ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.120
Committed: Fri Apr 19 17:54:06 2013 UTC (11 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.119: +2 -2 lines
Log Message:
typos

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.67 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.118 import java.util.AbstractCollection;
9     import java.util.AbstractMap;
10     import java.util.AbstractSet;
11     import java.util.ArrayList;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.Comparator;
15     import java.util.Comparators;
16     import java.util.Iterator;
17     import java.util.List;
18     import java.util.Map;
19     import java.util.NavigableMap;
20     import java.util.NavigableSet;
21     import java.util.NoSuchElementException;
22     import java.util.Set;
23     import java.util.SortedMap;
24     import java.util.SortedSet;
25 dl 1.83 import java.util.Spliterator;
26 dl 1.118 import java.util.concurrent.ConcurrentMap;
27     import java.util.concurrent.ConcurrentNavigableMap;
28     import java.util.function.BiFunction;
29 dl 1.94 import java.util.function.Consumer;
30 dl 1.109 import java.util.function.Function;
31 dl 1.83
32 dl 1.1 /**
33 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
34     * The map is sorted according to the {@linkplain Comparable natural
35     * ordering} of its keys, or by a {@link Comparator} provided at map
36     * creation time, depending on which constructor is used.
37 dl 1.1 *
38     * <p>This class implements a concurrent variant of <a
39 dl 1.66 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
40     * providing expected average <i>log(n)</i> time cost for the
41 jsr166 1.82 * {@code containsKey}, {@code get}, {@code put} and
42     * {@code remove} operations and their variants. Insertion, removal,
43 dl 1.1 * update, and access operations safely execute concurrently by
44 jsr166 1.51 * multiple threads. Iterators are <i>weakly consistent</i>, returning
45 dl 1.1 * elements reflecting the state of the map at some point at or since
46     * the creation of the iterator. They do <em>not</em> throw {@link
47     * ConcurrentModificationException}, and may proceed concurrently with
48     * other operations. Ascending key ordered views and their iterators
49     * are faster than descending ones.
50     *
51 jsr166 1.82 * <p>All {@code Map.Entry} pairs returned by methods in this class
52 dl 1.1 * and its views represent snapshots of mappings at the time they were
53 jsr166 1.82 * produced. They do <em>not</em> support the {@code Entry.setValue}
54 dl 1.1 * method. (Note however that it is possible to change mappings in the
55 jsr166 1.82 * associated map using {@code put}, {@code putIfAbsent}, or
56     * {@code replace}, depending on exactly which effect you need.)
57 dl 1.1 *
58 jsr166 1.82 * <p>Beware that, unlike in most collections, the {@code size}
59 dl 1.1 * method is <em>not</em> a constant-time operation. Because of the
60     * asynchronous nature of these maps, determining the current number
61 dl 1.69 * of elements requires a traversal of the elements, and so may report
62     * inaccurate results if this collection is modified during traversal.
63 jsr166 1.82 * Additionally, the bulk operations {@code putAll}, {@code equals},
64     * {@code toArray}, {@code containsValue}, and {@code clear} are
65 dl 1.69 * <em>not</em> guaranteed to be performed atomically. For example, an
66 jsr166 1.82 * iterator operating concurrently with a {@code putAll} operation
67 dl 1.69 * might view only some of the added elements.
68 dl 1.1 *
69     * <p>This class and its views and iterators implement all of the
70     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
71     * interfaces. Like most other concurrent collections, this class does
72 jsr166 1.82 * <em>not</em> permit the use of {@code null} keys or values because some
73 jsr166 1.22 * null return values cannot be reliably distinguished from the absence of
74     * elements.
75 dl 1.1 *
76 jsr166 1.21 * <p>This class is a member of the
77 jsr166 1.51 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
78 jsr166 1.21 * Java Collections Framework</a>.
79     *
80 dl 1.1 * @author Doug Lea
81     * @param <K> the type of keys maintained by this map
82 dl 1.9 * @param <V> the type of mapped values
83 jsr166 1.20 * @since 1.6
84 dl 1.1 */
85 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
86 dl 1.1 implements ConcurrentNavigableMap<K,V>,
87 dl 1.9 Cloneable,
88 dl 1.1 java.io.Serializable {
89     /*
90     * This class implements a tree-like two-dimensionally linked skip
91     * list in which the index levels are represented in separate
92     * nodes from the base nodes holding data. There are two reasons
93     * for taking this approach instead of the usual array-based
94     * structure: 1) Array based implementations seem to encounter
95     * more complexity and overhead 2) We can use cheaper algorithms
96     * for the heavily-traversed index lists than can be used for the
97     * base lists. Here's a picture of some of the basics for a
98     * possible list with 2 levels of index:
99     *
100     * Head nodes Index nodes
101 dl 1.9 * +-+ right +-+ +-+
102 dl 1.1 * |2|---------------->| |--------------------->| |->null
103 dl 1.9 * +-+ +-+ +-+
104 dl 1.1 * | down | |
105     * v v v
106 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
107 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
108 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
109 dl 1.1 * v | | | | |
110     * Nodes next v v v v v
111 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
112 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
113 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
114 dl 1.1 *
115     * The base lists use a variant of the HM linked ordered set
116     * algorithm. See Tim Harris, "A pragmatic implementation of
117     * non-blocking linked lists"
118     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
119     * Michael "High Performance Dynamic Lock-Free Hash Tables and
120     * List-Based Sets"
121     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
122     * basic idea in these lists is to mark the "next" pointers of
123     * deleted nodes when deleting to avoid conflicts with concurrent
124     * insertions, and when traversing to keep track of triples
125     * (predecessor, node, successor) in order to detect when and how
126     * to unlink these deleted nodes.
127     *
128     * Rather than using mark-bits to mark list deletions (which can
129     * be slow and space-intensive using AtomicMarkedReference), nodes
130     * use direct CAS'able next pointers. On deletion, instead of
131     * marking a pointer, they splice in another node that can be
132     * thought of as standing for a marked pointer (indicating this by
133     * using otherwise impossible field values). Using plain nodes
134     * acts roughly like "boxed" implementations of marked pointers,
135     * but uses new nodes only when nodes are deleted, not for every
136     * link. This requires less space and supports faster
137     * traversal. Even if marked references were better supported by
138     * JVMs, traversal using this technique might still be faster
139     * because any search need only read ahead one more node than
140     * otherwise required (to check for trailing marker) rather than
141     * unmasking mark bits or whatever on each read.
142     *
143     * This approach maintains the essential property needed in the HM
144     * algorithm of changing the next-pointer of a deleted node so
145     * that any other CAS of it will fail, but implements the idea by
146     * changing the pointer to point to a different node, not by
147     * marking it. While it would be possible to further squeeze
148     * space by defining marker nodes not to have key/value fields, it
149     * isn't worth the extra type-testing overhead. The deletion
150     * markers are rarely encountered during traversal and are
151     * normally quickly garbage collected. (Note that this technique
152     * would not work well in systems without garbage collection.)
153     *
154     * In addition to using deletion markers, the lists also use
155     * nullness of value fields to indicate deletion, in a style
156     * similar to typical lazy-deletion schemes. If a node's value is
157     * null, then it is considered logically deleted and ignored even
158     * though it is still reachable. This maintains proper control of
159     * concurrent replace vs delete operations -- an attempted replace
160     * must fail if a delete beat it by nulling field, and a delete
161     * must return the last non-null value held in the field. (Note:
162     * Null, rather than some special marker, is used for value fields
163     * here because it just so happens to mesh with the Map API
164     * requirement that method get returns null if there is no
165     * mapping, which allows nodes to remain concurrently readable
166     * even when deleted. Using any other marker value here would be
167     * messy at best.)
168     *
169     * Here's the sequence of events for a deletion of node n with
170     * predecessor b and successor f, initially:
171     *
172 dl 1.9 * +------+ +------+ +------+
173 dl 1.1 * ... | b |------>| n |----->| f | ...
174 dl 1.9 * +------+ +------+ +------+
175 dl 1.1 *
176     * 1. CAS n's value field from non-null to null.
177     * From this point on, no public operations encountering
178     * the node consider this mapping to exist. However, other
179     * ongoing insertions and deletions might still modify
180     * n's next pointer.
181     *
182     * 2. CAS n's next pointer to point to a new marker node.
183     * From this point on, no other nodes can be appended to n.
184     * which avoids deletion errors in CAS-based linked lists.
185     *
186     * +------+ +------+ +------+ +------+
187     * ... | b |------>| n |----->|marker|------>| f | ...
188 dl 1.9 * +------+ +------+ +------+ +------+
189 dl 1.1 *
190     * 3. CAS b's next pointer over both n and its marker.
191     * From this point on, no new traversals will encounter n,
192     * and it can eventually be GCed.
193     * +------+ +------+
194     * ... | b |----------------------------------->| f | ...
195 dl 1.9 * +------+ +------+
196     *
197 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
198     * with another operation. Steps 2-3 can fail because some other
199     * thread noticed during a traversal a node with null value and
200     * helped out by marking and/or unlinking. This helping-out
201     * ensures that no thread can become stuck waiting for progress of
202     * the deleting thread. The use of marker nodes slightly
203     * complicates helping-out code because traversals must track
204     * consistent reads of up to four nodes (b, n, marker, f), not
205     * just (b, n, f), although the next field of a marker is
206     * immutable, and once a next field is CAS'ed to point to a
207     * marker, it never again changes, so this requires less care.
208     *
209     * Skip lists add indexing to this scheme, so that the base-level
210     * traversals start close to the locations being found, inserted
211     * or deleted -- usually base level traversals only traverse a few
212     * nodes. This doesn't change the basic algorithm except for the
213     * need to make sure base traversals start at predecessors (here,
214     * b) that are not (structurally) deleted, otherwise retrying
215 dl 1.9 * after processing the deletion.
216 dl 1.1 *
217     * Index levels are maintained as lists with volatile next fields,
218     * using CAS to link and unlink. Races are allowed in index-list
219     * operations that can (rarely) fail to link in a new index node
220     * or delete one. (We can't do this of course for data nodes.)
221     * However, even when this happens, the index lists remain sorted,
222     * so correctly serve as indices. This can impact performance,
223     * but since skip lists are probabilistic anyway, the net result
224     * is that under contention, the effective "p" value may be lower
225     * than its nominal value. And race windows are kept small enough
226     * that in practice these failures are rare, even under a lot of
227     * contention.
228     *
229     * The fact that retries (for both base and index lists) are
230     * relatively cheap due to indexing allows some minor
231     * simplifications of retry logic. Traversal restarts are
232     * performed after most "helping-out" CASes. This isn't always
233     * strictly necessary, but the implicit backoffs tend to help
234     * reduce other downstream failed CAS's enough to outweigh restart
235     * cost. This worsens the worst case, but seems to improve even
236     * highly contended cases.
237     *
238     * Unlike most skip-list implementations, index insertion and
239     * deletion here require a separate traversal pass occuring after
240     * the base-level action, to add or remove index nodes. This adds
241     * to single-threaded overhead, but improves contended
242     * multithreaded performance by narrowing interference windows,
243     * and allows deletion to ensure that all index nodes will be made
244     * unreachable upon return from a public remove operation, thus
245     * avoiding unwanted garbage retention. This is more important
246     * here than in some other data structures because we cannot null
247     * out node fields referencing user keys since they might still be
248     * read by other ongoing traversals.
249     *
250     * Indexing uses skip list parameters that maintain good search
251     * performance while using sparser-than-usual indices: The
252 dl 1.118 * hardwired parameters k=1, p=0.5 (see method doPut) mean
253 dl 1.1 * that about one-quarter of the nodes have indices. Of those that
254     * do, half have one level, a quarter have two, and so on (see
255     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
256     * requirement for a map is slightly less than for the current
257     * implementation of java.util.TreeMap.
258     *
259     * Changing the level of the index (i.e, the height of the
260     * tree-like structure) also uses CAS. The head index has initial
261     * level/height of one. Creation of an index with height greater
262     * than the current level adds a level to the head index by
263     * CAS'ing on a new top-most head. To maintain good performance
264     * after a lot of removals, deletion methods heuristically try to
265     * reduce the height if the topmost levels appear to be empty.
266     * This may encounter races in which it possible (but rare) to
267     * reduce and "lose" a level just as it is about to contain an
268     * index (that will then never be encountered). This does no
269     * structural harm, and in practice appears to be a better option
270     * than allowing unrestrained growth of levels.
271     *
272     * The code for all this is more verbose than you'd like. Most
273     * operations entail locating an element (or position to insert an
274     * element). The code to do this can't be nicely factored out
275     * because subsequent uses require a snapshot of predecessor
276     * and/or successor and/or value fields which can't be returned
277     * all at once, at least not without creating yet another object
278     * to hold them -- creating such little objects is an especially
279     * bad idea for basic internal search operations because it adds
280     * to GC overhead. (This is one of the few times I've wished Java
281     * had macros.) Instead, some traversal code is interleaved within
282     * insertion and removal operations. The control logic to handle
283     * all the retry conditions is sometimes twisty. Most search is
284     * broken into 2 parts. findPredecessor() searches index nodes
285     * only, returning a base-level predecessor of the key. findNode()
286     * finishes out the base-level search. Even with this factoring,
287     * there is a fair amount of near-duplication of code to handle
288     * variants.
289     *
290 dl 1.92 * To produce random values without interference across threads,
291     * we use within-JDK thread local random support (via the
292     * "secondary seed", to avoid interference with user-level
293     * ThreadLocalRandom.)
294     *
295 dl 1.88 * A previous version of this class wrapped non-comparable keys
296     * with their comparators to emulate Comparables when using
297 dl 1.118 * comparators vs Comparables. However, JVMs now appear to better
298     * handle infusing comparator-vs-comparable choice into search
299     * loops. Static method cpr(comparator, x, y) is used for all
300     * comparisons, which works well as long as the comparator
301     * argument is set up outside of loops (thus sometimes passed as
302     * an argument to internal methods) to avoid field re-reads.
303 dl 1.88 *
304 dl 1.1 * For explanation of algorithms sharing at least a couple of
305     * features with this one, see Mikhail Fomitchev's thesis
306     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
307 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
308 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
309     *
310     * Given the use of tree-like index nodes, you might wonder why
311     * this doesn't use some kind of search tree instead, which would
312     * support somewhat faster search operations. The reason is that
313     * there are no known efficient lock-free insertion and deletion
314     * algorithms for search trees. The immutability of the "down"
315     * links of index nodes (as opposed to mutable "left" fields in
316     * true trees) makes this tractable using only CAS operations.
317     *
318     * Notation guide for local variables
319     * Node: b, n, f for predecessor, node, successor
320     * Index: q, r, d for index node, right, down.
321     * t for another index node
322     * Head: h
323     * Levels: j
324     * Keys: k, key
325     * Values: v, value
326     * Comparisons: c
327     */
328    
329     private static final long serialVersionUID = -8627078645895051609L;
330    
331     /**
332     * Special value used to identify base-level header
333 dl 1.9 */
334 dl 1.1 private static final Object BASE_HEADER = new Object();
335    
336     /**
337 dl 1.9 * The topmost head index of the skiplist.
338 dl 1.1 */
339     private transient volatile HeadIndex<K,V> head;
340    
341     /**
342 dl 1.118 * The comparator used to maintain order in this map, or null if
343     * using natural ordering. (Non-private to simplify access in
344 jsr166 1.120 * nested classes.)
345 dl 1.1 * @serial
346     */
347 dl 1.118 final Comparator<? super K> comparator;
348 dl 1.1
349     /** Lazily initialized key set */
350 dl 1.118 private transient KeySet<K> keySet;
351 dl 1.1 /** Lazily initialized entry set */
352 jsr166 1.71 private transient EntrySet<K,V> entrySet;
353 dl 1.1 /** Lazily initialized values collection */
354 jsr166 1.71 private transient Values<V> values;
355 dl 1.1 /** Lazily initialized descending key set */
356 dl 1.46 private transient ConcurrentNavigableMap<K,V> descendingMap;
357 dl 1.1
358     /**
359 jsr166 1.13 * Initializes or resets state. Needed by constructors, clone,
360 dl 1.1 * clear, readObject. and ConcurrentSkipListSet.clone.
361     * (Note that comparator must be separately initialized.)
362     */
363 dl 1.118 private void initialize() {
364 dl 1.1 keySet = null;
365 dl 1.9 entrySet = null;
366 dl 1.1 values = null;
367 dl 1.46 descendingMap = null;
368 dl 1.1 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
369     null, null, 1);
370     }
371    
372     /**
373     * compareAndSet head node
374     */
375     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
376 dl 1.59 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
377 dl 1.1 }
378    
379     /* ---------------- Nodes -------------- */
380    
381     /**
382     * Nodes hold keys and values, and are singly linked in sorted
383     * order, possibly with some intervening marker nodes. The list is
384     * headed by a dummy node accessible as head.node. The value field
385     * is declared only as Object because it takes special non-V
386     * values for marker and header nodes.
