ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.46
Committed: Fri Jun 7 23:56:37 2013 UTC (11 years ago) by dl
Branch: MAIN
Changes since 1.45: +1 -6 lines
Log Message:
Sync with lambda

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractCollection;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.Deque;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.Spliterators;
18 import java.util.Spliterator;
19 import java.util.stream.Stream;
20 import java.util.function.Consumer;
21
22 /**
23 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
24 * Concurrent insertion, removal, and access operations execute safely
25 * across multiple threads.
26 * A {@code ConcurrentLinkedDeque} is an appropriate choice when
27 * many threads will share access to a common collection.
28 * Like most other concurrent collection implementations, this class
29 * does not permit the use of {@code null} elements.
30 *
31 * <p>Iterators are <i>weakly consistent</i>, returning elements
32 * reflecting the state of the deque at some point at or since the
33 * creation of the iterator. They do <em>not</em> throw {@link
34 * java.util.ConcurrentModificationException
35 * ConcurrentModificationException}, and may proceed concurrently with
36 * other operations.
37 *
38 * <p>Beware that, unlike in most collections, the {@code size} method
39 * is <em>NOT</em> a constant-time operation. Because of the
40 * asynchronous nature of these deques, determining the current number
41 * of elements requires a traversal of the elements, and so may report
42 * inaccurate results if this collection is modified during traversal.
43 * Additionally, the bulk operations {@code addAll},
44 * {@code removeAll}, {@code retainAll}, {@code containsAll},
45 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
46 * to be performed atomically. For example, an iterator operating
47 * concurrently with an {@code addAll} operation might view only some
48 * of the added elements.
49 *
50 * <p>This class and its iterator implement all of the <em>optional</em>
51 * methods of the {@link Deque} and {@link Iterator} interfaces.
52 *
53 * <p>Memory consistency effects: As with other concurrent collections,
54 * actions in a thread prior to placing an object into a
55 * {@code ConcurrentLinkedDeque}
56 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
57 * actions subsequent to the access or removal of that element from
58 * the {@code ConcurrentLinkedDeque} in another thread.
59 *
60 * <p>This class is a member of the
61 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
62 * Java Collections Framework</a>.
63 *
64 * @since 1.7
65 * @author Doug Lea
66 * @author Martin Buchholz
67 * @param <E> the type of elements held in this collection
68 */
69 public class ConcurrentLinkedDeque<E>
70 extends AbstractCollection<E>
71 implements Deque<E>, java.io.Serializable {
72
73 /*
74 * This is an implementation of a concurrent lock-free deque
75 * supporting interior removes but not interior insertions, as
76 * required to support the entire Deque interface.
77 *
78 * We extend the techniques developed for ConcurrentLinkedQueue and
79 * LinkedTransferQueue (see the internal docs for those classes).
80 * Understanding the ConcurrentLinkedQueue implementation is a
81 * prerequisite for understanding the implementation of this class.
82 *
83 * The data structure is a symmetrical doubly-linked "GC-robust"
84 * linked list of nodes. We minimize the number of volatile writes
85 * using two techniques: advancing multiple hops with a single CAS
86 * and mixing volatile and non-volatile writes of the same memory
87 * locations.
88 *
89 * A node contains the expected E ("item") and links to predecessor
90 * ("prev") and successor ("next") nodes:
91 *
92 * class Node<E> { volatile Node<E> prev, next; volatile E item; }
93 *
94 * A node p is considered "live" if it contains a non-null item
95 * (p.item != null). When an item is CASed to null, the item is
96 * atomically logically deleted from the collection.
97 *
98 * At any time, there is precisely one "first" node with a null
99 * prev reference that terminates any chain of prev references
100 * starting at a live node. Similarly there is precisely one
101 * "last" node terminating any chain of next references starting at
102 * a live node. The "first" and "last" nodes may or may not be live.
103 * The "first" and "last" nodes are always mutually reachable.
104 *
105 * A new element is added atomically by CASing the null prev or
106 * next reference in the first or last node to a fresh node
107 * containing the element. The element's node atomically becomes
108 * "live" at that point.
109 *
110 * A node is considered "active" if it is a live node, or the
111 * first or last node. Active nodes cannot be unlinked.
112 *
113 * A "self-link" is a next or prev reference that is the same node:
114 * p.prev == p or p.next == p
115 * Self-links are used in the node unlinking process. Active nodes
116 * never have self-links.
117 *
118 * A node p is active if and only if:
119 *
120 * p.item != null ||
121 * (p.prev == null && p.next != p) ||
122 * (p.next == null && p.prev != p)
123 *
124 * The deque object has two node references, "head" and "tail".
125 * The head and tail are only approximations to the first and last
126 * nodes of the deque. The first node can always be found by
127 * following prev pointers from head; likewise for tail. However,
128 * it is permissible for head and tail to be referring to deleted
129 * nodes that have been unlinked and so may not be reachable from
130 * any live node.
131 *
132 * There are 3 stages of node deletion;
133 * "logical deletion", "unlinking", and "gc-unlinking".
134 *
135 * 1. "logical deletion" by CASing item to null atomically removes
136 * the element from the collection, and makes the containing node
137 * eligible for unlinking.
138 *
139 * 2. "unlinking" makes a deleted node unreachable from active
140 * nodes, and thus eventually reclaimable by GC. Unlinked nodes
141 * may remain reachable indefinitely from an iterator.
142 *
143 * Physical node unlinking is merely an optimization (albeit a
144 * critical one), and so can be performed at our convenience. At
145 * any time, the set of live nodes maintained by prev and next
146 * links are identical, that is, the live nodes found via next
147 * links from the first node is equal to the elements found via
148 * prev links from the last node. However, this is not true for
149 * nodes that have already been logically deleted - such nodes may
150 * be reachable in one direction only.
151 *
152 * 3. "gc-unlinking" takes unlinking further by making active
153 * nodes unreachable from deleted nodes, making it easier for the
154 * GC to reclaim future deleted nodes. This step makes the data
155 * structure "gc-robust", as first described in detail by Boehm
156 * (http://portal.acm.org/citation.cfm?doid=503272.503282).
157 *
158 * GC-unlinked nodes may remain reachable indefinitely from an
159 * iterator, but unlike unlinked nodes, are never reachable from
160 * head or tail.
