ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedQueue.java
Revision: 1.160
Committed: Mon Oct 1 00:10:53 2018 UTC (5 years, 7 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.159: +1 -1 lines
Log Message:
update to using jdk11 by default, except link to jdk10 javadocs;
sync @docRoot references in javadoc with upstream

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Objects;
17 import java.util.Queue;
18 import java.util.Spliterator;
19 import java.util.Spliterators;
20 import java.util.function.Consumer;
21 import java.util.function.Predicate;
22
23 /**
24 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
25 * This queue orders elements FIFO (first-in-first-out).
26 * The <em>head</em> of the queue is that element that has been on the
27 * queue the longest time.
28 * The <em>tail</em> of the queue is that element that has been on the
29 * queue the shortest time. New elements
30 * are inserted at the tail of the queue, and the queue retrieval
31 * operations obtain elements at the head of the queue.
32 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
33 * many threads will share access to a common collection.
34 * Like most other concurrent collection implementations, this class
35 * does not permit the use of {@code null} elements.
36 *
37 * <p>This implementation employs an efficient <em>non-blocking</em>
38 * algorithm based on one described in
39 * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
40 * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
41 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
42 *
43 * <p>Iterators are <i>weakly consistent</i>, returning elements
44 * reflecting the state of the queue at some point at or since the
45 * creation of the iterator. They do <em>not</em> throw {@link
46 * java.util.ConcurrentModificationException}, and may proceed concurrently
47 * with other operations. Elements contained in the queue since the creation
48 * of the iterator will be returned exactly once.
49 *
50 * <p>Beware that, unlike in most collections, the {@code size} method
51 * is <em>NOT</em> a constant-time operation. Because of the
52 * asynchronous nature of these queues, determining the current number
53 * of elements requires a traversal of the elements, and so may report
54 * inaccurate results if this collection is modified during traversal.
55 *
56 * <p>Bulk operations that add, remove, or examine multiple elements,
57 * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
58 * are <em>not</em> guaranteed to be performed atomically.
59 * For example, a {@code forEach} traversal concurrent with an {@code
60 * addAll} operation might observe only some of the added elements.
61 *
62 * <p>This class and its iterator implement all of the <em>optional</em>
63 * methods of the {@link Queue} and {@link Iterator} interfaces.
64 *
65 * <p>Memory consistency effects: As with other concurrent
66 * collections, actions in a thread prior to placing an object into a
67 * {@code ConcurrentLinkedQueue}
68 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
69 * actions subsequent to the access or removal of that element from
70 * the {@code ConcurrentLinkedQueue} in another thread.
71 *
72 * <p>This class is a member of the
73 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
74 * Java Collections Framework</a>.
75 *
76 * @since 1.5
77 * @author Doug Lea
78 * @param <E> the type of elements held in this queue
79 */
80 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
81 implements Queue<E>, java.io.Serializable {
82 private static final long serialVersionUID = 196745693267521676L;
83
84 /*
85 * This is a modification of the Michael & Scott algorithm,
86 * adapted for a garbage-collected environment, with support for
87 * interior node deletion (to support e.g. remove(Object)). For
88 * explanation, read the paper.
89 *
90 * Note that like most non-blocking algorithms in this package,
91 * this implementation relies on the fact that in garbage
92 * collected systems, there is no possibility of ABA problems due
93 * to recycled nodes, so there is no need to use "counted
94 * pointers" or related techniques seen in versions used in
95 * non-GC'ed settings.
96 *
97 * The fundamental invariants are:
98 * - There is exactly one (last) Node with a null next reference,
99 * which is CASed when enqueueing. This last Node can be
100 * reached in O(1) time from tail, but tail is merely an
101 * optimization - it can always be reached in O(N) time from
102 * head as well.
103 * - The elements contained in the queue are the non-null items in
104 * Nodes that are reachable from head. CASing the item
105 * reference of a Node to null atomically removes it from the
106 * queue. Reachability of all elements from head must remain
107 * true even in the case of concurrent modifications that cause
108 * head to advance. A dequeued Node may remain in use
109 * indefinitely due to creation of an Iterator or simply a
110 * poll() that has lost its time slice.
