ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.58
Committed: Wed Dec 31 09:37:20 2014 UTC (9 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.57: +0 -2 lines
Log Message:
remove unused/redundant imports

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractCollection;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Deque;
13 import java.util.Iterator;
14 import java.util.NoSuchElementException;
15 import java.util.Queue;
16 import java.util.Spliterator;
17 import java.util.Spliterators;
18 import java.util.function.Consumer;
19
20 /**
21 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
22 * Concurrent insertion, removal, and access operations execute safely
23 * across multiple threads.
24 * A {@code ConcurrentLinkedDeque} is an appropriate choice when
25 * many threads will share access to a common collection.
26 * Like most other concurrent collection implementations, this class
27 * does not permit the use of {@code null} elements.
28 *
29 * <p>Iterators and spliterators are
30 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
31 *
32 * <p>Beware that, unlike in most collections, the {@code size} method
33 * is <em>NOT</em> a constant-time operation. Because of the
34 * asynchronous nature of these deques, determining the current number
35 * of elements requires a traversal of the elements, and so may report
36 * inaccurate results if this collection is modified during traversal.
37 * Additionally, the bulk operations {@code addAll},
38 * {@code removeAll}, {@code retainAll}, {@code containsAll},
39 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
40 * to be performed atomically. For example, an iterator operating
41 * concurrently with an {@code addAll} operation might view only some
42 * of the added elements.
43 *
44 * <p>This class and its iterator implement all of the <em>optional</em>
45 * methods of the {@link Deque} and {@link Iterator} interfaces.
46 *
47 * <p>Memory consistency effects: As with other concurrent collections,
48 * actions in a thread prior to placing an object into a
49 * {@code ConcurrentLinkedDeque}
50 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51 * actions subsequent to the access or removal of that element from
52 * the {@code ConcurrentLinkedDeque} in another thread.
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56 * Java Collections Framework</a>.
57 *
58 * @since 1.7
59 * @author Doug Lea
60 * @author Martin Buchholz
61 * @param <E> the type of elements held in this deque
62 */
63 public class ConcurrentLinkedDeque<E>
64 extends AbstractCollection<E>
65 implements Deque<E>, java.io.Serializable {
66
67 /*
68 * This is an implementation of a concurrent lock-free deque
69 * supporting interior removes but not interior insertions, as
70 * required to support the entire Deque interface.
71 *
72 * We extend the techniques developed for ConcurrentLinkedQueue and
73 * LinkedTransferQueue (see the internal docs for those classes).
74 * Understanding the ConcurrentLinkedQueue implementation is a
75 * prerequisite for understanding the implementation of this class.
76 *
77 * The data structure is a symmetrical doubly-linked "GC-robust"
78 * linked list of nodes. We minimize the number of volatile writes
79 * using two techniques: advancing multiple hops with a single CAS
80 * and mixing volatile and non-volatile writes of the same memory
81 * locations.
82 *
83 * A node contains the expected E ("item") and links to predecessor
84 * ("prev") and successor ("next") nodes:
85 *
86 * class Node<E> { volatile Node<E> prev, next; volatile E item; }
87 *
88 * A node p is considered "live" if it contains a non-null item
89 * (p.item != null). When an item is CASed to null, the item is
90 * atomically logically deleted from the collection.
91 *
92 * At any time, there is precisely one "first" node with a null
93 * prev reference that terminates any chain of prev references
94 * starting at a live node. Similarly there is precisely one
95 * "last" node terminating any chain of next references starting at
96 * a live node. The "first" and "last" nodes may or may not be live.
97 * The "first" and "last" nodes are always mutually reachable.
98 *
99 * A new element is added atomically by CASing the null prev or
100 * next reference in the first or last node to a fresh node
101 * containing the element. The element's node atomically becomes
102 * "live" at that point.
103 *
104 * A node is considered "active" if it is a live node, or the
105 * first or last node. Active nodes cannot be unlinked.
106 *
107 * A "self-link" is a next or prev reference that is the same node:
108 * p.prev == p or p.next == p
109 * Self-links are used in the node unlinking process. Active nodes
110 * never have self-links.
111 *
112 * A node p is active if and only if:
113 *
114 * p.item != null ||
115 * (p.prev == null && p.next != p) ||
116 * (p.next == null && p.prev != p)
117 *
118 * The deque object has two node references, "head" and "tail".
119 * The head and tail are only approximations to the first and last
120 * nodes of the deque. The first node can always be found by
121 * following prev pointers from head; likewise for tail. However,
122 * it is permissible for head and tail to be referring to deleted
123 * nodes that have been unlinked and so may not be reachable from
124 * any live node.
125 *
126 * There are 3 stages of node deletion;
127 * "logical deletion", "unlinking", and "gc-unlinking".
128 *
129 * 1. "logical deletion" by CASing item to null atomically removes
130 * the element from the collection, and makes the containing node
131 * eligible for unlinking.
132 *
133 * 2. "unlinking" makes a deleted node unreachable from active
134 * nodes, and thus eventually reclaimable by GC. Unlinked nodes
135 * may remain reachable indefinitely from an iterator.
136 *
137 * Physical node unlinking is merely an optimization (albeit a
138 * critical one), and so can be performed at our convenience. At
139 * any time, the set of live nodes maintained by prev and next
140 * links are identical, that is, the live nodes found via next
141 * links from the first node is equal to the elements found via
142 * prev links from the last node. However, this is not true for
143 * nodes that have already been logically deleted - such nodes may
144 * be reachable in one direction only.
145 *
146 * 3. "gc-unlinking" takes unlinking further by making active
147 * nodes unreachable from deleted nodes, making it easier for the
148 * GC to reclaim future deleted nodes. This step makes the data
149 * structure "gc-robust", as first described in detail by Boehm
150 * (http://portal.acm.org/citation.cfm?doid=503272.503282).
151 *
152 * GC-unlinked nodes may remain reachable indefinitely from an
153 * iterator, but unlike unlinked nodes, are never reachable from
154 * head or tail.
155 *
156 * Making the data structure GC-robust will eliminate the risk of
157 * unbounded memory retention with conservative GCs and is likely
158 * to improve performance with generational GCs.
