ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.3
Committed: Wed Aug 25 21:40:03 2010 UTC (13 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.2: +327 -222 lines
Log Message:
Finish ConcurrentLinkedDeque feature

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractCollection;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Deque;
13 import java.util.Iterator;
14 import java.util.ConcurrentModificationException;
15 import java.util.NoSuchElementException;
16 import java.util.concurrent.atomic.AtomicReference;
17
18 /**
19 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
20 * Concurrent insertion, removal, and access operations execute safely
21 * across multiple threads.
22 * A {@code ConcurrentLinkedDeque} is an appropriate choice when
23 * many threads will share access to a common collection.
24 * Like most other concurrent collection implementations, this class
25 * does not permit the use of {@code null} elements.
26 *
27 * <p>Iterators are <i>weakly consistent</i>, returning elements
28 * reflecting the state of the deque at some point at or since the
29 * creation of the iterator. They do <em>not</em> throw {@link
30 * java.util.ConcurrentModificationException
31 * ConcurrentModificationException}, and may proceed concurrently with
32 * other operations.
33 *
34 * <p>Beware that, unlike in most collections, the {@code size}
35 * method is <em>NOT</em> a constant-time operation. Because of the
36 * asynchronous nature of these deques, determining the current number
37 * of elements requires a traversal of the elements.
38 *
39 * <p>This class and its iterator implement all of the <em>optional</em>
40 * methods of the {@link Deque} and {@link Iterator} interfaces.
41 *
42 * <p>Memory consistency effects: As with other concurrent collections,
43 * actions in a thread prior to placing an object into a
44 * {@code ConcurrentLinkedDeque}
45 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
46 * actions subsequent to the access or removal of that element from
47 * the {@code ConcurrentLinkedDeque} in another thread.
48 *
49 * <p>This class is a member of the
50 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
51 * Java Collections Framework</a>.
52 *
53 * @since 1.7
54 * @author Doug Lea
55 * @author Martin Buchholz
56 * @param <E> the type of elements held in this collection
57 */
58
59 public class ConcurrentLinkedDeque<E>
60 extends AbstractCollection<E>
61 implements Deque<E>, java.io.Serializable {
62
63 /*
64 * This is an implementation of a concurrent lock-free deque
65 * supporting interior removes but not interior insertions, as
66 * required to support the entire Deque interface.
67 *
68 * We extend the techniques developed for ConcurrentLinkedQueue and
69 * LinkedTransferQueue (see the internal docs for those classes).
70 *
71 * The data structure is a symmetrical doubly-linked "GC-robust"
72 * linked list of nodes. We minimize the number of volatile writes
73 * using two techniques: advancing multiple hops with a single CAS
74 * and mixing volatile and non-volatile writes of the same memory
75 * locations.
76 *
77 * A node contains the expected E ("item") and links to predecessor
78 * ("prev") and successor ("next") nodes:
79 *
80 * class Node<E> { volatile Node<E> prev, next; volatile E item; }
81 *
82 * A node p is considered "live" if it contains a non-null item
83 * (p.item != null). When an item is CASed to null, the item is
84 * atomically logically deleted from the collection.
85 *
86 * At any time, there is precisely one "first" node with a null
87 * prev reference that terminates any chain of prev references
88 * starting at a live node. Similarly there is precisely one
89 * "last" node terminating any chain of next references starting at
90 * a live node. The "first" and "last" nodes may or may not be live.
91 * The "first" and "last" nodes are always mutually reachable.
92 *
93 * A new element is added atomically by CASing the null prev or
94 * next reference in the first or last node to a fresh node
95 * containing the element.
96 *
97 * A node is considered "active" if it is a live node, or the
98 * first or last node. Active nodes cannot be unlinked.
99 *
100 * A "self-link" is a next or prev reference that is the same node:
101 * p.prev == p or p.next == p
102 * Self-links are used in the node unlinking process. Active nodes
103 * never have self-links.
104 *
105 * A node p is active if and only if:
106 *
107 * p.item != null ||
108 * (p.prev == null && p.next != p) ||
109 * (p.next == null && p.prev != p)
110 *
111 * The deque object has two node references, "head" and "tail".
112 * The head and tail are only approximations to the first and last
113 * nodes of the deque. The first node can always be found by
114 * following prev pointers from head; likewise for tail. However,
115 * it is permissible for head and tail to be referring to deleted
116 * nodes that have been unlinked and so may not be reachable from
117 * any live node.
118 *
119 * There are 3 stages of node deletion;
120 * "logical deletion", "unlinking", and "gc-unlinking".
121 *
122 * 1. "logical deletion" by CASing item to null atomically removes
123 * the element from the collection, and makes the containing node
124 * eligible for unlinking.
125 *
126 * 2. "unlinking" makes a deleted node unreachable from active
127 * nodes, and thus eventually reclaimable by GC. Unlinked nodes
128 * may remain reachable indefinitely from an iterator.
129 *
130 * Physical node unlinking is merely an optimization (albeit a
131 * critical one), and so can be performed at our convenience. At
132 * any time, the set of live nodes maintained by prev and next
133 * links are identical, that is, the live nodes found via next
134 * links from the first node is equal to the elements found via
135 * prev links from the last node. However, this is not true for
136 * nodes that have already been logically deleted - such nodes may
137 * be reachable in one direction only.
