ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.43
Committed: Wed Mar 27 19:46:34 2013 UTC (11 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.42: +1 -1 lines
Log Message:
conform to updated lambda Spliterator

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractCollection;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.Deque;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.Spliterators;
18 import java.util.Spliterator;
19 import java.util.stream.Stream;
20 import java.util.stream.Streams;
21 import java.util.function.Consumer;
22
23 /**
24 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
25 * Concurrent insertion, removal, and access operations execute safely
26 * across multiple threads.
27 * A {@code ConcurrentLinkedDeque} is an appropriate choice when
28 * many threads will share access to a common collection.
29 * Like most other concurrent collection implementations, this class
30 * does not permit the use of {@code null} elements.
31 *
32 * <p>Iterators are <i>weakly consistent</i>, returning elements
33 * reflecting the state of the deque at some point at or since the
34 * creation of the iterator. They do <em>not</em> throw {@link
35 * java.util.ConcurrentModificationException
36 * ConcurrentModificationException}, and may proceed concurrently with
37 * other operations.
38 *
39 * <p>Beware that, unlike in most collections, the {@code size} method
40 * is <em>NOT</em> a constant-time operation. Because of the
41 * asynchronous nature of these deques, determining the current number
42 * of elements requires a traversal of the elements, and so may report
43 * inaccurate results if this collection is modified during traversal.
44 * Additionally, the bulk operations {@code addAll},
45 * {@code removeAll}, {@code retainAll}, {@code containsAll},
46 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
47 * to be performed atomically. For example, an iterator operating
48 * concurrently with an {@code addAll} operation might view only some
49 * of the added elements.
50 *
51 * <p>This class and its iterator implement all of the <em>optional</em>
52 * methods of the {@link Deque} and {@link Iterator} interfaces.
53 *
54 * <p>Memory consistency effects: As with other concurrent collections,
55 * actions in a thread prior to placing an object into a
56 * {@code ConcurrentLinkedDeque}
57 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
58 * actions subsequent to the access or removal of that element from
59 * the {@code ConcurrentLinkedDeque} in another thread.
60 *
61 * <p>This class is a member of the
62 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
63 * Java Collections Framework</a>.
64 *
65 * @since 1.7
66 * @author Doug Lea
67 * @author Martin Buchholz
68 * @param <E> the type of elements held in this collection
69 */
70 public class ConcurrentLinkedDeque<E>
71 extends AbstractCollection<E>
72 implements Deque<E>, java.io.Serializable {
73
74 /*
75 * This is an implementation of a concurrent lock-free deque
76 * supporting interior removes but not interior insertions, as
77 * required to support the entire Deque interface.
78 *
79 * We extend the techniques developed for ConcurrentLinkedQueue and
80 * LinkedTransferQueue (see the internal docs for those classes).
81 * Understanding the ConcurrentLinkedQueue implementation is a
82 * prerequisite for understanding the implementation of this class.
83 *
84 * The data structure is a symmetrical doubly-linked "GC-robust"
85 * linked list of nodes. We minimize the number of volatile writes
86 * using two techniques: advancing multiple hops with a single CAS
87 * and mixing volatile and non-volatile writes of the same memory
88 * locations.
89 *
90 * A node contains the expected E ("item") and links to predecessor
91 * ("prev") and successor ("next") nodes:
92 *
93 * class Node<E> { volatile Node<E> prev, next; volatile E item; }
94 *
95 * A node p is considered "live" if it contains a non-null item
96 * (p.item != null). When an item is CASed to null, the item is
97 * atomically logically deleted from the collection.
98 *
99 * At any time, there is precisely one "first" node with a null
100 * prev reference that terminates any chain of prev references
101 * starting at a live node. Similarly there is precisely one
102 * "last" node terminating any chain of next references starting at
103 * a live node. The "first" and "last" nodes may or may not be live.
104 * The "first" and "last" nodes are always mutually reachable.
105 *
106 * A new element is added atomically by CASing the null prev or
107 * next reference in the first or last node to a fresh node
108 * containing the element. The element's node atomically becomes
109 * "live" at that point.
110 *
111 * A node is considered "active" if it is a live node, or the
112 * first or last node. Active nodes cannot be unlinked.
113 *
114 * A "self-link" is a next or prev reference that is the same node:
115 * p.prev == p or p.next == p
116 * Self-links are used in the node unlinking process. Active nodes
117 * never have self-links.
118 *
119 * A node p is active if and only if:
120 *
121 * p.item != null ||
122 * (p.prev == null && p.next != p) ||
123 * (p.next == null && p.prev != p)
124 *
125 * The deque object has two node references, "head" and "tail".
126 * The head and tail are only approximations to the first and last
127 * nodes of the deque. The first node can always be found by
128 * following prev pointers from head; likewise for tail. However,
129 * it is permissible for head and tail to be referring to deleted
130 * nodes that have been unlinked and so may not be reachable from
131 * any live node.
132 *
133 * There are 3 stages of node deletion;
134 * "logical deletion", "unlinking", and "gc-unlinking".
135 *
136 * 1. "logical deletion" by CASing item to null atomically removes
137 * the element from the collection, and makes the containing node
138 * eligible for unlinking.
139 *
140 * 2. "unlinking" makes a deleted node unreachable from active
141 * nodes, and thus eventually reclaimable by GC. Unlinked nodes
142 * may remain reachable indefinitely from an iterator.
143 *
144 * Physical node unlinking is merely an optimization (albeit a
145 * critical one), and so can be performed at our convenience. At
146 * any time, the set of live nodes maintained by prev and next
147 * links are identical, that is, the live nodes found via next
148 * links from the first node is equal to the elements found via
149 * prev links from the last node. However, this is not true for
150 * nodes that have already been logically deleted - such nodes may
151 * be reachable in one direction only.
152 *
153 * 3. "gc-unlinking" takes unlinking further by making active
154 * nodes unreachable from deleted nodes, making it easier for the
155 * GC to reclaim future deleted nodes. This step makes the data
156 * structure "gc-robust", as first described in detail by Boehm
157 * (http://portal.acm.org/citation.cfm?doid=503272.503282).
158 *
159 * GC-unlinked nodes may remain reachable indefinitely from an
160 * iterator, but unlike unlinked nodes, are never reachable from
161 * head or tail.
