ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.128
Committed: Thu Jul 18 17:38:29 2013 UTC (10 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.127: +2 -0 lines
Log Message:
javadoc warning fixes: add serialization method @param

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.67 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.118 import java.util.AbstractCollection;
9     import java.util.AbstractMap;
10     import java.util.AbstractSet;
11     import java.util.ArrayList;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.Comparator;
15     import java.util.Iterator;
16     import java.util.List;
17     import java.util.Map;
18     import java.util.NavigableMap;
19     import java.util.NavigableSet;
20     import java.util.NoSuchElementException;
21     import java.util.Set;
22     import java.util.SortedMap;
23     import java.util.SortedSet;
24 dl 1.83 import java.util.Spliterator;
25 dl 1.118 import java.util.concurrent.ConcurrentMap;
26     import java.util.concurrent.ConcurrentNavigableMap;
27     import java.util.function.BiFunction;
28 dl 1.94 import java.util.function.Consumer;
29 dl 1.123 import java.util.function.BiConsumer;
30 dl 1.109 import java.util.function.Function;
31 dl 1.83
32 dl 1.1 /**
33 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
34     * The map is sorted according to the {@linkplain Comparable natural
35     * ordering} of its keys, or by a {@link Comparator} provided at map
36     * creation time, depending on which constructor is used.
37 dl 1.1 *
38     * <p>This class implements a concurrent variant of <a
39 dl 1.66 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
40     * providing expected average <i>log(n)</i> time cost for the
41 jsr166 1.82 * {@code containsKey}, {@code get}, {@code put} and
42     * {@code remove} operations and their variants. Insertion, removal,
43 dl 1.1 * update, and access operations safely execute concurrently by
44 jsr166 1.51 * multiple threads. Iterators are <i>weakly consistent</i>, returning
45 dl 1.1 * elements reflecting the state of the map at some point at or since
46     * the creation of the iterator. They do <em>not</em> throw {@link
47 jsr166 1.121 * java.util.ConcurrentModificationException ConcurrentModificationException},
48     * and may proceed concurrently with other operations. Ascending key ordered
49     * views and their iterators are faster than descending ones.
50 dl 1.1 *
51 jsr166 1.82 * <p>All {@code Map.Entry} pairs returned by methods in this class
52 dl 1.1 * and its views represent snapshots of mappings at the time they were
53 jsr166 1.82 * produced. They do <em>not</em> support the {@code Entry.setValue}
54 dl 1.1 * method. (Note however that it is possible to change mappings in the
55 jsr166 1.82 * associated map using {@code put}, {@code putIfAbsent}, or
56     * {@code replace}, depending on exactly which effect you need.)
57 dl 1.1 *
58 jsr166 1.82 * <p>Beware that, unlike in most collections, the {@code size}
59 dl 1.1 * method is <em>not</em> a constant-time operation. Because of the
60     * asynchronous nature of these maps, determining the current number
61 dl 1.69 * of elements requires a traversal of the elements, and so may report
62     * inaccurate results if this collection is modified during traversal.
63 jsr166 1.82 * Additionally, the bulk operations {@code putAll}, {@code equals},
64     * {@code toArray}, {@code containsValue}, and {@code clear} are
65 dl 1.69 * <em>not</em> guaranteed to be performed atomically. For example, an
66 jsr166 1.82 * iterator operating concurrently with a {@code putAll} operation
67 dl 1.69 * might view only some of the added elements.
68 dl 1.1 *
69     * <p>This class and its views and iterators implement all of the
70     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
71     * interfaces. Like most other concurrent collections, this class does
72 jsr166 1.82 * <em>not</em> permit the use of {@code null} keys or values because some
73 jsr166 1.22 * null return values cannot be reliably distinguished from the absence of
74     * elements.
75 dl 1.1 *
76 jsr166 1.21 * <p>This class is a member of the
77 jsr166 1.51 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
78 jsr166 1.21 * Java Collections Framework</a>.
