ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.91
Committed: Sun Oct 22 21:52:58 2017 UTC (6 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.90: +30 -23 lines
Log Message:
8189387: ConcurrentLinkedDeque linearizability continued ...

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea and Martin Buchholz with assistance from members of
3     * JCP JSR-166 Expert Group and released to the public domain, as explained
4 jsr166 1.25 * at http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.68 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractCollection;
12 jsr166 1.63 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Deque;
15     import java.util.Iterator;
16     import java.util.NoSuchElementException;
17 jsr166 1.64 import java.util.Objects;
18 jsr166 1.12 import java.util.Queue;
19 jsr166 1.57 import java.util.Spliterator;
20 dl 1.36 import java.util.Spliterators;
21 jsr166 1.57 import java.util.function.Consumer;
22 jsr166 1.77 import java.util.function.Predicate;
23 jsr166 1.1
24     /**
25 jsr166 1.3 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
26     * Concurrent insertion, removal, and access operations execute safely
27     * across multiple threads.
28     * A {@code ConcurrentLinkedDeque} is an appropriate choice when
29     * many threads will share access to a common collection.
30     * Like most other concurrent collection implementations, this class
31     * does not permit the use of {@code null} elements.
32     *
33 jsr166 1.50 * <p>Iterators and spliterators are
34     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
35 jsr166 1.1 *
36 dl 1.26 * <p>Beware that, unlike in most collections, the {@code size} method
37     * is <em>NOT</em> a constant-time operation. Because of the
38 jsr166 1.1 * asynchronous nature of these deques, determining the current number
39 dl 1.26 * of elements requires a traversal of the elements, and so may report
40     * inaccurate results if this collection is modified during traversal.
41 jsr166 1.87 *
42     * <p>Bulk operations that add, remove, or examine multiple elements,
43     * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
44     * are <em>not</em> guaranteed to be performed atomically.
45     * For example, a {@code forEach} traversal concurrent with an {@code
46     * addAll} operation might observe only some of the added elements.
47 jsr166 1.3 *
48     * <p>This class and its iterator implement all of the <em>optional</em>
49     * methods of the {@link Deque} and {@link Iterator} interfaces.
50 jsr166 1.1 *
51 jsr166 1.3 * <p>Memory consistency effects: As with other concurrent collections,
52     * actions in a thread prior to placing an object into a
53     * {@code ConcurrentLinkedDeque}
54     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
55     * actions subsequent to the access or removal of that element from
56     * the {@code ConcurrentLinkedDeque} in another thread.
57 jsr166 1.1 *
58 jsr166 1.3 * <p>This class is a member of the
59 jsr166 1.89 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
60 jsr166 1.3 * Java Collections Framework</a>.
61     *
62     * @since 1.7
63     * @author Doug Lea
64     * @author Martin Buchholz
65 jsr166 1.55 * @param <E> the type of elements held in this deque
66 jsr166 1.1 */
67     public class ConcurrentLinkedDeque<E>
68     extends AbstractCollection<E>
69     implements Deque<E>, java.io.Serializable {
70    
71     /*
72     * This is an implementation of a concurrent lock-free deque
73     * supporting interior removes but not interior insertions, as
74 jsr166 1.3 * required to support the entire Deque interface.
75     *
76     * We extend the techniques developed for ConcurrentLinkedQueue and
77     * LinkedTransferQueue (see the internal docs for those classes).
78 jsr166 1.5 * Understanding the ConcurrentLinkedQueue implementation is a
79     * prerequisite for understanding the implementation of this class.
80 jsr166 1.3 *
81     * The data structure is a symmetrical doubly-linked "GC-robust"
82     * linked list of nodes. We minimize the number of volatile writes
83     * using two techniques: advancing multiple hops with a single CAS
84     * and mixing volatile and non-volatile writes of the same memory
85     * locations.
86     *
87     * A node contains the expected E ("item") and links to predecessor
88     * ("prev") and successor ("next") nodes:
89     *
90     * class Node<E> { volatile Node<E> prev, next; volatile E item; }
91     *
92     * A node p is considered "live" if it contains a non-null item
93     * (p.item != null). When an item is CASed to null, the item is
94     * atomically logically deleted from the collection.
95     *
96     * At any time, there is precisely one "first" node with a null
97     * prev reference that terminates any chain of prev references
98     * starting at a live node. Similarly there is precisely one
99     * "last" node terminating any chain of next references starting at
100     * a live node. The "first" and "last" nodes may or may not be live.
101     * The "first" and "last" nodes are always mutually reachable.
102     *
103     * A new element is added atomically by CASing the null prev or
104     * next reference in the first or last node to a fresh node
105 jsr166 1.6 * containing the element. The element's node atomically becomes
106     * "live" at that point.
107 jsr166 1.3 *
108     * A node is considered "active" if it is a live node, or the
109     * first or last node. Active nodes cannot be unlinked.
110     *
111     * A "self-link" is a next or prev reference that is the same node:
112     * p.prev == p or p.next == p
113     * Self-links are used in the node unlinking process. Active nodes
114     * never have self-links.
115 jsr166 1.1 *
116 jsr166 1.3 * A node p is active if and only if:
117 jsr166 1.1 *
118     * p.item != null ||
119     * (p.prev == null && p.next != p) ||
120     * (p.next == null && p.prev != p)
121     *
122 jsr166 1.3 * The deque object has two node references, "head" and "tail".
123     * The head and tail are only approximations to the first and last
124     * nodes of the deque. The first node can always be found by
125 jsr166 1.1 * following prev pointers from head; likewise for tail. However,
126 jsr166 1.3 * it is permissible for head and tail to be referring to deleted
127     * nodes that have been unlinked and so may not be reachable from
128     * any live node.
129     *
130     * There are 3 stages of node deletion;
131     * "logical deletion", "unlinking", and "gc-unlinking".
132     *
133     * 1. "logical deletion" by CASing item to null atomically removes
134     * the element from the collection, and makes the containing node
135     * eligible for unlinking.
136     *
137     * 2. "unlinking" makes a deleted node unreachable from active
138     * nodes, and thus eventually reclaimable by GC. Unlinked nodes
139     * may remain reachable indefinitely from an iterator.
140     *
141     * Physical node unlinking is merely an optimization (albeit a
142     * critical one), and so can be performed at our convenience. At
143     * any time, the set of live nodes maintained by prev and next
144     * links are identical, that is, the live nodes found via next
145     * links from the first node is equal to the elements found via
146     * prev links from the last node. However, this is not true for
147     * nodes that have already been logically deleted - such nodes may
148     * be reachable in one direction only.
149     *
150     * 3. "gc-unlinking" takes unlinking further by making active
151     * nodes unreachable from deleted nodes, making it easier for the
152     * GC to reclaim future deleted nodes. This step makes the data
153     * structure "gc-robust", as first described in detail by Boehm
154     * (http://portal.acm.org/citation.cfm?doid=503272.503282).
155     *
156     * GC-unlinked nodes may remain reachable indefinitely from an
157     * iterator, but unlike unlinked nodes, are never reachable from
158     * head or tail.
159     *
160     * Making the data structure GC-robust will eliminate the risk of
161     * unbounded memory retention with conservative GCs and is likely
162     * to improve performance with generational GCs.
163     *
164     * When a node is dequeued at either end, e.g. via poll(), we would
165     * like to break any references from the node to active nodes. We
166     * develop further the use of self-links that was very effective in
167     * other concurrent collection classes. The idea is to replace
168     * prev and next pointers with special values that are interpreted
169     * to mean off-the-list-at-one-end. These are approximations, but
170     * good enough to preserve the properties we want in our
171     * traversals, e.g. we guarantee that a traversal will never visit
172     * the same element twice, but we don't guarantee whether a
173     * traversal that runs out of elements will be able to see more
174     * elements later after enqueues at that end. Doing gc-unlinking
175     * safely is particularly tricky, since any node can be in use
176     * indefinitely (for example by an iterator). We must ensure that
177     * the nodes pointed at by head/tail never get gc-unlinked, since
178     * head/tail are needed to get "back on track" by other nodes that
179     * are gc-unlinked. gc-unlinking accounts for much of the
180     * implementation complexity.