387     */
388     static final class Node<K,V> {
389     final K key;
390     volatile Object value;
391     volatile Node<K,V> next;
392    
393     /**
394     * Creates a new regular node.
395     */
396     Node(K key, Object value, Node<K,V> next) {
397     this.key = key;
398     this.value = value;
399     this.next = next;
400     }
401    
402     /**
403     * Creates a new marker node. A marker is distinguished by
404     * having its value field point to itself. Marker nodes also
405     * have null keys, a fact that is exploited in a few places,
406     * but this doesn't distinguish markers from the base-level
407     * header node (head.node), which also has a null key.
408     */
409     Node(Node<K,V> next) {
410     this.key = null;
411     this.value = this;
412     this.next = next;
413     }
414    
415     /**
416     * compareAndSet value field
417     */
418     boolean casValue(Object cmp, Object val) {
419 dl 1.59 return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val);
420 dl 1.1 }
421 jsr166 1.60
422 dl 1.1 /**
423     * compareAndSet next field
424     */
425     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
426 dl 1.59 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
427 dl 1.1 }
428    
429     /**
430 jsr166 1.10 * Returns true if this node is a marker. This method isn't
431     * actually called in any current code checking for markers
432 dl 1.1 * because callers will have already read value field and need
433     * to use that read (not another done here) and so directly
434     * test if value points to node.
435 jsr166 1.93 *
436 dl 1.1 * @return true if this node is a marker node
437     */
438     boolean isMarker() {
439     return value == this;
440     }
441    
442     /**
443 jsr166 1.10 * Returns true if this node is the header of base-level list.
444 dl 1.1 * @return true if this node is header node
445     */
446     boolean isBaseHeader() {
447     return value == BASE_HEADER;
448     }
449    
450     /**
451     * Tries to append a deletion marker to this node.
452     * @param f the assumed current successor of this node
453     * @return true if successful
454     */
455     boolean appendMarker(Node<K,V> f) {
456     return casNext(f, new Node<K,V>(f));
457     }
458    
459     /**
460     * Helps out a deletion by appending marker or unlinking from
461     * predecessor. This is called during traversals when value
462     * field seen to be null.
463     * @param b predecessor
464     * @param f successor
465     */
466     void helpDelete(Node<K,V> b, Node<K,V> f) {
467     /*
468     * Rechecking links and then doing only one of the
469     * help-out stages per call tends to minimize CAS
470     * interference among helping threads.
471     */
472     if (f == next && this == b.next) {
473     if (f == null || f.value != f) // not already marked
474 dl 1.118 casNext(f, new Node<K,V>(f));
475 dl 1.1 else
476     b.casNext(this, f.next);
477     }
478     }
479    
480     /**
481 jsr166 1.11 * Returns value if this node contains a valid key-value pair,
482 dl 1.9 * else null.
483 dl 1.1 * @return this node's value if it isn't a marker or header or
484 dl 1.100 * is deleted, else null.
485 dl 1.1 */
486     V getValidValue() {
487     Object v = value;
488     if (v == this || v == BASE_HEADER)
489     return null;
490 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
491     return vv;
492 dl 1.1 }
493    
494     /**
495 jsr166 1.10 * Creates and returns a new SimpleImmutableEntry holding current
496     * mapping if this node holds a valid value, else null.
497 dl 1.1 * @return new entry or null
498     */
499 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
500 dl 1.118 Object v = value;
501     if (v == null || v == this || v == BASE_HEADER)
502 dl 1.1 return null;
503 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
504     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
505 dl 1.1 }
506 dl 1.59
507 dl 1.65 // UNSAFE mechanics
508    
509     private static final sun.misc.Unsafe UNSAFE;
510     private static final long valueOffset;
511     private static final long nextOffset;
512 dl 1.59
513 dl 1.65 static {
514     try {
515     UNSAFE = sun.misc.Unsafe.getUnsafe();
516 jsr166 1.72 Class<?> k = Node.class;
517 dl 1.65 valueOffset = UNSAFE.objectFieldOffset
518     (k.getDeclaredField("value"));
519     nextOffset = UNSAFE.objectFieldOffset
520     (k.getDeclaredField("next"));
521     } catch (Exception e) {
522     throw new Error(e);
523     }
524     }
525 dl 1.1 }
526    
527     /* ---------------- Indexing -------------- */
528    
529     /**
530 dl 1.40 * Index nodes represent the levels of the skip list. Note that
531     * even though both Nodes and Indexes have forward-pointing
532     * fields, they have different types and are handled in different
533     * ways, that can't nicely be captured by placing field in a
534     * shared abstract class.
535 dl 1.1 */
536     static class Index<K,V> {
537     final Node<K,V> node;
538     final Index<K,V> down;
539     volatile Index<K,V> right;
540    
541     /**
542 jsr166 1.10 * Creates index node with given values.
543 dl 1.9 */
544 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
545     this.node = node;
546     this.down = down;
547     this.right = right;
548     }
549    
550     /**
551     * compareAndSet right field
552     */
553     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
554 dl 1.59 return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val);
555 dl 1.1 }
556    
557     /**
558     * Returns true if the node this indexes has been deleted.
559     * @return true if indexed node is known to be deleted
560     */
561     final boolean indexesDeletedNode() {
562     return node.value == null;
563     }
564    
565     /**
566     * Tries to CAS newSucc as successor. To minimize races with
567     * unlink that may lose this index node, if the node being
568     * indexed is known to be deleted, it doesn't try to link in.
569     * @param succ the expected current successor
570     * @param newSucc the new successor
571     * @return true if successful
572     */
573     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
574     Node<K,V> n = node;
575 dl 1.9 newSucc.right = succ;
576 dl 1.1 return n.value != null && casRight(succ, newSucc);
577     }
578    
579     /**
580     * Tries to CAS right field to skip over apparent successor
581     * succ. Fails (forcing a retraversal by caller) if this node
582     * is known to be deleted.
583     * @param succ the expected current successor
584     * @return true if successful
585     */
586     final boolean unlink(Index<K,V> succ) {
587 dl 1.118 return node.value != null && casRight(succ, succ.right);
588 dl 1.1 }
589 dl 1.59
590     // Unsafe mechanics
591 dl 1.65 private static final sun.misc.Unsafe UNSAFE;
592     private static final long rightOffset;
593     static {
594     try {
595     UNSAFE = sun.misc.Unsafe.getUnsafe();
596 jsr166 1.72 Class<?> k = Index.class;
597 dl 1.65 rightOffset = UNSAFE.objectFieldOffset
598     (k.getDeclaredField("right"));
599     } catch (Exception e) {
600     throw new Error(e);
601     }
602     }
603 dl 1.1 }
604    
605     /* ---------------- Head nodes -------------- */
606    
607     /**
608     * Nodes heading each level keep track of their level.
609     */
610     static final class HeadIndex<K,V> extends Index<K,V> {
611     final int level;
612     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
613     super(node, down, right);
614     this.level = level;
615     }
616 dl 1.9 }
617 dl 1.1
618     /* ---------------- Comparison utilities -------------- */
619    
620     /**
621 dl 1.118 * Compares using comparator or natural ordering if null.
622     * Called only by methods that have performed required type checks.
623 dl 1.1 */
624 dl 1.118 @SuppressWarnings({"unchecked", "rawtypes"})
625     static final int cpr(Comparator c, Object x, Object y) {
626     return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
627 dl 1.1 }
628    
629     /* ---------------- Traversal -------------- */
630    
631     /**
632 jsr166 1.10 * Returns a base-level node with key strictly less than given key,
633 dl 1.1 * or the base-level header if there is no such node. Also
634     * unlinks indexes to deleted nodes found along the way. Callers
635     * rely on this side-effect of clearing indices to deleted nodes.
636     * @param key the key
637 dl 1.9 * @return a predecessor of key
638 dl 1.1 */
639 dl 1.118 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
640 jsr166 1.41 if (key == null)
641 dl 1.40 throw new NullPointerException(); // don't postpone errors
642 dl 1.1 for (;;) {
643 dl 1.118 for (Index<K,V> q = head, r = q.right, d;;) {
644 dl 1.40 if (r != null) {
645     Node<K,V> n = r.node;
646     K k = n.key;
647     if (n.value == null) {
648     if (!q.unlink(r))
649     break; // restart
650     r = q.right; // reread r
651     continue;
652 dl 1.1 }
653 dl 1.118 if (cpr(cmp, key, k) > 0) {
654 dl 1.1 q = r;
655 dl 1.40 r = r.right;
656 dl 1.1 continue;
657     }
658     }
659 dl 1.118 if ((d = q.down) == null)
660 dl 1.1 return q.node;
661 dl 1.118 q = d;
662     r = d.right;
663 dl 1.1 }
664     }
665     }
666    
667     /**
668 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
669 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
670     * base-level looking for key starting at predecessor returned
671     * from findPredecessor, processing base-level deletions as
672     * encountered. Some callers rely on this side-effect of clearing
673     * deleted nodes.
674     *
675     * Restarts occur, at traversal step centered on node n, if:
676     *
677     * (1) After reading n's next field, n is no longer assumed
678     * predecessor b's current successor, which means that
679     * we don't have a consistent 3-node snapshot and so cannot
680     * unlink any subsequent deleted nodes encountered.
681     *
682     * (2) n's value field is null, indicating n is deleted, in
683     * which case we help out an ongoing structural deletion
684     * before retrying. Even though there are cases where such
685     * unlinking doesn't require restart, they aren't sorted out
686     * here because doing so would not usually outweigh cost of
687     * restarting.
688     *
689 dl 1.9 * (3) n is a marker or n's predecessor's value field is null,
690 dl 1.1 * indicating (among other possibilities) that
691     * findPredecessor returned a deleted node. We can't unlink
692     * the node because we don't know its predecessor, so rely
693     * on another call to findPredecessor to notice and return
694     * some earlier predecessor, which it will do. This check is
695     * only strictly needed at beginning of loop, (and the
696     * b.value check isn't strictly needed at all) but is done
697     * each iteration to help avoid contention with other
698     * threads by callers that will fail to be able to change
699     * links, and so will retry anyway.
700     *
701     * The traversal loops in doPut, doRemove, and findNear all
702     * include the same three kinds of checks. And specialized
703 dl 1.31 * versions appear in findFirst, and findLast and their
704     * variants. They can't easily share code because each uses the
705 dl 1.1 * reads of fields held in locals occurring in the orders they
706     * were performed.
707 dl 1.9 *
708 dl 1.1 * @param key the key
709 jsr166 1.22 * @return node holding key, or null if no such
710 dl 1.1 */
711 dl 1.118 private Node<K,V> findNode(Object key) {
712 dl 1.88 if (key == null)
713     throw new NullPointerException(); // don't postpone errors
714 dl 1.118 Comparator<? super K> cmp = comparator;
715     outer: for (;;) {
716     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
717     Object v; int c;
718 dl 1.9 if (n == null)
719 dl 1.118 break outer;
720 dl 1.1 Node<K,V> f = n.next;
721     if (n != b.next) // inconsistent read
722     break;
723 dl 1.118 if ((v = n.value) == null) { // n is deleted
724 dl 1.1 n.helpDelete(b, f);
725     break;
726     }
727 dl 1.118 if (b.value == null || v == n) // b is deleted
728 dl 1.1 break;
729 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0)
730 dl 1.40 return n;
731 dl 1.1 if (c < 0)
732 dl 1.118 break outer;
733 dl 1.1 b = n;
734     n = f;
735     }
736     }
737 dl 1.118 return null;
738 dl 1.1 }
739    
740 dl 1.9 /**
741 dl 1.88 * Gets value for key. Almost the same as findNode, but returns
742     * the found value (to avoid retries during re-reads)
743     *
744 dl 1.118 * @param key the key
745 dl 1.1 * @return the value, or null if absent
746     */
747 dl 1.118 private V doGet(Object key) {
748     if (key == null)
749 dl 1.88 throw new NullPointerException();
750 dl 1.118 Comparator<? super K> cmp = comparator;
751     outer: for (;;) {
752     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
753     Object v; int c;
754 dl 1.88 if (n == null)
755 dl 1.118 break outer;
756 dl 1.88 Node<K,V> f = n.next;
757     if (n != b.next) // inconsistent read
758     break;
759 dl 1.118 if ((v = n.value) == null) { // n is deleted
760 dl 1.88 n.helpDelete(b, f);
761     break;
762     }
763 dl 1.118 if (b.value == null || v == n) // b is deleted
764 dl 1.88 break;
765 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0) {
766     @SuppressWarnings("unchecked") V vv = (V)v;
767 dl 1.100 return vv;
768 dl 1.118 }
769 dl 1.88 if (c < 0)
770 dl 1.118 break outer;
771 dl 1.88 b = n;
772     n = f;
773     }
774 dl 1.1 }
775 dl 1.118 return null;
776 dl 1.1 }
777    
778     /* ---------------- Insertion -------------- */
779    
780     /**
781     * Main insertion method. Adds element if not present, or
782     * replaces value if present and onlyIfAbsent is false.
783 dl 1.118 * @param key the key
784 jsr166 1.103 * @param value the value that must be associated with key
785 dl 1.1 * @param onlyIfAbsent if should not insert if already present
786     * @return the old value, or null if newly inserted
787     */
788 dl 1.118 private V doPut(K key, V value, boolean onlyIfAbsent) {
789     Node<K,V> z; // added node
790     if (key == null)
791 dl 1.88 throw new NullPointerException();
792 dl 1.118 Comparator<? super K> cmp = comparator;
793     outer: for (;;) {
794     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
795 dl 1.1 if (n != null) {
796 dl 1.118 Object v; int c;
797 dl 1.1 Node<K,V> f = n.next;
798     if (n != b.next) // inconsistent read
799 jsr166 1.57 break;
800 dl 1.118 if ((v = n.value) == null) { // n is deleted
801 dl 1.1 n.helpDelete(b, f);
802     break;
803     }
804 dl 1.118 if (b.value == null || v == n) // b is deleted
805 dl 1.1 break;
806 dl 1.118 if ((c = cpr(cmp, key, n.key)) > 0) {
807 dl 1.1 b = n;
808     n = f;
809     continue;
810     }
811     if (c == 0) {
812 dl 1.118 if (onlyIfAbsent || n.casValue(v, value)) {
813     @SuppressWarnings("unchecked") V vv = (V)v;
814 dl 1.100 return vv;
815 dl 1.118 }
816     break; // restart if lost race to replace value
817 dl 1.1 }
818     // else c < 0; fall through
819     }
820 dl 1.9
821 dl 1.118 z = new Node<K,V>(key, value, n);
822 dl 1.9 if (!b.casNext(n, z))
823 dl 1.1 break; // restart if lost race to append to b
824 dl 1.118 break outer;
825 dl 1.1 }
826     }
827    
828 dl 1.92 int rnd; // generate a random level
829     Thread thread = Thread.currentThread();
830     if ((rnd = UNSAFE.getInt(thread, SECONDARY)) == 0) // initialize
831     rnd = ThreadLocalRandom.current().nextInt();
832     rnd ^= rnd << 13; // xorshift
833     rnd ^= rnd >>> 17;
834     rnd ^= rnd << 5;
835     UNSAFE.putInt(thread, SECONDARY, rnd);
836     if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
837     int level = 1, max;
838     while (((rnd >>>= 1) & 1) != 0)
839     ++level;
840 dl 1.1 Index<K,V> idx = null;
841 dl 1.92 HeadIndex<K,V> h = head;
842     if (level <= (max = h.level)) {
843     for (int i = 1; i <= level; ++i)
844     idx = new Index<K,V>(z, idx, null);
845 dl 1.1 }
846 dl 1.92 else { // try to grow by one level
847     level = max + 1; // hold in array and later pick the one to use
848 dl 1.118 @SuppressWarnings("unchecked")Index<K,V>[] idxs =
849     (Index<K,V>[])new Index<?,?>[level+1];
850 dl 1.92 for (int i = 1; i <= level; ++i)
851     idxs[i] = idx = new Index<K,V>(z, idx, null);
852     for (;;) {
853     h = head;
854     int oldLevel = h.level;
855     if (level <= oldLevel) // lost race to add level
856     break;
857     HeadIndex<K,V> newh = h;
858     Node<K,V> oldbase = h.node;
859     for (int j = oldLevel+1; j <= level; ++j)
860     newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
861     if (casHead(h, newh)) {
862     h = newh;
863     idx = idxs[level = oldLevel];
864     break;
865 dl 1.1 }
866     }
867 dl 1.92 }
868 dl 1.118 // find insertion points and splice in
869     splice: for (int insertionLevel = level;;) {
870 dl 1.92 int j = h.level;
871 dl 1.118 for (Index<K,V> q = h, r = q.right, t = idx;;) {
872 dl 1.92 if (q == null || t == null)
873 dl 1.118 break splice;
874 dl 1.92 if (r != null) {
875     Node<K,V> n = r.node;
876     // compare before deletion check avoids needing recheck
877 dl 1.118 int c = cpr(cmp, key, n.key);
878 dl 1.92 if (n.value == null) {
879     if (!q.unlink(r))
880     break;
881     r = q.right;
882     continue;
883     }
884     if (c > 0) {
885     q = r;
886     r = r.right;
887     continue;
888     }
889 dl 1.1 }
890 dl 1.92
891     if (j == insertionLevel) {
892     if (!q.link(r, t))
893     break; // restart
894     if (t.node.value == null) {
895 dl 1.118 findNode(key);
896     break splice;
897 dl 1.88 }
898 dl 1.92 if (--insertionLevel == 0)
899 dl 1.118 break splice;
900 dl 1.1 }
901 dl 1.92
902     if (--j >= insertionLevel && j < level)
903     t = t.down;
904     q = q.down;
905     r = q.right;
906 dl 1.1 }
907     }
908     }
909 dl 1.118 return null;
910 dl 1.1 }
911    
912     /* ---------------- Deletion -------------- */
913    
914     /**
915     * Main deletion method. Locates node, nulls value, appends a
916     * deletion marker, unlinks predecessor, removes associated index
917     * nodes, and possibly reduces head index level.
