ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.89
Committed: Sat May 6 06:49:46 2017 UTC (7 years ago) by jsr166
Branch: MAIN
Changes since 1.88: +1 -1 lines
Log Message:
8177789: fix collections framework links to point to java.util package doc

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea and Martin Buchholz with assistance from members of
3     * JCP JSR-166 Expert Group and released to the public domain, as explained
4 jsr166 1.25 * at http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.68 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractCollection;
12 jsr166 1.63 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Deque;
15     import java.util.Iterator;
16     import java.util.NoSuchElementException;
17 jsr166 1.64 import java.util.Objects;
18 jsr166 1.12 import java.util.Queue;
19 jsr166 1.57 import java.util.Spliterator;
20 dl 1.36 import java.util.Spliterators;
21 jsr166 1.57 import java.util.function.Consumer;
22 jsr166 1.77 import java.util.function.Predicate;
23 jsr166 1.1
24     /**
25 jsr166 1.3 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
26     * Concurrent insertion, removal, and access operations execute safely
27     * across multiple threads.
28     * A {@code ConcurrentLinkedDeque} is an appropriate choice when
29     * many threads will share access to a common collection.
30     * Like most other concurrent collection implementations, this class
31     * does not permit the use of {@code null} elements.
32     *
33 jsr166 1.50 * <p>Iterators and spliterators are
34     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
35 jsr166 1.1 *
36 dl 1.26 * <p>Beware that, unlike in most collections, the {@code size} method
37     * is <em>NOT</em> a constant-time operation. Because of the
38 jsr166 1.1 * asynchronous nature of these deques, determining the current number
39 dl 1.26 * of elements requires a traversal of the elements, and so may report
40     * inaccurate results if this collection is modified during traversal.
41 jsr166 1.87 *
42     * <p>Bulk operations that add, remove, or examine multiple elements,
43     * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
44     * are <em>not</em> guaranteed to be performed atomically.
45     * For example, a {@code forEach} traversal concurrent with an {@code
46     * addAll} operation might observe only some of the added elements.
47 jsr166 1.3 *
48     * <p>This class and its iterator implement all of the <em>optional</em>
49     * methods of the {@link Deque} and {@link Iterator} interfaces.
50 jsr166 1.1 *
51 jsr166 1.3 * <p>Memory consistency effects: As with other concurrent collections,
52     * actions in a thread prior to placing an object into a
53     * {@code ConcurrentLinkedDeque}
54     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
55     * actions subsequent to the access or removal of that element from
56     * the {@code ConcurrentLinkedDeque} in another thread.
57 jsr166 1.1 *
58 jsr166 1.3 * <p>This class is a member of the
59 jsr166 1.89 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
60 jsr166 1.3 * Java Collections Framework</a>.
61     *
62     * @since 1.7
63     * @author Doug Lea
64     * @author Martin Buchholz
65 jsr166 1.55 * @param <E> the type of elements held in this deque
66 jsr166 1.1 */
67     public class ConcurrentLinkedDeque<E>
68     extends AbstractCollection<E>
69     implements Deque<E>, java.io.Serializable {
70    
71     /*
72     * This is an implementation of a concurrent lock-free deque
73     * supporting interior removes but not interior insertions, as
74 jsr166 1.3 * required to support the entire Deque interface.
75     *
76     * We extend the techniques developed for ConcurrentLinkedQueue and
77     * LinkedTransferQueue (see the internal docs for those classes).
78 jsr166 1.5 * Understanding the ConcurrentLinkedQueue implementation is a
79     * prerequisite for understanding the implementation of this class.
80 jsr166 1.3 *
81     * The data structure is a symmetrical doubly-linked "GC-robust"
82     * linked list of nodes. We minimize the number of volatile writes
83     * using two techniques: advancing multiple hops with a single CAS
84     * and mixing volatile and non-volatile writes of the same memory
85     * locations.
86     *
87     * A node contains the expected E ("item") and links to predecessor
88     * ("prev") and successor ("next") nodes:
89     *
90     * class Node<E> { volatile Node<E> prev, next; volatile E item; }
91     *
92     * A node p is considered "live" if it contains a non-null item
93     * (p.item != null). When an item is CASed to null, the item is
94     * atomically logically deleted from the collection.
95     *
96     * At any time, there is precisely one "first" node with a null
97     * prev reference that terminates any chain of prev references
98     * starting at a live node. Similarly there is precisely one
99     * "last" node terminating any chain of next references starting at
100     * a live node. The "first" and "last" nodes may or may not be live.
101     * The "first" and "last" nodes are always mutually reachable.
102     *
103     * A new element is added atomically by CASing the null prev or
104     * next reference in the first or last node to a fresh node
105 jsr166 1.6 * containing the element. The element's node atomically becomes
106     * "live" at that point.
107 jsr166 1.3 *
108     * A node is considered "active" if it is a live node, or the
109     * first or last node. Active nodes cannot be unlinked.
110     *
111     * A "self-link" is a next or prev reference that is the same node:
112     * p.prev == p or p.next == p
113     * Self-links are used in the node unlinking process. Active nodes
114     * never have self-links.
115 jsr166 1.1 *
116 jsr166 1.3 * A node p is active if and only if:
117 jsr166 1.1 *
118     * p.item != null ||
119     * (p.prev == null && p.next != p) ||
120     * (p.next == null && p.prev != p)
121     *
122 jsr166 1.3 * The deque object has two node references, "head" and "tail".
123     * The head and tail are only approximations to the first and last
124     * nodes of the deque. The first node can always be found by
125 jsr166 1.1 * following prev pointers from head; likewise for tail. However,
126 jsr166 1.3 * it is permissible for head and tail to be referring to deleted
127     * nodes that have been unlinked and so may not be reachable from
128     * any live node.
129     *
130     * There are 3 stages of node deletion;
131     * "logical deletion", "unlinking", and "gc-unlinking".
132     *
133     * 1. "logical deletion" by CASing item to null atomically removes
134     * the element from the collection, and makes the containing node
135     * eligible for unlinking.
136     *
137     * 2. "unlinking" makes a deleted node unreachable from active
138     * nodes, and thus eventually reclaimable by GC. Unlinked nodes
139     * may remain reachable indefinitely from an iterator.
140     *
141     * Physical node unlinking is merely an optimization (albeit a
142     * critical one), and so can be performed at our convenience. At
143     * any time, the set of live nodes maintained by prev and next
144     * links are identical, that is, the live nodes found via next
145     * links from the first node is equal to the elements found via
146     * prev links from the last node. However, this is not true for
147     * nodes that have already been logically deleted - such nodes may
148     * be reachable in one direction only.
149     *
150     * 3. "gc-unlinking" takes unlinking further by making active
151     * nodes unreachable from deleted nodes, making it easier for the
152     * GC to reclaim future deleted nodes. This step makes the data
153     * structure "gc-robust", as first described in detail by Boehm
154     * (http://portal.acm.org/citation.cfm?doid=503272.503282).
155     *
156     * GC-unlinked nodes may remain reachable indefinitely from an
157     * iterator, but unlike unlinked nodes, are never reachable from
158     * head or tail.
159     *
160     * Making the data structure GC-robust will eliminate the risk of
161     * unbounded memory retention with conservative GCs and is likely
162     * to improve performance with generational GCs.