181 jsr166 1.1 *
182     * Since neither unlinking nor gc-unlinking are necessary for
183     * correctness, there are many implementation choices regarding
184     * frequency (eagerness) of these operations. Since volatile
185     * reads are likely to be much cheaper than CASes, saving CASes by
186     * unlinking multiple adjacent nodes at a time may be a win.
187     * gc-unlinking can be performed rarely and still be effective,
188     * since it is most important that long chains of deleted nodes
189     * are occasionally broken.
190     *
191     * The actual representation we use is that p.next == p means to
192 jsr166 1.3 * goto the first node (which in turn is reached by following prev
193     * pointers from head), and p.next == null && p.prev == p means
194 jsr166 1.18 * that the iteration is at an end and that p is a (static final)
195 jsr166 1.1 * dummy node, NEXT_TERMINATOR, and not the last active node.
196     * Finishing the iteration when encountering such a TERMINATOR is
197 jsr166 1.3 * good enough for read-only traversals, so such traversals can use
198     * p.next == null as the termination condition. When we need to
199     * find the last (active) node, for enqueueing a new node, we need
200     * to check whether we have reached a TERMINATOR node; if so,
201     * restart traversal from tail.
202 jsr166 1.1 *
203     * The implementation is completely directionally symmetrical,
204     * except that most public methods that iterate through the list
205 jsr166 1.90 * follow next pointers, in the "forward" direction.
206 jsr166 1.1 *
207 jsr166 1.90 * We believe (without full proof) that all single-element Deque
208     * operations that operate directly at the two ends of the Deque
209     * (e.g., addFirst, peekLast, pollLast) are linearizable (see
210     * Herlihy and Shavit's book). However, some combinations of
211 jsr166 1.5 * operations are known not to be linearizable. In particular,
212 jsr166 1.90 * when an addFirst(A) is racing with pollFirst() removing B, it
213     * is possible for an observer iterating over the elements to
214     * observe first [A B C] and then [A C], even though no interior
215 jsr166 1.5 * removes are ever performed. Nevertheless, iterators behave
216     * reasonably, providing the "weakly consistent" guarantees.
217 jsr166 1.1 *
218     * Empirically, microbenchmarks suggest that this class adds about
219     * 40% overhead relative to ConcurrentLinkedQueue, which feels as
220     * good as we can hope for.
221     */
222    
223 jsr166 1.3 private static final long serialVersionUID = 876323262645176354L;
224    
225 jsr166 1.1 /**
226 jsr166 1.3 * A node from which the first node on list (that is, the unique node p
227     * with p.prev == null && p.next != p) can be reached in O(1) time.
228 jsr166 1.1 * Invariants:
229     * - the first node is always O(1) reachable from head via prev links
230     * - all live nodes are reachable from the first node via succ()
231     * - head != null
232     * - (tmp = head).next != tmp || tmp != head
233 jsr166 1.3 * - head is never gc-unlinked (but may be unlinked)
234 jsr166 1.1 * Non-invariants:
235     * - head.item may or may not be null
236     * - head may not be reachable from the first or last node, or from tail
237     */
238 jsr166 1.3 private transient volatile Node<E> head;
239    
240     /**
241     * A node from which the last node on list (that is, the unique node p
242     * with p.next == null && p.prev != p) can be reached in O(1) time.
243     * Invariants:
244     * - the last node is always O(1) reachable from tail via next links
245     * - all live nodes are reachable from the last node via pred()
246     * - tail != null
247     * - tail is never gc-unlinked (but may be unlinked)
248     * Non-invariants:
249     * - tail.item may or may not be null
250     * - tail may not be reachable from the first or last node, or from head
251     */
252     private transient volatile Node<E> tail;
253 jsr166 1.1
254 jsr166 1.18 private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
255 jsr166 1.1
256     @SuppressWarnings("unchecked")
257     Node<E> prevTerminator() {
258     return (Node<E>) PREV_TERMINATOR;
259     }
260    
261     @SuppressWarnings("unchecked")
262     Node<E> nextTerminator() {
263     return (Node<E>) NEXT_TERMINATOR;
264     }
265    
266     static final class Node<E> {
267     volatile Node<E> prev;
268     volatile E item;
269     volatile Node<E> next;
270 dl 1.68 }
271 jsr166 1.1
272 dl 1.68 /**
273     * Returns a new node holding item. Uses relaxed write because item
274     * can only be seen after piggy-backing publication via CAS.
275     */
276     static <E> Node<E> newNode(E item) {
277     Node<E> node = new Node<E>();
278     ITEM.set(node, item);
279     return node;
280 jsr166 1.1 }
281 jsr166 1.69
282 jsr166 1.1 /**
283     * Links e as first element.
284     */
285     private void linkFirst(E e) {
286 dl 1.68 final Node<E> newNode = newNode(Objects.requireNonNull(e));
287 jsr166 1.1
288 jsr166 1.7 restartFromHead:
289 jsr166 1.15 for (;;)
290     for (Node<E> h = head, p = h, q;;) {
291     if ((q = p.prev) != null &&
292     (q = (p = q).prev) != null)
293     // Check for head updates every other hop.
294     // If p == q, we are sure to follow head instead.
295     p = (h != (h = head)) ? h : q;
296     else if (p.next == p) // PREV_TERMINATOR
297     continue restartFromHead;
298     else {
299 jsr166 1.3 // p is first node
300 jsr166 1.71 NEXT.set(newNode, p); // CAS piggyback
301 dl 1.68 if (PREV.compareAndSet(p, null, newNode)) {
302 jsr166 1.6 // Successful CAS is the linearization point
303     // for e to become an element of this deque,
304     // and for newNode to become "live".
305 jsr166 1.74 if (p != h) // hop two nodes at a time; failure is OK
306 jsr166 1.75 HEAD.weakCompareAndSet(this, h, newNode);
307 jsr166 1.1 return;
308     }
309 jsr166 1.11 // Lost CAS race to another thread; re-read prev
310 jsr166 1.1 }
311     }
312     }
313    
314     /**
315     * Links e as last element.
316     */
317     private void linkLast(E e) {
318 dl 1.68 final Node<E> newNode = newNode(Objects.requireNonNull(e));
319 jsr166 1.1
320 jsr166 1.7 restartFromTail:
321 jsr166 1.15 for (;;)
322     for (Node<E> t = tail, p = t, q;;) {
323     if ((q = p.next) != null &&
324     (q = (p = q).next) != null)
325     // Check for tail updates every other hop.
326     // If p == q, we are sure to follow tail instead.
327     p = (t != (t = tail)) ? t : q;
328     else if (p.prev == p) // NEXT_TERMINATOR
329     continue restartFromTail;
330     else {
331 jsr166 1.3 // p is last node
332 jsr166 1.71 PREV.set(newNode, p); // CAS piggyback
333 dl 1.68 if (NEXT.compareAndSet(p, null, newNode)) {
334 jsr166 1.6 // Successful CAS is the linearization point
335     // for e to become an element of this deque,
336     // and for newNode to become "live".
337 dl 1.73 if (p != t) // hop two nodes at a time; failure is OK
338 jsr166 1.75 TAIL.weakCompareAndSet(this, t, newNode);
339 jsr166 1.1 return;
340     }
341 jsr166 1.11 // Lost CAS race to another thread; re-read next
342 jsr166 1.1 }
343     }
344     }
345    
346 jsr166 1.18 private static final int HOPS = 2;
347 jsr166 1.1
348     /**
349     * Unlinks non-null node x.