79     *
80 dl 1.1 * @author Doug Lea
81     * @param <K> the type of keys maintained by this map
82 dl 1.9 * @param <V> the type of mapped values
83 jsr166 1.20 * @since 1.6
84 dl 1.1 */
85 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
86 dl 1.1 implements ConcurrentNavigableMap<K,V>,
87 dl 1.9 Cloneable,
88 dl 1.1 java.io.Serializable {
89     /*
90     * This class implements a tree-like two-dimensionally linked skip
91     * list in which the index levels are represented in separate
92     * nodes from the base nodes holding data. There are two reasons
93     * for taking this approach instead of the usual array-based
94     * structure: 1) Array based implementations seem to encounter
95     * more complexity and overhead 2) We can use cheaper algorithms
96     * for the heavily-traversed index lists than can be used for the
97     * base lists. Here's a picture of some of the basics for a
98     * possible list with 2 levels of index:
99     *
100     * Head nodes Index nodes
101 dl 1.9 * +-+ right +-+ +-+
102 dl 1.1 * |2|---------------->| |--------------------->| |->null
103 dl 1.9 * +-+ +-+ +-+
104 dl 1.1 * | down | |
105     * v v v
106 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
107 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
108 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
109 dl 1.1 * v | | | | |
110     * Nodes next v v v v v
111 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
112 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
113 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
114 dl 1.1 *
115     * The base lists use a variant of the HM linked ordered set
116     * algorithm. See Tim Harris, "A pragmatic implementation of
117     * non-blocking linked lists"
118     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
119     * Michael "High Performance Dynamic Lock-Free Hash Tables and
120     * List-Based Sets"
121     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
122     * basic idea in these lists is to mark the "next" pointers of
123     * deleted nodes when deleting to avoid conflicts with concurrent
124     * insertions, and when traversing to keep track of triples
125     * (predecessor, node, successor) in order to detect when and how
126     * to unlink these deleted nodes.
127     *
128     * Rather than using mark-bits to mark list deletions (which can
129     * be slow and space-intensive using AtomicMarkedReference), nodes
130     * use direct CAS'able next pointers. On deletion, instead of
131     * marking a pointer, they splice in another node that can be
132     * thought of as standing for a marked pointer (indicating this by
133     * using otherwise impossible field values). Using plain nodes
134     * acts roughly like "boxed" implementations of marked pointers,
135     * but uses new nodes only when nodes are deleted, not for every
136     * link. This requires less space and supports faster
137     * traversal. Even if marked references were better supported by
138     * JVMs, traversal using this technique might still be faster
139     * because any search need only read ahead one more node than
140     * otherwise required (to check for trailing marker) rather than
141     * unmasking mark bits or whatever on each read.
142     *
143     * This approach maintains the essential property needed in the HM
144     * algorithm of changing the next-pointer of a deleted node so
145     * that any other CAS of it will fail, but implements the idea by
146     * changing the pointer to point to a different node, not by
147     * marking it. While it would be possible to further squeeze
148     * space by defining marker nodes not to have key/value fields, it
149     * isn't worth the extra type-testing overhead. The deletion
150     * markers are rarely encountered during traversal and are
151     * normally quickly garbage collected. (Note that this technique
152     * would not work well in systems without garbage collection.)
153     *
154     * In addition to using deletion markers, the lists also use
155     * nullness of value fields to indicate deletion, in a style
156     * similar to typical lazy-deletion schemes. If a node's value is
157     * null, then it is considered logically deleted and ignored even
158     * though it is still reachable. This maintains proper control of
159     * concurrent replace vs delete operations -- an attempted replace
160     * must fail if a delete beat it by nulling field, and a delete
161     * must return the last non-null value held in the field. (Note:
162     * Null, rather than some special marker, is used for value fields
163     * here because it just so happens to mesh with the Map API
164     * requirement that method get returns null if there is no
165     * mapping, which allows nodes to remain concurrently readable
166     * even when deleted. Using any other marker value here would be
167     * messy at best.)