162 *
163 * Making the data structure GC-robust will eliminate the risk of
164 * unbounded memory retention with conservative GCs and is likely
165 * to improve performance with generational GCs.
166 *
167 * When a node is dequeued at either end, e.g. via poll(), we would
168 * like to break any references from the node to active nodes. We
169 * develop further the use of self-links that was very effective in
170 * other concurrent collection classes. The idea is to replace
171 * prev and next pointers with special values that are interpreted
172 * to mean off-the-list-at-one-end. These are approximations, but
173 * good enough to preserve the properties we want in our
174 * traversals, e.g. we guarantee that a traversal will never visit
175 * the same element twice, but we don't guarantee whether a
176 * traversal that runs out of elements will be able to see more
177 * elements later after enqueues at that end. Doing gc-unlinking
178 * safely is particularly tricky, since any node can be in use
179 * indefinitely (for example by an iterator). We must ensure that
180 * the nodes pointed at by head/tail never get gc-unlinked, since
181 * head/tail are needed to get "back on track" by other nodes that
182 * are gc-unlinked. gc-unlinking accounts for much of the
183 * implementation complexity.
184 *
185 * Since neither unlinking nor gc-unlinking are necessary for
186 * correctness, there are many implementation choices regarding
187 * frequency (eagerness) of these operations. Since volatile
188 * reads are likely to be much cheaper than CASes, saving CASes by
189 * unlinking multiple adjacent nodes at a time may be a win.
190 * gc-unlinking can be performed rarely and still be effective,
191 * since it is most important that long chains of deleted nodes
192 * are occasionally broken.
193 *
194 * The actual representation we use is that p.next == p means to
195 * goto the first node (which in turn is reached by following prev
196 * pointers from head), and p.next == null && p.prev == p means
197 * that the iteration is at an end and that p is a (static final)
198 * dummy node, NEXT_TERMINATOR, and not the last active node.
199 * Finishing the iteration when encountering such a TERMINATOR is
200 * good enough for read-only traversals, so such traversals can use
201 * p.next == null as the termination condition. When we need to
202 * find the last (active) node, for enqueueing a new node, we need
203 * to check whether we have reached a TERMINATOR node; if so,
204 * restart traversal from tail.
205 *
206 * The implementation is completely directionally symmetrical,
207 * except that most public methods that iterate through the list
208 * follow next pointers ("forward" direction).
209 *
210 * We believe (without full proof) that all single-element deque
211 * operations (e.g., addFirst, peekLast, pollLast) are linearizable
212 * (see Herlihy and Shavit's book). However, some combinations of
213 * operations are known not to be linearizable. In particular,
214 * when an addFirst(A) is racing with pollFirst() removing B, it is
215 * possible for an observer iterating over the elements to observe
216 * A B C and subsequently observe A C, even though no interior
217 * removes are ever performed. Nevertheless, iterators behave
218 * reasonably, providing the "weakly consistent" guarantees.
219 *
220 * Empirically, microbenchmarks suggest that this class adds about
221 * 40% overhead relative to ConcurrentLinkedQueue, which feels as
222 * good as we can hope for.
223 */
224
225 private static final long serialVersionUID = 876323262645176354L;
226
227 /**
228 * A node from which the first node on list (that is, the unique node p
229 * with p.prev == null && p.next != p) can be reached in O(1) time.
230 * Invariants:
231 * - the first node is always O(1) reachable from head via prev links
232 * - all live nodes are reachable from the first node via succ()
233 * - head != null
234 * - (tmp = head).next != tmp || tmp != head
235 * - head is never gc-unlinked (but may be unlinked)
236 * Non-invariants:
237 * - head.item may or may not be null
238 * - head may not be reachable from the first or last node, or from tail
239 */
240 private transient volatile Node<E> head;
241
242 /**
243 * A node from which the last node on list (that is, the unique node p
244 * with p.next == null && p.prev != p) can be reached in O(1) time.
245 * Invariants:
246 * - the last node is always O(1) reachable from tail via next links
247 * - all live nodes are reachable from the last node via pred()
248 * - tail != null
249 * - tail is never gc-unlinked (but may be unlinked)
250 * Non-invariants:
251 * - tail.item may or may not be null
252 * - tail may not be reachable from the first or last node, or from head
253 */
254 private transient volatile Node<E> tail;
255
256 private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
257
258 @SuppressWarnings("unchecked")
259 Node<E> prevTerminator() {
260 return (Node<E>) PREV_TERMINATOR;
261 }
262
263 @SuppressWarnings("unchecked")
264 Node<E> nextTerminator() {
265 return (Node<E>) NEXT_TERMINATOR;
266 }
267
268 static final class Node<E> {
269 volatile Node<E> prev;
270 volatile E item;
271 volatile Node<E> next;
272
273 Node() { // default constructor for NEXT_TERMINATOR, PREV_TERMINATOR
274 }
275
276 /**
277 * Constructs a new node. Uses relaxed write because item can
278 * only be seen after publication via casNext or casPrev.
279 */
280 Node(E item) {
281 UNSAFE.putObject(this, itemOffset, item);
282 }
283
284 boolean casItem(E cmp, E val) {
285 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
286 }
287
288 void lazySetNext(Node<E> val) {
289 UNSAFE.putOrderedObject(this, nextOffset, val);
290 }
291
292 boolean casNext(Node<E> cmp, Node<E> val) {
293 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
294 }
295
296 void lazySetPrev(Node<E> val) {
297 UNSAFE.putOrderedObject(this, prevOffset, val);
298 }
299
300 boolean casPrev(Node<E> cmp, Node<E> val) {
301 return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
302 }
303
304 // Unsafe mechanics
305
306 private static final sun.misc.Unsafe UNSAFE;
307 private static final long prevOffset;
308 private static final long itemOffset;
309 private static final long nextOffset;
310
311 static {
312 try {
313 UNSAFE = sun.misc.Unsafe.getUnsafe();
314 Class<?> k = Node.class;
315 prevOffset = UNSAFE.objectFieldOffset
316 (k.getDeclaredField("prev"));
317 itemOffset = UNSAFE.objectFieldOffset
318 (k.getDeclaredField("item"));
319 nextOffset = UNSAFE.objectFieldOffset
320 (k.getDeclaredField("next"));
321 } catch (Exception e) {
322 throw new Error(e);
323 }
324 }
325 }
326
327 /**
328 * Links e as first element.