350     */
351     void unlink(Node<E> x) {
352 jsr166 1.3 // assert x != null;
353     // assert x.item == null;
354     // assert x != PREV_TERMINATOR;
355     // assert x != NEXT_TERMINATOR;
356 jsr166 1.1
357     final Node<E> prev = x.prev;
358     final Node<E> next = x.next;
359     if (prev == null) {
360     unlinkFirst(x, next);
361     } else if (next == null) {
362     unlinkLast(x, prev);
363     } else {
364     // Unlink interior node.
365     //
366     // This is the common case, since a series of polls at the
367     // same end will be "interior" removes, except perhaps for
368 jsr166 1.3 // the first one, since end nodes cannot be unlinked.
369 jsr166 1.1 //
370     // At any time, all active nodes are mutually reachable by
371     // following a sequence of either next or prev pointers.
372     //
373     // Our strategy is to find the unique active predecessor
374     // and successor of x. Try to fix up their links so that
375     // they point to each other, leaving x unreachable from
376     // active nodes. If successful, and if x has no live
377 jsr166 1.3 // predecessor/successor, we additionally try to gc-unlink,
378     // leaving active nodes unreachable from x, by rechecking
379     // that the status of predecessor and successor are
380     // unchanged and ensuring that x is not reachable from
381     // tail/head, before setting x's prev/next links to their
382     // logical approximate replacements, self/TERMINATOR.
383 jsr166 1.1 Node<E> activePred, activeSucc;
384     boolean isFirst, isLast;
385     int hops = 1;
386    
387     // Find active predecessor
388 jsr166 1.3 for (Node<E> p = prev; ; ++hops) {
389 jsr166 1.1 if (p.item != null) {
390     activePred = p;
391     isFirst = false;
392     break;
393     }
394     Node<E> q = p.prev;
395     if (q == null) {
396 jsr166 1.3 if (p.next == p)
397 jsr166 1.1 return;
398     activePred = p;
399     isFirst = true;
400     break;
401     }
402     else if (p == q)
403     return;
404     else
405     p = q;
406     }
407    
408     // Find active successor
409 jsr166 1.3 for (Node<E> p = next; ; ++hops) {
410 jsr166 1.1 if (p.item != null) {
411     activeSucc = p;
412     isLast = false;
413     break;
414     }
415     Node<E> q = p.next;
416     if (q == null) {
417 jsr166 1.3 if (p.prev == p)
418 jsr166 1.1 return;
419     activeSucc = p;
420     isLast = true;
421     break;
422     }
423     else if (p == q)
424     return;
425     else
426     p = q;
427     }
428    
429     // TODO: better HOP heuristics
430     if (hops < HOPS
431     // always squeeze out interior deleted nodes
432     && (isFirst | isLast))
433     return;
434    
435     // Squeeze out deleted nodes between activePred and
436     // activeSucc, including x.
437     skipDeletedSuccessors(activePred);
438     skipDeletedPredecessors(activeSucc);
439    
440     // Try to gc-unlink, if possible
441     if ((isFirst | isLast) &&
442    
443     // Recheck expected state of predecessor and successor
444     (activePred.next == activeSucc) &&
445     (activeSucc.prev == activePred) &&
446     (isFirst ? activePred.prev == null : activePred.item != null) &&
447     (isLast ? activeSucc.next == null : activeSucc.item != null)) {
448    
449 jsr166 1.5 updateHead(); // Ensure x is not reachable from head
450     updateTail(); // Ensure x is not reachable from tail
451 jsr166 1.3
452     // Finally, actually gc-unlink
453 dl 1.68 PREV.setRelease(x, isFirst ? prevTerminator() : x);
454     NEXT.setRelease(x, isLast ? nextTerminator() : x);
455 jsr166 1.1 }
456     }
457     }
458    
459     /**
460     * Unlinks non-null first node.
461     */
462     private void unlinkFirst(Node<E> first, Node<E> next) {
463 jsr166 1.9 // assert first != null;
464     // assert next != null;
465     // assert first.item == null;
466 jsr166 1.15 for (Node<E> o = null, p = next, q;;) {
467 jsr166 1.1 if (p.item != null || (q = p.next) == null) {
468 dl 1.68 if (o != null && p.prev != p &&
469     NEXT.compareAndSet(first, next, p)) {
470 jsr166 1.3 skipDeletedPredecessors(p);
471     if (first.prev == null &&
472     (p.next == null || p.item != null) &&
473     p.prev == first) {
474    
475 jsr166 1.5 updateHead(); // Ensure o is not reachable from head
476     updateTail(); // Ensure o is not reachable from tail
477    
478     // Finally, actually gc-unlink
479 dl 1.68 NEXT.setRelease(o, o);
480     PREV.setRelease(o, prevTerminator());
481 jsr166 1.1 }
482     }
483     return;
484     }
485     else if (p == q)
486     return;
487     else {
488     o = p;
489     p = q;
490     }
491     }
492     }
493    
494     /**
495     * Unlinks non-null last node.
496     */
497     private void unlinkLast(Node<E> last, Node<E> prev) {
498 jsr166 1.9 // assert last != null;
499     // assert prev != null;
500     // assert last.item == null;
501 jsr166 1.15 for (Node<E> o = null, p = prev, q;;) {
502 jsr166 1.1 if (p.item != null || (q = p.prev) == null) {
503 dl 1.68 if (o != null && p.next != p &&
504     PREV.compareAndSet(last, prev, p)) {
505 jsr166 1.3 skipDeletedSuccessors(p);
506     if (last.next == null &&
507     (p.prev == null || p.item != null) &&
508     p.next == last) {
509    
510 jsr166 1.5 updateHead(); // Ensure o is not reachable from head
511     updateTail(); // Ensure o is not reachable from tail
512    
513     // Finally, actually gc-unlink
514 dl 1.68 PREV.setRelease(o, o);
515     NEXT.setRelease(o, nextTerminator());
516 jsr166 1.1 }
517     }
518     return;
519     }
520     else if (p == q)
521     return;
522     else {
523     o = p;
524     p = q;
525     }
526     }
527     }
528    
529 jsr166 1.3 /**
530 jsr166 1.15 * Guarantees that any node which was unlinked before a call to
531     * this method will be unreachable from head after it returns.
532     * Does not guarantee to eliminate slack, only that head will
533 jsr166 1.17 * point to a node that was active while this method was running.
534 jsr166 1.3 */
535 jsr166 1.1 private final void updateHead() {
536 jsr166 1.17 // Either head already points to an active node, or we keep
537     // trying to cas it to the first node until it does.
538     Node<E> h, p, q;
539     restartFromHead:
540     while ((h = head).item == null && (p = h.prev) != null) {
541     for (;;) {
542     if ((q = p.prev) == null ||
543     (q = (p = q).prev) == null) {
544     // It is possible that p is PREV_TERMINATOR,
545     // but if so, the CAS is guaranteed to fail.
546 dl 1.68 if (HEAD.compareAndSet(this, h, p))
547 jsr166 1.17 return;
548     else
549     continue restartFromHead;
550     }
551     else if (h != head)
552     continue restartFromHead;
553     else
554     p = q;
555 jsr166 1.15 }
556     }
557 jsr166 1.1 }
558    
559 jsr166 1.3 /**
560 jsr166 1.15 * Guarantees that any node which was unlinked before a call to
561     * this method will be unreachable from tail after it returns.
562     * Does not guarantee to eliminate slack, only that tail will
563 jsr166 1.17 * point to a node that was active while this method was running.
564 jsr166 1.3 */
565 jsr166 1.1 private final void updateTail() {
566 jsr166 1.17 // Either tail already points to an active node, or we keep
567     // trying to cas it to the last node until it does.