918     *
919     * Index nodes are cleared out simply by calling findPredecessor.
920     * which unlinks indexes to deleted nodes found along path to key,
921     * which will include the indexes to this node. This is done
922     * unconditionally. We can't check beforehand whether there are
923     * index nodes because it might be the case that some or all
924     * indexes hadn't been inserted yet for this node during initial
925     * search for it, and we'd like to ensure lack of garbage
926 dl 1.9 * retention, so must call to be sure.
927 dl 1.1 *
928 dl 1.118 * @param key the key
929 dl 1.1 * @param value if non-null, the value that must be
930     * associated with key
931     * @return the node, or null if not found
932     */
933 dl 1.118 final V doRemove(Object key, Object value) {
934     if (key == null)
935 dl 1.88 throw new NullPointerException();
936 dl 1.118 Comparator<? super K> cmp = comparator;
937     outer: for (;;) {
938     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
939     Object v; int c;
940 dl 1.9 if (n == null)
941 dl 1.118 break outer;
942 dl 1.1 Node<K,V> f = n.next;
943     if (n != b.next) // inconsistent read
944     break;
945 dl 1.118 if ((v = n.value) == null) { // n is deleted
946 dl 1.1 n.helpDelete(b, f);
947     break;
948     }
949 dl 1.118 if (b.value == null || v == n) // b is deleted
950 dl 1.1 break;
951 dl 1.118 if ((c = cpr(cmp, key, n.key)) < 0)
952     break outer;
953 dl 1.1 if (c > 0) {
954     b = n;
955     n = f;
956     continue;
957     }
958 dl 1.9 if (value != null && !value.equals(v))
959 dl 1.118 break outer;
960 dl 1.9 if (!n.casValue(v, null))
961 dl 1.1 break;
962 dl 1.9 if (!n.appendMarker(f) || !b.casNext(n, f))
963 dl 1.118 findNode(key); // retry via findNode
964 dl 1.1 else {
965 dl 1.118 findPredecessor(key, cmp); // clean index
966 dl 1.9 if (head.right == null)
967 dl 1.1 tryReduceLevel();
968     }
969 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
970     return vv;
971 dl 1.1 }
972     }
973 dl 1.118 return null;
974 dl 1.1 }
975    
976     /**
977     * Possibly reduce head level if it has no nodes. This method can
978     * (rarely) make mistakes, in which case levels can disappear even
979     * though they are about to contain index nodes. This impacts
980     * performance, not correctness. To minimize mistakes as well as
981     * to reduce hysteresis, the level is reduced by one only if the
982     * topmost three levels look empty. Also, if the removed level
983     * looks non-empty after CAS, we try to change it back quick
984     * before anyone notices our mistake! (This trick works pretty
985     * well because this method will practically never make mistakes
986     * unless current thread stalls immediately before first CAS, in
987     * which case it is very unlikely to stall again immediately
988     * afterwards, so will recover.)
989     *
990     * We put up with all this rather than just let levels grow
991     * because otherwise, even a small map that has undergone a large
992     * number of insertions and removals will have a lot of levels,
993     * slowing down access more than would an occasional unwanted
994     * reduction.
995     */
996     private void tryReduceLevel() {
997     HeadIndex<K,V> h = head;
998     HeadIndex<K,V> d;
999     HeadIndex<K,V> e;
1000     if (h.level > 3 &&
1001 dl 1.9 (d = (HeadIndex<K,V>)h.down) != null &&
1002     (e = (HeadIndex<K,V>)d.down) != null &&
1003     e.right == null &&
1004     d.right == null &&
1005 dl 1.1 h.right == null &&
1006     casHead(h, d) && // try to set
1007     h.right != null) // recheck
1008     casHead(d, h); // try to backout
1009     }
1010    
1011     /* ---------------- Finding and removing first element -------------- */
1012    
1013     /**
1014 jsr166 1.22 * Specialized variant of findNode to get first valid node.
1015 dl 1.1 * @return first node or null if empty
1016     */
1017 dl 1.118 final Node<K,V> findFirst() {
1018     for (Node<K,V> b, n;;) {
1019     if ((n = (b = head.node).next) == null)
1020 dl 1.1 return null;
1021 dl 1.9 if (n.value != null)
1022 dl 1.1 return n;
1023     n.helpDelete(b, n.next);
1024     }
1025     }
1026    
1027     /**
1028 dl 1.25 * Removes first entry; returns its snapshot.
1029 jsr166 1.28 * @return null if empty, else snapshot of first entry
1030 dl 1.1 */
1031 dl 1.118 private Map.Entry<K,V> doRemoveFirstEntry() {
1032     for (Node<K,V> b, n;;) {
1033     if ((n = (b = head.node).next) == null)
1034 dl 1.1 return null;
1035     Node<K,V> f = n.next;
1036     if (n != b.next)
1037     continue;
1038     Object v = n.value;
1039     if (v == null) {
1040     n.helpDelete(b, f);
1041     continue;
1042     }
1043     if (!n.casValue(v, null))
1044     continue;
1045     if (!n.appendMarker(f) || !b.casNext(n, f))
1046     findFirst(); // retry
1047     clearIndexToFirst();
1048 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
1049     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, vv);
1050 jsr166 1.55 }
1051 dl 1.1 }
1052    
1053     /**
1054 jsr166 1.10 * Clears out index nodes associated with deleted first entry.
1055 dl 1.1 */
1056     private void clearIndexToFirst() {
1057     for (;;) {
1058 dl 1.118 for (Index<K,V> q = head;;) {
1059 dl 1.1 Index<K,V> r = q.right;
1060     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1061 dl 1.9 break;
1062 dl 1.1 if ((q = q.down) == null) {
1063 dl 1.9 if (head.right == null)
1064 dl 1.1 tryReduceLevel();
1065     return;
1066     }
1067     }
1068     }
1069     }
1070    
1071 dl 1.88 /**
1072     * Removes last entry; returns its snapshot.
1073     * Specialized variant of doRemove.
1074     * @return null if empty, else snapshot of last entry
1075     */
1076 dl 1.118 private Map.Entry<K,V> doRemoveLastEntry() {
1077 dl 1.88 for (;;) {
1078     Node<K,V> b = findPredecessorOfLast();
1079     Node<K,V> n = b.next;
1080     if (n == null) {
1081     if (b.isBaseHeader()) // empty
1082     return null;
1083     else
1084     continue; // all b's successors are deleted; retry
1085     }
1086     for (;;) {
1087     Node<K,V> f = n.next;
1088     if (n != b.next) // inconsistent read
1089     break;
1090     Object v = n.value;
1091     if (v == null) { // n is deleted
1092     n.helpDelete(b, f);
1093     break;
1094     }
1095 dl 1.118 if (b.value == null || v == n) // b is deleted
1096 dl 1.88 break;
1097     if (f != null) {
1098     b = n;
1099     n = f;
1100     continue;
1101     }
1102     if (!n.casValue(v, null))
1103     break;
1104     K key = n.key;
1105 dl 1.118 if (!n.appendMarker(f) || !b.casNext(n, f))
1106     findNode(key); // retry via findNode
1107     else { // clean index
1108     findPredecessor(key, comparator);
1109 dl 1.88 if (head.right == null)
1110     tryReduceLevel();
1111     }
1112 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
1113     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
1114 dl 1.88 }
1115     }
1116     }
1117 dl 1.1
1118     /* ---------------- Finding and removing last element -------------- */
1119    
1120     /**
1121 jsr166 1.10 * Specialized version of find to get last valid node.
1122 dl 1.1 * @return last node or null if empty
1123     */
1124 dl 1.118 final Node<K,V> findLast() {
1125 dl 1.1 /*
1126     * findPredecessor can't be used to traverse index level
1127     * because this doesn't use comparisons. So traversals of
1128     * both levels are folded together.
1129     */
1130     Index<K,V> q = head;
1131     for (;;) {
1132     Index<K,V> d, r;
1133     if ((r = q.right) != null) {
1134     if (r.indexesDeletedNode()) {
1135     q.unlink(r);
1136     q = head; // restart
1137 dl 1.9 }
1138 dl 1.1 else
1139     q = r;
1140     } else if ((d = q.down) != null) {
1141     q = d;
1142     } else {
1143 dl 1.118 for (Node<K,V> b = q.node, n = b.next;;) {
1144 dl 1.9 if (n == null)
1145 jsr166 1.61 return b.isBaseHeader() ? null : b;
1146 dl 1.1 Node<K,V> f = n.next; // inconsistent read
1147     if (n != b.next)
1148     break;
1149     Object v = n.value;
1150     if (v == null) { // n is deleted
1151     n.helpDelete(b, f);
1152     break;
1153     }
1154 dl 1.118 if (b.value == null || v == n) // b is deleted
1155 dl 1.1 break;
1156     b = n;
1157     n = f;
1158     }
1159     q = head; // restart
1160     }
1161     }
1162     }
1163    
1164 dl 1.31 /**
1165 jsr166 1.32 * Specialized variant of findPredecessor to get predecessor of last
1166     * valid node. Needed when removing the last entry. It is possible
1167     * that all successors of returned node will have been deleted upon
1168 dl 1.31 * return, in which case this method can be retried.
1169     * @return likely predecessor of last node
1170     */
1171     private Node<K,V> findPredecessorOfLast() {
1172     for (;;) {
1173 dl 1.118 for (Index<K,V> q = head;;) {
1174 dl 1.31 Index<K,V> d, r;
1175     if ((r = q.right) != null) {
1176     if (r.indexesDeletedNode()) {
1177     q.unlink(r);
1178     break; // must restart
1179     }
1180     // proceed as far across as possible without overshooting
1181     if (r.node.next != null) {
1182     q = r;
1183     continue;
1184     }
1185     }
1186     if ((d = q.down) != null)
1187     q = d;
1188     else
1189     return q.node;
1190     }
1191     }
1192     }
1193 dl 1.1
1194 dl 1.88 /* ---------------- Relational operations -------------- */
1195    
1196     // Control values OR'ed as arguments to findNear
1197    
1198     private static final int EQ = 1;
1199     private static final int LT = 2;
1200     private static final int GT = 0; // Actually checked as !LT
1201    
1202 dl 1.1 /**
1203 dl 1.88 * Utility for ceiling, floor, lower, higher methods.
1204 dl 1.118 * @param key the key
1205 dl 1.88 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1206     * @return nearest node fitting relation, or null if no such
1207 dl 1.1 */
1208 dl 1.118 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1209     if (key == null)
1210     throw new NullPointerException();
1211 dl 1.88 for (;;) {
1212 dl 1.118 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
1213     Object v;
1214 dl 1.88 if (n == null)
1215     return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1216     Node<K,V> f = n.next;
1217     if (n != b.next) // inconsistent read
1218     break;
1219 dl 1.118 if ((v = n.value) == null) { // n is deleted
1220 dl 1.88 n.helpDelete(b, f);
1221     break;
1222     }
1223 dl 1.118 if (b.value == null || v == n) // b is deleted
1224 dl 1.88 break;
1225 dl 1.118 int c = cpr(cmp, key, n.key);
1226 dl 1.88 if ((c == 0 && (rel & EQ) != 0) ||
1227     (c < 0 && (rel & LT) == 0))
1228     return n;
1229     if ( c <= 0 && (rel & LT) != 0)
1230     return b.isBaseHeader() ? null : b;
1231     b = n;
1232     n = f;
1233     }
1234     }
1235     }
1236    
1237 dl 1.1 /**
1238 jsr166 1.10 * Returns SimpleImmutableEntry for results of findNear.
1239 dl 1.40 * @param key the key
1240 dl 1.1 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1241     * @return Entry fitting relation, or null if no such
1242     */
1243 dl 1.118 final AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1244     Comparator<? super K> cmp = comparator;
1245 dl 1.1 for (;;) {
1246 dl 1.118 Node<K,V> n = findNear(key, rel, cmp);
1247 dl 1.1 if (n == null)
1248     return null;
1249 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1250 dl 1.1 if (e != null)
1251     return e;
1252     }
1253     }
1254    
1255     /* ---------------- Constructors -------------- */
1256    
1257     /**
1258 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1259     * {@linkplain Comparable natural ordering} of the keys.
1260 dl 1.1 */
1261     public ConcurrentSkipListMap() {
1262     this.comparator = null;
1263     initialize();
1264     }
1265    
1266     /**
1267 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1268     * comparator.
1269 dl 1.1 *
1270 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1271 jsr166 1.82 * If {@code null}, the {@linkplain Comparable natural
1272 jsr166 1.22 * ordering} of the keys will be used.
1273 dl 1.1 */
1274 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1275     this.comparator = comparator;
1276 dl 1.1 initialize();
1277     }
1278    
1279     /**
1280     * Constructs a new map containing the same mappings as the given map,
1281 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1282     * the keys.
1283 dl 1.1 *
1284 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1285 jsr166 1.82 * @throws ClassCastException if the keys in {@code m} are not
1286 jsr166 1.22 * {@link Comparable}, or are not mutually comparable
1287     * @throws NullPointerException if the specified map or any of its keys
1288     * or values are null
1289 dl 1.1 */
1290     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1291     this.comparator = null;
1292     initialize();
1293     putAll(m);
1294     }
1295    
1296     /**
1297 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1298     * same ordering as the specified sorted map.
1299     *
1300 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1301 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1302     * @throws NullPointerException if the specified sorted map or any of
1303     * its keys or values are null
1304 dl 1.1 */
1305     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1306     this.comparator = m.comparator();
1307     initialize();
1308     buildFromSorted(m);
1309     }
1310    
1311     /**
1312 jsr166 1.82 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1313 jsr166 1.22 * instance. (The keys and values themselves are not cloned.)
1314 dl 1.1 *
1315 jsr166 1.22 * @return a shallow copy of this map
1316 dl 1.1 */
1317 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1318 dl 1.1 try {
1319 jsr166 1.76 @SuppressWarnings("unchecked")
1320     ConcurrentSkipListMap<K,V> clone =
1321     (ConcurrentSkipListMap<K,V>) super.clone();
1322     clone.initialize();
1323     clone.buildFromSorted(this);
1324     return clone;
1325 dl 1.1 } catch (CloneNotSupportedException e) {
1326     throw new InternalError();
1327     }
1328     }
1329    
1330     /**
1331     * Streamlined bulk insertion to initialize from elements of
1332     * given sorted map. Call only from constructor or clone
1333     * method.
1334     */
1335     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1336     if (map == null)
1337     throw new NullPointerException();
1338    
1339     HeadIndex<K,V> h = head;
1340     Node<K,V> basepred = h.node;
1341    
1342     // Track the current rightmost node at each level. Uses an
1343     // ArrayList to avoid committing to initial or maximum level.
