ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.8
Committed: Sun Sep 12 00:34:46 2010 UTC (13 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.7: +6 -6 lines
Log Message:
use non-volatile writes for bulk operations that build a thread-confined data structure

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractCollection;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Deque;
13 import java.util.Iterator;
14 import java.util.ConcurrentModificationException;
15 import java.util.NoSuchElementException;
16 import java.util.concurrent.atomic.AtomicReference;
17
18 /**
19 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
20 * Concurrent insertion, removal, and access operations execute safely
21 * across multiple threads.
22 * A {@code ConcurrentLinkedDeque} is an appropriate choice when
23 * many threads will share access to a common collection.
24 * Like most other concurrent collection implementations, this class
25 * does not permit the use of {@code null} elements.
26 *
27 * <p>Iterators are <i>weakly consistent</i>, returning elements
28 * reflecting the state of the deque at some point at or since the
29 * creation of the iterator. They do <em>not</em> throw {@link
30 * java.util.ConcurrentModificationException
31 * ConcurrentModificationException}, and may proceed concurrently with
32 * other operations.
33 *
34 * <p>Beware that, unlike in most collections, the {@code size}
35 * method is <em>NOT</em> a constant-time operation. Because of the
36 * asynchronous nature of these deques, determining the current number
37 * of elements requires a traversal of the elements.
38 *
39 * <p>This class and its iterator implement all of the <em>optional</em>
40 * methods of the {@link Deque} and {@link Iterator} interfaces.
41 *
42 * <p>Memory consistency effects: As with other concurrent collections,
43 * actions in a thread prior to placing an object into a
44 * {@code ConcurrentLinkedDeque}
45 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
46 * actions subsequent to the access or removal of that element from
47 * the {@code ConcurrentLinkedDeque} in another thread.
48 *
49 * <p>This class is a member of the
50 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
51 * Java Collections Framework</a>.
52 *
53 * @since 1.7
54 * @author Doug Lea
55 * @author Martin Buchholz
56 * @param <E> the type of elements held in this collection
57 */
58
59 public class ConcurrentLinkedDeque<E>
60 extends AbstractCollection<E>
61 implements Deque<E>, java.io.Serializable {
62
63 /*
64 * This is an implementation of a concurrent lock-free deque
65 * supporting interior removes but not interior insertions, as
66 * required to support the entire Deque interface.
67 *
68 * We extend the techniques developed for ConcurrentLinkedQueue and
69 * LinkedTransferQueue (see the internal docs for those classes).
70 * Understanding the ConcurrentLinkedQueue implementation is a
71 * prerequisite for understanding the implementation of this class.
72 *
73 * The data structure is a symmetrical doubly-linked "GC-robust"
74 * linked list of nodes. We minimize the number of volatile writes
75 * using two techniques: advancing multiple hops with a single CAS
76 * and mixing volatile and non-volatile writes of the same memory
77 * locations.
78 *
79 * A node contains the expected E ("item") and links to predecessor
80 * ("prev") and successor ("next") nodes:
81 *
82 * class Node<E> { volatile Node<E> prev, next; volatile E item; }
83 *
84 * A node p is considered "live" if it contains a non-null item
85 * (p.item != null). When an item is CASed to null, the item is
86 * atomically logically deleted from the collection.
87 *
88 * At any time, there is precisely one "first" node with a null
89 * prev reference that terminates any chain of prev references
90 * starting at a live node. Similarly there is precisely one
91 * "last" node terminating any chain of next references starting at
92 * a live node. The "first" and "last" nodes may or may not be live.
93 * The "first" and "last" nodes are always mutually reachable.
94 *
95 * A new element is added atomically by CASing the null prev or
96 * next reference in the first or last node to a fresh node
97 * containing the element. The element's node atomically becomes
98 * "live" at that point.
99 *
100 * A node is considered "active" if it is a live node, or the
101 * first or last node. Active nodes cannot be unlinked.
102 *
103 * A "self-link" is a next or prev reference that is the same node:
104 * p.prev == p or p.next == p
105 * Self-links are used in the node unlinking process. Active nodes
106 * never have self-links.
107 *
108 * A node p is active if and only if:
109 *
110 * p.item != null ||
111 * (p.prev == null && p.next != p) ||
112 * (p.next == null && p.prev != p)
113 *
114 * The deque object has two node references, "head" and "tail".
115 * The head and tail are only approximations to the first and last
116 * nodes of the deque. The first node can always be found by
117 * following prev pointers from head; likewise for tail. However,
118 * it is permissible for head and tail to be referring to deleted
119 * nodes that have been unlinked and so may not be reachable from
120 * any live node.
121 *
122 * There are 3 stages of node deletion;
123 * "logical deletion", "unlinking", and "gc-unlinking".
124 *
125 * 1. "logical deletion" by CASing item to null atomically removes
126 * the element from the collection, and makes the containing node
127 * eligible for unlinking.
128 *
129 * 2. "unlinking" makes a deleted node unreachable from active
130 * nodes, and thus eventually reclaimable by GC. Unlinked nodes
131 * may remain reachable indefinitely from an iterator.
132 *
133 * Physical node unlinking is merely an optimization (albeit a
134 * critical one), and so can be performed at our convenience. At
135 * any time, the set of live nodes maintained by prev and next
136 * links are identical, that is, the live nodes found via next
137 * links from the first node is equal to the elements found via
138 * prev links from the last node. However, this is not true for
139 * nodes that have already been logically deleted - such nodes may
140 * be reachable in one direction only.