161 *
162 * Making the data structure GC-robust will eliminate the risk of
163 * unbounded memory retention with conservative GCs and is likely
164 * to improve performance with generational GCs.
165 *
166 * When a node is dequeued at either end, e.g. via poll(), we would
167 * like to break any references from the node to active nodes. We
168 * develop further the use of self-links that was very effective in
169 * other concurrent collection classes. The idea is to replace
170 * prev and next pointers with special values that are interpreted
171 * to mean off-the-list-at-one-end. These are approximations, but
172 * good enough to preserve the properties we want in our
173 * traversals, e.g. we guarantee that a traversal will never visit
174 * the same element twice, but we don't guarantee whether a
175 * traversal that runs out of elements will be able to see more
176 * elements later after enqueues at that end. Doing gc-unlinking
177 * safely is particularly tricky, since any node can be in use
178 * indefinitely (for example by an iterator). We must ensure that
179 * the nodes pointed at by head/tail never get gc-unlinked, since
180 * head/tail are needed to get "back on track" by other nodes that
181 * are gc-unlinked. gc-unlinking accounts for much of the
182 * implementation complexity.
183 *
184 * Since neither unlinking nor gc-unlinking are necessary for
185 * correctness, there are many implementation choices regarding
186 * frequency (eagerness) of these operations. Since volatile
187 * reads are likely to be much cheaper than CASes, saving CASes by
188 * unlinking multiple adjacent nodes at a time may be a win.
189 * gc-unlinking can be performed rarely and still be effective,
190 * since it is most important that long chains of deleted nodes
191 * are occasionally broken.
192 *
193 * The actual representation we use is that p.next == p means to
194 * goto the first node (which in turn is reached by following prev
195 * pointers from head), and p.next == null && p.prev == p means
196 * that the iteration is at an end and that p is a (static final)
197 * dummy node, NEXT_TERMINATOR, and not the last active node.
198 * Finishing the iteration when encountering such a TERMINATOR is
199 * good enough for read-only traversals, so such traversals can use
200 * p.next == null as the termination condition. When we need to
201 * find the last (active) node, for enqueueing a new node, we need
202 * to check whether we have reached a TERMINATOR node; if so,
203 * restart traversal from tail.
204 *
205 * The implementation is completely directionally symmetrical,
206 * except that most public methods that iterate through the list
207 * follow next pointers ("forward" direction).
208 *
209 * We believe (without full proof) that all single-element deque
210 * operations (e.g., addFirst, peekLast, pollLast) are linearizable
211 * (see Herlihy and Shavit's book). However, some combinations of
212 * operations are known not to be linearizable. In particular,
213 * when an addFirst(A) is racing with pollFirst() removing B, it is
214 * possible for an observer iterating over the elements to observe
215 * A B C and subsequently observe A C, even though no interior
216 * removes are ever performed. Nevertheless, iterators behave
217 * reasonably, providing the "weakly consistent" guarantees.
218 *
219 * Empirically, microbenchmarks suggest that this class adds about
220 * 40% overhead relative to ConcurrentLinkedQueue, which feels as
221 * good as we can hope for.
222 */
223
224 private static final long serialVersionUID = 876323262645176354L;
225
226 /**
227 * A node from which the first node on list (that is, the unique node p
228 * with p.prev == null && p.next != p) can be reached in O(1) time.
229 * Invariants:
230 * - the first node is always O(1) reachable from head via prev links
231 * - all live nodes are reachable from the first node via succ()
232 * - head != null
233 * - (tmp = head).next != tmp || tmp != head
234 * - head is never gc-unlinked (but may be unlinked)
235 * Non-invariants:
236 * - head.item may or may not be null
237 * - head may not be reachable from the first or last node, or from tail
238 */
239 private transient volatile Node<E> head;
240
241 /**
242 * A node from which the last node on list (that is, the unique node p
243 * with p.next == null && p.prev != p) can be reached in O(1) time.
244 * Invariants:
245 * - the last node is always O(1) reachable from tail via next links
246 * - all live nodes are reachable from the last node via pred()
247 * - tail != null
248 * - tail is never gc-unlinked (but may be unlinked)
249 * Non-invariants:
250 * - tail.item may or may not be null
251 * - tail may not be reachable from the first or last node, or from head
252 */
253 private transient volatile Node<E> tail;
254
255 private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
256
257 @SuppressWarnings("unchecked")
258 Node<E> prevTerminator() {
259 return (Node<E>) PREV_TERMINATOR;
260 }
261
262 @SuppressWarnings("unchecked")
263 Node<E> nextTerminator() {
264 return (Node<E>) NEXT_TERMINATOR;
265 }
266
267 static final class Node<E> {
268 volatile Node<E> prev;
269 volatile E item;
270 volatile Node<E> next;
271
272 Node() { // default constructor for NEXT_TERMINATOR, PREV_TERMINATOR
273 }
274
275 /**
276 * Constructs a new node. Uses relaxed write because item can
277 * only be seen after publication via casNext or casPrev.
278 */
279 Node(E item) {
280 UNSAFE.putObject(this, itemOffset, item);
281 }
282
283 boolean casItem(E cmp, E val) {
284 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
285 }
286
287 void lazySetNext(Node<E> val) {
288 UNSAFE.putOrderedObject(this, nextOffset, val);
289 }
290
291 boolean casNext(Node<E> cmp, Node<E> val) {
292 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
293 }
294
295 void lazySetPrev(Node<E> val) {
296 UNSAFE.putOrderedObject(this, prevOffset, val);
297 }
298
299 boolean casPrev(Node<E> cmp, Node<E> val) {
300 return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
301 }
302
303 // Unsafe mechanics
304
305 private static final sun.misc.Unsafe UNSAFE;
306 private static final long prevOffset;
307 private static final long itemOffset;
308 private static final long nextOffset;
309
310 static {
311 try {
312 UNSAFE = sun.misc.Unsafe.getUnsafe();
313 Class<?> k = Node.class;
314 prevOffset = UNSAFE.objectFieldOffset
315 (k.getDeclaredField("prev"));
316 itemOffset = UNSAFE.objectFieldOffset
317 (k.getDeclaredField("item"));
318 nextOffset = UNSAFE.objectFieldOffset
319 (k.getDeclaredField("next"));
320 } catch (Exception e) {
321 throw new Error(e);
322 }
323 }
324 }
325
326 /**
327 * Links e as first element.
