ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentLinkedQueue.java
Revision: 1.72
Committed: Wed Feb 23 15:57:48 2011 UTC (13 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.71: +3 -3 lines
Log Message:
Whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Queue;
15
16 /**
17 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
18 * This queue orders elements FIFO (first-in-first-out).
19 * The <em>head</em> of the queue is that element that has been on the
20 * queue the longest time.
21 * The <em>tail</em> of the queue is that element that has been on the
22 * queue the shortest time. New elements
23 * are inserted at the tail of the queue, and the queue retrieval
24 * operations obtain elements at the head of the queue.
25 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
26 * many threads will share access to a common collection.
27 * Like most other concurrent collection implementations, this class
28 * does not permit the use of {@code null} elements.
29 *
30 * <p>This implementation employs an efficient &quot;wait-free&quot;
31 * algorithm based on one described in <a
32 * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple,
33 * Fast, and Practical Non-Blocking and Blocking Concurrent Queue
34 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
35 *
36 * <p>Iterators are <i>weakly consistent</i>, returning elements
37 * reflecting the state of the queue at some point at or since the
38 * creation of the iterator. They do <em>not</em> throw {@link
39 * java.util.ConcurrentModificationException}, and may proceed concurrently
40 * with other operations. Elements contained in the queue since the creation
41 * of the iterator will be returned exactly once.
42 *
43 * <p>Beware that, unlike in most collections, the {@code size} method
44 * is <em>NOT</em> a constant-time operation. Because of the
45 * asynchronous nature of these queues, determining the current number
46 * of elements requires a traversal of the elements.
47 *
48 * <p>This class and its iterator implement all of the <em>optional</em>
49 * methods of the {@link Queue} and {@link Iterator} interfaces.
50 *
51 * <p>Memory consistency effects: As with other concurrent
52 * collections, actions in a thread prior to placing an object into a
53 * {@code ConcurrentLinkedQueue}
54 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
55 * actions subsequent to the access or removal of that element from
56 * the {@code ConcurrentLinkedQueue} in another thread.
57 *
58 * <p>This class is a member of the
59 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
60 * Java Collections Framework</a>.
61 *
62 * @since 1.5
63 * @author Doug Lea
64 * @param <E> the type of elements held in this collection
65 *
66 */
67 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
68 implements Queue<E>, java.io.Serializable {
69 private static final long serialVersionUID = 196745693267521676L;
70
71 /*
72 * This is a modification of the Michael & Scott algorithm,
73 * adapted for a garbage-collected environment, with support for
74 * interior node deletion (to support remove(Object)). For
75 * explanation, read the paper.
76 *
77 * Note that like most non-blocking algorithms in this package,
78 * this implementation relies on the fact that in garbage
79 * collected systems, there is no possibility of ABA problems due
80 * to recycled nodes, so there is no need to use "counted
81 * pointers" or related techniques seen in versions used in
82 * non-GC'ed settings.
83 *
84 * The fundamental invariants are:
85 * - There is exactly one (last) Node with a null next reference,
86 * which is CASed when enqueueing. This last Node can be
87 * reached in O(1) time from tail, but tail is merely an
88 * optimization - it can always be reached in O(N) time from
89 * head as well.
90 * - The elements contained in the queue are the non-null items in
91 * Nodes that are reachable from head. CASing the item
92 * reference of a Node to null atomically removes it from the
93 * queue. Reachability of all elements from head must remain
94 * true even in the case of concurrent modifications that cause
95 * head to advance. A dequeued Node may remain in use
96 * indefinitely due to creation of an Iterator or simply a
97 * poll() that has lost its time slice.
98 *
99 * The above might appear to imply that all Nodes are GC-reachable
100 * from a predecessor dequeued Node. That would cause two problems:
101 * - allow a rogue Iterator to cause unbounded memory retention
102 * - cause cross-generational linking of old Nodes to new Nodes if
103 * a Node was tenured while live, which generational GCs have a
104 * hard time dealing with, causing repeated major collections.
105 * However, only non-deleted Nodes need to be reachable from
106 * dequeued Nodes, and reachability does not necessarily have to
107 * be of the kind understood by the GC. We use the trick of
108 * linking a Node that has just been dequeued to itself. Such a
109 * self-link implicitly means to advance to head.
