ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.25
Committed: Tue Mar 15 19:47:03 2011 UTC (13 years, 2 months ago) by jsr166
Branch: MAIN
Changes since 1.24: +1 -1 lines
Log Message:
Update Creative Commons license URL in legal notices

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractCollection;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Deque;
13 import java.util.Iterator;
14 import java.util.NoSuchElementException;
15 import java.util.Queue;
16
17 /**
18 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
19 * Concurrent insertion, removal, and access operations execute safely
20 * across multiple threads.
21 * A {@code ConcurrentLinkedDeque} is an appropriate choice when
22 * many threads will share access to a common collection.
23 * Like most other concurrent collection implementations, this class
24 * does not permit the use of {@code null} elements.
25 *
26 * <p>Iterators are <i>weakly consistent</i>, returning elements
27 * reflecting the state of the deque at some point at or since the
28 * creation of the iterator. They do <em>not</em> throw {@link
29 * java.util.ConcurrentModificationException
30 * ConcurrentModificationException}, and may proceed concurrently with
31 * other operations.
32 *
33 * <p>Beware that, unlike in most collections, the {@code size}
34 * method is <em>NOT</em> a constant-time operation. Because of the
35 * asynchronous nature of these deques, determining the current number
36 * of elements requires a traversal of the elements.
37 *
38 * <p>This class and its iterator implement all of the <em>optional</em>
39 * methods of the {@link Deque} and {@link Iterator} interfaces.
40 *
41 * <p>Memory consistency effects: As with other concurrent collections,
42 * actions in a thread prior to placing an object into a
43 * {@code ConcurrentLinkedDeque}
44 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
45 * actions subsequent to the access or removal of that element from
46 * the {@code ConcurrentLinkedDeque} in another thread.
47 *
48 * <p>This class is a member of the
49 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
50 * Java Collections Framework</a>.
51 *
52 * @since 1.7
53 * @author Doug Lea
54 * @author Martin Buchholz
55 * @param <E> the type of elements held in this collection
56 */
57
58 public class ConcurrentLinkedDeque<E>
59 extends AbstractCollection<E>
60 implements Deque<E>, java.io.Serializable {
61
62 /*
63 * This is an implementation of a concurrent lock-free deque
64 * supporting interior removes but not interior insertions, as
65 * required to support the entire Deque interface.
66 *
67 * We extend the techniques developed for ConcurrentLinkedQueue and
68 * LinkedTransferQueue (see the internal docs for those classes).
69 * Understanding the ConcurrentLinkedQueue implementation is a
70 * prerequisite for understanding the implementation of this class.
71 *
72 * The data structure is a symmetrical doubly-linked "GC-robust"
73 * linked list of nodes. We minimize the number of volatile writes
74 * using two techniques: advancing multiple hops with a single CAS
75 * and mixing volatile and non-volatile writes of the same memory
76 * locations.
77 *
78 * A node contains the expected E ("item") and links to predecessor
79 * ("prev") and successor ("next") nodes:
80 *
81 * class Node<E> { volatile Node<E> prev, next; volatile E item; }
82 *
83 * A node p is considered "live" if it contains a non-null item
84 * (p.item != null). When an item is CASed to null, the item is
85 * atomically logically deleted from the collection.
86 *
87 * At any time, there is precisely one "first" node with a null
88 * prev reference that terminates any chain of prev references
89 * starting at a live node. Similarly there is precisely one
90 * "last" node terminating any chain of next references starting at
91 * a live node. The "first" and "last" nodes may or may not be live.
92 * The "first" and "last" nodes are always mutually reachable.
93 *
94 * A new element is added atomically by CASing the null prev or
95 * next reference in the first or last node to a fresh node
96 * containing the element. The element's node atomically becomes
97 * "live" at that point.
98 *
99 * A node is considered "active" if it is a live node, or the
100 * first or last node. Active nodes cannot be unlinked.
101 *
102 * A "self-link" is a next or prev reference that is the same node:
103 * p.prev == p or p.next == p
104 * Self-links are used in the node unlinking process. Active nodes
105 * never have self-links.
106 *
107 * A node p is active if and only if:
108 *
109 * p.item != null ||
110 * (p.prev == null && p.next != p) ||
111 * (p.next == null && p.prev != p)
112 *
113 * The deque object has two node references, "head" and "tail".
114 * The head and tail are only approximations to the first and last
115 * nodes of the deque. The first node can always be found by
116 * following prev pointers from head; likewise for tail. However,
117 * it is permissible for head and tail to be referring to deleted
118 * nodes that have been unlinked and so may not be reachable from
119 * any live node.
120 *
121 * There are 3 stages of node deletion;
122 * "logical deletion", "unlinking", and "gc-unlinking".
123 *
124 * 1. "logical deletion" by CASing item to null atomically removes
125 * the element from the collection, and makes the containing node
126 * eligible for unlinking.
127 *
128 * 2. "unlinking" makes a deleted node unreachable from active
129 * nodes, and thus eventually reclaimable by GC. Unlinked nodes
130 * may remain reachable indefinitely from an iterator.
131 *
132 * Physical node unlinking is merely an optimization (albeit a
133 * critical one), and so can be performed at our convenience. At
134 * any time, the set of live nodes maintained by prev and next
135 * links are identical, that is, the live nodes found via next
136 * links from the first node is equal to the elements found via
137 * prev links from the last node. However, this is not true for
138 * nodes that have already been logically deleted - such nodes may
139 * be reachable in one direction only.
140 *
141 * 3. "gc-unlinking" takes unlinking further by making active
142 * nodes unreachable from deleted nodes, making it easier for the
143 * GC to reclaim future deleted nodes. This step makes the data
144 * structure "gc-robust", as first described in detail by Boehm
145 * (http://portal.acm.org/citation.cfm?doid=503272.503282).