138 *
139 * 3. "gc-unlinking" takes unlinking further by making active
140 * nodes unreachable from deleted nodes, making it easier for the
141 * GC to reclaim future deleted nodes. This step makes the data
142 * structure "gc-robust", as first described in detail by Boehm
143 * (http://portal.acm.org/citation.cfm?doid=503272.503282).
144 *
145 * GC-unlinked nodes may remain reachable indefinitely from an
146 * iterator, but unlike unlinked nodes, are never reachable from
147 * head or tail.
148 *
149 * Making the data structure GC-robust will eliminate the risk of
150 * unbounded memory retention with conservative GCs and is likely
151 * to improve performance with generational GCs.
152 *
153 * When a node is dequeued at either end, e.g. via poll(), we would
154 * like to break any references from the node to active nodes. We
155 * develop further the use of self-links that was very effective in
156 * other concurrent collection classes. The idea is to replace
157 * prev and next pointers with special values that are interpreted
158 * to mean off-the-list-at-one-end. These are approximations, but
159 * good enough to preserve the properties we want in our
160 * traversals, e.g. we guarantee that a traversal will never visit
161 * the same element twice, but we don't guarantee whether a
162 * traversal that runs out of elements will be able to see more
163 * elements later after enqueues at that end. Doing gc-unlinking
164 * safely is particularly tricky, since any node can be in use
165 * indefinitely (for example by an iterator). We must ensure that
166 * the nodes pointed at by head/tail never get gc-unlinked, since
167 * head/tail are needed to get "back on track" by other nodes that
168 * are gc-unlinked. gc-unlinking accounts for much of the
169 * implementation complexity.
170 *
171 * Since neither unlinking nor gc-unlinking are necessary for
172 * correctness, there are many implementation choices regarding
173 * frequency (eagerness) of these operations. Since volatile
174 * reads are likely to be much cheaper than CASes, saving CASes by
175 * unlinking multiple adjacent nodes at a time may be a win.
176 * gc-unlinking can be performed rarely and still be effective,
177 * since it is most important that long chains of deleted nodes
178 * are occasionally broken.
179 *
180 * The actual representation we use is that p.next == p means to
181 * goto the first node (which in turn is reached by following prev
182 * pointers from head), and p.next == null && p.prev == p means
183 * that the iteration is at an end and that p is a (final static)
184 * dummy node, NEXT_TERMINATOR, and not the last active node.
185 * Finishing the iteration when encountering such a TERMINATOR is
186 * good enough for read-only traversals, so such traversals can use
187 * p.next == null as the termination condition. When we need to
188 * find the last (active) node, for enqueueing a new node, we need
189 * to check whether we have reached a TERMINATOR node; if so,
190 * restart traversal from tail.
191 *
192 * The implementation is completely directionally symmetrical,
193 * except that most public methods that iterate through the list
194 * follow next pointers ("forward" direction).
195 *
196 * There is one desirable property we would like to have, but
197 * don't: it is possible, when an addFirst(A) is racing with
198 * pollFirst() removing B, for an iterating observer to see A B C
199 * and subsequently see A C, even though no interior removes are
200 * ever performed. I believe this wart can only be removed at
201 * significant runtime cost.
202 *
203 * Empirically, microbenchmarks suggest that this class adds about
204 * 40% overhead relative to ConcurrentLinkedQueue, which feels as
205 * good as we can hope for.
206 */
207
208 private static final long serialVersionUID = 876323262645176354L;
209
210 /**
211 * A node from which the first node on list (that is, the unique node p
212 * with p.prev == null && p.next != p) can be reached in O(1) time.
213 * Invariants:
214 * - the first node is always O(1) reachable from head via prev links
215 * - all live nodes are reachable from the first node via succ()
216 * - head != null
217 * - (tmp = head).next != tmp || tmp != head
218 * - head is never gc-unlinked (but may be unlinked)
219 * Non-invariants:
220 * - head.item may or may not be null
221 * - head may not be reachable from the first or last node, or from tail
222 */
223 private transient volatile Node<E> head;
224
225 /**
226 * A node from which the last node on list (that is, the unique node p
227 * with p.next == null && p.prev != p) can be reached in O(1) time.