328 */
329 private void linkFirst(E e) {
330 checkNotNull(e);
331 final Node<E> newNode = new Node<E>(e);
332
333 restartFromHead:
334 for (;;)
335 for (Node<E> h = head, p = h, q;;) {
336 if ((q = p.prev) != null &&
337 (q = (p = q).prev) != null)
338 // Check for head updates every other hop.
339 // If p == q, we are sure to follow head instead.
340 p = (h != (h = head)) ? h : q;
341 else if (p.next == p) // PREV_TERMINATOR
342 continue restartFromHead;
343 else {
344 // p is first node
345 newNode.lazySetNext(p); // CAS piggyback
346 if (p.casPrev(null, newNode)) {
347 // Successful CAS is the linearization point
348 // for e to become an element of this deque,
349 // and for newNode to become "live".
350 if (p != h) // hop two nodes at a time
351 casHead(h, newNode); // Failure is OK.
352 return;
353 }
354 // Lost CAS race to another thread; re-read prev
355 }
356 }
357 }
358
359 /**
360 * Links e as last element.
361 */
362 private void linkLast(E e) {
363 checkNotNull(e);
364 final Node<E> newNode = new Node<E>(e);
365
366 restartFromTail:
367 for (;;)
368 for (Node<E> t = tail, p = t, q;;) {
369 if ((q = p.next) != null &&
370 (q = (p = q).next) != null)
371 // Check for tail updates every other hop.
372 // If p == q, we are sure to follow tail instead.
373 p = (t != (t = tail)) ? t : q;
374 else if (p.prev == p) // NEXT_TERMINATOR
375 continue restartFromTail;
376 else {
377 // p is last node
378 newNode.lazySetPrev(p); // CAS piggyback
379 if (p.casNext(null, newNode)) {
380 // Successful CAS is the linearization point
381 // for e to become an element of this deque,
382 // and for newNode to become "live".
383 if (p != t) // hop two nodes at a time
384 casTail(t, newNode); // Failure is OK.
385 return;
386 }
387 // Lost CAS race to another thread; re-read next
388 }
389 }
390 }
391
392 private static final int HOPS = 2;
393
394 /**
395 * Unlinks non-null node x.
396 */
397 void unlink(Node<E> x) {
398 // assert x != null;
399 // assert x.item == null;
400 // assert x != PREV_TERMINATOR;
401 // assert x != NEXT_TERMINATOR;
402
403 final Node<E> prev = x.prev;
404 final Node<E> next = x.next;
405 if (prev == null) {
406 unlinkFirst(x, next);
407 } else if (next == null) {
408 unlinkLast(x, prev);
409 } else {
410 // Unlink interior node.
411 //
412 // This is the common case, since a series of polls at the
413 // same end will be "interior" removes, except perhaps for
414 // the first one, since end nodes cannot be unlinked.
415 //
416 // At any time, all active nodes are mutually reachable by
417 // following a sequence of either next or prev pointers.
418 //
419 // Our strategy is to find the unique active predecessor
420 // and successor of x. Try to fix up their links so that
421 // they point to each other, leaving x unreachable from
422 // active nodes. If successful, and if x has no live
423 // predecessor/successor, we additionally try to gc-unlink,
424 // leaving active nodes unreachable from x, by rechecking
425 // that the status of predecessor and successor are
426 // unchanged and ensuring that x is not reachable from
427 // tail/head, before setting x's prev/next links to their
428 // logical approximate replacements, self/TERMINATOR.
429 Node<E> activePred, activeSucc;
430 boolean isFirst, isLast;
431 int hops = 1;
432
433 // Find active predecessor
434 for (Node<E> p = prev; ; ++hops) {
435 if (p.item != null) {
436 activePred = p;
437 isFirst = false;
438 break;
439 }
440 Node<E> q = p.prev;
441 if (q == null) {
442 if (p.next == p)
443 return;
444 activePred = p;
445 isFirst = true;
446 break;
447 }
448 else if (p == q)
449 return;
450 else
451 p = q;
452 }
453
454 // Find active successor
455 for (Node<E> p = next; ; ++hops) {
456 if (p.item != null) {
457 activeSucc = p;
458 isLast = false;
459 break;
460 }
461 Node<E> q = p.next;
462 if (q == null) {
463 if (p.prev == p)
464 return;
465 activeSucc = p;
466 isLast = true;
467 break;
468 }
469 else if (p == q)
470 return;
471 else
472 p = q;
473 }
474
475 // TODO: better HOP heuristics
476 if (hops < HOPS
477 // always squeeze out interior deleted nodes
478 && (isFirst | isLast))
479 return;
480
481 // Squeeze out deleted nodes between activePred and
482 // activeSucc, including x.
483 skipDeletedSuccessors(activePred);
484 skipDeletedPredecessors(activeSucc);
485
486 // Try to gc-unlink, if possible
487 if ((isFirst | isLast) &&
488
489 // Recheck expected state of predecessor and successor
490 (activePred.next == activeSucc) &&
491 (activeSucc.prev == activePred) &&
492 (isFirst ? activePred.prev == null : activePred.item != null) &&
493 (isLast ? activeSucc.next == null : activeSucc.item != null)) {
494
495 updateHead(); // Ensure x is not reachable from head
496 updateTail(); // Ensure x is not reachable from tail
497
498 // Finally, actually gc-unlink
499 x.lazySetPrev(isFirst ? prevTerminator() : x);
500 x.lazySetNext(isLast ? nextTerminator() : x);
501 }
502 }
503 }
504
505 /**
506 * Unlinks non-null first node.
507 */
508 private void unlinkFirst(Node<E> first, Node<E> next) {
509 // assert first != null;
510 // assert next != null;
511 // assert first.item == null;
512 for (Node<E> o = null, p = next, q;;) {
513 if (p.item != null || (q = p.next) == null) {
514 if (o != null && p.prev != p && first.casNext(next, p)) {
515 skipDeletedPredecessors(p);
516 if (first.prev == null &&
517 (p.next == null || p.item != null) &&
518 p.prev == first) {
519
520 updateHead(); // Ensure o is not reachable from head
521 updateTail(); // Ensure o is not reachable from tail
522
523 // Finally, actually gc-unlink
524 o.lazySetNext(o);
525 o.lazySetPrev(prevTerminator());
526 }
527 }
528 return;
529 }
530 else if (p == q)
531 return;
532 else {
533 o = p;
534 p = q;
535 }
536 }
537 }
538
539 /**
540 * Unlinks non-null last node.
