllegalArgumentException if the collection is this deque
1044 jsr166 1.1 */
1045     public boolean addAll(Collection<? extends E> c) {
1046 jsr166 1.3 if (c == this)
1047     // As historically specified in AbstractQueue#addAll
1048     throw new IllegalArgumentException();
1049    
1050     // Copy c into a private chain of Nodes
1051     Node<E> splice = null, last = null;
1052     for (E e : c) {
1053     checkNotNull(e);
1054     Node<E> newNode = new Node<E>(e);
1055     if (splice == null)
1056     splice = last = newNode;
1057     else {
1058     last.next = newNode;
1059     newNode.prev = last;
1060     last = newNode;
1061     }
1062     }
1063     if (splice == null)
1064 jsr166 1.1 return false;
1065 jsr166 1.3
1066     // Atomically splice the chain as the tail of this collection
1067     retry:
1068     for (;;) {
1069     for (Node<E> t = tail, p = t;;) {
1070     Node<E> q = p.next;
1071     if (q == null) {
1072     if (p.prev == p) // NEXT_TERMINATOR
1073     continue retry;
1074     // p is last node
1075     splice.lazySetPrev(p); // CAS piggyback
1076     if (p.casNext(null, splice)) {
1077     if (! casTail(t, last)) {
1078     // Try a little harder to update tail,
1079     // since we may be adding many elements.
1080     t = tail;
1081     if (last.next == null)
1082     casTail(t, last);
1083     }
1084     return true;
1085     } else {
1086     p = p.next; // lost CAS race to another thread
1087     }
1088     }
1089     else if (p == q)
1090     continue retry;
1091     else
1092     p = q;
1093     }
1094     }
1095 jsr166 1.1 }
1096    
1097     /**
1098     * Removes all of the elements from this deque.
1099     */
1100     public void clear() {
1101     while (pollFirst() != null)
1102     ;
1103     }
1104    
1105     /**
1106     * Returns an array containing all of the elements in this deque, in
1107     * proper sequence (from first to last element).
1108     *
1109     * <p>The returned array will be "safe" in that no references to it are
1110     * maintained by this deque. (In other words, this method must allocate
1111     * a new array). The caller is thus free to modify the returned array.
1112     *
1113     * <p>This method acts as bridge between array-based and collection-based
1114     * APIs.
1115     *
1116     * @return an array containing all of the elements in this deque
1117     */
1118     public Object[] toArray() {
1119     return toArrayList().toArray();
1120     }
1121    
1122     /**
1123     * Returns an array containing all of the elements in this deque,
1124     * in proper sequence (from first to last element); the runtime
1125     * type of the returned array is that of the specified array. If
1126     * the deque fits in the specified array, it is returned therein.
1127     * Otherwise, a new array is allocated with the runtime type of
1128     * the specified array and the size of this deque.
1129     *
1130     * <p>If this deque fits in the specified array with room to spare
1131     * (i.e., the array has more elements than this deque), the element in
1132     * the array immediately following the end of the deque is set to
1133     * {@code null}.
1134     *
1135 jsr166 1.3 * <p>Like the {@link #toArray()} method, this method acts as
1136     * bridge between array-based and collection-based APIs. Further,
1137     * this method allows precise control over the runtime type of the
1138     * output array, and may, under certain circumstances, be used to
1139     * save allocation costs.
1140 jsr166 1.1 *
1141     * <p>Suppose {@code x} is a deque known to contain only strings.
1142     * The following code can be used to dump the deque into a newly
1143     * allocated array of {@code String}:
1144     *
1145     * <pre>
1146     * String[] y = x.toArray(new String[0]);</pre>
1147     *
1148     * Note that {@code toArray(new Object[0])} is identical in function to
1149     * {@code toArray()}.
1150     *
1151     * @param a the array into which the elements of the deque are to
1152     * be stored, if it is big enough; otherwise, a new array of the
1153     * same runtime type is allocated for this purpose
1154     * @return an array containing all of the elements in this deque
1155     * @throws ArrayStoreException if the runtime type of the specified array
1156     * is not a supertype of the runtime type of every element in
1157     * this deque
1158     * @throws NullPointerException if the specified array is null
1159     */
1160     public <T> T[] toArray(T[] a) {
1161     return toArrayList().toArray(a);
1162     }
1163    
1164     /**
1165     * Returns an iterator over the elements in this deque in proper sequence.
1166     * The elements will be returned in order from first (head) to last (tail).
1167     *
1168     * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
1169     * will never throw {@link java.util.ConcurrentModificationException
1170     * ConcurrentModificationException},
1171     * and guarantees to traverse elements as they existed upon
1172     * construction of the iterator, and may (but is not guaranteed to)
1173     * reflect any modifications subsequent to construction.
1174     *
1175     * @return an iterator over the elements in this deque in proper sequence
1176     */
1177     public Iterator<E> iterator() {
1178     return new Itr();
1179     }
1180    
1181     /**
1182     * Returns an iterator over the elements in this deque in reverse
1183     * sequential order. The elements will be returned in order from
1184     * last (tail) to first (head).
1185     *
1186     * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
1187     * will never throw {@link java.util.ConcurrentModificationException
1188     * ConcurrentModificationException},
1189     * and guarantees to traverse elements as they existed upon
1190     * construction of the iterator, and may (but is not guaranteed to)
1191     * reflect any modifications subsequent to construction.