1344     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1345    
1346     // initialize
1347 dl 1.9 for (int i = 0; i <= h.level; ++i)
1348 dl 1.1 preds.add(null);
1349     Index<K,V> q = h;
1350     for (int i = h.level; i > 0; --i) {
1351     preds.set(i, q);
1352     q = q.down;
1353     }
1354    
1355 dl 1.9 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1356 dl 1.1 map.entrySet().iterator();
1357     while (it.hasNext()) {
1358     Map.Entry<? extends K, ? extends V> e = it.next();
1359 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1360     int j = 0;
1361     if ((rnd & 0x80000001) == 0) {
1362     do {
1363     ++j;
1364     } while (((rnd >>>= 1) & 1) != 0);
1365     if (j > h.level) j = h.level + 1;
1366     }
1367 dl 1.1 K k = e.getKey();
1368     V v = e.getValue();
1369     if (k == null || v == null)
1370     throw new NullPointerException();
1371     Node<K,V> z = new Node<K,V>(k, v, null);
1372     basepred.next = z;
1373     basepred = z;
1374     if (j > 0) {
1375     Index<K,V> idx = null;
1376     for (int i = 1; i <= j; ++i) {
1377     idx = new Index<K,V>(z, idx, null);
1378 dl 1.9 if (i > h.level)
1379 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1380    
1381     if (i < preds.size()) {
1382     preds.get(i).right = idx;
1383     preds.set(i, idx);
1384     } else
1385     preds.add(idx);
1386     }
1387     }
1388     }
1389     head = h;
1390     }
1391    
1392     /* ---------------- Serialization -------------- */
1393    
1394     /**
1395 jsr166 1.80 * Saves this map to a stream (that is, serializes it).
1396 dl 1.1 *
1397     * @serialData The key (Object) and value (Object) for each
1398 jsr166 1.10 * key-value mapping represented by the map, followed by
1399 jsr166 1.82 * {@code null}. The key-value mappings are emitted in key-order
1400 dl 1.1 * (as determined by the Comparator, or by the keys' natural
1401     * ordering if no Comparator).
1402     */
1403     private void writeObject(java.io.ObjectOutputStream s)
1404     throws java.io.IOException {
1405     // Write out the Comparator and any hidden stuff
1406     s.defaultWriteObject();
1407    
1408     // Write out keys and values (alternating)
1409     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1410     V v = n.getValidValue();
1411     if (v != null) {
1412     s.writeObject(n.key);
1413     s.writeObject(v);
1414     }
1415     }
1416     s.writeObject(null);
1417     }
1418    
1419     /**
1420 jsr166 1.80 * Reconstitutes this map from a stream (that is, deserializes it).
1421 dl 1.1 */
1422 dl 1.100 @SuppressWarnings("unchecked")
1423 dl 1.1 private void readObject(final java.io.ObjectInputStream s)
1424     throws java.io.IOException, ClassNotFoundException {
1425     // Read in the Comparator and any hidden stuff
1426     s.defaultReadObject();
1427     // Reset transients
1428     initialize();
1429    
1430 dl 1.9 /*
1431 dl 1.1 * This is nearly identical to buildFromSorted, but is
1432     * distinct because readObject calls can't be nicely adapted
1433     * as the kind of iterator needed by buildFromSorted. (They
1434     * can be, but doing so requires type cheats and/or creation
1435     * of adaptor classes.) It is simpler to just adapt the code.
1436     */
1437    
1438     HeadIndex<K,V> h = head;
1439     Node<K,V> basepred = h.node;
1440     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1441 dl 1.9 for (int i = 0; i <= h.level; ++i)
1442 dl 1.1 preds.add(null);
1443     Index<K,V> q = h;
1444     for (int i = h.level; i > 0; --i) {
1445     preds.set(i, q);
1446     q = q.down;
1447     }
1448    
1449     for (;;) {
1450     Object k = s.readObject();
1451     if (k == null)
1452     break;
1453     Object v = s.readObject();
1454 dl 1.9 if (v == null)
1455 dl 1.1 throw new NullPointerException();
1456     K key = (K) k;
1457     V val = (V) v;
1458 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1459     int j = 0;
1460     if ((rnd & 0x80000001) == 0) {
1461     do {
1462     ++j;
1463     } while (((rnd >>>= 1) & 1) != 0);
1464     if (j > h.level) j = h.level + 1;
1465     }
1466 dl 1.1 Node<K,V> z = new Node<K,V>(key, val, null);
1467     basepred.next = z;
1468     basepred = z;
1469     if (j > 0) {
1470     Index<K,V> idx = null;
1471     for (int i = 1; i <= j; ++i) {
1472     idx = new Index<K,V>(z, idx, null);
1473 dl 1.9 if (i > h.level)
1474 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1475    
1476     if (i < preds.size()) {
1477     preds.get(i).right = idx;
1478     preds.set(i, idx);
1479     } else
1480     preds.add(idx);
1481     }
1482     }
1483     }
1484     head = h;
1485     }
1486    
1487     /* ------ Map API methods ------ */
1488    
1489     /**
1490 jsr166 1.82 * Returns {@code true} if this map contains a mapping for the specified
1491 dl 1.1 * key.
1492 jsr166 1.22 *
1493     * @param key key whose presence in this map is to be tested
1494 jsr166 1.82 * @return {@code true} if this map contains a mapping for the specified key
1495 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1496     * with the keys currently in the map
1497     * @throws NullPointerException if the specified key is null
1498 dl 1.1 */
1499     public boolean containsKey(Object key) {
1500 dl 1.118 return doGet(key) != null;
1501 dl 1.1 }
1502    
1503     /**
1504 jsr166 1.42 * Returns the value to which the specified key is mapped,
1505     * or {@code null} if this map contains no mapping for the key.
1506     *
1507     * <p>More formally, if this map contains a mapping from a key
1508     * {@code k} to a value {@code v} such that {@code key} compares
1509     * equal to {@code k} according to the map's ordering, then this
1510     * method returns {@code v}; otherwise it returns {@code null}.
1511     * (There can be at most one such mapping.)
1512 dl 1.1 *
1513 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1514     * with the keys currently in the map
1515     * @throws NullPointerException if the specified key is null
1516 dl 1.1 */
1517     public V get(Object key) {
1518 dl 1.118 return doGet(key);
1519 dl 1.1 }
1520    
1521     /**
1522 dl 1.109 * Returns the value to which the specified key is mapped,
1523     * or the given defaultValue if this map contains no mapping for the key.
1524     *
1525     * @param key the key
1526     * @param defaultValue the value to return if this map contains
1527     * no mapping for the given key
1528     * @return the mapping for the key, if present; else the defaultValue
1529     * @throws NullPointerException if the specified key is null
1530     * @since 1.8
1531     */
1532     public V getOrDefault(Object key, V defaultValue) {
1533     V v;
1534 dl 1.118 return (v = doGet(key)) == null ? defaultValue : v;
1535 dl 1.109 }
1536    
1537     /**
1538 dl 1.1 * Associates the specified value with the specified key in this map.
1539 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1540 dl 1.1 * value is replaced.
1541     *
1542 jsr166 1.22 * @param key key with which the specified value is to be associated
1543     * @param value value to be associated with the specified key
1544     * @return the previous value associated with the specified key, or
1545 jsr166 1.82 * {@code null} if there was no mapping for the key
1546 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1547     * with the keys currently in the map
1548     * @throws NullPointerException if the specified key or value is null
1549 dl 1.1 */
1550     public V put(K key, V value) {
1551 dl 1.9 if (value == null)
1552 dl 1.1 throw new NullPointerException();
1553 dl 1.118 return doPut(key, value, false);
1554 dl 1.1 }
1555    
1556     /**
1557 jsr166 1.36 * Removes the mapping for the specified key from this map if present.
1558 dl 1.1 *
1559     * @param key key for which mapping should be removed
1560 jsr166 1.22 * @return the previous value associated with the specified key, or
1561 jsr166 1.82 * {@code null} if there was no mapping for the key
1562 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1563     * with the keys currently in the map
1564     * @throws NullPointerException if the specified key is null
1565 dl 1.1 */
1566     public V remove(Object key) {
1567 dl 1.118 return doRemove(key, null);
1568 dl 1.1 }
1569    
1570     /**
1571 jsr166 1.82 * Returns {@code true} if this map maps one or more keys to the
1572 dl 1.1 * specified value. This operation requires time linear in the
1573 dl 1.69 * map size. Additionally, it is possible for the map to change
1574     * during execution of this method, in which case the returned
1575     * result may be inaccurate.
1576 dl 1.1 *
1577 jsr166 1.22 * @param value value whose presence in this map is to be tested
1578 jsr166 1.82 * @return {@code true} if a mapping to {@code value} exists;
1579     * {@code false} otherwise
1580 jsr166 1.22 * @throws NullPointerException if the specified value is null
1581 dl 1.9 */
1582 dl 1.1 public boolean containsValue(Object value) {
1583 dl 1.9 if (value == null)
1584 dl 1.1 throw new NullPointerException();
1585     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1586     V v = n.getValidValue();
1587     if (v != null && value.equals(v))
1588     return true;
1589     }
1590     return false;
1591     }
1592    
1593     /**
1594 dl 1.6 * Returns the number of key-value mappings in this map. If this map
1595 jsr166 1.82 * contains more than {@code Integer.MAX_VALUE} elements, it
1596     * returns {@code Integer.MAX_VALUE}.
1597 dl 1.1 *
1598     * <p>Beware that, unlike in most collections, this method is
1599     * <em>NOT</em> a constant-time operation. Because of the
1600     * asynchronous nature of these maps, determining the current
1601     * number of elements requires traversing them all to count them.
1602     * Additionally, it is possible for the size to change during
1603     * execution of this method, in which case the returned result
1604     * will be inaccurate. Thus, this method is typically not very
1605     * useful in concurrent applications.
1606     *
1607 jsr166 1.22 * @return the number of elements in this map
1608 dl 1.1 */
1609     public int size() {
1610     long count = 0;
1611     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1612     if (n.getValidValue() != null)
1613     ++count;
1614     }
1615 jsr166 1.61 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1616 dl 1.1 }
1617    
1618     /**
1619 jsr166 1.82 * Returns {@code true} if this map contains no key-value mappings.
1620     * @return {@code true} if this map contains no key-value mappings
1621 dl 1.1 */
1622     public boolean isEmpty() {
1623     return findFirst() == null;
1624     }
1625    
1626     /**
1627 jsr166 1.22 * Removes all of the mappings from this map.
1628 dl 1.1 */
1629     public void clear() {
1630     initialize();
1631     }
1632    
1633 dl 1.109 /**
1634     * If the specified key is not already associated with a value,
1635     * attempts to compute its value using the given mapping function
1636     * and enters it into this map unless {@code null}. The function
1637     * is <em>NOT</em> guaranteed to be applied once atomically only
1638     * if the value is not present.
1639     *
1640     * @param key key with which the specified value is to be associated
1641     * @param mappingFunction the function to compute a value
1642     * @return the current (existing or computed) value associated with
1643     * the specified key, or null if the computed value is null
1644     * @throws NullPointerException if the specified key is null
1645     * or the mappingFunction is null
1646     * @since 1.8
1647     */
1648 jsr166 1.110 public V computeIfAbsent(K key,
1649 dl 1.109 Function<? super K, ? extends V> mappingFunction) {
1650 jsr166 1.110 if (key == null || mappingFunction == null)
1651     throw new NullPointerException();
1652     V v, p, r;
1653 dl 1.118 if ((v = doGet(key)) == null &&
1654     (r = mappingFunction.apply(key)) != null)
1655     v = (p = doPut(key, r, true)) == null ? r : p;
1656 dl 1.109 return v;
1657     }
1658    
1659     /**
1660     * If the value for the specified key is present, attempts to
1661     * compute a new mapping given the key and its current mapped
1662     * value. The function is <em>NOT</em> guaranteed to be applied
1663     * once atomically.
1664     *
1665 dl 1.111 * @param key key with which a value may be associated
1666 dl 1.109 * @param remappingFunction the function to compute a value
1667     * @return the new value associated with the specified key, or null if none
1668     * @throws NullPointerException if the specified key is null
1669     * or the remappingFunction is null
1670     * @since 1.8
1671     */
1672 jsr166 1.110 public V computeIfPresent(K key,
1673 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1674 jsr166 1.110 if (key == null || remappingFunction == null)
1675     throw new NullPointerException();
1676 dl 1.118 Node<K,V> n; Object v;
1677     while ((n = findNode(key)) != null) {
1678     if ((v = n.value) != null) {
1679     @SuppressWarnings("unchecked") V vv = (V) v;
1680     V r = remappingFunction.apply(key, vv);
1681     if (r != null) {
1682     if (n.casValue(vv, r))
1683     return r;
1684 dl 1.109 }
1685 dl 1.118 else if (doRemove(key, vv) != null)
1686     break;
1687 dl 1.109 }
1688 jsr166 1.110 }
1689     return null;
1690 dl 1.109 }
1691    
1692     /**
1693     * Attempts to compute a mapping for the specified key and its
1694     * current mapped value (or {@code null} if there is no current
1695     * mapping). The function is <em>NOT</em> guaranteed to be applied
1696     * once atomically.
1697     *
1698     * @param key key with which the specified value is to be associated
1699     * @param remappingFunction the function to compute a value
1700     * @return the new value associated with the specified key, or null if none
1701     * @throws NullPointerException if the specified key is null
1702     * or the remappingFunction is null
1703     * @since 1.8
1704     */
1705 jsr166 1.110 public V compute(K key,
1706 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1707 jsr166 1.110 if (key == null || remappingFunction == null)
1708     throw new NullPointerException();
1709 dl 1.118 for (;;) {
1710     Node<K,V> n; Object v; V r;
1711     if ((n = findNode(key)) == null) {
1712     if ((r = remappingFunction.apply(key, null)) == null)
1713     break;
1714     if (doPut(key, r, false) == null)
1715     return r;
1716     }
1717     else if ((v = n.value) != null) {
1718     @SuppressWarnings("unchecked") V vv = (V) v;
1719     if ((r = remappingFunction.apply(key, vv)) != null) {
1720     if (n.casValue(vv, r))
1721 dl 1.109 return r;
1722     }
1723 dl 1.118 else if (doRemove(key, vv) != null)
1724     break;
1725 dl 1.109 }
1726     }
1727 jsr166 1.110 return null;
1728 dl 1.109 }
1729    
1730     /**
1731     * If the specified key is not already associated with a value,
1732     * associates it with the given value. Otherwise, replaces the
1733     * value with the results of the given remapping function, or
1734     * removes if {@code null}. The function is <em>NOT</em>
1735     * guaranteed to be applied once atomically.
1736     *
1737     * @param key key with which the specified value is to be associated
1738     * @param value the value to use if absent
1739     * @param remappingFunction the function to recompute a value if present
1740     * @return the new value associated with the specified key, or null if none
1741     * @throws NullPointerException if the specified key or value is null
1742     * or the remappingFunction is null
1743     * @since 1.8
1744     */
1745     public V merge(K key, V value,
1746     BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1747 jsr166 1.110 if (key == null || value == null || remappingFunction == null)
1748     throw new NullPointerException();
1749 dl 1.118 for (;;) {
1750     Node<K,V> n; Object v; V r;
1751     if ((n = findNode(key)) == null) {
1752     if (doPut(key, value, false) == null)
1753     return value;
1754     }
1755     else if ((v = n.value) != null) {
1756     @SuppressWarnings("unchecked") V vv = (V) v;
1757     if ((r = remappingFunction.apply(vv, value)) != null) {
1758     if (n.casValue(vv, r))
1759     return r;
1760 dl 1.109 }
1761 dl 1.118 else if (doRemove(key, vv) != null)
1762     return null;
1763 dl 1.109 }
1764 jsr166 1.110 }
1765 dl 1.109 }
1766    
1767 dl 1.46 /* ---------------- View methods -------------- */
1768    
1769     /*
1770     * Note: Lazy initialization works for views because view classes
1771     * are stateless/immutable so it doesn't matter wrt correctness if
1772     * more than one is created (which will only rarely happen). Even
1773     * so, the following idiom conservatively ensures that the method
1774     * returns the one it created if it does so, not one created by
1775     * another racing thread.
1776     */
1777    
1778 dl 1.1 /**
1779 jsr166 1.51 * Returns a {@link NavigableSet} view of the keys contained in this map.
1780 jsr166 1.22 * The set's iterator returns the keys in ascending order.
1781     * The set is backed by the map, so changes to the map are
1782     * reflected in the set, and vice-versa. The set supports element
1783     * removal, which removes the corresponding mapping from the map,
1784 jsr166 1.51 * via the {@code Iterator.remove}, {@code Set.remove},
1785     * {@code removeAll}, {@code retainAll}, and {@code clear}
1786     * operations. It does not support the {@code add} or {@code addAll}
1787 jsr166 1.22 * operations.