159 *
160 * When a node is dequeued at either end, e.g. via poll(), we would
161 * like to break any references from the node to active nodes. We
162 * develop further the use of self-links that was very effective in
163 * other concurrent collection classes. The idea is to replace
164 * prev and next pointers with special values that are interpreted
165 * to mean off-the-list-at-one-end. These are approximations, but
166 * good enough to preserve the properties we want in our
167 * traversals, e.g. we guarantee that a traversal will never visit
168 * the same element twice, but we don't guarantee whether a
169 * traversal that runs out of elements will be able to see more
170 * elements later after enqueues at that end. Doing gc-unlinking
171 * safely is particularly tricky, since any node can be in use
172 * indefinitely (for example by an iterator). We must ensure that
173 * the nodes pointed at by head/tail never get gc-unlinked, since
174 * head/tail are needed to get "back on track" by other nodes that
175 * are gc-unlinked. gc-unlinking accounts for much of the
176 * implementation complexity.
177 *
178 * Since neither unlinking nor gc-unlinking are necessary for
179 * correctness, there are many implementation choices regarding
180 * frequency (eagerness) of these operations. Since volatile
181 * reads are likely to be much cheaper than CASes, saving CASes by
182 * unlinking multiple adjacent nodes at a time may be a win.
183 * gc-unlinking can be performed rarely and still be effective,
184 * since it is most important that long chains of deleted nodes
185 * are occasionally broken.
186 *
187 * The actual representation we use is that p.next == p means to
188 * goto the first node (which in turn is reached by following prev
189 * pointers from head), and p.next == null && p.prev == p means
190 * that the iteration is at an end and that p is a (static final)
191 * dummy node, NEXT_TERMINATOR, and not the last active node.
192 * Finishing the iteration when encountering such a TERMINATOR is
193 * good enough for read-only traversals, so such traversals can use
194 * p.next == null as the termination condition. When we need to
195 * find the last (active) node, for enqueueing a new node, we need
196 * to check whether we have reached a TERMINATOR node; if so,
197 * restart traversal from tail.
198 *
199 * The implementation is completely directionally symmetrical,
200 * except that most public methods that iterate through the list
201 * follow next pointers ("forward" direction).
202 *
203 * We believe (without full proof) that all single-element deque
204 * operations (e.g., addFirst, peekLast, pollLast) are linearizable
205 * (see Herlihy and Shavit's book). However, some combinations of
206 * operations are known not to be linearizable. In particular,
207 * when an addFirst(A) is racing with pollFirst() removing B, it is
208 * possible for an observer iterating over the elements to observe
209 * A B C and subsequently observe A C, even though no interior
210 * removes are ever performed. Nevertheless, iterators behave
211 * reasonably, providing the "weakly consistent" guarantees.
212 *
213 * Empirically, microbenchmarks suggest that this class adds about
214 * 40% overhead relative to ConcurrentLinkedQueue, which feels as
215 * good as we can hope for.
216 */
217
218 private static final long serialVersionUID = 876323262645176354L;
219
220 /**
221 * A node from which the first node on list (that is, the unique node p
222 * with p.prev == null && p.next != p) can be reached in O(1) time.
223 * Invariants:
224 * - the first node is always O(1) reachable from head via prev links
225 * - all live nodes are reachable from the first node via succ()
226 * - head != null
227 * - (tmp = head).next != tmp || tmp != head
228 * - head is never gc-unlinked (but may be unlinked)
229 * Non-invariants:
230 * - head.item may or may not be null
231 * - head may not be reachable from the first or last node, or from tail
232 */
233 private transient volatile Node<E> head;
234
235 /**
236 * A node from which the last node on list (that is, the unique node p
237 * with p.next == null && p.prev != p) can be reached in O(1) time.
238 * Invariants:
239 * - the last node is always O(1) reachable from tail via next links
240 * - all live nodes are reachable from the last node via pred()
241 * - tail != null
242 * - tail is never gc-unlinked (but may be unlinked)
243 * Non-invariants:
244 * - tail.item may or may not be null
245 * - tail may not be reachable from the first or last node, or from head
246 */
247 private transient volatile Node<E> tail;
248
249 private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
250
251 @SuppressWarnings("unchecked")
252 Node<E> prevTerminator() {
253 return (Node<E>) PREV_TERMINATOR;
254 }
255
256 @SuppressWarnings("unchecked")
257 Node<E> nextTerminator() {
258 return (Node<E>) NEXT_TERMINATOR;
259 }
260
261 static final class Node<E> {
262 volatile Node<E> prev;
263 volatile E item;
264 volatile Node<E> next;
265
266 Node() { // default constructor for NEXT_TERMINATOR, PREV_TERMINATOR
267 }
268
269 /**
270 * Constructs a new node. Uses relaxed write because item can
271 * only be seen after publication via casNext or casPrev.
272 */
273 Node(E item) {
274 UNSAFE.putObject(this, itemOffset, item);
275 }
276
277 boolean casItem(E cmp, E val) {
278 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
279 }
280
281 void lazySetNext(Node<E> val) {
282 UNSAFE.putOrderedObject(this, nextOffset, val);
283 }
284
285 boolean casNext(Node<E> cmp, Node<E> val) {
286 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
287 }
288
289 void lazySetPrev(Node<E> val) {
290 UNSAFE.putOrderedObject(this, prevOffset, val);
291 }
292
293 boolean casPrev(Node<E> cmp, Node<E> val) {
294 return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
295 }
296
297 // Unsafe mechanics
298
299 private static final sun.misc.Unsafe UNSAFE;
300 private static final long prevOffset;
301 private static final long itemOffset;
302 private static final long nextOffset;
303
304 static {
305 try {
306 UNSAFE = sun.misc.Unsafe.getUnsafe();
307 Class<?> k = Node.class;
308 prevOffset = UNSAFE.objectFieldOffset
309 (k.getDeclaredField("prev"));
310 itemOffset = UNSAFE.objectFieldOffset
311 (k.getDeclaredField("item"));
312 nextOffset = UNSAFE.objectFieldOffset
313 (k.getDeclaredField("next"));
314 } catch (Exception e) {
315 throw new Error(e);
316 }
317 }
318 }
319
320 /**
321 * Links e as first element.
322 */
323 private void linkFirst(E e) {
324 checkNotNull(e);
325 final Node<E> newNode = new Node<E>(e);
326
327 restartFromHead:
328 for (;;)
329 for (Node<E> h = head, p = h, q;;) {
330 if ((q = p.prev) != null &&
331 (q = (p = q).prev) != null)
332 // Check for head updates every other hop.