163     *
164     * When a node is dequeued at either end, e.g. via poll(), we would
165     * like to break any references from the node to active nodes. We
166     * develop further the use of self-links that was very effective in
167     * other concurrent collection classes. The idea is to replace
168     * prev and next pointers with special values that are interpreted
169     * to mean off-the-list-at-one-end. These are approximations, but
170     * good enough to preserve the properties we want in our
171     * traversals, e.g. we guarantee that a traversal will never visit
172     * the same element twice, but we don't guarantee whether a
173     * traversal that runs out of elements will be able to see more
174     * elements later after enqueues at that end. Doing gc-unlinking
175     * safely is particularly tricky, since any node can be in use
176     * indefinitely (for example by an iterator). We must ensure that
177     * the nodes pointed at by head/tail never get gc-unlinked, since
178     * head/tail are needed to get "back on track" by other nodes that
179     * are gc-unlinked. gc-unlinking accounts for much of the
180     * implementation complexity.
181 jsr166 1.1 *
182     * Since neither unlinking nor gc-unlinking are necessary for
183     * correctness, there are many implementation choices regarding
184     * frequency (eagerness) of these operations. Since volatile
185     * reads are likely to be much cheaper than CASes, saving CASes by
186     * unlinking multiple adjacent nodes at a time may be a win.
187     * gc-unlinking can be performed rarely and still be effective,
188     * since it is most important that long chains of deleted nodes
189     * are occasionally broken.
190     *
191     * The actual representation we use is that p.next == p means to
192 jsr166 1.3 * goto the first node (which in turn is reached by following prev
193     * pointers from head), and p.next == null && p.prev == p means
194 jsr166 1.18 * that the iteration is at an end and that p is a (static final)
195 jsr166 1.1 * dummy node, NEXT_TERMINATOR, and not the last active node.
196     * Finishing the iteration when encountering such a TERMINATOR is
197 jsr166 1.3 * good enough for read-only traversals, so such traversals can use
198     * p.next == null as the termination condition. When we need to
199     * find the last (active) node, for enqueueing a new node, we need
200     * to check whether we have reached a TERMINATOR node; if so,
201     * restart traversal from tail.
202 jsr166 1.1 *
203     * The implementation is completely directionally symmetrical,
204     * except that most public methods that iterate through the list
205     * follow next pointers ("forward" direction).
206     *
207 jsr166 1.5 * We believe (without full proof) that all single-element deque
208     * operations (e.g., addFirst, peekLast, pollLast) are linearizable
209     * (see Herlihy and Shavit's book). However, some combinations of
210     * operations are known not to be linearizable. In particular,
211     * when an addFirst(A) is racing with pollFirst() removing B, it is
212     * possible for an observer iterating over the elements to observe
213     * A B C and subsequently observe A C, even though no interior
214     * removes are ever performed. Nevertheless, iterators behave
215     * reasonably, providing the "weakly consistent" guarantees.
216 jsr166 1.1 *
217     * Empirically, microbenchmarks suggest that this class adds about
218     * 40% overhead relative to ConcurrentLinkedQueue, which feels as
219     * good as we can hope for.
220     */
221    
222 jsr166 1.3 private static final long serialVersionUID = 876323262645176354L;
223    
224 jsr166 1.1 /**
225 jsr166 1.3 * A node from which the first node on list (that is, the unique node p
226     * with p.prev == null && p.next != p) can be reached in O(1) time.
227 jsr166 1.1 * Invariants:
228     * - the first node is always O(1) reachable from head via prev links
229     * - all live nodes are reachable from the first node via succ()
230     * - head != null
231     * - (tmp = head).next != tmp || tmp != head
232 jsr166 1.3 * - head is never gc-unlinked (but may be unlinked)
233 jsr166 1.1 * Non-invariants:
234     * - head.item may or may not be null
235     * - head may not be reachable from the first or last node, or from tail
236     */
237 jsr166 1.3 private transient volatile Node<E> head;
238    
239     /**
240     * A node from which the last node on list (that is, the unique node p
241     * with p.next == null && p.prev != p) can be reached in O(1) time.
242     * Invariants:
243     * - the last node is always O(1) reachable from tail via next links
244     * - all live nodes are reachable from the last node via pred()
245     * - tail != null
246     * - tail is never gc-unlinked (but may be unlinked)
247     * Non-invariants:
248     * - tail.item may or may not be null
249     * - tail may not be reachable from the first or last node, or from head
250     */
251     private transient volatile Node<E> tail;
252 jsr166 1.1
253 jsr166 1.18 private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
254 jsr166 1.1
255     @SuppressWarnings("unchecked")
256     Node<E> prevTerminator() {
257     return (Node<E>) PREV_TERMINATOR;
258     }
259    
260     @SuppressWarnings("unchecked")
261     Node<E> nextTerminator() {
262     return (Node<E>) NEXT_TERMINATOR;
263     }
264    
265     static final class Node<E> {
266     volatile Node<E> prev;
267     volatile E item;
268     volatile Node<E> next;
269 dl 1.68 }
270 jsr166 1.1
271 dl 1.68 /**
272     * Returns a new node holding item. Uses relaxed write because item
273     * can only be seen after piggy-backing publication via CAS.
274     */
275     static <E> Node<E> newNode(E item) {
276     Node<E> node = new Node<E>();
277     ITEM.set(node, item);
278     return node;
279 jsr166 1.1 }
280 jsr166 1.69
281 jsr166 1.1 /**
282     * Links e as first element.
283     */
284     private void linkFirst(E e) {
285 dl 1.68 final Node<E> newNode = newNode(Objects.requireNonNull(e));
286 jsr166 1.1
287 jsr166 1.7 restartFromHead:
288 jsr166 1.15 for (;;)
289     for (Node<E> h = head, p = h, q;;) {
290     if ((q = p.prev) != null &&
291     (q = (p = q).prev) != null)
292     // Check for head updates every other hop.
293     // If p == q, we are sure to follow head instead.
294     p = (h != (h = head)) ? h : q;
295     else if (p.next == p) // PREV_TERMINATOR
296     continue restartFromHead;
297     else {
298 jsr166 1.3 // p is first node
299 jsr166 1.71 NEXT.set(newNode, p); // CAS piggyback
300 dl 1.68 if (PREV.compareAndSet(p, null, newNode)) {
301 jsr166 1.6 // Successful CAS is the linearization point
302     // for e to become an element of this deque,
303     // and for newNode to become "live".
304 jsr166 1.74 if (p != h) // hop two nodes at a time; failure is OK
305 jsr166 1.75 HEAD.weakCompareAndSet(this, h, newNode);
306 jsr166 1.1 return;
307     }
308 jsr166 1.11 // Lost CAS race to another thread; re-read prev
309 jsr166 1.1 }
310     }
311     }
312    
313     /**
314     * Links e as last element.
315     */
316     private void linkLast(E e) {
317 dl 1.68 final Node<E> newNode = newNode(Objects.requireNonNull(e));
318 jsr166 1.1
319 jsr166 1.7 restartFromTail:
320 jsr166 1.15 for (;;)
321     for (Node<E> t = tail, p = t, q;;) {
322     if ((q = p.next) != null &&
323     (q = (p = q).next) != null)
324     // Check for tail updates every other hop.
325     // If p == q, we are sure to follow tail instead.
326     p = (t != (t = tail)) ? t : q;
327     else if (p.prev == p) // NEXT_TERMINATOR
328     continue restartFromTail;
329     else {
330 jsr166 1.3 // p is last node
331 jsr166 1.71 PREV.set(newNode, p); // CAS piggyback
332 dl 1.68 if (NEXT.compareAndSet(p, null, newNode)) {
333 jsr166 1.6 // Successful CAS is the linearization point
334     // for e to become an element of this deque,
335     // and for newNode to become "live".