541 */
542 private void unlinkLast(Node<E> last, Node<E> prev) {
543 // assert last != null;
544 // assert prev != null;
545 // assert last.item == null;
546 for (Node<E> o = null, p = prev, q;;) {
547 if (p.item != null || (q = p.prev) == null) {
548 if (o != null && p.next != p && last.casPrev(prev, p)) {
549 skipDeletedSuccessors(p);
550 if (last.next == null &&
551 (p.prev == null || p.item != null) &&
552 p.next == last) {
553
554 updateHead(); // Ensure o is not reachable from head
555 updateTail(); // Ensure o is not reachable from tail
556
557 // Finally, actually gc-unlink
558 o.lazySetPrev(o);
559 o.lazySetNext(nextTerminator());
560 }
561 }
562 return;
563 }
564 else if (p == q)
565 return;
566 else {
567 o = p;
568 p = q;
569 }
570 }
571 }
572
573 /**
574 * Guarantees that any node which was unlinked before a call to
575 * this method will be unreachable from head after it returns.
576 * Does not guarantee to eliminate slack, only that head will
577 * point to a node that was active while this method was running.
578 */
579 private final void updateHead() {
580 // Either head already points to an active node, or we keep
581 // trying to cas it to the first node until it does.
582 Node<E> h, p, q;
583 restartFromHead:
584 while ((h = head).item == null && (p = h.prev) != null) {
585 for (;;) {
586 if ((q = p.prev) == null ||
587 (q = (p = q).prev) == null) {
588 // It is possible that p is PREV_TERMINATOR,
589 // but if so, the CAS is guaranteed to fail.
590 if (casHead(h, p))
591 return;
592 else
593 continue restartFromHead;
594 }
595 else if (h != head)
596 continue restartFromHead;
597 else
598 p = q;
599 }
600 }
601 }
602
603 /**
604 * Guarantees that any node which was unlinked before a call to
605 * this method will be unreachable from tail after it returns.
606 * Does not guarantee to eliminate slack, only that tail will
607 * point to a node that was active while this method was running.
608 */
609 private final void updateTail() {
610 // Either tail already points to an active node, or we keep
611 // trying to cas it to the last node until it does.
612 Node<E> t, p, q;
613 restartFromTail:
614 while ((t = tail).item == null && (p = t.next) != null) {
615 for (;;) {
616 if ((q = p.next) == null ||
617 (q = (p = q).next) == null) {
618 // It is possible that p is NEXT_TERMINATOR,
619 // but if so, the CAS is guaranteed to fail.
620 if (casTail(t, p))
621 return;
622 else
623 continue restartFromTail;
624 }
625 else if (t != tail)
626 continue restartFromTail;
627 else
628 p = q;
629 }
630 }
631 }
632
633 private void skipDeletedPredecessors(Node<E> x) {
634 whileActive:
635 do {
636 Node<E> prev = x.prev;
637 // assert prev != null;
638 // assert x != NEXT_TERMINATOR;
639 // assert x != PREV_TERMINATOR;
640 Node<E> p = prev;
641 findActive:
642 for (;;) {
643 if (p.item != null)
644 break findActive;
645 Node<E> q = p.prev;
646 if (q == null) {
647 if (p.next == p)
648 continue whileActive;
649 break findActive;
650 }
651 else if (p == q)
652 continue whileActive;
653 else
654 p = q;
655 }
656
657 // found active CAS target
658 if (prev == p || x.casPrev(prev, p))
659 return;
660
661 } while (x.item != null || x.next == null);
662 }
663
664 private void skipDeletedSuccessors(Node<E> x) {
665 whileActive:
666 do {
667 Node<E> next = x.next;
668 // assert next != null;
669 // assert x != NEXT_TERMINATOR;
670 // assert x != PREV_TERMINATOR;
671 Node<E> p = next;
672 findActive:
673 for (;;) {
674 if (p.item != null)
675 break findActive;
676 Node<E> q = p.next;
677 if (q == null) {
678 if (p.prev == p)
679 continue whileActive;
680 break findActive;
681 }
682 else if (p == q)
683 continue whileActive;
684 else
685 p = q;
686 }
687
688 // found active CAS target
689 if (next == p || x.casNext(next, p))
690 return;
691
692 } while (x.item != null || x.prev == null);
693 }
694
695 /**
696 * Returns the successor of p, or the first node if p.next has been
697 * linked to self, which will only be true if traversing with a
698 * stale pointer that is now off the list.
699 */
700 final Node<E> succ(Node<E> p) {
701 // TODO: should we skip deleted nodes here?
702 Node<E> q = p.next;
703 return (p == q) ? first() : q;
704 }
705
706 /**
707 * Returns the predecessor of p, or the last node if p.prev has been
708 * linked to self, which will only be true if traversing with a
709 * stale pointer that is now off the list.
710 */
711 final Node<E> pred(Node<E> p) {
712 Node<E> q = p.prev;
713 return (p == q) ? last() : q;
714 }
715
716 /**
717 * Returns the first node, the unique node p for which:
718 * p.prev == null && p.next != p
719 * The returned node may or may not be logically deleted.
720 * Guarantees that head is set to the returned node.
721 */
722 Node<E> first() {
723 restartFromHead:
724 for (;;)
725 for (Node<E> h = head, p = h, q;;) {
726 if ((q = p.prev) != null &&
727 (q = (p = q).prev) != null)
728 // Check for head updates every other hop.
729 // If p == q, we are sure to follow head instead.
730 p = (h != (h = head)) ? h : q;
731 else if (p == h
732 // It is possible that p is PREV_TERMINATOR,
733 // but if so, the CAS is guaranteed to fail.
734 || casHead(h, p))
735 return p;
736 else
737 continue restartFromHead;
738 }
739 }
740
741 /**
742 * Returns the last node, the unique node p for which:
743 * p.next == null && p.prev != p
744 * The returned node may or may not be logically deleted.
745 * Guarantees that tail is set to the returned node.