568     Node<E> t, p, q;
569     restartFromTail:
570     while ((t = tail).item == null && (p = t.next) != null) {
571     for (;;) {
572     if ((q = p.next) == null ||
573     (q = (p = q).next) == null) {
574     // It is possible that p is NEXT_TERMINATOR,
575     // but if so, the CAS is guaranteed to fail.
576 dl 1.68 if (TAIL.compareAndSet(this, t, p))
577 jsr166 1.17 return;
578     else
579     continue restartFromTail;
580     }
581     else if (t != tail)
582     continue restartFromTail;
583     else
584     p = q;
585 jsr166 1.15 }
586     }
587 jsr166 1.1 }
588    
589     private void skipDeletedPredecessors(Node<E> x) {
590     whileActive:
591     do {
592     Node<E> prev = x.prev;
593 jsr166 1.3 // assert prev != null;
594     // assert x != NEXT_TERMINATOR;
595     // assert x != PREV_TERMINATOR;
596 jsr166 1.1 Node<E> p = prev;
597     findActive:
598     for (;;) {
599     if (p.item != null)
600     break findActive;
601     Node<E> q = p.prev;
602     if (q == null) {
603     if (p.next == p)
604     continue whileActive;
605     break findActive;
606     }
607     else if (p == q)
608     continue whileActive;
609     else
610     p = q;
611     }
612    
613     // found active CAS target
614 dl 1.68 if (prev == p || PREV.compareAndSet(x, prev, p))
615 jsr166 1.1 return;
616    
617     } while (x.item != null || x.next == null);
618     }
619    
620     private void skipDeletedSuccessors(Node<E> x) {
621     whileActive:
622     do {
623     Node<E> next = x.next;
624 jsr166 1.3 // assert next != null;
625     // assert x != NEXT_TERMINATOR;
626     // assert x != PREV_TERMINATOR;
627 jsr166 1.1 Node<E> p = next;
628     findActive:
629     for (;;) {
630     if (p.item != null)
631     break findActive;
632     Node<E> q = p.next;
633     if (q == null) {
634     if (p.prev == p)
635     continue whileActive;
636     break findActive;
637     }
638     else if (p == q)
639     continue whileActive;
640     else
641     p = q;
642     }
643    
644     // found active CAS target
645 dl 1.68 if (next == p || NEXT.compareAndSet(x, next, p))
646 jsr166 1.1 return;
647    
648     } while (x.item != null || x.prev == null);
649     }
650    
651     /**
652     * Returns the successor of p, or the first node if p.next has been
653     * linked to self, which will only be true if traversing with a
654     * stale pointer that is now off the list.
655     */
656     final Node<E> succ(Node<E> p) {
657     // TODO: should we skip deleted nodes here?
658 jsr166 1.86 if (p == (p = p.next))
659     p = first();
660     return p;
661 jsr166 1.1 }
662    
663     /**
664     * Returns the predecessor of p, or the last node if p.prev has been
665     * linked to self, which will only be true if traversing with a
666     * stale pointer that is now off the list.
667     */
668     final Node<E> pred(Node<E> p) {
669 jsr166 1.91 if (p == (p = p.prev))
670     p = last();
671     return p;
672 jsr166 1.1 }
673    
674     /**
675 jsr166 1.3 * Returns the first node, the unique node p for which:
676     * p.prev == null && p.next != p
677 jsr166 1.1 * The returned node may or may not be logically deleted.
678     * Guarantees that head is set to the returned node.
679     */
680     Node<E> first() {
681 jsr166 1.7 restartFromHead:
682 jsr166 1.15 for (;;)
683     for (Node<E> h = head, p = h, q;;) {
684     if ((q = p.prev) != null &&
685     (q = (p = q).prev) != null)
686     // Check for head updates every other hop.
687     // If p == q, we are sure to follow head instead.
688     p = (h != (h = head)) ? h : q;
689     else if (p == h
690     // It is possible that p is PREV_TERMINATOR,
691     // but if so, the CAS is guaranteed to fail.
692 dl 1.68 || HEAD.compareAndSet(this, h, p))
693 jsr166 1.15 return p;
694     else
695 jsr166 1.7 continue restartFromHead;
696 jsr166 1.1 }
697     }
698    
699     /**
700 jsr166 1.3 * Returns the last node, the unique node p for which:
701     * p.next == null && p.prev != p
702 jsr166 1.1 * The returned node may or may not be logically deleted.
703     * Guarantees that tail is set to the returned node.
704     */
705     Node<E> last() {
706 jsr166 1.7 restartFromTail:
707 jsr166 1.15 for (;;)
708     for (Node<E> t = tail, p = t, q;;) {
709     if ((q = p.next) != null &&
710     (q = (p = q).next) != null)
711     // Check for tail updates every other hop.
712     // If p == q, we are sure to follow tail instead.
713     p = (t != (t = tail)) ? t : q;
714     else if (p == t
715     // It is possible that p is NEXT_TERMINATOR,
716     // but if so, the CAS is guaranteed to fail.
717 dl 1.68 || TAIL.compareAndSet(this, t, p))
718 jsr166 1.15 return p;
719     else
720 jsr166 1.7 continue restartFromTail;
721 jsr166 1.1 }
722     }
723    
724     // Minor convenience utilities
725    
726     /**
727     * Returns element unless it is null, in which case throws
728     * NoSuchElementException.
729     *
730     * @param v the element
731     * @return the element
732     */
733     private E screenNullResult(E v) {
734     if (v == null)
735     throw new NoSuchElementException();
736     return v;
737     }
738    
739     /**
740     * Constructs an empty deque.
741     */
742 jsr166 1.3 public ConcurrentLinkedDeque() {
743 dl 1.68 head = tail = new Node<E>();
744 jsr166 1.3 }
745 jsr166 1.1
746     /**
747     * Constructs a deque initially containing the elements of
748     * the given collection, added in traversal order of the
749     * collection's iterator.
750     *
751     * @param c the collection of elements to initially contain
752     * @throws NullPointerException if the specified collection or any
753     * of its elements are null
754     */
755 jsr166 1.3 public ConcurrentLinkedDeque(Collection<? extends E> c) {
756     // Copy c into a private chain of Nodes
757     Node<E> h = null, t = null;
758     for (E e : c) {
759 dl 1.68 Node<E> newNode = newNode(Objects.requireNonNull(e));
760 jsr166 1.3 if (h == null)
761     h = t = newNode;
762     else {
763 jsr166 1.71 NEXT.set(t, newNode);
764     PREV.set(newNode, t);
765 jsr166 1.3 t = newNode;
766     }
767     }
768 jsr166 1.9 initHeadTail(h, t);
769     }
770    
771     /**
772     * Initializes head and tail, ensuring invariants hold.
773     */
774     private void initHeadTail(Node<E> h, Node<E> t) {
775     if (h == t) {
776     if (h == null)
777 dl 1.68 h = t = new Node<E>();
778 jsr166 1.9 else {
779     // Avoid edge case of a single Node with non-null item.
780 dl 1.68 Node<E> newNode = new Node<E>();
781 jsr166 1.71 NEXT.set(t, newNode);
782     PREV.set(newNode, t);
783 jsr166 1.9 t = newNode;
784     }
785     }
786 jsr166 1.3 head = h;
787     tail = t;
788     }
789 jsr166 1.1
790     /**
791     * Inserts the specified element at the front of this deque.
792 jsr166 1.19 * As the deque is unbounded, this method will never throw
793     * {@link IllegalStateException}.
794 jsr166 1.1 *
795 jsr166 1.19 * @throws NullPointerException if the specified element is null
796 jsr166 1.1 */
797     public void addFirst(E e) {
798     linkFirst(e);
799     }
800    
801     /**
802     * Inserts the specified element at the end of this deque.
803 jsr166 1.19 * As the deque is unbounded, this method will never throw
804     * {@link IllegalStateException}.
805 jsr166 1.3 *
806     * <p>This method is equivalent to {@link #add}.