1192 jsr166 1.3 *
1193     * @return an iterator over the elements in this deque in reverse order
1194 jsr166 1.1 */
1195     public Iterator<E> descendingIterator() {
1196     return new DescendingItr();
1197     }
1198    
1199     private abstract class AbstractItr implements Iterator<E> {
1200     /**
1201     * Next node to return item for.
1202     */
1203     private Node<E> nextNode;
1204    
1205     /**
1206     * nextItem holds on to item fields because once we claim
1207     * that an element exists in hasNext(), we must return it in
1208     * the following next() call even if it was in the process of
1209     * being removed when hasNext() was called.
1210     */
1211     private E nextItem;
1212    
1213     /**
1214     * Node returned by most recent call to next. Needed by remove.
1215     * Reset to null if this element is deleted by a call to remove.
1216     */
1217     private Node<E> lastRet;
1218    
1219     abstract Node<E> startNode();
1220     abstract Node<E> nextNode(Node<E> p);
1221    
1222     AbstractItr() {
1223     advance();
1224     }
1225    
1226     /**
1227     * Sets nextNode and nextItem to next valid node, or to null
1228     * if no such.
1229     */
1230     private void advance() {
1231     lastRet = nextNode;
1232    
1233     Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1234     for (;; p = nextNode(p)) {
1235     if (p == null) {
1236     // p might be active end or TERMINATOR node; both are OK
1237     nextNode = null;
1238     nextItem = null;
1239     break;
1240     }
1241     E item = p.item;
1242     if (item != null) {
1243     nextNode = p;
1244     nextItem = item;
1245     break;
1246     }
1247     }
1248     }
1249    
1250     public boolean hasNext() {
1251     return nextItem != null;
1252     }
1253    
1254     public E next() {
1255     E item = nextItem;
1256     if (item == null) throw new NoSuchElementException();
1257     advance();
1258     return item;
1259     }
1260    
1261     public void remove() {
1262     Node<E> l = lastRet;
1263     if (l == null) throw new IllegalStateException();
1264     l.item = null;
1265     unlink(l);
1266     lastRet = null;
1267     }
1268     }
1269    
1270     /** Forward iterator */
1271     private class Itr extends AbstractItr {
1272     Node<E> startNode() { return first(); }
1273     Node<E> nextNode(Node<E> p) { return succ(p); }
1274     }
1275    
1276     /** Descending iterator */
1277     private class DescendingItr extends AbstractItr {
1278     Node<E> startNode() { return last(); }
1279     Node<E> nextNode(Node<E> p) { return pred(p); }
1280     }
1281    
1282     /**
1283 jsr166 1.3 * Saves the state to a stream (that is, serializes it).
1284 jsr166 1.1 *
1285     * @serialData All of the elements (each an {@code E}) in
1286     * the proper order, followed by a null
1287     * @param s the stream
1288     */
1289     private void writeObject(java.io.ObjectOutputStream s)
1290     throws java.io.IOException {
1291    
1292     // Write out any hidden stuff
1293     s.defaultWriteObject();
1294    
1295     // Write out all elements in the proper order.
1296     for (Node<E> p = first(); p != null; p = succ(p)) {
1297     Object item = p.item;
1298     if (item != null)
1299     s.writeObject(item);
1300     }
1301    
1302     // Use trailing null as sentinel
1303     s.writeObject(null);
1304     }
1305    
1306     /**
1307 jsr166 1.3 * Reconstitutes the instance from a stream (that is, deserializes it).
1308 jsr166 1.1 * @param s the stream
1309     */
1310     private void readObject(java.io.ObjectInputStream s)
1311     throws java.io.IOException, ClassNotFoundException {
1312     s.defaultReadObject();
1313 jsr166 1.3
1314     // Read in elements until trailing null sentinel found
1315     Node<E> h = null, t = null;
1316     Object item;
1317     while ((item = s.readObject()) != null) {
1318 jsr166 1.1 @SuppressWarnings("unchecked")
1319 jsr166 1.3 Node<E> newNode = new Node<E>((E) item);
1320     if (h == null)
1321     h = t = newNode;
1322     else {
1323     t.next = newNode;
1324     newNode.prev = t;
1325     t = newNode;
1326     }
1327 jsr166 1.1 }
1328 jsr166 1.3 if (h == null)
1329     h = t = new Node<E>(null);
1330     head = h;
1331     tail = t;
1332 jsr166 1.1 }
1333    
1334     // Unsafe mechanics
1335    
1336     private static final sun.misc.Unsafe UNSAFE =
1337     sun.misc.Unsafe.getUnsafe();
1338     private static final long headOffset =
1339     objectFieldOffset(UNSAFE, "head", ConcurrentLinkedDeque.class);
1340     private static final long tailOffset =
1341     objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedDeque.class);
1342    
1343     private boolean casHead(Node<E> cmp, Node<E> val) {
1344     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1345     }
1346    
1347     private boolean casTail(Node<E> cmp, Node<E> val) {
1348     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1349     }
1350    
1351     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1352     String field, Class<?> klazz) {
1353     try {
1354     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1355     } catch (NoSuchFieldException e) {
1356     // Convert Exception to corresponding Error
1357     NoSuchFieldError error = new NoSuchFieldError(field);
1358     error.initCause(e);
1359     throw error;
1360     }
1361     }
1362     }