1788     *
1789 jsr166 1.51 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1790 jsr166 1.22 * that will never throw {@link ConcurrentModificationException},
1791 dl 1.1 * and guarantees to traverse elements as they existed upon
1792     * construction of the iterator, and may (but is not guaranteed to)
1793     * reflect any modifications subsequent to construction.
1794     *
1795 jsr166 1.51 * <p>This method is equivalent to method {@code navigableKeySet}.
1796     *
1797     * @return a navigable set view of the keys in this map
1798 dl 1.1 */
1799 jsr166 1.68 public NavigableSet<K> keySet() {
1800 dl 1.118 KeySet<K> ks = keySet;
1801     return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1802 dl 1.1 }
1803    
1804 dl 1.46 public NavigableSet<K> navigableKeySet() {
1805 dl 1.118 KeySet<K> ks = keySet;
1806     return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1807 dl 1.83 }
1808    
1809     /**
1810 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1811     * The collection's iterator returns the values in ascending order
1812     * of the corresponding keys.
1813 dl 1.1 * The collection is backed by the map, so changes to the map are
1814     * reflected in the collection, and vice-versa. The collection
1815     * supports element removal, which removes the corresponding
1816 jsr166 1.82 * mapping from the map, via the {@code Iterator.remove},
1817     * {@code Collection.remove}, {@code removeAll},
1818     * {@code retainAll} and {@code clear} operations. It does not
1819     * support the {@code add} or {@code addAll} operations.
1820 dl 1.1 *
1821 jsr166 1.82 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1822 jsr166 1.22 * that will never throw {@link ConcurrentModificationException},
1823     * and guarantees to traverse elements as they existed upon
1824     * construction of the iterator, and may (but is not guaranteed to)
1825     * reflect any modifications subsequent to construction.
1826 dl 1.1 */
1827     public Collection<V> values() {
1828 jsr166 1.71 Values<V> vs = values;
1829     return (vs != null) ? vs : (values = new Values<V>(this));
1830 dl 1.1 }
1831    
1832     /**
1833 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
1834     * The set's iterator returns the entries in ascending key order.
1835     * The set is backed by the map, so changes to the map are
1836     * reflected in the set, and vice-versa. The set supports element
1837     * removal, which removes the corresponding mapping from the map,
1838 jsr166 1.82 * via the {@code Iterator.remove}, {@code Set.remove},
1839     * {@code removeAll}, {@code retainAll} and {@code clear}
1840     * operations. It does not support the {@code add} or
1841     * {@code addAll} operations.
1842 jsr166 1.22 *
1843 jsr166 1.82 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1844 jsr166 1.22 * that will never throw {@link ConcurrentModificationException},
1845     * and guarantees to traverse elements as they existed upon
1846     * construction of the iterator, and may (but is not guaranteed to)
1847     * reflect any modifications subsequent to construction.
1848     *
1849 jsr166 1.82 * <p>The {@code Map.Entry} elements returned by
1850     * {@code iterator.next()} do <em>not</em> support the
1851     * {@code setValue} operation.
1852 dl 1.1 *
1853 jsr166 1.22 * @return a set view of the mappings contained in this map,
1854     * sorted in ascending key order
1855 dl 1.1 */
1856     public Set<Map.Entry<K,V>> entrySet() {
1857 jsr166 1.71 EntrySet<K,V> es = entrySet;
1858     return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1859 dl 1.46 }
1860    
1861     public ConcurrentNavigableMap<K,V> descendingMap() {
1862     ConcurrentNavigableMap<K,V> dm = descendingMap;
1863     return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1864     (this, null, false, null, false, true));
1865 dl 1.1 }
1866    
1867 dl 1.46 public NavigableSet<K> descendingKeySet() {
1868     return descendingMap().navigableKeySet();
1869 dl 1.1 }
1870    
1871     /* ---------------- AbstractMap Overrides -------------- */
1872    
1873     /**
1874     * Compares the specified object with this map for equality.
1875 jsr166 1.82 * Returns {@code true} if the given object is also a map and the
1876 dl 1.1 * two maps represent the same mappings. More formally, two maps
1877 jsr166 1.82 * {@code m1} and {@code m2} represent the same mappings if
1878     * {@code m1.entrySet().equals(m2.entrySet())}. This
1879 dl 1.1 * operation may return misleading results if either map is
1880     * concurrently modified during execution of this method.
1881     *
1882 jsr166 1.22 * @param o object to be compared for equality with this map
1883 jsr166 1.82 * @return {@code true} if the specified object is equal to this map
1884 dl 1.1 */
1885     public boolean equals(Object o) {
1886 jsr166 1.55 if (o == this)
1887     return true;
1888     if (!(o instanceof Map))
1889     return false;
1890     Map<?,?> m = (Map<?,?>) o;
1891 dl 1.1 try {
1892 jsr166 1.55 for (Map.Entry<K,V> e : this.entrySet())
1893     if (! e.getValue().equals(m.get(e.getKey())))
1894 dl 1.25 return false;
1895 jsr166 1.55 for (Map.Entry<?,?> e : m.entrySet()) {
1896 dl 1.25 Object k = e.getKey();
1897     Object v = e.getValue();
1898 jsr166 1.55 if (k == null || v == null || !v.equals(get(k)))
1899 dl 1.25 return false;
1900     }
1901     return true;
1902 jsr166 1.15 } catch (ClassCastException unused) {
1903 dl 1.1 return false;
1904 jsr166 1.15 } catch (NullPointerException unused) {
1905 dl 1.1 return false;
1906     }
1907     }
1908    
1909     /* ------ ConcurrentMap API methods ------ */
1910    
1911     /**
1912 jsr166 1.22 * {@inheritDoc}
1913     *
1914     * @return the previous value associated with the specified key,
1915 jsr166 1.82 * or {@code null} if there was no mapping for the key
1916 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1917     * with the keys currently in the map
1918     * @throws NullPointerException if the specified key or value is null
1919 dl 1.1 */
1920     public V putIfAbsent(K key, V value) {
1921 dl 1.9 if (value == null)
1922 dl 1.1 throw new NullPointerException();
1923 dl 1.118 return doPut(key, value, true);
1924 dl 1.1 }
1925    
1926     /**
1927 jsr166 1.22 * {@inheritDoc}
1928     *
1929     * @throws ClassCastException if the specified key cannot be compared
1930     * with the keys currently in the map
1931 dl 1.23 * @throws NullPointerException if the specified key is null
1932 dl 1.1 */
1933     public boolean remove(Object key, Object value) {
1934 dl 1.45 if (key == null)
1935     throw new NullPointerException();
1936 dl 1.118 return value != null && doRemove(key, value) != null;
1937 dl 1.1 }
1938    
1939     /**
1940 jsr166 1.22 * {@inheritDoc}
1941     *
1942     * @throws ClassCastException if the specified key cannot be compared
1943     * with the keys currently in the map
1944     * @throws NullPointerException if any of the arguments are null
1945 dl 1.1 */
1946     public boolean replace(K key, V oldValue, V newValue) {
1947 dl 1.118 if (key == null || oldValue == null || newValue == null)
1948 dl 1.1 throw new NullPointerException();
1949     for (;;) {
1950 dl 1.118 Node<K,V> n; Object v;
1951     if ((n = findNode(key)) == null)
1952 dl 1.1 return false;
1953 dl 1.118 if ((v = n.value) != null) {
1954 dl 1.1 if (!oldValue.equals(v))
1955     return false;
1956     if (n.casValue(v, newValue))
1957     return true;
1958     }
1959     }
1960     }
1961    
1962     /**
1963 jsr166 1.22 * {@inheritDoc}
1964     *
1965     * @return the previous value associated with the specified key,
1966 jsr166 1.82 * or {@code null} if there was no mapping for the key
1967 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1968     * with the keys currently in the map
1969     * @throws NullPointerException if the specified key or value is null
1970 dl 1.1 */
1971     public V replace(K key, V value) {
1972 dl 1.118 if (key == null || value == null)
1973 dl 1.1 throw new NullPointerException();
1974     for (;;) {
1975 dl 1.118 Node<K,V> n; Object v;
1976     if ((n = findNode(key)) == null)
1977 dl 1.1 return null;
1978 dl 1.118 if ((v = n.value) != null && n.casValue(v, value)) {
1979     @SuppressWarnings("unchecked") V vv = (V)v;
1980     return vv;
1981     }
1982 dl 1.1 }
1983     }
1984    
1985     /* ------ SortedMap API methods ------ */
1986    
1987     public Comparator<? super K> comparator() {
1988     return comparator;
1989     }
1990    
1991     /**
1992 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
1993 dl 1.1 */
1994 dl 1.9 public K firstKey() {
1995 dl 1.1 Node<K,V> n = findFirst();
1996     if (n == null)
1997     throw new NoSuchElementException();
1998     return n.key;
1999     }
2000    
2001     /**
2002 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2003 dl 1.1 */
2004     public K lastKey() {
2005     Node<K,V> n = findLast();
2006     if (n == null)
2007     throw new NoSuchElementException();
2008     return n.key;
2009     }
2010    
2011     /**
2012 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2013     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2014 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2015 dl 1.1 */
2016 dl 1.47 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
2017     boolean fromInclusive,
2018     K toKey,
2019     boolean toInclusive) {
2020 dl 1.1 if (fromKey == null || toKey == null)
2021     throw new NullPointerException();
2022 dl 1.46 return new SubMap<K,V>
2023     (this, fromKey, fromInclusive, toKey, toInclusive, false);
2024 dl 1.1 }
2025    
2026     /**
2027 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2028     * @throws NullPointerException if {@code toKey} is null
2029 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2030 dl 1.1 */
2031 dl 1.47 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2032     boolean inclusive) {
2033 dl 1.1 if (toKey == null)
2034     throw new NullPointerException();
2035 dl 1.46 return new SubMap<K,V>
2036     (this, null, false, toKey, inclusive, false);
2037 dl 1.1 }
2038    
2039     /**
2040 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2041     * @throws NullPointerException if {@code fromKey} is null
2042 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2043 dl 1.1 */
2044 dl 1.47 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2045     boolean inclusive) {
2046 dl 1.6 if (fromKey == null)
2047     throw new NullPointerException();
2048 dl 1.46 return new SubMap<K,V>
2049     (this, fromKey, inclusive, null, false, false);
2050 dl 1.6 }
2051    
2052     /**
2053 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2054     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2055 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2056 dl 1.6 */
2057 dl 1.37 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2058 dl 1.47 return subMap(fromKey, true, toKey, false);
2059 dl 1.6 }
2060    
2061     /**
2062 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2063     * @throws NullPointerException if {@code toKey} is null
2064 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2065 dl 1.6 */
2066 dl 1.37 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2067 dl 1.47 return headMap(toKey, false);
2068 dl 1.6 }
2069    
2070     /**
2071 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2072     * @throws NullPointerException if {@code fromKey} is null
2073 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2074 dl 1.6 */
2075 dl 1.37 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2076 dl 1.47 return tailMap(fromKey, true);
2077 dl 1.1 }
2078    
2079     /* ---------------- Relational operations -------------- */
2080    
2081     /**
2082 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2083 jsr166 1.82 * strictly less than the given key, or {@code null} if there is
2084 jsr166 1.22 * no such key. The returned entry does <em>not</em> support the
2085 jsr166 1.82 * {@code Entry.setValue} method.
2086 dl 1.9 *
2087 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2088     * @throws NullPointerException if the specified key is null
2089 dl 1.1 */
2090 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
2091     return getNear(key, LT);
2092 dl 1.1 }
2093    
2094     /**
2095 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2096     * @throws NullPointerException if the specified key is null
2097 dl 1.1 */
2098 jsr166 1.22 public K lowerKey(K key) {
2099 dl 1.118 Node<K,V> n = findNear(key, LT, comparator);
2100 jsr166 1.61 return (n == null) ? null : n.key;
2101 dl 1.1 }
2102    
2103     /**
2104 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2105 jsr166 1.82 * less than or equal to the given key, or {@code null} if there
2106 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2107 jsr166 1.82 * the {@code Entry.setValue} method.
2108 dl 1.9 *
2109 jsr166 1.22 * @param key the key
2110     * @throws ClassCastException {@inheritDoc}
2111     * @throws NullPointerException if the specified key is null
2112 dl 1.1 */
2113 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
2114     return getNear(key, LT|EQ);
2115 dl 1.1 }
2116    
2117     /**
2118 jsr166 1.22 * @param key the key
2119     * @throws ClassCastException {@inheritDoc}
2120     * @throws NullPointerException if the specified key is null
2121 dl 1.1 */
2122 jsr166 1.22 public K floorKey(K key) {
2123 dl 1.118 Node<K,V> n = findNear(key, LT|EQ, comparator);
2124 jsr166 1.61 return (n == null) ? null : n.key;
2125 dl 1.1 }
2126    
2127     /**
2128 jsr166 1.22 * Returns a key-value mapping associated with the least key
2129 jsr166 1.82 * greater than or equal to the given key, or {@code null} if
2130 jsr166 1.22 * there is no such entry. The returned entry does <em>not</em>
2131 jsr166 1.82 * support the {@code Entry.setValue} method.
2132 dl 1.9 *
2133 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2134     * @throws NullPointerException if the specified key is null
2135 dl 1.1 */
2136 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
2137     return getNear(key, GT|EQ);
2138 dl 1.1 }
2139    
2140     /**
2141 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2142     * @throws NullPointerException if the specified key is null
2143 dl 1.1 */
2144 jsr166 1.22 public K ceilingKey(K key) {
2145 dl 1.118 Node<K,V> n = findNear(key, GT|EQ, comparator);
2146 jsr166 1.61 return (n == null) ? null : n.key;
2147 dl 1.1 }
2148    
2149     /**
2150     * Returns a key-value mapping associated with the least key
2151 jsr166 1.82 * strictly greater than the given key, or {@code null} if there
2152 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2153 jsr166 1.82 * the {@code Entry.setValue} method.
2154 dl 1.9 *
2155 jsr166 1.22 * @param key the key
2156     * @throws ClassCastException {@inheritDoc}
2157     * @throws NullPointerException if the specified key is null
2158 dl 1.1 */
2159     public Map.Entry<K,V> higherEntry(K key) {
2160     return getNear(key, GT);
2161     }
2162    
2163     /**
2164 jsr166 1.22 * @param key the key
2165     * @throws ClassCastException {@inheritDoc}
2166     * @throws NullPointerException if the specified key is null
2167 dl 1.1 */
2168     public K higherKey(K key) {
2169 dl 1.118 Node<K,V> n = findNear(key, GT, comparator);
2170 jsr166 1.61 return (n == null) ? null : n.key;
2171 dl 1.1 }
2172    
2173     /**
2174     * Returns a key-value mapping associated with the least
2175 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2176 dl 1.1 * The returned entry does <em>not</em> support
2177 jsr166 1.82 * the {@code Entry.setValue} method.
2178 dl 1.1 */
2179     public Map.Entry<K,V> firstEntry() {
2180     for (;;) {
2181     Node<K,V> n = findFirst();
2182 dl 1.9 if (n == null)
2183 dl 1.1 return null;
2184 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2185 dl 1.1 if (e != null)
2186     return e;
2187     }
2188     }
2189    
2190     /**
2191     * Returns a key-value mapping associated with the greatest
2192 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2193 dl 1.1 * The returned entry does <em>not</em> support
2194 jsr166 1.82 * the {@code Entry.setValue} method.
2195 dl 1.1 */
2196     public Map.Entry<K,V> lastEntry() {
2197     for (;;) {
2198     Node<K,V> n = findLast();
2199 dl 1.9 if (n == null)
2200 dl 1.1 return null;
2201 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2202 dl 1.1 if (e != null)
2203     return e;
2204     }
2205     }
2206    
2207     /**
2208     * Removes and returns a key-value mapping associated with
2209 jsr166 1.82 * the least key in this map, or {@code null} if the map is empty.
2210 dl 1.1 * The returned entry does <em>not</em> support
2211 jsr166 1.82 * the {@code Entry.setValue} method.
2212 dl 1.1 */
2213     public Map.Entry<K,V> pollFirstEntry() {
2214 dl 1.25 return doRemoveFirstEntry();
2215 dl 1.1 }
2216    
2217     /**
2218     * Removes and returns a key-value mapping associated with
2219 jsr166 1.82 * the greatest key in this map, or {@code null} if the map is empty.
2220 dl 1.1 * The returned entry does <em>not</em> support
2221 jsr166 1.82 * the {@code Entry.setValue} method.