807 jsr166 1.1 *
808 jsr166 1.19 * @throws NullPointerException if the specified element is null
809 jsr166 1.1 */
810     public void addLast(E e) {
811     linkLast(e);
812     }
813    
814     /**
815     * Inserts the specified element at the front of this deque.
816 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
817 jsr166 1.1 *
818 jsr166 1.19 * @return {@code true} (as specified by {@link Deque#offerFirst})
819     * @throws NullPointerException if the specified element is null
820 jsr166 1.1 */
821     public boolean offerFirst(E e) {
822     linkFirst(e);
823     return true;
824     }
825    
826     /**
827     * Inserts the specified element at the end of this deque.
828 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
829 jsr166 1.1 *
830     * <p>This method is equivalent to {@link #add}.
831     *
832 jsr166 1.19 * @return {@code true} (as specified by {@link Deque#offerLast})
833     * @throws NullPointerException if the specified element is null
834 jsr166 1.1 */
835     public boolean offerLast(E e) {
836     linkLast(e);
837     return true;
838     }
839    
840     public E peekFirst() {
841 jsr166 1.90 restart: for (;;) {
842 jsr166 1.91 E item;
843     Node<E> first = first(), p = first;
844     while ((item = p.item) == null) {
845     if (p == (p = p.next)) continue restart;
846     if (p == null)
847     break;
848 jsr166 1.90 }
849 jsr166 1.91 // recheck for linearizability
850     if (first.prev != null) continue restart;
851     return item;
852 jsr166 1.1 }
853     }
854    
855     public E peekLast() {
856 jsr166 1.90 restart: for (;;) {
857 jsr166 1.91 E item;
858     Node<E> last = last(), p = last;
859     while ((item = p.item) == null) {
860     if (p == (p = p.prev)) continue restart;
861     if (p == null)
862     break;
863 jsr166 1.90 }
864 jsr166 1.91 // recheck for linearizability
865     if (last.next != null) continue restart;
866     return item;
867 jsr166 1.1 }
868     }
869    
870     /**
871     * @throws NoSuchElementException {@inheritDoc}
872     */
873     public E getFirst() {
874     return screenNullResult(peekFirst());
875     }
876    
877     /**
878     * @throws NoSuchElementException {@inheritDoc}
879     */
880 jsr166 1.21 public E getLast() {
881 jsr166 1.1 return screenNullResult(peekLast());
882     }
883    
884     public E pollFirst() {
885 jsr166 1.90 restart: for (;;) {
886     for (Node<E> first = first(), p = first;;) {
887     final E item;
888     if ((item = p.item) != null) {
889     // recheck for linearizability
890     if (first.prev != null) continue restart;
891     if (ITEM.compareAndSet(p, item, null)) {
892     unlink(p);
893     return item;
894     }
895     }
896 jsr166 1.91 if (p == (p = p.next)) continue restart;
897     if (p == null) {
898     if (first.prev != null) continue restart;
899 jsr166 1.90 return null;
900 jsr166 1.91 }
901 jsr166 1.1 }
902     }
903     }
904    
905     public E pollLast() {
906 jsr166 1.90 restart: for (;;) {
907     for (Node<E> last = last(), p = last;;) {
908     final E item;
909     if ((item = p.item) != null) {
910     // recheck for linearizability
911     if (last.next != null) continue restart;
912     if (ITEM.compareAndSet(p, item, null)) {
913     unlink(p);
914     return item;
915     }
916     }
917 jsr166 1.91 if (p == (p = p.prev)) continue restart;
918     if (p == null) {
919     if (last.next != null) continue restart;
920 jsr166 1.90 return null;
921 jsr166 1.91 }
922 jsr166 1.1 }
923     }
924     }
925    
926     /**
927     * @throws NoSuchElementException {@inheritDoc}
928     */
929     public E removeFirst() {
930     return screenNullResult(pollFirst());
931     }
932    
933     /**
934     * @throws NoSuchElementException {@inheritDoc}
935     */
936     public E removeLast() {
937     return screenNullResult(pollLast());
938     }
939    
940     // *** Queue and stack methods ***
941    
942     /**
943     * Inserts the specified element at the tail of this deque.
944 jsr166 1.19 * As the deque is unbounded, this method will never return {@code false}.
945 jsr166 1.1 *
946     * @return {@code true} (as specified by {@link Queue#offer})
947     * @throws NullPointerException if the specified element is null
948     */
949     public boolean offer(E e) {
950     return offerLast(e);
951     }
952    
953     /**
954     * Inserts the specified element at the tail of this deque.
955 jsr166 1.19 * As the deque is unbounded, this method will never throw
956     * {@link IllegalStateException} or return {@code false}.
957 jsr166 1.1 *
958     * @return {@code true} (as specified by {@link Collection#add})
959     * @throws NullPointerException if the specified element is null
960     */
961     public boolean add(E e) {
962     return offerLast(e);
963     }
964    
965     public E poll() { return pollFirst(); }
966 jsr166 1.45 public E peek() { return peekFirst(); }
967    
968     /**
969     * @throws NoSuchElementException {@inheritDoc}
970     */
971 jsr166 1.1 public E remove() { return removeFirst(); }
972 jsr166 1.45
973     /**
974     * @throws NoSuchElementException {@inheritDoc}
975     */
976     public E pop() { return removeFirst(); }
977    
978     /**
979     * @throws NoSuchElementException {@inheritDoc}
980     */
981 jsr166 1.1 public E element() { return getFirst(); }
982 jsr166 1.45
983     /**
984     * @throws NullPointerException {@inheritDoc}
985     */
986 jsr166 1.1 public void push(E e) { addFirst(e); }
987    
988     /**
989 jsr166 1.54 * Removes the first occurrence of the specified element from this deque.
990 jsr166 1.1 * If the deque does not contain the element, it is unchanged.
991 jsr166 1.54 * More formally, removes the first element {@code e} such that
992     * {@code o.equals(e)} (if such an element exists).
993     * Returns {@code true} if this deque contained the specified element
994     * (or equivalently, if this deque changed as a result of the call).
995 jsr166 1.1 *
996     * @param o element to be removed from this deque, if present
997     * @return {@code true} if the deque contained the specified element
998 jsr166 1.19 * @throws NullPointerException if the specified element is null
999 jsr166 1.1 */
1000     public boolean removeFirstOccurrence(Object o) {
1001 jsr166 1.64 Objects.requireNonNull(o);
1002 jsr166 1.1 for (Node<E> p = first(); p != null; p = succ(p)) {
1003 jsr166 1.77 final E item;
1004     if ((item = p.item) != null
1005     && o.equals(item)
1006     && ITEM.compareAndSet(p, item, null)) {
1007 jsr166 1.1 unlink(p);
1008     return true;
1009     }
1010     }
1011     return false;
1012     }
1013    
1014     /**
1015 jsr166 1.54 * Removes the last occurrence of the specified element from this deque.
1016 jsr166 1.1 * If the deque does not contain the element, it is unchanged.
1017 jsr166 1.54 * More formally, removes the last element {@code e} such that
1018     * {@code o.equals(e)} (if such an element exists).
1019     * Returns {@code true} if this deque contained the specified element
1020     * (or equivalently, if this deque changed as a result of the call).
1021 jsr166 1.1 *
1022     * @param o element to be removed from this deque, if present
1023     * @return {@code true} if the deque contained the specified element
1024 jsr166 1.19 * @throws NullPointerException if the specified element is null
1025 jsr166 1.1 */
1026     public boolean removeLastOccurrence(Object o) {
1027 jsr166 1.64 Objects.requireNonNull(o);
1028 jsr166 1.1 for (Node<E> p = last(); p != null; p = pred(p)) {
1029 jsr166 1.77 final E item;
1030     if ((item = p.item) != null
1031     && o.equals(item)
1032     && ITEM.compareAndSet(p, item, null)) {
1033 jsr166 1.1 unlink(p);
1034     return true;
1035     }
1036     }
1037     return false;
1038     }
1039    
1040     /**
1041 jsr166 1.54 * Returns {@code true} if this deque contains the specified element.