228 * Invariants:
229 * - the last node is always O(1) reachable from tail via next links
230 * - all live nodes are reachable from the last node via pred()
231 * - tail != null
232 * - tail is never gc-unlinked (but may be unlinked)
233 * Non-invariants:
234 * - tail.item may or may not be null
235 * - tail may not be reachable from the first or last node, or from head
236 */
237 private transient volatile Node<E> tail;
238
239 private final static Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
240
241 static {
242 PREV_TERMINATOR = new Node<Object>(null);
243 PREV_TERMINATOR.next = PREV_TERMINATOR;
244 NEXT_TERMINATOR = new Node<Object>(null);
245 NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
246 }
247
248 @SuppressWarnings("unchecked")
249 Node<E> prevTerminator() {
250 return (Node<E>) PREV_TERMINATOR;
251 }
252
253 @SuppressWarnings("unchecked")
254 Node<E> nextTerminator() {
255 return (Node<E>) NEXT_TERMINATOR;
256 }
257
258 static final class Node<E> {
259 volatile Node<E> prev;
260 volatile E item;
261 volatile Node<E> next;
262
263 Node(E item) {
264 // Piggyback on imminent casNext() or casPrev()
265 lazySetItem(item);
266 }
267
268 boolean casItem(E cmp, E val) {
269 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
270 }
271
272 void lazySetItem(E val) {
273 UNSAFE.putOrderedObject(this, itemOffset, val);
274 }
275
276 void lazySetNext(Node<E> val) {
277 UNSAFE.putOrderedObject(this, nextOffset, val);
278 }
279
280 boolean casNext(Node<E> cmp, Node<E> val) {
281 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
282 }
283
284 void lazySetPrev(Node<E> val) {
285 UNSAFE.putOrderedObject(this, prevOffset, val);
286 }
287
288 boolean casPrev(Node<E> cmp, Node<E> val) {
289 return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
290 }
291
292 // Unsafe mechanics
293
294 private static final sun.misc.Unsafe UNSAFE =
295 sun.misc.Unsafe.getUnsafe();
296 private static final long prevOffset =
297 objectFieldOffset(UNSAFE, "prev", Node.class);
298 private static final long itemOffset =
299 objectFieldOffset(UNSAFE, "item", Node.class);
300 private static final long nextOffset =
301 objectFieldOffset(UNSAFE, "next", Node.class);
302 }
303
304 /**
305 * Links e as first element.
306 */
307 private void linkFirst(E e) {
308 checkNotNull(e);
309 final Node<E> newNode = new Node<E>(e);
310
311 retry:
312 for (;;) {
313 for (Node<E> h = head, p = h;;) {
314 Node<E> q = p.prev;
315 if (q == null) {
316 if (p.next == p) // PREV_TERMINATOR
317 continue retry;
318 // p is first node
319 newNode.lazySetNext(p); // CAS piggyback
320 if (p.casPrev(null, newNode)) {
321 if (p != h) // hop two nodes at a time
322 casHead(h, newNode);
323 return;
324 } else {
325 p = p.prev; // lost CAS race to another thread
326 }
327 }
328 else if (p == q)
329 continue retry;
330 else
331 p = q;
332 }
333 }
334 }
335
336 /**
337 * Links e as last element.
338 */
339 private void linkLast(E e) {
340 checkNotNull(e);
341 final Node<E> newNode = new Node<E>(e);
342
343 retry:
344 for (;;) {
345 for (Node<E> t = tail, p = t;;) {
346 Node<E> q = p.next;
347 if (q == null) {
348 if (p.prev == p) // NEXT_TERMINATOR
349 continue retry;
350 // p is last node
351 newNode.lazySetPrev(p); // CAS piggyback
352 if (p.casNext(null, newNode)) {
353 if (p != t) // hop two nodes at a time
354 casTail(t, newNode);
355 return;
356 } else {
357 p = p.next; // lost CAS race to another thread
358 }
359 }
360 else if (p == q)
361 continue retry;
362 else
363 p = q;
364 }
365 }
366 }
367
368 private final static int HOPS = 2;
369
370 /**
371 * Unlinks non-null node x.
372 */
373 void unlink(Node<E> x) {
374 // assert x != null;
375 // assert x.item == null;
376 // assert x != PREV_TERMINATOR;
377 // assert x != NEXT_TERMINATOR;
378
379 final Node<E> prev = x.prev;
380 final Node<E> next = x.next;
381 if (prev == null) {
382 unlinkFirst(x, next);
383 } else if (next == null) {
384 unlinkLast(x, prev);
385 } else {
386 // Unlink interior node.
387 //
388 // This is the common case, since a series of polls at the
389 // same end will be "interior" removes, except perhaps for
390 // the first one, since end nodes cannot be unlinked.
391 //
392 // At any time, all active nodes are mutually reachable by
393 // following a sequence of either next or prev pointers.
394 //
395 // Our strategy is to find the unique active predecessor
396 // and successor of x. Try to fix up their links so that
397 // they point to each other, leaving x unreachable from
398 // active nodes. If successful, and if x has no live
399 // predecessor/successor, we additionally try to gc-unlink,
400 // leaving active nodes unreachable from x, by rechecking
401 // that the status of predecessor and successor are
402 // unchanged and ensuring that x is not reachable from
403 // tail/head, before setting x's prev/next links to their
404 // logical approximate replacements, self/TERMINATOR.
405 Node<E> activePred, activeSucc;
406 boolean isFirst, isLast;
407 int hops = 1;
408
409 // Find active predecessor
410 for (Node<E> p = prev; ; ++hops) {
411 if (p.item != null) {
412 activePred = p;
413 isFirst = false;
414 break;
415 }
416 Node<E> q = p.prev;
417 if (q == null) {
418 if (p.next == p)
419 return;
420 activePred = p;
421 isFirst = true;
422 break;
423 }
424 else if (p == q)
425 return;
426 else
427 p = q;
428 }
429
430 // Find active successor
431 for (Node<E> p = next; ; ++hops) {
432 if (p.item != null) {
433 activeSucc = p;
434 isLast = false;
435 break;
436 }
437 Node<E> q = p.next;
438 if (q == null) {
439 if (p.prev == p)
440 return;
441 activeSucc = p;
442 isLast = true;
443 break;
444 }
445 else if (p == q)
446 return;
447 else
448 p = q;
449 }
450
451 // TODO: better HOP heuristics
452 if (hops < HOPS
453 // always squeeze out interior deleted nodes
454 && (isFirst | isLast))
455 return;
456
457 // Squeeze out deleted nodes between activePred and
458 // activeSucc, including x.