146 *
147 * GC-unlinked nodes may remain reachable indefinitely from an
148 * iterator, but unlike unlinked nodes, are never reachable from
149 * head or tail.
150 *
151 * Making the data structure GC-robust will eliminate the risk of
152 * unbounded memory retention with conservative GCs and is likely
153 * to improve performance with generational GCs.
154 *
155 * When a node is dequeued at either end, e.g. via poll(), we would
156 * like to break any references from the node to active nodes. We
157 * develop further the use of self-links that was very effective in
158 * other concurrent collection classes. The idea is to replace
159 * prev and next pointers with special values that are interpreted
160 * to mean off-the-list-at-one-end. These are approximations, but
161 * good enough to preserve the properties we want in our
162 * traversals, e.g. we guarantee that a traversal will never visit
163 * the same element twice, but we don't guarantee whether a
164 * traversal that runs out of elements will be able to see more
165 * elements later after enqueues at that end. Doing gc-unlinking
166 * safely is particularly tricky, since any node can be in use
167 * indefinitely (for example by an iterator). We must ensure that
168 * the nodes pointed at by head/tail never get gc-unlinked, since
169 * head/tail are needed to get "back on track" by other nodes that
170 * are gc-unlinked. gc-unlinking accounts for much of the
171 * implementation complexity.
172 *
173 * Since neither unlinking nor gc-unlinking are necessary for
174 * correctness, there are many implementation choices regarding
175 * frequency (eagerness) of these operations. Since volatile
176 * reads are likely to be much cheaper than CASes, saving CASes by
177 * unlinking multiple adjacent nodes at a time may be a win.
178 * gc-unlinking can be performed rarely and still be effective,
179 * since it is most important that long chains of deleted nodes
180 * are occasionally broken.
181 *
182 * The actual representation we use is that p.next == p means to
183 * goto the first node (which in turn is reached by following prev
184 * pointers from head), and p.next == null && p.prev == p means
185 * that the iteration is at an end and that p is a (static final)
186 * dummy node, NEXT_TERMINATOR, and not the last active node.
187 * Finishing the iteration when encountering such a TERMINATOR is
188 * good enough for read-only traversals, so such traversals can use
189 * p.next == null as the termination condition. When we need to
190 * find the last (active) node, for enqueueing a new node, we need
191 * to check whether we have reached a TERMINATOR node; if so,
192 * restart traversal from tail.
193 *
194 * The implementation is completely directionally symmetrical,
195 * except that most public methods that iterate through the list
196 * follow next pointers ("forward" direction).
197 *
198 * We believe (without full proof) that all single-element deque
199 * operations (e.g., addFirst, peekLast, pollLast) are linearizable
200 * (see Herlihy and Shavit's book). However, some combinations of
201 * operations are known not to be linearizable. In particular,
202 * when an addFirst(A) is racing with pollFirst() removing B, it is
203 * possible for an observer iterating over the elements to observe
204 * A B C and subsequently observe A C, even though no interior
205 * removes are ever performed. Nevertheless, iterators behave
206 * reasonably, providing the "weakly consistent" guarantees.
207 *
208 * Empirically, microbenchmarks suggest that this class adds about
209 * 40% overhead relative to ConcurrentLinkedQueue, which feels as
210 * good as we can hope for.
211 */
212
213 private static final long serialVersionUID = 876323262645176354L;
214
215 /**
216 * A node from which the first node on list (that is, the unique node p
217 * with p.prev == null && p.next != p) can be reached in O(1) time.
218 * Invariants:
219 * - the first node is always O(1) reachable from head via prev links
220 * - all live nodes are reachable from the first node via succ()
221 * - head != null
222 * - (tmp = head).next != tmp || tmp != head
223 * - head is never gc-unlinked (but may be unlinked)
224 * Non-invariants:
225 * - head.item may or may not be null
226 * - head may not be reachable from the first or last node, or from tail
227 */
228 private transient volatile Node<E> head;
229
230 /**
231 * A node from which the last node on list (that is, the unique node p
232 * with p.next == null && p.prev != p) can be reached in O(1) time.
233 * Invariants:
234 * - the last node is always O(1) reachable from tail via next links
235 * - all live nodes are reachable from the last node via pred()
236 * - tail != null
237 * - tail is never gc-unlinked (but may be unlinked)
238 * Non-invariants:
239 * - tail.item may or may not be null
240 * - tail may not be reachable from the first or last node, or from head
241 */
242 private transient volatile Node<E> tail;
243
244 private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
245
246 @SuppressWarnings("unchecked")
247 Node<E> prevTerminator() {
248 return (Node<E>) PREV_TERMINATOR;
249 }
250
251 @SuppressWarnings("unchecked")
252 Node<E> nextTerminator() {
253 return (Node<E>) NEXT_TERMINATOR;
254 }
255
256 static final class Node<E> {
257 volatile Node<E> prev;
258 volatile E item;
259 volatile Node<E> next;
260
261 Node() { // default constructor for NEXT_TERMINATOR, PREV_TERMINATOR
262 }
263
264 /**
265 * Constructs a new node. Uses relaxed write because item can
266 * only be seen after publication via casNext or casPrev.
267 */
268 Node(E item) {
269 UNSAFE.putObject(this, itemOffset, item);
270 }
271
272 boolean casItem(E cmp, E val) {
273 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
274 }
275
276 void lazySetNext(Node<E> val) {
277 UNSAFE.putOrderedObject(this, nextOffset, val);
278 }
279
280 boolean casNext(Node<E> cmp, Node<E> val) {
281 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
282 }
283
284 void lazySetPrev(Node<E> val) {
285 UNSAFE.putOrderedObject(this, prevOffset, val);
286 }
287
288 boolean casPrev(Node<E> cmp, Node<E> val) {
289 return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
290 }
291
292 // Unsafe mechanics
293
294 private static final sun.misc.Unsafe UNSAFE;
295 private static final long prevOffset;
296 private static final long itemOffset;
297 private static final long nextOffset;
298
299 static {
300 try {
301 UNSAFE = sun.misc.Unsafe.getUnsafe();
302 Class k = Node.class;
303 prevOffset = UNSAFE.objectFieldOffset
304 (k.getDeclaredField("prev"));
305 itemOffset = UNSAFE.objectFieldOffset
306 (k.getDeclaredField("item"));
307 nextOffset = UNSAFE.objectFieldOffset
308 (k.getDeclaredField("next"));
309 } catch (Exception e) {
310 throw new Error(e);
311 }
312 }
313 }
314
315 /**
316 * Links e as first element.