110 *
111 * Both head and tail are permitted to lag. In fact, failing to
112 * update them every time one could is a significant optimization
113 * (fewer CASes). As with LinkedTransferQueue (see the internal
114 * documentation for that class), we use a slack threshold of two;
115 * that is, we update head/tail when the current pointer appears
116 * to be two or more steps away from the first/last node.
117 *
118 * Since head and tail are updated concurrently and independently,
119 * it is possible for tail to lag behind head (why not)?
120 *
121 * CASing a Node's item reference to null atomically removes the
122 * element from the queue. Iterators skip over Nodes with null
123 * items. Prior implementations of this class had a race between
124 * poll() and remove(Object) where the same element would appear
125 * to be successfully removed by two concurrent operations. The
126 * method remove(Object) also lazily unlinks deleted Nodes, but
127 * this is merely an optimization.
128 *
129 * When constructing a Node (before enqueuing it) we avoid paying
130 * for a volatile write to item by using Unsafe.putObject instead
131 * of a normal write. This allows the cost of enqueue to be
132 * "one-and-a-half" CASes.
133 *
134 * Both head and tail may or may not point to a Node with a
135 * non-null item. If the queue is empty, all items must of course
136 * be null. Upon creation, both head and tail refer to a dummy
137 * Node with null item. Both head and tail are only updated using
138 * CAS, so they never regress, although again this is merely an
139 * optimization.
140 */
141
142 private static class Node<E> {
143 volatile E item;
144 volatile Node<E> next;
145
146 /**
147 * Constructs a new node. Uses relaxed write because item can
148 * only be seen after publication via casNext.
149 */
150 Node(E item) {
151 UNSAFE.putObject(this, itemOffset, item);
152 }
153
154 boolean casItem(E cmp, E val) {
155 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
156 }
157
158 void lazySetNext(Node<E> val) {
159 UNSAFE.putOrderedObject(this, nextOffset, val);
160 }
161
162 boolean casNext(Node<E> cmp, Node<E> val) {
163 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
164 }
165
166 // Unsafe mechanics
167
168 private static final sun.misc.Unsafe UNSAFE;
169 private static final long itemOffset;
170 private static final long nextOffset;
171
172 static {
173 try {
174 UNSAFE = sun.misc.Unsafe.getUnsafe();
175 Class k = Node.class;
176 itemOffset = UNSAFE.objectFieldOffset
177 (k.getDeclaredField("item"));
178 nextOffset = UNSAFE.objectFieldOffset
179 (k.getDeclaredField("next"));
180 } catch (Exception e) {
181 throw new Error(e);
182 }
183 }
184 }
185
186 /**
187 * A node from which the first live (non-deleted) node (if any)
188 * can be reached in O(1) time.
189 * Invariants:
190 * - all live nodes are reachable from head via succ()
191 * - head != null
192 * - (tmp = head).next != tmp || tmp != head
193 * Non-invariants:
194 * - head.item may or may not be null.
195 * - it is permitted for tail to lag behind head, that is, for tail
196 * to not be reachable from head!
197 */
198 private transient volatile Node<E> head;
199
200 /**
201 * A node from which the last node on list (that is, the unique
202 * node with node.next == null) can be reached in O(1) time.
203 * Invariants:
204 * - the last node is always reachable from tail via succ()
205 * - tail != null
206 * Non-invariants:
207 * - tail.item may or may not be null.
208 * - it is permitted for tail to lag behind head, that is, for tail
209 * to not be reachable from head!
210 * - tail.next may or may not be self-pointing to tail.
211 */
212 private transient volatile Node<E> tail;
213
214
215 /**
216 * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
217 */
218 public ConcurrentLinkedQueue() {
219 head = tail = new Node<E>(null);
220 }
221
222 /**
223 * Creates a {@code ConcurrentLinkedQueue}
224 * initially containing the elements of the given collection,
225 * added in traversal order of the collection's iterator.
226 *
227 * @param c the collection of elements to initially contain
228 * @throws NullPointerException if the specified collection or any
229 * of its elements are null
230 */
231 public ConcurrentLinkedQueue(Collection<? extends E> c) {
232 Node<E> h = null, t = null;
233 for (E e : c) {
234 checkNotNull(e);
235 Node<E> newNode = new Node<E>(e);
236 if (h == null)
237 h = t = newNode;
238 else {
239 t.lazySetNext(newNode);
240 t = newNode;
241 }
242 }
243 if (h == null)
244 h = t = new Node<E>(null);
245 head = h;
246 tail = t;
247 }
248
249 // Have to override just to update the javadoc
250
251 /**
252 * Inserts the specified element at the tail of this queue.