333 // If p == q, we are sure to follow head instead.
334 p = (h != (h = head)) ? h : q;
335 else if (p.next == p) // PREV_TERMINATOR
336 continue restartFromHead;
337 else {
338 // p is first node
339 newNode.lazySetNext(p); // CAS piggyback
340 if (p.casPrev(null, newNode)) {
341 // Successful CAS is the linearization point
342 // for e to become an element of this deque,
343 // and for newNode to become "live".
344 if (p != h) // hop two nodes at a time
345 casHead(h, newNode); // Failure is OK.
346 return;
347 }
348 // Lost CAS race to another thread; re-read prev
349 }
350 }
351 }
352
353 /**
354 * Links e as last element.
355 */
356 private void linkLast(E e) {
357 checkNotNull(e);
358 final Node<E> newNode = new Node<E>(e);
359
360 restartFromTail:
361 for (;;)
362 for (Node<E> t = tail, p = t, q;;) {
363 if ((q = p.next) != null &&
364 (q = (p = q).next) != null)
365 // Check for tail updates every other hop.
366 // If p == q, we are sure to follow tail instead.
367 p = (t != (t = tail)) ? t : q;
368 else if (p.prev == p) // NEXT_TERMINATOR
369 continue restartFromTail;
370 else {
371 // p is last node
372 newNode.lazySetPrev(p); // CAS piggyback
373 if (p.casNext(null, newNode)) {
374 // Successful CAS is the linearization point
375 // for e to become an element of this deque,
376 // and for newNode to become "live".
377 if (p != t) // hop two nodes at a time
378 casTail(t, newNode); // Failure is OK.
379 return;
380 }
381 // Lost CAS race to another thread; re-read next
382 }
383 }
384 }
385
386 private static final int HOPS = 2;
387
388 /**
389 * Unlinks non-null node x.
390 */
391 void unlink(Node<E> x) {
392 // assert x != null;
393 // assert x.item == null;
394 // assert x != PREV_TERMINATOR;
395 // assert x != NEXT_TERMINATOR;
396
397 final Node<E> prev = x.prev;
398 final Node<E> next = x.next;
399 if (prev == null) {
400 unlinkFirst(x, next);
401 } else if (next == null) {
402 unlinkLast(x, prev);
403 } else {
404 // Unlink interior node.
405 //
406 // This is the common case, since a series of polls at the
407 // same end will be "interior" removes, except perhaps for
408 // the first one, since end nodes cannot be unlinked.
409 //
410 // At any time, all active nodes are mutually reachable by
411 // following a sequence of either next or prev pointers.
412 //
413 // Our strategy is to find the unique active predecessor
414 // and successor of x. Try to fix up their links so that
415 // they point to each other, leaving x unreachable from
416 // active nodes. If successful, and if x has no live
417 // predecessor/successor, we additionally try to gc-unlink,
418 // leaving active nodes unreachable from x, by rechecking
419 // that the status of predecessor and successor are
420 // unchanged and ensuring that x is not reachable from
421 // tail/head, before setting x's prev/next links to their
422 // logical approximate replacements, self/TERMINATOR.
423 Node<E> activePred, activeSucc;
424 boolean isFirst, isLast;
425 int hops = 1;
426
427 // Find active predecessor
428 for (Node<E> p = prev; ; ++hops) {
429 if (p.item != null) {
430 activePred = p;
431 isFirst = false;
432 break;
433 }
434 Node<E> q = p.prev;
435 if (q == null) {
436 if (p.next == p)
437 return;
438 activePred = p;
439 isFirst = true;
440 break;
441 }
442 else if (p == q)
443 return;
444 else
445 p = q;
446 }
447
448 // Find active successor
449 for (Node<E> p = next; ; ++hops) {
450 if (p.item != null) {
451 activeSucc = p;
452 isLast = false;
453 break;
454 }
455 Node<E> q = p.next;
456 if (q == null) {
457 if (p.prev == p)
458 return;
459 activeSucc = p;
460 isLast = true;
461 break;
462 }
463 else if (p == q)
464 return;
465 else
466 p = q;
467 }
468
469 // TODO: better HOP heuristics
470 if (hops < HOPS
471 // always squeeze out interior deleted nodes
472 && (isFirst | isLast))
473 return;
474
475 // Squeeze out deleted nodes between activePred and
476 // activeSucc, including x.
477 skipDeletedSuccessors(activePred);
478 skipDeletedPredecessors(activeSucc);
479
480 // Try to gc-unlink, if possible
481 if ((isFirst | isLast) &&
482
483 // Recheck expected state of predecessor and successor
484 (activePred.next == activeSucc) &&
485 (activeSucc.prev == activePred) &&
486 (isFirst ? activePred.prev == null : activePred.item != null) &&
487 (isLast ? activeSucc.next == null : activeSucc.item != null)) {
488
489 updateHead(); // Ensure x is not reachable from head
490 updateTail(); // Ensure x is not reachable from tail
491
492 // Finally, actually gc-unlink
493 x.lazySetPrev(isFirst ? prevTerminator() : x);
494 x.lazySetNext(isLast ? nextTerminator() : x);
495 }
496 }
497 }
498
499 /**
500 * Unlinks non-null first node.
501 */
502 private void unlinkFirst(Node<E> first, Node<E> next) {
503 // assert first != null;
504 // assert next != null;
505 // assert first.item == null;
506 for (Node<E> o = null, p = next, q;;) {
507 if (p.item != null || (q = p.next) == null) {
508 if (o != null && p.prev != p && first.casNext(next, p)) {
509 skipDeletedPredecessors(p);
510 if (first.prev == null &&
511 (p.next == null || p.item != null) &&
512 p.prev == first) {
513
514 updateHead(); // Ensure o is not reachable from head
515 updateTail(); // Ensure o is not reachable from tail
516
517 // Finally, actually gc-unlink
518 o.lazySetNext(o);
519 o.lazySetPrev(prevTerminator());
520 }
521 }
522 return;
523 }
524 else if (p == q)
525 return;
526 else {
527 o = p;
528 p = q;
529 }
530 }
531 }
532
533 /**
534 * Unlinks non-null last node.
