ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedQueue.java
Revision: 1.66
Committed: Fri Sep 17 21:06:44 2010 UTC (13 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.65: +3 -3 lines
Log Message:
authorship

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Queue;
15
16 /**
17 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
18 * This queue orders elements FIFO (first-in-first-out).
19 * The <em>head</em> of the queue is that element that has been on the
20 * queue the longest time.
21 * The <em>tail</em> of the queue is that element that has been on the
22 * queue the shortest time. New elements
23 * are inserted at the tail of the queue, and the queue retrieval
24 * operations obtain elements at the head of the queue.
25 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
26 * many threads will share access to a common collection.
27 * Like most other concurrent collection implementations, this class
28 * does not permit the use of {@code null} elements.
29 *
30 * <p>This implementation employs an efficient &quot;wait-free&quot;
31 * algorithm based on one described in <a
32 * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple,
33 * Fast, and Practical Non-Blocking and Blocking Concurrent Queue
34 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
35 *
36 * <p>Iterators are <i>weakly consistent</i>, returning elements
37 * reflecting the state of the queue at some point at or since the
38 * creation of the iterator. They do <em>not</em> throw {@link
39 * ConcurrentModificationException}, and may proceed concurrently with
40 * other operations. Elements contained in the queue since the creation
41 * of the iterator will be returned exactly once.
42 *
43 * <p>Beware that, unlike in most collections, the {@code size} method
44 * is <em>NOT</em> a constant-time operation. Because of the
45 * asynchronous nature of these queues, determining the current number
46 * of elements requires a traversal of the elements.
47 *
48 * <p>This class and its iterator implement all of the <em>optional</em>
49 * methods of the {@link Queue} and {@link Iterator} interfaces.
50 *
51 * <p>Memory consistency effects: As with other concurrent
52 * collections, actions in a thread prior to placing an object into a
53 * {@code ConcurrentLinkedQueue}
54 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
55 * actions subsequent to the access or removal of that element from
56 * the {@code ConcurrentLinkedQueue} in another thread.
57 *
58 * <p>This class is a member of the
59 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
60 * Java Collections Framework</a>.
61 *
62 * @since 1.5
63 * @author Doug Lea
64 * @param <E> the type of elements held in this collection
65 *
66 */
67 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
68 implements Queue<E>, java.io.Serializable {
69 private static final long serialVersionUID = 196745693267521676L;
70
71 /*
72 * This is a modification of the Michael & Scott algorithm,
73 * adapted for a garbage-collected environment, with support for
74 * interior node deletion (to support remove(Object)). For
75 * explanation, read the paper.
76 *
77 * Note that like most non-blocking algorithms in this package,
78 * this implementation relies on the fact that in garbage
79 * collected systems, there is no possibility of ABA problems due
80 * to recycled nodes, so there is no need to use "counted
81 * pointers" or related techniques seen in versions used in
82 * non-GC'ed settings.
83 *
84 * The fundamental invariants are:
85 * - There is exactly one (last) Node with a null next reference,
86 * which is CASed when enqueueing. This last Node can be
87 * reached in O(1) time from tail, but tail is merely an
88 * optimization - it can always be reached in O(N) time from
89 * head as well.
90 * - The elements contained in the queue are the non-null items in
91 * Nodes that are reachable from head. CASing the item
92 * reference of a Node to null atomically removes it from the
93 * queue. Reachability of all elements from head must remain
94 * true even in the case of concurrent modifications that cause
95 * head to advance. A dequeued Node may remain in use
96 * indefinitely due to creation of an Iterator or simply a
97 * poll() that has lost its time slice.
98 *
99 * The above might appear to imply that all Nodes are GC-reachable
100 * from a predecessor dequeued Node. That would cause two problems:
101 * - allow a rogue Iterator to cause unbounded memory retention
102 * - cause cross-generational linking of old Nodes to new Nodes if
103 * a Node was tenured while live, which generational GCs have a
104 * hard time dealing with, causing repeated major collections.
105 * However, only non-deleted Nodes need to be reachable from
106 * dequeued Nodes, and reachability does not necessarily have to
107 * be of the kind understood by the GC. We use the trick of
108 * linking a Node that has just been dequeued to itself. Such a
109 * self-link implicitly means to advance to head.