141 *
142 * 3. "gc-unlinking" takes unlinking further by making active
143 * nodes unreachable from deleted nodes, making it easier for the
144 * GC to reclaim future deleted nodes. This step makes the data
145 * structure "gc-robust", as first described in detail by Boehm
146 * (http://portal.acm.org/citation.cfm?doid=503272.503282).
147 *
148 * GC-unlinked nodes may remain reachable indefinitely from an
149 * iterator, but unlike unlinked nodes, are never reachable from
150 * head or tail.
151 *
152 * Making the data structure GC-robust will eliminate the risk of
153 * unbounded memory retention with conservative GCs and is likely
154 * to improve performance with generational GCs.
155 *
156 * When a node is dequeued at either end, e.g. via poll(), we would
157 * like to break any references from the node to active nodes. We
158 * develop further the use of self-links that was very effective in
159 * other concurrent collection classes. The idea is to replace
160 * prev and next pointers with special values that are interpreted
161 * to mean off-the-list-at-one-end. These are approximations, but
162 * good enough to preserve the properties we want in our
163 * traversals, e.g. we guarantee that a traversal will never visit
164 * the same element twice, but we don't guarantee whether a
165 * traversal that runs out of elements will be able to see more
166 * elements later after enqueues at that end. Doing gc-unlinking
167 * safely is particularly tricky, since any node can be in use
168 * indefinitely (for example by an iterator). We must ensure that
169 * the nodes pointed at by head/tail never get gc-unlinked, since
170 * head/tail are needed to get "back on track" by other nodes that
171 * are gc-unlinked. gc-unlinking accounts for much of the
172 * implementation complexity.
173 *
174 * Since neither unlinking nor gc-unlinking are necessary for
175 * correctness, there are many implementation choices regarding
176 * frequency (eagerness) of these operations. Since volatile
177 * reads are likely to be much cheaper than CASes, saving CASes by
178 * unlinking multiple adjacent nodes at a time may be a win.
179 * gc-unlinking can be performed rarely and still be effective,
180 * since it is most important that long chains of deleted nodes
181 * are occasionally broken.
182 *
183 * The actual representation we use is that p.next == p means to
184 * goto the first node (which in turn is reached by following prev
185 * pointers from head), and p.next == null && p.prev == p means
186 * that the iteration is at an end and that p is a (final static)
187 * dummy node, NEXT_TERMINATOR, and not the last active node.
188 * Finishing the iteration when encountering such a TERMINATOR is
189 * good enough for read-only traversals, so such traversals can use
190 * p.next == null as the termination condition. When we need to
191 * find the last (active) node, for enqueueing a new node, we need
192 * to check whether we have reached a TERMINATOR node; if so,
193 * restart traversal from tail.
194 *
195 * The implementation is completely directionally symmetrical,
196 * except that most public methods that iterate through the list
197 * follow next pointers ("forward" direction).
198 *
199 * We believe (without full proof) that all single-element deque
200 * operations (e.g., addFirst, peekLast, pollLast) are linearizable
201 * (see Herlihy and Shavit's book). However, some combinations of
202 * operations are known not to be linearizable. In particular,
203 * when an addFirst(A) is racing with pollFirst() removing B, it is
204 * possible for an observer iterating over the elements to observe
205 * A B C and subsequently observe A C, even though no interior
206 * removes are ever performed. Nevertheless, iterators behave
207 * reasonably, providing the "weakly consistent" guarantees.
208 *
209 * Empirically, microbenchmarks suggest that this class adds about
210 * 40% overhead relative to ConcurrentLinkedQueue, which feels as
211 * good as we can hope for.
212 */
213
214 private static final long serialVersionUID = 876323262645176354L;
215
216 /**
217 * A node from which the first node on list (that is, the unique node p
218 * with p.prev == null && p.next != p) can be reached in O(1) time.
219 * Invariants:
220 * - the first node is always O(1) reachable from head via prev links
221 * - all live nodes are reachable from the first node via succ()
222 * - head != null
223 * - (tmp = head).next != tmp || tmp != head
224 * - head is never gc-unlinked (but may be unlinked)
225 * Non-invariants:
226 * - head.item may or may not be null
227 * - head may not be reachable from the first or last node, or from tail
228 */
229 private transient volatile Node<E> head;
230
231 /**
232 * A node from which the last node on list (that is, the unique node p
233 * with p.next == null && p.prev != p) can be reached in O(1) time.
234 * Invariants:
235 * - the last node is always O(1) reachable from tail via next links
236 * - all live nodes are reachable from the last node via pred()
237 * - tail != null
238 * - tail is never gc-unlinked (but may be unlinked)
239 * Non-invariants:
240 * - tail.item may or may not be null
241 * - tail may not be reachable from the first or last node, or from head
242 */
243 private transient volatile Node<E> tail;
244
245 private final static Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
246
247 static {
248 PREV_TERMINATOR = new Node<Object>(null);
249 PREV_TERMINATOR.next = PREV_TERMINATOR;
250 NEXT_TERMINATOR = new Node<Object>(null);
251 NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
252 }
253
254 @SuppressWarnings("unchecked")
255 Node<E> prevTerminator() {
256 return (Node<E>) PREV_TERMINATOR;
257 }
258
259 @SuppressWarnings("unchecked")
260 Node<E> nextTerminator() {
261 return (Node<E>) NEXT_TERMINATOR;
262 }
263
264 static final class Node<E> {
265 volatile Node<E> prev;
266 volatile E item;
267 volatile Node<E> next;
268
269 /**
270 * Constructs a new node. Uses relaxed write because item can
271 * only be seen after publication via casNext or casPrev.