329 */
330 private void linkFirst(E e) {
331 checkNotNull(e);
332 final Node<E> newNode = new Node<E>(e);
333
334 restartFromHead:
335 for (;;)
336 for (Node<E> h = head, p = h, q;;) {
337 if ((q = p.prev) != null &&
338 (q = (p = q).prev) != null)
339 // Check for head updates every other hop.
340 // If p == q, we are sure to follow head instead.
341 p = (h != (h = head)) ? h : q;
342 else if (p.next == p) // PREV_TERMINATOR
343 continue restartFromHead;
344 else {
345 // p is first node
346 newNode.lazySetNext(p); // CAS piggyback
347 if (p.casPrev(null, newNode)) {
348 // Successful CAS is the linearization point
349 // for e to become an element of this deque,
350 // and for newNode to become "live".
351 if (p != h) // hop two nodes at a time
352 casHead(h, newNode); // Failure is OK.
353 return;
354 }
355 // Lost CAS race to another thread; re-read prev
356 }
357 }
358 }
359
360 /**
361 * Links e as last element.
362 */
363 private void linkLast(E e) {
364 checkNotNull(e);
365 final Node<E> newNode = new Node<E>(e);
366
367 restartFromTail:
368 for (;;)
369 for (Node<E> t = tail, p = t, q;;) {
370 if ((q = p.next) != null &&
371 (q = (p = q).next) != null)
372 // Check for tail updates every other hop.
373 // If p == q, we are sure to follow tail instead.
374 p = (t != (t = tail)) ? t : q;
375 else if (p.prev == p) // NEXT_TERMINATOR
376 continue restartFromTail;
377 else {
378 // p is last node
379 newNode.lazySetPrev(p); // CAS piggyback
380 if (p.casNext(null, newNode)) {
381 // Successful CAS is the linearization point
382 // for e to become an element of this deque,
383 // and for newNode to become "live".
384 if (p != t) // hop two nodes at a time
385 casTail(t, newNode); // Failure is OK.
386 return;
387 }
388 // Lost CAS race to another thread; re-read next
389 }
390 }
391 }
392
393 private static final int HOPS = 2;
394
395 /**
396 * Unlinks non-null node x.
397 */
398 void unlink(Node<E> x) {
399 // assert x != null;
400 // assert x.item == null;
401 // assert x != PREV_TERMINATOR;
402 // assert x != NEXT_TERMINATOR;
403
404 final Node<E> prev = x.prev;
405 final Node<E> next = x.next;
406 if (prev == null) {
407 unlinkFirst(x, next);
408 } else if (next == null) {
409 unlinkLast(x, prev);
410 } else {
411 // Unlink interior node.
412 //
413 // This is the common case, since a series of polls at the
414 // same end will be "interior" removes, except perhaps for
415 // the first one, since end nodes cannot be unlinked.
416 //
417 // At any time, all active nodes are mutually reachable by
418 // following a sequence of either next or prev pointers.
419 //
420 // Our strategy is to find the unique active predecessor
421 // and successor of x. Try to fix up their links so that
422 // they point to each other, leaving x unreachable from
423 // active nodes. If successful, and if x has no live
424 // predecessor/successor, we additionally try to gc-unlink,
425 // leaving active nodes unreachable from x, by rechecking
426 // that the status of predecessor and successor are
427 // unchanged and ensuring that x is not reachable from
428 // tail/head, before setting x's prev/next links to their
429 // logical approximate replacements, self/TERMINATOR.
430 Node<E> activePred, activeSucc;
431 boolean isFirst, isLast;
432 int hops = 1;
433
434 // Find active predecessor
435 for (Node<E> p = prev; ; ++hops) {
436 if (p.item != null) {
437 activePred = p;
438 isFirst = false;
439 break;
440 }
441 Node<E> q = p.prev;
442 if (q == null) {
443 if (p.next == p)
444 return;
445 activePred = p;
446 isFirst = true;
447 break;
448 }
449 else if (p == q)
450 return;
451 else
452 p = q;
453 }
454
455 // Find active successor
456 for (Node<E> p = next; ; ++hops) {
457 if (p.item != null) {
458 activeSucc = p;
459 isLast = false;
460 break;
461 }
462 Node<E> q = p.next;
463 if (q == null) {
464 if (p.prev == p)
465 return;
466 activeSucc = p;
467 isLast = true;
468 break;
469 }
470 else if (p == q)
471 return;
472 else
473 p = q;
474 }
475
476 // TODO: better HOP heuristics
477 if (hops < HOPS
478 // always squeeze out interior deleted nodes
479 && (isFirst | isLast))
480 return;
481
482 // Squeeze out deleted nodes between activePred and
483 // activeSucc, including x.
484 skipDeletedSuccessors(activePred);
485 skipDeletedPredecessors(activeSucc);
486
487 // Try to gc-unlink, if possible
488 if ((isFirst | isLast) &&
489
490 // Recheck expected state of predecessor and successor
491 (activePred.next == activeSucc) &&
492 (activeSucc.prev == activePred) &&
493 (isFirst ? activePred.prev == null : activePred.item != null) &&
494 (isLast ? activeSucc.next == null : activeSucc.item != null)) {
495
496 updateHead(); // Ensure x is not reachable from head
497 updateTail(); // Ensure x is not reachable from tail
498
499 // Finally, actually gc-unlink
500 x.lazySetPrev(isFirst ? prevTerminator() : x);
501 x.lazySetNext(isLast ? nextTerminator() : x);
502 }
503 }
504 }
505
506 /**
507 * Unlinks non-null first node.
508 */
509 private void unlinkFirst(Node<E> first, Node<E> next) {
510 // assert first != null;
511 // assert next != null;
512 // assert first.item == null;
513 for (Node<E> o = null, p = next, q;;) {
514 if (p.item != null || (q = p.next) == null) {
515 if (o != null && p.prev != p && first.casNext(next, p)) {
516 skipDeletedPredecessors(p);
517 if (first.prev == null &&
518 (p.next == null || p.item != null) &&
519 p.prev == first) {
520
521 updateHead(); // Ensure o is not reachable from head
522 updateTail(); // Ensure o is not reachable from tail
523
524 // Finally, actually gc-unlink
525 o.lazySetNext(o);
526 o.lazySetPrev(prevTerminator());
527 }
528 }
529 return;
530 }
531 else if (p == q)
532 return;
533 else {
534 o = p;
535 p = q;
536 }
537 }
538 }
539
540 /**
541 * Unlinks non-null last node.