111 *
112 * The above might appear to imply that all Nodes are GC-reachable
113 * from a predecessor dequeued Node. That would cause two problems:
114 * - allow a rogue Iterator to cause unbounded memory retention
115 * - cause cross-generational linking of old Nodes to new Nodes if
116 * a Node was tenured while live, which generational GCs have a
117 * hard time dealing with, causing repeated major collections.
118 * However, only non-deleted Nodes need to be reachable from
119 * dequeued Nodes, and reachability does not necessarily have to
120 * be of the kind understood by the GC. We use the trick of
121 * linking a Node that has just been dequeued to itself. Such a
122 * self-link implicitly means to advance to head.
123 *
124 * Both head and tail are permitted to lag. In fact, failing to
125 * update them every time one could is a significant optimization
126 * (fewer CASes). As with LinkedTransferQueue (see the internal
127 * documentation for that class), we use a slack threshold of two;
128 * that is, we update head/tail when the current pointer appears
129 * to be two or more steps away from the first/last node.
130 *
131 * Since head and tail are updated concurrently and independently,
132 * it is possible for tail to lag behind head (why not)?
133 *
134 * CASing a Node's item reference to null atomically removes the
135 * element from the queue, leaving a "dead" node that should later
136 * be unlinked (but unlinking is merely an optimization).
137 * Interior element removal methods (other than Iterator.remove())
138 * keep track of the predecessor node during traversal so that the
139 * node can be CAS-unlinked. Some traversal methods try to unlink
140 * any deleted nodes encountered during traversal. See comments
141 * in bulkRemove.
142 *
143 * When constructing a Node (before enqueuing it) we avoid paying
144 * for a volatile write to item. This allows the cost of enqueue
145 * to be "one-and-a-half" CASes.
146 *
147 * Both head and tail may or may not point to a Node with a
148 * non-null item. If the queue is empty, all items must of course
149 * be null. Upon creation, both head and tail refer to a dummy
150 * Node with null item. Both head and tail are only updated using
151 * CAS, so they never regress, although again this is merely an
152 * optimization.
153 */
154
155 static final class Node<E> {
156 volatile E item;
157 volatile Node<E> next;
158
159 /**
160 * Constructs a node holding item. Uses relaxed write because
161 * item can only be seen after piggy-backing publication via CAS.
162 */
163 Node(E item) {
164 ITEM.set(this, item);
165 }
166
167 /** Constructs a dead dummy node. */
168 Node() {}
169
170 void appendRelaxed(Node<E> next) {
171 // assert next != null;
172 // assert this.next == null;
173 NEXT.set(this, next);
174 }
175
176 boolean casItem(E cmp, E val) {
177 // assert item == cmp || item == null;
178 // assert cmp != null;
179 // assert val == null;
180 return ITEM.compareAndSet(this, cmp, val);
181 }
182 }
183
184 /**
185 * A node from which the first live (non-deleted) node (if any)
186 * can be reached in O(1) time.
187 * Invariants:
188 * - all live nodes are reachable from head via succ()
189 * - head != null
190 * - (tmp = head).next != tmp || tmp != head
191 * Non-invariants:
192 * - head.item may or may not be null.
193 * - it is permitted for tail to lag behind head, that is, for tail
194 * to not be reachable from head!
195 */
196 transient volatile Node<E> head;
197
198 /**
199 * A node from which the last node on list (that is, the unique
200 * node with node.next == null) can be reached in O(1) time.
201 * Invariants:
202 * - the last node is always reachable from tail via succ()
203 * - tail != null
204 * Non-invariants:
205 * - tail.item may or may not be null.
206 * - it is permitted for tail to lag behind head, that is, for tail
207 * to not be reachable from head!
208 * - tail.next may or may not be self-linked.
209 */
210 private transient volatile Node<E> tail;
211
212 /**
213 * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
214 */
215 public ConcurrentLinkedQueue() {
216 head = tail = new Node<E>();
217 }
218
219 /**
220 * Creates a {@code ConcurrentLinkedQueue}
221 * initially containing the elements of the given collection,
222 * added in traversal order of the collection's iterator.