272 */
273 Node(E item) {
274 UNSAFE.putObject(this, itemOffset, item);
275 }
276
277 boolean casItem(E cmp, E val) {
278 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
279 }
280
281 void lazySetNext(Node<E> val) {
282 UNSAFE.putOrderedObject(this, nextOffset, val);
283 }
284
285 boolean casNext(Node<E> cmp, Node<E> val) {
286 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
287 }
288
289 void lazySetPrev(Node<E> val) {
290 UNSAFE.putOrderedObject(this, prevOffset, val);
291 }
292
293 boolean casPrev(Node<E> cmp, Node<E> val) {
294 return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
295 }
296
297 // Unsafe mechanics
298
299 private static final sun.misc.Unsafe UNSAFE =
300 sun.misc.Unsafe.getUnsafe();
301 private static final long prevOffset =
302 objectFieldOffset(UNSAFE, "prev", Node.class);
303 private static final long itemOffset =
304 objectFieldOffset(UNSAFE, "item", Node.class);
305 private static final long nextOffset =
306 objectFieldOffset(UNSAFE, "next", Node.class);
307 }
308
309 /**
310 * Links e as first element.
311 */
312 private void linkFirst(E e) {
313 checkNotNull(e);
314 final Node<E> newNode = new Node<E>(e);
315
316 restartFromHead:
317 for (;;) {
318 for (Node<E> h = head, p = h;;) {
319 Node<E> q = p.prev;
320 if (q == null) {
321 if (p.next == p) // PREV_TERMINATOR
322 continue restartFromHead;
323 // p is first node
324 newNode.lazySetNext(p); // CAS piggyback
325 if (p.casPrev(null, newNode)) {
326 // Successful CAS is the linearization point
327 // for e to become an element of this deque,
328 // and for newNode to become "live".
329 if (p != h) // hop two nodes at a time
330 casHead(h, newNode);
331 return;
332 } else {
333 p = p.prev; // lost CAS race to another thread
334 }
335 }
336 else if (p == q)
337 continue restartFromHead;
338 else
339 p = q;
340 }
341 }
342 }
343
344 /**
345 * Links e as last element.
346 */
347 private void linkLast(E e) {
348 checkNotNull(e);
349 final Node<E> newNode = new Node<E>(e);
350
351 restartFromTail:
352 for (;;) {
353 for (Node<E> t = tail, p = t;;) {
354 Node<E> q = p.next;
355 if (q == null) {
356 if (p.prev == p) // NEXT_TERMINATOR
357 continue restartFromTail;
358 // p is last node
359 newNode.lazySetPrev(p); // CAS piggyback
360 if (p.casNext(null, newNode)) {
361 // Successful CAS is the linearization point
362 // for e to become an element of this deque,
363 // and for newNode to become "live".
364 if (p != t) // hop two nodes at a time
365 casTail(t, newNode);
366 return;
367 } else {
368 p = p.next; // lost CAS race to another thread
369 }
370 }
371 else if (p == q)
372 continue restartFromTail;
373 else
374 p = q;
375 }
376 }
377 }
378
379 private final static int HOPS = 2;
380
381 /**
382 * Unlinks non-null node x.
383 */
384 void unlink(Node<E> x) {
385 // assert x != null;
386 // assert x.item == null;
387 // assert x != PREV_TERMINATOR;
388 // assert x != NEXT_TERMINATOR;
389
390 final Node<E> prev = x.prev;
391 final Node<E> next = x.next;
392 if (prev == null) {
393 unlinkFirst(x, next);
394 } else if (next == null) {
395 unlinkLast(x, prev);
396 } else {
397 // Unlink interior node.
398 //
399 // This is the common case, since a series of polls at the
400 // same end will be "interior" removes, except perhaps for
401 // the first one, since end nodes cannot be unlinked.
402 //
403 // At any time, all active nodes are mutually reachable by
404 // following a sequence of either next or prev pointers.
405 //
406 // Our strategy is to find the unique active predecessor
407 // and successor of x. Try to fix up their links so that
408 // they point to each other, leaving x unreachable from
409 // active nodes. If successful, and if x has no live
410 // predecessor/successor, we additionally try to gc-unlink,
411 // leaving active nodes unreachable from x, by rechecking
412 // that the status of predecessor and successor are
413 // unchanged and ensuring that x is not reachable from
414 // tail/head, before setting x's prev/next links to their
415 // logical approximate replacements, self/TERMINATOR.
416 Node<E> activePred, activeSucc;
417 boolean isFirst, isLast;
418 int hops = 1;
419
420 // Find active predecessor
421 for (Node<E> p = prev; ; ++hops) {
422 if (p.item != null) {
423 activePred = p;
424 isFirst = false;
425 break;
426 }
427 Node<E> q = p.prev;
428 if (q == null) {
429 if (p.next == p)
430 return;
431 activePred = p;
432 isFirst = true;
433 break;
434 }
435 else if (p == q)
436 return;
437 else
438 p = q;
439 }
440
441 // Find active successor
442 for (Node<E> p = next; ; ++hops) {
443 if (p.item != null) {
444 activeSucc = p;
445 isLast = false;
446 break;
447 }
448 Node<E> q = p.next;
449 if (q == null) {
450 if (p.prev == p)
451 return;
452 activeSucc = p;
453 isLast = true;
454 break;
455 }
456 else if (p == q)
457 return;
458 else
459 p = q;
460 }
461
462 // TODO: better HOP heuristics
463 if (hops < HOPS
464 // always squeeze out interior deleted nodes
465 && (isFirst | isLast))
466 return;
467
468 // Squeeze out deleted nodes between activePred and
469 // activeSucc, including x.