110 *
111 * Both head and tail are permitted to lag. In fact, failing to
112 * update them every time one could is a significant optimization
113 * (fewer CASes). As with LinkedTransferQueue (see the internal
114 * documentation for that class), we use a slack threshold of two;
115 * that is, we update head/tail when the current pointer appears
116 * to be two or more steps away from the first/last node.
117 *
118 * Since head and tail are updated concurrently and independently,
119 * it is possible for tail to lag behind head (why not)?
120 *
121 * CASing a Node's item reference to null atomically removes the
122 * element from the queue. Iterators skip over Nodes with null
123 * items. Prior implementations of this class had a race between
124 * poll() and remove(Object) where the same element would appear
125 * to be successfully removed by two concurrent operations. The
126 * method remove(Object) also lazily unlinks deleted Nodes, but
127 * this is merely an optimization.
128 *
129 * When constructing a Node (before enqueuing it) we avoid paying
130 * for a volatile write to item by using Unsafe.putObject instead
131 * of a normal write. This allows the cost of enqueue to be
132 * "one-and-a-half" CASes.
133 *
134 * Both head and tail may or may not point to a Node with a
135 * non-null item. If the queue is empty, all items must of course
136 * be null. Upon creation, both head and tail refer to a dummy
137 * Node with null item. Both head and tail are only updated using
138 * CAS, so they never regress, although again this is merely an
139 * optimization.
140 */
141
142 private static class Node<E> {
143 volatile E item;
144 volatile Node<E> next;
145
146 /**
147 * Constructs a new node. Uses relaxed write because item can
148 * only be seen after publication via casNext.
149 */
150 Node(E item) {
151 UNSAFE.putObject(this, itemOffset, item);
152 }
153
154 boolean casItem(E cmp, E val) {
155 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
156 }
157
158 void lazySetNext(Node<E> val) {
159 UNSAFE.putOrderedObject(this, nextOffset, val);
160 }
161
162 boolean casNext(Node<E> cmp, Node<E> val) {
163 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
164 }
165
166 // Unsafe mechanics
167
168 private static final sun.misc.Unsafe UNSAFE =
169 sun.misc.Unsafe.getUnsafe();
170 private static final long nextOffset =
171 objectFieldOffset(UNSAFE, "next", Node.class);
172 private static final long itemOffset =
173 objectFieldOffset(UNSAFE, "item", Node.class);
174 }
175
176 /**
177 * A node from which the first live (non-deleted) node (if any)
178 * can be reached in O(1) time.
179 * Invariants:
180 * - all live nodes are reachable from head via succ()
181 * - head != null
182 * - (tmp = head).next != tmp || tmp != head
183 * Non-invariants:
184 * - head.item may or may not be null.
185 * - it is permitted for tail to lag behind head, that is, for tail
186 * to not be reachable from head!
187 */
188 private transient volatile Node<E> head;
189
190 /**
191 * A node from which the last node on list (that is, the unique
192 * node with node.next == null) can be reached in O(1) time.
193 * Invariants:
194 * - the last node is always reachable from tail via succ()
195 * - tail != null
196 * Non-invariants:
197 * - tail.item may or may not be null.
198 * - it is permitted for tail to lag behind head, that is, for tail
199 * to not be reachable from head!
200 * - tail.next may or may not be self-pointing to tail.
201 */
202 private transient volatile Node<E> tail;
203
204
205 /**
206 * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
207 */
208 public ConcurrentLinkedQueue() {
209 head = tail = new Node<E>(null);
210 }
211
212 /**
213 * Creates a {@code ConcurrentLinkedQueue}
214 * initially containing the elements of the given collection,
215 * added in traversal order of the collection's iterator.
216 *
217 * @param c the collection of elements to initially contain
218 * @throws NullPointerException if the specified collection or any
219 * of its elements are null
220 */
221 public ConcurrentLinkedQueue(Collection<? extends E> c) {
222 Node<E> h = null, t = null;
223 for (E e : c) {
224 checkNotNull(e);
225 Node<E> newNode = new Node<E>(e);
226 if (h == null)
227 h = t = newNode;
228 else {
229 t.lazySetNext(newNode);
230 t = newNode;
231 }
232 }
233 if (h == null)
234 h = t = new Node<E>(null);
235 head = h;
236 tail = t;
237 }
238
239 // Have to override just to update the javadoc
240
241 /**
242 * Inserts the specified element at the tail of this queue.