535 */
536 private void unlinkLast(Node<E> last, Node<E> prev) {
537 // assert last != null;
538 // assert prev != null;
539 // assert last.item == null;
540 for (Node<E> o = null, p = prev, q;;) {
541 if (p.item != null || (q = p.prev) == null) {
542 if (o != null && p.next != p && last.casPrev(prev, p)) {
543 skipDeletedSuccessors(p);
544 if (last.next == null &&
545 (p.prev == null || p.item != null) &&
546 p.next == last) {
547
548 updateHead(); // Ensure o is not reachable from head
549 updateTail(); // Ensure o is not reachable from tail
550
551 // Finally, actually gc-unlink
552 o.lazySetPrev(o);
553 o.lazySetNext(nextTerminator());
554 }
555 }
556 return;
557 }
558 else if (p == q)
559 return;
560 else {
561 o = p;
562 p = q;
563 }
564 }
565 }
566
567 /**
568 * Guarantees that any node which was unlinked before a call to
569 * this method will be unreachable from head after it returns.
570 * Does not guarantee to eliminate slack, only that head will
571 * point to a node that was active while this method was running.
572 */
573 private final void updateHead() {
574 // Either head already points to an active node, or we keep
575 // trying to cas it to the first node until it does.
576 Node<E> h, p, q;
577 restartFromHead:
578 while ((h = head).item == null && (p = h.prev) != null) {
579 for (;;) {
580 if ((q = p.prev) == null ||
581 (q = (p = q).prev) == null) {
582 // It is possible that p is PREV_TERMINATOR,
583 // but if so, the CAS is guaranteed to fail.
584 if (casHead(h, p))
585 return;
586 else
587 continue restartFromHead;
588 }
589 else if (h != head)
590 continue restartFromHead;
591 else
592 p = q;
593 }
594 }
595 }
596
597 /**
598 * Guarantees that any node which was unlinked before a call to
599 * this method will be unreachable from tail after it returns.
600 * Does not guarantee to eliminate slack, only that tail will
601 * point to a node that was active while this method was running.
602 */
603 private final void updateTail() {
604 // Either tail already points to an active node, or we keep
605 // trying to cas it to the last node until it does.
606 Node<E> t, p, q;
607 restartFromTail:
608 while ((t = tail).item == null && (p = t.next) != null) {
609 for (;;) {
610 if ((q = p.next) == null ||
611 (q = (p = q).next) == null) {
612 // It is possible that p is NEXT_TERMINATOR,
613 // but if so, the CAS is guaranteed to fail.
614 if (casTail(t, p))
615 return;
616 else
617 continue restartFromTail;
618 }
619 else if (t != tail)
620 continue restartFromTail;
621 else
622 p = q;
623 }
624 }
625 }
626
627 private void skipDeletedPredecessors(Node<E> x) {
628 whileActive:
629 do {
630 Node<E> prev = x.prev;
631 // assert prev != null;
632 // assert x != NEXT_TERMINATOR;
633 // assert x != PREV_TERMINATOR;
634 Node<E> p = prev;
635 findActive:
636 for (;;) {
637 if (p.item != null)
638 break findActive;
639 Node<E> q = p.prev;
640 if (q == null) {
641 if (p.next == p)
642 continue whileActive;
643 break findActive;
644 }
645 else if (p == q)
646 continue whileActive;
647 else
648 p = q;
649 }
650
651 // found active CAS target
652 if (prev == p || x.casPrev(prev, p))
653 return;
654
655 } while (x.item != null || x.next == null);
656 }
657
658 private void skipDeletedSuccessors(Node<E> x) {
659 whileActive:
660 do {
661 Node<E> next = x.next;
662 // assert next != null;
663 // assert x != NEXT_TERMINATOR;
664 // assert x != PREV_TERMINATOR;
665 Node<E> p = next;
666 findActive:
667 for (;;) {
668 if (p.item != null)
669 break findActive;
670 Node<E> q = p.next;
671 if (q == null) {
672 if (p.prev == p)
673 continue whileActive;
674 break findActive;
675 }
676 else if (p == q)
677 continue whileActive;
678 else
679 p = q;
680 }
681
682 // found active CAS target
683 if (next == p || x.casNext(next, p))
684 return;
685
686 } while (x.item != null || x.prev == null);
687 }
688
689 /**
690 * Returns the successor of p, or the first node if p.next has been
691 * linked to self, which will only be true if traversing with a
692 * stale pointer that is now off the list.
693 */
694 final Node<E> succ(Node<E> p) {
695 // TODO: should we skip deleted nodes here?
696 Node<E> q = p.next;
697 return (p == q) ? first() : q;
698 }
699
700 /**
701 * Returns the predecessor of p, or the last node if p.prev has been
702 * linked to self, which will only be true if traversing with a
703 * stale pointer that is now off the list.
704 */
705 final Node<E> pred(Node<E> p) {
706 Node<E> q = p.prev;
707 return (p == q) ? last() : q;
708 }
709
710 /**
711 * Returns the first node, the unique node p for which:
712 * p.prev == null && p.next != p
713 * The returned node may or may not be logically deleted.
714 * Guarantees that head is set to the returned node.
715 */
716 Node<E> first() {
717 restartFromHead:
718 for (;;)
719 for (Node<E> h = head, p = h, q;;) {
720 if ((q = p.prev) != null &&
721 (q = (p = q).prev) != null)
722 // Check for head updates every other hop.
723 // If p == q, we are sure to follow head instead.
724 p = (h != (h = head)) ? h : q;
725 else if (p == h
726 // It is possible that p is PREV_TERMINATOR,
727 // but if so, the CAS is guaranteed to fail.
728 || casHead(h, p))
729 return p;
730 else
731 continue restartFromHead;
732 }
733 }
734
735 /**
736 * Returns the last node, the unique node p for which:
737 * p.next == null && p.prev != p
738 * The returned node may or may not be logically deleted.
739 * Guarantees that tail is set to the returned node.
740 */
741 Node<E> last() {
742 restartFromTail:
743 for (;;)
744 for (Node<E> t = tail, p = t, q;;) {
745 if ((q = p.next) != null &&
746 (q = (p = q).next) != null)
747 // Check for tail updates every other hop.
748 // If p == q, we are sure to follow tail instead.
749 p = (t != (t = tail)) ? t : q;
750 else if (p == t
751 // It is possible that p is NEXT_TERMINATOR,
752 // but if so, the CAS is guaranteed to fail.
753 || casTail(t, p))
754 return p;
755 else
756 continue restartFromTail;
757 }
758 }
759
760 // Minor convenience utilities
761
762 /**
763 * Throws NullPointerException if argument is null.