2222 dl 1.1 */
2223     public Map.Entry<K,V> pollLastEntry() {
2224 dl 1.31 return doRemoveLastEntry();
2225 dl 1.1 }
2226    
2227    
2228     /* ---------------- Iterators -------------- */
2229    
2230     /**
2231 dl 1.46 * Base of iterator classes:
2232 dl 1.1 */
2233 dl 1.46 abstract class Iter<T> implements Iterator<T> {
2234 dl 1.1 /** the last node returned by next() */
2235 jsr166 1.52 Node<K,V> lastReturned;
2236 dl 1.1 /** the next node to return from next(); */
2237     Node<K,V> next;
2238 jsr166 1.55 /** Cache of next value field to maintain weak consistency */
2239     V nextValue;
2240 dl 1.1
2241 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2242 dl 1.46 Iter() {
2243 dl 1.118 while ((next = findFirst()) != null) {
2244 jsr166 1.52 Object x = next.value;
2245     if (x != null && x != next) {
2246 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2247     nextValue = vv;
2248 dl 1.1 break;
2249 jsr166 1.55 }
2250 dl 1.1 }
2251     }
2252    
2253 dl 1.46 public final boolean hasNext() {
2254     return next != null;
2255 dl 1.1 }
2256 dl 1.46
2257 jsr166 1.13 /** Advances next to higher entry. */
2258 dl 1.46 final void advance() {
2259 jsr166 1.54 if (next == null)
2260 dl 1.1 throw new NoSuchElementException();
2261 jsr166 1.55 lastReturned = next;
2262 dl 1.118 while ((next = next.next) != null) {
2263 jsr166 1.52 Object x = next.value;
2264     if (x != null && x != next) {
2265 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2266     nextValue = vv;
2267 dl 1.1 break;
2268 jsr166 1.55 }
2269 dl 1.1 }
2270     }
2271    
2272     public void remove() {
2273 jsr166 1.52 Node<K,V> l = lastReturned;
2274 dl 1.1 if (l == null)
2275     throw new IllegalStateException();
2276     // It would not be worth all of the overhead to directly
2277     // unlink from here. Using remove is fast enough.
2278     ConcurrentSkipListMap.this.remove(l.key);
2279 jsr166 1.55 lastReturned = null;
2280 dl 1.1 }
2281    
2282     }
2283    
2284 dl 1.46 final class ValueIterator extends Iter<V> {
2285 dl 1.9 public V next() {
2286 jsr166 1.52 V v = nextValue;
2287 dl 1.46 advance();
2288 jsr166 1.52 return v;
2289 dl 1.1 }
2290     }
2291    
2292 dl 1.46 final class KeyIterator extends Iter<K> {
2293 dl 1.9 public K next() {
2294 dl 1.1 Node<K,V> n = next;
2295 dl 1.46 advance();
2296 dl 1.1 return n.key;
2297     }
2298     }
2299    
2300 dl 1.46 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2301     public Map.Entry<K,V> next() {
2302     Node<K,V> n = next;
2303 jsr166 1.52 V v = nextValue;
2304 dl 1.46 advance();
2305     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2306 dl 1.1 }
2307 dl 1.46 }
2308 dl 1.1
2309 dl 1.46 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2310    
2311     Iterator<K> keyIterator() {
2312 dl 1.1 return new KeyIterator();
2313     }
2314    
2315 dl 1.46 Iterator<V> valueIterator() {
2316     return new ValueIterator();
2317 dl 1.1 }
2318    
2319 dl 1.46 Iterator<Map.Entry<K,V>> entryIterator() {
2320     return new EntryIterator();
2321 dl 1.1 }
2322    
2323 dl 1.46 /* ---------------- View Classes -------------- */
2324    
2325     /*
2326     * View classes are static, delegating to a ConcurrentNavigableMap
2327     * to allow use by SubMaps, which outweighs the ugliness of
2328     * needing type-tests for Iterator methods.
2329     */
2330    
2331 jsr166 1.53 static final <E> List<E> toList(Collection<E> c) {
2332 jsr166 1.55 // Using size() here would be a pessimization.
2333 jsr166 1.90 ArrayList<E> list = new ArrayList<E>();
2334 jsr166 1.55 for (E e : c)
2335     list.add(e);
2336     return list;
2337 jsr166 1.53 }
2338    
2339 jsr166 1.62 static final class KeySet<E>
2340     extends AbstractSet<E> implements NavigableSet<E> {
2341 dl 1.118 final ConcurrentNavigableMap<E,?> m;
2342 jsr166 1.71 KeySet(ConcurrentNavigableMap<E,?> map) { m = map; }
2343 dl 1.46 public int size() { return m.size(); }
2344     public boolean isEmpty() { return m.isEmpty(); }
2345     public boolean contains(Object o) { return m.containsKey(o); }
2346     public boolean remove(Object o) { return m.remove(o) != null; }
2347     public void clear() { m.clear(); }
2348     public E lower(E e) { return m.lowerKey(e); }
2349     public E floor(E e) { return m.floorKey(e); }
2350     public E ceiling(E e) { return m.ceilingKey(e); }
2351     public E higher(E e) { return m.higherKey(e); }
2352     public Comparator<? super E> comparator() { return m.comparator(); }
2353     public E first() { return m.firstKey(); }
2354     public E last() { return m.lastKey(); }
2355     public E pollFirst() {
2356 jsr166 1.71 Map.Entry<E,?> e = m.pollFirstEntry();
2357 jsr166 1.61 return (e == null) ? null : e.getKey();
2358 dl 1.46 }
2359     public E pollLast() {
2360 jsr166 1.71 Map.Entry<E,?> e = m.pollLastEntry();
2361 jsr166 1.61 return (e == null) ? null : e.getKey();
2362 dl 1.46 }
2363 dl 1.100 @SuppressWarnings("unchecked")
2364 dl 1.46 public Iterator<E> iterator() {
2365     if (m instanceof ConcurrentSkipListMap)
2366     return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
2367     else
2368     return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
2369 dl 1.1 }
2370 dl 1.45 public boolean equals(Object o) {
2371     if (o == this)
2372     return true;
2373     if (!(o instanceof Set))
2374     return false;
2375     Collection<?> c = (Collection<?>) o;
2376     try {
2377     return containsAll(c) && c.containsAll(this);
2378 jsr166 1.81 } catch (ClassCastException unused) {
2379 dl 1.45 return false;
2380     } catch (NullPointerException unused) {
2381     return false;
2382     }
2383     }
2384 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2385     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2386 dl 1.46 public Iterator<E> descendingIterator() {
2387     return descendingSet().iterator();
2388     }
2389 dl 1.47 public NavigableSet<E> subSet(E fromElement,
2390     boolean fromInclusive,
2391     E toElement,
2392     boolean toInclusive) {
2393 jsr166 1.56 return new KeySet<E>(m.subMap(fromElement, fromInclusive,
2394     toElement, toInclusive));
2395 dl 1.46 }
2396 dl 1.47 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2397 jsr166 1.56 return new KeySet<E>(m.headMap(toElement, inclusive));
2398 dl 1.46 }
2399 dl 1.47 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2400 jsr166 1.56 return new KeySet<E>(m.tailMap(fromElement, inclusive));
2401 dl 1.46 }
2402 jsr166 1.51 public NavigableSet<E> subSet(E fromElement, E toElement) {
2403 dl 1.47 return subSet(fromElement, true, toElement, false);
2404 dl 1.46 }
2405 jsr166 1.51 public NavigableSet<E> headSet(E toElement) {
2406 dl 1.47 return headSet(toElement, false);
2407 dl 1.46 }
2408 jsr166 1.51 public NavigableSet<E> tailSet(E fromElement) {
2409 dl 1.47 return tailSet(fromElement, true);
2410 dl 1.46 }
2411     public NavigableSet<E> descendingSet() {
2412 jsr166 1.71 return new KeySet<E>(m.descendingMap());
2413 dl 1.46 }
2414 dl 1.100 @SuppressWarnings("unchecked")
2415 dl 1.106 public Spliterator<E> spliterator() {
2416 dl 1.100 if (m instanceof ConcurrentSkipListMap)
2417     return ((ConcurrentSkipListMap<E,?>)m).keySpliterator();
2418     else
2419     return (Spliterator<E>)((SubMap<E,?>)m).keyIterator();
2420     }
2421 dl 1.1 }
2422    
2423 dl 1.46 static final class Values<E> extends AbstractCollection<E> {
2424 dl 1.118 final ConcurrentNavigableMap<?, E> m;
2425 jsr166 1.71 Values(ConcurrentNavigableMap<?, E> map) {
2426 dl 1.46 m = map;
2427 dl 1.1 }
2428 dl 1.100 @SuppressWarnings("unchecked")
2429 dl 1.46 public Iterator<E> iterator() {
2430     if (m instanceof ConcurrentSkipListMap)
2431 jsr166 1.71 return ((ConcurrentSkipListMap<?,E>)m).valueIterator();
2432 dl 1.46 else
2433 jsr166 1.71 return ((SubMap<?,E>)m).valueIterator();
2434 dl 1.1 }
2435     public boolean isEmpty() {
2436 dl 1.46 return m.isEmpty();
2437 dl 1.1 }
2438     public int size() {
2439 dl 1.46 return m.size();
2440 dl 1.1 }
2441     public boolean contains(Object o) {
2442 dl 1.46 return m.containsValue(o);
2443 dl 1.1 }
2444     public void clear() {
2445 dl 1.46 m.clear();
2446 dl 1.1 }
2447 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2448     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2449 dl 1.100 @SuppressWarnings("unchecked")
2450 dl 1.106 public Spliterator<E> spliterator() {
2451 dl 1.100 if (m instanceof ConcurrentSkipListMap)
2452     return ((ConcurrentSkipListMap<?,E>)m).valueSpliterator();
2453     else
2454     return (Spliterator<E>)((SubMap<?,E>)m).valueIterator();
2455     }
2456 dl 1.1 }
2457    
2458 dl 1.46 static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
2459 dl 1.118 final ConcurrentNavigableMap<K1, V1> m;
2460 dl 1.46 EntrySet(ConcurrentNavigableMap<K1, V1> map) {
2461     m = map;
2462 dl 1.1 }
2463 dl 1.100 @SuppressWarnings("unchecked")
2464 dl 1.46 public Iterator<Map.Entry<K1,V1>> iterator() {
2465     if (m instanceof ConcurrentSkipListMap)
2466     return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
2467     else
2468     return ((SubMap<K1,V1>)m).entryIterator();
2469     }
2470 dl 1.47
2471 dl 1.1 public boolean contains(Object o) {
2472     if (!(o instanceof Map.Entry))
2473     return false;
2474 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2475 dl 1.46 V1 v = m.get(e.getKey());
2476 dl 1.1 return v != null && v.equals(e.getValue());
2477     }
2478     public boolean remove(Object o) {
2479     if (!(o instanceof Map.Entry))
2480     return false;
2481 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2482 dl 1.46 return m.remove(e.getKey(),
2483 dl 1.47 e.getValue());
2484 dl 1.1 }
2485     public boolean isEmpty() {
2486 dl 1.46 return m.isEmpty();
2487 dl 1.1 }
2488     public int size() {
2489 dl 1.46 return m.size();
2490 dl 1.1 }
2491     public void clear() {
2492 dl 1.46 m.clear();
2493 dl 1.1 }
2494 dl 1.45 public boolean equals(Object o) {
2495     if (o == this)
2496     return true;
2497     if (!(o instanceof Set))
2498     return false;
2499     Collection<?> c = (Collection<?>) o;
2500     try {
2501     return containsAll(c) && c.containsAll(this);
2502 jsr166 1.81 } catch (ClassCastException unused) {
2503 dl 1.45 return false;
2504     } catch (NullPointerException unused) {
2505     return false;
2506     }
2507     }
2508 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2509     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2510 dl 1.100 @SuppressWarnings("unchecked")
2511 dl 1.106 public Spliterator<Map.Entry<K1,V1>> spliterator() {
2512 dl 1.83 if (m instanceof ConcurrentSkipListMap)
2513 dl 1.100 return ((ConcurrentSkipListMap<K1,V1>)m).entrySpliterator();
2514 dl 1.83 else
2515 dl 1.100 return (Spliterator<Map.Entry<K1,V1>>)
2516     ((SubMap<K1,V1>)m).entryIterator();
2517     }
2518 dl 1.1 }
2519    
2520     /**
2521     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2522     * represent a subrange of mappings of their underlying
2523     * maps. Instances of this class support all methods of their
2524     * underlying maps, differing in that mappings outside their range are
2525     * ignored, and attempts to add mappings outside their ranges result
2526     * in {@link IllegalArgumentException}. Instances of this class are
2527 jsr166 1.82 * constructed only using the {@code subMap}, {@code headMap}, and
2528     * {@code tailMap} methods of their underlying maps.
2529 jsr166 1.52 *
2530     * @serial include
2531 dl 1.1 */
2532 dl 1.46 static final class SubMap<K,V> extends AbstractMap<K,V>
2533     implements ConcurrentNavigableMap<K,V>, Cloneable,
2534     java.io.Serializable {
2535 dl 1.1 private static final long serialVersionUID = -7647078645895051609L;
2536    
2537     /** Underlying map */
2538     private final ConcurrentSkipListMap<K,V> m;
2539     /** lower bound key, or null if from start */
2540 dl 1.46 private final K lo;
2541     /** upper bound key, or null if to end */
2542     private final K hi;
2543     /** inclusion flag for lo */
2544     private final boolean loInclusive;
2545     /** inclusion flag for hi */
2546     private final boolean hiInclusive;
2547     /** direction */
2548     private final boolean isDescending;
2549    
2550 dl 1.1 // Lazily initialized view holders
2551 dl 1.46 private transient KeySet<K> keySetView;
2552 dl 1.1 private transient Set<Map.Entry<K,V>> entrySetView;
2553     private transient Collection<V> valuesView;
2554    
2555     /**
2556 jsr166 1.87 * Creates a new submap, initializing all fields.
2557 dl 1.46 */
2558     SubMap(ConcurrentSkipListMap<K,V> map,
2559     K fromKey, boolean fromInclusive,
2560     K toKey, boolean toInclusive,
2561     boolean isDescending) {
2562 dl 1.118 Comparator<? super K> cmp = map.comparator;
2563 dl 1.47 if (fromKey != null && toKey != null &&
2564 dl 1.118 cpr(cmp, fromKey, toKey) > 0)
2565 dl 1.1 throw new IllegalArgumentException("inconsistent range");
2566     this.m = map;
2567 dl 1.46 this.lo = fromKey;
2568     this.hi = toKey;
2569     this.loInclusive = fromInclusive;
2570     this.hiInclusive = toInclusive;
2571     this.isDescending = isDescending;
2572 dl 1.1 }
2573    
2574     /* ---------------- Utilities -------------- */
2575    
2576 dl 1.118 boolean tooLow(Object key, Comparator<? super K> cmp) {
2577     int c;
2578     return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2579     (c == 0 && !loInclusive)));
2580 dl 1.1 }
2581    
2582 dl 1.118 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2583     int c;
2584     return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2585     (c == 0 && !hiInclusive)));
2586 dl 1.1 }
2587    
2588 dl 1.118 boolean inBounds(Object key, Comparator<? super K> cmp) {
2589     return !tooLow(key, cmp) && !tooHigh(key, cmp);
2590 dl 1.1 }
2591    
2592 dl 1.118 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2593 dl 1.46 if (key == null)
2594     throw new NullPointerException();
2595 dl 1.118 if (!inBounds(key, cmp))
2596 dl 1.46 throw new IllegalArgumentException("key out of range");
2597 dl 1.1 }
2598    
2599 dl 1.46 /**
2600 jsr166 1.87 * Returns true if node key is less than upper bound of range.
2601 dl 1.46 */
2602 dl 1.118 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2603     Comparator<? super K> cmp) {
2604 dl 1.46 if (n == null)
2605     return false;
2606     if (hi == null)
2607     return true;
2608     K k = n.key;
2609     if (k == null) // pass by markers and headers
2610     return true;
2611 dl 1.118 int c = cpr(cmp, k, hi);
2612 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive))
2613     return false;
2614     return true;
2615 dl 1.1 }
2616    
2617 dl 1.46 /**
2618     * Returns lowest node. This node might not be in range, so
2619 jsr166 1.87 * most usages need to check bounds.
2620 dl 1.46 */
2621 dl 1.118 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2622 dl 1.46 if (lo == null)
2623     return m.findFirst();
2624     else if (loInclusive)
2625 dl 1.118 return m.findNear(lo, GT|EQ, cmp);
2626 dl 1.46 else
2627 dl 1.118 return m.findNear(lo, GT, cmp);
2628 dl 1.1 }
2629    
2630     /**
2631 dl 1.46 * Returns highest node. This node might not be in range, so
2632 jsr166 1.87 * most usages need to check bounds.