223 *
224 * @param c the collection of elements to initially contain
225 * @throws NullPointerException if the specified collection or any
226 * of its elements are null
227 */
228 public ConcurrentLinkedQueue(Collection<? extends E> c) {
229 Node<E> h = null, t = null;
230 for (E e : c) {
231 Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
232 if (h == null)
233 h = t = newNode;
234 else
235 t.appendRelaxed(t = newNode);
236 }
237 if (h == null)
238 h = t = new Node<E>();
239 head = h;
240 tail = t;
241 }
242
243 // Have to override just to update the javadoc
244
245 /**
246 * Inserts the specified element at the tail of this queue.
247 * As the queue is unbounded, this method will never throw
248 * {@link IllegalStateException} or return {@code false}.
249 *
250 * @return {@code true} (as specified by {@link Collection#add})
251 * @throws NullPointerException if the specified element is null
252 */
253 public boolean add(E e) {
254 return offer(e);
255 }
256
257 /**
258 * Tries to CAS head to p. If successful, repoint old head to itself
259 * as sentinel for succ(), below.
260 */
261 final void updateHead(Node<E> h, Node<E> p) {
262 // assert h != null && p != null && (h == p || h.item == null);
263 if (h != p && HEAD.compareAndSet(this, h, p))
264 NEXT.setRelease(h, h);
265 }
266
267 /**
268 * Returns the successor of p, or the head node if p.next has been
269 * linked to self, which will only be true if traversing with a
270 * stale pointer that is now off the list.
271 */
272 final Node<E> succ(Node<E> p) {
273 if (p == (p = p.next))
274 p = head;
275 return p;
276 }
277
278 /**
279 * Tries to CAS pred.next (or head, if pred is null) from c to p.
280 * Caller must ensure that we're not unlinking the trailing node.
281 */
282 private boolean tryCasSuccessor(Node<E> pred, Node<E> c, Node<E> p) {
283 // assert p != null;
284 // assert c.item == null;
285 // assert c != p;
286 if (pred != null)
287 return NEXT.compareAndSet(pred, c, p);
288 if (HEAD.compareAndSet(this, c, p)) {
289 NEXT.setRelease(c, c);
290 return true;
291 }
292 return false;
293 }
294
295 /**
296 * Collapse dead nodes between pred and q.
297 * @param pred the last known live node, or null if none
298 * @param c the first dead node
299 * @param p the last dead node
300 * @param q p.next: the next live node, or null if at end
301 * @return either old pred or p if pred dead or CAS failed
302 */
303 private Node<E> skipDeadNodes(Node<E> pred, Node<E> c, Node<E> p, Node<E> q) {
304 // assert pred != c;
305 // assert p != q;
306 // assert c.item == null;
307 // assert p.item == null;
308 if (q == null) {
309 // Never unlink trailing node.
310 if (c == p) return pred;
311 q = p;
312 }
313 return (tryCasSuccessor(pred, c, q)
314 && (pred == null || ITEM.get(pred) != null))
315 ? pred : p;
316 }
317
318 /**
319 * Inserts the specified element at the tail of this queue.
320 * As the queue is unbounded, this method will never return {@code false}.
321 *
322 * @return {@code true} (as specified by {@link Queue#offer})
323 * @throws NullPointerException if the specified element is null
324 */
325 public boolean offer(E e) {
326 final Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
327
328 for (Node<E> t = tail, p = t;;) {
329 Node<E> q = p.next;
330 if (q == null) {
331 // p is last node
332 if (NEXT.compareAndSet(p, null, newNode)) {
333 // Successful CAS is the linearization point
334 // for e to become an element of this queue,
335 // and for newNode to become "live".
336 if (p != t) // hop two nodes at a time; failure is OK
337 TAIL.weakCompareAndSet(this, t, newNode);
338 return true;
339 }
340 // Lost CAS race to another thread; re-read next
341 }
342 else if (p == q)
343 // We have fallen off list. If tail is unchanged, it
344 // will also be off-list, in which case we need to
345 // jump to head, from which all live nodes are always
346 // reachable. Else the new tail is a better bet.
347 p = (t != (t = tail)) ? t : head;
348 else
349 // Check for tail updates after two hops.
350 p = (p != t && t != (t = tail)) ? t : q;
351 }
352 }
353
354 public E poll() {
355 restartFromHead: for (;;) {
356 for (Node<E> h = head, p = h, q;; p = q) {
357 final E item;
358 if ((item = p.item) != null && p.casItem(item, null)) {
359 // Successful CAS is the linearization point
360 // for item to be removed from this queue.