459 skipDeletedSuccessors(activePred);
460 skipDeletedPredecessors(activeSucc);
461
462 // Try to gc-unlink, if possible
463 if ((isFirst | isLast) &&
464
465 // Recheck expected state of predecessor and successor
466 (activePred.next == activeSucc) &&
467 (activeSucc.prev == activePred) &&
468 (isFirst ? activePred.prev == null : activePred.item != null) &&
469 (isLast ? activeSucc.next == null : activeSucc.item != null)) {
470
471 // Ensure x is not reachable from head or tail
472 updateHead();
473 updateTail();
474
475 // Finally, actually gc-unlink
476 x.lazySetPrev(isFirst ? prevTerminator() : x);
477 x.lazySetNext(isLast ? nextTerminator() : x);
478 }
479 }
480 }
481
482 /**
483 * Unlinks non-null first node.
484 */
485 private void unlinkFirst(Node<E> first, Node<E> next) {
486 // assert first != null && next != null && first.item == null;
487 Node<E> o = null, p = next;
488 for (int hops = 0; ; ++hops) {
489 Node<E> q;
490 if (p.item != null || (q = p.next) == null) {
491 if (hops >= HOPS && p.prev != p && first.casNext(next, p)) {
492 skipDeletedPredecessors(p);
493 if (first.prev == null &&
494 (p.next == null || p.item != null) &&
495 p.prev == first) {
496
497 updateHead();
498 updateTail();
499 o.lazySetNext(o);
500 o.lazySetPrev(prevTerminator());
501 }
502 }
503 return;
504 }
505 else if (p == q)
506 return;
507 else {
508 o = p;
509 p = q;
510 }
511 }
512 }
513
514 /**
515 * Unlinks non-null last node.
516 */
517 private void unlinkLast(Node<E> last, Node<E> prev) {
518 // assert last != null && prev != null && last.item == null;
519 Node<E> o = null, p = prev;
520 for (int hops = 0; ; ++hops) {
521 Node<E> q;
522 if (p.item != null || (q = p.prev) == null) {
523 if (hops >= HOPS && p.next != p && last.casPrev(prev, p)) {
524 skipDeletedSuccessors(p);
525 if (last.next == null &&
526 (p.prev == null || p.item != null) &&
527 p.next == last) {
528
529 updateHead();
530 updateTail();
531 o.lazySetPrev(o);
532 o.lazySetNext(nextTerminator());
533 }
534 }
535 return;
536 }
537 else if (p == q)
538 return;
539 else {
540 o = p;
541 p = q;
542 }
543 }
544 }
545
546 /**
547 * Sets head to first node. Guarantees that any node which was
548 * unlinked before a call to this method will be unreachable from
549 * head after it returns.
550 */
551 private final void updateHead() {
552 first();
553 }
554
555 /**
556 * Sets tail to last node. Guarantees that any node which was
557 * unlinked before a call to this method will be unreachable from
558 * tail after it returns.
559 */
560 private final void updateTail() {
561 last();
562 }
563
564 private void skipDeletedPredecessors(Node<E> x) {
565 whileActive:
566 do {
567 Node<E> prev = x.prev;
568 // assert prev != null;
569 // assert x != NEXT_TERMINATOR;
570 // assert x != PREV_TERMINATOR;
571 Node<E> p = prev;
572 findActive:
573 for (;;) {
574 if (p.item != null)
575 break findActive;
576 Node<E> q = p.prev;
577 if (q == null) {
578 if (p.next == p)
579 continue whileActive;
580 break findActive;
581 }
582 else if (p == q)
583 continue whileActive;
584 else
585 p = q;
586 }
587
588 // found active CAS target
589 if (prev == p || x.casPrev(prev, p))
590 return;
591
592 } while (x.item != null || x.next == null);
593 }
594
595 private void skipDeletedSuccessors(Node<E> x) {
596 whileActive:
597 do {
598 Node<E> next = x.next;
599 // assert next != null;
600 // assert x != NEXT_TERMINATOR;
601 // assert x != PREV_TERMINATOR;
602 Node<E> p = next;
603 findActive:
604 for (;;) {
605 if (p.item != null)
606 break findActive;
607 Node<E> q = p.next;
608 if (q == null) {
609 if (p.prev == p)
610 continue whileActive;
611 break findActive;
612 }
613 else if (p == q)
614 continue whileActive;
615 else
616 p = q;
617 }
618
619 // found active CAS target
620 if (next == p || x.casNext(next, p))
621 return;
622
623 } while (x.item != null || x.prev == null);
624 }
625
626 /**
627 * Returns the successor of p, or the first node if p.next has been
628 * linked to self, which will only be true if traversing with a
629 * stale pointer that is now off the list.
630 */
631 final Node<E> succ(Node<E> p) {
632 // TODO: should we skip deleted nodes here?
633 Node<E> q = p.next;
634 return (p == q) ? first() : q;
635 }
636
637 /**
638 * Returns the predecessor of p, or the last node if p.prev has been
639 * linked to self, which will only be true if traversing with a
640 * stale pointer that is now off the list.
