ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedQueue.java
Revision: 1.113
Committed: Sun Jan 18 16:34:02 2015 UTC (9 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.112: +1 -0 lines
Log Message:
add an assert

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Queue;
15 import java.util.Spliterator;
16 import java.util.Spliterators;
17 import java.util.function.Consumer;
18
19 /**
20 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
21 * This queue orders elements FIFO (first-in-first-out).
22 * The <em>head</em> of the queue is that element that has been on the
23 * queue the longest time.
24 * The <em>tail</em> of the queue is that element that has been on the
25 * queue the shortest time. New elements
26 * are inserted at the tail of the queue, and the queue retrieval
27 * operations obtain elements at the head of the queue.
28 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
29 * many threads will share access to a common collection.
30 * Like most other concurrent collection implementations, this class
31 * does not permit the use of {@code null} elements.
32 *
33 * <p>This implementation employs an efficient <em>non-blocking</em>
34 * algorithm based on one described in
35 * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
36 * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
37 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
38 *
39 * <p>Iterators are <i>weakly consistent</i>, returning elements
40 * reflecting the state of the queue at some point at or since the
41 * creation of the iterator. They do <em>not</em> throw {@link
42 * java.util.ConcurrentModificationException}, and may proceed concurrently
43 * with other operations. Elements contained in the queue since the creation
44 * of the iterator will be returned exactly once.
45 *
46 * <p>Beware that, unlike in most collections, the {@code size} method
47 * is <em>NOT</em> a constant-time operation. Because of the
48 * asynchronous nature of these queues, determining the current number
49 * of elements requires a traversal of the elements, and so may report
50 * inaccurate results if this collection is modified during traversal.
51 * Additionally, the bulk operations {@code addAll},
52 * {@code removeAll}, {@code retainAll}, {@code containsAll},
53 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
54 * to be performed atomically. For example, an iterator operating
55 * concurrently with an {@code addAll} operation might view only some
56 * of the added elements.
57 *
58 * <p>This class and its iterator implement all of the <em>optional</em>
59 * methods of the {@link Queue} and {@link Iterator} interfaces.
60 *
61 * <p>Memory consistency effects: As with other concurrent
62 * collections, actions in a thread prior to placing an object into a
63 * {@code ConcurrentLinkedQueue}
64 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
65 * actions subsequent to the access or removal of that element from
66 * the {@code ConcurrentLinkedQueue} in another thread.
67 *
68 * <p>This class is a member of the
69 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
70 * Java Collections Framework</a>.
71 *
72 * @since 1.5
73 * @author Doug Lea
74 * @param <E> the type of elements held in this queue
75 */
76 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
77 implements Queue<E>, java.io.Serializable {
78 private static final long serialVersionUID = 196745693267521676L;
79
80 /*
81 * This is a modification of the Michael & Scott algorithm,
82 * adapted for a garbage-collected environment, with support for
83 * interior node deletion (to support remove(Object)). For
84 * explanation, read the paper.
85 *
86 * Note that like most non-blocking algorithms in this package,
87 * this implementation relies on the fact that in garbage
88 * collected systems, there is no possibility of ABA problems due
89 * to recycled nodes, so there is no need to use "counted
90 * pointers" or related techniques seen in versions used in
91 * non-GC'ed settings.
92 *
93 * The fundamental invariants are:
94 * - There is exactly one (last) Node with a null next reference,
95 * which is CASed when enqueueing. This last Node can be
96 * reached in O(1) time from tail, but tail is merely an
97 * optimization - it can always be reached in O(N) time from
98 * head as well.
99 * - The elements contained in the queue are the non-null items in
100 * Nodes that are reachable from head. CASing the item
101 * reference of a Node to null atomically removes it from the
102 * queue. Reachability of all elements from head must remain
103 * true even in the case of concurrent modifications that cause
104 * head to advance. A dequeued Node may remain in use
105 * indefinitely due to creation of an Iterator or simply a
106 * poll() that has lost its time slice.
107 *
108 * The above might appear to imply that all Nodes are GC-reachable
109 * from a predecessor dequeued Node. That would cause two problems:
110 * - allow a rogue Iterator to cause unbounded memory retention
111 * - cause cross-generational linking of old Nodes to new Nodes if
112 * a Node was tenured while live, which generational GCs have a
113 * hard time dealing with, causing repeated major collections.