470 skipDeletedSuccessors(activePred);
471 skipDeletedPredecessors(activeSucc);
472
473 // Try to gc-unlink, if possible
474 if ((isFirst | isLast) &&
475
476 // Recheck expected state of predecessor and successor
477 (activePred.next == activeSucc) &&
478 (activeSucc.prev == activePred) &&
479 (isFirst ? activePred.prev == null : activePred.item != null) &&
480 (isLast ? activeSucc.next == null : activeSucc.item != null)) {
481
482 updateHead(); // Ensure x is not reachable from head
483 updateTail(); // Ensure x is not reachable from tail
484
485 // Finally, actually gc-unlink
486 x.lazySetPrev(isFirst ? prevTerminator() : x);
487 x.lazySetNext(isLast ? nextTerminator() : x);
488 }
489 }
490 }
491
492 /**
493 * Unlinks non-null first node.
494 */
495 private void unlinkFirst(Node<E> first, Node<E> next) {
496 // assert first != null && next != null && first.item == null;
497 Node<E> o = null, p = next;
498 for (int hops = 0; ; ++hops) {
499 Node<E> q;
500 if (p.item != null || (q = p.next) == null) {
501 if (hops >= HOPS && p.prev != p && first.casNext(next, p)) {
502 skipDeletedPredecessors(p);
503 if (first.prev == null &&
504 (p.next == null || p.item != null) &&
505 p.prev == first) {
506
507 updateHead(); // Ensure o is not reachable from head
508 updateTail(); // Ensure o is not reachable from tail
509
510 // Finally, actually gc-unlink
511 o.lazySetNext(o);
512 o.lazySetPrev(prevTerminator());
513 }
514 }
515 return;
516 }
517 else if (p == q)
518 return;
519 else {
520 o = p;
521 p = q;
522 }
523 }
524 }
525
526 /**
527 * Unlinks non-null last node.
528 */
529 private void unlinkLast(Node<E> last, Node<E> prev) {
530 // assert last != null && prev != null && last.item == null;
531 Node<E> o = null, p = prev;
532 for (int hops = 0; ; ++hops) {
533 Node<E> q;
534 if (p.item != null || (q = p.prev) == null) {
535 if (hops >= HOPS && p.next != p && last.casPrev(prev, p)) {
536 skipDeletedSuccessors(p);
537 if (last.next == null &&
538 (p.prev == null || p.item != null) &&
539 p.next == last) {
540
541 updateHead(); // Ensure o is not reachable from head
542 updateTail(); // Ensure o is not reachable from tail
543
544 // Finally, actually gc-unlink
545 o.lazySetPrev(o);
546 o.lazySetNext(nextTerminator());
547 }
548 }
549 return;
550 }
551 else if (p == q)
552 return;
553 else {
554 o = p;
555 p = q;
556 }
557 }
558 }
559
560 /**
561 * Sets head to first node. Guarantees that any node which was
562 * unlinked before a call to this method will be unreachable from
563 * head after it returns.
564 */
565 private final void updateHead() {
566 first();
567 }
568
569 /**
570 * Sets tail to last node. Guarantees that any node which was
571 * unlinked before a call to this method will be unreachable from
572 * tail after it returns.
573 */
574 private final void updateTail() {
575 last();
576 }
577
578 private void skipDeletedPredecessors(Node<E> x) {
579 whileActive:
580 do {
581 Node<E> prev = x.prev;
582 // assert prev != null;
583 // assert x != NEXT_TERMINATOR;
584 // assert x != PREV_TERMINATOR;
585 Node<E> p = prev;
586 findActive:
587 for (;;) {
588 if (p.item != null)
589 break findActive;
590 Node<E> q = p.prev;
591 if (q == null) {
592 if (p.next == p)
593 continue whileActive;
594 break findActive;
595 }
596 else if (p == q)
597 continue whileActive;
598 else
599 p = q;
600 }
601
602 // found active CAS target
603 if (prev == p || x.casPrev(prev, p))
604 return;
605
606 } while (x.item != null || x.next == null);
607 }
608
609 private void skipDeletedSuccessors(Node<E> x) {
610 whileActive:
611 do {
612 Node<E> next = x.next;
613 // assert next != null;
614 // assert x != NEXT_TERMINATOR;
615 // assert x != PREV_TERMINATOR;
616 Node<E> p = next;
617 findActive:
618 for (;;) {
619 if (p.item != null)
620 break findActive;
621 Node<E> q = p.next;
622 if (q == null) {
623 if (p.prev == p)
624 continue whileActive;
625 break findActive;
626 }
627 else if (p == q)
628 continue whileActive;
629 else
630 p = q;
631 }
632
633 // found active CAS target
634 if (next == p || x.casNext(next, p))
635 return;
636
637 } while (x.item != null || x.prev == null);
638 }
639
640 /**
641 * Returns the successor of p, or the first node if p.next has been
642 * linked to self, which will only be true if traversing with a
643 * stale pointer that is now off the list.