243 *
244 * @return {@code true} (as specified by {@link Collection#add})
245 * @throws NullPointerException if the specified element is null
246 */
247 public boolean add(E e) {
248 return offer(e);
249 }
250
251 /**
252 * Try to CAS head to p. If successful, repoint old head to itself
253 * as sentinel for succ(), below.
254 */
255 final void updateHead(Node<E> h, Node<E> p) {
256 if (h != p && casHead(h, p))
257 h.lazySetNext(h);
258 }
259
260 /**
261 * Returns the successor of p, or the head node if p.next has been
262 * linked to self, which will only be true if traversing with a
263 * stale pointer that is now off the list.
264 */
265 final Node<E> succ(Node<E> p) {
266 Node<E> next = p.next;
267 return (p == next) ? head : next;
268 }
269
270 /**
271 * Inserts the specified element at the tail of this queue.
272 *
273 * @return {@code true} (as specified by {@link Queue#offer})
274 * @throws NullPointerException if the specified element is null
275 */
276 public boolean offer(E e) {
277 checkNotNull(e);
278 final Node<E> newNode = new Node<E>(e);
279
280 for (Node<E> t = tail, p = t;;) {
281 Node<E> q = p.next;
282 if (q == null) {
283 // p is last node
284 if (p.casNext(null, newNode)) {
285 // Successful CAS is the linearization point
286 // for e to become an element of this queue,
287 // and for newNode to become "live".
288 if (p != t) // hop two nodes at a time
289 casTail(t, newNode); // Failure is OK.
290 return true;
291 }
292 // Lost CAS race to another thread; re-read next
293 }
294 else if (p == q)
295 // We have fallen off list. If tail is unchanged, it
296 // will also be off-list, in which case we need to
297 // jump to head, from which all live nodes are always
298 // reachable. Else the new tail is a better bet.
299 p = (t != (t = tail)) ? t : head;
300 else
301 // Check for tail updates after two hops.
302 p = (p != t && t != (t = tail)) ? t : q;
303 }
304 }
305
306 public E poll() {
307 restartFromHead:
308 for (;;) {
309 for (Node<E> h = head, p = h, q;;) {
310 E item = p.item;
311
312 if (item != null && p.casItem(item, null)) {
313 // Successful CAS is the linearization point
314 // for item to be removed from this queue.
315 if (p != h) // hop two nodes at a time
316 updateHead(h, ((q = p.next) != null) ? q : p);
317 return item;
318 }
319 else if ((q = p.next) == null) {
320 updateHead(h, p);
321 return null;
322 }
323 else if (p == q)
324 continue restartFromHead;
325 else
326 p = q;
327 }
328 }
329 }
330
331 public E peek() {
332 restartFromHead:
333 for (;;) {
334 for (Node<E> h = head, p = h, q;;) {
335 E item = p.item;
336 if (item != null || (q = p.next) == null) {
337 updateHead(h, p);
338 return item;
339 }
340 else if (p == q)
341 continue restartFromHead;
342 else
343 p = q;
344 }
345 }
346 }
347
348 /**
349 * Returns the first live (non-deleted) node on list, or null if none.
350 * This is yet another variant of poll/peek; here returning the
351 * first node, not element. We could make peek() a wrapper around
352 * first(), but that would cost an extra volatile read of item,
353 * and the need to add a retry loop to deal with the possibility
354 * of losing a race to a concurrent poll().
355 */
356 Node<E> first() {
357 restartFromHead:
358 for (;;) {
359 for (Node<E> h = head, p = h, q;;) {
360 boolean hasItem = (p.item != null);
361 if (hasItem || (q = p.next) == null) {
362 updateHead(h, p);
363 return hasItem ? p : null;
364 }
365 else if (p == q)
366 continue restartFromHead;
367 else
368 p = q;
369 }
370 }
371 }
372
373 /**
374 * Returns {@code true} if this queue contains no elements.