317 */
318 private void linkFirst(E e) {
319 checkNotNull(e);
320 final Node<E> newNode = new Node<E>(e);
321
322 restartFromHead:
323 for (;;)
324 for (Node<E> h = head, p = h, q;;) {
325 if ((q = p.prev) != null &&
326 (q = (p = q).prev) != null)
327 // Check for head updates every other hop.
328 // If p == q, we are sure to follow head instead.
329 p = (h != (h = head)) ? h : q;
330 else if (p.next == p) // PREV_TERMINATOR
331 continue restartFromHead;
332 else {
333 // p is first node
334 newNode.lazySetNext(p); // CAS piggyback
335 if (p.casPrev(null, newNode)) {
336 // Successful CAS is the linearization point
337 // for e to become an element of this deque,
338 // and for newNode to become "live".
339 if (p != h) // hop two nodes at a time
340 casHead(h, newNode); // Failure is OK.
341 return;
342 }
343 // Lost CAS race to another thread; re-read prev
344 }
345 }
346 }
347
348 /**
349 * Links e as last element.
350 */
351 private void linkLast(E e) {
352 checkNotNull(e);
353 final Node<E> newNode = new Node<E>(e);
354
355 restartFromTail:
356 for (;;)
357 for (Node<E> t = tail, p = t, q;;) {
358 if ((q = p.next) != null &&
359 (q = (p = q).next) != null)
360 // Check for tail updates every other hop.
361 // If p == q, we are sure to follow tail instead.
362 p = (t != (t = tail)) ? t : q;
363 else if (p.prev == p) // NEXT_TERMINATOR
364 continue restartFromTail;
365 else {
366 // p is last node
367 newNode.lazySetPrev(p); // CAS piggyback
368 if (p.casNext(null, newNode)) {
369 // Successful CAS is the linearization point
370 // for e to become an element of this deque,
371 // and for newNode to become "live".
372 if (p != t) // hop two nodes at a time
373 casTail(t, newNode); // Failure is OK.
374 return;
375 }
376 // Lost CAS race to another thread; re-read next
377 }
378 }
379 }
380
381 private static final int HOPS = 2;
382
383 /**
384 * Unlinks non-null node x.
385 */
386 void unlink(Node<E> x) {
387 // assert x != null;
388 // assert x.item == null;
389 // assert x != PREV_TERMINATOR;
390 // assert x != NEXT_TERMINATOR;
391
392 final Node<E> prev = x.prev;
393 final Node<E> next = x.next;
394 if (prev == null) {
395 unlinkFirst(x, next);
396 } else if (next == null) {
397 unlinkLast(x, prev);
398 } else {
399 // Unlink interior node.
400 //
401 // This is the common case, since a series of polls at the
402 // same end will be "interior" removes, except perhaps for
403 // the first one, since end nodes cannot be unlinked.
404 //
405 // At any time, all active nodes are mutually reachable by
406 // following a sequence of either next or prev pointers.
407 //
408 // Our strategy is to find the unique active predecessor
409 // and successor of x. Try to fix up their links so that
410 // they point to each other, leaving x unreachable from
411 // active nodes. If successful, and if x has no live
412 // predecessor/successor, we additionally try to gc-unlink,
413 // leaving active nodes unreachable from x, by rechecking
414 // that the status of predecessor and successor are
415 // unchanged and ensuring that x is not reachable from
416 // tail/head, before setting x's prev/next links to their
417 // logical approximate replacements, self/TERMINATOR.
418 Node<E> activePred, activeSucc;
419 boolean isFirst, isLast;
420 int hops = 1;
421
422 // Find active predecessor
423 for (Node<E> p = prev; ; ++hops) {
424 if (p.item != null) {
425 activePred = p;
426 isFirst = false;
427 break;
428 }
429 Node<E> q = p.prev;
430 if (q == null) {
431 if (p.next == p)
432 return;
433 activePred = p;
434 isFirst = true;
435 break;
436 }
437 else if (p == q)
438 return;
439 else
440 p = q;
441 }
442
443 // Find active successor
444 for (Node<E> p = next; ; ++hops) {
445 if (p.item != null) {
446 activeSucc = p;
447 isLast = false;
448 break;
449 }
450 Node<E> q = p.next;
451 if (q == null) {
452 if (p.prev == p)
453 return;
454 activeSucc = p;
455 isLast = true;
456 break;
457 }
458 else if (p == q)
459 return;
460 else
461 p = q;
462 }
463
464 // TODO: better HOP heuristics
465 if (hops < HOPS
466 // always squeeze out interior deleted nodes
467 && (isFirst | isLast))
468 return;
469
470 // Squeeze out deleted nodes between activePred and
471 // activeSucc, including x.
472 skipDeletedSuccessors(activePred);
473 skipDeletedPredecessors(activeSucc);
474
475 // Try to gc-unlink, if possible
476 if ((isFirst | isLast) &&
477
478 // Recheck expected state of predecessor and successor
479 (activePred.next == activeSucc) &&
480 (activeSucc.prev == activePred) &&
481 (isFirst ? activePred.prev == null : activePred.item != null) &&
482 (isLast ? activeSucc.next == null : activeSucc.item != null)) {
483
484 updateHead(); // Ensure x is not reachable from head
485 updateTail(); // Ensure x is not reachable from tail
486
487 // Finally, actually gc-unlink
488 x.lazySetPrev(isFirst ? prevTerminator() : x);
489 x.lazySetNext(isLast ? nextTerminator() : x);
490 }
491 }
492 }
493
494 /**
495 * Unlinks non-null first node.