336 dl 1.73 if (p != t) // hop two nodes at a time; failure is OK
337 jsr166 1.75 TAIL.weakCompareAndSet(this, t, newNode);
338 jsr166 1.1 return;
339     }
340 jsr166 1.11 // Lost CAS race to another thread; re-read next
341 jsr166 1.1 }
342     }
343     }
344    
345 jsr166 1.18 private static final int HOPS = 2;
346 jsr166 1.1
347     /**
348     * Unlinks non-null node x.
349     */
350     void unlink(Node<E> x) {
351 jsr166 1.3 // assert x != null;
352     // assert x.item == null;
353     // assert x != PREV_TERMINATOR;
354     // assert x != NEXT_TERMINATOR;
355 jsr166 1.1
356     final Node<E> prev = x.prev;
357     final Node<E> next = x.next;
358     if (prev == null) {
359     unlinkFirst(x, next);
360     } else if (next == null) {
361     unlinkLast(x, prev);
362     } else {
363     // Unlink interior node.
364     //
365     // This is the common case, since a series of polls at the
366     // same end will be "interior" removes, except perhaps for
367 jsr166 1.3 // the first one, since end nodes cannot be unlinked.
368 jsr166 1.1 //
369     // At any time, all active nodes are mutually reachable by
370     // following a sequence of either next or prev pointers.
371     //
372     // Our strategy is to find the unique active predecessor
373     // and successor of x. Try to fix up their links so that
374     // they point to each other, leaving x unreachable from
375     // active nodes. If successful, and if x has no live
376 jsr166 1.3 // predecessor/successor, we additionally try to gc-unlink,
377     // leaving active nodes unreachable from x, by rechecking
378     // that the status of predecessor and successor are
379     // unchanged and ensuring that x is not reachable from
380     // tail/head, before setting x's prev/next links to their
381     // logical approximate replacements, self/TERMINATOR.
382 jsr166 1.1 Node<E> activePred, activeSucc;
383     boolean isFirst, isLast;
384     int hops = 1;
385    
386     // Find active predecessor
387 jsr166 1.3 for (Node<E> p = prev; ; ++hops) {
388 jsr166 1.1 if (p.item != null) {
389     activePred = p;
390     isFirst = false;
391     break;
392     }
393     Node<E> q = p.prev;
394     if (q == null) {
395 jsr166 1.3 if (p.next == p)
396 jsr166 1.1 return;
397     activePred = p;
398     isFirst = true;
399     break;
400     }
401     else if (p == q)
402     return;
403     else
404     p = q;
405     }
406    
407     // Find active successor
408 jsr166 1.3 for (Node<E> p = next; ; ++hops) {
409 jsr166 1.1 if (p.item != null) {
410     activeSucc = p;
411     isLast = false;
412     break;
413     }
414     Node<E> q = p.next;
415     if (q == null) {
416 jsr166 1.3 if (p.prev == p)
417 jsr166 1.1 return;
418     activeSucc = p;
419     isLast = true;
420     break;
421     }
422     else if (p == q)
423     return;
424     else
425     p = q;
426     }
427    
428     // TODO: better HOP heuristics
429     if (hops < HOPS
430     // always squeeze out interior deleted nodes
431     && (isFirst | isLast))
432     return;
433    
434     // Squeeze out deleted nodes between activePred and
435     // activeSucc, including x.
436     skipDeletedSuccessors(activePred);
437     skipDeletedPredecessors(activeSucc);
438    
439     // Try to gc-unlink, if possible
440     if ((isFirst | isLast) &&
441    
442     // Recheck expected state of predecessor and successor
443     (activePred.next == activeSucc) &&
444     (activeSucc.prev == activePred) &&
445     (isFirst ? activePred.prev == null : activePred.item != null) &&
446     (isLast ? activeSucc.next == null : activeSucc.item != null)) {
447    
448 jsr166 1.5 updateHead(); // Ensure x is not reachable from head
449     updateTail(); // Ensure x is not reachable from tail
450 jsr166 1.3
451     // Finally, actually gc-unlink
452 dl 1.68 PREV.setRelease(x, isFirst ? prevTerminator() : x);
453     NEXT.setRelease(x, isLast ? nextTerminator() : x);
454 jsr166 1.1 }
455     }
456     }
457    
458     /**
459     * Unlinks non-null first node.
460     */
461     private void unlinkFirst(Node<E> first, Node<E> next) {
462 jsr166 1.9 // assert first != null;
463     // assert next != null;
464     // assert first.item == null;
465 jsr166 1.15 for (Node<E> o = null, p = next, q;;) {
466 jsr166 1.1 if (p.item != null || (q = p.next) == null) {
467 dl 1.68 if (o != null && p.prev != p &&
468     NEXT.compareAndSet(first, next, p)) {
469 jsr166 1.3 skipDeletedPredecessors(p);
470     if (first.prev == null &&
471     (p.next == null || p.item != null) &&
472     p.prev == first) {
473    
474 jsr166 1.5 updateHead(); // Ensure o is not reachable from head
475     updateTail(); // Ensure o is not reachable from tail
476    
477     // Finally, actually gc-unlink
478 dl 1.68 NEXT.setRelease(o, o);
479     PREV.setRelease(o, prevTerminator());
480 jsr166 1.1 }
481     }
482     return;
483     }
484     else if (p == q)
485     return;
486     else {
487     o = p;
488     p = q;
489     }
490     }
491     }
492    
493     /**
494     * Unlinks non-null last node.
495     */
496     private void unlinkLast(Node<E> last, Node<E> prev) {
497 jsr166 1.9 // assert last != null;
498     // assert prev != null;
499     // assert last.item == null;
500 jsr166 1.15 for (Node<E> o = null, p = prev, q;;) {
501 jsr166 1.1 if (p.item != null || (q = p.prev) == null) {
502 dl 1.68 if (o != null && p.next != p &&
503     PREV.compareAndSet(last, prev, p)) {
504 jsr166 1.3 skipDeletedSuccessors(p);
505     if (last.next == null &&
506     (p.prev == null || p.item != null) &&
507     p.next == last) {
508    
509 jsr166 1.5 updateHead(); // Ensure o is not reachable from head
510     updateTail(); // Ensure o is not reachable from tail
511    
512     // Finally, actually gc-unlink
513 dl 1.68 PREV.setRelease(o, o);
514     NEXT.setRelease(o, nextTerminator());
515 jsr166 1.1 }
516     }
517     return;
518     }
519     else if (p == q)
520     return;
521     else {
522     o = p;
523     p = q;
524     }
525     }
526     }
527    
528 jsr166 1.3 /**
529 jsr166 1.15 * Guarantees that any node which was unlinked before a call to
530     * this method will be unreachable from head after it returns.
531     * Does not guarantee to eliminate slack, only that head will
532 jsr166 1.17 * point to a node that was active while this method was running.
533 jsr166 1.3 */
534 jsr166 1.1 private final void updateHead() {
535 jsr166 1.17 // Either head already points to an active node, or we keep
536     // trying to cas it to the first node until it does.
537     Node<E> h, p, q;
538     restartFromHead:
539     while ((h = head).item == null && (p = h.prev) != null) {
540     for (;;) {
541     if ((q = p.prev) == null ||
542     (q = (p = q).prev) == null) {
543     // It is possible that p is PREV_TERMINATOR,
544     // but if so, the CAS is guaranteed to fail.
545 dl 1.68 if (HEAD.compareAndSet(this, h, p))
546 jsr166 1.17 return;
547     else
548     continue restartFromHead;
549     }
550     else if (h != head)
551     continue restartFromHead;
552     else
553     p = q;
554 jsr166 1.15 }
555     }
556 jsr166 1.1 }
557    
558 jsr166 1.3 /**
559 jsr166 1.15 * Guarantees that any node which was unlinked before a call to
560     * this method will be unreachable from tail after it returns.