361 if (p != h) // hop two nodes at a time
362 updateHead(h, ((q = p.next) != null) ? q : p);
363 return item;
364 }
365 else if ((q = p.next) == null) {
366 updateHead(h, p);
367 return null;
368 }
369 else if (p == q)
370 continue restartFromHead;
371 }
372 }
373 }
374
375 public E peek() {
376 restartFromHead: for (;;) {
377 for (Node<E> h = head, p = h, q;; p = q) {
378 final E item;
379 if ((item = p.item) != null
380 || (q = p.next) == null) {
381 updateHead(h, p);
382 return item;
383 }
384 else if (p == q)
385 continue restartFromHead;
386 }
387 }
388 }
389
390 /**
391 * Returns the first live (non-deleted) node on list, or null if none.
392 * This is yet another variant of poll/peek; here returning the
393 * first node, not element. We could make peek() a wrapper around
394 * first(), but that would cost an extra volatile read of item,
395 * and the need to add a retry loop to deal with the possibility
396 * of losing a race to a concurrent poll().
397 */
398 Node<E> first() {
399 restartFromHead: for (;;) {
400 for (Node<E> h = head, p = h, q;; p = q) {
401 boolean hasItem = (p.item != null);
402 if (hasItem || (q = p.next) == null) {
403 updateHead(h, p);
404 return hasItem ? p : null;
405 }
406 else if (p == q)
407 continue restartFromHead;
408 }
409 }
410 }
411
412 /**
413 * Returns {@code true} if this queue contains no elements.
414 *
415 * @return {@code true} if this queue contains no elements
416 */
417 public boolean isEmpty() {
418 return first() == null;
419 }
420
421 /**
422 * Returns the number of elements in this queue. If this queue
423 * contains more than {@code Integer.MAX_VALUE} elements, returns
424 * {@code Integer.MAX_VALUE}.
425 *
426 * <p>Beware that, unlike in most collections, this method is
427 * <em>NOT</em> a constant-time operation. Because of the
428 * asynchronous nature of these queues, determining the current
429 * number of elements requires an O(n) traversal.
430 * Additionally, if elements are added or removed during execution
431 * of this method, the returned result may be inaccurate. Thus,
432 * this method is typically not very useful in concurrent
433 * applications.
434 *
435 * @return the number of elements in this queue
436 */
437 public int size() {
438 restartFromHead: for (;;) {
439 int count = 0;
440 for (Node<E> p = first(); p != null;) {
441 if (p.item != null)
442 if (++count == Integer.MAX_VALUE)
443 break; // @see Collection.size()
444 if (p == (p = p.next))
445 continue restartFromHead;
446 }
447 return count;
448 }
449 }
450
451 /**
452 * Returns {@code true} if this queue contains the specified element.
453 * More formally, returns {@code true} if and only if this queue contains
454 * at least one element {@code e} such that {@code o.equals(e)}.
455 *
456 * @param o object to be checked for containment in this queue
457 * @return {@code true} if this queue contains the specified element
458 */
459 public boolean contains(Object o) {
460 if (o == null) return false;
461 restartFromHead: for (;;) {
462 for (Node<E> p = head, pred = null; p != null; ) {
463 Node<E> q = p.next;
464 final E item;
465 if ((item = p.item) != null) {
466 if (o.equals(item))
467 return true;
468 pred = p; p = q; continue;
469 }
470 for (Node<E> c = p;; q = p.next) {
471 if (q == null || q.item != null) {
472 pred = skipDeadNodes(pred, c, p, q); p = q; break;
473 }
474 if (p == (p = q)) continue restartFromHead;
475 }
476 }
477 return false;
478 }
479 }
480
481 /**
482 * Removes a single instance of the specified element from this queue,
483 * if it is present. More formally, removes an element {@code e} such
484 * that {@code o.equals(e)}, if this queue contains one or more such
485 * elements.
486 * Returns {@code true} if this queue contained the specified element
487 * (or equivalently, if this queue changed as a result of the call).