496 */
497 private void unlinkFirst(Node<E> first, Node<E> next) {
498 // assert first != null;
499 // assert next != null;
500 // assert first.item == null;
501 for (Node<E> o = null, p = next, q;;) {
502 if (p.item != null || (q = p.next) == null) {
503 if (o != null && p.prev != p && first.casNext(next, p)) {
504 skipDeletedPredecessors(p);
505 if (first.prev == null &&
506 (p.next == null || p.item != null) &&
507 p.prev == first) {
508
509 updateHead(); // Ensure o is not reachable from head
510 updateTail(); // Ensure o is not reachable from tail
511
512 // Finally, actually gc-unlink
513 o.lazySetNext(o);
514 o.lazySetPrev(prevTerminator());
515 }
516 }
517 return;
518 }
519 else if (p == q)
520 return;
521 else {
522 o = p;
523 p = q;
524 }
525 }
526 }
527
528 /**
529 * Unlinks non-null last node.
530 */
531 private void unlinkLast(Node<E> last, Node<E> prev) {
532 // assert last != null;
533 // assert prev != null;
534 // assert last.item == null;
535 for (Node<E> o = null, p = prev, q;;) {
536 if (p.item != null || (q = p.prev) == null) {
537 if (o != null && p.next != p && last.casPrev(prev, p)) {
538 skipDeletedSuccessors(p);
539 if (last.next == null &&
540 (p.prev == null || p.item != null) &&
541 p.next == last) {
542
543 updateHead(); // Ensure o is not reachable from head
544 updateTail(); // Ensure o is not reachable from tail
545
546 // Finally, actually gc-unlink
547 o.lazySetPrev(o);
548 o.lazySetNext(nextTerminator());
549 }
550 }
551 return;
552 }
553 else if (p == q)
554 return;
555 else {
556 o = p;
557 p = q;
558 }
559 }
560 }
561
562 /**
563 * Guarantees that any node which was unlinked before a call to
564 * this method will be unreachable from head after it returns.
565 * Does not guarantee to eliminate slack, only that head will
566 * point to a node that was active while this method was running.
567 */
568 private final void updateHead() {
569 // Either head already points to an active node, or we keep
570 // trying to cas it to the first node until it does.
571 Node<E> h, p, q;
572 restartFromHead:
573 while ((h = head).item == null && (p = h.prev) != null) {
574 for (;;) {
575 if ((q = p.prev) == null ||
576 (q = (p = q).prev) == null) {
577 // It is possible that p is PREV_TERMINATOR,
578 // but if so, the CAS is guaranteed to fail.
579 if (casHead(h, p))
580 return;
581 else
582 continue restartFromHead;
583 }
584 else if (h != head)
585 continue restartFromHead;
586 else
587 p = q;
588 }
589 }
590 }
591
592 /**
593 * Guarantees that any node which was unlinked before a call to
594 * this method will be unreachable from tail after it returns.
595 * Does not guarantee to eliminate slack, only that tail will
596 * point to a node that was active while this method was running.
597 */
598 private final void updateTail() {
599 // Either tail already points to an active node, or we keep
600 // trying to cas it to the last node until it does.
601 Node<E> t, p, q;
602 restartFromTail:
603 while ((t = tail).item == null && (p = t.next) != null) {
604 for (;;) {
605 if ((q = p.next) == null ||
606 (q = (p = q).next) == null) {
607 // It is possible that p is NEXT_TERMINATOR,
608 // but if so, the CAS is guaranteed to fail.
609 if (casTail(t, p))
610 return;
611 else
612 continue restartFromTail;
613 }
614 else if (t != tail)
615 continue restartFromTail;
616 else
617 p = q;
618 }
619 }
620 }
621
622 private void skipDeletedPredecessors(Node<E> x) {
623 whileActive:
624 do {
625 Node<E> prev = x.prev;
626 // assert prev != null;
627 // assert x != NEXT_TERMINATOR;
628 // assert x != PREV_TERMINATOR;
629 Node<E> p = prev;
630 findActive:
631 for (;;) {
632 if (p.item != null)
633 break findActive;
634 Node<E> q = p.prev;
635 if (q == null) {
636 if (p.next == p)
637 continue whileActive;
638 break findActive;
639 }
640 else if (p == q)
641 continue whileActive;
642 else
643 p = q;
644 }
645
646 // found active CAS target
647 if (prev == p || x.casPrev(prev, p))
648 return;
649
650 } while (x.item != null || x.next == null);
651 }
652
653 private void skipDeletedSuccessors(Node<E> x) {
654 whileActive:
655 do {
656 Node<E> next = x.next;
657 // assert next != null;
658 // assert x != NEXT_TERMINATOR;
659 // assert x != PREV_TERMINATOR;
660 Node<E> p = next;
661 findActive:
662 for (;;) {
663 if (p.item != null)
664 break findActive;
665 Node<E> q = p.next;
666 if (q == null) {
667 if (p.prev == p)
668 continue whileActive;
669 break findActive;
670 }
671 else if (p == q)
672 continue whileActive;
673 else
674 p = q;
675 }
676
677 // found active CAS target
678 if (next == p || x.casNext(next, p))
679 return;
680
681 } while (x.item != null || x.prev == null);
682 }
683
684 /**
685 * Returns the successor of p, or the first node if p.next has been
686 * linked to self, which will only be true if traversing with a
687 * stale pointer that is now off the list.
688 */
689 final Node<E> succ(Node<E> p) {
690 // TODO: should we skip deleted nodes here?