561     * Does not guarantee to eliminate slack, only that tail will
562 jsr166 1.17 * point to a node that was active while this method was running.
563 jsr166 1.3 */
564 jsr166 1.1 private final void updateTail() {
565 jsr166 1.17 // Either tail already points to an active node, or we keep
566     // trying to cas it to the last node until it does.
567     Node<E> t, p, q;
568     restartFromTail:
569     while ((t = tail).item == null && (p = t.next) != null) {
570     for (;;) {
571     if ((q = p.next) == null ||
572     (q = (p = q).next) == null) {
573     // It is possible that p is NEXT_TERMINATOR,
574     // but if so, the CAS is guaranteed to fail.
575 dl 1.68 if (TAIL.compareAndSet(this, t, p))
576 jsr166 1.17 return;
577     else
578     continue restartFromTail;
579     }
580     else if (t != tail)
581     continue restartFromTail;
582     else
583     p = q;
584 jsr166 1.15 }
585     }
586 jsr166 1.1 }
587    
588     private void skipDeletedPredecessors(Node<E> x) {
589     whileActive:
590     do {
591     Node<E> prev = x.prev;
592 jsr166 1.3 // assert prev != null;
593     // assert x != NEXT_TERMINATOR;
594     // assert x != PREV_TERMINATOR;
595 jsr166 1.1 Node<E> p = prev;
596     findActive:
597     for (;;) {
598     if (p.item != null)
599     break findActive;
600     Node<E> q = p.prev;
601     if (q == null) {
602     if (p.next == p)
603     continue whileActive;
604     break findActive;
605     }
606     else if (p == q)
607     continue whileActive;
608     else
609     p = q;
610     }
611    
612     // found active CAS target
613 dl 1.68 if (prev == p || PREV.compareAndSet(x, prev, p))
614 jsr166 1.1 return;
615    
616     } while (x.item != null || x.next == null);
617     }
618    
619     private void skipDeletedSuccessors(Node<E> x) {
620     whileActive:
621     do {
622     Node<E> next = x.next;
623 jsr166 1.3 // assert next != null;
624     // assert x != NEXT_TERMINATOR;
625     // assert x != PREV_TERMINATOR;
626 jsr166 1.1 Node<E> p = next;
627     findActive:
628     for (;;) {
629     if (p.item != null)
630     break findActive;
631     Node<E> q = p.next;
632     if (q == null) {
633     if (p.prev == p)
634     continue whileActive;
635     break findActive;
636     }
637     else if (p == q)
638     continue whileActive;
639     else
640     p = q;
641     }
642    
643     // found active CAS target
644 dl 1.68 if (next == p || NEXT.compareAndSet(x, next, p))
645 jsr166 1.1 return;
646    
647     } while (x.item != null || x.prev == null);
648     }
649    
650     /**
651     * Returns the successor of p, or the first node if p.next has been
652     * linked to self, which will only be true if traversing with a
653     * stale pointer that is now off the list.
654     */
655     final Node<E> succ(Node<E> p) {
656     // TODO: should we skip deleted nodes here?
657 jsr166 1.86 if (p == (p = p.next))
658     p = first();
659     return p;
660 jsr166 1.1 }
661    
662     /**
663     * Returns the predecessor of p, or the last node if p.prev has been
664     * linked to self, which will only be true if traversing with a
665     * stale pointer that is now off the list.
666     */
667     final Node<E> pred(Node<E> p) {
668     Node<E> q = p.prev;
669     return (p == q) ? last() : q;
670     }
671    
672     /**
673 jsr166 1.3 * Returns the first node, the unique node p for which:
674     * p.prev == null && p.next != p
675 jsr166 1.1 * The returned node may or may not be logically deleted.
676     * Guarantees that head is set to the returned node.
677     */
678     Node<E> first() {
679 jsr166 1.7 restartFromHead:
680 jsr166 1.15 for (;;)
681     for (Node<E> h = head, p = h, q;;) {
682     if ((q = p.prev) != null &&
683     (q = (p = q).prev) != null)
684     // Check for head updates every other hop.
685     // If p == q, we are sure to follow head instead.
686     p = (h != (h = head)) ? h : q;
687     else if (p == h
688     // It is possible that p is PREV_TERMINATOR,
689     // but if so, the CAS is guaranteed to fail.
690 dl 1.68 || HEAD.compareAndSet(this, h, p))
691 jsr166 1.15 return p;
692     else
693 jsr166 1.7 continue restartFromHead;
694 jsr166 1.1 }
695     }
696    
697     /**
698 jsr166 1.3 * Returns the last node, the unique node p for which:
699     * p.next == null && p.prev != p
700 jsr166 1.1 * The returned node may or may not be logically deleted.
701     * Guarantees that tail is set to the returned node.
702     */
703     Node<E> last() {
704 jsr166 1.7 restartFromTail:
705 jsr166 1.15 for (;;)
706     for (Node<E> t = tail, p = t, q;;) {
707     if ((q = p.next) != null &&
708     (q = (p = q).next) != null)
709     // Check for tail updates every other hop.
710     // If p == q, we are sure to follow tail instead.
711     p = (t != (t = tail)) ? t : q;
712     else if (p == t
713     // It is possible that p is NEXT_TERMINATOR,
714     // but if so, the CAS is guaranteed to fail.
715 dl 1.68 || TAIL.compareAndSet(this, t, p))
716 jsr166 1.15 return p;
717     else
718 jsr166 1.7 continue restartFromTail;
719 jsr166 1.1 }
720     }
721    
722     // Minor convenience utilities
723    
724     /**
725     * Returns element unless it is null, in which case throws
726     * NoSuchElementException.
727     *
728     * @param v the element
729     * @return the element
730     */
731     private E screenNullResult(E v) {
732     if (v == null)
733     throw new NoSuchElementException();
734     return v;
735     }
736    
737     /**
738     * Constructs an empty deque.
739     */
740 jsr166 1.3 public ConcurrentLinkedDeque() {
741 dl 1.68 head = tail = new Node<E>();
742 jsr166 1.3 }
743 jsr166 1.1
744     /**
745     * Constructs a deque initially containing the elements of
746     * the given collection, added in traversal order of the
747     * collection's iterator.
748     *
749     * @param c the collection of elements to initially contain
750     * @throws NullPointerException if the specified collection or any
751     * of its elements are null
752     */
753 jsr166 1.3 public ConcurrentLinkedDeque(Collection<? extends E> c) {
754     // Copy c into a private chain of Nodes
755     Node<E> h = null, t = null;
756     for (E e : c) {
757 dl 1.68 Node<E> newNode = newNode(Objects.requireNonNull(e));
758 jsr166 1.3 if (h == null)
759     h = t = newNode;
760     else {
761 jsr166 1.71 NEXT.set(t, newNode);
762     PREV.set(newNode, t);
763 jsr166 1.3 t = newNode;
764     }
765     }
766 jsr166 1.9 initHeadTail(h, t);
767     }
768    
769     /**
770     * Initializes head and tail, ensuring invariants hold.
771     */
772     private void initHeadTail(Node<E> h, Node<E> t) {
773     if (h == t) {
774     if (h == null)
775 dl 1.68 h = t = new Node<E>();
776 jsr166 1.9 else {
777     // Avoid edge case of a single Node with non-null item.
778 dl 1.68 Node<E> newNode = new Node<E>();
779 jsr166 1.71 NEXT.set(t, newNode);
780     PREV.set(newNode, t);
781 jsr166 1.9 t = newNode;
782     }
783     }
784 jsr166 1.3 head = h;
785     tail = t;
786     }
787 jsr166 1.1
788     /**
789     * Inserts the specified element at the front of this deque.