114 * However, only non-deleted Nodes need to be reachable from
115 * dequeued Nodes, and reachability does not necessarily have to
116 * be of the kind understood by the GC. We use the trick of
117 * linking a Node that has just been dequeued to itself. Such a
118 * self-link implicitly means to advance to head.
119 *
120 * Both head and tail are permitted to lag. In fact, failing to
121 * update them every time one could is a significant optimization
122 * (fewer CASes). As with LinkedTransferQueue (see the internal
123 * documentation for that class), we use a slack threshold of two;
124 * that is, we update head/tail when the current pointer appears
125 * to be two or more steps away from the first/last node.
126 *
127 * Since head and tail are updated concurrently and independently,
128 * it is possible for tail to lag behind head (why not)?
129 *
130 * CASing a Node's item reference to null atomically removes the
131 * element from the queue. Iterators skip over Nodes with null
132 * items. Prior implementations of this class had a race between
133 * poll() and remove(Object) where the same element would appear
134 * to be successfully removed by two concurrent operations. The
135 * method remove(Object) also lazily unlinks deleted Nodes, but
136 * this is merely an optimization.
137 *
138 * When constructing a Node (before enqueuing it) we avoid paying
139 * for a volatile write to item by using Unsafe.putObject instead
140 * of a normal write. This allows the cost of enqueue to be
141 * "one-and-a-half" CASes.
142 *
143 * Both head and tail may or may not point to a Node with a
144 * non-null item. If the queue is empty, all items must of course
145 * be null. Upon creation, both head and tail refer to a dummy
146 * Node with null item. Both head and tail are only updated using
147 * CAS, so they never regress, although again this is merely an
148 * optimization.
149 */
150
151 private static class Node<E> {
152 volatile E item;
153 volatile Node<E> next;
154 }
155
156 /**
157 * Returns a new node holding item. Uses relaxed write because item
158 * can only be seen after piggy-backing publication via casNext.
159 */
160 static <E> Node<E> newNode(E item) {
161 Node<E> node = new Node<E>();
162 U.putObject(node, ITEM, item);
163 return node;
164 }
165
166 static <E> boolean casItem(Node<E> node, E cmp, E val) {
167 return U.compareAndSwapObject(node, ITEM, cmp, val);
168 }
169
170 static <E> void lazySetNext(Node<E> node, Node<E> val) {
171 U.putOrderedObject(node, NEXT, val);
172 }
173
174 static <E> boolean casNext(Node<E> node, Node<E> cmp, Node<E> val) {
175 return U.compareAndSwapObject(node, NEXT, cmp, val);
176 }
177
178 /**
179 * A node from which the first live (non-deleted) node (if any)
180 * can be reached in O(1) time.
181 * Invariants:
182 * - all live nodes are reachable from head via succ()
183 * - head != null
184 * - (tmp = head).next != tmp || tmp != head
185 * Non-invariants:
186 * - head.item may or may not be null.
187 * - it is permitted for tail to lag behind head, that is, for tail
188 * to not be reachable from head!
189 */
190 private transient volatile Node<E> head;
191
192 /**
193 * A node from which the last node on list (that is, the unique
194 * node with node.next == null) can be reached in O(1) time.
195 * Invariants:
196 * - the last node is always reachable from tail via succ()
197 * - tail != null
198 * Non-invariants:
199 * - tail.item may or may not be null.
200 * - it is permitted for tail to lag behind head, that is, for tail
201 * to not be reachable from head!
202 * - tail.next may or may not be self-pointing to tail.
203 */
204 private transient volatile Node<E> tail;
205
206 /**
207 * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
208 */
209 public ConcurrentLinkedQueue() {
210 head = tail = newNode(null);
211 }
212
213 /**
214 * Creates a {@code ConcurrentLinkedQueue}
215 * initially containing the elements of the given collection,
216 * added in traversal order of the collection's iterator.