253 * As the queue is unbounded, this method will never throw
254 * {@link IllegalStateException} or return {@code false}.
255 *
256 * @return {@code true} (as specified by {@link Collection#add})
257 * @throws NullPointerException if the specified element is null
258 */
259 public boolean add(E e) {
260 return offer(e);
261 }
262
263 /**
264 * Try to CAS head to p. If successful, repoint old head to itself
265 * as sentinel for succ(), below.
266 */
267 final void updateHead(Node<E> h, Node<E> p) {
268 if (h != p && casHead(h, p))
269 h.lazySetNext(h);
270 }
271
272 /**
273 * Returns the successor of p, or the head node if p.next has been
274 * linked to self, which will only be true if traversing with a
275 * stale pointer that is now off the list.
276 */
277 final Node<E> succ(Node<E> p) {
278 Node<E> next = p.next;
279 return (p == next) ? head : next;
280 }
281
282 /**
283 * Inserts the specified element at the tail of this queue.
284 * As the queue is unbounded, this method will never return {@code false}.
285 *
286 * @return {@code true} (as specified by {@link Queue#offer})
287 * @throws NullPointerException if the specified element is null
288 */
289 public boolean offer(E e) {
290 checkNotNull(e);
291 final Node<E> newNode = new Node<E>(e);
292
293 for (Node<E> t = tail, p = t;;) {
294 Node<E> q = p.next;
295 if (q == null) {
296 // p is last node
297 if (p.casNext(null, newNode)) {
298 // Successful CAS is the linearization point
299 // for e to become an element of this queue,
300 // and for newNode to become "live".
301 if (p != t) // hop two nodes at a time
302 casTail(t, newNode); // Failure is OK.
303 return true;
304 }
305 // Lost CAS race to another thread; re-read next
306 }
307 else if (p == q)
308 // We have fallen off list. If tail is unchanged, it
309 // will also be off-list, in which case we need to
310 // jump to head, from which all live nodes are always
311 // reachable. Else the new tail is a better bet.
312 p = (t != (t = tail)) ? t : head;
313 else
314 // Check for tail updates after two hops.
315 p = (p != t && t != (t = tail)) ? t : q;
316 }
317 }
318
319 public E poll() {
320 restartFromHead:
321 for (;;) {
322 for (Node<E> h = head, p = h, q;;) {
323 E item = p.item;
324
325 if (item != null && p.casItem(item, null)) {
326 // Successful CAS is the linearization point
327 // for item to be removed from this queue.
328 if (p != h) // hop two nodes at a time
329 updateHead(h, ((q = p.next) != null) ? q : p);
330 return item;
331 }
332 else if ((q = p.next) == null) {
333 updateHead(h, p);
334 return null;
335 }
336 else if (p == q)
337 continue restartFromHead;
338 else
339 p = q;
340 }
341 }
342 }
343
344 public E peek() {
345 restartFromHead:
346 for (;;) {
347 for (Node<E> h = head, p = h, q;;) {
348 E item = p.item;
349 if (item != null || (q = p.next) == null) {
350 updateHead(h, p);
351 return item;
352 }
353 else if (p == q)
354 continue restartFromHead;
355 else
356 p = q;
357 }
358 }
359 }
360
361 /**
362 * Returns the first live (non-deleted) node on list, or null if none.
363 * This is yet another variant of poll/peek; here returning the
364 * first node, not element. We could make peek() a wrapper around
365 * first(), but that would cost an extra volatile read of item,
366 * and the need to add a retry loop to deal with the possibility
367 * of losing a race to a concurrent poll().
368 */
369 Node<E> first() {
370 restartFromHead:
371 for (;;) {
372 for (Node<E> h = head, p = h, q;;) {
373 boolean hasItem = (p.item != null);
374 if (hasItem || (q = p.next) == null) {
375 updateHead(h, p);
376 return hasItem ? p : null;
377 }
378 else if (p == q)
379 continue restartFromHead;
380 else
381 p = q;
382 }
383 }
384 }
385
386 /**
387 * Returns {@code true} if this queue contains no elements.