542 */
543 private void unlinkLast(Node<E> last, Node<E> prev) {
544 // assert last != null;
545 // assert prev != null;
546 // assert last.item == null;
547 for (Node<E> o = null, p = prev, q;;) {
548 if (p.item != null || (q = p.prev) == null) {
549 if (o != null && p.next != p && last.casPrev(prev, p)) {
550 skipDeletedSuccessors(p);
551 if (last.next == null &&
552 (p.prev == null || p.item != null) &&
553 p.next == last) {
554
555 updateHead(); // Ensure o is not reachable from head
556 updateTail(); // Ensure o is not reachable from tail
557
558 // Finally, actually gc-unlink
559 o.lazySetPrev(o);
560 o.lazySetNext(nextTerminator());
561 }
562 }
563 return;
564 }
565 else if (p == q)
566 return;
567 else {
568 o = p;
569 p = q;
570 }
571 }
572 }
573
574 /**
575 * Guarantees that any node which was unlinked before a call to
576 * this method will be unreachable from head after it returns.
577 * Does not guarantee to eliminate slack, only that head will
578 * point to a node that was active while this method was running.
579 */
580 private final void updateHead() {
581 // Either head already points to an active node, or we keep
582 // trying to cas it to the first node until it does.
583 Node<E> h, p, q;
584 restartFromHead:
585 while ((h = head).item == null && (p = h.prev) != null) {
586 for (;;) {
587 if ((q = p.prev) == null ||
588 (q = (p = q).prev) == null) {
589 // It is possible that p is PREV_TERMINATOR,
590 // but if so, the CAS is guaranteed to fail.
591 if (casHead(h, p))
592 return;
593 else
594 continue restartFromHead;
595 }
596 else if (h != head)
597 continue restartFromHead;
598 else
599 p = q;
600 }
601 }
602 }
603
604 /**
605 * Guarantees that any node which was unlinked before a call to
606 * this method will be unreachable from tail after it returns.
607 * Does not guarantee to eliminate slack, only that tail will
608 * point to a node that was active while this method was running.
609 */
610 private final void updateTail() {
611 // Either tail already points to an active node, or we keep
612 // trying to cas it to the last node until it does.
613 Node<E> t, p, q;
614 restartFromTail:
615 while ((t = tail).item == null && (p = t.next) != null) {
616 for (;;) {
617 if ((q = p.next) == null ||
618 (q = (p = q).next) == null) {
619 // It is possible that p is NEXT_TERMINATOR,
620 // but if so, the CAS is guaranteed to fail.
621 if (casTail(t, p))
622 return;
623 else
624 continue restartFromTail;
625 }
626 else if (t != tail)
627 continue restartFromTail;
628 else
629 p = q;
630 }
631 }
632 }
633
634 private void skipDeletedPredecessors(Node<E> x) {
635 whileActive:
636 do {
637 Node<E> prev = x.prev;
638 // assert prev != null;
639 // assert x != NEXT_TERMINATOR;
640 // assert x != PREV_TERMINATOR;
641 Node<E> p = prev;
642 findActive:
643 for (;;) {
644 if (p.item != null)
645 break findActive;
646 Node<E> q = p.prev;
647 if (q == null) {
648 if (p.next == p)
649 continue whileActive;
650 break findActive;
651 }
652 else if (p == q)
653 continue whileActive;
654 else
655 p = q;
656 }
657
658 // found active CAS target
659 if (prev == p || x.casPrev(prev, p))
660 return;
661
662 } while (x.item != null || x.next == null);
663 }
664
665 private void skipDeletedSuccessors(Node<E> x) {
666 whileActive:
667 do {
668 Node<E> next = x.next;
669 // assert next != null;
670 // assert x != NEXT_TERMINATOR;
671 // assert x != PREV_TERMINATOR;
672 Node<E> p = next;
673 findActive:
674 for (;;) {
675 if (p.item != null)
676 break findActive;
677 Node<E> q = p.next;
678 if (q == null) {
679 if (p.prev == p)
680 continue whileActive;
681 break findActive;
682 }
683 else if (p == q)
684 continue whileActive;
685 else
686 p = q;
687 }
688
689 // found active CAS target
690 if (next == p || x.casNext(next, p))
691 return;
692
693 } while (x.item != null || x.prev == null);
694 }
695
696 /**
697 * Returns the successor of p, or the first node if p.next has been
698 * linked to self, which will only be true if traversing with a
699 * stale pointer that is now off the list.
700 */
701 final Node<E> succ(Node<E> p) {
702 // TODO: should we skip deleted nodes here?
703 Node<E> q = p.next;
704 return (p == q) ? first() : q;
705 }
706
707 /**
708 * Returns the predecessor of p, or the last node if p.prev has been
709 * linked to self, which will only be true if traversing with a
710 * stale pointer that is now off the list.
711 */
712 final Node<E> pred(Node<E> p) {
713 Node<E> q = p.prev;
714 return (p == q) ? last() : q;
715 }
716
717 /**
718 * Returns the first node, the unique node p for which:
719 * p.prev == null && p.next != p
720 * The returned node may or may not be logically deleted.
721 * Guarantees that head is set to the returned node.
722 */
723 Node<E> first() {
724 restartFromHead:
725 for (;;)
726 for (Node<E> h = head, p = h, q;;) {
727 if ((q = p.prev) != null &&
728 (q = (p = q).prev) != null)
729 // Check for head updates every other hop.
730 // If p == q, we are sure to follow head instead.
731 p = (h != (h = head)) ? h : q;
732 else if (p == h
733 // It is possible that p is PREV_TERMINATOR,
734 // but if so, the CAS is guaranteed to fail.
735 || casHead(h, p))
736 return p;
737 else
738 continue restartFromHead;
739 }
740 }
741
742 /**
743 * Returns the last node, the unique node p for which:
744 * p.next == null && p.prev != p
745 * The returned node may or may not be logically deleted.
746 * Guarantees that tail is set to the returned node.
