ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedQueue.java
Revision: 1.64
Committed: Mon Sep 13 16:50:36 2010 UTC (13 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.63: +18 -28 lines
Log Message:
remove accessor methods for Node.item; make size methods consistent

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Queue;
15
16 /**
17 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
18 * This queue orders elements FIFO (first-in-first-out).
19 * The <em>head</em> of the queue is that element that has been on the
20 * queue the longest time.
21 * The <em>tail</em> of the queue is that element that has been on the
22 * queue the shortest time. New elements
23 * are inserted at the tail of the queue, and the queue retrieval
24 * operations obtain elements at the head of the queue.
25 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
26 * many threads will share access to a common collection.
27 * Like most other concurrent collection implementations, this class
28 * does not permit the use of {@code null} elements.
29 *
30 * <p>This implementation employs an efficient &quot;wait-free&quot;
31 * algorithm based on one described in <a
32 * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple,
33 * Fast, and Practical Non-Blocking and Blocking Concurrent Queue
34 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
35 *
36 * <p>Iterators are <i>weakly consistent</i>, returning elements
37 * reflecting the state of the queue at some point at or since the
38 * creation of the iterator. They do <em>not</em> throw {@link
39 * ConcurrentModificationException}, and may proceed concurrently with
40 * other operations. Elements contained in the queue since the creation
41 * of the iterator will be returned exactly once.
42 *
43 * <p>Beware that, unlike in most collections, the {@code size} method
44 * is <em>NOT</em> a constant-time operation. Because of the
45 * asynchronous nature of these queues, determining the current number
46 * of elements requires a traversal of the elements.
47 *
48 * <p>This class and its iterator implement all of the <em>optional</em>
49 * methods of the {@link Queue} and {@link Iterator} interfaces.
50 *
51 * <p>Memory consistency effects: As with other concurrent
52 * collections, actions in a thread prior to placing an object into a
53 * {@code ConcurrentLinkedQueue}
54 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
55 * actions subsequent to the access or removal of that element from
56 * the {@code ConcurrentLinkedQueue} in another thread.
57 *
58 * <p>This class is a member of the
59 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
60 * Java Collections Framework</a>.
61 *
62 * @since 1.5
63 * @author Doug Lea
64 * @param <E> the type of elements held in this collection
65 *
66 */
67 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
68 implements Queue<E>, java.io.Serializable {
69 private static final long serialVersionUID = 196745693267521676L;
70
71 /*
72 * This is a modification of the Michael & Scott algorithm,
73 * adapted for a garbage-collected environment, with support for
74 * interior node deletion (to support remove(Object)). For
75 * explanation, read the paper.
76 *
77 * Note that like most non-blocking algorithms in this package,
78 * this implementation relies on the fact that in garbage
79 * collected systems, there is no possibility of ABA problems due
80 * to recycled nodes, so there is no need to use "counted
81 * pointers" or related techniques seen in versions used in
82 * non-GC'ed settings.
83 *
84 * The fundamental invariants are:
85 * - There is exactly one (last) Node with a null next reference,
86 * which is CASed when enqueueing. This last Node can be
87 * reached in O(1) time from tail, but tail is merely an
88 * optimization - it can always be reached in O(N) time from
89 * head as well.
90 * - The elements contained in the queue are the non-null items in
91 * Nodes that are reachable from head. CASing the item
92 * reference of a Node to null atomically removes it from the
93 * queue. Reachability of all elements from head must remain
94 * true even in the case of concurrent modifications that cause
95 * head to advance. A dequeued Node may remain in use
96 * indefinitely due to creation of an Iterator or simply a
97 * poll() that has lost its time slice.
98 *
99 * The above might appear to imply that all Nodes are GC-reachable
100 * from a predecessor dequeued Node. That would cause two problems:
101 * - allow a rogue Iterator to cause unbounded memory retention
102 * - cause cross-generational linking of old Nodes to new Nodes if
103 * a Node was tenured while live, which generational GCs have a
104 * hard time dealing with, causing repeated major collections.