1042     * More formally, returns {@code true} if and only if this deque contains
1043     * at least one element {@code e} such that {@code o.equals(e)}.
1044 jsr166 1.1 *
1045     * @param o element whose presence in this deque is to be tested
1046     * @return {@code true} if this deque contains the specified element
1047     */
1048     public boolean contains(Object o) {
1049 jsr166 1.52 if (o != null) {
1050     for (Node<E> p = first(); p != null; p = succ(p)) {
1051 jsr166 1.78 final E item;
1052     if ((item = p.item) != null && o.equals(item))
1053 jsr166 1.52 return true;
1054     }
1055 jsr166 1.1 }
1056     return false;
1057     }
1058    
1059     /**
1060     * Returns {@code true} if this collection contains no elements.
1061     *
1062     * @return {@code true} if this collection contains no elements
1063     */
1064     public boolean isEmpty() {
1065     return peekFirst() == null;
1066     }
1067    
1068     /**
1069     * Returns the number of elements in this deque. If this deque
1070     * contains more than {@code Integer.MAX_VALUE} elements, it
1071     * returns {@code Integer.MAX_VALUE}.
1072     *
1073     * <p>Beware that, unlike in most collections, this method is
1074     * <em>NOT</em> a constant-time operation. Because of the
1075     * asynchronous nature of these deques, determining the current
1076     * number of elements requires traversing them all to count them.
1077     * Additionally, it is possible for the size to change during
1078     * execution of this method, in which case the returned result
1079     * will be inaccurate. Thus, this method is typically not very
1080     * useful in concurrent applications.
1081     *
1082     * @return the number of elements in this deque
1083     */
1084     public int size() {
1085 jsr166 1.90 restart: for (;;) {
1086 jsr166 1.51 int count = 0;
1087     for (Node<E> p = first(); p != null;) {
1088     if (p.item != null)
1089     if (++count == Integer.MAX_VALUE)
1090     break; // @see Collection.size()
1091 jsr166 1.91 if (p == (p = p.next))
1092 jsr166 1.90 continue restart;
1093 jsr166 1.51 }
1094     return count;
1095     }
1096 jsr166 1.1 }
1097    
1098     /**
1099 jsr166 1.54 * Removes the first occurrence of the specified element from this deque.
1100 jsr166 1.1 * If the deque does not contain the element, it is unchanged.
1101 jsr166 1.54 * More formally, removes the first element {@code e} such that
1102     * {@code o.equals(e)} (if such an element exists).
1103     * Returns {@code true} if this deque contained the specified element
1104     * (or equivalently, if this deque changed as a result of the call).
1105     *
1106     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1107 jsr166 1.1 *
1108     * @param o element to be removed from this deque, if present
1109     * @return {@code true} if the deque contained the specified element
1110 jsr166 1.19 * @throws NullPointerException if the specified element is null
1111 jsr166 1.1 */
1112     public boolean remove(Object o) {
1113     return removeFirstOccurrence(o);
1114     }
1115    
1116     /**
1117     * Appends all of the elements in the specified collection to the end of
1118     * this deque, in the order that they are returned by the specified
1119 jsr166 1.3 * collection's iterator. Attempts to {@code addAll} of a deque to
1120     * itself result in {@code IllegalArgumentException}.
1121 jsr166 1.1 *
1122     * @param c the elements to be inserted into this deque
1123     * @return {@code true} if this deque changed as a result of the call
1124 jsr166 1.3 * @throws NullPointerException if the specified collection or any
1125     * of its elements are null
1126     * @throws IllegalArgumentException if the collection is this deque
1127 jsr166 1.1 */
1128     public boolean addAll(Collection<? extends E> c) {
1129 jsr166 1.3 if (c == this)
1130     // As historically specified in AbstractQueue#addAll
1131     throw new IllegalArgumentException();
1132    
1133     // Copy c into a private chain of Nodes
1134 jsr166 1.14 Node<E> beginningOfTheEnd = null, last = null;
1135 jsr166 1.3 for (E e : c) {
1136 dl 1.68 Node<E> newNode = newNode(Objects.requireNonNull(e));
1137 jsr166 1.14 if (beginningOfTheEnd == null)
1138     beginningOfTheEnd = last = newNode;
1139 jsr166 1.3 else {
1140 jsr166 1.71 NEXT.set(last, newNode);
1141     PREV.set(newNode, last);
1142 jsr166 1.3 last = newNode;
1143     }
1144     }
1145 jsr166 1.14 if (beginningOfTheEnd == null)
1146 jsr166 1.1 return false;
1147 jsr166 1.3
1148 jsr166 1.14 // Atomically append the chain at the tail of this collection
1149 jsr166 1.7 restartFromTail:
1150 jsr166 1.15 for (;;)
1151     for (Node<E> t = tail, p = t, q;;) {
1152     if ((q = p.next) != null &&
1153     (q = (p = q).next) != null)
1154     // Check for tail updates every other hop.
1155     // If p == q, we are sure to follow tail instead.
1156     p = (t != (t = tail)) ? t : q;
1157     else if (p.prev == p) // NEXT_TERMINATOR
1158     continue restartFromTail;
1159     else {
1160 jsr166 1.3 // p is last node
1161 jsr166 1.71 PREV.set(beginningOfTheEnd, p); // CAS piggyback
1162 dl 1.68 if (NEXT.compareAndSet(p, null, beginningOfTheEnd)) {
1163 jsr166 1.14 // Successful CAS is the linearization point
1164 jsr166 1.20 // for all elements to be added to this deque.
1165 jsr166 1.75 if (!TAIL.weakCompareAndSet(this, t, last)) {
1166 jsr166 1.3 // Try a little harder to update tail,
1167     // since we may be adding many elements.
1168     t = tail;
1169     if (last.next == null)
1170 jsr166 1.75 TAIL.weakCompareAndSet(this, t, last);
1171 jsr166 1.3 }
1172     return true;
1173     }
1174 jsr166 1.11 // Lost CAS race to another thread; re-read next
1175 jsr166 1.3 }
1176     }
1177 jsr166 1.1 }
1178    
1179     /**
1180     * Removes all of the elements from this deque.
1181     */
1182     public void clear() {
1183     while (pollFirst() != null)
1184     ;
1185     }
1186    
1187 jsr166 1.63 public String toString() {
1188     String[] a = null;
1189 jsr166 1.90 restart: for (;;) {
1190 jsr166 1.63 int charLength = 0;
1191     int size = 0;
1192     for (Node<E> p = first(); p != null;) {
1193 jsr166 1.78 final E item;
1194     if ((item = p.item) != null) {
1195 jsr166 1.63 if (a == null)
1196     a = new String[4];
1197     else if (size == a.length)
1198     a = Arrays.copyOf(a, 2 * size);
1199     String s = item.toString();
1200     a[size++] = s;
1201     charLength += s.length();
1202     }
1203     if (p == (p = p.next))
1204 jsr166 1.90 continue restart;
1205 jsr166 1.63 }
1206    
1207     if (size == 0)
1208     return "[]";
1209    
1210 jsr166 1.65 return Helpers.toString(a, size, charLength);
1211 jsr166 1.63 }
1212     }
1213    
1214     private Object[] toArrayInternal(Object[] a) {
1215     Object[] x = a;
1216 jsr166 1.90 restart: for (;;) {
1217 jsr166 1.63 int size = 0;
1218     for (Node<E> p = first(); p != null;) {
1219 jsr166 1.78 final E item;
1220     if ((item = p.item) != null) {
1221 jsr166 1.63 if (x == null)
1222     x = new Object[4];
1223     else if (size == x.length)
1224     x = Arrays.copyOf(x, 2 * (size + 4));
1225     x[size++] = item;
1226     }
1227     if (p == (p = p.next))
1228 jsr166 1.90 continue restart;
1229 jsr166 1.63 }
1230     if (x == null)
1231     return new Object[0];
1232     else if (a != null && size <= a.length) {
1233     if (a != x)
1234     System.arraycopy(x, 0, a, 0, size);
1235     if (size < a.length)
1236     a[size] = null;
1237     return a;
1238     }
1239     return (size == x.length) ? x : Arrays.copyOf(x, size);
1240     }
1241     }
1242    
1243 jsr166 1.1 /**
1244     * Returns an array containing all of the elements in this deque, in
1245     * proper sequence (from first to last element).