747 */
748 Node<E> last() {
749 restartFromTail:
750 for (;;)
751 for (Node<E> t = tail, p = t, q;;) {
752 if ((q = p.next) != null &&
753 (q = (p = q).next) != null)
754 // Check for tail updates every other hop.
755 // If p == q, we are sure to follow tail instead.
756 p = (t != (t = tail)) ? t : q;
757 else if (p == t
758 // It is possible that p is NEXT_TERMINATOR,
759 // but if so, the CAS is guaranteed to fail.
760 || casTail(t, p))
761 return p;
762 else
763 continue restartFromTail;
764 }
765 }
766
767 // Minor convenience utilities
768
769 /**
770 * Throws NullPointerException if argument is null.
771 *
772 * @param v the element
773 */
774 private static void checkNotNull(Object v) {
775 if (v == null)
776 throw new NullPointerException();
777 }
778
779 /**
780 * Returns element unless it is null, in which case throws
781 * NoSuchElementException.
782 *
783 * @param v the element
784 * @return the element
785 */
786 private E screenNullResult(E v) {
787 if (v == null)
788 throw new NoSuchElementException();
789 return v;
790 }
791
792 /**
793 * Creates an array list and fills it with elements of this list.
794 * Used by toArray.
795 *
796 * @return the array list
797 */
798 private ArrayList<E> toArrayList() {
799 ArrayList<E> list = new ArrayList<E>();
800 for (Node<E> p = first(); p != null; p = succ(p)) {
801 E item = p.item;
802 if (item != null)
803 list.add(item);
804 }
805 return list;
806 }
807
808 /**
809 * Constructs an empty deque.
810 */
811 public ConcurrentLinkedDeque() {
812 head = tail = new Node<E>(null);
813 }
814
815 /**
816 * Constructs a deque initially containing the elements of
817 * the given collection, added in traversal order of the
818 * collection's iterator.
819 *
820 * @param c the collection of elements to initially contain
821 * @throws NullPointerException if the specified collection or any
822 * of its elements are null
823 */
824 public ConcurrentLinkedDeque(Collection<? extends E> c) {
825 // Copy c into a private chain of Nodes
826 Node<E> h = null, t = null;
827 for (E e : c) {
828 checkNotNull(e);
829 Node<E> newNode = new Node<E>(e);
830 if (h == null)
831 h = t = newNode;
832 else {
833 t.lazySetNext(newNode);
834 newNode.lazySetPrev(t);
835 t = newNode;
836 }
837 }
838 initHeadTail(h, t);
839 }
840
841 /**
842 * Initializes head and tail, ensuring invariants hold.
843 */
844 private void initHeadTail(Node<E> h, Node<E> t) {
845 if (h == t) {
846 if (h == null)
847 h = t = new Node<E>(null);
848 else {
849 // Avoid edge case of a single Node with non-null item.
850 Node<E> newNode = new Node<E>(null);
851 t.lazySetNext(newNode);
852 newNode.lazySetPrev(t);
853 t = newNode;
854 }
855 }
856 head = h;
857 tail = t;
858 }
859
860 /**
861 * Inserts the specified element at the front of this deque.
862 * As the deque is unbounded, this method will never throw
863 * {@link IllegalStateException}.
864 *
865 * @throws NullPointerException if the specified element is null
866 */
867 public void addFirst(E e) {
868 linkFirst(e);
869 }
870
871 /**
872 * Inserts the specified element at the end of this deque.
873 * As the deque is unbounded, this method will never throw
874 * {@link IllegalStateException}.
875 *
876 * <p>This method is equivalent to {@link #add}.
877 *
878 * @throws NullPointerException if the specified element is null
879 */
880 public void addLast(E e) {
881 linkLast(e);
882 }
883
884 /**
885 * Inserts the specified element at the front of this deque.
886 * As the deque is unbounded, this method will never return {@code false}.
887 *
888 * @return {@code true} (as specified by {@link Deque#offerFirst})
889 * @throws NullPointerException if the specified element is null
890 */
891 public boolean offerFirst(E e) {
892 linkFirst(e);
893 return true;
894 }
895
896 /**
897 * Inserts the specified element at the end of this deque.
898 * As the deque is unbounded, this method will never return {@code false}.
899 *
900 * <p>This method is equivalent to {@link #add}.
901 *
902 * @return {@code true} (as specified by {@link Deque#offerLast})
903 * @throws NullPointerException if the specified element is null
904 */
905 public boolean offerLast(E e) {
906 linkLast(e);
907 return true;
908 }
909
910 public E peekFirst() {
911 for (Node<E> p = first(); p != null; p = succ(p)) {
912 E item = p.item;
913 if (item != null)
914 return item;
915 }
916 return null;
917 }
918
919 public E peekLast() {
920 for (Node<E> p = last(); p != null; p = pred(p)) {
921 E item = p.item;
922 if (item != null)
923 return item;
924 }
925 return null;
926 }
927
928 /**
929 * @throws NoSuchElementException {@inheritDoc}
930 */
931 public E getFirst() {
932 return screenNullResult(peekFirst());
933 }
934
935 /**
936 * @throws NoSuchElementException {@inheritDoc}
937 */
938 public E getLast() {
939 return screenNullResult(peekLast());
940 }
941
942 public E pollFirst() {
943 for (Node<E> p = first(); p != null; p = succ(p)) {
944 E item = p.item;
945 if (item != null && p.casItem(item, null)) {
946 unlink(p);
947 return item;
948 }
949 }
950 return null;
951 }
952
953 public E pollLast() {
954 for (Node<E> p = last(); p != null; p = pred(p)) {
955 E item = p.item;
956 if (item != null && p.casItem(item, null)) {
957 unlink(p);
958 return item;
959 }
960 }
961 return null;
962 }
963
964 /**
965 * @throws NoSuchElementException {@inheritDoc}
966 */
967 public E removeFirst() {
968 return screenNullResult(pollFirst());
969 }
970
971 /**
972 * @throws NoSuchElementException {@inheritDoc}
973 */
974 public E removeLast() {
975 return screenNullResult(pollLast());
976 }
977
978 // *** Queue and stack methods ***
979
980 /**
981 * Inserts the specified element at the tail of this deque.
982 * As the deque is unbounded, this method will never return {@code false}.