641 */
642 final Node<E> pred(Node<E> p) {
643 Node<E> q = p.prev;
644 return (p == q) ? last() : q;
645 }
646
647 /**
648 * Returns the first node, the unique node p for which:
649 * p.prev == null && p.next != p
650 * The returned node may or may not be logically deleted.
651 * Guarantees that head is set to the returned node.
652 */
653 Node<E> first() {
654 retry:
655 for (;;) {
656 for (Node<E> h = head, p = h;;) {
657 Node<E> q = p.prev;
658 if (q == null) {
659 if (p == h
660 // It is possible that p is PREV_TERMINATOR,
661 // but if so, the CAS is guaranteed to fail.
662 || casHead(h, p))
663 return p;
664 else
665 continue retry;
666 } else if (p == q) {
667 continue retry;
668 } else {
669 p = q;
670 }
671 }
672 }
673 }
674
675 /**
676 * Returns the last node, the unique node p for which:
677 * p.next == null && p.prev != p
678 * The returned node may or may not be logically deleted.
679 * Guarantees that tail is set to the returned node.
680 */
681 Node<E> last() {
682 retry:
683 for (;;) {
684 for (Node<E> t = tail, p = t;;) {
685 Node<E> q = p.next;
686 if (q == null) {
687 if (p == t
688 // It is possible that p is NEXT_TERMINATOR,
689 // but if so, the CAS is guaranteed to fail.
690 || casTail(t, p))
691 return p;
692 else
693 continue retry;
694 } else if (p == q) {
695 continue retry;
696 } else {
697 p = q;
698 }
699 }
700 }
701 }
702
703 // Minor convenience utilities
704
705 /**
706 * Throws NullPointerException if argument is null.
707 *
708 * @param v the element
709 */
710 private static void checkNotNull(Object v) {
711 if (v == null)
712 throw new NullPointerException();
713 }
714
715 /**
716 * Returns element unless it is null, in which case throws
717 * NoSuchElementException.
718 *
719 * @param v the element
720 * @return the element
721 */
722 private E screenNullResult(E v) {
723 if (v == null)
724 throw new NoSuchElementException();
725 return v;
726 }
727
728 /**
729 * Creates an array list and fills it with elements of this list.
730 * Used by toArray.
731 *
732 * @return the arrayList
733 */
734 private ArrayList<E> toArrayList() {
735 ArrayList<E> list = new ArrayList<E>();
736 for (Node<E> p = first(); p != null; p = succ(p)) {
737 E item = p.item;
738 if (item != null)
739 list.add(item);
740 }
741 return list;
742 }
743
744 /**
745 * Constructs an empty deque.
746 */
747 public ConcurrentLinkedDeque() {
748 head = tail = new Node<E>(null);
749 }
750
751 /**
752 * Constructs a deque initially containing the elements of
753 * the given collection, added in traversal order of the
754 * collection's iterator.
755 *
756 * @param c the collection of elements to initially contain
757 * @throws NullPointerException if the specified collection or any
758 * of its elements are null
759 */
760 public ConcurrentLinkedDeque(Collection<? extends E> c) {
761 // Copy c into a private chain of Nodes
762 Node<E> h = null, t = null;
763 for (E e : c) {
764 checkNotNull(e);
765 Node<E> newNode = new Node<E>(e);
766 if (h == null)
767 h = t = newNode;
768 else {
769 t.next = newNode;
770 newNode.prev = t;
771 t = newNode;
772 }
773 }
774 if (h == null)
775 h = t = new Node<E>(null);
776 head = h;
777 tail = t;
778 }
779
780 /**
781 * Inserts the specified element at the front of this deque.
782 *
783 * @throws NullPointerException {@inheritDoc}
784 */
785 public void addFirst(E e) {
786 linkFirst(e);
787 }
788
789 /**
790 * Inserts the specified element at the end of this deque.
791 *
792 * <p>This method is equivalent to {@link #add}.
793 *
794 * @throws NullPointerException {@inheritDoc}
795 */
796 public void addLast(E e) {
797 linkLast(e);
798 }
799
800 /**
801 * Inserts the specified element at the front of this deque.
802 *
803 * @return {@code true} always
804 * @throws NullPointerException {@inheritDoc}
805 */
806 public boolean offerFirst(E e) {
807 linkFirst(e);
808 return true;
809 }
810
811 /**
812 * Inserts the specified element at the end of this deque.
813 *
814 * <p>This method is equivalent to {@link #add}.