375 *
376 * @return {@code true} if this queue contains no elements
377 */
378 public boolean isEmpty() {
379 return first() == null;
380 }
381
382 /**
383 * Returns the number of elements in this queue. If this queue
384 * contains more than {@code Integer.MAX_VALUE} elements, returns
385 * {@code Integer.MAX_VALUE}.
386 *
387 * <p>Beware that, unlike in most collections, this method is
388 * <em>NOT</em> a constant-time operation. Because of the
389 * asynchronous nature of these queues, determining the current
390 * number of elements requires an O(n) traversal.
391 * Additionally, if elements are added or removed during execution
392 * of this method, the returned result may be inaccurate. Thus,
393 * this method is typically not very useful in concurrent
394 * applications.
395 *
396 * @return the number of elements in this queue
397 */
398 public int size() {
399 int count = 0;
400 for (Node<E> p = first(); p != null; p = succ(p))
401 if (p.item != null)
402 // Collection.size() spec says to max out
403 if (++count == Integer.MAX_VALUE)
404 break;
405 return count;
406 }
407
408 /**
409 * Returns {@code true} if this queue contains the specified element.
410 * More formally, returns {@code true} if and only if this queue contains
411 * at least one element {@code e} such that {@code o.equals(e)}.
412 *
413 * @param o object to be checked for containment in this queue
414 * @return {@code true} if this queue contains the specified element
415 */
416 public boolean contains(Object o) {
417 if (o == null) return false;
418 for (Node<E> p = first(); p != null; p = succ(p)) {
419 E item = p.item;
420 if (item != null && o.equals(item))
421 return true;
422 }
423 return false;
424 }
425
426 /**
427 * Removes a single instance of the specified element from this queue,
428 * if it is present. More formally, removes an element {@code e} such
429 * that {@code o.equals(e)}, if this queue contains one or more such
430 * elements.
431 * Returns {@code true} if this queue contained the specified element
432 * (or equivalently, if this queue changed as a result of the call).
433 *
434 * @param o element to be removed from this queue, if present
435 * @return {@code true} if this queue changed as a result of the call
436 */
437 public boolean remove(Object o) {
438 if (o == null) return false;
439 Node<E> pred = null;
440 for (Node<E> p = first(); p != null; p = succ(p)) {
441 E item = p.item;
442 if (item != null &&
443 o.equals(item) &&
444 p.casItem(item, null)) {
445 Node<E> next = succ(p);
446 if (pred != null && next != null)
447 pred.casNext(p, next);
448 return true;
449 }
450 pred = p;
451 }
452 return false;
453 }
454
455 /**
456 * Appends all of the elements in the specified collection to the end of
457 * this queue, in the order that they are returned by the specified
458 * collection's iterator. Attempts to {@code addAll} of a queue to
459 * itself result in {@code IllegalArgumentException}.
460 *
461 * @param c the elements to be inserted into this queue
462 * @return {@code true} if this queue changed as a result of the call
463 * @throws NullPointerException if the specified collection or any
464 * of its elements are null
465 * @throws IllegalArgumentException if the collection is this queue
466 */
467 public boolean addAll(Collection<? extends E> c) {
468 if (c == this)
469 // As historically specified in AbstractQueue#addAll
470 throw new IllegalArgumentException();
471
472 // Copy c into a private chain of Nodes
473 Node<E> beginningOfTheEnd = null, last = null;
474 for (E e : c) {
475 checkNotNull(e);
476 Node<E> newNode = new Node<E>(e);
477 if (beginningOfTheEnd == null)
478 beginningOfTheEnd = last = newNode;
479 else {
480 last.lazySetNext(newNode);
481 last = newNode;
482 }
483 }
484 if (beginningOfTheEnd == null)
485 return false;
486
487 // Atomically append the chain at the tail of this collection
488 for (Node<E> t = tail, p = t;;) {
489 Node<E> q = p.next;
490 if (q == null) {
491 // p is last node
492 if (p.casNext(null, beginningOfTheEnd)) {
493 // Successful CAS is the linearization point
494 // for all elements to be added to this queue.
495 if (!casTail(t, last)) {
496 // Try a little harder to update tail,
497 // since we may be adding many elements.