644 */
645 final Node<E> succ(Node<E> p) {
646 // TODO: should we skip deleted nodes here?
647 Node<E> q = p.next;
648 return (p == q) ? first() : q;
649 }
650
651 /**
652 * Returns the predecessor of p, or the last node if p.prev has been
653 * linked to self, which will only be true if traversing with a
654 * stale pointer that is now off the list.
655 */
656 final Node<E> pred(Node<E> p) {
657 Node<E> q = p.prev;
658 return (p == q) ? last() : q;
659 }
660
661 /**
662 * Returns the first node, the unique node p for which:
663 * p.prev == null && p.next != p
664 * The returned node may or may not be logically deleted.
665 * Guarantees that head is set to the returned node.
666 */
667 Node<E> first() {
668 restartFromHead:
669 for (;;) {
670 for (Node<E> h = head, p = h;;) {
671 Node<E> q = p.prev;
672 if (q == null) {
673 if (p == h
674 // It is possible that p is PREV_TERMINATOR,
675 // but if so, the CAS is guaranteed to fail.
676 || casHead(h, p))
677 return p;
678 else
679 continue restartFromHead;
680 } else if (p == q) {
681 continue restartFromHead;
682 } else {
683 p = q;
684 }
685 }
686 }
687 }
688
689 /**
690 * Returns the last node, the unique node p for which:
691 * p.next == null && p.prev != p
692 * The returned node may or may not be logically deleted.
693 * Guarantees that tail is set to the returned node.
694 */
695 Node<E> last() {
696 restartFromTail:
697 for (;;) {
698 for (Node<E> t = tail, p = t;;) {
699 Node<E> q = p.next;
700 if (q == null) {
701 if (p == t
702 // It is possible that p is NEXT_TERMINATOR,
703 // but if so, the CAS is guaranteed to fail.
704 || casTail(t, p))
705 return p;
706 else
707 continue restartFromTail;
708 } else if (p == q) {
709 continue restartFromTail;
710 } else {
711 p = q;
712 }
713 }
714 }
715 }
716
717 // Minor convenience utilities
718
719 /**
720 * Throws NullPointerException if argument is null.
721 *
722 * @param v the element
723 */
724 private static void checkNotNull(Object v) {
725 if (v == null)
726 throw new NullPointerException();
727 }
728
729 /**
730 * Returns element unless it is null, in which case throws
731 * NoSuchElementException.
732 *
733 * @param v the element
734 * @return the element
735 */
736 private E screenNullResult(E v) {
737 if (v == null)
738 throw new NoSuchElementException();
739 return v;
740 }
741
742 /**
743 * Creates an array list and fills it with elements of this list.
744 * Used by toArray.
745 *
746 * @return the arrayList
747 */
748 private ArrayList<E> toArrayList() {
749 ArrayList<E> list = new ArrayList<E>();
750 for (Node<E> p = first(); p != null; p = succ(p)) {
751 E item = p.item;
752 if (item != null)
753 list.add(item);
754 }
755 return list;
756 }
757
758 /**
759 * Constructs an empty deque.
760 */
761 public ConcurrentLinkedDeque() {
762 head = tail = new Node<E>(null);
763 }
764
765 /**
766 * Constructs a deque initially containing the elements of
767 * the given collection, added in traversal order of the
768 * collection's iterator.
769 *
770 * @param c the collection of elements to initially contain
771 * @throws NullPointerException if the specified collection or any
772 * of its elements are null
773 */
774 public ConcurrentLinkedDeque(Collection<? extends E> c) {
775 // Copy c into a private chain of Nodes
776 Node<E> h = null, t = null;
777 for (E e : c) {
778 checkNotNull(e);
779 Node<E> newNode = new Node<E>(e);
780 if (h == null)
781 h = t = newNode;
782 else {
783 t.lazySetNext(newNode);
784 newNode.lazySetPrev(t);
785 t = newNode;
786 }
787 }
788 if (h == null)
789 h = t = new Node<E>(null);
790 head = h;
791 tail = t;
792 }
793
794 /**
795 * Inserts the specified element at the front of this deque.
796 *
797 * @throws NullPointerException {@inheritDoc}
798 */
799 public void addFirst(E e) {
800 linkFirst(e);
801 }
802
803 /**
804 * Inserts the specified element at the end of this deque.
805 *
806 * <p>This method is equivalent to {@link #add}.
807 *
808 * @throws NullPointerException {@inheritDoc}
809 */
810 public void addLast(E e) {
811 linkLast(e);
812 }
813
814 /**
815 * Inserts the specified element at the front of this deque.
816 *
817 * @return {@code true} always
818 * @throws NullPointerException {@inheritDoc}
819 */
820 public boolean offerFirst(E e) {
821 linkFirst(e);
822 return true;
823 }
824
825 /**
826 * Inserts the specified element at the end of this deque.
827 *
828 * <p>This method is equivalent to {@link #add}.