746 */
747 Node<E> last() {
748 restartFromTail:
749 for (;;)
750 for (Node<E> t = tail, p = t, q;;) {
751 if ((q = p.next) != null &&
752 (q = (p = q).next) != null)
753 // Check for tail updates every other hop.
754 // If p == q, we are sure to follow tail instead.
755 p = (t != (t = tail)) ? t : q;
756 else if (p == t
757 // It is possible that p is NEXT_TERMINATOR,
758 // but if so, the CAS is guaranteed to fail.
759 || casTail(t, p))
760 return p;
761 else
762 continue restartFromTail;
763 }
764 }
765
766 // Minor convenience utilities
767
768 /**
769 * Throws NullPointerException if argument is null.
770 *
771 * @param v the element
772 */
773 private static void checkNotNull(Object v) {
774 if (v == null)
775 throw new NullPointerException();
776 }
777
778 /**
779 * Returns element unless it is null, in which case throws
780 * NoSuchElementException.
781 *
782 * @param v the element
783 * @return the element
784 */
785 private E screenNullResult(E v) {
786 if (v == null)
787 throw new NoSuchElementException();
788 return v;
789 }
790
791 /**
792 * Creates an array list and fills it with elements of this list.
793 * Used by toArray.
794 *
795 * @return the array list
796 */
797 private ArrayList<E> toArrayList() {
798 ArrayList<E> list = new ArrayList<E>();
799 for (Node<E> p = first(); p != null; p = succ(p)) {
800 E item = p.item;
801 if (item != null)
802 list.add(item);
803 }
804 return list;
805 }
806
807 /**
808 * Constructs an empty deque.
809 */
810 public ConcurrentLinkedDeque() {
811 head = tail = new Node<E>(null);
812 }
813
814 /**
815 * Constructs a deque initially containing the elements of
816 * the given collection, added in traversal order of the
817 * collection's iterator.
818 *
819 * @param c the collection of elements to initially contain
820 * @throws NullPointerException if the specified collection or any
821 * of its elements are null
822 */
823 public ConcurrentLinkedDeque(Collection<? extends E> c) {
824 // Copy c into a private chain of Nodes
825 Node<E> h = null, t = null;
826 for (E e : c) {
827 checkNotNull(e);
828 Node<E> newNode = new Node<E>(e);
829 if (h == null)
830 h = t = newNode;
831 else {
832 t.lazySetNext(newNode);
833 newNode.lazySetPrev(t);
834 t = newNode;
835 }
836 }
837 initHeadTail(h, t);
838 }
839
840 /**
841 * Initializes head and tail, ensuring invariants hold.
842 */
843 private void initHeadTail(Node<E> h, Node<E> t) {
844 if (h == t) {
845 if (h == null)
846 h = t = new Node<E>(null);
847 else {
848 // Avoid edge case of a single Node with non-null item.
849 Node<E> newNode = new Node<E>(null);
850 t.lazySetNext(newNode);
851 newNode.lazySetPrev(t);
852 t = newNode;
853 }
854 }
855 head = h;
856 tail = t;
857 }
858
859 /**
860 * Inserts the specified element at the front of this deque.
861 * As the deque is unbounded, this method will never throw
862 * {@link IllegalStateException}.
863 *
864 * @throws NullPointerException if the specified element is null
865 */
866 public void addFirst(E e) {
867 linkFirst(e);
868 }
869
870 /**
871 * Inserts the specified element at the end of this deque.
872 * As the deque is unbounded, this method will never throw
873 * {@link IllegalStateException}.
874 *
875 * <p>This method is equivalent to {@link #add}.
876 *
877 * @throws NullPointerException if the specified element is null
878 */
879 public void addLast(E e) {
880 linkLast(e);
881 }
882
883 /**
884 * Inserts the specified element at the front of this deque.
885 * As the deque is unbounded, this method will never return {@code false}.
886 *
887 * @return {@code true} (as specified by {@link Deque#offerFirst})
888 * @throws NullPointerException if the specified element is null
889 */
890 public boolean offerFirst(E e) {
891 linkFirst(e);
892 return true;
893 }
894
895 /**
896 * Inserts the specified element at the end of this deque.
897 * As the deque is unbounded, this method will never return {@code false}.
898 *
899 * <p>This method is equivalent to {@link #add}.
900 *
901 * @return {@code true} (as specified by {@link Deque#offerLast})
902 * @throws NullPointerException if the specified element is null
903 */
904 public boolean offerLast(E e) {
905 linkLast(e);
906 return true;
907 }
908
909 public E peekFirst() {
910 for (Node<E> p = first(); p != null; p = succ(p)) {
911 E item = p.item;
912 if (item != null)
913 return item;
914 }
915 return null;
916 }
917
918 public E peekLast() {
919 for (Node<E> p = last(); p != null; p = pred(p)) {
920 E item = p.item;
921 if (item != null)
922 return item;
923 }
924 return null;
925 }
926
927 /**
928 * @throws NoSuchElementException {@inheritDoc}
929 */
930 public E getFirst() {
931 return screenNullResult(peekFirst());
932 }
933
934 /**
935 * @throws NoSuchElementException {@inheritDoc}
936 */
937 public E getLast() {
938 return screenNullResult(peekLast());
939 }
940
941 public E pollFirst() {
942 for (Node<E> p = first(); p != null; p = succ(p)) {
943 E item = p.item;
944 if (item != null && p.casItem(item, null)) {
945 unlink(p);
946 return item;
947 }
948 }
949 return null;
950 }
951
952 public E pollLast() {
953 for (Node<E> p = last(); p != null; p = pred(p)) {
954 E item = p.item;
955 if (item != null && p.casItem(item, null)) {
956 unlink(p);
957 return item;
958 }
959 }
960 return null;
961 }
962
963 /**
964 * @throws NoSuchElementException {@inheritDoc}
965 */
966 public E removeFirst() {
967 return screenNullResult(pollFirst());
968 }
969
970 /**
971 * @throws NoSuchElementException {@inheritDoc}
972 */
973 public E removeLast() {
974 return screenNullResult(pollLast());
975 }
976
977 // *** Queue and stack methods ***
978
979 /**
980 * Inserts the specified element at the tail of this deque.
981 * As the deque is unbounded, this method will never return {@code false}.
982 *
983 * @return {@code true} (as specified by {@link Queue#offer})
984 * @throws NullPointerException if the specified element is null
985 */
986 public boolean offer(E e) {
987 return offerLast(e);
988 }
989
990 /**
991 * Inserts the specified element at the tail of this deque.