498 t = tail;
499 if (last.next == null)
500 casTail(t, last);
501 }
502 return true;
503 }
504 // Lost CAS race to another thread; re-read next
505 }
506 else if (p == q)
507 // We have fallen off list. If tail is unchanged, it
508 // will also be off-list, in which case we need to
509 // jump to head, from which all live nodes are always
510 // reachable. Else the new tail is a better bet.
511 p = (t != (t = tail)) ? t : head;
512 else
513 // Check for tail updates after two hops.
514 p = (p != t && t != (t = tail)) ? t : q;
515 }
516 }
517
518 /**
519 * Returns an array containing all of the elements in this queue, in
520 * proper sequence.
521 *
522 * <p>The returned array will be "safe" in that no references to it are
523 * maintained by this queue. (In other words, this method must allocate
524 * a new array). The caller is thus free to modify the returned array.
525 *
526 * <p>This method acts as bridge between array-based and collection-based
527 * APIs.
528 *
529 * @return an array containing all of the elements in this queue
530 */
531 public Object[] toArray() {
532 // Use ArrayList to deal with resizing.
533 ArrayList<E> al = new ArrayList<E>();
534 for (Node<E> p = first(); p != null; p = succ(p)) {
535 E item = p.item;
536 if (item != null)
537 al.add(item);
538 }
539 return al.toArray();
540 }
541
542 /**
543 * Returns an array containing all of the elements in this queue, in
544 * proper sequence; the runtime type of the returned array is that of
545 * the specified array. If the queue fits in the specified array, it
546 * is returned therein. Otherwise, a new array is allocated with the
547 * runtime type of the specified array and the size of this queue.
548 *
549 * <p>If this queue fits in the specified array with room to spare
550 * (i.e., the array has more elements than this queue), the element in
551 * the array immediately following the end of the queue is set to
552 * {@code null}.
553 *
554 * <p>Like the {@link #toArray()} method, this method acts as bridge between
555 * array-based and collection-based APIs. Further, this method allows
556 * precise control over the runtime type of the output array, and may,
557 * under certain circumstances, be used to save allocation costs.
558 *
559 * <p>Suppose {@code x} is a queue known to contain only strings.
560 * The following code can be used to dump the queue into a newly
561 * allocated array of {@code String}:
562 *
563 * <pre>
564 * String[] y = x.toArray(new String[0]);</pre>
565 *
566 * Note that {@code toArray(new Object[0])} is identical in function to
567 * {@code toArray()}.
568 *
569 * @param a the array into which the elements of the queue are to
570 * be stored, if it is big enough; otherwise, a new array of the
571 * same runtime type is allocated for this purpose
572 * @return an array containing all of the elements in this queue
573 * @throws ArrayStoreException if the runtime type of the specified array
574 * is not a supertype of the runtime type of every element in
575 * this queue
576 * @throws NullPointerException if the specified array is null
577 */
578 @SuppressWarnings("unchecked")
579 public <T> T[] toArray(T[] a) {
580 // try to use sent-in array
581 int k = 0;
582 Node<E> p;
583 for (p = first(); p != null && k < a.length; p = succ(p)) {
584 E item = p.item;
585 if (item != null)
586 a[k++] = (T)item;
587 }
588 if (p == null) {
589 if (k < a.length)
590 a[k] = null;
591 return a;
592 }
593
594 // If won't fit, use ArrayList version
595 ArrayList<E> al = new ArrayList<E>();
596 for (Node<E> q = first(); q != null; q = succ(q)) {
597 E item = q.item;
598 if (item != null)
599 al.add(item);
600 }
601 return al.toArray(a);
602 }
603
604 /**
605 * Returns an iterator over the elements in this queue in proper sequence.
606 * The elements will be returned in order from first (head) to last (tail).
607 *
608 * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
609 * will never throw {@link java.util.ConcurrentModificationException
610 * ConcurrentModificationException},
611 * and guarantees to traverse elements as they existed upon
612 * construction of the iterator, and may (but is not guaranteed to)
613 * reflect any modifications subsequent to construction.
614 *
615 * @return an iterator over the elements in this queue in proper sequence
616 */
617 public Iterator<E> iterator() {
618 return new Itr();
619 }
620
621 private class Itr implements Iterator<E> {
622 /**
623 * Next node to return item for.