764 *
765 * @param v the element
766 */
767 private static void checkNotNull(Object v) {
768 if (v == null)
769 throw new NullPointerException();
770 }
771
772 /**
773 * Returns element unless it is null, in which case throws
774 * NoSuchElementException.
775 *
776 * @param v the element
777 * @return the element
778 */
779 private E screenNullResult(E v) {
780 if (v == null)
781 throw new NoSuchElementException();
782 return v;
783 }
784
785 /**
786 * Creates an array list and fills it with elements of this list.
787 * Used by toArray.
788 *
789 * @return the array list
790 */
791 private ArrayList<E> toArrayList() {
792 ArrayList<E> list = new ArrayList<E>();
793 for (Node<E> p = first(); p != null; p = succ(p)) {
794 E item = p.item;
795 if (item != null)
796 list.add(item);
797 }
798 return list;
799 }
800
801 /**
802 * Constructs an empty deque.
803 */
804 public ConcurrentLinkedDeque() {
805 head = tail = new Node<E>(null);
806 }
807
808 /**
809 * Constructs a deque initially containing the elements of
810 * the given collection, added in traversal order of the
811 * collection's iterator.
812 *
813 * @param c the collection of elements to initially contain
814 * @throws NullPointerException if the specified collection or any
815 * of its elements are null
816 */
817 public ConcurrentLinkedDeque(Collection<? extends E> c) {
818 // Copy c into a private chain of Nodes
819 Node<E> h = null, t = null;
820 for (E e : c) {
821 checkNotNull(e);
822 Node<E> newNode = new Node<E>(e);
823 if (h == null)
824 h = t = newNode;
825 else {
826 t.lazySetNext(newNode);
827 newNode.lazySetPrev(t);
828 t = newNode;
829 }
830 }
831 initHeadTail(h, t);
832 }
833
834 /**
835 * Initializes head and tail, ensuring invariants hold.
836 */
837 private void initHeadTail(Node<E> h, Node<E> t) {
838 if (h == t) {
839 if (h == null)
840 h = t = new Node<E>(null);
841 else {
842 // Avoid edge case of a single Node with non-null item.
843 Node<E> newNode = new Node<E>(null);
844 t.lazySetNext(newNode);
845 newNode.lazySetPrev(t);
846 t = newNode;
847 }
848 }
849 head = h;
850 tail = t;
851 }
852
853 /**
854 * Inserts the specified element at the front of this deque.
855 * As the deque is unbounded, this method will never throw
856 * {@link IllegalStateException}.
857 *
858 * @throws NullPointerException if the specified element is null
859 */
860 public void addFirst(E e) {
861 linkFirst(e);
862 }
863
864 /**
865 * Inserts the specified element at the end of this deque.
866 * As the deque is unbounded, this method will never throw
867 * {@link IllegalStateException}.
868 *
869 * <p>This method is equivalent to {@link #add}.
870 *
871 * @throws NullPointerException if the specified element is null
872 */
873 public void addLast(E e) {
874 linkLast(e);
875 }
876
877 /**
878 * Inserts the specified element at the front of this deque.
879 * As the deque is unbounded, this method will never return {@code false}.
880 *
881 * @return {@code true} (as specified by {@link Deque#offerFirst})
882 * @throws NullPointerException if the specified element is null
883 */
884 public boolean offerFirst(E e) {
885 linkFirst(e);
886 return true;
887 }
888
889 /**
890 * Inserts the specified element at the end of this deque.
891 * As the deque is unbounded, this method will never return {@code false}.
892 *
893 * <p>This method is equivalent to {@link #add}.
894 *
895 * @return {@code true} (as specified by {@link Deque#offerLast})
896 * @throws NullPointerException if the specified element is null
897 */
898 public boolean offerLast(E e) {
899 linkLast(e);
900 return true;
901 }
902
903 public E peekFirst() {
904 for (Node<E> p = first(); p != null; p = succ(p)) {
905 E item = p.item;
906 if (item != null)
907 return item;
908 }
909 return null;
910 }
911
912 public E peekLast() {
913 for (Node<E> p = last(); p != null; p = pred(p)) {
914 E item = p.item;
915 if (item != null)
916 return item;
917 }
918 return null;
919 }
920
921 /**
922 * @throws NoSuchElementException {@inheritDoc}
923 */
924 public E getFirst() {
925 return screenNullResult(peekFirst());
926 }
927
928 /**
929 * @throws NoSuchElementException {@inheritDoc}
930 */
931 public E getLast() {
932 return screenNullResult(peekLast());
933 }
934
935 public E pollFirst() {
936 for (Node<E> p = first(); p != null; p = succ(p)) {
937 E item = p.item;
938 if (item != null && p.casItem(item, null)) {
939 unlink(p);
940 return item;
941 }
942 }
943 return null;
944 }
945
946 public E pollLast() {
947 for (Node<E> p = last(); p != null; p = pred(p)) {
948 E item = p.item;
949 if (item != null && p.casItem(item, null)) {
950 unlink(p);
951 return item;
952 }
953 }
954 return null;
955 }
956
957 /**
958 * @throws NoSuchElementException {@inheritDoc}
959 */
960 public E removeFirst() {
961 return screenNullResult(pollFirst());
962 }
963
964 /**
965 * @throws NoSuchElementException {@inheritDoc}
966 */
967 public E removeLast() {
968 return screenNullResult(pollLast());
969 }
970
971 // *** Queue and stack methods ***
972
973 /**
974 * Inserts the specified element at the tail of this deque.
975 * As the deque is unbounded, this method will never return {@code false}.
976 *
977 * @return {@code true} (as specified by {@link Queue#offer})
978 * @throws NullPointerException if the specified element is null
979 */
980 public boolean offer(E e) {
981 return offerLast(e);
982 }
983
984 /**
985 * Inserts the specified element at the tail of this deque.
986 * As the deque is unbounded, this method will never throw
987 * {@link IllegalStateException} or return {@code false}.