691 Node<E> q = p.next;
692 return (p == q) ? first() : q;
693 }
694
695 /**
696 * Returns the predecessor of p, or the last node if p.prev has been
697 * linked to self, which will only be true if traversing with a
698 * stale pointer that is now off the list.
699 */
700 final Node<E> pred(Node<E> p) {
701 Node<E> q = p.prev;
702 return (p == q) ? last() : q;
703 }
704
705 /**
706 * Returns the first node, the unique node p for which:
707 * p.prev == null && p.next != p
708 * The returned node may or may not be logically deleted.
709 * Guarantees that head is set to the returned node.
710 */
711 Node<E> first() {
712 restartFromHead:
713 for (;;)
714 for (Node<E> h = head, p = h, q;;) {
715 if ((q = p.prev) != null &&
716 (q = (p = q).prev) != null)
717 // Check for head updates every other hop.
718 // If p == q, we are sure to follow head instead.
719 p = (h != (h = head)) ? h : q;
720 else if (p == h
721 // It is possible that p is PREV_TERMINATOR,
722 // but if so, the CAS is guaranteed to fail.
723 || casHead(h, p))
724 return p;
725 else
726 continue restartFromHead;
727 }
728 }
729
730 /**
731 * Returns the last node, the unique node p for which:
732 * p.next == null && p.prev != p
733 * The returned node may or may not be logically deleted.
734 * Guarantees that tail is set to the returned node.
735 */
736 Node<E> last() {
737 restartFromTail:
738 for (;;)
739 for (Node<E> t = tail, p = t, q;;) {
740 if ((q = p.next) != null &&
741 (q = (p = q).next) != null)
742 // Check for tail updates every other hop.
743 // If p == q, we are sure to follow tail instead.
744 p = (t != (t = tail)) ? t : q;
745 else if (p == t
746 // It is possible that p is NEXT_TERMINATOR,
747 // but if so, the CAS is guaranteed to fail.
748 || casTail(t, p))
749 return p;
750 else
751 continue restartFromTail;
752 }
753 }
754
755 // Minor convenience utilities
756
757 /**
758 * Throws NullPointerException if argument is null.
759 *
760 * @param v the element
761 */
762 private static void checkNotNull(Object v) {
763 if (v == null)
764 throw new NullPointerException();
765 }
766
767 /**
768 * Returns element unless it is null, in which case throws
769 * NoSuchElementException.
770 *
771 * @param v the element
772 * @return the element
773 */
774 private E screenNullResult(E v) {
775 if (v == null)
776 throw new NoSuchElementException();
777 return v;
778 }
779
780 /**
781 * Creates an array list and fills it with elements of this list.
782 * Used by toArray.
783 *
784 * @return the arrayList
785 */
786 private ArrayList<E> toArrayList() {
787 ArrayList<E> list = new ArrayList<E>();
788 for (Node<E> p = first(); p != null; p = succ(p)) {
789 E item = p.item;
790 if (item != null)
791 list.add(item);
792 }
793 return list;
794 }
795
796 /**
797 * Constructs an empty deque.
798 */
799 public ConcurrentLinkedDeque() {
800 head = tail = new Node<E>(null);
801 }
802
803 /**
804 * Constructs a deque initially containing the elements of
805 * the given collection, added in traversal order of the
806 * collection's iterator.
807 *
808 * @param c the collection of elements to initially contain
809 * @throws NullPointerException if the specified collection or any
810 * of its elements are null
811 */
812 public ConcurrentLinkedDeque(Collection<? extends E> c) {
813 // Copy c into a private chain of Nodes
814 Node<E> h = null, t = null;
815 for (E e : c) {
816 checkNotNull(e);
817 Node<E> newNode = new Node<E>(e);
818 if (h == null)
819 h = t = newNode;
820 else {
821 t.lazySetNext(newNode);
822 newNode.lazySetPrev(t);
823 t = newNode;
824 }
825 }
826 initHeadTail(h, t);
827 }
828
829 /**
830 * Initializes head and tail, ensuring invariants hold.
831 */
832 private void initHeadTail(Node<E> h, Node<E> t) {
833 if (h == t) {
834 if (h == null)
835 h = t = new Node<E>(null);
836 else {
837 // Avoid edge case of a single Node with non-null item.
838 Node<E> newNode = new Node<E>(null);
839 t.lazySetNext(newNode);
840 newNode.lazySetPrev(t);
841 t = newNode;
842 }
843 }
844 head = h;
845 tail = t;
846 }
847
848 /**
849 * Inserts the specified element at the front of this deque.
850 * As the deque is unbounded, this method will never throw
851 * {@link IllegalStateException}.
852 *
853 * @throws NullPointerException if the specified element is null
854 */
855 public void addFirst(E e) {
856 linkFirst(e);
857 }
858
859 /**
860 * Inserts the specified element at the end of this deque.
861 * As the deque is unbounded, this method will never throw
862 * {@link IllegalStateException}.
863 *
864 * <p>This method is equivalent to {@link #add}.
865 *
866 * @throws NullPointerException if the specified element is null
867 */
868 public void addLast(E e) {
869 linkLast(e);
870 }
871
872 /**
873 * Inserts the specified element at the front of this deque.
874 * As the deque is unbounded, this method will never return {@code false}.
875 *
876 * @return {@code true} (as specified by {@link Deque#offerFirst})
877 * @throws NullPointerException if the specified element is null
878 */
879 public boolean offerFirst(E e) {
880 linkFirst(e);
881 return true;
882 }
883
884 /**
885 * Inserts the specified element at the end of this deque.
886 * As the deque is unbounded, this method will never return {@code false}.
887 *
888 * <p>This method is equivalent to {@link #add}.