829 *
830 * @return {@code true} always
831 * @throws NullPointerException {@inheritDoc}
832 */
833 public boolean offerLast(E e) {
834 linkLast(e);
835 return true;
836 }
837
838 public E peekFirst() {
839 for (Node<E> p = first(); p != null; p = succ(p)) {
840 E item = p.item;
841 if (item != null)
842 return item;
843 }
844 return null;
845 }
846
847 public E peekLast() {
848 for (Node<E> p = last(); p != null; p = pred(p)) {
849 E item = p.item;
850 if (item != null)
851 return item;
852 }
853 return null;
854 }
855
856 /**
857 * @throws NoSuchElementException {@inheritDoc}
858 */
859 public E getFirst() {
860 return screenNullResult(peekFirst());
861 }
862
863 /**
864 * @throws NoSuchElementException {@inheritDoc}
865 */
866 public E getLast() {
867 return screenNullResult(peekLast());
868 }
869
870 public E pollFirst() {
871 for (Node<E> p = first(); p != null; p = succ(p)) {
872 E item = p.item;
873 if (item != null && p.casItem(item, null)) {
874 unlink(p);
875 return item;
876 }
877 }
878 return null;
879 }
880
881 public E pollLast() {
882 for (Node<E> p = last(); p != null; p = pred(p)) {
883 E item = p.item;
884 if (item != null && p.casItem(item, null)) {
885 unlink(p);
886 return item;
887 }
888 }
889 return null;
890 }
891
892 /**
893 * @throws NoSuchElementException {@inheritDoc}
894 */
895 public E removeFirst() {
896 return screenNullResult(pollFirst());
897 }
898
899 /**
900 * @throws NoSuchElementException {@inheritDoc}
901 */
902 public E removeLast() {
903 return screenNullResult(pollLast());
904 }
905
906 // *** Queue and stack methods ***
907
908 /**
909 * Inserts the specified element at the tail of this deque.
910 *
911 * @return {@code true} (as specified by {@link Queue#offer})
912 * @throws NullPointerException if the specified element is null
913 */
914 public boolean offer(E e) {
915 return offerLast(e);
916 }
917
918 /**
919 * Inserts the specified element at the tail of this deque.
920 *
921 * @return {@code true} (as specified by {@link Collection#add})
922 * @throws NullPointerException if the specified element is null
923 */
924 public boolean add(E e) {
925 return offerLast(e);
926 }
927
928 public E poll() { return pollFirst(); }
929 public E remove() { return removeFirst(); }
930 public E peek() { return peekFirst(); }
931 public E element() { return getFirst(); }
932 public void push(E e) { addFirst(e); }
933 public E pop() { return removeFirst(); }
934
935 /**
936 * Removes the first element {@code e} such that
937 * {@code o.equals(e)}, if such an element exists in this deque.
938 * If the deque does not contain the element, it is unchanged.
939 *
940 * @param o element to be removed from this deque, if present
941 * @return {@code true} if the deque contained the specified element
942 * @throws NullPointerException if the specified element is {@code null}
943 */
944 public boolean removeFirstOccurrence(Object o) {
945 checkNotNull(o);
946 for (Node<E> p = first(); p != null; p = succ(p)) {
947 E item = p.item;
948 if (item != null && o.equals(item) && p.casItem(item, null)) {
949 unlink(p);
950 return true;
951 }
952 }
953 return false;
954 }
955
956 /**
957 * Removes the last element {@code e} such that
958 * {@code o.equals(e)}, if such an element exists in this deque.
959 * If the deque does not contain the element, it is unchanged.
960 *
961 * @param o element to be removed from this deque, if present
962 * @return {@code true} if the deque contained the specified element
963 * @throws NullPointerException if the specified element is {@code null}
964 */
965 public boolean removeLastOccurrence(Object o) {
966 checkNotNull(o);
967 for (Node<E> p = last(); p != null; p = pred(p)) {
968 E item = p.item;
969 if (item != null && o.equals(item) && p.casItem(item, null)) {
970 unlink(p);
971 return true;
972 }
973 }
974 return false;
975 }
976
977 /**
978 * Returns {@code true} if this deque contains at least one
979 * element {@code e} such that {@code o.equals(e)}.
980 *
981 * @param o element whose presence in this deque is to be tested
982 * @return {@code true} if this deque contains the specified element
983 */
984 public boolean contains(Object o) {
985 if (o == null) return false;
986 for (Node<E> p = first(); p != null; p = succ(p)) {
987 E item = p.item;
988 if (item != null && o.equals(item))
989 return true;
990 }
991 return false;
992 }
993
994 /**
995 * Returns {@code true} if this collection contains no elements.
996 *
997 * @return {@code true} if this collection contains no elements
998 */
999 public boolean isEmpty() {
1000 return peekFirst() == null;
1001 }
1002
1003 /**
1004 * Returns the number of elements in this deque. If this deque
1005 * contains more than {@code Integer.MAX_VALUE} elements, it
1006 * returns {@code Integer.MAX_VALUE}.
1007 *
1008 * <p>Beware that, unlike in most collections, this method is
1009 * <em>NOT</em> a constant-time operation. Because of the
1010 * asynchronous nature of these deques, determining the current
1011 * number of elements requires traversing them all to count them.
1012 * Additionally, it is possible for the size to change during
1013 * execution of this method, in which case the returned result
1014 * will be inaccurate. Thus, this method is typically not very
1015 * useful in concurrent applications.
1016 *
1017 * @return the number of elements in this deque
1018 */
1019 public int size() {
1020 long count = 0;
1021 for (Node<E> p = first(); p != null; p = succ(p))
1022 if (p.item != null)
1023 ++count;
1024 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1025 }
1026
1027 /**
1028 * Removes the first element {@code e} such that
1029 * {@code o.equals(e)}, if such an element exists in this deque.
1030 * If the deque does not contain the element, it is unchanged.