992 * As the deque is unbounded, this method will never throw
993 * {@link IllegalStateException} or return {@code false}.
994 *
995 * @return {@code true} (as specified by {@link Collection#add})
996 * @throws NullPointerException if the specified element is null
997 */
998 public boolean add(E e) {
999 return offerLast(e);
1000 }
1001
1002 public E poll() { return pollFirst(); }
1003 public E peek() { return peekFirst(); }
1004
1005 /**
1006 * @throws NoSuchElementException {@inheritDoc}
1007 */
1008 public E remove() { return removeFirst(); }
1009
1010 /**
1011 * @throws NoSuchElementException {@inheritDoc}
1012 */
1013 public E pop() { return removeFirst(); }
1014
1015 /**
1016 * @throws NoSuchElementException {@inheritDoc}
1017 */
1018 public E element() { return getFirst(); }
1019
1020 /**
1021 * @throws NullPointerException {@inheritDoc}
1022 */
1023 public void push(E e) { addFirst(e); }
1024
1025 /**
1026 * Removes the first element {@code e} such that
1027 * {@code o.equals(e)}, if such an element exists in this deque.
1028 * If the deque does not contain the element, it is unchanged.
1029 *
1030 * @param o element to be removed from this deque, if present
1031 * @return {@code true} if the deque contained the specified element
1032 * @throws NullPointerException if the specified element is null
1033 */
1034 public boolean removeFirstOccurrence(Object o) {
1035 checkNotNull(o);
1036 for (Node<E> p = first(); p != null; p = succ(p)) {
1037 E item = p.item;
1038 if (item != null && o.equals(item) && p.casItem(item, null)) {
1039 unlink(p);
1040 return true;
1041 }
1042 }
1043 return false;
1044 }
1045
1046 /**
1047 * Removes the last element {@code e} such that
1048 * {@code o.equals(e)}, if such an element exists in this deque.
1049 * If the deque does not contain the element, it is unchanged.
1050 *
1051 * @param o element to be removed from this deque, if present
1052 * @return {@code true} if the deque contained the specified element
1053 * @throws NullPointerException if the specified element is null
1054 */
1055 public boolean removeLastOccurrence(Object o) {
1056 checkNotNull(o);
1057 for (Node<E> p = last(); p != null; p = pred(p)) {
1058 E item = p.item;
1059 if (item != null && o.equals(item) && p.casItem(item, null)) {
1060 unlink(p);
1061 return true;
1062 }
1063 }
1064 return false;
1065 }
1066
1067 /**
1068 * Returns {@code true} if this deque contains at least one
1069 * element {@code e} such that {@code o.equals(e)}.
1070 *
1071 * @param o element whose presence in this deque is to be tested
1072 * @return {@code true} if this deque contains the specified element
1073 */
1074 public boolean contains(Object o) {
1075 if (o == null) return false;
1076 for (Node<E> p = first(); p != null; p = succ(p)) {
1077 E item = p.item;
1078 if (item != null && o.equals(item))
1079 return true;
1080 }
1081 return false;
1082 }
1083
1084 /**
1085 * Returns {@code true} if this collection contains no elements.
1086 *
1087 * @return {@code true} if this collection contains no elements
1088 */
1089 public boolean isEmpty() {
1090 return peekFirst() == null;
1091 }
1092
1093 /**
1094 * Returns the number of elements in this deque. If this deque
1095 * contains more than {@code Integer.MAX_VALUE} elements, it
1096 * returns {@code Integer.MAX_VALUE}.
1097 *
1098 * <p>Beware that, unlike in most collections, this method is
1099 * <em>NOT</em> a constant-time operation. Because of the
1100 * asynchronous nature of these deques, determining the current
1101 * number of elements requires traversing them all to count them.
1102 * Additionally, it is possible for the size to change during
1103 * execution of this method, in which case the returned result
1104 * will be inaccurate. Thus, this method is typically not very
1105 * useful in concurrent applications.
1106 *
1107 * @return the number of elements in this deque
1108 */
1109 public int size() {
1110 int count = 0;
1111 for (Node<E> p = first(); p != null; p = succ(p))
1112 if (p.item != null)
1113 // Collection.size() spec says to max out
1114 if (++count == Integer.MAX_VALUE)
1115 break;
1116 return count;
1117 }
1118
1119 /**
1120 * Removes the first element {@code e} such that
1121 * {@code o.equals(e)}, if such an element exists in this deque.
1122 * If the deque does not contain the element, it is unchanged.
1123 *
1124 * @param o element to be removed from this deque, if present
1125 * @return {@code true} if the deque contained the specified element
1126 * @throws NullPointerException if the specified element is null
1127 */
1128 public boolean remove(Object o) {
1129 return removeFirstOccurrence(o);
1130 }
1131
1132 /**
1133 * Appends all of the elements in the specified collection to the end of
1134 * this deque, in the order that they are returned by the specified
1135 * collection's iterator. Attempts to {@code addAll} of a deque to
1136 * itself result in {@code IllegalArgumentException}.
1137 *
1138 * @param c the elements to be inserted into this deque
1139 * @return {@code true} if this deque changed as a result of the call
1140 * @throws NullPointerException if the specified collection or any
1141 * of its elements are null
1142 * @throws IllegalArgumentException if the collection is this deque
1143 */
1144 public boolean addAll(Collection<? extends E> c) {
1145 if (c == this)
1146 // As historically specified in AbstractQueue#addAll
1147 throw new IllegalArgumentException();
1148
1149 // Copy c into a private chain of Nodes
1150 Node<E> beginningOfTheEnd = null, last = null;
1151 for (E e : c) {
1152 checkNotNull(e);
1153 Node<E> newNode = new Node<E>(e);
1154 if (beginningOfTheEnd == null)
1155 beginningOfTheEnd = last = newNode;
1156 else {
1157 last.lazySetNext(newNode);
1158 newNode.lazySetPrev(last);
1159 last = newNode;
1160 }
1161 }
1162 if (beginningOfTheEnd == null)
1163 return false;
1164
1165 // Atomically append the chain at the tail of this collection
1166 restartFromTail:
1167 for (;;)
1168 for (Node<E> t = tail, p = t, q;;) {
1169 if ((q = p.next) != null &&
1170 (q = (p = q).next) != null)
1171 // Check for tail updates every other hop.