388 *
389 * @return {@code true} if this queue contains no elements
390 */
391 public boolean isEmpty() {
392 return first() == null;
393 }
394
395 /**
396 * Returns the number of elements in this queue. If this queue
397 * contains more than {@code Integer.MAX_VALUE} elements, returns
398 * {@code Integer.MAX_VALUE}.
399 *
400 * <p>Beware that, unlike in most collections, this method is
401 * <em>NOT</em> a constant-time operation. Because of the
402 * asynchronous nature of these queues, determining the current
403 * number of elements requires an O(n) traversal.
404 * Additionally, if elements are added or removed during execution
405 * of this method, the returned result may be inaccurate. Thus,
406 * this method is typically not very useful in concurrent
407 * applications.
408 *
409 * @return the number of elements in this queue
410 */
411 public int size() {
412 int count = 0;
413 for (Node<E> p = first(); p != null; p = succ(p))
414 if (p.item != null)
415 // Collection.size() spec says to max out
416 if (++count == Integer.MAX_VALUE)
417 break;
418 return count;
419 }
420
421 /**
422 * Returns {@code true} if this queue contains the specified element.
423 * More formally, returns {@code true} if and only if this queue contains
424 * at least one element {@code e} such that {@code o.equals(e)}.
425 *
426 * @param o object to be checked for containment in this queue
427 * @return {@code true} if this queue contains the specified element
428 */
429 public boolean contains(Object o) {
430 if (o == null) return false;
431 for (Node<E> p = first(); p != null; p = succ(p)) {
432 E item = p.item;
433 if (item != null && o.equals(item))
434 return true;
435 }
436 return false;
437 }
438
439 /**
440 * Removes a single instance of the specified element from this queue,
441 * if it is present. More formally, removes an element {@code e} such
442 * that {@code o.equals(e)}, if this queue contains one or more such
443 * elements.
444 * Returns {@code true} if this queue contained the specified element
445 * (or equivalently, if this queue changed as a result of the call).
446 *
447 * @param o element to be removed from this queue, if present
448 * @return {@code true} if this queue changed as a result of the call
449 */
450 public boolean remove(Object o) {
451 if (o == null) return false;
452 Node<E> pred = null;
453 for (Node<E> p = first(); p != null; p = succ(p)) {
454 E item = p.item;
455 if (item != null &&
456 o.equals(item) &&
457 p.casItem(item, null)) {
458 Node<E> next = succ(p);
459 if (pred != null && next != null)
460 pred.casNext(p, next);
461 return true;
462 }
463 pred = p;
464 }
465 return false;
466 }
467
468 /**
469 * Appends all of the elements in the specified collection to the end of
470 * this queue, in the order that they are returned by the specified
471 * collection's iterator. Attempts to {@code addAll} of a queue to
472 * itself result in {@code IllegalArgumentException}.
473 *
474 * @param c the elements to be inserted into this queue
475 * @return {@code true} if this queue changed as a result of the call
476 * @throws NullPointerException if the specified collection or any
477 * of its elements are null
478 * @throws IllegalArgumentException if the collection is this queue
479 */
480 public boolean addAll(Collection<? extends E> c) {
481 if (c == this)
482 // As historically specified in AbstractQueue#addAll
483 throw new IllegalArgumentException();
484
485 // Copy c into a private chain of Nodes
486 Node<E> beginningOfTheEnd = null, last = null;
487 for (E e : c) {
488 checkNotNull(e);
489 Node<E> newNode = new Node<E>(e);
490 if (beginningOfTheEnd == null)
491 beginningOfTheEnd = last = newNode;
492 else {
493 last.lazySetNext(newNode);
494 last = newNode;
495 }
496 }
497 if (beginningOfTheEnd == null)
498 return false;
499
500 // Atomically append the chain at the tail of this collection
501 for (Node<E> t = tail, p = t;;) {
502 Node<E> q = p.next;
503 if (q == null) {
504 // p is last node
505 if (p.casNext(null, beginningOfTheEnd)) {
506 // Successful CAS is the linearization point
507 // for all elements to be added to this queue.
508 if (!casTail(t, last)) {
509 // Try a little harder to update tail,
510 // since we may be adding many elements.