889 *
890 * @return {@code true} (as specified by {@link Deque#offerLast})
891 * @throws NullPointerException if the specified element is null
892 */
893 public boolean offerLast(E e) {
894 linkLast(e);
895 return true;
896 }
897
898 public E peekFirst() {
899 for (Node<E> p = first(); p != null; p = succ(p)) {
900 E item = p.item;
901 if (item != null)
902 return item;
903 }
904 return null;
905 }
906
907 public E peekLast() {
908 for (Node<E> p = last(); p != null; p = pred(p)) {
909 E item = p.item;
910 if (item != null)
911 return item;
912 }
913 return null;
914 }
915
916 /**
917 * @throws NoSuchElementException {@inheritDoc}
918 */
919 public E getFirst() {
920 return screenNullResult(peekFirst());
921 }
922
923 /**
924 * @throws NoSuchElementException {@inheritDoc}
925 */
926 public E getLast() {
927 return screenNullResult(peekLast());
928 }
929
930 public E pollFirst() {
931 for (Node<E> p = first(); p != null; p = succ(p)) {
932 E item = p.item;
933 if (item != null && p.casItem(item, null)) {
934 unlink(p);
935 return item;
936 }
937 }
938 return null;
939 }
940
941 public E pollLast() {
942 for (Node<E> p = last(); p != null; p = pred(p)) {
943 E item = p.item;
944 if (item != null && p.casItem(item, null)) {
945 unlink(p);
946 return item;
947 }
948 }
949 return null;
950 }
951
952 /**
953 * @throws NoSuchElementException {@inheritDoc}
954 */
955 public E removeFirst() {
956 return screenNullResult(pollFirst());
957 }
958
959 /**
960 * @throws NoSuchElementException {@inheritDoc}
961 */
962 public E removeLast() {
963 return screenNullResult(pollLast());
964 }
965
966 // *** Queue and stack methods ***
967
968 /**
969 * Inserts the specified element at the tail of this deque.
970 * As the deque is unbounded, this method will never return {@code false}.
971 *
972 * @return {@code true} (as specified by {@link Queue#offer})
973 * @throws NullPointerException if the specified element is null
974 */
975 public boolean offer(E e) {
976 return offerLast(e);
977 }
978
979 /**
980 * Inserts the specified element at the tail of this deque.
981 * As the deque is unbounded, this method will never throw
982 * {@link IllegalStateException} or return {@code false}.
983 *
984 * @return {@code true} (as specified by {@link Collection#add})
985 * @throws NullPointerException if the specified element is null
986 */
987 public boolean add(E e) {
988 return offerLast(e);
989 }
990
991 public E poll() { return pollFirst(); }
992 public E remove() { return removeFirst(); }
993 public E peek() { return peekFirst(); }
994 public E element() { return getFirst(); }
995 public void push(E e) { addFirst(e); }
996 public E pop() { return removeFirst(); }
997
998 /**
999 * Removes the first element {@code e} such that
1000 * {@code o.equals(e)}, if such an element exists in this deque.
1001 * If the deque does not contain the element, it is unchanged.
1002 *
1003 * @param o element to be removed from this deque, if present
1004 * @return {@code true} if the deque contained the specified element
1005 * @throws NullPointerException if the specified element is null
1006 */
1007 public boolean removeFirstOccurrence(Object o) {
1008 checkNotNull(o);
1009 for (Node<E> p = first(); p != null; p = succ(p)) {
1010 E item = p.item;
1011 if (item != null && o.equals(item) && p.casItem(item, null)) {
1012 unlink(p);
1013 return true;
1014 }
1015 }
1016 return false;
1017 }
1018
1019 /**
1020 * Removes the last element {@code e} such that
1021 * {@code o.equals(e)}, if such an element exists in this deque.
1022 * If the deque does not contain the element, it is unchanged.
1023 *
1024 * @param o element to be removed from this deque, if present
1025 * @return {@code true} if the deque contained the specified element
1026 * @throws NullPointerException if the specified element is null
1027 */
1028 public boolean removeLastOccurrence(Object o) {
1029 checkNotNull(o);
1030 for (Node<E> p = last(); p != null; p = pred(p)) {
1031 E item = p.item;
1032 if (item != null && o.equals(item) && p.casItem(item, null)) {
1033 unlink(p);
1034 return true;
1035 }
1036 }
1037 return false;
1038 }
1039
1040 /**
1041 * Returns {@code true} if this deque contains at least one
1042 * element {@code e} such that {@code o.equals(e)}.
1043 *
1044 * @param o element whose presence in this deque is to be tested
1045 * @return {@code true} if this deque contains the specified element
1046 */
1047 public boolean contains(Object o) {
1048 if (o == null) return false;
1049 for (Node<E> p = first(); p != null; p = succ(p)) {
1050 E item = p.item;
1051 if (item != null && o.equals(item))
1052 return true;
1053 }
1054 return false;
1055 }
1056
1057 /**
1058 * Returns {@code true} if this collection contains no elements.
1059 *
1060 * @return {@code true} if this collection contains no elements
1061 */
1062 public boolean isEmpty() {
1063 return peekFirst() == null;
1064 }
1065
1066 /**
1067 * Returns the number of elements in this deque. If this deque
1068 * contains more than {@code Integer.MAX_VALUE} elements, it
1069 * returns {@code Integer.MAX_VALUE}.
1070 *
1071 * <p>Beware that, unlike in most collections, this method is
1072 * <em>NOT</em> a constant-time operation. Because of the
1073 * asynchronous nature of these deques, determining the current
1074 * number of elements requires traversing them all to count them.
1075 * Additionally, it is possible for the size to change during
1076 * execution of this method, in which case the returned result
1077 * will be inaccurate. Thus, this method is typically not very
1078 * useful in concurrent applications.
1079 *
1080 * @return the number of elements in this deque
1081 */
1082 public int size() {
1083 int count = 0;
1084 for (Node<E> p = first(); p != null; p = succ(p))
1085 if (p.item != null)
1086 // Collection.size() spec says to max out
1087 if (++count == Integer.MAX_VALUE)
1088 break;
1089 return count;
1090 }
1091
1092 /**
1093 * Removes the first element {@code e} such that
1094 * {@code o.equals(e)}, if such an element exists in this deque.