1031 *
1032 * @param o element to be removed from this deque, if present
1033 * @return {@code true} if the deque contained the specified element
1034 * @throws NullPointerException if the specified element is {@code null}
1035 */
1036 public boolean remove(Object o) {
1037 return removeFirstOccurrence(o);
1038 }
1039
1040 /**
1041 * Appends all of the elements in the specified collection to the end of
1042 * this deque, in the order that they are returned by the specified
1043 * collection's iterator. Attempts to {@code addAll} of a deque to
1044 * itself result in {@code IllegalArgumentException}.
1045 *
1046 * @param c the elements to be inserted into this deque
1047 * @return {@code true} if this deque changed as a result of the call
1048 * @throws NullPointerException if the specified collection or any
1049 * of its elements are null
1050 * @throws IllegalArgumentException if the collection is this deque
1051 */
1052 public boolean addAll(Collection<? extends E> c) {
1053 if (c == this)
1054 // As historically specified in AbstractQueue#addAll
1055 throw new IllegalArgumentException();
1056
1057 // Copy c into a private chain of Nodes
1058 Node<E> splice = null, last = null;
1059 for (E e : c) {
1060 checkNotNull(e);
1061 Node<E> newNode = new Node<E>(e);
1062 if (splice == null)
1063 splice = last = newNode;
1064 else {
1065 last.lazySetNext(newNode);
1066 newNode.lazySetPrev(last);
1067 last = newNode;
1068 }
1069 }
1070 if (splice == null)
1071 return false;
1072
1073 // Atomically splice the chain as the tail of this collection
1074 restartFromTail:
1075 for (;;) {
1076 for (Node<E> t = tail, p = t;;) {
1077 Node<E> q = p.next;
1078 if (q == null) {
1079 if (p.prev == p) // NEXT_TERMINATOR
1080 continue restartFromTail;
1081 // p is last node
1082 splice.lazySetPrev(p); // CAS piggyback
1083 if (p.casNext(null, splice)) {
1084 if (! casTail(t, last)) {
1085 // Try a little harder to update tail,
1086 // since we may be adding many elements.
1087 t = tail;
1088 if (last.next == null)
1089 casTail(t, last);
1090 }
1091 return true;
1092 } else {
1093 p = p.next; // lost CAS race to another thread
1094 }
1095 }
1096 else if (p == q)
1097 continue restartFromTail;
1098 else
1099 p = q;
1100 }
1101 }
1102 }
1103
1104 /**
1105 * Removes all of the elements from this deque.
1106 */
1107 public void clear() {
1108 while (pollFirst() != null)
1109 ;
1110 }
1111
1112 /**
1113 * Returns an array containing all of the elements in this deque, in
1114 * proper sequence (from first to last element).
1115 *
1116 * <p>The returned array will be "safe" in that no references to it are
1117 * maintained by this deque. (In other words, this method must allocate
1118 * a new array). The caller is thus free to modify the returned array.
1119 *
1120 * <p>This method acts as bridge between array-based and collection-based
1121 * APIs.
1122 *
1123 * @return an array containing all of the elements in this deque
1124 */
1125 public Object[] toArray() {
1126 return toArrayList().toArray();
1127 }
1128
1129 /**
1130 * Returns an array containing all of the elements in this deque,
1131 * in proper sequence (from first to last element); the runtime
1132 * type of the returned array is that of the specified array. If
1133 * the deque fits in the specified array, it is returned therein.
1134 * Otherwise, a new array is allocated with the runtime type of
1135 * the specified array and the size of this deque.
1136 *
1137 * <p>If this deque fits in the specified array with room to spare
1138 * (i.e., the array has more elements than this deque), the element in
1139 * the array immediately following the end of the deque is set to
1140 * {@code null}.
1141 *
1142 * <p>Like the {@link #toArray()} method, this method acts as
1143 * bridge between array-based and collection-based APIs. Further,
1144 * this method allows precise control over the runtime type of the
1145 * output array, and may, under certain circumstances, be used to
1146 * save allocation costs.
1147 *
1148 * <p>Suppose {@code x} is a deque known to contain only strings.
1149 * The following code can be used to dump the deque into a newly
1150 * allocated array of {@code String}:
1151 *
1152 * <pre>
1153 * String[] y = x.toArray(new String[0]);</pre>
1154 *
1155 * Note that {@code toArray(new Object[0])} is identical in function to
1156 * {@code toArray()}.
1157 *
1158 * @param a the array into which the elements of the deque are to
1159 * be stored, if it is big enough; otherwise, a new array of the
1160 * same runtime type is allocated for this purpose
1161 * @return an array containing all of the elements in this deque
1162 * @throws ArrayStoreException if the runtime type of the specified array
1163 * is not a supertype of the runtime type of every element in
1164 * this deque
1165 * @throws NullPointerException if the specified array is null
1166 */
1167 public <T> T[] toArray(T[] a) {
1168 return toArrayList().toArray(a);
1169 }
1170
1171 /**
1172 * Returns an iterator over the elements in this deque in proper sequence.
1173 * The elements will be returned in order from first (head) to last (tail).
1174 *
1175 * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
1176 * will never throw {@link java.util.ConcurrentModificationException
1177 * ConcurrentModificationException},
1178 * and guarantees to traverse elements as they existed upon
1179 * construction of the iterator, and may (but is not guaranteed to)
1180 * reflect any modifications subsequent to construction.
1181 *
1182 * @return an iterator over the elements in this deque in proper sequence
1183 */
1184 public Iterator<E> iterator() {
1185 return new Itr();
1186 }
1187
1188 /**
1189 * Returns an iterator over the elements in this deque in reverse
1190 * sequential order. The elements will be returned in order from
1191 * last (tail) to first (head).