488 *
489 * @param o element to be removed from this queue, if present
490 * @return {@code true} if this queue changed as a result of the call
491 */
492 public boolean remove(Object o) {
493 if (o == null) return false;
494 restartFromHead: for (;;) {
495 for (Node<E> p = head, pred = null; p != null; ) {
496 Node<E> q = p.next;
497 final E item;
498 if ((item = p.item) != null) {
499 if (o.equals(item) && p.casItem(item, null)) {
500 skipDeadNodes(pred, p, p, q);
501 return true;
502 }
503 pred = p; p = q; continue;
504 }
505 for (Node<E> c = p;; q = p.next) {
506 if (q == null || q.item != null) {
507 pred = skipDeadNodes(pred, c, p, q); p = q; break;
508 }
509 if (p == (p = q)) continue restartFromHead;
510 }
511 }
512 return false;
513 }
514 }
515
516 /**
517 * Appends all of the elements in the specified collection to the end of
518 * this queue, in the order that they are returned by the specified
519 * collection's iterator. Attempts to {@code addAll} of a queue to
520 * itself result in {@code IllegalArgumentException}.
521 *
522 * @param c the elements to be inserted into this queue
523 * @return {@code true} if this queue changed as a result of the call
524 * @throws NullPointerException if the specified collection or any
525 * of its elements are null
526 * @throws IllegalArgumentException if the collection is this queue
527 */
528 public boolean addAll(Collection<? extends E> c) {
529 if (c == this)
530 // As historically specified in AbstractQueue#addAll
531 throw new IllegalArgumentException();
532
533 // Copy c into a private chain of Nodes
534 Node<E> beginningOfTheEnd = null, last = null;
535 for (E e : c) {
536 Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
537 if (beginningOfTheEnd == null)
538 beginningOfTheEnd = last = newNode;
539 else
540 last.appendRelaxed(last = newNode);
541 }
542 if (beginningOfTheEnd == null)
543 return false;
544
545 // Atomically append the chain at the tail of this collection
546 for (Node<E> t = tail, p = t;;) {
547 Node<E> q = p.next;
548 if (q == null) {
549 // p is last node
550 if (NEXT.compareAndSet(p, null, beginningOfTheEnd)) {
551 // Successful CAS is the linearization point
552 // for all elements to be added to this queue.
553 if (!TAIL.weakCompareAndSet(this, t, last)) {
554 // Try a little harder to update tail,
555 // since we may be adding many elements.
556 t = tail;
557 if (last.next == null)
558 TAIL.weakCompareAndSet(this, t, last);
559 }
560 return true;
561 }
562 // Lost CAS race to another thread; re-read next
563 }
564 else if (p == q)
565 // We have fallen off list. If tail is unchanged, it
566 // will also be off-list, in which case we need to
567 // jump to head, from which all live nodes are always
568 // reachable. Else the new tail is a better bet.
569 p = (t != (t = tail)) ? t : head;
570 else
571 // Check for tail updates after two hops.
572 p = (p != t && t != (t = tail)) ? t : q;
573 }
574 }
575
576 public String toString() {
577 String[] a = null;
578 restartFromHead: for (;;) {
579 int charLength = 0;
580 int size = 0;
581 for (Node<E> p = first(); p != null;) {
582 final E item;
583 if ((item = p.item) != null) {
584 if (a == null)
585 a = new String[4];
586 else if (size == a.length)
587 a = Arrays.copyOf(a, 2 * size);
588 String s = item.toString();
589 a[size++] = s;
590 charLength += s.length();
591 }
592 if (p == (p = p.next))
593 continue restartFromHead;
594 }
595
596 if (size == 0)
597 return "[]";
598
599 return Helpers.toString(a, size, charLength);
600 }
601 }
602
603 private Object[] toArrayInternal(Object[] a) {
604 Object[] x = a;
605 restartFromHead: for (;;) {
606 int size = 0;
607 for (Node<E> p = first(); p != null;) {
608 final E item;
609 if ((item = p.item) != null) {
610 if (x == null)
611 x = new Object[4];
612 else if (size == x.length)
613 x = Arrays.copyOf(x, 2 * (size + 4));
614 x[size++] = item;
615 }
616 if (p == (p = p.next))
617 continue restartFromHead;
618 }
619 if (x == null)
620 return new Object[0];
621 else if (a != null && size <= a.length) {
622 if (a != x)
623 System.arraycopy(x, 0, a, 0, size);
624 if (size < a.length)
625 a[size] = null;
626 return a;
627 }
628 return (size == x.length) ? x : Arrays.copyOf(x, size);
629 }
630 }
631
632 /**
633 * Returns an array containing all of the elements in this queue, in
634 * proper sequence.