1095 * If the deque does not contain the element, it is unchanged.
1096 *
1097 * @param o element to be removed from this deque, if present
1098 * @return {@code true} if the deque contained the specified element
1099 * @throws NullPointerException if the specified element is null
1100 */
1101 public boolean remove(Object o) {
1102 return removeFirstOccurrence(o);
1103 }
1104
1105 /**
1106 * Appends all of the elements in the specified collection to the end of
1107 * this deque, in the order that they are returned by the specified
1108 * collection's iterator. Attempts to {@code addAll} of a deque to
1109 * itself result in {@code IllegalArgumentException}.
1110 *
1111 * @param c the elements to be inserted into this deque
1112 * @return {@code true} if this deque changed as a result of the call
1113 * @throws NullPointerException if the specified collection or any
1114 * of its elements are null
1115 * @throws IllegalArgumentException if the collection is this deque
1116 */
1117 public boolean addAll(Collection<? extends E> c) {
1118 if (c == this)
1119 // As historically specified in AbstractQueue#addAll
1120 throw new IllegalArgumentException();
1121
1122 // Copy c into a private chain of Nodes
1123 Node<E> beginningOfTheEnd = null, last = null;
1124 for (E e : c) {
1125 checkNotNull(e);
1126 Node<E> newNode = new Node<E>(e);
1127 if (beginningOfTheEnd == null)
1128 beginningOfTheEnd = last = newNode;
1129 else {
1130 last.lazySetNext(newNode);
1131 newNode.lazySetPrev(last);
1132 last = newNode;
1133 }
1134 }
1135 if (beginningOfTheEnd == null)
1136 return false;
1137
1138 // Atomically append the chain at the tail of this collection
1139 restartFromTail:
1140 for (;;)
1141 for (Node<E> t = tail, p = t, q;;) {
1142 if ((q = p.next) != null &&
1143 (q = (p = q).next) != null)
1144 // Check for tail updates every other hop.
1145 // If p == q, we are sure to follow tail instead.
1146 p = (t != (t = tail)) ? t : q;
1147 else if (p.prev == p) // NEXT_TERMINATOR
1148 continue restartFromTail;
1149 else {
1150 // p is last node
1151 beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
1152 if (p.casNext(null, beginningOfTheEnd)) {
1153 // Successful CAS is the linearization point
1154 // for all elements to be added to this deque.
1155 if (!casTail(t, last)) {
1156 // Try a little harder to update tail,
1157 // since we may be adding many elements.
1158 t = tail;
1159 if (last.next == null)
1160 casTail(t, last);
1161 }
1162 return true;
1163 }
1164 // Lost CAS race to another thread; re-read next
1165 }
1166 }
1167 }
1168
1169 /**
1170 * Removes all of the elements from this deque.
1171 */
1172 public void clear() {
1173 while (pollFirst() != null)
1174 ;
1175 }
1176
1177 /**
1178 * Returns an array containing all of the elements in this deque, in
1179 * proper sequence (from first to last element).
1180 *
1181 * <p>The returned array will be "safe" in that no references to it are
1182 * maintained by this deque. (In other words, this method must allocate
1183 * a new array). The caller is thus free to modify the returned array.
1184 *
1185 * <p>This method acts as bridge between array-based and collection-based
1186 * APIs.
1187 *
1188 * @return an array containing all of the elements in this deque
1189 */
1190 public Object[] toArray() {
1191 return toArrayList().toArray();
1192 }
1193
1194 /**
1195 * Returns an array containing all of the elements in this deque,
1196 * in proper sequence (from first to last element); the runtime
1197 * type of the returned array is that of the specified array. If
1198 * the deque fits in the specified array, it is returned therein.
1199 * Otherwise, a new array is allocated with the runtime type of
1200 * the specified array and the size of this deque.
1201 *
1202 * <p>If this deque fits in the specified array with room to spare
1203 * (i.e., the array has more elements than this deque), the element in
1204 * the array immediately following the end of the deque is set to
1205 * {@code null}.
1206 *
1207 * <p>Like the {@link #toArray()} method, this method acts as
1208 * bridge between array-based and collection-based APIs. Further,
1209 * this method allows precise control over the runtime type of the
1210 * output array, and may, under certain circumstances, be used to
1211 * save allocation costs.
1212 *
1213 * <p>Suppose {@code x} is a deque known to contain only strings.
1214 * The following code can be used to dump the deque into a newly
1215 * allocated array of {@code String}:
1216 *
1217 * <pre>
1218 * String[] y = x.toArray(new String[0]);</pre>
1219 *
1220 * Note that {@code toArray(new Object[0])} is identical in function to
1221 * {@code toArray()}.
1222 *
1223 * @param a the array into which the elements of the deque are to
1224 * be stored, if it is big enough; otherwise, a new array of the
1225 * same runtime type is allocated for this purpose
1226 * @return an array containing all of the elements in this deque
1227 * @throws ArrayStoreException if the runtime type of the specified array
1228 * is not a supertype of the runtime type of every element in
1229 * this deque
1230 * @throws NullPointerException if the specified array is null
1231 */
1232 public <T> T[] toArray(T[] a) {
1233 return toArrayList().toArray(a);
1234 }
1235
1236 /**
1237 * Returns an iterator over the elements in this deque in proper sequence.
1238 * The elements will be returned in order from first (head) to last (tail).
1239 *
1240 * <p>The returned iterator is a "weakly consistent" iterator that
1241 * will never throw {@link java.util.ConcurrentModificationException
1242 * ConcurrentModificationException}, and guarantees to traverse
1243 * elements as they existed upon construction of the iterator, and
1244 * may (but is not guaranteed to) reflect any modifications
1245 * subsequent to construction.