168     *
169     * Here's the sequence of events for a deletion of node n with
170     * predecessor b and successor f, initially:
171     *
172 dl 1.9 * +------+ +------+ +------+
173 dl 1.1 * ... | b |------>| n |----->| f | ...
174 dl 1.9 * +------+ +------+ +------+
175 dl 1.1 *
176     * 1. CAS n's value field from non-null to null.
177     * From this point on, no public operations encountering
178     * the node consider this mapping to exist. However, other
179     * ongoing insertions and deletions might still modify
180     * n's next pointer.
181     *
182     * 2. CAS n's next pointer to point to a new marker node.
183     * From this point on, no other nodes can be appended to n.
184     * which avoids deletion errors in CAS-based linked lists.
185     *
186     * +------+ +------+ +------+ +------+
187     * ... | b |------>| n |----->|marker|------>| f | ...
188 dl 1.9 * +------+ +------+ +------+ +------+
189 dl 1.1 *
190     * 3. CAS b's next pointer over both n and its marker.
191     * From this point on, no new traversals will encounter n,
192     * and it can eventually be GCed.
193     * +------+ +------+
194     * ... | b |----------------------------------->| f | ...
195 dl 1.9 * +------+ +------+
196     *
197 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
198     * with another operation. Steps 2-3 can fail because some other
199     * thread noticed during a traversal a node with null value and
200     * helped out by marking and/or unlinking. This helping-out
201     * ensures that no thread can become stuck waiting for progress of
202     * the deleting thread. The use of marker nodes slightly
203     * complicates helping-out code because traversals must track
204     * consistent reads of up to four nodes (b, n, marker, f), not
205     * just (b, n, f), although the next field of a marker is
206     * immutable, and once a next field is CAS'ed to point to a
207     * marker, it never again changes, so this requires less care.
208     *
209     * Skip lists add indexing to this scheme, so that the base-level
210     * traversals start close to the locations being found, inserted
211     * or deleted -- usually base level traversals only traverse a few
212     * nodes. This doesn't change the basic algorithm except for the
213     * need to make sure base traversals start at predecessors (here,
214     * b) that are not (structurally) deleted, otherwise retrying
215 dl 1.9 * after processing the deletion.
216 dl 1.1 *
217     * Index levels are maintained as lists with volatile next fields,
218     * using CAS to link and unlink. Races are allowed in index-list
219     * operations that can (rarely) fail to link in a new index node
220     * or delete one. (We can't do this of course for data nodes.)
221     * However, even when this happens, the index lists remain sorted,
222     * so correctly serve as indices. This can impact performance,
223     * but since skip lists are probabilistic anyway, the net result
224     * is that under contention, the effective "p" value may be lower
225     * than its nominal value. And race windows are kept small enough
226     * that in practice these failures are rare, even under a lot of
227     * contention.
228     *
229     * The fact that retries (for both base and index lists) are
230     * relatively cheap due to indexing allows some minor
231     * simplifications of retry logic. Traversal restarts are
232     * performed after most "helping-out" CASes. This isn't always
233     * strictly necessary, but the implicit backoffs tend to help
234     * reduce other downstream failed CAS's enough to outweigh restart
235     * cost. This worsens the worst case, but seems to improve even
236     * highly contended cases.
237     *
238     * Unlike most skip-list implementations, index insertion and
239     * deletion here require a separate traversal pass occuring after
240     * the base-level action, to add or remove index nodes. This adds
241     * to single-threaded overhead, but improves contended
242     * multithreaded performance by narrowing interference windows,
243     * and allows deletion to ensure that all index nodes will be made
244     * unreachable upon return from a public remove operation, thus
245     * avoiding unwanted garbage retention. This is more important
246     * here than in some other data structures because we cannot null
247     * out node fields referencing user keys since they might still be
248     * read by other ongoing traversals.