217 *
218 * @param c the collection of elements to initially contain
219 * @throws NullPointerException if the specified collection or any
220 * of its elements are null
221 */
222 public ConcurrentLinkedQueue(Collection<? extends E> c) {
223 Node<E> h = null, t = null;
224 for (E e : c) {
225 checkNotNull(e);
226 Node<E> newNode = newNode(e);
227 if (h == null)
228 h = t = newNode;
229 else {
230 lazySetNext(t, newNode);
231 t = newNode;
232 }
233 }
234 if (h == null)
235 h = t = newNode(null);
236 head = h;
237 tail = t;
238 }
239
240 // Have to override just to update the javadoc
241
242 /**
243 * Inserts the specified element at the tail of this queue.
244 * As the queue is unbounded, this method will never throw
245 * {@link IllegalStateException} or return {@code false}.
246 *
247 * @return {@code true} (as specified by {@link Collection#add})
248 * @throws NullPointerException if the specified element is null
249 */
250 public boolean add(E e) {
251 return offer(e);
252 }
253
254 /**
255 * Tries to CAS head to p. If successful, repoint old head to itself
256 * as sentinel for succ(), below.
257 */
258 final void updateHead(Node<E> h, Node<E> p) {
259 // assert h != null && p != null && (h == p || h.item == null);
260 if (h != p && casHead(h, p))
261 lazySetNext(h, h);
262 }
263
264 /**
265 * Returns the successor of p, or the head node if p.next has been
266 * linked to self, which will only be true if traversing with a
267 * stale pointer that is now off the list.
268 */
269 final Node<E> succ(Node<E> p) {
270 Node<E> next = p.next;
271 return (p == next) ? head : next;
272 }
273
274 /**
275 * Inserts the specified element at the tail of this queue.
276 * As the queue is unbounded, this method will never return {@code false}.
277 *
278 * @return {@code true} (as specified by {@link Queue#offer})
279 * @throws NullPointerException if the specified element is null
280 */
281 public boolean offer(E e) {
282 checkNotNull(e);
283 final Node<E> newNode = newNode(e);
284
285 for (Node<E> t = tail, p = t;;) {
286 Node<E> q = p.next;
287 if (q == null) {
288 // p is last node
289 if (casNext(p, null, newNode)) {
290 // Successful CAS is the linearization point
291 // for e to become an element of this queue,
292 // and for newNode to become "live".
293 if (p != t) // hop two nodes at a time
294 casTail(t, newNode); // Failure is OK.
295 return true;
296 }
297 // Lost CAS race to another thread; re-read next
298 }
299 else if (p == q)
300 // We have fallen off list. If tail is unchanged, it
301 // will also be off-list, in which case we need to
302 // jump to head, from which all live nodes are always
303 // reachable. Else the new tail is a better bet.
304 p = (t != (t = tail)) ? t : head;
305 else
306 // Check for tail updates after two hops.
307 p = (p != t && t != (t = tail)) ? t : q;
308 }
309 }
310
311 public E poll() {
312 restartFromHead:
313 for (;;) {
314 for (Node<E> h = head, p = h, q;;) {
315 E item = p.item;
316
317 if (item != null && casItem(p, item, null)) {
318 // Successful CAS is the linearization point
319 // for item to be removed from this queue.
320 if (p != h) // hop two nodes at a time
321 updateHead(h, ((q = p.next) != null) ? q : p);
322 return item;
323 }
324 else if ((q = p.next) == null) {
325 updateHead(h, p);
326 return null;
327 }
328 else if (p == q)
329 continue restartFromHead;
330 else
331 p = q;
332 }
333 }
334 }
335
336 public E peek() {
337 restartFromHead:
338 for (;;) {
339 for (Node<E> h = head, p = h, q;;) {
340 E item = p.item;
341 if (item != null || (q = p.next) == null) {
342 updateHead(h, p);
343 return item;
344 }
345 else if (p == q)
346 continue restartFromHead;
347 else
348 p = q;
349 }
350 }
351 }
352
353 /**
354 * Returns the first live (non-deleted) node on list, or null if none.
355 * This is yet another variant of poll/peek; here returning the
356 * first node, not element. We could make peek() a wrapper around
357 * first(), but that would cost an extra volatile read of item,
358 * and the need to add a retry loop to deal with the possibility
359 * of losing a race to a concurrent poll().