1246     *
1247     * <p>The returned array will be "safe" in that no references to it are
1248     * maintained by this deque. (In other words, this method must allocate
1249     * a new array). The caller is thus free to modify the returned array.
1250     *
1251     * <p>This method acts as bridge between array-based and collection-based
1252     * APIs.
1253     *
1254     * @return an array containing all of the elements in this deque
1255     */
1256     public Object[] toArray() {
1257 jsr166 1.63 return toArrayInternal(null);
1258 jsr166 1.1 }
1259    
1260     /**
1261     * Returns an array containing all of the elements in this deque,
1262     * in proper sequence (from first to last element); the runtime
1263     * type of the returned array is that of the specified array. If
1264     * the deque fits in the specified array, it is returned therein.
1265     * Otherwise, a new array is allocated with the runtime type of
1266     * the specified array and the size of this deque.
1267     *
1268     * <p>If this deque fits in the specified array with room to spare
1269     * (i.e., the array has more elements than this deque), the element in
1270     * the array immediately following the end of the deque is set to
1271     * {@code null}.
1272     *
1273 jsr166 1.3 * <p>Like the {@link #toArray()} method, this method acts as
1274     * bridge between array-based and collection-based APIs. Further,
1275     * this method allows precise control over the runtime type of the
1276     * output array, and may, under certain circumstances, be used to
1277     * save allocation costs.
1278 jsr166 1.1 *
1279     * <p>Suppose {@code x} is a deque known to contain only strings.
1280     * The following code can be used to dump the deque into a newly
1281     * allocated array of {@code String}:
1282     *
1283 jsr166 1.61 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1284 jsr166 1.1 *
1285     * Note that {@code toArray(new Object[0])} is identical in function to
1286     * {@code toArray()}.
1287     *
1288     * @param a the array into which the elements of the deque are to
1289     * be stored, if it is big enough; otherwise, a new array of the
1290     * same runtime type is allocated for this purpose
1291     * @return an array containing all of the elements in this deque
1292     * @throws ArrayStoreException if the runtime type of the specified array
1293     * is not a supertype of the runtime type of every element in
1294     * this deque
1295     * @throws NullPointerException if the specified array is null
1296     */
1297 jsr166 1.63 @SuppressWarnings("unchecked")
1298 jsr166 1.1 public <T> T[] toArray(T[] a) {
1299 jsr166 1.63 if (a == null) throw new NullPointerException();
1300     return (T[]) toArrayInternal(a);
1301 jsr166 1.1 }
1302    
1303     /**
1304     * Returns an iterator over the elements in this deque in proper sequence.
1305     * The elements will be returned in order from first (head) to last (tail).
1306     *
1307 jsr166 1.50 * <p>The returned iterator is
1308     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1309 jsr166 1.1 *
1310     * @return an iterator over the elements in this deque in proper sequence
1311     */
1312     public Iterator<E> iterator() {
1313     return new Itr();
1314     }
1315    
1316     /**
1317     * Returns an iterator over the elements in this deque in reverse
1318     * sequential order. The elements will be returned in order from
1319     * last (tail) to first (head).
1320     *
1321 jsr166 1.50 * <p>The returned iterator is
1322     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1323 jsr166 1.3 *
1324     * @return an iterator over the elements in this deque in reverse order
1325 jsr166 1.1 */
1326     public Iterator<E> descendingIterator() {
1327     return new DescendingItr();
1328     }
1329    
1330     private abstract class AbstractItr implements Iterator<E> {
1331     /**
1332     * Next node to return item for.
1333     */
1334     private Node<E> nextNode;
1335    
1336     /**
1337     * nextItem holds on to item fields because once we claim
1338     * that an element exists in hasNext(), we must return it in
1339     * the following next() call even if it was in the process of
1340     * being removed when hasNext() was called.
1341     */
1342     private E nextItem;
1343    
1344     /**
1345     * Node returned by most recent call to next. Needed by remove.
1346     * Reset to null if this element is deleted by a call to remove.
1347     */
1348     private Node<E> lastRet;
1349    
1350     abstract Node<E> startNode();
1351     abstract Node<E> nextNode(Node<E> p);
1352    
1353     AbstractItr() {
1354     advance();
1355     }
1356    
1357     /**
1358     * Sets nextNode and nextItem to next valid node, or to null
1359     * if no such.
1360     */
1361     private void advance() {
1362     lastRet = nextNode;
1363    
1364     Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1365     for (;; p = nextNode(p)) {
1366     if (p == null) {
1367 jsr166 1.56 // might be at active end or TERMINATOR node; both are OK
1368 jsr166 1.1 nextNode = null;
1369     nextItem = null;
1370     break;
1371     }
1372 jsr166 1.78 final E item;
1373     if ((item = p.item) != null) {
1374 jsr166 1.1 nextNode = p;
1375     nextItem = item;
1376     break;
1377     }
1378     }
1379     }
1380    
1381     public boolean hasNext() {
1382     return nextItem != null;
1383     }
1384    
1385     public E next() {
1386     E item = nextItem;
1387     if (item == null) throw new NoSuchElementException();
1388     advance();
1389     return item;
1390     }
1391    
1392     public void remove() {
1393     Node<E> l = lastRet;
1394     if (l == null) throw new IllegalStateException();
1395     l.item = null;
1396     unlink(l);
1397     lastRet = null;
1398     }
1399     }
1400    
1401     /** Forward iterator */
1402     private class Itr extends AbstractItr {
1403 jsr166 1.80 Itr() {} // prevent access constructor creation
1404 jsr166 1.1 Node<E> startNode() { return first(); }
1405     Node<E> nextNode(Node<E> p) { return succ(p); }
1406     }
1407    
1408     /** Descending iterator */
1409     private class DescendingItr extends AbstractItr {
1410 jsr166 1.80 DescendingItr() {} // prevent access constructor creation
1411 jsr166 1.1 Node<E> startNode() { return last(); }
1412     Node<E> nextNode(Node<E> p) { return pred(p); }
1413     }
1414    
1415 dl 1.39 /** A customized variant of Spliterators.IteratorSpliterator */
1416 jsr166 1.76 final class CLDSpliterator implements Spliterator<E> {
1417 dl 1.42 static final int MAX_BATCH = 1 << 25; // max batch array size;
1418 dl 1.35 Node<E> current; // current node; null until initialized
1419     int batch; // batch size for splits
1420     boolean exhausted; // true when no more nodes
1421    
1422     public Spliterator<E> trySplit() {
1423 jsr166 1.85 Node<E> p, q;
1424     if ((p = current()) == null || (q = p.next) == null)
1425     return null;
1426     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1427     Object[] a = null;
1428     do {
1429     final E e;
1430 jsr166 1.88 if ((e = p.item) != null) {
1431     if (a == null)
1432     a = new Object[n];
1433     a[i++] = e;
1434     }
1435 jsr166 1.85 if (p == (p = q))
1436     p = first();
1437     } while (p != null && (q = p.next) != null && i < n);
1438     setCurrent(p);
1439     return (i == 0) ? null :
1440     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1441     Spliterator.NONNULL |
1442     Spliterator.CONCURRENT));
1443 dl 1.35 }
1444    
1445 dl 1.43 public void forEachRemaining(Consumer<? super E> action) {
1446 jsr166 1.83 Objects.requireNonNull(action);
1447 dl 1.35 Node<E> p;
1448 jsr166 1.85 if ((p = current()) != null) {
1449 jsr166 1.82 current = null;
1450 dl 1.35 exhausted = true;
1451     do {
1452 jsr166 1.85 final E e;
1453     if ((e = p.item) != null)
1454     action.accept(e);
1455 dl 1.35 if (p == (p = p.next))
1456 jsr166 1.76 p = first();
1457 dl 1.35 } while (p != null);
1458     }
1459     }
1460    
1461     public boolean tryAdvance(Consumer<? super E> action) {
1462 jsr166 1.83 Objects.requireNonNull(action);
1463 dl 1.35 Node<E> p;
1464 jsr166 1.85 if ((p = current()) != null) {
1465 dl 1.35 E e;
1466     do {
1467     e = p.item;
1468     if (p == (p = p.next))
1469 jsr166 1.76 p = first();
1470 dl 1.35 } while (e == null && p != null);
1471 jsr166 1.85 setCurrent(p);
1472 dl 1.35 if (e != null) {
1473     action.accept(e);
1474     return true;
1475     }
1476     }
1477     return false;
1478     }
1479    
1480 jsr166 1.85 private void setCurrent(Node<E> p) {
1481     if ((current = p) == null)
1482     exhausted = true;
1483     }
1484    
1485     private Node<E> current() {
1486     Node<E> p;
1487     if ((p = current) == null && !exhausted)
1488     setCurrent(p = first());
1489     return p;
1490     }
1491    
1492 dl 1.36 public long estimateSize() { return Long.MAX_VALUE; }
1493    
1494 dl 1.35 public int characteristics() {
1495 jsr166 1.81 return (Spliterator.ORDERED |
1496     Spliterator.NONNULL |
1497     Spliterator.CONCURRENT);
1498 dl 1.35 }
1499     }
1500    
1501 jsr166 1.49 /**
1502     * Returns a {@link Spliterator} over the elements in this deque.