511 t = tail;
512 if (last.next == null)
513 casTail(t, last);
514 }
515 return true;
516 }
517 // Lost CAS race to another thread; re-read next
518 }
519 else if (p == q)
520 // We have fallen off list. If tail is unchanged, it
521 // will also be off-list, in which case we need to
522 // jump to head, from which all live nodes are always
523 // reachable. Else the new tail is a better bet.
524 p = (t != (t = tail)) ? t : head;
525 else
526 // Check for tail updates after two hops.
527 p = (p != t && t != (t = tail)) ? t : q;
528 }
529 }
530
531 /**
532 * Returns an array containing all of the elements in this queue, in
533 * proper sequence.
534 *
535 * <p>The returned array will be "safe" in that no references to it are
536 * maintained by this queue. (In other words, this method must allocate
537 * a new array). The caller is thus free to modify the returned array.
538 *
539 * <p>This method acts as bridge between array-based and collection-based
540 * APIs.
541 *
542 * @return an array containing all of the elements in this queue
543 */
544 public Object[] toArray() {
545 // Use ArrayList to deal with resizing.
546 ArrayList<E> al = new ArrayList<E>();
547 for (Node<E> p = first(); p != null; p = succ(p)) {
548 E item = p.item;
549 if (item != null)
550 al.add(item);
551 }
552 return al.toArray();
553 }
554
555 /**
556 * Returns an array containing all of the elements in this queue, in
557 * proper sequence; the runtime type of the returned array is that of
558 * the specified array. If the queue fits in the specified array, it
559 * is returned therein. Otherwise, a new array is allocated with the
560 * runtime type of the specified array and the size of this queue.
561 *
562 * <p>If this queue fits in the specified array with room to spare
563 * (i.e., the array has more elements than this queue), the element in
564 * the array immediately following the end of the queue is set to
565 * {@code null}.
566 *
567 * <p>Like the {@link #toArray()} method, this method acts as bridge between
568 * array-based and collection-based APIs. Further, this method allows
569 * precise control over the runtime type of the output array, and may,
570 * under certain circumstances, be used to save allocation costs.
571 *
572 * <p>Suppose {@code x} is a queue known to contain only strings.
573 * The following code can be used to dump the queue into a newly
574 * allocated array of {@code String}:
575 *
576 * <pre>
577 * String[] y = x.toArray(new String[0]);</pre>
578 *
579 * Note that {@code toArray(new Object[0])} is identical in function to
580 * {@code toArray()}.
581 *
582 * @param a the array into which the elements of the queue are to
583 * be stored, if it is big enough; otherwise, a new array of the
584 * same runtime type is allocated for this purpose
585 * @return an array containing all of the elements in this queue
586 * @throws ArrayStoreException if the runtime type of the specified array
587 * is not a supertype of the runtime type of every element in
588 * this queue
589 * @throws NullPointerException if the specified array is null
590 */
591 @SuppressWarnings("unchecked")
592 public <T> T[] toArray(T[] a) {
593 // try to use sent-in array
594 int k = 0;
595 Node<E> p;
596 for (p = first(); p != null && k < a.length; p = succ(p)) {
597 E item = p.item;
598 if (item != null)
599 a[k++] = (T)item;
600 }
601 if (p == null) {
602 if (k < a.length)
603 a[k] = null;
604 return a;
605 }
606
607 // If won't fit, use ArrayList version
608 ArrayList<E> al = new ArrayList<E>();
609 for (Node<E> q = first(); q != null; q = succ(q)) {
610 E item = q.item;
611 if (item != null)
612 al.add(item);
613 }
614 return al.toArray(a);
615 }
616
617 /**
618 * Returns an iterator over the elements in this queue in proper sequence.
619 * The elements will be returned in order from first (head) to last (tail).
620 *
621 * <p>The returned iterator is a "weakly consistent" iterator that
622 * will never throw {@link java.util.ConcurrentModificationException
623 * ConcurrentModificationException}, and guarantees to traverse
624 * elements as they existed upon construction of the iterator, and
625 * may (but is not guaranteed to) reflect any modifications
626 * subsequent to construction.
627 *
628 * @return an iterator over the elements in this queue in proper sequence
629 */
630 public Iterator<E> iterator() {
631 return new Itr();
632 }
633
634 private class Itr implements Iterator<E> {
635 /**
636 * Next node to return item for.