360 */
361 Node<E> first() {
362 restartFromHead:
363 for (;;) {
364 for (Node<E> h = head, p = h, q;;) {
365 boolean hasItem = (p.item != null);
366 if (hasItem || (q = p.next) == null) {
367 updateHead(h, p);
368 return hasItem ? p : null;
369 }
370 else if (p == q)
371 continue restartFromHead;
372 else
373 p = q;
374 }
375 }
376 }
377
378 /**
379 * Returns {@code true} if this queue contains no elements.
380 *
381 * @return {@code true} if this queue contains no elements
382 */
383 public boolean isEmpty() {
384 return first() == null;
385 }
386
387 /**
388 * Returns the number of elements in this queue. If this queue
389 * contains more than {@code Integer.MAX_VALUE} elements, returns
390 * {@code Integer.MAX_VALUE}.
391 *
392 * <p>Beware that, unlike in most collections, this method is
393 * <em>NOT</em> a constant-time operation. Because of the
394 * asynchronous nature of these queues, determining the current
395 * number of elements requires an O(n) traversal.
396 * Additionally, if elements are added or removed during execution
397 * of this method, the returned result may be inaccurate. Thus,
398 * this method is typically not very useful in concurrent
399 * applications.
400 *
401 * @return the number of elements in this queue
402 */
403 public int size() {
404 restartFromHead: for (;;) {
405 int count = 0;
406 for (Node<E> p = first(); p != null;) {
407 if (p.item != null)
408 if (++count == Integer.MAX_VALUE)
409 break; // @see Collection.size()
410 Node<E> next = p.next;
411 if (p == next)
412 continue restartFromHead;
413 p = next;
414 }
415 return count;
416 }
417 }
418
419 /**
420 * Returns {@code true} if this queue contains the specified element.
421 * More formally, returns {@code true} if and only if this queue contains
422 * at least one element {@code e} such that {@code o.equals(e)}.
423 *
424 * @param o object to be checked for containment in this queue
425 * @return {@code true} if this queue contains the specified element
426 */
427 public boolean contains(Object o) {
428 if (o != null) {
429 for (Node<E> p = first(); p != null; p = succ(p)) {
430 E item = p.item;
431 if (item != null && o.equals(item))
432 return true;
433 }
434 }
435 return false;
436 }
437
438 /**
439 * Removes a single instance of the specified element from this queue,
440 * if it is present. More formally, removes an element {@code e} such
441 * that {@code o.equals(e)}, if this queue contains one or more such
442 * elements.
443 * Returns {@code true} if this queue contained the specified element
444 * (or equivalently, if this queue changed as a result of the call).
445 *
446 * @param o element to be removed from this queue, if present
447 * @return {@code true} if this queue changed as a result of the call
448 */
449 public boolean remove(Object o) {
450 if (o != null) {
451 Node<E> next, pred = null;
452 for (Node<E> p = first(); p != null; pred = p, p = next) {
453 boolean removed = false;
454 E item = p.item;
455 if (item != null) {
456 if (!o.equals(item)) {
457 next = succ(p);
458 continue;
459 }
460 removed = casItem(p, item, null);
461 }
462
463 next = succ(p);
464 if (pred != null && next != null) // unlink
465 casNext(pred, p, next);
466 if (removed)
467 return true;
468 }
469 }
470 return false;
471 }
472
473 /**
474 * Appends all of the elements in the specified collection to the end of
475 * this queue, in the order that they are returned by the specified
476 * collection's iterator. Attempts to {@code addAll} of a queue to
477 * itself result in {@code IllegalArgumentException}.