983 *
984 * @return {@code true} (as specified by {@link Queue#offer})
985 * @throws NullPointerException if the specified element is null
986 */
987 public boolean offer(E e) {
988 return offerLast(e);
989 }
990
991 /**
992 * Inserts the specified element at the tail of this deque.
993 * As the deque is unbounded, this method will never throw
994 * {@link IllegalStateException} or return {@code false}.
995 *
996 * @return {@code true} (as specified by {@link Collection#add})
997 * @throws NullPointerException if the specified element is null
998 */
999 public boolean add(E e) {
1000 return offerLast(e);
1001 }
1002
1003 public E poll() { return pollFirst(); }
1004 public E remove() { return removeFirst(); }
1005 public E peek() { return peekFirst(); }
1006 public E element() { return getFirst(); }
1007 public void push(E e) { addFirst(e); }
1008 public E pop() { return removeFirst(); }
1009
1010 /**
1011 * Removes the first element {@code e} such that
1012 * {@code o.equals(e)}, if such an element exists in this deque.
1013 * If the deque does not contain the element, it is unchanged.
1014 *
1015 * @param o element to be removed from this deque, if present
1016 * @return {@code true} if the deque contained the specified element
1017 * @throws NullPointerException if the specified element is null
1018 */
1019 public boolean removeFirstOccurrence(Object o) {
1020 checkNotNull(o);
1021 for (Node<E> p = first(); p != null; p = succ(p)) {
1022 E item = p.item;
1023 if (item != null && o.equals(item) && p.casItem(item, null)) {
1024 unlink(p);
1025 return true;
1026 }
1027 }
1028 return false;
1029 }
1030
1031 /**
1032 * Removes the last element {@code e} such that
1033 * {@code o.equals(e)}, if such an element exists in this deque.
1034 * If the deque does not contain the element, it is unchanged.
1035 *
1036 * @param o element to be removed from this deque, if present
1037 * @return {@code true} if the deque contained the specified element
1038 * @throws NullPointerException if the specified element is null
1039 */
1040 public boolean removeLastOccurrence(Object o) {
1041 checkNotNull(o);
1042 for (Node<E> p = last(); p != null; p = pred(p)) {
1043 E item = p.item;
1044 if (item != null && o.equals(item) && p.casItem(item, null)) {
1045 unlink(p);
1046 return true;
1047 }
1048 }
1049 return false;
1050 }
1051
1052 /**
1053 * Returns {@code true} if this deque contains at least one
1054 * element {@code e} such that {@code o.equals(e)}.
1055 *
1056 * @param o element whose presence in this deque is to be tested
1057 * @return {@code true} if this deque contains the specified element
1058 */
1059 public boolean contains(Object o) {
1060 if (o == null) return false;
1061 for (Node<E> p = first(); p != null; p = succ(p)) {
1062 E item = p.item;
1063 if (item != null && o.equals(item))
1064 return true;
1065 }
1066 return false;
1067 }
1068
1069 /**
1070 * Returns {@code true} if this collection contains no elements.
1071 *
1072 * @return {@code true} if this collection contains no elements
1073 */
1074 public boolean isEmpty() {
1075 return peekFirst() == null;
1076 }
1077
1078 /**
1079 * Returns the number of elements in this deque. If this deque
1080 * contains more than {@code Integer.MAX_VALUE} elements, it
1081 * returns {@code Integer.MAX_VALUE}.
1082 *
1083 * <p>Beware that, unlike in most collections, this method is
1084 * <em>NOT</em> a constant-time operation. Because of the
1085 * asynchronous nature of these deques, determining the current
1086 * number of elements requires traversing them all to count them.
1087 * Additionally, it is possible for the size to change during
1088 * execution of this method, in which case the returned result
1089 * will be inaccurate. Thus, this method is typically not very
1090 * useful in concurrent applications.
1091 *
1092 * @return the number of elements in this deque
1093 */
1094 public int size() {
1095 int count = 0;
1096 for (Node<E> p = first(); p != null; p = succ(p))
1097 if (p.item != null)
1098 // Collection.size() spec says to max out
1099 if (++count == Integer.MAX_VALUE)
1100 break;
1101 return count;
1102 }
1103
1104 /**
1105 * Removes the first element {@code e} such that
1106 * {@code o.equals(e)}, if such an element exists in this deque.
1107 * If the deque does not contain the element, it is unchanged.
1108 *
1109 * @param o element to be removed from this deque, if present
1110 * @return {@code true} if the deque contained the specified element
1111 * @throws NullPointerException if the specified element is null
1112 */
1113 public boolean remove(Object o) {
1114 return removeFirstOccurrence(o);
1115 }
1116
1117 /**
1118 * Appends all of the elements in the specified collection to the end of
1119 * this deque, in the order that they are returned by the specified
1120 * collection's iterator. Attempts to {@code addAll} of a deque to
1121 * itself result in {@code IllegalArgumentException}.
1122 *
1123 * @param c the elements to be inserted into this deque
1124 * @return {@code true} if this deque changed as a result of the call
1125 * @throws NullPointerException if the specified collection or any
1126 * of its elements are null
1127 * @throws IllegalArgumentException if the collection is this deque
1128 */
1129 public boolean addAll(Collection<? extends E> c) {
1130 if (c == this)
1131 // As historically specified in AbstractQueue#addAll
1132 throw new IllegalArgumentException();
1133
1134 // Copy c into a private chain of Nodes
1135 Node<E> beginningOfTheEnd = null, last = null;
1136 for (E e : c) {
1137 checkNotNull(e);
1138 Node<E> newNode = new Node<E>(e);
1139 if (beginningOfTheEnd == null)
1140 beginningOfTheEnd = last = newNode;
1141 else {
1142 last.lazySetNext(newNode);
1143 newNode.lazySetPrev(last);
1144 last = newNode;
1145 }
1146 }
1147 if (beginningOfTheEnd == null)
1148 return false;
1149
1150 // Atomically append the chain at the tail of this collection
1151 restartFromTail:
1152 for (;;)
1153 for (Node<E> t = tail, p = t, q;;) {
1154 if ((q = p.next) != null &&
1155 (q = (p = q).next) != null)
1156 // Check for tail updates every other hop.
1157 // If p == q, we are sure to follow tail instead.