1172 // If p == q, we are sure to follow tail instead.
1173 p = (t != (t = tail)) ? t : q;
1174 else if (p.prev == p) // NEXT_TERMINATOR
1175 continue restartFromTail;
1176 else {
1177 // p is last node
1178 beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
1179 if (p.casNext(null, beginningOfTheEnd)) {
1180 // Successful CAS is the linearization point
1181 // for all elements to be added to this deque.
1182 if (!casTail(t, last)) {
1183 // Try a little harder to update tail,
1184 // since we may be adding many elements.
1185 t = tail;
1186 if (last.next == null)
1187 casTail(t, last);
1188 }
1189 return true;
1190 }
1191 // Lost CAS race to another thread; re-read next
1192 }
1193 }
1194 }
1195
1196 /**
1197 * Removes all of the elements from this deque.
1198 */
1199 public void clear() {
1200 while (pollFirst() != null)
1201 ;
1202 }
1203
1204 /**
1205 * Returns an array containing all of the elements in this deque, in
1206 * proper sequence (from first to last element).
1207 *
1208 * <p>The returned array will be "safe" in that no references to it are
1209 * maintained by this deque. (In other words, this method must allocate
1210 * a new array). The caller is thus free to modify the returned array.
1211 *
1212 * <p>This method acts as bridge between array-based and collection-based
1213 * APIs.
1214 *
1215 * @return an array containing all of the elements in this deque
1216 */
1217 public Object[] toArray() {
1218 return toArrayList().toArray();
1219 }
1220
1221 /**
1222 * Returns an array containing all of the elements in this deque,
1223 * in proper sequence (from first to last element); the runtime
1224 * type of the returned array is that of the specified array. If
1225 * the deque fits in the specified array, it is returned therein.
1226 * Otherwise, a new array is allocated with the runtime type of
1227 * the specified array and the size of this deque.
1228 *
1229 * <p>If this deque fits in the specified array with room to spare
1230 * (i.e., the array has more elements than this deque), the element in
1231 * the array immediately following the end of the deque is set to
1232 * {@code null}.
1233 *
1234 * <p>Like the {@link #toArray()} method, this method acts as
1235 * bridge between array-based and collection-based APIs. Further,
1236 * this method allows precise control over the runtime type of the
1237 * output array, and may, under certain circumstances, be used to
1238 * save allocation costs.
1239 *
1240 * <p>Suppose {@code x} is a deque known to contain only strings.
1241 * The following code can be used to dump the deque into a newly
1242 * allocated array of {@code String}:
1243 *
1244 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1245 *
1246 * Note that {@code toArray(new Object[0])} is identical in function to
1247 * {@code toArray()}.
1248 *
1249 * @param a the array into which the elements of the deque are to
1250 * be stored, if it is big enough; otherwise, a new array of the
1251 * same runtime type is allocated for this purpose
1252 * @return an array containing all of the elements in this deque
1253 * @throws ArrayStoreException if the runtime type of the specified array
1254 * is not a supertype of the runtime type of every element in
1255 * this deque
1256 * @throws NullPointerException if the specified array is null
1257 */
1258 public <T> T[] toArray(T[] a) {
1259 return toArrayList().toArray(a);
1260 }
1261
1262 /**
1263 * Returns an iterator over the elements in this deque in proper sequence.
1264 * The elements will be returned in order from first (head) to last (tail).
1265 *
1266 * <p>The returned iterator is a "weakly consistent" iterator that
1267 * will never throw {@link java.util.ConcurrentModificationException
1268 * ConcurrentModificationException}, and guarantees to traverse
1269 * elements as they existed upon construction of the iterator, and
1270 * may (but is not guaranteed to) reflect any modifications
1271 * subsequent to construction.
1272 *
1273 * @return an iterator over the elements in this deque in proper sequence
1274 */
1275 public Iterator<E> iterator() {
1276 return new Itr();
1277 }
1278
1279 /**
1280 * Returns an iterator over the elements in this deque in reverse
1281 * sequential order. The elements will be returned in order from
1282 * last (tail) to first (head).
1283 *
1284 * <p>The returned iterator is a "weakly consistent" iterator that
1285 * will never throw {@link java.util.ConcurrentModificationException
1286 * ConcurrentModificationException}, and guarantees to traverse
1287 * elements as they existed upon construction of the iterator, and
1288 * may (but is not guaranteed to) reflect any modifications
1289 * subsequent to construction.
1290 *
1291 * @return an iterator over the elements in this deque in reverse order
1292 */
1293 public Iterator<E> descendingIterator() {
1294 return new DescendingItr();
1295 }
1296
1297 private abstract class AbstractItr implements Iterator<E> {
1298 /**
1299 * Next node to return item for.
1300 */
1301 private Node<E> nextNode;
1302
1303 /**
1304 * nextItem holds on to item fields because once we claim
1305 * that an element exists in hasNext(), we must return it in
1306 * the following next() call even if it was in the process of
1307 * being removed when hasNext() was called.
1308 */
1309 private E nextItem;
1310
1311 /**
1312 * Node returned by most recent call to next. Needed by remove.
1313 * Reset to null if this element is deleted by a call to remove.
1314 */
1315 private Node<E> lastRet;
1316
1317 abstract Node<E> startNode();
1318 abstract Node<E> nextNode(Node<E> p);
1319
1320 AbstractItr() {
1321 advance();
1322 }
1323
1324 /**
1325 * Sets nextNode and nextItem to next valid node, or to null
1326 * if no such.