815 *
816 * @return {@code true} always
817 * @throws NullPointerException {@inheritDoc}
818 */
819 public boolean offerLast(E e) {
820 linkLast(e);
821 return true;
822 }
823
824 public E peekFirst() {
825 for (Node<E> p = first(); p != null; p = succ(p)) {
826 E item = p.item;
827 if (item != null)
828 return item;
829 }
830 return null;
831 }
832
833 public E peekLast() {
834 for (Node<E> p = last(); p != null; p = pred(p)) {
835 E item = p.item;
836 if (item != null)
837 return item;
838 }
839 return null;
840 }
841
842 /**
843 * @throws NoSuchElementException {@inheritDoc}
844 */
845 public E getFirst() {
846 return screenNullResult(peekFirst());
847 }
848
849 /**
850 * @throws NoSuchElementException {@inheritDoc}
851 */
852 public E getLast() {
853 return screenNullResult(peekLast());
854 }
855
856 public E pollFirst() {
857 for (Node<E> p = first(); p != null; p = succ(p)) {
858 E item = p.item;
859 if (item != null && p.casItem(item, null)) {
860 unlink(p);
861 return item;
862 }
863 }
864 return null;
865 }
866
867 public E pollLast() {
868 for (Node<E> p = last(); p != null; p = pred(p)) {
869 E item = p.item;
870 if (item != null && p.casItem(item, null)) {
871 unlink(p);
872 return item;
873 }
874 }
875 return null;
876 }
877
878 /**
879 * @throws NoSuchElementException {@inheritDoc}
880 */
881 public E removeFirst() {
882 return screenNullResult(pollFirst());
883 }
884
885 /**
886 * @throws NoSuchElementException {@inheritDoc}
887 */
888 public E removeLast() {
889 return screenNullResult(pollLast());
890 }
891
892 // *** Queue and stack methods ***
893
894 /**
895 * Inserts the specified element at the tail of this deque.
896 *
897 * @return {@code true} (as specified by {@link Queue#offer})
898 * @throws NullPointerException if the specified element is null
899 */
900 public boolean offer(E e) {
901 return offerLast(e);
902 }
903
904 /**
905 * Inserts the specified element at the tail of this deque.
906 *
907 * @return {@code true} (as specified by {@link Collection#add})
908 * @throws NullPointerException if the specified element is null
909 */
910 public boolean add(E e) {
911 return offerLast(e);
912 }
913
914 public E poll() { return pollFirst(); }
915 public E remove() { return removeFirst(); }
916 public E peek() { return peekFirst(); }
917 public E element() { return getFirst(); }
918 public void push(E e) { addFirst(e); }
919 public E pop() { return removeFirst(); }
920
921 /**
922 * Removes the first element {@code e} such that
923 * {@code o.equals(e)}, if such an element exists in this deque.
924 * If the deque does not contain the element, it is unchanged.
925 *
926 * @param o element to be removed from this deque, if present
927 * @return {@code true} if the deque contained the specified element
928 * @throws NullPointerException if the specified element is {@code null}
929 */
930 public boolean removeFirstOccurrence(Object o) {
931 checkNotNull(o);
932 for (Node<E> p = first(); p != null; p = succ(p)) {
933 E item = p.item;
934 if (item != null && o.equals(item) && p.casItem(item, null)) {
935 unlink(p);
936 return true;
937 }
938 }
939 return false;
940 }
941
942 /**
943 * Removes the last element {@code e} such that
944 * {@code o.equals(e)}, if such an element exists in this deque.
945 * If the deque does not contain the element, it is unchanged.
946 *
947 * @param o element to be removed from this deque, if present
948 * @return {@code true} if the deque contained the specified element
949 * @throws NullPointerException if the specified element is {@code null}
950 */
951 public boolean removeLastOccurrence(Object o) {
952 checkNotNull(o);
953 for (Node<E> p = last(); p != null; p = pred(p)) {
954 E item = p.item;
955 if (item != null && o.equals(item) && p.casItem(item, null)) {
956 unlink(p);
957 return true;
958 }
959 }
960 return false;
961 }
962
963 /**
964 * Returns {@code true} if this deque contains at least one
965 * element {@code e} such that {@code o.equals(e)}.
966 *
967 * @param o element whose presence in this deque is to be tested
968 * @return {@code true} if this deque contains the specified element
969 */
970 public boolean contains(Object o) {
971 if (o == null) return false;
972 for (Node<E> p = first(); p != null; p = succ(p)) {
973 E item = p.item;
974 if (item != null && o.equals(item))
975 return true;
976 }
977 return false;
978 }
979
980 /**
981 * Returns {@code true} if this collection contains no elements.
982 *
983 * @return {@code true} if this collection contains no elements
984 */
985 public boolean isEmpty() {
986 return peekFirst() == null;
987 }
988
989 /**
990 * Returns the number of elements in this deque. If this deque
991 * contains more than {@code Integer.MAX_VALUE} elements, it
992 * returns {@code Integer.MAX_VALUE}.
993 *
994 * <p>Beware that, unlike in most collections, this method is
995 * <em>NOT</em> a constant-time operation. Because of the
996 * asynchronous nature of these deques, determining the current
997 * number of elements requires traversing them all to count them.
998 * Additionally, it is possible for the size to change during
999 * execution of this method, in which case the returned result
1000 * will be inaccurate. Thus, this method is typically not very
1001 * useful in concurrent applications.
1002 *
1003 * @return the number of elements in this deque
1004 */
1005 public int size() {
1006 long count = 0;
1007 for (Node<E> p = first(); p != null; p = succ(p))
1008 if (p.item != null)
1009 ++count;
1010 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1011 }
1012
1013 /**
1014 * Removes the first element {@code e} such that
1015 * {@code o.equals(e)}, if such an element exists in this deque.
1016 * If the deque does not contain the element, it is unchanged.
1017 *
1018 * @param o element to be removed from this deque, if present
1019 * @return {@code true} if the deque contained the specified element
1020 * @throws NullPointerException if the specified element is {@code null}
1021 */
1022 public boolean remove(Object o) {
1023 return removeFirstOccurrence(o);
1024 }
1025
1026 /**
1027 * Appends all of the elements in the specified collection to the end of
1028 * this deque, in the order that they are returned by the specified
1029 * collection's iterator. Attempts to {@code addAll} of a deque to
1030 * itself result in {@code IllegalArgumentException}.