478 *
479 * @param c the elements to be inserted into this queue
480 * @return {@code true} if this queue changed as a result of the call
481 * @throws NullPointerException if the specified collection or any
482 * of its elements are null
483 * @throws IllegalArgumentException if the collection is this queue
484 */
485 public boolean addAll(Collection<? extends E> c) {
486 if (c == this)
487 // As historically specified in AbstractQueue#addAll
488 throw new IllegalArgumentException();
489
490 // Copy c into a private chain of Nodes
491 Node<E> beginningOfTheEnd = null, last = null;
492 for (E e : c) {
493 checkNotNull(e);
494 Node<E> newNode = newNode(e);
495 if (beginningOfTheEnd == null)
496 beginningOfTheEnd = last = newNode;
497 else {
498 lazySetNext(last, newNode);
499 last = newNode;
500 }
501 }
502 if (beginningOfTheEnd == null)
503 return false;
504
505 // Atomically append the chain at the tail of this collection
506 for (Node<E> t = tail, p = t;;) {
507 Node<E> q = p.next;
508 if (q == null) {
509 // p is last node
510 if (casNext(p, null, beginningOfTheEnd)) {
511 // Successful CAS is the linearization point
512 // for all elements to be added to this queue.
513 if (!casTail(t, last)) {
514 // Try a little harder to update tail,
515 // since we may be adding many elements.
516 t = tail;
517 if (last.next == null)
518 casTail(t, last);
519 }
520 return true;
521 }
522 // Lost CAS race to another thread; re-read next
523 }
524 else if (p == q)
525 // We have fallen off list. If tail is unchanged, it
526 // will also be off-list, in which case we need to
527 // jump to head, from which all live nodes are always
528 // reachable. Else the new tail is a better bet.
529 p = (t != (t = tail)) ? t : head;
530 else
531 // Check for tail updates after two hops.
532 p = (p != t && t != (t = tail)) ? t : q;
533 }
534 }
535
536 /**
537 * Returns an array containing all of the elements in this queue, in
538 * proper sequence.
539 *
540 * <p>The returned array will be "safe" in that no references to it are
541 * maintained by this queue. (In other words, this method must allocate
542 * a new array). The caller is thus free to modify the returned array.
543 *
544 * <p>This method acts as bridge between array-based and collection-based
545 * APIs.
546 *
547 * @return an array containing all of the elements in this queue
548 */
549 public Object[] toArray() {
550 // Use ArrayList to deal with resizing.
551 ArrayList<E> al = new ArrayList<E>();
552 for (Node<E> p = first(); p != null; p = succ(p)) {
553 E item = p.item;
554 if (item != null)
555 al.add(item);
556 }
557 return al.toArray();
558 }
559
560 /**
561 * Returns an array containing all of the elements in this queue, in
562 * proper sequence; the runtime type of the returned array is that of
563 * the specified array. If the queue fits in the specified array, it
564 * is returned therein. Otherwise, a new array is allocated with the
565 * runtime type of the specified array and the size of this queue.
566 *
567 * <p>If this queue fits in the specified array with room to spare
568 * (i.e., the array has more elements than this queue), the element in
569 * the array immediately following the end of the queue is set to
570 * {@code null}.
571 *
572 * <p>Like the {@link #toArray()} method, this method acts as bridge between
573 * array-based and collection-based APIs. Further, this method allows
574 * precise control over the runtime type of the output array, and may,
575 * under certain circumstances, be used to save allocation costs.
576 *
577 * <p>Suppose {@code x} is a queue known to contain only strings.
578 * The following code can be used to dump the queue into a newly
579 * allocated array of {@code String}:
580 *
581 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
582 *
583 * Note that {@code toArray(new Object[0])} is identical in function to
584 * {@code toArray()}.
585 *
586 * @param a the array into which the elements of the queue are to
587 * be stored, if it is big enough; otherwise, a new array of the
588 * same runtime type is allocated for this purpose
589 * @return an array containing all of the elements in this queue
590 * @throws ArrayStoreException if the runtime type of the specified array
591 * is not a supertype of the runtime type of every element in
592 * this queue
593 * @throws NullPointerException if the specified array is null
594 */
595 @SuppressWarnings("unchecked")
596 public <T> T[] toArray(T[] a) {
597 // try to use sent-in array
598 int k = 0;
599 Node<E> p;
600 for (p = first(); p != null && k < a.length; p = succ(p)) {
601 E item = p.item;
602 if (item != null)
603 a[k++] = (T)item;
604 }
605 if (p == null) {
606 if (k < a.length)
607 a[k] = null;
608 return a;
609 }
610
611 // If won't fit, use ArrayList version
612 ArrayList<E> al = new ArrayList<E>();
613 for (Node<E> q = first(); q != null; q = succ(q)) {
614 E item = q.item;
615 if (item != null)
616 al.add(item);
617 }
618 return al.toArray(a);
619 }
620
621 /**
622 * Returns an iterator over the elements in this queue in proper sequence.