1158 p = (t != (t = tail)) ? t : q;
1159 else if (p.prev == p) // NEXT_TERMINATOR
1160 continue restartFromTail;
1161 else {
1162 // p is last node
1163 beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
1164 if (p.casNext(null, beginningOfTheEnd)) {
1165 // Successful CAS is the linearization point
1166 // for all elements to be added to this deque.
1167 if (!casTail(t, last)) {
1168 // Try a little harder to update tail,
1169 // since we may be adding many elements.
1170 t = tail;
1171 if (last.next == null)
1172 casTail(t, last);
1173 }
1174 return true;
1175 }
1176 // Lost CAS race to another thread; re-read next
1177 }
1178 }
1179 }
1180
1181 /**
1182 * Removes all of the elements from this deque.
1183 */
1184 public void clear() {
1185 while (pollFirst() != null)
1186 ;
1187 }
1188
1189 /**
1190 * Returns an array containing all of the elements in this deque, in
1191 * proper sequence (from first to last element).
1192 *
1193 * <p>The returned array will be "safe" in that no references to it are
1194 * maintained by this deque. (In other words, this method must allocate
1195 * a new array). The caller is thus free to modify the returned array.
1196 *
1197 * <p>This method acts as bridge between array-based and collection-based
1198 * APIs.
1199 *
1200 * @return an array containing all of the elements in this deque
1201 */
1202 public Object[] toArray() {
1203 return toArrayList().toArray();
1204 }
1205
1206 /**
1207 * Returns an array containing all of the elements in this deque,
1208 * in proper sequence (from first to last element); the runtime
1209 * type of the returned array is that of the specified array. If
1210 * the deque fits in the specified array, it is returned therein.
1211 * Otherwise, a new array is allocated with the runtime type of
1212 * the specified array and the size of this deque.
1213 *
1214 * <p>If this deque fits in the specified array with room to spare
1215 * (i.e., the array has more elements than this deque), the element in
1216 * the array immediately following the end of the deque is set to
1217 * {@code null}.
1218 *
1219 * <p>Like the {@link #toArray()} method, this method acts as
1220 * bridge between array-based and collection-based APIs. Further,
1221 * this method allows precise control over the runtime type of the
1222 * output array, and may, under certain circumstances, be used to
1223 * save allocation costs.
1224 *
1225 * <p>Suppose {@code x} is a deque known to contain only strings.
1226 * The following code can be used to dump the deque into a newly
1227 * allocated array of {@code String}:
1228 *
1229 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1230 *
1231 * Note that {@code toArray(new Object[0])} is identical in function to
1232 * {@code toArray()}.
1233 *
1234 * @param a the array into which the elements of the deque are to
1235 * be stored, if it is big enough; otherwise, a new array of the
1236 * same runtime type is allocated for this purpose
1237 * @return an array containing all of the elements in this deque
1238 * @throws ArrayStoreException if the runtime type of the specified array
1239 * is not a supertype of the runtime type of every element in
1240 * this deque
1241 * @throws NullPointerException if the specified array is null
1242 */
1243 public <T> T[] toArray(T[] a) {
1244 return toArrayList().toArray(a);
1245 }
1246
1247 /**
1248 * Returns an iterator over the elements in this deque in proper sequence.
1249 * The elements will be returned in order from first (head) to last (tail).
1250 *
1251 * <p>The returned iterator is a "weakly consistent" iterator that
1252 * will never throw {@link java.util.ConcurrentModificationException
1253 * ConcurrentModificationException}, and guarantees to traverse
1254 * elements as they existed upon construction of the iterator, and
1255 * may (but is not guaranteed to) reflect any modifications
1256 * subsequent to construction.
1257 *
1258 * @return an iterator over the elements in this deque in proper sequence
1259 */
1260 public Iterator<E> iterator() {
1261 return new Itr();
1262 }
1263
1264 /**
1265 * Returns an iterator over the elements in this deque in reverse
1266 * sequential order. The elements will be returned in order from
1267 * last (tail) to first (head).
1268 *
1269 * <p>The returned iterator is a "weakly consistent" iterator that
1270 * will never throw {@link java.util.ConcurrentModificationException
1271 * ConcurrentModificationException}, and guarantees to traverse
1272 * elements as they existed upon construction of the iterator, and
1273 * may (but is not guaranteed to) reflect any modifications
1274 * subsequent to construction.
1275 *
1276 * @return an iterator over the elements in this deque in reverse order
1277 */
1278 public Iterator<E> descendingIterator() {
1279 return new DescendingItr();
1280 }
1281
1282 private abstract class AbstractItr implements Iterator<E> {
1283 /**
1284 * Next node to return item for.
1285 */
1286 private Node<E> nextNode;
1287
1288 /**
1289 * nextItem holds on to item fields because once we claim
1290 * that an element exists in hasNext(), we must return it in
1291 * the following next() call even if it was in the process of
1292 * being removed when hasNext() was called.
1293 */
1294 private E nextItem;
1295
1296 /**
1297 * Node returned by most recent call to next. Needed by remove.
1298 * Reset to null if this element is deleted by a call to remove.
1299 */
1300 private Node<E> lastRet;
1301
1302 abstract Node<E> startNode();
1303 abstract Node<E> nextNode(Node<E> p);
1304
1305 AbstractItr() {
1306 advance();
1307 }
1308
1309 /**
1310 * Sets nextNode and nextItem to next valid node, or to null
1311 * if no such.