249     *
250     * Indexing uses skip list parameters that maintain good search
251     * performance while using sparser-than-usual indices: The
252 dl 1.118 * hardwired parameters k=1, p=0.5 (see method doPut) mean
253 dl 1.1 * that about one-quarter of the nodes have indices. Of those that
254     * do, half have one level, a quarter have two, and so on (see
255     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
256     * requirement for a map is slightly less than for the current
257     * implementation of java.util.TreeMap.
258     *
259     * Changing the level of the index (i.e, the height of the
260     * tree-like structure) also uses CAS. The head index has initial
261     * level/height of one. Creation of an index with height greater
262     * than the current level adds a level to the head index by
263     * CAS'ing on a new top-most head. To maintain good performance
264     * after a lot of removals, deletion methods heuristically try to
265     * reduce the height if the topmost levels appear to be empty.
266     * This may encounter races in which it possible (but rare) to
267     * reduce and "lose" a level just as it is about to contain an
268     * index (that will then never be encountered). This does no
269     * structural harm, and in practice appears to be a better option
270     * than allowing unrestrained growth of levels.
271     *
272     * The code for all this is more verbose than you'd like. Most
273     * operations entail locating an element (or position to insert an
274     * element). The code to do this can't be nicely factored out
275     * because subsequent uses require a snapshot of predecessor
276     * and/or successor and/or value fields which can't be returned
277     * all at once, at least not without creating yet another object
278     * to hold them -- creating such little objects is an especially
279     * bad idea for basic internal search operations because it adds
280     * to GC overhead. (This is one of the few times I've wished Java
281     * had macros.) Instead, some traversal code is interleaved within
282     * insertion and removal operations. The control logic to handle
283     * all the retry conditions is sometimes twisty. Most search is
284     * broken into 2 parts. findPredecessor() searches index nodes
285     * only, returning a base-level predecessor of the key. findNode()
286     * finishes out the base-level search. Even with this factoring,
287     * there is a fair amount of near-duplication of code to handle
288     * variants.
289     *
290 dl 1.92 * To produce random values without interference across threads,
291     * we use within-JDK thread local random support (via the
292     * "secondary seed", to avoid interference with user-level
293     * ThreadLocalRandom.)
294     *
295 dl 1.88 * A previous version of this class wrapped non-comparable keys
296     * with their comparators to emulate Comparables when using
297 dl 1.118 * comparators vs Comparables. However, JVMs now appear to better
298     * handle infusing comparator-vs-comparable choice into search
299     * loops. Static method cpr(comparator, x, y) is used for all
300     * comparisons, which works well as long as the comparator
301     * argument is set up outside of loops (thus sometimes passed as
302     * an argument to internal methods) to avoid field re-reads.
303 dl 1.88 *
304 dl 1.1 * For explanation of algorithms sharing at least a couple of
305     * features with this one, see Mikhail Fomitchev's thesis
306     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
307 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
308 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
309     *
310     * Given the use of tree-like index nodes, you might wonder why
311     * this doesn't use some kind of search tree instead, which would
312     * support somewhat faster search operations. The reason is that
313     * there are no known efficient lock-free insertion and deletion
314     * algorithms for search trees. The immutability of the "down"
315     * links of index nodes (as opposed to mutable "left" fields in
316     * true trees) makes this tractable using only CAS operations.
317     *
318     * Notation guide for local variables
319     * Node: b, n, f for predecessor, node, successor
320     * Index: q, r, d for index node, right, down.
321     * t for another index node
322     * Head: h
323     * Levels: j
324     * Keys: k, key
325     * Values: v, value
326     * Comparisons: c
327     */
328    
329     private static final long serialVersionUID = -8627078645895051609L;
330    
331     /**
332     * Special value used to identify base-level header
333 dl 1.9 */
334 dl 1.1 private static final Object BASE_HEADER = new Object();
335    
336     /**
337 dl 1.9 * The topmost head index of the skiplist.
338 dl 1.1 */
339     private transient volatile HeadIndex<K,V> head;
340    
341     /**
342 dl 1.118 * The comparator used to maintain order in this map, or null if
343     * using natural ordering. (Non-private to simplify access in
344 jsr166 1.120 * nested classes.)