105 * However, only non-deleted Nodes need to be reachable from
106 * dequeued Nodes, and reachability does not necessarily have to
107 * be of the kind understood by the GC. We use the trick of
108 * linking a Node that has just been dequeued to itself. Such a
109 * self-link implicitly means to advance to head.
110 *
111 * Both head and tail are permitted to lag. In fact, failing to
112 * update them every time one could is a significant optimization
113 * (fewer CASes). This is controlled by local "hops" variables
114 * that only trigger helping-CASes after experiencing multiple
115 * lags.
116 *
117 * Since head and tail are updated concurrently and independently,
118 * it is possible for tail to lag behind head (why not)?
119 *
120 * CASing a Node's item reference to null atomically removes the
121 * element from the queue. Iterators skip over Nodes with null
122 * items. Prior implementations of this class had a race between
123 * poll() and remove(Object) where the same element would appear
124 * to be successfully removed by two concurrent operations. The
125 * method remove(Object) also lazily unlinks deleted Nodes, but
126 * this is merely an optimization.
127 *
128 * When constructing a Node (before enqueuing it) we avoid paying
129 * for a volatile write to item by using Unsafe.putObject instead
130 * of a normal write. This allows the cost of enqueue to be
131 * "one-and-a-half" CASes.
132 *
133 * Both head and tail may or may not point to a Node with a
134 * non-null item. If the queue is empty, all items must of course
135 * be null. Upon creation, both head and tail refer to a dummy
136 * Node with null item. Both head and tail are only updated using
137 * CAS, so they never regress, although again this is merely an
138 * optimization.
139 */
140
141 private static class Node<E> {
142 volatile E item;
143 volatile Node<E> next;
144
145 /**
146 * Constructs a new node. Uses relaxed write because item can
147 * only be seen after publication via casNext.
148 */
149 Node(E item) {
150 UNSAFE.putObject(this, itemOffset, item);
151 }
152
153 boolean casItem(E cmp, E val) {
154 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
155 }
156
157 void lazySetNext(Node<E> val) {
158 UNSAFE.putOrderedObject(this, nextOffset, val);
159 }
160
161 boolean casNext(Node<E> cmp, Node<E> val) {
162 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
163 }
164
165 // Unsafe mechanics
166
167 private static final sun.misc.Unsafe UNSAFE =
168 sun.misc.Unsafe.getUnsafe();
169 private static final long nextOffset =
170 objectFieldOffset(UNSAFE, "next", Node.class);
171 private static final long itemOffset =
172 objectFieldOffset(UNSAFE, "item", Node.class);
173 }
174
175 /**
176 * A node from which the first live (non-deleted) node (if any)
177 * can be reached in O(1) time.
178 * Invariants:
179 * - all live nodes are reachable from head via succ()
180 * - head != null
181 * - (tmp = head).next != tmp || tmp != head
182 * Non-invariants:
183 * - head.item may or may not be null.
184 * - it is permitted for tail to lag behind head, that is, for tail
185 * to not be reachable from head!
186 */
187 private transient volatile Node<E> head;
188
189 /**
190 * A node from which the last node on list (that is, the unique
191 * node with node.next == null) can be reached in O(1) time.
192 * Invariants:
193 * - the last node is always reachable from tail via succ()
194 * - tail != null
195 * Non-invariants:
196 * - tail.item may or may not be null.
197 * - it is permitted for tail to lag behind head, that is, for tail
198 * to not be reachable from head!
199 * - tail.next may or may not be self-pointing to tail.
200 */
201 private transient volatile Node<E> tail;
202
203
204 /**
205 * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
206 */
207 public ConcurrentLinkedQueue() {
208 head = tail = new Node<E>(null);
209 }
210
211 /**
212 * Creates a {@code ConcurrentLinkedQueue}
213 * initially containing the elements of the given collection,
214 * added in traversal order of the collection's iterator.