790 jsr166 1.19 * As the deque is unbounded, this method will never throw
791     * {@link IllegalStateException}.
792 jsr166 1.1 *
793 jsr166 1.19 * @throws NullPointerException if the specified element is null
794 jsr166 1.1 */
795     public void addFirst(E e) {
796     linkFirst(e);
797     }
798    
799     /**
800     * Inserts the specified element at the end of this deque.
801 jsr166 1.19 * As the deque is unbounded, this method will never throw
802     * {@link IllegalStateException}.
803 jsr166 1.3 *
804     * <p>This method is equivalent to {@link #add}.
805 jsr166 1.1 *
806 jsr166 1.19 * @throws NullPointerException if the specified element is null
807 jsr166 1.1 */
808     public void addLast(E e) {
809     linkLast(e);
810     }
811    
812     /**
813     * Inserts the specified element at the front of this deque.
814 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
815 jsr166 1.1 *
816 jsr166 1.19 * @return {@code true} (as specified by {@link Deque#offerFirst})
817     * @throws NullPointerException if the specified element is null
818 jsr166 1.1 */
819     public boolean offerFirst(E e) {
820     linkFirst(e);
821     return true;
822     }
823    
824     /**
825     * Inserts the specified element at the end of this deque.
826 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
827 jsr166 1.1 *
828     * <p>This method is equivalent to {@link #add}.
829     *
830 jsr166 1.19 * @return {@code true} (as specified by {@link Deque#offerLast})
831     * @throws NullPointerException if the specified element is null
832 jsr166 1.1 */
833     public boolean offerLast(E e) {
834     linkLast(e);
835     return true;
836     }
837    
838     public E peekFirst() {
839     for (Node<E> p = first(); p != null; p = succ(p)) {
840 jsr166 1.78 final E item;
841     if ((item = p.item) != null)
842 jsr166 1.1 return item;
843     }
844     return null;
845     }
846    
847     public E peekLast() {
848     for (Node<E> p = last(); p != null; p = pred(p)) {
849 jsr166 1.78 final E item;
850     if ((item = p.item) != null)
851 jsr166 1.1 return item;
852     }
853     return null;
854     }
855    
856     /**
857     * @throws NoSuchElementException {@inheritDoc}
858     */
859     public E getFirst() {
860     return screenNullResult(peekFirst());
861     }
862    
863     /**
864     * @throws NoSuchElementException {@inheritDoc}
865     */
866 jsr166 1.21 public E getLast() {
867 jsr166 1.1 return screenNullResult(peekLast());
868     }
869    
870     public E pollFirst() {
871     for (Node<E> p = first(); p != null; p = succ(p)) {
872 jsr166 1.78 final E item;
873     if ((item = p.item) != null
874     && ITEM.compareAndSet(p, item, null)) {
875 jsr166 1.1 unlink(p);
876     return item;
877     }
878     }
879     return null;
880     }
881    
882     public E pollLast() {
883     for (Node<E> p = last(); p != null; p = pred(p)) {
884 jsr166 1.78 final E item;
885     if ((item = p.item) != null
886     && ITEM.compareAndSet(p, item, null)) {
887 jsr166 1.1 unlink(p);
888     return item;
889     }
890     }
891     return null;
892     }
893    
894     /**
895     * @throws NoSuchElementException {@inheritDoc}
896     */
897     public E removeFirst() {
898     return screenNullResult(pollFirst());
899     }
900    
901     /**
902     * @throws NoSuchElementException {@inheritDoc}
903     */
904     public E removeLast() {
905     return screenNullResult(pollLast());
906     }
907    
908     // *** Queue and stack methods ***
909    
910     /**
911     * Inserts the specified element at the tail of this deque.
912 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
913 jsr166 1.1 *
914     * @return {@code true} (as specified by {@link Queue#offer})
915     * @throws NullPointerException if the specified element is null
916     */
917     public boolean offer(E e) {
918     return offerLast(e);
919     }
920    
921     /**
922     * Inserts the specified element at the tail of this deque.
923 jsr166 1.19 * As the deque is unbounded, this method will never throw
924     * {@link IllegalStateException} or return {@code false}.
925 jsr166 1.1 *
926     * @return {@code true} (as specified by {@link Collection#add})
927     * @throws NullPointerException if the specified element is null
928     */
929     public boolean add(E e) {
930     return offerLast(e);
931     }
932    
933     public E poll() { return pollFirst(); }
934 jsr166 1.45 public E peek() { return peekFirst(); }
935    
936     /**
937     * @throws NoSuchElementException {@inheritDoc}
938     */
939 jsr166 1.1 public E remove() { return removeFirst(); }
940 jsr166 1.45
941     /**
942     * @throws NoSuchElementException {@inheritDoc}
943     */
944     public E pop() { return removeFirst(); }
945    
946     /**
947     * @throws NoSuchElementException {@inheritDoc}
948     */
949 jsr166 1.1 public E element() { return getFirst(); }
950 jsr166 1.45
951     /**
952     * @throws NullPointerException {@inheritDoc}
953     */
954 jsr166 1.1 public void push(E e) { addFirst(e); }
955    
956     /**
957 jsr166 1.54 * Removes the first occurrence of the specified element from this deque.
958 jsr166 1.1 * If the deque does not contain the element, it is unchanged.
959 jsr166 1.54 * More formally, removes the first element {@code e} such that
960     * {@code o.equals(e)} (if such an element exists).
961     * Returns {@code true} if this deque contained the specified element
962     * (or equivalently, if this deque changed as a result of the call).
963 jsr166 1.1 *
964     * @param o element to be removed from this deque, if present
965     * @return {@code true} if the deque contained the specified element
966 jsr166 1.19 * @throws NullPointerException if the specified element is null
967 jsr166 1.1 */
968     public boolean removeFirstOccurrence(Object o) {
969 jsr166 1.64 Objects.requireNonNull(o);
970 jsr166 1.1 for (Node<E> p = first(); p != null; p = succ(p)) {
971 jsr166 1.77 final E item;
972     if ((item = p.item) != null
973     && o.equals(item)
974     && ITEM.compareAndSet(p, item, null)) {
975 jsr166 1.1 unlink(p);
976     return true;
977     }
978     }
979     return false;
980     }
981    
982     /**
983 jsr166 1.54 * Removes the last occurrence of the specified element from this deque.
984 jsr166 1.1 * If the deque does not contain the element, it is unchanged.
985 jsr166 1.54 * More formally, removes the last element {@code e} such that
986     * {@code o.equals(e)} (if such an element exists).
987     * Returns {@code true} if this deque contained the specified element
988     * (or equivalently, if this deque changed as a result of the call).
989 jsr166 1.1 *
990     * @param o element to be removed from this deque, if present
991     * @return {@code true} if the deque contained the specified element
992 jsr166 1.19 * @throws NullPointerException if the specified element is null
993 jsr166 1.1 */
994     public boolean removeLastOccurrence(Object o) {
995 jsr166 1.64 Objects.requireNonNull(o);
996 jsr166 1.1 for (Node<E> p = last(); p != null; p = pred(p)) {
997 jsr166 1.77 final E item;
998     if ((item = p.item) != null
999     && o.equals(item)
1000     && ITEM.compareAndSet(p, item, null)) {
1001 jsr166 1.1 unlink(p);
1002     return true;
1003     }
1004     }
1005     return false;
1006     }
1007    
1008     /**
1009 jsr166 1.54 * Returns {@code true} if this deque contains the specified element.
1010     * More formally, returns {@code true} if and only if this deque contains
1011     * at least one element {@code e} such that {@code o.equals(e)}.
