ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedQueue.java
Revision: 1.48
Committed: Tue Jul 7 23:17:20 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.47: +346 -137 lines
Log Message:
6785442: ConcurrentLinkedQueue.remove() and poll() can both remove the same element

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.24 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 dl 1.1 */
6    
7     package java.util.concurrent;
8     import java.util.*;
9     import java.util.concurrent.atomic.*;
10    
11    
12     /**
13 jsr166 1.29 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
14 dholmes 1.6 * This queue orders elements FIFO (first-in-first-out).
15     * The <em>head</em> of the queue is that element that has been on the
16     * queue the longest time.
17     * The <em>tail</em> of the queue is that element that has been on the
18 dl 1.17 * queue the shortest time. New elements
19     * are inserted at the tail of the queue, and the queue retrieval
20     * operations obtain elements at the head of the queue.
21 jsr166 1.48 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
22 dl 1.19 * many threads will share access to a common collection.
23 jsr166 1.48 * This queue does not permit {@code null} elements.
24 dl 1.1 *
25 jsr166 1.29 * <p>This implementation employs an efficient &quot;wait-free&quot;
26 dholmes 1.6 * algorithm based on one described in <a
27 dl 1.1 * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple,
28     * Fast, and Practical Non-Blocking and Blocking Concurrent Queue
29 dl 1.15 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
30 dl 1.1 *
31 jsr166 1.48 * <p>Beware that, unlike in most collections, the {@code size} method
32 dl 1.1 * is <em>NOT</em> a constant-time operation. Because of the
33     * asynchronous nature of these queues, determining the current number
34 dl 1.15 * of elements requires a traversal of the elements.
35 dl 1.18 *
36 dl 1.27 * <p>This class and its iterator implement all of the
37     * <em>optional</em> methods of the {@link Collection} and {@link
38 jsr166 1.29 * Iterator} interfaces.
39 dl 1.18 *
40 jsr166 1.43 * <p>Memory consistency effects: As with other concurrent
41     * collections, actions in a thread prior to placing an object into a
42     * {@code ConcurrentLinkedQueue}
43     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
44     * actions subsequent to the access or removal of that element from
45     * the {@code ConcurrentLinkedQueue} in another thread.
46     *
47 dl 1.25 * <p>This class is a member of the
48 jsr166 1.47 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
49 dl 1.25 * Java Collections Framework</a>.
50     *
51 dl 1.1 * @since 1.5
52     * @author Doug Lea
53 dl 1.21 * @param <E> the type of elements held in this collection
54 tim 1.2 *
55 dl 1.25 */
56 dl 1.1 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
57     implements Queue<E>, java.io.Serializable {
58 dl 1.14 private static final long serialVersionUID = 196745693267521676L;
59 dl 1.1
60     /*
61 jsr166 1.48 * This is a modification of the Michael & Scott algorithm,
62     * adapted for a garbage-collected environment, with support for
63     * interior node deletion (to support remove(Object)). For
64     * explanation, read the paper.
65 dl 1.44 *
66 jsr166 1.48 * Note that like most non-blocking algorithms in this package,
67     * this implementation relies on the fact that in garbage
68 dl 1.44 * collected systems, there is no possibility of ABA problems due
69     * to recycled nodes, so there is no need to use "counted
70     * pointers" or related techniques seen in versions used in
71     * non-GC'ed settings.
72 jsr166 1.48 *
73     * The fundamental invariants are:
74     * - There is exactly one (last) Node with a null next reference,
75     * which is CASed when enqueueing. This last Node can be
76     * reached in O(1) time from tail, but tail is merely an
77     * optimization - it can always be reached in O(N) time from
78     * head as well.
79     * - The elements contained in the queue are the non-null items in
80     * Nodes that are reachable from head. CASing the item
81     * reference of a Node to null atomically removes it from the
82     * queue. Reachability of all elements from head must remain
83     * true even in the case of concurrent modifications that cause
84     * head to advance. A dequeued Node may remain in use
85     * indefinitely due to creation of an Iterator or simply a
86     * poll() that has lost its time slice.
87     *
88     * The above might appear to imply that all Nodes are GC-reachable
89     * from a predecessor dequeued Node. That would cause two problems:
90     * - allow a rogue Iterator to cause unbounded memory retention
91     * - cause cross-generational linking of old Nodes to new Nodes if
92     * a Node was tenured while live, which generational GCs have a
93     * hard time dealing with, causing repeated major collections.