988 *
989 * @return {@code true} (as specified by {@link Collection#add})
990 * @throws NullPointerException if the specified element is null
991 */
992 public boolean add(E e) {
993 return offerLast(e);
994 }
995
996 public E poll() { return pollFirst(); }
997 public E peek() { return peekFirst(); }
998
999 /**
1000 * @throws NoSuchElementException {@inheritDoc}
1001 */
1002 public E remove() { return removeFirst(); }
1003
1004 /**
1005 * @throws NoSuchElementException {@inheritDoc}
1006 */
1007 public E pop() { return removeFirst(); }
1008
1009 /**
1010 * @throws NoSuchElementException {@inheritDoc}
1011 */
1012 public E element() { return getFirst(); }
1013
1014 /**
1015 * @throws NullPointerException {@inheritDoc}
1016 */
1017 public void push(E e) { addFirst(e); }
1018
1019 /**
1020 * Removes the first occurrence of the specified element from this deque.
1021 * If the deque does not contain the element, it is unchanged.
1022 * More formally, removes the first element {@code e} such that
1023 * {@code o.equals(e)} (if such an element exists).
1024 * Returns {@code true} if this deque contained the specified element
1025 * (or equivalently, if this deque changed as a result of the call).
1026 *
1027 * @param o element to be removed from this deque, if present
1028 * @return {@code true} if the deque contained the specified element
1029 * @throws NullPointerException if the specified element is null
1030 */
1031 public boolean removeFirstOccurrence(Object o) {
1032 checkNotNull(o);
1033 for (Node<E> p = first(); p != null; p = succ(p)) {
1034 E item = p.item;
1035 if (item != null && o.equals(item) && p.casItem(item, null)) {
1036 unlink(p);
1037 return true;
1038 }
1039 }
1040 return false;
1041 }
1042
1043 /**
1044 * Removes the last occurrence of the specified element from this deque.
1045 * If the deque does not contain the element, it is unchanged.
1046 * More formally, removes the last element {@code e} such that
1047 * {@code o.equals(e)} (if such an element exists).
1048 * Returns {@code true} if this deque contained the specified element
1049 * (or equivalently, if this deque changed as a result of the call).
1050 *
1051 * @param o element to be removed from this deque, if present
1052 * @return {@code true} if the deque contained the specified element
1053 * @throws NullPointerException if the specified element is null
1054 */
1055 public boolean removeLastOccurrence(Object o) {
1056 checkNotNull(o);
1057 for (Node<E> p = last(); p != null; p = pred(p)) {
1058 E item = p.item;
1059 if (item != null && o.equals(item) && p.casItem(item, null)) {
1060 unlink(p);
1061 return true;
1062 }
1063 }
1064 return false;
1065 }
1066
1067 /**
1068 * Returns {@code true} if this deque contains the specified element.
1069 * More formally, returns {@code true} if and only if this deque contains
1070 * at least one element {@code e} such that {@code o.equals(e)}.
1071 *
1072 * @param o element whose presence in this deque is to be tested
1073 * @return {@code true} if this deque contains the specified element
1074 */
1075 public boolean contains(Object o) {
1076 if (o != null) {
1077 for (Node<E> p = first(); p != null; p = succ(p)) {
1078 E item = p.item;
1079 if (item != null && o.equals(item))
1080 return true;
1081 }
1082 }
1083 return false;
1084 }
1085
1086 /**
1087 * Returns {@code true} if this collection contains no elements.
1088 *
1089 * @return {@code true} if this collection contains no elements
1090 */
1091 public boolean isEmpty() {
1092 return peekFirst() == null;
1093 }
1094
1095 /**
1096 * Returns the number of elements in this deque. If this deque
1097 * contains more than {@code Integer.MAX_VALUE} elements, it
1098 * returns {@code Integer.MAX_VALUE}.
1099 *
1100 * <p>Beware that, unlike in most collections, this method is
1101 * <em>NOT</em> a constant-time operation. Because of the
1102 * asynchronous nature of these deques, determining the current
1103 * number of elements requires traversing them all to count them.
1104 * Additionally, it is possible for the size to change during
1105 * execution of this method, in which case the returned result
1106 * will be inaccurate. Thus, this method is typically not very
1107 * useful in concurrent applications.
1108 *
1109 * @return the number of elements in this deque
1110 */
1111 public int size() {
1112 restartFromHead: for (;;) {
1113 int count = 0;
1114 for (Node<E> p = first(); p != null;) {
1115 if (p.item != null)
1116 if (++count == Integer.MAX_VALUE)
1117 break; // @see Collection.size()
1118 Node<E> next = p.next;
1119 if (p == next)
1120 continue restartFromHead;
1121 p = next;
1122 }
1123 return count;
1124 }
1125 }
1126
1127 /**
1128 * Removes the first occurrence of the specified element from this deque.
1129 * If the deque does not contain the element, it is unchanged.
1130 * More formally, removes the first element {@code e} such that
1131 * {@code o.equals(e)} (if such an element exists).
1132 * Returns {@code true} if this deque contained the specified element
1133 * (or equivalently, if this deque changed as a result of the call).
1134 *
1135 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1136 *
1137 * @param o element to be removed from this deque, if present
1138 * @return {@code true} if the deque contained the specified element
1139 * @throws NullPointerException if the specified element is null
1140 */
1141 public boolean remove(Object o) {
1142 return removeFirstOccurrence(o);
1143 }
1144
1145 /**
1146 * Appends all of the elements in the specified collection to the end of
1147 * this deque, in the order that they are returned by the specified
1148 * collection's iterator. Attempts to {@code addAll} of a deque to
1149 * itself result in {@code IllegalArgumentException}.
1150 *
1151 * @param c the elements to be inserted into this deque
1152 * @return {@code true} if this deque changed as a result of the call
1153 * @throws NullPointerException if the specified collection or any
1154 * of its elements are null
1155 * @throws IllegalArgumentException if the collection is this deque
1156 */
1157 public boolean addAll(Collection<? extends E> c) {
1158 if (c == this)
1159 // As historically specified in AbstractQueue#addAll
1160 throw new IllegalArgumentException();
1161
1162 // Copy c into a private chain of Nodes
1163 Node<E> beginningOfTheEnd = null, last = null;
1164 for (E e : c) {
1165 checkNotNull(e);
1166 Node<E> newNode = new Node<E>(e);
1167 if (beginningOfTheEnd == null)
1168 beginningOfTheEnd = last = newNode;
1169 else {
1170 last.lazySetNext(newNode);
1171 newNode.lazySetPrev(last);
1172 last = newNode;
1173 }
1174 }
1175 if (beginningOfTheEnd == null)
1176 return false;
1177
1178 // Atomically append the chain at the tail of this collection
1179 restartFromTail:
1180 for (;;)
1181 for (Node<E> t = tail, p = t, q;;) {
1182 if ((q = p.next) != null &&
1183 (q = (p = q).next) != null)
1184 // Check for tail updates every other hop.