635 *
636 * <p>The returned array will be "safe" in that no references to it are
637 * maintained by this queue. (In other words, this method must allocate
638 * a new array). The caller is thus free to modify the returned array.
639 *
640 * <p>This method acts as bridge between array-based and collection-based
641 * APIs.
642 *
643 * @return an array containing all of the elements in this queue
644 */
645 public Object[] toArray() {
646 return toArrayInternal(null);
647 }
648
649 /**
650 * Returns an array containing all of the elements in this queue, in
651 * proper sequence; the runtime type of the returned array is that of
652 * the specified array. If the queue fits in the specified array, it
653 * is returned therein. Otherwise, a new array is allocated with the
654 * runtime type of the specified array and the size of this queue.
655 *
656 * <p>If this queue fits in the specified array with room to spare
657 * (i.e., the array has more elements than this queue), the element in
658 * the array immediately following the end of the queue is set to
659 * {@code null}.
660 *
661 * <p>Like the {@link #toArray()} method, this method acts as bridge between
662 * array-based and collection-based APIs. Further, this method allows
663 * precise control over the runtime type of the output array, and may,
664 * under certain circumstances, be used to save allocation costs.
665 *
666 * <p>Suppose {@code x} is a queue known to contain only strings.
667 * The following code can be used to dump the queue into a newly
668 * allocated array of {@code String}:
669 *
670 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
671 *
672 * Note that {@code toArray(new Object[0])} is identical in function to
673 * {@code toArray()}.
674 *
675 * @param a the array into which the elements of the queue are to
676 * be stored, if it is big enough; otherwise, a new array of the
677 * same runtime type is allocated for this purpose
678 * @return an array containing all of the elements in this queue
679 * @throws ArrayStoreException if the runtime type of the specified array
680 * is not a supertype of the runtime type of every element in
681 * this queue
682 * @throws NullPointerException if the specified array is null
683 */
684 @SuppressWarnings("unchecked")
685 public <T> T[] toArray(T[] a) {
686 Objects.requireNonNull(a);
687 return (T[]) toArrayInternal(a);
688 }
689
690 /**
691 * Returns an iterator over the elements in this queue in proper sequence.
692 * The elements will be returned in order from first (head) to last (tail).
693 *
694 * <p>The returned iterator is
695 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
696 *
697 * @return an iterator over the elements in this queue in proper sequence
698 */
699 public Iterator<E> iterator() {
700 return new Itr();
701 }
702
703 private class Itr implements Iterator<E> {
704 /**
705 * Next node to return item for.
706 */
707 private Node<E> nextNode;
708
709 /**
710 * nextItem holds on to item fields because once we claim
711 * that an element exists in hasNext(), we must return it in
712 * the following next() call even if it was in the process of
713 * being removed when hasNext() was called.
714 */
715 private E nextItem;
716
717 /**
718 * Node of the last returned item, to support remove.
719 */
720 private Node<E> lastRet;
721
722 Itr() {
723 restartFromHead: for (;;) {
724 Node<E> h, p, q;
725 for (p = h = head;; p = q) {
726 final E item;
727 if ((item = p.item) != null) {
728 nextNode = p;
729 nextItem = item;
730 break;
731 }
732 else if ((q = p.next) == null)
733 break;
734 else if (p == q)
735 continue restartFromHead;
736 }
737 updateHead(h, p);
738 return;
739 }
740 }
741
742 public boolean hasNext() {
743 return nextItem != null;
744 }
745
746 public E next() {
747 final Node<E> pred = nextNode;
748 if (pred == null) throw new NoSuchElementException();
749 // assert nextItem != null;
750 lastRet = pred;
751 E item = null;
752
753 for (Node<E> p = succ(pred), q;; p = q) {
754 if (p == null || (item = p.item) != null) {
755 nextNode = p;
756 E x = nextItem;
757 nextItem = item;
758 return x;
759 }
760 // unlink deleted nodes
761 if ((q = succ(p)) != null)
762 NEXT.compareAndSet(pred, p, q);
763 }
764 }
765
766 // Default implementation of forEachRemaining is "good enough".