94     * However, only non-deleted Nodes need to be reachable from
95     * dequeued Nodes, and reachability does not necessarily have to
96     * be of the kind understood by the GC. We use the trick of
97     * linking a Node that has just been dequeued to itself. Such a
98     * self-link implicitly means to advance to head.
99     *
100     * Both head and tail are permitted to lag. In fact, failing to
101     * update them every time one could is a significant optimization
102     * (fewer CASes). This is controlled by local "hops" variables
103     * that only trigger helping-CASes after experiencing multiple
104     * lags.
105     *
106     * Since head and tail are updated concurrently and independently,
107     * it is possible for tail to lag behind head (why not)?
108     *
109     * CASing a Node's item reference to null atomically removes the
110     * element from the queue. Iterators skip over Nodes with null
111     * items. Prior implementations of this class had a race between
112     * poll() and remove(Object) where the same element would appear
113     * to be successfully removed by two concurrent operations. The
114     * method remove(Object) also lazily unlinks deleted Nodes, but
115     * this is merely an optimization.
116     *
117     * When constructing a Node (before enqueuing it) we avoid paying
118     * for a volatile write to item by using lazySet instead of a
119     * normal write. This allows the cost of enqueue to be
120     * "one-and-a-half" CASes.
121     *
122     * Both head and tail may or may not point to a Node with a
123     * non-null item. If the queue is empty, all items must of course
124     * be null. Upon creation, both head and tail refer to a dummy
125     * Node with null item. Both head and tail are only updated using
126     * CAS, so they never regress, although again this is merely an
127     * optimization.
128 dl 1.1 */
129 dl 1.23 private static class Node<E> {
130 dl 1.22 private volatile E item;
131 dl 1.23 private volatile Node<E> next;
132 jsr166 1.29
133 jsr166 1.48 private static final sun.misc.Unsafe unsafe = ConcurrentLinkedQueue.unsafe;
134     private static final long nextOffset = fieldOffset("next", Node.class);
135     private static final long itemOffset = fieldOffset("item", Node.class);
136 jsr166 1.29
137    
138 jsr166 1.48 Node(E item) { lazySetItem(item); }
139 jsr166 1.29
140 dl 1.22 E getItem() {
141 dl 1.13 return item;
142     }
143 jsr166 1.29
144 dl 1.22 boolean casItem(E cmp, E val) {
145 jsr166 1.48 return unsafe.compareAndSwapObject(this, itemOffset, cmp, val);
146 dl 1.13 }
147 jsr166 1.29
148 dl 1.22 void setItem(E val) {
149 jsr166 1.48 item = val;
150     }
151    
152     void lazySetItem(E val) {
153     unsafe.putOrderedObject(this, itemOffset, val);
154     }
155    
156     void lazySetNext(Node<E> val) {
157     unsafe.putOrderedObject(this, nextOffset, val);
158 dl 1.13 }
159 jsr166 1.29
160 dl 1.23 Node<E> getNext() {
161 dl 1.13 return next;
162     }
163 jsr166 1.29
164 dl 1.23 boolean casNext(Node<E> cmp, Node<E> val) {
165 jsr166 1.48 return unsafe.compareAndSwapObject(this, nextOffset, cmp, val);
166 dl 1.13 }
167     }
168 dl 1.1
169 dl 1.23 private boolean casTail(Node<E> cmp, Node<E> val) {
170 jsr166 1.48 return unsafe.compareAndSwapObject(this, tailOffset, cmp, val);
171 dl 1.1 }
172    
173 dl 1.23 private boolean casHead(Node<E> cmp, Node<E> val) {
174 jsr166 1.48 return unsafe.compareAndSwapObject(this, headOffset, cmp, val);
175     }
176    
177     private void lazySetHead(Node<E> val) {
178     unsafe.putOrderedObject(this, headOffset, val);
179 dl 1.1 }
180    
181    
182 tim 1.2 /**
183 jsr166 1.48 * Pointer to first node, initialized to a dummy node.
184 dl 1.1 */
185 jsr166 1.48 private transient volatile Node<E> head = new Node<E>(null);
186 dl 1.1
187 jsr166 1.48 /** Pointer to last node on list */
188 dl 1.23 private transient volatile Node<E> tail = head;
189 dl 1.1
190    
191     /**
192 jsr166 1.48 * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
193 dl 1.1 */
194     public ConcurrentLinkedQueue() {}
195    
196     /**
197 jsr166 1.48 * Creates a {@code ConcurrentLinkedQueue}
198 dholmes 1.7 * initially containing the elements of the given collection,
199 dholmes 1.6 * added in traversal order of the collection's iterator.