1012 jsr166 1.1 *
1013     * @param o element whose presence in this deque is to be tested
1014     * @return {@code true} if this deque contains the specified element
1015     */
1016     public boolean contains(Object o) {
1017 jsr166 1.52 if (o != null) {
1018     for (Node<E> p = first(); p != null; p = succ(p)) {
1019 jsr166 1.78 final E item;
1020     if ((item = p.item) != null && o.equals(item))
1021 jsr166 1.52 return true;
1022     }
1023 jsr166 1.1 }
1024     return false;
1025     }
1026    
1027     /**
1028     * Returns {@code true} if this collection contains no elements.
1029     *
1030     * @return {@code true} if this collection contains no elements
1031     */
1032     public boolean isEmpty() {
1033     return peekFirst() == null;
1034     }
1035    
1036     /**
1037     * Returns the number of elements in this deque. If this deque
1038     * contains more than {@code Integer.MAX_VALUE} elements, it
1039     * returns {@code Integer.MAX_VALUE}.
1040     *
1041     * <p>Beware that, unlike in most collections, this method is
1042     * <em>NOT</em> a constant-time operation. Because of the
1043     * asynchronous nature of these deques, determining the current
1044     * number of elements requires traversing them all to count them.
1045     * Additionally, it is possible for the size to change during
1046     * execution of this method, in which case the returned result
1047     * will be inaccurate. Thus, this method is typically not very
1048     * useful in concurrent applications.
1049     *
1050     * @return the number of elements in this deque
1051     */
1052     public int size() {
1053 jsr166 1.51 restartFromHead: for (;;) {
1054     int count = 0;
1055     for (Node<E> p = first(); p != null;) {
1056     if (p.item != null)
1057     if (++count == Integer.MAX_VALUE)
1058     break; // @see Collection.size()
1059 jsr166 1.62 if (p == (p = p.next))
1060 jsr166 1.51 continue restartFromHead;
1061     }
1062     return count;
1063     }
1064 jsr166 1.1 }
1065    
1066     /**
1067 jsr166 1.54 * Removes the first occurrence of the specified element from this deque.
1068 jsr166 1.1 * If the deque does not contain the element, it is unchanged.
1069 jsr166 1.54 * More formally, removes the first element {@code e} such that
1070     * {@code o.equals(e)} (if such an element exists).
1071     * Returns {@code true} if this deque contained the specified element
1072     * (or equivalently, if this deque changed as a result of the call).
1073     *
1074     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1075 jsr166 1.1 *
1076     * @param o element to be removed from this deque, if present
1077     * @return {@code true} if the deque contained the specified element
1078 jsr166 1.19 * @throws NullPointerException if the specified element is null
1079 jsr166 1.1 */
1080     public boolean remove(Object o) {
1081     return removeFirstOccurrence(o);
1082     }
1083    
1084     /**
1085     * Appends all of the elements in the specified collection to the end of
1086     * this deque, in the order that they are returned by the specified
1087 jsr166 1.3 * collection's iterator. Attempts to {@code addAll} of a deque to
1088     * itself result in {@code IllegalArgumentException}.
1089 jsr166 1.1 *
1090     * @param c the elements to be inserted into this deque
1091     * @return {@code true} if this deque changed as a result of the call
1092 jsr166 1.3 * @throws NullPointerException if the specified collection or any
1093     * of its elements are null
1094     * @throws IllegalArgumentException if the collection is this deque
1095 jsr166 1.1 */
1096     public boolean addAll(Collection<? extends E> c) {
1097 jsr166 1.3 if (c == this)
1098     // As historically specified in AbstractQueue#addAll
1099     throw new IllegalArgumentException();
1100    
1101     // Copy c into a private chain of Nodes
1102 jsr166 1.14 Node<E> beginningOfTheEnd = null, last = null;
1103 jsr166 1.3 for (E e : c) {
1104 dl 1.68 Node<E> newNode = newNode(Objects.requireNonNull(e));
1105 jsr166 1.14 if (beginningOfTheEnd == null)
1106     beginningOfTheEnd = last = newNode;
1107 jsr166 1.3 else {
1108 jsr166 1.71 NEXT.set(last, newNode);
1109     PREV.set(newNode, last);
1110 jsr166 1.3 last = newNode;
1111     }
1112     }
1113 jsr166 1.14 if (beginningOfTheEnd == null)
1114 jsr166 1.1 return false;
1115 jsr166 1.3
1116 jsr166 1.14 // Atomically append the chain at the tail of this collection
1117 jsr166 1.7 restartFromTail:
1118 jsr166 1.15 for (;;)
1119     for (Node<E> t = tail, p = t, q;;) {
1120     if ((q = p.next) != null &&
1121     (q = (p = q).next) != null)
1122     // Check for tail updates every other hop.
1123     // If p == q, we are sure to follow tail instead.
1124     p = (t != (t = tail)) ? t : q;
1125     else if (p.prev == p) // NEXT_TERMINATOR
1126     continue restartFromTail;
1127     else {
1128 jsr166 1.3 // p is last node
1129 jsr166 1.71 PREV.set(beginningOfTheEnd, p); // CAS piggyback
1130 dl 1.68 if (NEXT.compareAndSet(p, null, beginningOfTheEnd)) {
1131 jsr166 1.14 // Successful CAS is the linearization point
1132 jsr166 1.20 // for all elements to be added to this deque.
1133 jsr166 1.75 if (!TAIL.weakCompareAndSet(this, t, last)) {
1134 jsr166 1.3 // Try a little harder to update tail,
1135     // since we may be adding many elements.
1136     t = tail;
1137     if (last.next == null)
1138 jsr166 1.75 TAIL.weakCompareAndSet(this, t, last);
1139 jsr166 1.3 }
1140     return true;
1141     }
1142 jsr166 1.11 // Lost CAS race to another thread; re-read next
1143 jsr166 1.3 }
1144     }
1145 jsr166 1.1 }
1146    
1147     /**
1148     * Removes all of the elements from this deque.
1149     */
1150     public void clear() {
1151     while (pollFirst() != null)
1152     ;
1153     }
1154    
1155 jsr166 1.63 public String toString() {
1156     String[] a = null;
1157     restartFromHead: for (;;) {
1158     int charLength = 0;
1159     int size = 0;
1160     for (Node<E> p = first(); p != null;) {
1161 jsr166 1.78 final E item;
1162     if ((item = p.item) != null) {
1163 jsr166 1.63 if (a == null)
1164     a = new String[4];
1165     else if (size == a.length)
1166     a = Arrays.copyOf(a, 2 * size);
1167     String s = item.toString();
1168     a[size++] = s;
1169     charLength += s.length();
1170     }
1171     if (p == (p = p.next))
1172     continue restartFromHead;
1173     }
1174    
1175     if (size == 0)
1176     return "[]";
1177    
1178 jsr166 1.65 return Helpers.toString(a, size, charLength);
1179 jsr166 1.63 }
1180     }
1181    
1182     private Object[] toArrayInternal(Object[] a) {
1183     Object[] x = a;
1184     restartFromHead: for (;;) {
1185     int size = 0;
1186     for (Node<E> p = first(); p != null;) {
1187 jsr166 1.78 final E item;
1188     if ((item = p.item) != null) {
1189 jsr166 1.63 if (x == null)
1190     x = new Object[4];
1191     else if (size == x.length)
1192     x = Arrays.copyOf(x, 2 * (size + 4));
1193     x[size++] = item;
1194     }
1195     if (p == (p = p.next))
1196     continue restartFromHead;
1197     }
1198     if (x == null)
1199     return new Object[0];
1200     else if (a != null && size <= a.length) {
1201     if (a != x)
1202     System.arraycopy(x, 0, a, 0, size);
1203     if (size < a.length)
1204     a[size] = null;
1205     return a;
1206     }
1207     return (size == x.length) ? x : Arrays.copyOf(x, size);
1208     }
1209     }
1210    
1211 jsr166 1.1 /**
1212     * Returns an array containing all of the elements in this deque, in
1213     * proper sequence (from first to last element).