637 */
638 private Node<E> nextNode;
639
640 /**
641 * nextItem holds on to item fields because once we claim
642 * that an element exists in hasNext(), we must return it in
643 * the following next() call even if it was in the process of
644 * being removed when hasNext() was called.
645 */
646 private E nextItem;
647
648 /**
649 * Node of the last returned item, to support remove.
650 */
651 private Node<E> lastRet;
652
653 Itr() {
654 advance();
655 }
656
657 /**
658 * Moves to next valid node and returns item to return for
659 * next(), or null if no such.
660 */
661 private E advance() {
662 lastRet = nextNode;
663 E x = nextItem;
664
665 Node<E> pred, p;
666 if (nextNode == null) {
667 p = first();
668 pred = null;
669 } else {
670 pred = nextNode;
671 p = succ(nextNode);
672 }
673
674 for (;;) {
675 if (p == null) {
676 nextNode = null;
677 nextItem = null;
678 return x;
679 }
680 E item = p.item;
681 if (item != null) {
682 nextNode = p;
683 nextItem = item;
684 return x;
685 } else {
686 // skip over nulls
687 Node<E> next = succ(p);
688 if (pred != null && next != null)
689 pred.casNext(p, next);
690 p = next;
691 }
692 }
693 }
694
695 public boolean hasNext() {
696 return nextNode != null;
697 }
698
699 public E next() {
700 if (nextNode == null) throw new NoSuchElementException();
701 return advance();
702 }
703
704 public void remove() {
705 Node<E> l = lastRet;
706 if (l == null) throw new IllegalStateException();
707 // rely on a future traversal to relink.
708 l.item = null;
709 lastRet = null;
710 }
711 }
712
713 /**
714 * Saves the state to a stream (that is, serializes it).
715 *
716 * @serialData All of the elements (each an {@code E}) in
717 * the proper order, followed by a null
718 * @param s the stream
719 */
720 private void writeObject(java.io.ObjectOutputStream s)
721 throws java.io.IOException {
722
723 // Write out any hidden stuff
724 s.defaultWriteObject();
725
726 // Write out all elements in the proper order.
727 for (Node<E> p = first(); p != null; p = succ(p)) {
728 Object item = p.item;
729 if (item != null)
730 s.writeObject(item);
731 }
732
733 // Use trailing null as sentinel
734 s.writeObject(null);
735 }
736
737 /**
738 * Reconstitutes the instance from a stream (that is, deserializes it).
739 * @param s the stream
740 */
741 private void readObject(java.io.ObjectInputStream s)
742 throws java.io.IOException, ClassNotFoundException {
743 s.defaultReadObject();
744
745 // Read in elements until trailing null sentinel found
746 Node<E> h = null, t = null;
747 Object item;
748 while ((item = s.readObject()) != null) {
749 @SuppressWarnings("unchecked")
750 Node<E> newNode = new Node<E>((E) item);
751 if (h == null)
752 h = t = newNode;
753 else {
754 t.lazySetNext(newNode);
755 t = newNode;
756 }
757 }
758 if (h == null)
759 h = t = new Node<E>(null);
760 head = h;
761 tail = t;
762 }
763
764 /**
765 * Throws NullPointerException if argument is null.
766 *
767 * @param v the element
768 */
769 private static void checkNotNull(Object v) {
770 if (v == null)
771 throw new NullPointerException();
772 }
773
774 private boolean casTail(Node<E> cmp, Node<E> val) {
775 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
776 }
777
778 private boolean casHead(Node<E> cmp, Node<E> val) {
779 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
780 }
781
782 // Unsafe mechanics
783
784 private static final sun.misc.Unsafe UNSAFE;
785 private static final long headOffset;
786 private static final long tailOffset;
787 static {
788 try {
789 UNSAFE = sun.misc.Unsafe.getUnsafe();
790 Class k = ConcurrentLinkedQueue.class;
791 headOffset = UNSAFE.objectFieldOffset
792 (k.getDeclaredField("head"));
793 tailOffset = UNSAFE.objectFieldOffset
794 (k.getDeclaredField("tail"));
795 } catch (Exception e) {
796 throw new Error(e);
797 }
798 }
799 }