1185 // If p == q, we are sure to follow tail instead.
1186 p = (t != (t = tail)) ? t : q;
1187 else if (p.prev == p) // NEXT_TERMINATOR
1188 continue restartFromTail;
1189 else {
1190 // p is last node
1191 beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
1192 if (p.casNext(null, beginningOfTheEnd)) {
1193 // Successful CAS is the linearization point
1194 // for all elements to be added to this deque.
1195 if (!casTail(t, last)) {
1196 // Try a little harder to update tail,
1197 // since we may be adding many elements.
1198 t = tail;
1199 if (last.next == null)
1200 casTail(t, last);
1201 }
1202 return true;
1203 }
1204 // Lost CAS race to another thread; re-read next
1205 }
1206 }
1207 }
1208
1209 /**
1210 * Removes all of the elements from this deque.
1211 */
1212 public void clear() {
1213 while (pollFirst() != null)
1214 ;
1215 }
1216
1217 /**
1218 * Returns an array containing all of the elements in this deque, in
1219 * proper sequence (from first to last element).
1220 *
1221 * <p>The returned array will be "safe" in that no references to it are
1222 * maintained by this deque. (In other words, this method must allocate
1223 * a new array). The caller is thus free to modify the returned array.
1224 *
1225 * <p>This method acts as bridge between array-based and collection-based
1226 * APIs.
1227 *
1228 * @return an array containing all of the elements in this deque
1229 */
1230 public Object[] toArray() {
1231 return toArrayList().toArray();
1232 }
1233
1234 /**
1235 * Returns an array containing all of the elements in this deque,
1236 * in proper sequence (from first to last element); the runtime
1237 * type of the returned array is that of the specified array. If
1238 * the deque fits in the specified array, it is returned therein.
1239 * Otherwise, a new array is allocated with the runtime type of
1240 * the specified array and the size of this deque.
1241 *
1242 * <p>If this deque fits in the specified array with room to spare
1243 * (i.e., the array has more elements than this deque), the element in
1244 * the array immediately following the end of the deque is set to
1245 * {@code null}.
1246 *
1247 * <p>Like the {@link #toArray()} method, this method acts as
1248 * bridge between array-based and collection-based APIs. Further,
1249 * this method allows precise control over the runtime type of the
1250 * output array, and may, under certain circumstances, be used to
1251 * save allocation costs.
1252 *
1253 * <p>Suppose {@code x} is a deque known to contain only strings.
1254 * The following code can be used to dump the deque into a newly
1255 * allocated array of {@code String}:
1256 *
1257 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1258 *
1259 * Note that {@code toArray(new Object[0])} is identical in function to
1260 * {@code toArray()}.
1261 *
1262 * @param a the array into which the elements of the deque are to
1263 * be stored, if it is big enough; otherwise, a new array of the
1264 * same runtime type is allocated for this purpose
1265 * @return an array containing all of the elements in this deque
1266 * @throws ArrayStoreException if the runtime type of the specified array
1267 * is not a supertype of the runtime type of every element in
1268 * this deque
1269 * @throws NullPointerException if the specified array is null
1270 */
1271 public <T> T[] toArray(T[] a) {
1272 return toArrayList().toArray(a);
1273 }
1274
1275 /**
1276 * Returns an iterator over the elements in this deque in proper sequence.
1277 * The elements will be returned in order from first (head) to last (tail).
1278 *
1279 * <p>The returned iterator is
1280 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1281 *
1282 * @return an iterator over the elements in this deque in proper sequence
1283 */
1284 public Iterator<E> iterator() {
1285 return new Itr();
1286 }
1287
1288 /**
1289 * Returns an iterator over the elements in this deque in reverse
1290 * sequential order. The elements will be returned in order from
1291 * last (tail) to first (head).
1292 *
1293 * <p>The returned iterator is
1294 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1295 *
1296 * @return an iterator over the elements in this deque in reverse order
1297 */
1298 public Iterator<E> descendingIterator() {
1299 return new DescendingItr();
1300 }
1301
1302 private abstract class AbstractItr implements Iterator<E> {
1303 /**
1304 * Next node to return item for.
1305 */
1306 private Node<E> nextNode;
1307
1308 /**
1309 * nextItem holds on to item fields because once we claim
1310 * that an element exists in hasNext(), we must return it in
1311 * the following next() call even if it was in the process of
1312 * being removed when hasNext() was called.
1313 */
1314 private E nextItem;
1315
1316 /**
1317 * Node returned by most recent call to next. Needed by remove.
1318 * Reset to null if this element is deleted by a call to remove.
1319 */
1320 private Node<E> lastRet;
1321
1322 abstract Node<E> startNode();
1323 abstract Node<E> nextNode(Node<E> p);
1324
1325 AbstractItr() {
1326 advance();
1327 }
1328
1329 /**
1330 * Sets nextNode and nextItem to next valid node, or to null
1331 * if no such.