623 * The elements will be returned in order from first (head) to last (tail).
624 *
625 * <p>The returned iterator is
626 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
627 *
628 * @return an iterator over the elements in this queue in proper sequence
629 */
630 public Iterator<E> iterator() {
631 return new Itr();
632 }
633
634 private class Itr implements Iterator<E> {
635 /**
636 * Next node to return item for.
637 */
638 private Node<E> nextNode;
639
640 /**
641 * nextItem holds on to item fields because once we claim
642 * that an element exists in hasNext(), we must return it in
643 * the following next() call even if it was in the process of
644 * being removed when hasNext() was called.
645 */
646 private E nextItem;
647
648 /**
649 * Node of the last returned item, to support remove.
650 */
651 private Node<E> lastRet;
652
653 Itr() {
654 advance();
655 }
656
657 /**
658 * Moves to next valid node.
659 */
660 private void advance() {
661 lastRet = nextNode;
662
663 final Node<E> pred = nextNode;
664
665 for (Node<E> p = (pred == null) ? first() : succ(pred);;) {
666 if (p == null) {
667 nextNode = null;
668 nextItem = null;
669 break;
670 }
671 E item = p.item;
672 if (item != null) {
673 nextNode = p;
674 nextItem = item;
675 break;
676 } else {
677 // skip over nulls
678 Node<E> next = succ(p);
679 if (pred != null && next != null)
680 casNext(pred, p, next);
681 p = next;
682 }
683 }
684 }
685
686 public boolean hasNext() {
687 return nextItem != null;
688 }
689
690 public E next() {
691 E x = nextItem;
692 if (x == null) throw new NoSuchElementException();
693 advance();
694 return x;
695 }
696
697 public void remove() {
698 Node<E> l = lastRet;
699 if (l == null) throw new IllegalStateException();
700 // rely on a future traversal to relink.
701 l.item = null;
702 lastRet = null;
703 }
704 }
705
706 /**
707 * Saves this queue to a stream (that is, serializes it).
708 *
709 * @param s the stream
710 * @throws java.io.IOException if an I/O error occurs
711 * @serialData All of the elements (each an {@code E}) in
712 * the proper order, followed by a null
713 */
714 private void writeObject(java.io.ObjectOutputStream s)
715 throws java.io.IOException {
716
717 // Write out any hidden stuff
718 s.defaultWriteObject();
719
720 // Write out all elements in the proper order.
721 for (Node<E> p = first(); p != null; p = succ(p)) {
722 Object item = p.item;
723 if (item != null)
724 s.writeObject(item);
725 }
726
727 // Use trailing null as sentinel
728 s.writeObject(null);
729 }
730
731 /**
732 * Reconstitutes this queue from a stream (that is, deserializes it).