767
768 public void remove() {
769 Node<E> l = lastRet;
770 if (l == null) throw new IllegalStateException();
771 // rely on a future traversal to relink.
772 l.item = null;
773 lastRet = null;
774 }
775 }
776
777 /**
778 * Saves this queue to a stream (that is, serializes it).
779 *
780 * @param s the stream
781 * @throws java.io.IOException if an I/O error occurs
782 * @serialData All of the elements (each an {@code E}) in
783 * the proper order, followed by a null
784 */
785 private void writeObject(java.io.ObjectOutputStream s)
786 throws java.io.IOException {
787
788 // Write out any hidden stuff
789 s.defaultWriteObject();
790
791 // Write out all elements in the proper order.
792 for (Node<E> p = first(); p != null; p = succ(p)) {
793 final E item;
794 if ((item = p.item) != null)
795 s.writeObject(item);
796 }
797
798 // Use trailing null as sentinel
799 s.writeObject(null);
800 }
801
802 /**
803 * Reconstitutes this queue from a stream (that is, deserializes it).
804 * @param s the stream
805 * @throws ClassNotFoundException if the class of a serialized object
806 * could not be found
807 * @throws java.io.IOException if an I/O error occurs
808 */
809 private void readObject(java.io.ObjectInputStream s)
810 throws java.io.IOException, ClassNotFoundException {
811 s.defaultReadObject();
812
813 // Read in elements until trailing null sentinel found
814 Node<E> h = null, t = null;
815 for (Object item; (item = s.readObject()) != null; ) {
816 @SuppressWarnings("unchecked")
817 Node<E> newNode = new Node<E>((E) item);
818 if (h == null)
819 h = t = newNode;
820 else
821 t.appendRelaxed(t = newNode);
822 }
823 if (h == null)
824 h = t = new Node<E>();
825 head = h;
826 tail = t;
827 }
828
829 /** A customized variant of Spliterators.IteratorSpliterator */
830 final class CLQSpliterator implements Spliterator<E> {
831 static final int MAX_BATCH = 1 << 25; // max batch array size;
832 Node<E> current; // current node; null until initialized
833 int batch; // batch size for splits
834 boolean exhausted; // true when no more nodes
835
836 public Spliterator<E> trySplit() {
837 Node<E> p, q;
838 if ((p = current()) == null || (q = p.next) == null)
839 return null;
840 int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
841 Object[] a = null;
842 do {
843 final E e;
844 if ((e = p.item) != null) {
845 if (a == null)
846 a = new Object[n];
847 a[i++] = e;
848 }
849 if (p == (p = q))
850 p = first();
851 } while (p != null && (q = p.next) != null && i < n);
852 setCurrent(p);
853 return (i == 0) ? null :
854 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
855 Spliterator.NONNULL |
856 Spliterator.CONCURRENT));
857 }
858
859 public void forEachRemaining(Consumer<? super E> action) {
860 Objects.requireNonNull(action);
861 final Node<E> p;
862 if ((p = current()) != null) {
863 current = null;
864 exhausted = true;
865 forEachFrom(action, p);
866 }
867 }
868
869 public boolean tryAdvance(Consumer<? super E> action) {
870 Objects.requireNonNull(action);
871 Node<E> p;
872 if ((p = current()) != null) {
873 E e;
874 do {
875 e = p.item;
876 if (p == (p = p.next))
877 p = first();
878 } while (e == null && p != null);
879 setCurrent(p);
880 if (e != null) {
881 action.accept(e);
882 return true;
883 }
884 }
885 return false;
886 }
887
888 private void setCurrent(Node<E> p) {
889 if ((current = p) == null)
890 exhausted = true;
891 }
892
893 private Node<E> current() {
894 Node<E> p;
895 if ((p = current) == null && !exhausted)
896 setCurrent(p = first());
897 return p;
898 }
899
900 public long estimateSize() { return Long.MAX_VALUE; }
901
902 public int characteristics() {
903 return (Spliterator.ORDERED |
904 Spliterator.NONNULL |
905 Spliterator.CONCURRENT);
906 }
907 }
908
909 /**
910 * Returns a {@link Spliterator} over the elements in this queue.