200     * @param c the collection of elements to initially contain
201 jsr166 1.34 * @throws NullPointerException if the specified collection or any
202     * of its elements are null
203 dl 1.1 */
204 dholmes 1.6 public ConcurrentLinkedQueue(Collection<? extends E> c) {
205     for (Iterator<? extends E> it = c.iterator(); it.hasNext();)
206 dl 1.1 add(it.next());
207     }
208    
209 jsr166 1.29 // Have to override just to update the javadoc
210 dholmes 1.6
211     /**
212 jsr166 1.35 * Inserts the specified element at the tail of this queue.
213 dholmes 1.7 *
214 jsr166 1.48 * @return {@code true} (as specified by {@link Collection#add})
215 jsr166 1.32 * @throws NullPointerException if the specified element is null
216 dholmes 1.6 */
217 jsr166 1.31 public boolean add(E e) {
218     return offer(e);
219 dholmes 1.6 }
220    
221     /**
222 jsr166 1.48 * We don't bother to update head or tail pointers if less than
223     * HOPS links from "true" location. We assume that volatile
224     * writes are significantly more expensive than volatile reads.
225     */
226     private static final int HOPS = 1;
227    
228     /**
229     * Try to CAS head to p. If successful, repoint old head to itself
230     * as sentinel for succ(), below.
231     */
232     final void updateHead(Node<E> h, Node<E> p) {
233     if (h != p && casHead(h, p))
234     h.lazySetNext(h);
235     }
236    
237     /**
238     * Returns the successor of p, or the head node if p.next has been
239     * linked to self, which will only be true if traversing with a
240     * stale pointer that is now off the list.
241     */
242     final Node<E> succ(Node<E> p) {
243     Node<E> next = p.getNext();
244     return (p == next) ? head : next;
245     }
246    
247     /**
248 jsr166 1.32 * Inserts the specified element at the tail of this queue.
249 dl 1.17 *
250 jsr166 1.48 * @return {@code true} (as specified by {@link Queue#offer})
251 jsr166 1.32 * @throws NullPointerException if the specified element is null
252 dholmes 1.6 */
253 jsr166 1.31 public boolean offer(E e) {
254     if (e == null) throw new NullPointerException();
255 jsr166 1.48 Node<E> n = new Node<E>(e);
256     retry:
257 jsr166 1.38 for (;;) {
258 dl 1.23 Node<E> t = tail;
259 jsr166 1.48 Node<E> p = t;
260     for (int hops = 0; ; hops++) {
261     Node<E> next = succ(p);
262     if (next != null) {
263     if (hops > HOPS && t != tail)
264     continue retry;
265     p = next;
266     } else if (p.casNext(null, n)) {
267     if (hops >= HOPS)
268     casTail(t, n); // Failure is OK.
269     return true;
270 tim 1.12 } else {
271 jsr166 1.48 p = succ(p);
272 dl 1.1 }
273     }
274     }
275     }
276    
277     public E poll() {
278 jsr166 1.48 Node<E> h = head;
279     Node<E> p = h;
280     for (int hops = 0; ; hops++) {
281     E item = p.getItem();
282    
283     if (item != null && p.casItem(item, null)) {
284     if (hops >= HOPS) {
285     Node<E> q = p.getNext();
286     updateHead(h, (q != null) ? q : p);
287 dl 1.1 }
288 jsr166 1.48 return item;
289 dl 1.1 }
290 jsr166 1.48 Node<E> next = succ(p);
291     if (next == null) {
292     updateHead(h, p);
293     break;
294     }
295     p = next;
296 dl 1.1 }
297 jsr166 1.48 return null;
298 dl 1.1 }
299    
300 jsr166 1.48 public E peek() {
301     Node<E> h = head;
302     Node<E> p = h;
303     E item;
304 dl 1.1 for (;;) {
305 jsr166 1.48 item = p.getItem();
306     if (item != null)
307     break;
308     Node<E> next = succ(p);
309     if (next == null) {
310     break;
311 dl 1.1 }
312 jsr166 1.48 p = next;
313 dl 1.1 }
314 jsr166 1.48 updateHead(h, p);
315     return item;
316 dl 1.1 }
317    
318     /**
319 dholmes 1.6 * Returns the first actual (non-header) node on list. This is yet
320 dl 1.1 * another variant of poll/peek; here returning out the first
321     * node, not element (so we cannot collapse with peek() without
322     * introducing race.)