1503     *
1504 jsr166 1.50 * <p>The returned spliterator is
1505     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1506     *
1507 jsr166 1.49 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1508     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1509     *
1510     * @implNote
1511     * The {@code Spliterator} implements {@code trySplit} to permit limited
1512     * parallelism.
1513     *
1514     * @return a {@code Spliterator} over the elements in this deque
1515     * @since 1.8
1516     */
1517 dl 1.38 public Spliterator<E> spliterator() {
1518 jsr166 1.76 return new CLDSpliterator();
1519 dl 1.34 }
1520    
1521 jsr166 1.1 /**
1522 jsr166 1.31 * Saves this deque to a stream (that is, serializes it).
1523 jsr166 1.1 *
1524 jsr166 1.47 * @param s the stream
1525 jsr166 1.48 * @throws java.io.IOException if an I/O error occurs
1526 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1527     * the proper order, followed by a null
1528     */
1529     private void writeObject(java.io.ObjectOutputStream s)
1530     throws java.io.IOException {
1531    
1532     // Write out any hidden stuff
1533     s.defaultWriteObject();
1534    
1535     // Write out all elements in the proper order.
1536     for (Node<E> p = first(); p != null; p = succ(p)) {
1537 jsr166 1.78 final E item;
1538     if ((item = p.item) != null)
1539 jsr166 1.1 s.writeObject(item);
1540     }
1541    
1542     // Use trailing null as sentinel
1543     s.writeObject(null);
1544     }
1545    
1546     /**
1547 jsr166 1.31 * Reconstitutes this deque from a stream (that is, deserializes it).
1548 jsr166 1.47 * @param s the stream
1549 jsr166 1.48 * @throws ClassNotFoundException if the class of a serialized object
1550     * could not be found
1551     * @throws java.io.IOException if an I/O error occurs
1552 jsr166 1.1 */
1553     private void readObject(java.io.ObjectInputStream s)
1554     throws java.io.IOException, ClassNotFoundException {
1555     s.defaultReadObject();
1556 jsr166 1.3
1557     // Read in elements until trailing null sentinel found
1558     Node<E> h = null, t = null;
1559 jsr166 1.53 for (Object item; (item = s.readObject()) != null; ) {
1560 jsr166 1.1 @SuppressWarnings("unchecked")
1561 dl 1.68 Node<E> newNode = newNode((E) item);
1562 jsr166 1.3 if (h == null)
1563     h = t = newNode;
1564     else {
1565 jsr166 1.71 NEXT.set(t, newNode);
1566     PREV.set(newNode, t);
1567 jsr166 1.3 t = newNode;
1568     }
1569 jsr166 1.1 }
1570 jsr166 1.9 initHeadTail(h, t);
1571 jsr166 1.1 }
1572    
1573 jsr166 1.77 /**
1574     * @throws NullPointerException {@inheritDoc}
1575     */
1576     public boolean removeIf(Predicate<? super E> filter) {
1577     Objects.requireNonNull(filter);
1578     return bulkRemove(filter);
1579     }
1580    
1581     /**
1582     * @throws NullPointerException {@inheritDoc}
1583     */
1584     public boolean removeAll(Collection<?> c) {
1585     Objects.requireNonNull(c);
1586     return bulkRemove(e -> c.contains(e));
1587     }
1588    
1589     /**
1590     * @throws NullPointerException {@inheritDoc}
1591     */
1592     public boolean retainAll(Collection<?> c) {
1593     Objects.requireNonNull(c);
1594     return bulkRemove(e -> !c.contains(e));
1595     }
1596    
1597     /** Implementation of bulk remove methods. */
1598     private boolean bulkRemove(Predicate<? super E> filter) {
1599     boolean removed = false;
1600     for (Node<E> p = first(), succ; p != null; p = succ) {
1601     succ = succ(p);
1602     final E item;
1603     if ((item = p.item) != null
1604     && filter.test(item)
1605     && ITEM.compareAndSet(p, item, null)) {
1606     unlink(p);
1607     removed = true;
1608     }
1609     }
1610     return removed;
1611     }
1612    
1613 jsr166 1.79 /**
1614     * @throws NullPointerException {@inheritDoc}
1615     */
1616 jsr166 1.77 public void forEach(Consumer<? super E> action) {
1617     Objects.requireNonNull(action);
1618     E item;
1619     for (Node<E> p = first(); p != null; p = succ(p))
1620     if ((item = p.item) != null)
1621     action.accept(item);
1622     }
1623    
1624 dl 1.68 // VarHandle mechanics
1625     private static final VarHandle HEAD;
1626     private static final VarHandle TAIL;
1627     private static final VarHandle PREV;
1628 jsr166 1.70 private static final VarHandle NEXT;
1629 dl 1.68 private static final VarHandle ITEM;
1630 dl 1.23 static {
1631 jsr166 1.70 PREV_TERMINATOR = new Node<Object>();
1632     PREV_TERMINATOR.next = PREV_TERMINATOR;
1633     NEXT_TERMINATOR = new Node<Object>();
1634     NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1635 jsr166 1.1 try {
1636 dl 1.68 MethodHandles.Lookup l = MethodHandles.lookup();
1637     HEAD = l.findVarHandle(ConcurrentLinkedDeque.class, "head",
1638     Node.class);
1639     TAIL = l.findVarHandle(ConcurrentLinkedDeque.class, "tail",
1640     Node.class);
1641     PREV = l.findVarHandle(Node.class, "prev", Node.class);
1642     NEXT = l.findVarHandle(Node.class, "next", Node.class);
1643     ITEM = l.findVarHandle(Node.class, "item", Object.class);
1644 jsr166 1.59 } catch (ReflectiveOperationException e) {
1645 dl 1.23 throw new Error(e);
1646 jsr166 1.1 }
1647     }
1648     }