1031 *
1032 * @param c the elements to be inserted into this deque
1033 * @return {@code true} if this deque changed as a result of the call
1034 * @throws NullPointerException if the specified collection or any
1035 * of its elements are null
1036 * @throws IllegalArgumentException if the collection is this deque
1037 */
1038 public boolean addAll(Collection<? extends E> c) {
1039 if (c == this)
1040 // As historically specified in AbstractQueue#addAll
1041 throw new IllegalArgumentException();
1042
1043 // Copy c into a private chain of Nodes
1044 Node<E> splice = null, last = null;
1045 for (E e : c) {
1046 checkNotNull(e);
1047 Node<E> newNode = new Node<E>(e);
1048 if (splice == null)
1049 splice = last = newNode;
1050 else {
1051 last.next = newNode;
1052 newNode.prev = last;
1053 last = newNode;
1054 }
1055 }
1056 if (splice == null)
1057 return false;
1058
1059 // Atomically splice the chain as the tail of this collection
1060 retry:
1061 for (;;) {
1062 for (Node<E> t = tail, p = t;;) {
1063 Node<E> q = p.next;
1064 if (q == null) {
1065 if (p.prev == p) // NEXT_TERMINATOR
1066 continue retry;
1067 // p is last node
1068 splice.lazySetPrev(p); // CAS piggyback
1069 if (p.casNext(null, splice)) {
1070 if (! casTail(t, last)) {
1071 // Try a little harder to update tail,
1072 // since we may be adding many elements.
1073 t = tail;
1074 if (last.next == null)
1075 casTail(t, last);
1076 }
1077 return true;
1078 } else {
1079 p = p.next; // lost CAS race to another thread
1080 }
1081 }
1082 else if (p == q)
1083 continue retry;
1084 else
1085 p = q;
1086 }
1087 }
1088 }
1089
1090 /**
1091 * Removes all of the elements from this deque.
1092 */
1093 public void clear() {
1094 while (pollFirst() != null)
1095 ;
1096 }
1097
1098 /**
1099 * Returns an array containing all of the elements in this deque, in
1100 * proper sequence (from first to last element).
1101 *
1102 * <p>The returned array will be "safe" in that no references to it are
1103 * maintained by this deque. (In other words, this method must allocate
1104 * a new array). The caller is thus free to modify the returned array.
1105 *
1106 * <p>This method acts as bridge between array-based and collection-based
1107 * APIs.
1108 *
1109 * @return an array containing all of the elements in this deque
1110 */
1111 public Object[] toArray() {
1112 return toArrayList().toArray();
1113 }
1114
1115 /**
1116 * Returns an array containing all of the elements in this deque,
1117 * in proper sequence (from first to last element); the runtime
1118 * type of the returned array is that of the specified array. If
1119 * the deque fits in the specified array, it is returned therein.
1120 * Otherwise, a new array is allocated with the runtime type of
1121 * the specified array and the size of this deque.
1122 *
1123 * <p>If this deque fits in the specified array with room to spare
1124 * (i.e., the array has more elements than this deque), the element in
1125 * the array immediately following the end of the deque is set to
1126 * {@code null}.
1127 *
1128 * <p>Like the {@link #toArray()} method, this method acts as
1129 * bridge between array-based and collection-based APIs. Further,
1130 * this method allows precise control over the runtime type of the
1131 * output array, and may, under certain circumstances, be used to
1132 * save allocation costs.
1133 *
1134 * <p>Suppose {@code x} is a deque known to contain only strings.
1135 * The following code can be used to dump the deque into a newly
1136 * allocated array of {@code String}:
1137 *
1138 * <pre>
1139 * String[] y = x.toArray(new String[0]);</pre>
1140 *
1141 * Note that {@code toArray(new Object[0])} is identical in function to
1142 * {@code toArray()}.
1143 *
1144 * @param a the array into which the elements of the deque are to
1145 * be stored, if it is big enough; otherwise, a new array of the
1146 * same runtime type is allocated for this purpose
1147 * @return an array containing all of the elements in this deque
1148 * @throws ArrayStoreException if the runtime type of the specified array
1149 * is not a supertype of the runtime type of every element in
1150 * this deque
1151 * @throws NullPointerException if the specified array is null
1152 */
1153 public <T> T[] toArray(T[] a) {
1154 return toArrayList().toArray(a);
1155 }
1156
1157 /**
1158 * Returns an iterator over the elements in this deque in proper sequence.
1159 * The elements will be returned in order from first (head) to last (tail).
1160 *
1161 * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
1162 * will never throw {@link java.util.ConcurrentModificationException
1163 * ConcurrentModificationException},
1164 * and guarantees to traverse elements as they existed upon
1165 * construction of the iterator, and may (but is not guaranteed to)
1166 * reflect any modifications subsequent to construction.
1167 *
1168 * @return an iterator over the elements in this deque in proper sequence
1169 */
1170 public Iterator<E> iterator() {
1171 return new Itr();
1172 }
1173
1174 /**
1175 * Returns an iterator over the elements in this deque in reverse
1176 * sequential order. The elements will be returned in order from
1177 * last (tail) to first (head).