323     */
324 dl 1.23 Node<E> first() {
325 jsr166 1.48 Node<E> h = head;
326     Node<E> p = h;
327     Node<E> result;
328 dl 1.1 for (;;) {
329 jsr166 1.48 E item = p.getItem();
330     if (item != null) {
331     result = p;
332     break;
333     }
334     Node<E> next = succ(p);
335     if (next == null) {
336     result = null;
337     break;
338 dl 1.1 }
339 jsr166 1.48 p = next;
340 dl 1.1 }
341 jsr166 1.48 updateHead(h, p);
342     return result;
343 dl 1.1 }
344    
345 dl 1.28 /**
346 jsr166 1.48 * Returns {@code true} if this queue contains no elements.
347 dl 1.28 *
348 jsr166 1.48 * @return {@code true} if this queue contains no elements
349 dl 1.28 */
350 dl 1.1 public boolean isEmpty() {
351     return first() == null;
352     }
353    
354     /**
355 dl 1.17 * Returns the number of elements in this queue. If this queue
356 jsr166 1.48 * contains more than {@code Integer.MAX_VALUE} elements, returns
357     * {@code Integer.MAX_VALUE}.
358 tim 1.2 *
359 dl 1.17 * <p>Beware that, unlike in most collections, this method is
360 dl 1.1 * <em>NOT</em> a constant-time operation. Because of the
361     * asynchronous nature of these queues, determining the current
362     * number of elements requires an O(n) traversal.
363 dl 1.17 *
364 jsr166 1.37 * @return the number of elements in this queue
365 tim 1.2 */
366 dl 1.1 public int size() {
367     int count = 0;
368 jsr166 1.48 for (Node<E> p = first(); p != null; p = succ(p)) {
369 dl 1.8 if (p.getItem() != null) {
370     // Collections.size() spec says to max out
371     if (++count == Integer.MAX_VALUE)
372     break;
373     }
374 dl 1.1 }
375     return count;
376     }
377    
378 jsr166 1.37 /**
379 jsr166 1.48 * Returns {@code true} if this queue contains the specified element.
380     * More formally, returns {@code true} if and only if this queue contains
381     * at least one element {@code e} such that {@code o.equals(e)}.
382 jsr166 1.37 *
383     * @param o object to be checked for containment in this queue
384 jsr166 1.48 * @return {@code true} if this queue contains the specified element
385 jsr166 1.37 */
386 dholmes 1.6 public boolean contains(Object o) {
387     if (o == null) return false;
388 jsr166 1.48 for (Node<E> p = first(); p != null; p = succ(p)) {
389 dl 1.22 E item = p.getItem();
390 tim 1.2 if (item != null &&
391 dholmes 1.6 o.equals(item))
392 dl 1.1 return true;
393     }
394     return false;
395     }
396    
397 jsr166 1.37 /**
398     * Removes a single instance of the specified element from this queue,
399 jsr166 1.48 * if it is present. More formally, removes an element {@code e} such
400     * that {@code o.equals(e)}, if this queue contains one or more such
401 jsr166 1.37 * elements.
402 jsr166 1.48 * Returns {@code true} if this queue contained the specified element
403 jsr166 1.37 * (or equivalently, if this queue changed as a result of the call).
404     *
405     * @param o element to be removed from this queue, if present
406 jsr166 1.48 * @return {@code true} if this queue changed as a result of the call
407 jsr166 1.37 */
408 dholmes 1.6 public boolean remove(Object o) {
409     if (o == null) return false;
410 jsr166 1.48 Node<E> pred = null;
411     for (Node<E> p = first(); p != null; p = succ(p)) {
412 dl 1.22 E item = p.getItem();
413 jsr166 1.48 if (item != null && o.equals(item) && p.casItem(item, null)) {
414     Node<E> next = succ(p);
415     if (pred != null && next != null)
416     pred.casNext(p, next);
417 dl 1.1 return true;
418 jsr166 1.48 }
419     pred = p;
420 dl 1.1 }
421     return false;
422     }
423 tim 1.2
424 jsr166 1.33 /**
425 jsr166 1.48 * Returns an array containing all of the elements in this queue, in
426     * proper sequence.
427     *
428     * <p>The returned array will be "safe" in that no references to it are
429     * maintained by this queue. (In other words, this method must allocate
430     * a new array). The caller is thus free to modify the returned array.
431     *
432     * <p>This method acts as bridge between array-based and collection-based
433     * APIs.