1312 */
1313 private void advance() {
1314 lastRet = nextNode;
1315
1316 Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1317 for (;; p = nextNode(p)) {
1318 if (p == null) {
1319 // p might be active end or TERMINATOR node; both are OK
1320 nextNode = null;
1321 nextItem = null;
1322 break;
1323 }
1324 E item = p.item;
1325 if (item != null) {
1326 nextNode = p;
1327 nextItem = item;
1328 break;
1329 }
1330 }
1331 }
1332
1333 public boolean hasNext() {
1334 return nextItem != null;
1335 }
1336
1337 public E next() {
1338 E item = nextItem;
1339 if (item == null) throw new NoSuchElementException();
1340 advance();
1341 return item;
1342 }
1343
1344 public void remove() {
1345 Node<E> l = lastRet;
1346 if (l == null) throw new IllegalStateException();
1347 l.item = null;
1348 unlink(l);
1349 lastRet = null;
1350 }
1351 }
1352
1353 /** Forward iterator */
1354 private class Itr extends AbstractItr {
1355 Node<E> startNode() { return first(); }
1356 Node<E> nextNode(Node<E> p) { return succ(p); }
1357 }
1358
1359 /** Descending iterator */
1360 private class DescendingItr extends AbstractItr {
1361 Node<E> startNode() { return last(); }
1362 Node<E> nextNode(Node<E> p) { return pred(p); }
1363 }
1364
1365 /** A customized variant of Spliterators.IteratorSpliterator */
1366 static final class CLDSpliterator<E> implements Spliterator<E> {
1367 static final int MAX_BATCH = 1 << 25; // max batch array size;
1368 final ConcurrentLinkedDeque<E> queue;
1369 Node<E> current; // current node; null until initialized
1370 int batch; // batch size for splits
1371 boolean exhausted; // true when no more nodes
1372 CLDSpliterator(ConcurrentLinkedDeque<E> queue) {
1373 this.queue = queue;
1374 }
1375
1376 public Spliterator<E> trySplit() {
1377 Node<E> p;
1378 final ConcurrentLinkedDeque<E> q = this.queue;
1379 int b = batch;
1380 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1381 if (!exhausted &&
1382 ((p = current) != null || (p = q.first()) != null)) {
1383 if (p.item == null && p == (p = p.next))
1384 current = p = q.first();
1385 if (p != null && p.next != null) {
1386 Object[] a;
1387 try {
1388 a = new Object[n];
1389 } catch (OutOfMemoryError oome) {
1390 return null;
1391 }
1392 int i = 0;
1393 do {
1394 if ((a[i] = p.item) != null)
1395 ++i;
1396 if (p == (p = p.next))
1397 p = q.first();
1398 } while (p != null && i < n);
1399 if ((current = p) == null)
1400 exhausted = true;
1401 if (i > 0) {
1402 batch = i;
1403 return Spliterators.spliterator
1404 (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
1405 Spliterator.CONCURRENT);
1406 }
1407 }
1408 }
1409 return null;
1410 }
1411
1412 public void forEachRemaining(Consumer<? super E> action) {
1413 Node<E> p;
1414 if (action == null) throw new NullPointerException();
1415 final ConcurrentLinkedDeque<E> q = this.queue;
1416 if (!exhausted &&
1417 ((p = current) != null || (p = q.first()) != null)) {
1418 exhausted = true;
1419 do {
1420 E e = p.item;
1421 if (p == (p = p.next))
1422 p = q.first();
1423 if (e != null)
1424 action.accept(e);
1425 } while (p != null);
1426 }
1427 }
1428
1429 public boolean tryAdvance(Consumer<? super E> action) {
1430 Node<E> p;
1431 if (action == null) throw new NullPointerException();
1432 final ConcurrentLinkedDeque<E> q = this.queue;
1433 if (!exhausted &&
1434 ((p = current) != null || (p = q.first()) != null)) {
1435 E e;
1436 do {
1437 e = p.item;
1438 if (p == (p = p.next))
1439 p = q.first();
1440 } while (e == null && p != null);
1441 if ((current = p) == null)
1442 exhausted = true;
1443 if (e != null) {
1444 action.accept(e);
1445 return true;
1446 }
1447 }
1448 return false;
1449 }
1450
1451 public long estimateSize() { return Long.MAX_VALUE; }
1452
1453 public int characteristics() {
1454 return Spliterator.ORDERED | Spliterator.NONNULL |
1455 Spliterator.CONCURRENT;
1456 }
1457 }
1458
1459 public Spliterator<E> spliterator() {
1460 return new CLDSpliterator<E>(this);
1461 }
1462
1463 /**
1464 * Saves this deque to a stream (that is, serializes it).
1465 *
1466 * @serialData All of the elements (each an {@code E}) in
1467 * the proper order, followed by a null
1468 */
1469 private void writeObject(java.io.ObjectOutputStream s)
1470 throws java.io.IOException {
1471
1472 // Write out any hidden stuff
1473 s.defaultWriteObject();
1474
1475 // Write out all elements in the proper order.
1476 for (Node<E> p = first(); p != null; p = succ(p)) {
1477 E item = p.item;
1478 if (item != null)
1479 s.writeObject(item);
1480 }
1481
1482 // Use trailing null as sentinel
1483 s.writeObject(null);
1484 }
1485
1486 /**
1487 * Reconstitutes this deque from a stream (that is, deserializes it).
1488 */
1489 private void readObject(java.io.ObjectInputStream s)
1490 throws java.io.IOException, ClassNotFoundException {
1491 s.defaultReadObject();
1492
1493 // Read in elements until trailing null sentinel found
1494 Node<E> h = null, t = null;
1495 Object item;
1496 while ((item = s.readObject()) != null) {
1497 @SuppressWarnings("unchecked")
1498 Node<E> newNode = new Node<E>((E) item);
1499 if (h == null)
1500 h = t = newNode;
1501 else {
1502 t.lazySetNext(newNode);
1503 newNode.lazySetPrev(t);
1504 t = newNode;
1505 }
1506 }
1507 initHeadTail(h, t);
1508 }
1509
1510 private boolean casHead(Node<E> cmp, Node<E> val) {
1511 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1512 }
1513
1514 private boolean casTail(Node<E> cmp, Node<E> val) {
1515 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1516 }
1517
1518 // Unsafe mechanics
1519
1520 private static final sun.misc.Unsafe UNSAFE;
1521 private static final long headOffset;
1522 private static final long tailOffset;
1523 static {
1524 PREV_TERMINATOR = new Node<Object>();
1525 PREV_TERMINATOR.next = PREV_TERMINATOR;
1526 NEXT_TERMINATOR = new Node<Object>();
1527 NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1528 try {
1529 UNSAFE = sun.misc.Unsafe.getUnsafe();
1530 Class<?> k = ConcurrentLinkedDeque.class;
1531 headOffset = UNSAFE.objectFieldOffset
1532 (k.getDeclaredField("head"));
1533 tailOffset = UNSAFE.objectFieldOffset
1534 (k.getDeclaredField("tail"));
1535 } catch (Exception e) {
1536 throw new Error(e);
1537 }
1538 }
1539 }