1214     *
1215     * <p>The returned array will be "safe" in that no references to it are
1216     * maintained by this deque. (In other words, this method must allocate
1217     * a new array). The caller is thus free to modify the returned array.
1218     *
1219     * <p>This method acts as bridge between array-based and collection-based
1220     * APIs.
1221     *
1222     * @return an array containing all of the elements in this deque
1223     */
1224     public Object[] toArray() {
1225 jsr166 1.63 return toArrayInternal(null);
1226 jsr166 1.1 }
1227    
1228     /**
1229     * Returns an array containing all of the elements in this deque,
1230     * in proper sequence (from first to last element); the runtime
1231     * type of the returned array is that of the specified array. If
1232     * the deque fits in the specified array, it is returned therein.
1233     * Otherwise, a new array is allocated with the runtime type of
1234     * the specified array and the size of this deque.
1235     *
1236     * <p>If this deque fits in the specified array with room to spare
1237     * (i.e., the array has more elements than this deque), the element in
1238     * the array immediately following the end of the deque is set to
1239     * {@code null}.
1240     *
1241 jsr166 1.3 * <p>Like the {@link #toArray()} method, this method acts as
1242     * bridge between array-based and collection-based APIs. Further,
1243     * this method allows precise control over the runtime type of the
1244     * output array, and may, under certain circumstances, be used to
1245     * save allocation costs.
1246 jsr166 1.1 *
1247     * <p>Suppose {@code x} is a deque known to contain only strings.
1248     * The following code can be used to dump the deque into a newly
1249     * allocated array of {@code String}:
1250     *
1251 jsr166 1.61 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1252 jsr166 1.1 *
1253     * Note that {@code toArray(new Object[0])} is identical in function to
1254     * {@code toArray()}.
1255     *
1256     * @param a the array into which the elements of the deque are to
1257     * be stored, if it is big enough; otherwise, a new array of the
1258     * same runtime type is allocated for this purpose
1259     * @return an array containing all of the elements in this deque
1260     * @throws ArrayStoreException if the runtime type of the specified array
1261     * is not a supertype of the runtime type of every element in
1262     * this deque
1263     * @throws NullPointerException if the specified array is null
1264     */
1265 jsr166 1.63 @SuppressWarnings("unchecked")
1266 jsr166 1.1 public <T> T[] toArray(T[] a) {
1267 jsr166 1.63 if (a == null) throw new NullPointerException();
1268     return (T[]) toArrayInternal(a);
1269 jsr166 1.1 }
1270    
1271     /**
1272     * Returns an iterator over the elements in this deque in proper sequence.
1273     * The elements will be returned in order from first (head) to last (tail).
1274     *
1275 jsr166 1.50 * <p>The returned iterator is
1276     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1277 jsr166 1.1 *
1278     * @return an iterator over the elements in this deque in proper sequence
1279     */
1280     public Iterator<E> iterator() {
1281     return new Itr();
1282     }
1283    
1284     /**
1285     * Returns an iterator over the elements in this deque in reverse
1286     * sequential order. The elements will be returned in order from
1287     * last (tail) to first (head).
1288     *
1289 jsr166 1.50 * <p>The returned iterator is
1290     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1291 jsr166 1.3 *
1292     * @return an iterator over the elements in this deque in reverse order
1293 jsr166 1.1 */
1294     public Iterator<E> descendingIterator() {
1295     return new DescendingItr();
1296     }
1297    
1298     private abstract class AbstractItr implements Iterator<E> {
1299     /**
1300     * Next node to return item for.
1301     */
1302     private Node<E> nextNode;
1303    
1304     /**
1305     * nextItem holds on to item fields because once we claim
1306     * that an element exists in hasNext(), we must return it in
1307     * the following next() call even if it was in the process of
1308     * being removed when hasNext() was called.
1309     */
1310     private E nextItem;
1311    
1312     /**
1313     * Node returned by most recent call to next. Needed by remove.
1314     * Reset to null if this element is deleted by a call to remove.
1315     */
1316     private Node<E> lastRet;
1317    
1318     abstract Node<E> startNode();
1319     abstract Node<E> nextNode(Node<E> p);
1320    
1321     AbstractItr() {
1322     advance();
1323     }
1324    
1325     /**
1326     * Sets nextNode and nextItem to next valid node, or to null
1327     * if no such.
1328     */
1329     private void advance() {
1330     lastRet = nextNode;
1331    
1332     Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1333     for (;; p = nextNode(p)) {
1334     if (p == null) {
1335 jsr166 1.56 // might be at active end or TERMINATOR node; both are OK
1336 jsr166 1.1 nextNode = null;
1337     nextItem = null;
1338     break;
1339     }
1340 jsr166 1.78 final E item;
1341     if ((item = p.item) != null) {
1342 jsr166 1.1 nextNode = p;
1343     nextItem = item;
1344     break;
1345     }
1346     }
1347     }
1348    
1349     public boolean hasNext() {
1350     return nextItem != null;
1351     }
1352    
1353     public E next() {
1354     E item = nextItem;
1355     if (item == null) throw new NoSuchElementException();
1356     advance();
1357     return item;
1358     }
1359    
1360     public void remove() {
1361     Node<E> l = lastRet;
1362     if (l == null) throw new IllegalStateException();
1363     l.item = null;
1364     unlink(l);
1365     lastRet = null;
1366     }
1367     }
1368    
1369     /** Forward iterator */
1370     private class Itr extends AbstractItr {
1371 jsr166 1.80 Itr() {} // prevent access constructor creation
1372 jsr166 1.1 Node<E> startNode() { return first(); }
1373     Node<E> nextNode(Node<E> p) { return succ(p); }
1374     }
1375    
1376     /** Descending iterator */
1377     private class DescendingItr extends AbstractItr {
1378 jsr166 1.80 DescendingItr() {} // prevent access constructor creation
1379 jsr166 1.1 Node<E> startNode() { return last(); }
1380     Node<E> nextNode(Node<E> p) { return pred(p); }
1381     }
1382    
1383 dl 1.39 /** A customized variant of Spliterators.IteratorSpliterator */
1384 jsr166 1.76 final class CLDSpliterator implements Spliterator<E> {
1385 dl 1.42 static final int MAX_BATCH = 1 << 25; // max batch array size;
1386 dl 1.35 Node<E> current; // current node; null until initialized
1387     int batch; // batch size for splits
1388     boolean exhausted; // true when no more nodes
1389    
1390     public Spliterator<E> trySplit() {
1391 jsr166 1.85 Node<E> p, q;
1392     if ((p = current()) == null || (q = p.next) == null)
1393     return null;
1394     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1395     Object[] a = null;
1396     do {
1397     final E e;
1398 jsr166 1.88 if ((e = p.item) != null) {
1399     if (a == null)
1400     a = new Object[n];
1401     a[i++] = e;
1402     }
1403 jsr166 1.85 if (p == (p = q))
1404     p = first();
1405     } while (p != null && (q = p.next) != null && i < n);
1406     setCurrent(p);
1407     return (i == 0) ? null :
1408     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1409     Spliterator.NONNULL |
1410     Spliterator.CONCURRENT));
1411 dl 1.35 }
1412    
1413 dl 1.43 public void forEachRemaining(Consumer<? super E> action) {
1414 jsr166 1.83 Objects.requireNonNull(action);
1415 dl 1.35 Node<E> p;
1416 jsr166 1.85 if ((p = current()) != null) {
1417 jsr166 1.82 current = null;
1418 dl 1.35 exhausted = true;
1419     do {
1420 jsr166 1.85 final E e;
1421     if ((e = p.item) != null)
1422     action.accept(e);
1423 dl 1.35 if (p == (p = p.next))
1424 jsr166 1.76 p = first();
1425 dl 1.35 } while (p != null);
1426     }
1427     }
1428    
1429     public boolean tryAdvance(Consumer<? super E> action) {
1430 jsr166 1.83 Objects.requireNonNull(action);
1431 dl 1.35 Node<E> p;
1432 jsr166 1.85 if ((p = current()) != null) {
1433 dl 1.35 E e;
1434     do {
1435     e = p.item;
1436     if (p == (p = p.next))
1437 jsr166 1.76 p = first();
1438 dl 1.35 } while (e == null && p != null);
1439 jsr166 1.85 setCurrent(p);
1440 dl 1.35 if (e != null) {
1441     action.accept(e);
1442     return true;
1443     }
1444     }
1445     return false;
1446     }
1447    
1448 jsr166 1.85 private void setCurrent(Node<E> p) {
1449     if ((current = p) == null)
1450     exhausted = true;
1451     }
1452    
1453     private Node<E> current() {
1454     Node<E> p;
1455     if ((p = current) == null && !exhausted)
1456     setCurrent(p = first());
1457     return p;
1458     }
1459    
1460 dl 1.36 public long estimateSize() { return Long.MAX_VALUE; }
1461    
1462 dl 1.35 public int characteristics() {
1463 jsr166 1.81 return (Spliterator.ORDERED |
1464     Spliterator.NONNULL |
1465     Spliterator.CONCURRENT);
1466 dl 1.35 }
1467     }
1468    
1469 jsr166 1.49 /**
1470     * Returns a {@link Spliterator} over the elements in this deque.