434     *
435     * @return an array containing all of the elements in this queue
436     */
437     public Object[] toArray() {
438     // Use ArrayList to deal with resizing.
439     ArrayList<E> al = new ArrayList<E>();
440     for (Node<E> p = first(); p != null; p = succ(p)) {
441     E item = p.getItem();
442     if (item != null)
443     al.add(item);
444     }
445     return al.toArray();
446     }
447    
448     /**
449     * Returns an array containing all of the elements in this queue, in
450     * proper sequence; the runtime type of the returned array is that of
451     * the specified array. If the queue fits in the specified array, it
452     * is returned therein. Otherwise, a new array is allocated with the
453     * runtime type of the specified array and the size of this queue.
454     *
455     * <p>If this queue fits in the specified array with room to spare
456     * (i.e., the array has more elements than this queue), the element in
457     * the array immediately following the end of the queue is set to
458     * {@code null}.
459     *
460     * <p>Like the {@link #toArray()} method, this method acts as bridge between
461     * array-based and collection-based APIs. Further, this method allows
462     * precise control over the runtime type of the output array, and may,
463     * under certain circumstances, be used to save allocation costs.
464     *
465     * <p>Suppose {@code x} is a queue known to contain only strings.
466     * The following code can be used to dump the queue into a newly
467     * allocated array of {@code String}:
468     *
469     * <pre>
470     * String[] y = x.toArray(new String[0]);</pre>
471     *
472     * Note that {@code toArray(new Object[0])} is identical in function to
473     * {@code toArray()}.
474     *
475     * @param a the array into which the elements of the queue are to
476     * be stored, if it is big enough; otherwise, a new array of the
477     * same runtime type is allocated for this purpose
478     * @return an array containing all of the elements in this queue
479     * @throws ArrayStoreException if the runtime type of the specified array
480     * is not a supertype of the runtime type of every element in
481     * this queue
482     * @throws NullPointerException if the specified array is null
483     */
484     @SuppressWarnings("unchecked")
485     public <T> T[] toArray(T[] a) {
486     // try to use sent-in array
487     int k = 0;
488     Node<E> p;
489     for (p = first(); p != null && k < a.length; p = succ(p)) {
490     E item = p.getItem();
491     if (item != null)
492     a[k++] = (T)item;
493     }
494     if (p == null) {
495     if (k < a.length)
496     a[k] = null;
497     return a;
498     }
499    
500     // If won't fit, use ArrayList version
501     ArrayList<E> al = new ArrayList<E>();
502     for (Node<E> q = first(); q != null; q = succ(q)) {
503     E item = q.getItem();
504     if (item != null)
505     al.add(item);
506     }
507     return al.toArray(a);
508     }
509    
510     /**
511 dholmes 1.7 * Returns an iterator over the elements in this queue in proper sequence.
512 dl 1.9 * The returned iterator is a "weakly consistent" iterator that
513 jsr166 1.29 * will never throw {@link ConcurrentModificationException},
514 dl 1.9 * and guarantees to traverse elements as they existed upon
515     * construction of the iterator, and may (but is not guaranteed to)
516     * reflect any modifications subsequent to construction.
517 dholmes 1.7 *
518 jsr166 1.33 * @return an iterator over the elements in this queue in proper sequence
519 dholmes 1.7 */
520 dl 1.1 public Iterator<E> iterator() {
521     return new Itr();
522     }
523    
524     private class Itr implements Iterator<E> {
525     /**
526     * Next node to return item for.
527     */
528 dl 1.23 private Node<E> nextNode;
529 dl 1.1
530 tim 1.2 /**
531 dl 1.1 * nextItem holds on to item fields because once we claim
532     * that an element exists in hasNext(), we must return it in
533     * the following next() call even if it was in the process of
534     * being removed when hasNext() was called.
535 jsr166 1.29 */
536 dl 1.1 private E nextItem;
537    
538     /**
539     * Node of the last returned item, to support remove.
540     */
541 dl 1.23 private Node<E> lastRet;
542 dl 1.1
543 tim 1.2 Itr() {
544 dl 1.1 advance();
545     }
546 tim 1.2
547 dl 1.1 /**
548 dl 1.26 * Moves to next valid node and returns item to return for
549     * next(), or null if no such.