215 *
216 * @param c the collection of elements to initially contain
217 * @throws NullPointerException if the specified collection or any
218 * of its elements are null
219 */
220 public ConcurrentLinkedQueue(Collection<? extends E> c) {
221 Node<E> h = null, t = null;
222 for (E e : c) {
223 checkNotNull(e);
224 Node<E> newNode = new Node<E>(e);
225 if (h == null)
226 h = t = newNode;
227 else {
228 t.lazySetNext(newNode);
229 t = newNode;
230 }
231 }
232 if (h == null)
233 h = t = new Node<E>(null);
234 head = h;
235 tail = t;
236 }
237
238 // Have to override just to update the javadoc
239
240 /**
241 * Inserts the specified element at the tail of this queue.
242 *
243 * @return {@code true} (as specified by {@link Collection#add})
244 * @throws NullPointerException if the specified element is null
245 */
246 public boolean add(E e) {
247 return offer(e);
248 }
249
250 /**
251 * We don't bother to update head or tail pointers if fewer than
252 * HOPS links from "true" location. We assume that volatile
253 * writes are significantly more expensive than volatile reads.
254 */
255 private static final int HOPS = 1;
256
257 /**
258 * Try to CAS head to p. If successful, repoint old head to itself
259 * as sentinel for succ(), below.
260 */
261 final void updateHead(Node<E> h, Node<E> p) {
262 if (h != p && casHead(h, p))
263 h.lazySetNext(h);
264 }
265
266 /**
267 * Returns the successor of p, or the head node if p.next has been
268 * linked to self, which will only be true if traversing with a
269 * stale pointer that is now off the list.
270 */
271 final Node<E> succ(Node<E> p) {
272 Node<E> next = p.next;
273 return (p == next) ? head : next;
274 }
275
276 /**
277 * Inserts the specified element at the tail of this queue.
278 *
279 * @return {@code true} (as specified by {@link Queue#offer})
280 * @throws NullPointerException if the specified element is null
281 */
282 public boolean offer(E e) {
283 checkNotNull(e);
284 final Node<E> newNode = new Node<E>(e);
285
286 restartFromTail:
287 for (;;) {
288 Node<E> t = tail;
289 Node<E> p = t;
290 for (int hops = 0; ; hops++) {
291 Node<E> next = succ(p);
292 if (next != null) {
293 if (hops > HOPS && t != tail)
294 continue restartFromTail;
295 p = next;
296 } else if (p.casNext(null, newNode)) {
297 // Successful CAS is the linearization point
298 // for e to become an element of this queue,
299 // and for newNode to become "live".
300 if (hops >= HOPS)
301 casTail(t, newNode); // Failure is OK.
302 return true;
303 } else {
304 p = succ(p);
305 }
306 }
307 }
308 }
309
310 public E poll() {
311 Node<E> h = head;
312 Node<E> p = h;
313 for (int hops = 0; ; hops++) {
314 E item = p.item;
315
316 if (item != null && p.casItem(item, null)) {
317 if (hops >= HOPS) {
318 Node<E> q = p.next;
319 updateHead(h, (q != null) ? q : p);
320 }
321 return item;
322 }
323 Node<E> next = succ(p);
324 if (next == null) {
325 updateHead(h, p);
326 break;
327 }
328 p = next;
329 }
330 return null;
331 }
332
333 public E peek() {
334 Node<E> h = head;
335 Node<E> p = h;
336 E item;
337 for (;;) {
338 item = p.item;
339 if (item != null)
340 break;
341 Node<E> next = succ(p);
342 if (next == null) {
343 break;
344 }
345 p = next;
346 }
347 updateHead(h, p);
348 return item;
349 }
350
351 /**
352 * Returns the first live (non-deleted) node on list, or null if none.
353 * This is yet another variant of poll/peek; here returning the
354 * first node, not element. We could make peek() a wrapper around
355 * first(), but that would cost an extra volatile read of item,
356 * and the need to add a retry loop to deal with the possibility
357 * of losing a race to a concurrent poll().
358 */
359 Node<E> first() {
360 Node<E> h = head;
361 Node<E> p = h;
362 Node<E> result;
363 for (;;) {
364 E item = p.item;
365 if (item != null) {
366 result = p;
367 break;
368 }
369 Node<E> next = succ(p);
370 if (next == null) {
371 result = null;
372 break;
373 }
374 p = next;
375 }
376 updateHead(h, p);
377 return result;
378 }
379
380 /**
381 * Returns {@code true} if this queue contains no elements.