624 */
625 private Node<E> nextNode;
626
627 /**
628 * nextItem holds on to item fields because once we claim
629 * that an element exists in hasNext(), we must return it in
630 * the following next() call even if it was in the process of
631 * being removed when hasNext() was called.
632 */
633 private E nextItem;
634
635 /**
636 * Node of the last returned item, to support remove.
637 */
638 private Node<E> lastRet;
639
640 Itr() {
641 advance();
642 }
643
644 /**
645 * Moves to next valid node and returns item to return for
646 * next(), or null if no such.
647 */
648 private E advance() {
649 lastRet = nextNode;
650 E x = nextItem;
651
652 Node<E> pred, p;
653 if (nextNode == null) {
654 p = first();
655 pred = null;
656 } else {
657 pred = nextNode;
658 p = succ(nextNode);
659 }
660
661 for (;;) {
662 if (p == null) {
663 nextNode = null;
664 nextItem = null;
665 return x;
666 }
667 E item = p.item;
668 if (item != null) {
669 nextNode = p;
670 nextItem = item;
671 return x;
672 } else {
673 // skip over nulls
674 Node<E> next = succ(p);
675 if (pred != null && next != null)
676 pred.casNext(p, next);
677 p = next;
678 }
679 }
680 }
681
682 public boolean hasNext() {
683 return nextNode != null;
684 }
685
686 public E next() {
687 if (nextNode == null) throw new NoSuchElementException();
688 return advance();
689 }
690
691 public void remove() {
692 Node<E> l = lastRet;
693 if (l == null) throw new IllegalStateException();
694 // rely on a future traversal to relink.
695 l.item = null;
696 lastRet = null;
697 }
698 }
699
700 /**
701 * Saves the state to a stream (that is, serializes it).
702 *
703 * @serialData All of the elements (each an {@code E}) in
704 * the proper order, followed by a null
705 * @param s the stream
706 */
707 private void writeObject(java.io.ObjectOutputStream s)
708 throws java.io.IOException {
709
710 // Write out any hidden stuff
711 s.defaultWriteObject();
712
713 // Write out all elements in the proper order.
714 for (Node<E> p = first(); p != null; p = succ(p)) {
715 Object item = p.item;
716 if (item != null)
717 s.writeObject(item);
718 }
719
720 // Use trailing null as sentinel
721 s.writeObject(null);
722 }
723
724 /**
725 * Reconstitutes the instance from a stream (that is, deserializes it).
726 * @param s the stream
727 */
728 private void readObject(java.io.ObjectInputStream s)
729 throws java.io.IOException, ClassNotFoundException {
730 s.defaultReadObject();
731
732 // Read in elements until trailing null sentinel found
733 Node<E> h = null, t = null;
734 Object item;
735 while ((item = s.readObject()) != null) {
736 @SuppressWarnings("unchecked")
737 Node<E> newNode = new Node<E>((E) item);
738 if (h == null)
739 h = t = newNode;
740 else {
741 t.lazySetNext(newNode);
742 t = newNode;
743 }
744 }
745 if (h == null)
746 h = t = new Node<E>(null);
747 head = h;
748 tail = t;
749 }
750
751 /**
752 * Throws NullPointerException if argument is null.
753 *
754 * @param v the element
755 */
756 private static void checkNotNull(Object v) {
757 if (v == null)
758 throw new NullPointerException();
759 }
760
761 // Unsafe mechanics
762
763 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
764 private static final long headOffset =
765 objectFieldOffset(UNSAFE, "head", ConcurrentLinkedQueue.class);
766 private static final long tailOffset =
767 objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedQueue.class);
768
769 private boolean casTail(Node<E> cmp, Node<E> val) {
770 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
771 }
772
773 private boolean casHead(Node<E> cmp, Node<E> val) {
774 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
775 }
776
777 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
778 String field, Class<?> klazz) {
779 try {
780 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
781 } catch (NoSuchFieldException e) {
782 // Convert Exception to corresponding Error
783 NoSuchFieldError error = new NoSuchFieldError(field);
784 error.initCause(e);
785 throw error;
786 }
787 }
788 }