2633 dl 1.1 */
2634 dl 1.118 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2635 dl 1.46 if (hi == null)
2636     return m.findLast();
2637     else if (hiInclusive)
2638 dl 1.118 return m.findNear(hi, LT|EQ, cmp);
2639 dl 1.46 else
2640 dl 1.118 return m.findNear(hi, LT, cmp);
2641 dl 1.1 }
2642    
2643     /**
2644 jsr166 1.87 * Returns lowest absolute key (ignoring directonality).
2645 dl 1.1 */
2646 dl 1.118 K lowestKey() {
2647     Comparator<? super K> cmp = m.comparator;
2648     ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2649     if (isBeforeEnd(n, cmp))
2650 dl 1.46 return n.key;
2651     else
2652     throw new NoSuchElementException();
2653 dl 1.47 }
2654 dl 1.46
2655     /**
2656 jsr166 1.87 * Returns highest absolute key (ignoring directonality).
2657 dl 1.46 */
2658 dl 1.118 K highestKey() {
2659     Comparator<? super K> cmp = m.comparator;
2660     ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2661 dl 1.46 if (n != null) {
2662     K last = n.key;
2663 dl 1.118 if (inBounds(last, cmp))
2664 dl 1.46 return last;
2665     }
2666     throw new NoSuchElementException();
2667     }
2668    
2669 dl 1.118 Map.Entry<K,V> lowestEntry() {
2670     Comparator<? super K> cmp = m.comparator;
2671 dl 1.46 for (;;) {
2672 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2673     if (!isBeforeEnd(n, cmp))
2674 dl 1.46 return null;
2675     Map.Entry<K,V> e = n.createSnapshot();
2676     if (e != null)
2677     return e;
2678     }
2679     }
2680    
2681 dl 1.118 Map.Entry<K,V> highestEntry() {
2682     Comparator<? super K> cmp = m.comparator;
2683 dl 1.46 for (;;) {
2684 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2685     if (n == null || !inBounds(n.key, cmp))
2686 dl 1.46 return null;
2687     Map.Entry<K,V> e = n.createSnapshot();
2688     if (e != null)
2689     return e;
2690     }
2691     }
2692    
2693 dl 1.118 Map.Entry<K,V> removeLowest() {
2694     Comparator<? super K> cmp = m.comparator;
2695 dl 1.46 for (;;) {
2696 dl 1.118 Node<K,V> n = loNode(cmp);
2697 dl 1.46 if (n == null)
2698     return null;
2699     K k = n.key;
2700 dl 1.118 if (!inBounds(k, cmp))
2701 dl 1.46 return null;
2702 dl 1.118 V v = m.doRemove(k, null);
2703 dl 1.46 if (v != null)
2704     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2705     }
2706     }
2707    
2708 dl 1.118 Map.Entry<K,V> removeHighest() {
2709     Comparator<? super K> cmp = m.comparator;
2710 dl 1.46 for (;;) {
2711 dl 1.118 Node<K,V> n = hiNode(cmp);
2712 dl 1.46 if (n == null)
2713     return null;
2714     K k = n.key;
2715 dl 1.118 if (!inBounds(k, cmp))
2716 dl 1.46 return null;
2717 dl 1.118 V v = m.doRemove(k, null);
2718 dl 1.46 if (v != null)
2719     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2720     }
2721 dl 1.1 }
2722    
2723     /**
2724 dl 1.46 * Submap version of ConcurrentSkipListMap.getNearEntry
2725 dl 1.1 */
2726 dl 1.118 Map.Entry<K,V> getNearEntry(K key, int rel) {
2727     Comparator<? super K> cmp = m.comparator;
2728 dl 1.46 if (isDescending) { // adjust relation for direction
2729 jsr166 1.70 if ((rel & LT) == 0)
2730     rel |= LT;
2731 dl 1.46 else
2732 jsr166 1.70 rel &= ~LT;
2733 dl 1.46 }
2734 dl 1.118 if (tooLow(key, cmp))
2735 jsr166 1.70 return ((rel & LT) != 0) ? null : lowestEntry();
2736 dl 1.118 if (tooHigh(key, cmp))
2737 jsr166 1.70 return ((rel & LT) != 0) ? highestEntry() : null;
2738 dl 1.46 for (;;) {
2739 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2740     if (n == null || !inBounds(n.key, cmp))
2741 dl 1.46 return null;
2742     K k = n.key;
2743     V v = n.getValidValue();
2744     if (v != null)
2745     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2746     }
2747 dl 1.1 }
2748    
2749 jsr166 1.48 // Almost the same as getNearEntry, except for keys
2750 dl 1.118 K getNearKey(K key, int rel) {
2751     Comparator<? super K> cmp = m.comparator;
2752 dl 1.46 if (isDescending) { // adjust relation for direction
2753 jsr166 1.70 if ((rel & LT) == 0)
2754     rel |= LT;
2755 dl 1.46 else
2756 jsr166 1.70 rel &= ~LT;
2757 dl 1.46 }
2758 dl 1.118 if (tooLow(key, cmp)) {
2759 jsr166 1.70 if ((rel & LT) == 0) {
2760 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2761     if (isBeforeEnd(n, cmp))
2762 dl 1.46 return n.key;
2763     }
2764     return null;
2765     }
2766 dl 1.118 if (tooHigh(key, cmp)) {
2767 jsr166 1.70 if ((rel & LT) != 0) {
2768 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2769 dl 1.46 if (n != null) {
2770     K last = n.key;
2771 dl 1.118 if (inBounds(last, cmp))
2772 dl 1.46 return last;
2773     }
2774     }
2775     return null;
2776     }
2777     for (;;) {
2778 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2779     if (n == null || !inBounds(n.key, cmp))
2780 dl 1.46 return null;
2781     K k = n.key;
2782     V v = n.getValidValue();
2783     if (v != null)
2784     return k;
2785     }
2786     }
2787 dl 1.1
2788     /* ---------------- Map API methods -------------- */
2789    
2790     public boolean containsKey(Object key) {
2791 dl 1.46 if (key == null) throw new NullPointerException();
2792 dl 1.118 return inBounds(key, m.comparator) && m.containsKey(key);
2793 dl 1.1 }
2794    
2795     public V get(Object key) {
2796 dl 1.46 if (key == null) throw new NullPointerException();
2797 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2798 dl 1.1 }
2799    
2800     public V put(K key, V value) {
2801 dl 1.118 checkKeyBounds(key, m.comparator);
2802 dl 1.1 return m.put(key, value);
2803     }
2804    
2805     public V remove(Object key) {
2806 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2807 dl 1.1 }
2808    
2809     public int size() {
2810 dl 1.118 Comparator<? super K> cmp = m.comparator;
2811 dl 1.1 long count = 0;
2812 dl 1.118 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2813     isBeforeEnd(n, cmp);
2814 dl 1.1 n = n.next) {
2815     if (n.getValidValue() != null)
2816     ++count;
2817     }
2818 jsr166 1.61 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2819 dl 1.1 }
2820    
2821     public boolean isEmpty() {
2822 dl 1.118 Comparator<? super K> cmp = m.comparator;
2823     return !isBeforeEnd(loNode(cmp), cmp);
2824 dl 1.1 }
2825    
2826     public boolean containsValue(Object value) {
2827 dl 1.9 if (value == null)
2828 dl 1.1 throw new NullPointerException();
2829 dl 1.118 Comparator<? super K> cmp = m.comparator;
2830     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2831     isBeforeEnd(n, cmp);
2832 dl 1.1 n = n.next) {
2833     V v = n.getValidValue();
2834     if (v != null && value.equals(v))
2835     return true;
2836     }
2837     return false;
2838     }
2839    
2840     public void clear() {
2841 dl 1.118 Comparator<? super K> cmp = m.comparator;
2842     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2843     isBeforeEnd(n, cmp);
2844 dl 1.1 n = n.next) {
2845     if (n.getValidValue() != null)
2846     m.remove(n.key);
2847     }
2848     }
2849    
2850     /* ---------------- ConcurrentMap API methods -------------- */
2851    
2852     public V putIfAbsent(K key, V value) {
2853 dl 1.118 checkKeyBounds(key, m.comparator);
2854 dl 1.1 return m.putIfAbsent(key, value);
2855     }
2856    
2857     public boolean remove(Object key, Object value) {
2858 dl 1.118 return inBounds(key, m.comparator) && m.remove(key, value);
2859 dl 1.1 }
2860    
2861     public boolean replace(K key, V oldValue, V newValue) {
2862 dl 1.118 checkKeyBounds(key, m.comparator);
2863 dl 1.1 return m.replace(key, oldValue, newValue);
2864     }
2865    
2866     public V replace(K key, V value) {
2867 dl 1.118 checkKeyBounds(key, m.comparator);
2868 dl 1.1 return m.replace(key, value);
2869     }
2870    
2871     /* ---------------- SortedMap API methods -------------- */
2872    
2873     public Comparator<? super K> comparator() {
2874 dl 1.46 Comparator<? super K> cmp = m.comparator();
2875 jsr166 1.55 if (isDescending)
2876     return Collections.reverseOrder(cmp);
2877     else
2878     return cmp;
2879 dl 1.1 }
2880 dl 1.47
2881 dl 1.46 /**
2882     * Utility to create submaps, where given bounds override
2883     * unbounded(null) ones and/or are checked against bounded ones.
2884     */
2885 dl 1.118 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2886     K toKey, boolean toInclusive) {
2887     Comparator<? super K> cmp = m.comparator;
2888 dl 1.46 if (isDescending) { // flip senses
2889 dl 1.47 K tk = fromKey;
2890     fromKey = toKey;
2891 dl 1.46 toKey = tk;
2892 dl 1.47 boolean ti = fromInclusive;
2893     fromInclusive = toInclusive;
2894 dl 1.46 toInclusive = ti;
2895     }
2896     if (lo != null) {
2897     if (fromKey == null) {
2898     fromKey = lo;
2899     fromInclusive = loInclusive;
2900     }
2901     else {
2902 dl 1.118 int c = cpr(cmp, fromKey, lo);
2903 dl 1.46 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2904     throw new IllegalArgumentException("key out of range");
2905     }
2906     }
2907     if (hi != null) {
2908     if (toKey == null) {
2909     toKey = hi;
2910     toInclusive = hiInclusive;
2911     }
2912     else {
2913 dl 1.118 int c = cpr(cmp, toKey, hi);
2914 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2915     throw new IllegalArgumentException("key out of range");
2916     }
2917 dl 1.1 }
2918 dl 1.47 return new SubMap<K,V>(m, fromKey, fromInclusive,
2919 dl 1.46 toKey, toInclusive, isDescending);
2920 dl 1.1 }
2921    
2922 dl 1.118 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2923     K toKey, boolean toInclusive) {
2924 dl 1.1 if (fromKey == null || toKey == null)
2925     throw new NullPointerException();
2926 dl 1.46 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2927 dl 1.1 }
2928 dl 1.47
2929 dl 1.118 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2930 dl 1.1 if (toKey == null)
2931     throw new NullPointerException();
2932 dl 1.46 return newSubMap(null, false, toKey, inclusive);
2933 dl 1.1 }
2934 dl 1.47
2935 dl 1.118 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2936 dl 1.1 if (fromKey == null)
2937     throw new NullPointerException();
2938 dl 1.46 return newSubMap(fromKey, inclusive, null, false);
2939     }
2940    
2941     public SubMap<K,V> subMap(K fromKey, K toKey) {
2942 dl 1.47 return subMap(fromKey, true, toKey, false);
2943 dl 1.1 }
2944    
2945 dl 1.46 public SubMap<K,V> headMap(K toKey) {
2946 dl 1.47 return headMap(toKey, false);
2947 dl 1.6 }
2948    
2949 dl 1.46 public SubMap<K,V> tailMap(K fromKey) {
2950 dl 1.47 return tailMap(fromKey, true);
2951 dl 1.6 }
2952    
2953 dl 1.46 public SubMap<K,V> descendingMap() {
2954 dl 1.47 return new SubMap<K,V>(m, lo, loInclusive,
2955 dl 1.46 hi, hiInclusive, !isDescending);
2956 dl 1.6 }
2957    
2958 dl 1.1 /* ---------------- Relational methods -------------- */
2959    
2960     public Map.Entry<K,V> ceilingEntry(K key) {
2961 jsr166 1.70 return getNearEntry(key, GT|EQ);
2962 dl 1.1 }
2963    
2964     public K ceilingKey(K key) {
2965 jsr166 1.70 return getNearKey(key, GT|EQ);
2966 dl 1.1 }
2967    
2968     public Map.Entry<K,V> lowerEntry(K key) {
2969 jsr166 1.70 return getNearEntry(key, LT);
2970 dl 1.1 }
2971    
2972     public K lowerKey(K key) {
2973 jsr166 1.70 return getNearKey(key, LT);
2974 dl 1.1 }
2975    
2976     public Map.Entry<K,V> floorEntry(K key) {
2977 jsr166 1.70 return getNearEntry(key, LT|EQ);
2978 dl 1.1 }
2979    
2980     public K floorKey(K key) {
2981 jsr166 1.70 return getNearKey(key, LT|EQ);
2982 dl 1.1 }
2983    
2984     public Map.Entry<K,V> higherEntry(K key) {
2985 jsr166 1.70 return getNearEntry(key, GT);
2986 dl 1.1 }
2987    
2988     public K higherKey(K key) {
2989 jsr166 1.70 return getNearKey(key, GT);
2990 dl 1.46 }
2991    
2992     public K firstKey() {
2993 jsr166 1.61 return isDescending ? highestKey() : lowestKey();
2994 dl 1.46 }
2995    
2996     public K lastKey() {
2997 jsr166 1.61 return isDescending ? lowestKey() : highestKey();
2998 dl 1.1 }
2999    
3000     public Map.Entry<K,V> firstEntry() {
3001 jsr166 1.61 return isDescending ? highestEntry() : lowestEntry();
3002 dl 1.1 }
3003    
3004     public Map.Entry<K,V> lastEntry() {
3005 jsr166 1.61 return isDescending ? lowestEntry() : highestEntry();
3006 dl 1.1 }
3007    
3008     public Map.Entry<K,V> pollFirstEntry() {
3009 jsr166 1.61 return isDescending ? removeHighest() : removeLowest();
3010 dl 1.1 }
3011    
3012     public Map.Entry<K,V> pollLastEntry() {
3013 jsr166 1.61 return isDescending ? removeLowest() : removeHighest();
3014 dl 1.1 }
3015    
3016     /* ---------------- Submap Views -------------- */
3017    
3018 jsr166 1.51 public NavigableSet<K> keySet() {
3019 dl 1.46 KeySet<K> ks = keySetView;
3020 jsr166 1.71 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3021 dl 1.1 }
3022    
3023 dl 1.46 public NavigableSet<K> navigableKeySet() {
3024     KeySet<K> ks = keySetView;
3025 jsr166 1.71 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3026 dl 1.46 }
3027 dl 1.45
3028 dl 1.46 public Collection<V> values() {
3029     Collection<V> vs = valuesView;
3030 jsr166 1.71 return (vs != null) ? vs : (valuesView = new Values<V>(this));
3031 dl 1.1 }
3032    
3033 dl 1.46 public Set<Map.Entry<K,V>> entrySet() {
3034     Set<Map.Entry<K,V>> es = entrySetView;
3035 jsr166 1.71 return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
3036 dl 1.1 }
3037    
3038 dl 1.46 public NavigableSet<K> descendingKeySet() {
3039     return descendingMap().navigableKeySet();
3040 dl 1.1 }
3041    
3042 dl 1.46 Iterator<K> keyIterator() {
3043     return new SubMapKeyIterator();
3044 dl 1.1 }
3045    
3046 dl 1.46 Iterator<V> valueIterator() {
3047     return new SubMapValueIterator();
3048 dl 1.1 }
3049    
3050 dl 1.46 Iterator<Map.Entry<K,V>> entryIterator() {
3051     return new SubMapEntryIterator();
3052 dl 1.1 }
3053    
3054 dl 1.46 /**
3055     * Variant of main Iter class to traverse through submaps.