382 *
383 * @return {@code true} if this queue contains no elements
384 */
385 public boolean isEmpty() {
386 return first() == null;
387 }
388
389 /**
390 * Returns the number of elements in this queue. If this queue
391 * contains more than {@code Integer.MAX_VALUE} elements, returns
392 * {@code Integer.MAX_VALUE}.
393 *
394 * <p>Beware that, unlike in most collections, this method is
395 * <em>NOT</em> a constant-time operation. Because of the
396 * asynchronous nature of these queues, determining the current
397 * number of elements requires an O(n) traversal.
398 * Additionally, if elements are added or removed during execution
399 * of this method, the returned result may be inaccurate. Thus,
400 * this method is typically not very useful in concurrent
401 * applications.
402 *
403 * @return the number of elements in this queue
404 */
405 public int size() {
406 int count = 0;
407 for (Node<E> p = first(); p != null; p = succ(p))
408 if (p.item != null)
409 // Collection.size() spec says to max out
410 if (++count == Integer.MAX_VALUE)
411 break;
412 return count;
413 }
414
415 /**
416 * Returns {@code true} if this queue contains the specified element.
417 * More formally, returns {@code true} if and only if this queue contains
418 * at least one element {@code e} such that {@code o.equals(e)}.
419 *
420 * @param o object to be checked for containment in this queue
421 * @return {@code true} if this queue contains the specified element
422 */
423 public boolean contains(Object o) {
424 if (o == null) return false;
425 for (Node<E> p = first(); p != null; p = succ(p)) {
426 E item = p.item;
427 if (item != null &&
428 o.equals(item))
429 return true;
430 }
431 return false;
432 }
433
434 /**
435 * Removes a single instance of the specified element from this queue,
436 * if it is present. More formally, removes an element {@code e} such
437 * that {@code o.equals(e)}, if this queue contains one or more such
438 * elements.
439 * Returns {@code true} if this queue contained the specified element
440 * (or equivalently, if this queue changed as a result of the call).
441 *
442 * @param o element to be removed from this queue, if present
443 * @return {@code true} if this queue changed as a result of the call
444 */
445 public boolean remove(Object o) {
446 if (o == null) return false;
447 Node<E> pred = null;
448 for (Node<E> p = first(); p != null; p = succ(p)) {
449 E item = p.item;
450 if (item != null &&
451 o.equals(item) &&
452 p.casItem(item, null)) {
453 Node<E> next = succ(p);
454 if (pred != null && next != null)
455 pred.casNext(p, next);
456 return true;
457 }
458 pred = p;
459 }
460 return false;
461 }
462
463 /**
464 * Appends all of the elements in the specified collection to the end of
465 * this queue, in the order that they are returned by the specified
466 * collection's iterator. Attempts to {@code addAll} of a queue to
467 * itself result in {@code IllegalArgumentException}.
468 *
469 * @param c the elements to be inserted into this queue
470 * @return {@code true} if this queue changed as a result of the call
471 * @throws NullPointerException if the specified collection or any
472 * of its elements are null
473 * @throws IllegalArgumentException if the collection is this queue
474 */
475 public boolean addAll(Collection<? extends E> c) {
476 if (c == this)
477 // As historically specified in AbstractQueue#addAll
478 throw new IllegalArgumentException();
479
480 // Copy c into a private chain of Nodes
481 Node<E> splice = null, last = null;
482 for (E e : c) {
483 checkNotNull(e);
484 Node<E> newNode = new Node<E>(e);
485 if (splice == null)
486 splice = last = newNode;
487 else {
488 last.lazySetNext(newNode);
489 last = newNode;
490 }
491 }
492 if (splice == null)
493 return false;
494
495 // Atomically splice the chain as the tail of this collection
496 restartFromTail:
497 for (;;) {
498 for (Node<E> t = tail, p = t;;) {
499 Node<E> next = succ(p);
500 if (next != null) {
501 if (t != tail)
502 continue restartFromTail;
503 p = next;
504 } else if (p.casNext(null, splice)) {
505 if (! casTail(t, last)) {
506 // Try a little harder to update tail,
507 // since we may be adding many elements.