911 *
912 * <p>The returned spliterator is
913 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
914 *
915 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
916 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
917 *
918 * @implNote
919 * The {@code Spliterator} implements {@code trySplit} to permit limited
920 * parallelism.
921 *
922 * @return a {@code Spliterator} over the elements in this queue
923 * @since 1.8
924 */
925 @Override
926 public Spliterator<E> spliterator() {
927 return new CLQSpliterator();
928 }
929
930 /**
931 * @throws NullPointerException {@inheritDoc}
932 */
933 public boolean removeIf(Predicate<? super E> filter) {
934 Objects.requireNonNull(filter);
935 return bulkRemove(filter);
936 }
937
938 /**
939 * @throws NullPointerException {@inheritDoc}
940 */
941 public boolean removeAll(Collection<?> c) {
942 Objects.requireNonNull(c);
943 return bulkRemove(e -> c.contains(e));
944 }
945
946 /**
947 * @throws NullPointerException {@inheritDoc}
948 */
949 public boolean retainAll(Collection<?> c) {
950 Objects.requireNonNull(c);
951 return bulkRemove(e -> !c.contains(e));
952 }
953
954 public void clear() {
955 bulkRemove(e -> true);
956 }
957
958 /**
959 * Tolerate this many consecutive dead nodes before CAS-collapsing.
960 * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
961 */
962 private static final int MAX_HOPS = 8;
963
964 /** Implementation of bulk remove methods. */
965 private boolean bulkRemove(Predicate<? super E> filter) {
966 boolean removed = false;
967 restartFromHead: for (;;) {
968 int hops = MAX_HOPS;
969 // c will be CASed to collapse intervening dead nodes between
970 // pred (or head if null) and p.
971 for (Node<E> p = head, c = p, pred = null, q; p != null; p = q) {
972 q = p.next;
973 final E item; boolean pAlive;
974 if (pAlive = ((item = p.item) != null)) {
975 if (filter.test(item)) {
976 if (p.casItem(item, null))
977 removed = true;
978 pAlive = false;
979 }
980 }
981 if (pAlive || q == null || --hops == 0) {
982 // p might already be self-linked here, but if so:
983 // - CASing head will surely fail
984 // - CASing pred's next will be useless but harmless.
985 if ((c != p && !tryCasSuccessor(pred, c, c = p))
986 || pAlive) {
987 // if CAS failed or alive, abandon old pred
988 hops = MAX_HOPS;
989 pred = p;
990 c = q;
991 }
992 } else if (p == q)
993 continue restartFromHead;
994 }
995 return removed;
996 }
997 }
998
999 /**
1000 * Runs action on each element found during a traversal starting at p.
1001 * If p is null, the action is not run.
1002 */
1003 void forEachFrom(Consumer<? super E> action, Node<E> p) {
1004 for (Node<E> pred = null; p != null; ) {
1005 Node<E> q = p.next;
1006 final E item;
1007 if ((item = p.item) != null) {
1008 action.accept(item);
1009 pred = p; p = q; continue;
1010 }
1011 for (Node<E> c = p;; q = p.next) {
1012 if (q == null || q.item != null) {
1013 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1014 }
1015 if (p == (p = q)) { pred = null; p = head; break; }
1016 }
1017 }
1018 }
1019
1020 /**
1021 * @throws NullPointerException {@inheritDoc}
1022 */
1023 public void forEach(Consumer<? super E> action) {
1024 Objects.requireNonNull(action);
1025 forEachFrom(action, head);
1026 }
1027
1028 // VarHandle mechanics
1029 private static final VarHandle HEAD;
1030 private static final VarHandle TAIL;
1031 static final VarHandle ITEM;
1032 static final VarHandle NEXT;
1033 static {
1034 try {
1035 MethodHandles.Lookup l = MethodHandles.lookup();
1036 HEAD = l.findVarHandle(ConcurrentLinkedQueue.class, "head",
1037 Node.class);
1038 TAIL = l.findVarHandle(ConcurrentLinkedQueue.class, "tail",
1039 Node.class);
1040 ITEM = l.findVarHandle(Node.class, "item", Object.class);
1041 NEXT = l.findVarHandle(Node.class, "next", Node.class);
1042 } catch (ReflectiveOperationException e) {
1043 throw new ExceptionInInitializerError(e);
1044 }
1045 }
1046 }