1192 *
1193 * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
1194 * will never throw {@link java.util.ConcurrentModificationException
1195 * ConcurrentModificationException},
1196 * and guarantees to traverse elements as they existed upon
1197 * construction of the iterator, and may (but is not guaranteed to)
1198 * reflect any modifications subsequent to construction.
1199 *
1200 * @return an iterator over the elements in this deque in reverse order
1201 */
1202 public Iterator<E> descendingIterator() {
1203 return new DescendingItr();
1204 }
1205
1206 private abstract class AbstractItr implements Iterator<E> {
1207 /**
1208 * Next node to return item for.
1209 */
1210 private Node<E> nextNode;
1211
1212 /**
1213 * nextItem holds on to item fields because once we claim
1214 * that an element exists in hasNext(), we must return it in
1215 * the following next() call even if it was in the process of
1216 * being removed when hasNext() was called.
1217 */
1218 private E nextItem;
1219
1220 /**
1221 * Node returned by most recent call to next. Needed by remove.
1222 * Reset to null if this element is deleted by a call to remove.
1223 */
1224 private Node<E> lastRet;
1225
1226 abstract Node<E> startNode();
1227 abstract Node<E> nextNode(Node<E> p);
1228
1229 AbstractItr() {
1230 advance();
1231 }
1232
1233 /**
1234 * Sets nextNode and nextItem to next valid node, or to null
1235 * if no such.
1236 */
1237 private void advance() {
1238 lastRet = nextNode;
1239
1240 Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1241 for (;; p = nextNode(p)) {
1242 if (p == null) {
1243 // p might be active end or TERMINATOR node; both are OK
1244 nextNode = null;
1245 nextItem = null;
1246 break;
1247 }
1248 E item = p.item;
1249 if (item != null) {
1250 nextNode = p;
1251 nextItem = item;
1252 break;
1253 }
1254 }
1255 }
1256
1257 public boolean hasNext() {
1258 return nextItem != null;
1259 }
1260
1261 public E next() {
1262 E item = nextItem;
1263 if (item == null) throw new NoSuchElementException();
1264 advance();
1265 return item;
1266 }
1267
1268 public void remove() {
1269 Node<E> l = lastRet;
1270 if (l == null) throw new IllegalStateException();
1271 l.item = null;
1272 unlink(l);
1273 lastRet = null;
1274 }
1275 }
1276
1277 /** Forward iterator */
1278 private class Itr extends AbstractItr {
1279 Node<E> startNode() { return first(); }
1280 Node<E> nextNode(Node<E> p) { return succ(p); }
1281 }
1282
1283 /** Descending iterator */
1284 private class DescendingItr extends AbstractItr {
1285 Node<E> startNode() { return last(); }
1286 Node<E> nextNode(Node<E> p) { return pred(p); }
1287 }
1288
1289 /**
1290 * Saves the state to a stream (that is, serializes it).
1291 *
1292 * @serialData All of the elements (each an {@code E}) in
1293 * the proper order, followed by a null
1294 * @param s the stream
1295 */
1296 private void writeObject(java.io.ObjectOutputStream s)
1297 throws java.io.IOException {
1298
1299 // Write out any hidden stuff
1300 s.defaultWriteObject();
1301
1302 // Write out all elements in the proper order.
1303 for (Node<E> p = first(); p != null; p = succ(p)) {
1304 Object item = p.item;
1305 if (item != null)
1306 s.writeObject(item);
1307 }
1308
1309 // Use trailing null as sentinel
1310 s.writeObject(null);
1311 }
1312
1313 /**
1314 * Reconstitutes the instance from a stream (that is, deserializes it).
1315 * @param s the stream
1316 */
1317 private void readObject(java.io.ObjectInputStream s)
1318 throws java.io.IOException, ClassNotFoundException {
1319 s.defaultReadObject();
1320
1321 // Read in elements until trailing null sentinel found
1322 Node<E> h = null, t = null;
1323 Object item;
1324 while ((item = s.readObject()) != null) {
1325 @SuppressWarnings("unchecked")
1326 Node<E> newNode = new Node<E>((E) item);
1327 if (h == null)
1328 h = t = newNode;
1329 else {
1330 t.lazySetNext(newNode);
1331 newNode.lazySetPrev(t);
1332 t = newNode;
1333 }
1334 }
1335 if (h == null)
1336 h = t = new Node<E>(null);
1337 head = h;
1338 tail = t;
1339 }
1340
1341 // Unsafe mechanics
1342
1343 private static final sun.misc.Unsafe UNSAFE =
1344 sun.misc.Unsafe.getUnsafe();
1345 private static final long headOffset =
1346 objectFieldOffset(UNSAFE, "head", ConcurrentLinkedDeque.class);
1347 private static final long tailOffset =
1348 objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedDeque.class);
1349
1350 private boolean casHead(Node<E> cmp, Node<E> val) {
1351 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1352 }
1353
1354 private boolean casTail(Node<E> cmp, Node<E> val) {
1355 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1356 }
1357
1358 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1359 String field, Class<?> klazz) {
1360 try {
1361 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1362 } catch (NoSuchFieldException e) {
1363 // Convert Exception to corresponding Error
1364 NoSuchFieldError error = new NoSuchFieldError(field);
1365 error.initCause(e);
1366 throw error;
1367 }
1368 }
1369 }