1178 *
1179 * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
1180 * will never throw {@link java.util.ConcurrentModificationException
1181 * ConcurrentModificationException},
1182 * and guarantees to traverse elements as they existed upon
1183 * construction of the iterator, and may (but is not guaranteed to)
1184 * reflect any modifications subsequent to construction.
1185 *
1186 * @return an iterator over the elements in this deque in reverse order
1187 */
1188 public Iterator<E> descendingIterator() {
1189 return new DescendingItr();
1190 }
1191
1192 private abstract class AbstractItr implements Iterator<E> {
1193 /**
1194 * Next node to return item for.
1195 */
1196 private Node<E> nextNode;
1197
1198 /**
1199 * nextItem holds on to item fields because once we claim
1200 * that an element exists in hasNext(), we must return it in
1201 * the following next() call even if it was in the process of
1202 * being removed when hasNext() was called.
1203 */
1204 private E nextItem;
1205
1206 /**
1207 * Node returned by most recent call to next. Needed by remove.
1208 * Reset to null if this element is deleted by a call to remove.
1209 */
1210 private Node<E> lastRet;
1211
1212 abstract Node<E> startNode();
1213 abstract Node<E> nextNode(Node<E> p);
1214
1215 AbstractItr() {
1216 advance();
1217 }
1218
1219 /**
1220 * Sets nextNode and nextItem to next valid node, or to null
1221 * if no such.
1222 */
1223 private void advance() {
1224 lastRet = nextNode;
1225
1226 Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1227 for (;; p = nextNode(p)) {
1228 if (p == null) {
1229 // p might be active end or TERMINATOR node; both are OK
1230 nextNode = null;
1231 nextItem = null;
1232 break;
1233 }
1234 E item = p.item;
1235 if (item != null) {
1236 nextNode = p;
1237 nextItem = item;
1238 break;
1239 }
1240 }
1241 }
1242
1243 public boolean hasNext() {
1244 return nextItem != null;
1245 }
1246
1247 public E next() {
1248 E item = nextItem;
1249 if (item == null) throw new NoSuchElementException();
1250 advance();
1251 return item;
1252 }
1253
1254 public void remove() {
1255 Node<E> l = lastRet;
1256 if (l == null) throw new IllegalStateException();
1257 l.item = null;
1258 unlink(l);
1259 lastRet = null;
1260 }
1261 }
1262
1263 /** Forward iterator */
1264 private class Itr extends AbstractItr {
1265 Node<E> startNode() { return first(); }
1266 Node<E> nextNode(Node<E> p) { return succ(p); }
1267 }
1268
1269 /** Descending iterator */
1270 private class DescendingItr extends AbstractItr {
1271 Node<E> startNode() { return last(); }
1272 Node<E> nextNode(Node<E> p) { return pred(p); }
1273 }
1274
1275 /**
1276 * Saves the state to a stream (that is, serializes it).
1277 *
1278 * @serialData All of the elements (each an {@code E}) in
1279 * the proper order, followed by a null
1280 * @param s the stream
1281 */
1282 private void writeObject(java.io.ObjectOutputStream s)
1283 throws java.io.IOException {
1284
1285 // Write out any hidden stuff
1286 s.defaultWriteObject();
1287
1288 // Write out all elements in the proper order.
1289 for (Node<E> p = first(); p != null; p = succ(p)) {
1290 Object item = p.item;
1291 if (item != null)
1292 s.writeObject(item);
1293 }
1294
1295 // Use trailing null as sentinel
1296 s.writeObject(null);
1297 }
1298
1299 /**
1300 * Reconstitutes the instance from a stream (that is, deserializes it).
1301 * @param s the stream
1302 */
1303 private void readObject(java.io.ObjectInputStream s)
1304 throws java.io.IOException, ClassNotFoundException {
1305 s.defaultReadObject();
1306
1307 // Read in elements until trailing null sentinel found
1308 Node<E> h = null, t = null;
1309 Object item;
1310 while ((item = s.readObject()) != null) {
1311 @SuppressWarnings("unchecked")
1312 Node<E> newNode = new Node<E>((E) item);
1313 if (h == null)
1314 h = t = newNode;
1315 else {
1316 t.next = newNode;
1317 newNode.prev = t;
1318 t = newNode;
1319 }
1320 }
1321 if (h == null)
1322 h = t = new Node<E>(null);
1323 head = h;
1324 tail = t;
1325 }
1326
1327 // Unsafe mechanics
1328
1329 private static final sun.misc.Unsafe UNSAFE =
1330 sun.misc.Unsafe.getUnsafe();
1331 private static final long headOffset =
1332 objectFieldOffset(UNSAFE, "head", ConcurrentLinkedDeque.class);
1333 private static final long tailOffset =
1334 objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedDeque.class);
1335
1336 private boolean casHead(Node<E> cmp, Node<E> val) {
1337 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1338 }
1339
1340 private boolean casTail(Node<E> cmp, Node<E> val) {
1341 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1342 }
1343
1344 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1345 String field, Class<?> klazz) {
1346 try {
1347 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1348 } catch (NoSuchFieldException e) {
1349 // Convert Exception to corresponding Error
1350 NoSuchFieldError error = new NoSuchFieldError(field);
1351 error.initCause(e);
1352 throw error;
1353 }
1354 }
1355 }