1327 */
1328 private void advance() {
1329 lastRet = nextNode;
1330
1331 Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1332 for (;; p = nextNode(p)) {
1333 if (p == null) {
1334 // p might be active end or TERMINATOR node; both are OK
1335 nextNode = null;
1336 nextItem = null;
1337 break;
1338 }
1339 E item = p.item;
1340 if (item != null) {
1341 nextNode = p;
1342 nextItem = item;
1343 break;
1344 }
1345 }
1346 }
1347
1348 public boolean hasNext() {
1349 return nextItem != null;
1350 }
1351
1352 public E next() {
1353 E item = nextItem;
1354 if (item == null) throw new NoSuchElementException();
1355 advance();
1356 return item;
1357 }
1358
1359 public void remove() {
1360 Node<E> l = lastRet;
1361 if (l == null) throw new IllegalStateException();
1362 l.item = null;
1363 unlink(l);
1364 lastRet = null;
1365 }
1366 }
1367
1368 /** Forward iterator */
1369 private class Itr extends AbstractItr {
1370 Node<E> startNode() { return first(); }
1371 Node<E> nextNode(Node<E> p) { return succ(p); }
1372 }
1373
1374 /** Descending iterator */
1375 private class DescendingItr extends AbstractItr {
1376 Node<E> startNode() { return last(); }
1377 Node<E> nextNode(Node<E> p) { return pred(p); }
1378 }
1379
1380 /** A customized variant of Spliterators.IteratorSpliterator */
1381 static final class CLDSpliterator<E> implements Spliterator<E> {
1382 static final int MAX_BATCH = 1 << 25; // max batch array size;
1383 final ConcurrentLinkedDeque<E> queue;
1384 Node<E> current; // current node; null until initialized
1385 int batch; // batch size for splits
1386 boolean exhausted; // true when no more nodes
1387 CLDSpliterator(ConcurrentLinkedDeque<E> queue) {
1388 this.queue = queue;
1389 }
1390
1391 public Spliterator<E> trySplit() {
1392 Node<E> p;
1393 final ConcurrentLinkedDeque<E> q = this.queue;
1394 int b = batch;
1395 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1396 if (!exhausted &&
1397 ((p = current) != null || (p = q.first()) != null)) {
1398 if (p.item == null && p == (p = p.next))
1399 current = p = q.first();
1400 if (p != null && p.next != null) {
1401 Object[] a = new Object[n];
1402 int i = 0;
1403 do {
1404 if ((a[i] = p.item) != null)
1405 ++i;
1406 if (p == (p = p.next))
1407 p = q.first();
1408 } while (p != null && i < n);
1409 if ((current = p) == null)
1410 exhausted = true;
1411 if (i > 0) {
1412 batch = i;
1413 return Spliterators.spliterator
1414 (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
1415 Spliterator.CONCURRENT);
1416 }
1417 }
1418 }
1419 return null;
1420 }
1421
1422 public void forEachRemaining(Consumer<? super E> action) {
1423 Node<E> p;
1424 if (action == null) throw new NullPointerException();
1425 final ConcurrentLinkedDeque<E> q = this.queue;
1426 if (!exhausted &&
1427 ((p = current) != null || (p = q.first()) != null)) {
1428 exhausted = true;
1429 do {
1430 E e = p.item;
1431 if (p == (p = p.next))
1432 p = q.first();
1433 if (e != null)
1434 action.accept(e);
1435 } while (p != null);
1436 }
1437 }
1438
1439 public boolean tryAdvance(Consumer<? super E> action) {
1440 Node<E> p;
1441 if (action == null) throw new NullPointerException();
1442 final ConcurrentLinkedDeque<E> q = this.queue;
1443 if (!exhausted &&
1444 ((p = current) != null || (p = q.first()) != null)) {
1445 E e;
1446 do {
1447 e = p.item;
1448 if (p == (p = p.next))
1449 p = q.first();
1450 } while (e == null && p != null);
1451 if ((current = p) == null)
1452 exhausted = true;
1453 if (e != null) {
1454 action.accept(e);
1455 return true;
1456 }
1457 }
1458 return false;
1459 }
1460
1461 public long estimateSize() { return Long.MAX_VALUE; }
1462
1463 public int characteristics() {
1464 return Spliterator.ORDERED | Spliterator.NONNULL |
1465 Spliterator.CONCURRENT;
1466 }
1467 }
1468
1469 public Spliterator<E> spliterator() {
1470 return new CLDSpliterator<E>(this);
1471 }
1472
1473 /**
1474 * Saves this deque to a stream (that is, serializes it).
1475 *
1476 * @serialData All of the elements (each an {@code E}) in
1477 * the proper order, followed by a null
1478 */
1479 private void writeObject(java.io.ObjectOutputStream s)
1480 throws java.io.IOException {
1481
1482 // Write out any hidden stuff
1483 s.defaultWriteObject();
1484
1485 // Write out all elements in the proper order.
1486 for (Node<E> p = first(); p != null; p = succ(p)) {
1487 E item = p.item;
1488 if (item != null)
1489 s.writeObject(item);
1490 }
1491
1492 // Use trailing null as sentinel
1493 s.writeObject(null);
1494 }
1495
1496 /**
1497 * Reconstitutes this deque from a stream (that is, deserializes it).
1498 */
1499 private void readObject(java.io.ObjectInputStream s)
1500 throws java.io.IOException, ClassNotFoundException {
1501 s.defaultReadObject();
1502
1503 // Read in elements until trailing null sentinel found
1504 Node<E> h = null, t = null;
1505 Object item;
1506 while ((item = s.readObject()) != null) {
1507 @SuppressWarnings("unchecked")
1508 Node<E> newNode = new Node<E>((E) item);
1509 if (h == null)
1510 h = t = newNode;
1511 else {
1512 t.lazySetNext(newNode);
1513 newNode.lazySetPrev(t);
1514 t = newNode;
1515 }
1516 }
1517 initHeadTail(h, t);
1518 }
1519
1520 private boolean casHead(Node<E> cmp, Node<E> val) {
1521 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1522 }
1523
1524 private boolean casTail(Node<E> cmp, Node<E> val) {
1525 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1526 }
1527
1528 // Unsafe mechanics
1529
1530 private static final sun.misc.Unsafe UNSAFE;
1531 private static final long headOffset;
1532 private static final long tailOffset;
1533 static {
1534 PREV_TERMINATOR = new Node<Object>();
1535 PREV_TERMINATOR.next = PREV_TERMINATOR;
1536 NEXT_TERMINATOR = new Node<Object>();
1537 NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1538 try {
1539 UNSAFE = sun.misc.Unsafe.getUnsafe();
1540 Class<?> k = ConcurrentLinkedDeque.class;
1541 headOffset = UNSAFE.objectFieldOffset
1542 (k.getDeclaredField("head"));
1543 tailOffset = UNSAFE.objectFieldOffset
1544 (k.getDeclaredField("tail"));
1545 } catch (Exception e) {
1546 throw new Error(e);
1547 }
1548 }
1549 }