550 dl 1.1 */
551 tim 1.2 private E advance() {
552 dl 1.1 lastRet = nextNode;
553 dl 1.22 E x = nextItem;
554 dl 1.1
555 jsr166 1.48 Node<E> pred, p;
556     if (nextNode == null) {
557     p = first();
558     pred = null;
559     } else {
560     pred = nextNode;
561     p = succ(nextNode);
562     }
563    
564 dl 1.1 for (;;) {
565     if (p == null) {
566     nextNode = null;
567     nextItem = null;
568     return x;
569     }
570 dl 1.22 E item = p.getItem();
571 dl 1.1 if (item != null) {
572     nextNode = p;
573     nextItem = item;
574     return x;
575 jsr166 1.48 } else {
576     // skip over nulls
577     Node<E> next = succ(p);
578     if (pred != null && next != null)
579     pred.casNext(p, next);
580     p = next;
581     }
582 dl 1.1 }
583     }
584 tim 1.2
585 dl 1.1 public boolean hasNext() {
586     return nextNode != null;
587     }
588 tim 1.2
589 dl 1.1 public E next() {
590     if (nextNode == null) throw new NoSuchElementException();
591     return advance();
592     }
593 tim 1.2
594 dl 1.1 public void remove() {
595 dl 1.23 Node<E> l = lastRet;
596 dl 1.1 if (l == null) throw new IllegalStateException();
597     // rely on a future traversal to relink.
598     l.setItem(null);
599     lastRet = null;
600     }
601     }
602    
603     /**
604     * Save the state to a stream (that is, serialize it).
605     *
606 jsr166 1.48 * @serialData All of the elements (each an {@code E}) in
607 dl 1.1 * the proper order, followed by a null
608     * @param s the stream
609     */
610     private void writeObject(java.io.ObjectOutputStream s)
611     throws java.io.IOException {
612    
613     // Write out any hidden stuff
614     s.defaultWriteObject();
615 tim 1.2
616 dl 1.1 // Write out all elements in the proper order.
617 jsr166 1.48 for (Node<E> p = first(); p != null; p = succ(p)) {
618 dl 1.1 Object item = p.getItem();
619     if (item != null)
620     s.writeObject(item);
621     }
622    
623     // Use trailing null as sentinel
624     s.writeObject(null);
625     }
626    
627     /**
628     * Reconstitute the Queue instance from a stream (that is,
629     * deserialize it).
630     * @param s the stream
631     */
632     private void readObject(java.io.ObjectInputStream s)
633     throws java.io.IOException, ClassNotFoundException {
634 tim 1.2 // Read in capacity, and any hidden stuff
635     s.defaultReadObject();
636 jsr166 1.48 head = new Node<E>(null);
637 dl 1.16 tail = head;
638 tim 1.2 // Read in all elements and place in queue
639 dl 1.1 for (;;) {
640 jsr166 1.48 @SuppressWarnings("unchecked")
641 dl 1.1 E item = (E)s.readObject();
642     if (item == null)
643     break;
644 dl 1.16 else
645     offer(item);
646 dl 1.1 }
647     }
648    
649 jsr166 1.48 // Unsafe mechanics
650     private static sun.misc.Unsafe getUnsafe() {
651     try {
652     return sun.misc.Unsafe.getUnsafe();
653     } catch (SecurityException se) {
654     try {
655     return java.security.AccessController.doPrivileged
656     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
657     public sun.misc.Unsafe run() throws Exception {
658     return getUnsafeByReflection();
659     }});
660     } catch (java.security.PrivilegedActionException e) {
661     throw new RuntimeException("Could not initialize intrinsics",
662     e.getCause());
663     }
664     }
665     }
666    
667     private static sun.misc.Unsafe getUnsafeByReflection()
668     throws NoSuchFieldException, IllegalAccessException {
669     java.lang.reflect.Field f = sun.misc.Unsafe.class.getDeclaredField("theUnsafe");
670     f.setAccessible(true);
671     return (sun.misc.Unsafe) f.get(null);
672     }
673    
674     private static long fieldOffset(String fieldName, Class<?> klazz) {
675     try {
676     return unsafe.objectFieldOffset(klazz.getDeclaredField(fieldName));
677     } catch (NoSuchFieldException e) {
678     NoSuchFieldError error = new NoSuchFieldError(fieldName);
679     error.initCause(e);
680     throw error;
681     }
682     }
683    
684     private static final sun.misc.Unsafe unsafe = getUnsafe();
685     private static final long headOffset =
686     fieldOffset("head", ConcurrentLinkedQueue.class);;
687     private static final long tailOffset =
688     fieldOffset("tail", ConcurrentLinkedQueue.class);
689 dl 1.1 }