733 * @param s the stream
734 * @throws ClassNotFoundException if the class of a serialized object
735 * could not be found
736 * @throws java.io.IOException if an I/O error occurs
737 */
738 private void readObject(java.io.ObjectInputStream s)
739 throws java.io.IOException, ClassNotFoundException {
740 s.defaultReadObject();
741
742 // Read in elements until trailing null sentinel found
743 Node<E> h = null, t = null;
744 for (Object item; (item = s.readObject()) != null; ) {
745 @SuppressWarnings("unchecked")
746 Node<E> newNode = newNode((E) item);
747 if (h == null)
748 h = t = newNode;
749 else {
750 lazySetNext(t, newNode);
751 t = newNode;
752 }
753 }
754 if (h == null)
755 h = t = newNode(null);
756 head = h;
757 tail = t;
758 }
759
760 /** A customized variant of Spliterators.IteratorSpliterator */
761 static final class CLQSpliterator<E> implements Spliterator<E> {
762 static final int MAX_BATCH = 1 << 25; // max batch array size;
763 final ConcurrentLinkedQueue<E> queue;
764 Node<E> current; // current node; null until initialized
765 int batch; // batch size for splits
766 boolean exhausted; // true when no more nodes
767 CLQSpliterator(ConcurrentLinkedQueue<E> queue) {
768 this.queue = queue;
769 }
770
771 public Spliterator<E> trySplit() {
772 Node<E> p;
773 final ConcurrentLinkedQueue<E> q = this.queue;
774 int b = batch;
775 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
776 if (!exhausted &&
777 ((p = current) != null || (p = q.first()) != null) &&
778 p.next != null) {
779 Object[] a = new Object[n];
780 int i = 0;
781 do {
782 if ((a[i] = p.item) != null)
783 ++i;
784 if (p == (p = p.next))
785 p = q.first();
786 } while (p != null && i < n);
787 if ((current = p) == null)
788 exhausted = true;
789 if (i > 0) {
790 batch = i;
791 return Spliterators.spliterator
792 (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
793 Spliterator.CONCURRENT);
794 }
795 }
796 return null;
797 }
798
799 public void forEachRemaining(Consumer<? super E> action) {
800 Node<E> p;
801 if (action == null) throw new NullPointerException();
802 final ConcurrentLinkedQueue<E> q = this.queue;
803 if (!exhausted &&
804 ((p = current) != null || (p = q.first()) != null)) {
805 exhausted = true;
806 do {
807 E e = p.item;
808 if (p == (p = p.next))
809 p = q.first();
810 if (e != null)
811 action.accept(e);
812 } while (p != null);
813 }
814 }
815
816 public boolean tryAdvance(Consumer<? super E> action) {
817 Node<E> p;
818 if (action == null) throw new NullPointerException();
819 final ConcurrentLinkedQueue<E> q = this.queue;
820 if (!exhausted &&
821 ((p = current) != null || (p = q.first()) != null)) {
822 E e;
823 do {
824 e = p.item;
825 if (p == (p = p.next))
826 p = q.first();
827 } while (e == null && p != null);
828 if ((current = p) == null)
829 exhausted = true;
830 if (e != null) {
831 action.accept(e);
832 return true;
833 }
834 }
835 return false;
836 }
837
838 public long estimateSize() { return Long.MAX_VALUE; }
839
840 public int characteristics() {
841 return Spliterator.ORDERED | Spliterator.NONNULL |
842 Spliterator.CONCURRENT;
843 }
844 }
845
846 /**
847 * Returns a {@link Spliterator} over the elements in this queue.
848 *
849 * <p>The returned spliterator is
850 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
851 *
852 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
853 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
854 *
855 * @implNote
856 * The {@code Spliterator} implements {@code trySplit} to permit limited
857 * parallelism.
858 *
859 * @return a {@code Spliterator} over the elements in this queue
860 * @since 1.8
861 */
862 @Override
863 public Spliterator<E> spliterator() {
864 return new CLQSpliterator<E>(this);
865 }
866
867 /**
868 * Throws NullPointerException if argument is null.
869 *
870 * @param v the element
871 */
872 private static void checkNotNull(Object v) {
873 if (v == null)
874 throw new NullPointerException();
875 }
876
877 private boolean casTail(Node<E> cmp, Node<E> val) {
878 return U.compareAndSwapObject(this, TAIL, cmp, val);
879 }
880
881 private boolean casHead(Node<E> cmp, Node<E> val) {
882 return U.compareAndSwapObject(this, HEAD, cmp, val);
883 }
884
885 // Unsafe mechanics
886
887 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
888 private static final long HEAD;
889 private static final long TAIL;
890 private static final long ITEM;
891 private static final long NEXT;
892 static {
893 try {
894 HEAD = U.objectFieldOffset
895 (ConcurrentLinkedQueue.class.getDeclaredField("head"));
896 TAIL = U.objectFieldOffset
897 (ConcurrentLinkedQueue.class.getDeclaredField("tail"));
898 ITEM = U.objectFieldOffset
899 (Node.class.getDeclaredField("item"));
900 NEXT = U.objectFieldOffset
901 (Node.class.getDeclaredField("next"));
902 } catch (ReflectiveOperationException e) {
903 throw new Error(e);
904 }
905 }
906 }