508 t = tail;
509 if (last.next == null)
510 casTail(t, last);
511 }
512 return true;
513 } else {
514 p = succ(p);
515 }
516 }
517 }
518 }
519
520 /**
521 * Returns an array containing all of the elements in this queue, in
522 * proper sequence.
523 *
524 * <p>The returned array will be "safe" in that no references to it are
525 * maintained by this queue. (In other words, this method must allocate
526 * a new array). The caller is thus free to modify the returned array.
527 *
528 * <p>This method acts as bridge between array-based and collection-based
529 * APIs.
530 *
531 * @return an array containing all of the elements in this queue
532 */
533 public Object[] toArray() {
534 // Use ArrayList to deal with resizing.
535 ArrayList<E> al = new ArrayList<E>();
536 for (Node<E> p = first(); p != null; p = succ(p)) {
537 E item = p.item;
538 if (item != null)
539 al.add(item);
540 }
541 return al.toArray();
542 }
543
544 /**
545 * Returns an array containing all of the elements in this queue, in
546 * proper sequence; the runtime type of the returned array is that of
547 * the specified array. If the queue fits in the specified array, it
548 * is returned therein. Otherwise, a new array is allocated with the
549 * runtime type of the specified array and the size of this queue.
550 *
551 * <p>If this queue fits in the specified array with room to spare
552 * (i.e., the array has more elements than this queue), the element in
553 * the array immediately following the end of the queue is set to
554 * {@code null}.
555 *
556 * <p>Like the {@link #toArray()} method, this method acts as bridge between
557 * array-based and collection-based APIs. Further, this method allows
558 * precise control over the runtime type of the output array, and may,
559 * under certain circumstances, be used to save allocation costs.
560 *
561 * <p>Suppose {@code x} is a queue known to contain only strings.
562 * The following code can be used to dump the queue into a newly
563 * allocated array of {@code String}:
564 *
565 * <pre>
566 * String[] y = x.toArray(new String[0]);</pre>
567 *
568 * Note that {@code toArray(new Object[0])} is identical in function to
569 * {@code toArray()}.
570 *
571 * @param a the array into which the elements of the queue are to
572 * be stored, if it is big enough; otherwise, a new array of the
573 * same runtime type is allocated for this purpose
574 * @return an array containing all of the elements in this queue
575 * @throws ArrayStoreException if the runtime type of the specified array
576 * is not a supertype of the runtime type of every element in
577 * this queue
578 * @throws NullPointerException if the specified array is null
579 */
580 @SuppressWarnings("unchecked")
581 public <T> T[] toArray(T[] a) {
582 // try to use sent-in array
583 int k = 0;
584 Node<E> p;
585 for (p = first(); p != null && k < a.length; p = succ(p)) {
586 E item = p.item;
587 if (item != null)
588 a[k++] = (T)item;
589 }
590 if (p == null) {
591 if (k < a.length)
592 a[k] = null;
593 return a;
594 }
595
596 // If won't fit, use ArrayList version
597 ArrayList<E> al = new ArrayList<E>();
598 for (Node<E> q = first(); q != null; q = succ(q)) {
599 E item = q.item;
600 if (item != null)
601 al.add(item);
602 }
603 return al.toArray(a);
604 }
605
606 /**
607 * Returns an iterator over the elements in this queue in proper sequence.
608 * The elements will be returned in order from first (head) to last (tail).
609 *
610 * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
611 * will never throw {@link java.util.ConcurrentModificationException
612 * ConcurrentModificationException},
613 * and guarantees to traverse elements as they existed upon
614 * construction of the iterator, and may (but is not guaranteed to)
615 * reflect any modifications subsequent to construction.
616 *
617 * @return an iterator over the elements in this queue in proper sequence
618 */
619 public Iterator<E> iterator() {
620 return new Itr();
621 }
622
623 private class Itr implements Iterator<E> {
624 /**
625 * Next node to return item for.