1471     *
1472 jsr166 1.50 * <p>The returned spliterator is
1473     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1474     *
1475 jsr166 1.49 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1476     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1477     *
1478     * @implNote
1479     * The {@code Spliterator} implements {@code trySplit} to permit limited
1480     * parallelism.
1481     *
1482     * @return a {@code Spliterator} over the elements in this deque
1483     * @since 1.8
1484     */
1485 dl 1.38 public Spliterator<E> spliterator() {
1486 jsr166 1.76 return new CLDSpliterator();
1487 dl 1.34 }
1488    
1489 jsr166 1.1 /**
1490 jsr166 1.31 * Saves this deque to a stream (that is, serializes it).
1491 jsr166 1.1 *
1492 jsr166 1.47 * @param s the stream
1493 jsr166 1.48 * @throws java.io.IOException if an I/O error occurs
1494 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1495     * the proper order, followed by a null
1496     */
1497     private void writeObject(java.io.ObjectOutputStream s)
1498     throws java.io.IOException {
1499    
1500     // Write out any hidden stuff
1501     s.defaultWriteObject();
1502    
1503     // Write out all elements in the proper order.
1504     for (Node<E> p = first(); p != null; p = succ(p)) {
1505 jsr166 1.78 final E item;
1506     if ((item = p.item) != null)
1507 jsr166 1.1 s.writeObject(item);
1508     }
1509    
1510     // Use trailing null as sentinel
1511     s.writeObject(null);
1512     }
1513    
1514     /**
1515 jsr166 1.31 * Reconstitutes this deque from a stream (that is, deserializes it).
1516 jsr166 1.47 * @param s the stream
1517 jsr166 1.48 * @throws ClassNotFoundException if the class of a serialized object
1518     * could not be found
1519     * @throws java.io.IOException if an I/O error occurs
1520 jsr166 1.1 */
1521     private void readObject(java.io.ObjectInputStream s)
1522     throws java.io.IOException, ClassNotFoundException {
1523     s.defaultReadObject();
1524 jsr166 1.3
1525     // Read in elements until trailing null sentinel found
1526     Node<E> h = null, t = null;
1527 jsr166 1.53 for (Object item; (item = s.readObject()) != null; ) {
1528 jsr166 1.1 @SuppressWarnings("unchecked")
1529 dl 1.68 Node<E> newNode = newNode((E) item);
1530 jsr166 1.3 if (h == null)
1531     h = t = newNode;
1532     else {
1533 jsr166 1.71 NEXT.set(t, newNode);
1534     PREV.set(newNode, t);
1535 jsr166 1.3 t = newNode;
1536     }
1537 jsr166 1.1 }
1538 jsr166 1.9 initHeadTail(h, t);
1539 jsr166 1.1 }
1540    
1541 jsr166 1.77 /**
1542     * @throws NullPointerException {@inheritDoc}
1543     */
1544     public boolean removeIf(Predicate<? super E> filter) {
1545     Objects.requireNonNull(filter);
1546     return bulkRemove(filter);
1547     }
1548    
1549     /**
1550     * @throws NullPointerException {@inheritDoc}
1551     */
1552     public boolean removeAll(Collection<?> c) {
1553     Objects.requireNonNull(c);
1554     return bulkRemove(e -> c.contains(e));
1555     }
1556    
1557     /**
1558     * @throws NullPointerException {@inheritDoc}
1559     */
1560     public boolean retainAll(Collection<?> c) {
1561     Objects.requireNonNull(c);
1562     return bulkRemove(e -> !c.contains(e));
1563     }
1564    
1565     /** Implementation of bulk remove methods. */
1566     private boolean bulkRemove(Predicate<? super E> filter) {
1567     boolean removed = false;
1568     for (Node<E> p = first(), succ; p != null; p = succ) {
1569     succ = succ(p);
1570     final E item;
1571     if ((item = p.item) != null
1572     && filter.test(item)
1573     && ITEM.compareAndSet(p, item, null)) {
1574     unlink(p);
1575     removed = true;
1576     }
1577     }
1578     return removed;
1579     }
1580    
1581 jsr166 1.79 /**
1582     * @throws NullPointerException {@inheritDoc}
1583     */
1584 jsr166 1.77 public void forEach(Consumer<? super E> action) {
1585     Objects.requireNonNull(action);
1586     E item;
1587     for (Node<E> p = first(); p != null; p = succ(p))
1588     if ((item = p.item) != null)
1589     action.accept(item);
1590     }
1591    
1592 dl 1.68 // VarHandle mechanics
1593     private static final VarHandle HEAD;
1594     private static final VarHandle TAIL;
1595     private static final VarHandle PREV;
1596 jsr166 1.70 private static final VarHandle NEXT;
1597 dl 1.68 private static final VarHandle ITEM;
1598 dl 1.23 static {
1599 jsr166 1.70 PREV_TERMINATOR = new Node<Object>();
1600     PREV_TERMINATOR.next = PREV_TERMINATOR;
1601     NEXT_TERMINATOR = new Node<Object>();
1602     NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1603 jsr166 1.1 try {
1604 dl 1.68 MethodHandles.Lookup l = MethodHandles.lookup();
1605     HEAD = l.findVarHandle(ConcurrentLinkedDeque.class, "head",
1606     Node.class);
1607     TAIL = l.findVarHandle(ConcurrentLinkedDeque.class, "tail",
1608     Node.class);
1609     PREV = l.findVarHandle(Node.class, "prev", Node.class);
1610     NEXT = l.findVarHandle(Node.class, "next", Node.class);
1611     ITEM = l.findVarHandle(Node.class, "item", Object.class);
1612 jsr166 1.59 } catch (ReflectiveOperationException e) {
1613 dl 1.23 throw new Error(e);
1614 jsr166 1.1 }
1615     }
1616     }