3056 dl 1.100 * Also serves as back-up Spliterator for views
3057 dl 1.46 */
3058 dl 1.100 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
3059 dl 1.46 /** the last node returned by next() */
3060 jsr166 1.52 Node<K,V> lastReturned;
3061 dl 1.46 /** the next node to return from next(); */
3062     Node<K,V> next;
3063     /** Cache of next value field to maintain weak consistency */
3064 jsr166 1.52 V nextValue;
3065 dl 1.46
3066 dl 1.47 SubMapIter() {
3067 dl 1.118 Comparator<? super K> cmp = m.comparator;
3068 dl 1.46 for (;;) {
3069 dl 1.118 next = isDescending ? hiNode(cmp) : loNode(cmp);
3070 dl 1.46 if (next == null)
3071     break;
3072 jsr166 1.55 Object x = next.value;
3073 jsr166 1.52 if (x != null && x != next) {
3074 dl 1.118 if (! inBounds(next.key, cmp))
3075 dl 1.46 next = null;
3076 dl 1.118 else {
3077     @SuppressWarnings("unchecked") V vv = (V)x;
3078 dl 1.100 nextValue = vv;
3079 dl 1.118 }
3080 dl 1.46 break;
3081     }
3082     }
3083 dl 1.1 }
3084 dl 1.46
3085     public final boolean hasNext() {
3086     return next != null;
3087 dl 1.1 }
3088 dl 1.46
3089     final void advance() {
3090 jsr166 1.54 if (next == null)
3091 dl 1.46 throw new NoSuchElementException();
3092 jsr166 1.55 lastReturned = next;
3093 dl 1.46 if (isDescending)
3094     descend();
3095     else
3096     ascend();
3097 dl 1.1 }
3098 dl 1.46
3099     private void ascend() {
3100 dl 1.118 Comparator<? super K> cmp = m.comparator;
3101 dl 1.46 for (;;) {
3102     next = next.next;
3103     if (next == null)
3104     break;
3105 jsr166 1.55 Object x = next.value;
3106 jsr166 1.52 if (x != null && x != next) {
3107 dl 1.118 if (tooHigh(next.key, cmp))
3108 dl 1.46 next = null;
3109 dl 1.118 else {
3110     @SuppressWarnings("unchecked") V vv = (V)x;
3111 dl 1.100 nextValue = vv;
3112 dl 1.118 }
3113 dl 1.46 break;
3114     }
3115     }
3116     }
3117    
3118     private void descend() {
3119 dl 1.88 Comparator<? super K> cmp = m.comparator;
3120 dl 1.46 for (;;) {
3121 dl 1.118 next = m.findNear(lastReturned.key, LT, cmp);
3122 dl 1.46 if (next == null)
3123     break;
3124 jsr166 1.55 Object x = next.value;
3125 jsr166 1.52 if (x != null && x != next) {
3126 dl 1.118 if (tooLow(next.key, cmp))
3127 dl 1.46 next = null;
3128 dl 1.118 else {
3129     @SuppressWarnings("unchecked") V vv = (V)x;
3130 dl 1.100 nextValue = vv;
3131 dl 1.118 }
3132 dl 1.46 break;
3133     }
3134     }
3135 dl 1.1 }
3136 dl 1.46
3137     public void remove() {
3138 jsr166 1.52 Node<K,V> l = lastReturned;
3139 dl 1.46 if (l == null)
3140     throw new IllegalStateException();
3141     m.remove(l.key);
3142 jsr166 1.55 lastReturned = null;
3143 dl 1.1 }
3144 dl 1.46
3145 dl 1.107 public Spliterator<T> trySplit() {
3146     return null;
3147 jsr166 1.108 }
3148 dl 1.107
3149 dl 1.100 public boolean tryAdvance(Consumer<? super T> action) {
3150     if (hasNext()) {
3151     action.accept(next());
3152     return true;
3153     }
3154     return false;
3155     }
3156    
3157 dl 1.113 public void forEachRemaining(Consumer<? super T> action) {
3158 dl 1.100 while (hasNext())
3159     action.accept(next());
3160     }
3161 dl 1.113
3162 jsr166 1.114 public long estimateSize() {
3163     return Long.MAX_VALUE;
3164 dl 1.113 }
3165    
3166 dl 1.46 }
3167    
3168     final class SubMapValueIterator extends SubMapIter<V> {
3169     public V next() {
3170 jsr166 1.52 V v = nextValue;
3171 dl 1.46 advance();
3172 jsr166 1.52 return v;
3173 dl 1.45 }
3174 dl 1.100 public int characteristics() {
3175     return 0;
3176     }
3177 dl 1.1 }
3178    
3179 dl 1.46 final class SubMapKeyIterator extends SubMapIter<K> {
3180     public K next() {
3181     Node<K,V> n = next;
3182     advance();
3183     return n.key;
3184     }
3185 dl 1.100 public int characteristics() {
3186     return Spliterator.DISTINCT | Spliterator.ORDERED |
3187     Spliterator.SORTED;
3188     }
3189 jsr166 1.115 public final Comparator<? super K> getComparator() {
3190 dl 1.100 return SubMap.this.comparator();
3191     }
3192 dl 1.1 }
3193    
3194 dl 1.46 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3195     public Map.Entry<K,V> next() {
3196     Node<K,V> n = next;
3197 jsr166 1.52 V v = nextValue;
3198 dl 1.46 advance();
3199     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3200 dl 1.1 }
3201 dl 1.100 public int characteristics() {
3202     return Spliterator.DISTINCT;
3203     }
3204 dl 1.1 }
3205     }
3206 dl 1.59
3207 dl 1.83 /**
3208     * Base class providing common structure for Spliterators.
3209     * (Although not all that much common functionality; as usual for
3210     * view classes, details annoyingly vary in key, value, and entry
3211     * subclasses in ways that are not worth abstracting out for
3212     * internal classes.)
3213     *
3214     * The basic split strategy is to recursively descend from top
3215     * level, row by row, descending to next row when either split
3216     * off, or the end of row is encountered. Control of the number of
3217     * splits relies on some statistical estimation: The expected
3218     * remaining number of elements of a skip list when advancing
3219     * either across or down decreases by about 25%. To make this
3220     * observation useful, we need to know initial size, which we
3221 dl 1.104 * don't. But we can just use Integer.MAX_VALUE so that we
3222     * don't prematurely zero out while splitting.
3223 dl 1.83 */
3224 jsr166 1.119 abstract static class CSLMSpliterator<K,V> {
3225 dl 1.83 final Comparator<? super K> comparator;
3226     final K fence; // exclusive upper bound for keys, or null if to end
3227     Index<K,V> row; // the level to split out
3228     Node<K,V> current; // current traversal node; initialize at origin
3229     int est; // pseudo-size estimate
3230     CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3231     Node<K,V> origin, K fence, int est) {
3232     this.comparator = comparator; this.row = row;
3233     this.current = origin; this.fence = fence; this.est = est;
3234     }
3235    
3236     public final long estimateSize() { return (long)est; }
3237     }
3238    
3239     static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3240 dl 1.88 implements Spliterator<K> {
3241 dl 1.83 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3242     Node<K,V> origin, K fence, int est) {
3243     super(comparator, row, origin, fence, est);
3244     }
3245    
3246 dl 1.104 public Spliterator<K> trySplit() {
3247 dl 1.116 Node<K,V> e; K ek;
3248 dl 1.83 Comparator<? super K> cmp = comparator;
3249     K f = fence;
3250 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3251 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3252 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3253     if ((s = q.right) != null && (b = s.node) != null &&
3254     (n = b.next) != null && n.value != null &&
3255     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3256     (f == null || cpr(cmp, sk, f) < 0)) {
3257     current = n;
3258     Index<K,V> r = q.down;
3259     row = (s.right != null) ? s : s.down;
3260     est -= est >>> 2;
3261     return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3262 dl 1.83 }
3263     }
3264     }
3265     return null;
3266     }
3267    
3268 dl 1.113 public void forEachRemaining(Consumer<? super K> action) {
3269 dl 1.100 if (action == null) throw new NullPointerException();
3270 dl 1.118 Comparator<? super K> cmp = comparator;
3271 dl 1.83 K f = fence;
3272     Node<K,V> e = current;
3273     current = null;
3274 jsr166 1.84 for (; e != null; e = e.next) {
3275 dl 1.83 K k; Object v;
3276 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3277 dl 1.83 break;
3278     if ((v = e.value) != null && v != e)
3279 dl 1.100 action.accept(k);
3280 dl 1.83 }
3281     }
3282    
3283 dl 1.100 public boolean tryAdvance(Consumer<? super K> action) {
3284     if (action == null) throw new NullPointerException();
3285 dl 1.118 Comparator<? super K> cmp = comparator;
3286     K f = fence;
3287     Node<K,V> e = current;
3288     for (; e != null; e = e.next) {
3289 dl 1.83 K k; Object v;
3290 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3291 dl 1.83 e = null;
3292     break;
3293     }
3294     if ((v = e.value) != null && v != e) {
3295     current = e.next;
3296 dl 1.100 action.accept(k);
3297 dl 1.83 return true;
3298     }
3299     }
3300     current = e;
3301     return false;
3302     }
3303 dl 1.100
3304     public int characteristics() {
3305 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3306 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3307 dl 1.100 Spliterator.NONNULL;
3308     }
3309    
3310 jsr166 1.115 public final Comparator<? super K> getComparator() {
3311 dl 1.100 return comparator;
3312     }
3313 dl 1.83 }
3314 jsr166 1.120 // factory method for KeySpliterator
3315 dl 1.118 final KeySpliterator<K,V> keySpliterator() {
3316     Comparator<? super K> cmp = comparator;
3317     for (;;) { // ensure h corresponds to origin p
3318     HeadIndex<K,V> h; Node<K,V> p;
3319     Node<K,V> b = (h = head).node;
3320     if ((p = b.next) == null || p.value != null)
3321     return new KeySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3322     0 : Integer.MAX_VALUE);
3323     p.helpDelete(b, p.next);
3324     }
3325     }
3326 dl 1.83
3327     static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3328 dl 1.88 implements Spliterator<V> {
3329 dl 1.83 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3330     Node<K,V> origin, K fence, int est) {
3331     super(comparator, row, origin, fence, est);
3332     }
3333    
3334 dl 1.104 public Spliterator<V> trySplit() {
3335 dl 1.116 Node<K,V> e; K ek;
3336 dl 1.83 Comparator<? super K> cmp = comparator;
3337     K f = fence;
3338 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3339 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3340 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3341     if ((s = q.right) != null && (b = s.node) != null &&
3342     (n = b.next) != null && n.value != null &&
3343     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3344     (f == null || cpr(cmp, sk, f) < 0)) {
3345     current = n;
3346     Index<K,V> r = q.down;
3347     row = (s.right != null) ? s : s.down;
3348     est -= est >>> 2;
3349     return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3350 dl 1.83 }
3351     }
3352     }
3353     return null;
3354     }
3355    
3356 dl 1.113 public void forEachRemaining(Consumer<? super V> action) {
3357 dl 1.100 if (action == null) throw new NullPointerException();
3358 dl 1.118 Comparator<? super K> cmp = comparator;
3359 dl 1.83 K f = fence;
3360     Node<K,V> e = current;
3361     current = null;
3362 jsr166 1.84 for (; e != null; e = e.next) {
3363 dl 1.83 K k; Object v;
3364 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3365 dl 1.83 break;
3366 dl 1.100 if ((v = e.value) != null && v != e) {
3367     @SuppressWarnings("unchecked") V vv = (V)v;
3368     action.accept(vv);
3369     }
3370 dl 1.83 }
3371     }
3372    
3373 dl 1.100 public boolean tryAdvance(Consumer<? super V> action) {
3374     if (action == null) throw new NullPointerException();
3375 dl 1.118 Comparator<? super K> cmp = comparator;
3376     K f = fence;
3377     Node<K,V> e = current;
3378     for (; e != null; e = e.next) {
3379 dl 1.83 K k; Object v;
3380 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3381 dl 1.83 e = null;
3382     break;
3383     }
3384     if ((v = e.value) != null && v != e) {
3385     current = e.next;
3386 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3387     action.accept(vv);
3388 dl 1.83 return true;
3389     }
3390     }
3391     current = e;
3392     return false;
3393     }
3394 dl 1.100
3395     public int characteristics() {
3396     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3397     }
3398 dl 1.83 }
3399    
3400 dl 1.118 // Almost the same as keySpliterator()
3401     final ValueSpliterator<K,V> valueSpliterator() {
3402     Comparator<? super K> cmp = comparator;
3403     for (;;) {
3404     HeadIndex<K,V> h; Node<K,V> p;
3405     Node<K,V> b = (h = head).node;
3406     if ((p = b.next) == null || p.value != null)
3407     return new ValueSpliterator<K,V>(cmp, h, p, null, (p == null) ?
3408     0 : Integer.MAX_VALUE);
3409     p.helpDelete(b, p.next);
3410     }
3411     }
3412    
3413 dl 1.83 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3414 dl 1.88 implements Spliterator<Map.Entry<K,V>> {
3415 dl 1.83 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3416     Node<K,V> origin, K fence, int est) {
3417     super(comparator, row, origin, fence, est);
3418     }
3419    
3420 dl 1.104 public Spliterator<Map.Entry<K,V>> trySplit() {
3421 dl 1.116 Node<K,V> e; K ek;
3422 dl 1.83 Comparator<? super K> cmp = comparator;
3423     K f = fence;
3424 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3425 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3426 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3427     if ((s = q.right) != null && (b = s.node) != null &&
3428     (n = b.next) != null && n.value != null &&
3429     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3430     (f == null || cpr(cmp, sk, f) < 0)) {
3431     current = n;
3432     Index<K,V> r = q.down;
3433     row = (s.right != null) ? s : s.down;
3434     est -= est >>> 2;
3435     return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3436 dl 1.83 }
3437     }
3438     }
3439     return null;
3440     }
3441    
3442 dl 1.113 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3443 dl 1.100 if (action == null) throw new NullPointerException();
3444 dl 1.118 Comparator<? super K> cmp = comparator;
3445 dl 1.83 K f = fence;
3446     Node<K,V> e = current;
3447     current = null;
3448 jsr166 1.84 for (; e != null; e = e.next) {
3449 dl 1.83 K k; Object v;
3450 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3451 dl 1.83 break;
3452 dl 1.100 if ((v = e.value) != null && v != e) {
3453     @SuppressWarnings("unchecked") V vv = (V)v;
3454     action.accept
3455     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3456     }
3457 dl 1.83 }
3458     }
3459    
3460 dl 1.100 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3461     if (action == null) throw new NullPointerException();
3462 dl 1.118 Comparator<? super K> cmp = comparator;
3463     K f = fence;
3464     Node<K,V> e = current;
3465     for (; e != null; e = e.next) {
3466 dl 1.83 K k; Object v;
3467 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3468 dl 1.83 e = null;
3469     break;
3470     }
3471     if ((v = e.value) != null && v != e) {
3472     current = e.next;
3473 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3474     action.accept
3475     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3476 dl 1.83 return true;
3477     }
3478     }
3479     current = e;
3480     return false;
3481     }
3482 dl 1.100
3483     public int characteristics() {
3484 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3485 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3486 dl 1.100 Spliterator.NONNULL;
3487     }
3488 dl 1.113
3489     public final Comparator<Map.Entry<K,V>> getComparator() {
3490     return comparator == null ? null :
3491     Comparators.byKey(comparator);
3492     }
3493 dl 1.118 }
3494 dl 1.113
3495 dl 1.118 // Almost the same as keySpliterator()
3496     final EntrySpliterator<K,V> entrySpliterator() {
3497     Comparator<? super K> cmp = comparator;
3498     for (;;) { // almost same as key version
3499     HeadIndex<K,V> h; Node<K,V> p;
3500     Node<K,V> b = (h = head).node;
3501     if ((p = b.next) == null || p.value != null)
3502     return new EntrySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3503     0 : Integer.MAX_VALUE);
3504     p.helpDelete(b, p.next);
3505     }
3506 dl 1.83 }
3507    
3508 dl 1.59 // Unsafe mechanics
3509 dl 1.65 private static final sun.misc.Unsafe UNSAFE;
3510     private static final long headOffset;
3511 dl 1.92 private static final long SECONDARY;
3512 dl 1.65 static {
3513 dl 1.59 try {
3514 dl 1.65 UNSAFE = sun.misc.Unsafe.getUnsafe();
3515 jsr166 1.72 Class<?> k = ConcurrentSkipListMap.class;
3516 dl 1.65 headOffset = UNSAFE.objectFieldOffset
3517     (k.getDeclaredField("head"));
3518 dl 1.92 Class<?> tk = Thread.class;
3519     SECONDARY = UNSAFE.objectFieldOffset
3520     (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
3521    
3522 dl 1.65 } catch (Exception e) {
3523     throw new Error(e);
3524 dl 1.59 }
3525     }
3526 dl 1.1 }