1332 */
1333 private void advance() {
1334 lastRet = nextNode;
1335
1336 Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1337 for (;; p = nextNode(p)) {
1338 if (p == null) {
1339 // might be at active end or TERMINATOR node; both are OK
1340 nextNode = null;
1341 nextItem = null;
1342 break;
1343 }
1344 E item = p.item;
1345 if (item != null) {
1346 nextNode = p;
1347 nextItem = item;
1348 break;
1349 }
1350 }
1351 }
1352
1353 public boolean hasNext() {
1354 return nextItem != null;
1355 }
1356
1357 public E next() {
1358 E item = nextItem;
1359 if (item == null) throw new NoSuchElementException();
1360 advance();
1361 return item;
1362 }
1363
1364 public void remove() {
1365 Node<E> l = lastRet;
1366 if (l == null) throw new IllegalStateException();
1367 l.item = null;
1368 unlink(l);
1369 lastRet = null;
1370 }
1371 }
1372
1373 /** Forward iterator */
1374 private class Itr extends AbstractItr {
1375 Node<E> startNode() { return first(); }
1376 Node<E> nextNode(Node<E> p) { return succ(p); }
1377 }
1378
1379 /** Descending iterator */
1380 private class DescendingItr extends AbstractItr {
1381 Node<E> startNode() { return last(); }
1382 Node<E> nextNode(Node<E> p) { return pred(p); }
1383 }
1384
1385 /** A customized variant of Spliterators.IteratorSpliterator */
1386 static final class CLDSpliterator<E> implements Spliterator<E> {
1387 static final int MAX_BATCH = 1 << 25; // max batch array size;
1388 final ConcurrentLinkedDeque<E> queue;
1389 Node<E> current; // current node; null until initialized
1390 int batch; // batch size for splits
1391 boolean exhausted; // true when no more nodes
1392 CLDSpliterator(ConcurrentLinkedDeque<E> queue) {
1393 this.queue = queue;
1394 }
1395
1396 public Spliterator<E> trySplit() {
1397 Node<E> p;
1398 final ConcurrentLinkedDeque<E> q = this.queue;
1399 int b = batch;
1400 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1401 if (!exhausted &&
1402 ((p = current) != null || (p = q.first()) != null)) {
1403 if (p.item == null && p == (p = p.next))
1404 current = p = q.first();
1405 if (p != null && p.next != null) {
1406 Object[] a = new Object[n];
1407 int i = 0;
1408 do {
1409 if ((a[i] = p.item) != null)
1410 ++i;
1411 if (p == (p = p.next))
1412 p = q.first();
1413 } while (p != null && i < n);
1414 if ((current = p) == null)
1415 exhausted = true;
1416 if (i > 0) {
1417 batch = i;
1418 return Spliterators.spliterator
1419 (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
1420 Spliterator.CONCURRENT);
1421 }
1422 }
1423 }
1424 return null;
1425 }
1426
1427 public void forEachRemaining(Consumer<? super E> action) {
1428 Node<E> p;
1429 if (action == null) throw new NullPointerException();
1430 final ConcurrentLinkedDeque<E> q = this.queue;
1431 if (!exhausted &&
1432 ((p = current) != null || (p = q.first()) != null)) {
1433 exhausted = true;
1434 do {
1435 E e = p.item;
1436 if (p == (p = p.next))
1437 p = q.first();
1438 if (e != null)
1439 action.accept(e);
1440 } while (p != null);
1441 }
1442 }
1443
1444 public boolean tryAdvance(Consumer<? super E> action) {
1445 Node<E> p;
1446 if (action == null) throw new NullPointerException();
1447 final ConcurrentLinkedDeque<E> q = this.queue;
1448 if (!exhausted &&
1449 ((p = current) != null || (p = q.first()) != null)) {
1450 E e;
1451 do {
1452 e = p.item;
1453 if (p == (p = p.next))
1454 p = q.first();
1455 } while (e == null && p != null);
1456 if ((current = p) == null)
1457 exhausted = true;
1458 if (e != null) {
1459 action.accept(e);
1460 return true;
1461 }
1462 }
1463 return false;
1464 }
1465
1466 public long estimateSize() { return Long.MAX_VALUE; }
1467
1468 public int characteristics() {
1469 return Spliterator.ORDERED | Spliterator.NONNULL |
1470 Spliterator.CONCURRENT;
1471 }
1472 }
1473
1474 /**
1475 * Returns a {@link Spliterator} over the elements in this deque.
1476 *
1477 * <p>The returned spliterator is
1478 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1479 *
1480 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1481 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1482 *
1483 * @implNote
1484 * The {@code Spliterator} implements {@code trySplit} to permit limited
1485 * parallelism.
1486 *
1487 * @return a {@code Spliterator} over the elements in this deque
1488 * @since 1.8
1489 */
1490 public Spliterator<E> spliterator() {
1491 return new CLDSpliterator<E>(this);
1492 }
1493
1494 /**
1495 * Saves this deque to a stream (that is, serializes it).
1496 *
1497 * @param s the stream
1498 * @throws java.io.IOException if an I/O error occurs
1499 * @serialData All of the elements (each an {@code E}) in
1500 * the proper order, followed by a null
1501 */
1502 private void writeObject(java.io.ObjectOutputStream s)
1503 throws java.io.IOException {
1504
1505 // Write out any hidden stuff
1506 s.defaultWriteObject();
1507
1508 // Write out all elements in the proper order.
1509 for (Node<E> p = first(); p != null; p = succ(p)) {
1510 E item = p.item;
1511 if (item != null)
1512 s.writeObject(item);
1513 }
1514
1515 // Use trailing null as sentinel
1516 s.writeObject(null);
1517 }
1518
1519 /**
1520 * Reconstitutes this deque from a stream (that is, deserializes it).
1521 * @param s the stream
1522 * @throws ClassNotFoundException if the class of a serialized object
1523 * could not be found
1524 * @throws java.io.IOException if an I/O error occurs
1525 */
1526 private void readObject(java.io.ObjectInputStream s)
1527 throws java.io.IOException, ClassNotFoundException {
1528 s.defaultReadObject();
1529
1530 // Read in elements until trailing null sentinel found
1531 Node<E> h = null, t = null;
1532 for (Object item; (item = s.readObject()) != null; ) {
1533 @SuppressWarnings("unchecked")
1534 Node<E> newNode = new Node<E>((E) item);
1535 if (h == null)
1536 h = t = newNode;
1537 else {
1538 t.lazySetNext(newNode);
1539 newNode.lazySetPrev(t);
1540 t = newNode;
1541 }
1542 }
1543 initHeadTail(h, t);
1544 }
1545
1546 private boolean casHead(Node<E> cmp, Node<E> val) {
1547 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1548 }
1549
1550 private boolean casTail(Node<E> cmp, Node<E> val) {
1551 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1552 }
1553
1554 // Unsafe mechanics
1555
1556 private static final sun.misc.Unsafe UNSAFE;
1557 private static final long headOffset;
1558 private static final long tailOffset;
1559 static {
1560 PREV_TERMINATOR = new Node<Object>();
1561 PREV_TERMINATOR.next = PREV_TERMINATOR;
1562 NEXT_TERMINATOR = new Node<Object>();
1563 NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1564 try {
1565 UNSAFE = sun.misc.Unsafe.getUnsafe();
1566 Class<?> k = ConcurrentLinkedDeque.class;
1567 headOffset = UNSAFE.objectFieldOffset
1568 (k.getDeclaredField("head"));
1569 tailOffset = UNSAFE.objectFieldOffset
1570 (k.getDeclaredField("tail"));
1571 } catch (Exception e) {
1572 throw new Error(e);
1573 }
1574 }
1575 }