1246 *
1247 * @return an iterator over the elements in this deque in proper sequence
1248 */
1249 public Iterator<E> iterator() {
1250 return new Itr();
1251 }
1252
1253 /**
1254 * Returns an iterator over the elements in this deque in reverse
1255 * sequential order. The elements will be returned in order from
1256 * last (tail) to first (head).
1257 *
1258 * <p>The returned iterator is a "weakly consistent" iterator that
1259 * will never throw {@link java.util.ConcurrentModificationException
1260 * ConcurrentModificationException}, and guarantees to traverse
1261 * elements as they existed upon construction of the iterator, and
1262 * may (but is not guaranteed to) reflect any modifications
1263 * subsequent to construction.
1264 *
1265 * @return an iterator over the elements in this deque in reverse order
1266 */
1267 public Iterator<E> descendingIterator() {
1268 return new DescendingItr();
1269 }
1270
1271 private abstract class AbstractItr implements Iterator<E> {
1272 /**
1273 * Next node to return item for.
1274 */
1275 private Node<E> nextNode;
1276
1277 /**
1278 * nextItem holds on to item fields because once we claim
1279 * that an element exists in hasNext(), we must return it in
1280 * the following next() call even if it was in the process of
1281 * being removed when hasNext() was called.
1282 */
1283 private E nextItem;
1284
1285 /**
1286 * Node returned by most recent call to next. Needed by remove.
1287 * Reset to null if this element is deleted by a call to remove.
1288 */
1289 private Node<E> lastRet;
1290
1291 abstract Node<E> startNode();
1292 abstract Node<E> nextNode(Node<E> p);
1293
1294 AbstractItr() {
1295 advance();
1296 }
1297
1298 /**
1299 * Sets nextNode and nextItem to next valid node, or to null
1300 * if no such.
1301 */
1302 private void advance() {
1303 lastRet = nextNode;
1304
1305 Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1306 for (;; p = nextNode(p)) {
1307 if (p == null) {
1308 // p might be active end or TERMINATOR node; both are OK
1309 nextNode = null;
1310 nextItem = null;
1311 break;
1312 }
1313 E item = p.item;
1314 if (item != null) {
1315 nextNode = p;
1316 nextItem = item;
1317 break;
1318 }
1319 }
1320 }
1321
1322 public boolean hasNext() {
1323 return nextItem != null;
1324 }
1325
1326 public E next() {
1327 E item = nextItem;
1328 if (item == null) throw new NoSuchElementException();
1329 advance();
1330 return item;
1331 }
1332
1333 public void remove() {
1334 Node<E> l = lastRet;
1335 if (l == null) throw new IllegalStateException();
1336 l.item = null;
1337 unlink(l);
1338 lastRet = null;
1339 }
1340 }
1341
1342 /** Forward iterator */
1343 private class Itr extends AbstractItr {
1344 Node<E> startNode() { return first(); }
1345 Node<E> nextNode(Node<E> p) { return succ(p); }
1346 }
1347
1348 /** Descending iterator */
1349 private class DescendingItr extends AbstractItr {
1350 Node<E> startNode() { return last(); }
1351 Node<E> nextNode(Node<E> p) { return pred(p); }
1352 }
1353
1354 /**
1355 * Saves the state to a stream (that is, serializes it).
1356 *
1357 * @serialData All of the elements (each an {@code E}) in
1358 * the proper order, followed by a null
1359 * @param s the stream
1360 */
1361 private void writeObject(java.io.ObjectOutputStream s)
1362 throws java.io.IOException {
1363
1364 // Write out any hidden stuff
1365 s.defaultWriteObject();
1366
1367 // Write out all elements in the proper order.
1368 for (Node<E> p = first(); p != null; p = succ(p)) {
1369 E item = p.item;
1370 if (item != null)
1371 s.writeObject(item);
1372 }
1373
1374 // Use trailing null as sentinel
1375 s.writeObject(null);
1376 }
1377
1378 /**
1379 * Reconstitutes the instance from a stream (that is, deserializes it).
1380 * @param s the stream
1381 */
1382 private void readObject(java.io.ObjectInputStream s)
1383 throws java.io.IOException, ClassNotFoundException {
1384 s.defaultReadObject();
1385
1386 // Read in elements until trailing null sentinel found
1387 Node<E> h = null, t = null;
1388 Object item;
1389 while ((item = s.readObject()) != null) {
1390 @SuppressWarnings("unchecked")
1391 Node<E> newNode = new Node<E>((E) item);
1392 if (h == null)
1393 h = t = newNode;
1394 else {
1395 t.lazySetNext(newNode);
1396 newNode.lazySetPrev(t);
1397 t = newNode;
1398 }
1399 }
1400 initHeadTail(h, t);
1401 }
1402
1403
1404 private boolean casHead(Node<E> cmp, Node<E> val) {
1405 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1406 }
1407
1408 private boolean casTail(Node<E> cmp, Node<E> val) {
1409 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1410 }
1411
1412 // Unsafe mechanics
1413
1414 private static final sun.misc.Unsafe UNSAFE;
1415 private static final long headOffset;
1416 private static final long tailOffset;
1417 static {
1418 PREV_TERMINATOR = new Node<Object>();
1419 PREV_TERMINATOR.next = PREV_TERMINATOR;
1420 NEXT_TERMINATOR = new Node<Object>();
1421 NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1422 try {
1423 UNSAFE = sun.misc.Unsafe.getUnsafe();
1424 Class k = ConcurrentLinkedDeque.class;
1425 headOffset = UNSAFE.objectFieldOffset
1426 (k.getDeclaredField("head"));
1427 tailOffset = UNSAFE.objectFieldOffset
1428 (k.getDeclaredField("tail"));
1429 } catch (Exception e) {
1430 throw new Error(e);
1431 }
1432 }
1433 }