626 */
627 private Node<E> nextNode;
628
629 /**
630 * nextItem holds on to item fields because once we claim
631 * that an element exists in hasNext(), we must return it in
632 * the following next() call even if it was in the process of
633 * being removed when hasNext() was called.
634 */
635 private E nextItem;
636
637 /**
638 * Node of the last returned item, to support remove.
639 */
640 private Node<E> lastRet;
641
642 Itr() {
643 advance();
644 }
645
646 /**
647 * Moves to next valid node and returns item to return for
648 * next(), or null if no such.
649 */
650 private E advance() {
651 lastRet = nextNode;
652 E x = nextItem;
653
654 Node<E> pred, p;
655 if (nextNode == null) {
656 p = first();
657 pred = null;
658 } else {
659 pred = nextNode;
660 p = succ(nextNode);
661 }
662
663 for (;;) {
664 if (p == null) {
665 nextNode = null;
666 nextItem = null;
667 return x;
668 }
669 E item = p.item;
670 if (item != null) {
671 nextNode = p;
672 nextItem = item;
673 return x;
674 } else {
675 // skip over nulls
676 Node<E> next = succ(p);
677 if (pred != null && next != null)
678 pred.casNext(p, next);
679 p = next;
680 }
681 }
682 }
683
684 public boolean hasNext() {
685 return nextNode != null;
686 }
687
688 public E next() {
689 if (nextNode == null) throw new NoSuchElementException();
690 return advance();
691 }
692
693 public void remove() {
694 Node<E> l = lastRet;
695 if (l == null) throw new IllegalStateException();
696 // rely on a future traversal to relink.
697 l.item = null;
698 lastRet = null;
699 }
700 }
701
702 /**
703 * Saves the state to a stream (that is, serializes it).
704 *
705 * @serialData All of the elements (each an {@code E}) in
706 * the proper order, followed by a null
707 * @param s the stream
708 */
709 private void writeObject(java.io.ObjectOutputStream s)
710 throws java.io.IOException {
711
712 // Write out any hidden stuff
713 s.defaultWriteObject();
714
715 // Write out all elements in the proper order.
716 for (Node<E> p = first(); p != null; p = succ(p)) {
717 Object item = p.item;
718 if (item != null)
719 s.writeObject(item);
720 }
721
722 // Use trailing null as sentinel
723 s.writeObject(null);
724 }
725
726 /**
727 * Reconstitutes the instance from a stream (that is, deserializes it).
728 * @param s the stream
729 */
730 private void readObject(java.io.ObjectInputStream s)
731 throws java.io.IOException, ClassNotFoundException {
732 s.defaultReadObject();
733
734 // Read in elements until trailing null sentinel found
735 Node<E> h = null, t = null;
736 Object item;
737 while ((item = s.readObject()) != null) {
738 @SuppressWarnings("unchecked")
739 Node<E> newNode = new Node<E>((E) item);
740 if (h == null)
741 h = t = newNode;
742 else {
743 t.lazySetNext(newNode);
744 t = newNode;
745 }
746 }
747 if (h == null)
748 h = t = new Node<E>(null);
749 head = h;
750 tail = t;
751 }
752
753 /**
754 * Throws NullPointerException if argument is null.
755 *
756 * @param v the element
757 */
758 private static void checkNotNull(Object v) {
759 if (v == null)
760 throw new NullPointerException();
761 }
762
763 // Unsafe mechanics
764
765 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
766 private static final long headOffset =
767 objectFieldOffset(UNSAFE, "head", ConcurrentLinkedQueue.class);
768 private static final long tailOffset =
769 objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedQueue.class);
770
771 private boolean casTail(Node<E> cmp, Node<E> val) {
772 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
773 }
774
775 private boolean casHead(Node<E> cmp, Node<E> val) {
776 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
777 }
778
779 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
780 String field, Class<?> klazz) {
781 try {
782 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
783 } catch (NoSuchFieldException e) {
784 // Convert Exception to corresponding Error
785 NoSuchFieldError error = new NoSuchFieldError(field);
786 error.initCause(e);
787 throw error;
788 }
789 }
790 }