345 dl 1.1 * @serial
346     */
347 dl 1.118 final Comparator<? super K> comparator;
348 dl 1.1
349     /** Lazily initialized key set */
350 dl 1.118 private transient KeySet<K> keySet;
351 dl 1.1 /** Lazily initialized entry set */
352 jsr166 1.71 private transient EntrySet<K,V> entrySet;
353 dl 1.1 /** Lazily initialized values collection */
354 jsr166 1.71 private transient Values<V> values;
355 dl 1.1 /** Lazily initialized descending key set */
356 dl 1.46 private transient ConcurrentNavigableMap<K,V> descendingMap;
357 dl 1.1
358     /**
359 jsr166 1.13 * Initializes or resets state. Needed by constructors, clone,
360 dl 1.1 * clear, readObject. and ConcurrentSkipListSet.clone.
361     * (Note that comparator must be separately initialized.)
362     */
363 dl 1.118 private void initialize() {
364 dl 1.1 keySet = null;
365 dl 1.9 entrySet = null;
366 dl 1.1 values = null;
367 dl 1.46 descendingMap = null;
368 dl 1.1 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
369     null, null, 1);
370     }
371    
372     /**
373     * compareAndSet head node
374     */
375     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
376 dl 1.59 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
377 dl 1.1 }
378    
379     /* ---------------- Nodes -------------- */
380    
381     /**
382     * Nodes hold keys and values, and are singly linked in sorted
383     * order, possibly with some intervening marker nodes. The list is
384     * headed by a dummy node accessible as head.node. The value field
385     * is declared only as Object because it takes special non-V
386     * values for marker and header nodes.
387     */
388     static final class Node<K,V> {
389     final K key;
390     volatile Object value;
391     volatile Node<K,V> next;
392    
393     /**
394     * Creates a new regular node.
395     */
396     Node(K key, Object value, Node<K,V> next) {
397     this.key = key;
398     this.value = value;
399     this.next = next;
400     }
401    
402     /**
403     * Creates a new marker node. A marker is distinguished by
404     * having its value field point to itself. Marker nodes also
405     * have null keys, a fact that is exploited in a few places,
406     * but this doesn't distinguish markers from the base-level
407     * header node (head.node), which also has a null key.
408     */
409     Node(Node<K,V> next) {
410     this.key = null;
411     this.value = this;
412     this.next = next;
413     }
414    
415     /**
416     * compareAndSet value field
417     */
418     boolean casValue(Object cmp, Object val) {
419 dl 1.59 return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val);
420 dl 1.1 }
421 jsr166 1.60
422 dl 1.1 /**
423     * compareAndSet next field
424     */
425     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
426 dl 1.59 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
427 dl 1.1 }
428    
429     /**
430 jsr166 1.10 * Returns true if this node is a marker. This method isn't
431     * actually called in any current code checking for markers
432 dl 1.1 * because callers will have already read value field and need
433     * to use that read (not another done here) and so directly
434     * test if value points to node.
435 jsr166 1.93 *
436 dl 1.1 * @return true if this node is a marker node
437     */
438     boolean isMarker() {
439     return value == this;
440     }
441    
442     /**
443 jsr166 1.10 * Returns true if this node is the header of base-level list.
444 dl 1.1 * @return true if this node is header node
445     */
446     boolean isBaseHeader() {
447     return value == BASE_HEADER;
448     }
449    
450     /**
451     * Tries to append a deletion marker to this node.
452     * @param f the assumed current successor of this node
453     * @return true if successful
454     */
455     boolean appendMarker(Node<K,V> f) {
456     return casNext(f, new Node<K,V>(f));
457     }
458    
459     /**
460     * Helps out a deletion by appending marker or unlinking from
461     * predecessor. This is called during traversals when value
462     * field seen to be null.
463     * @param b predecessor
464     * @param f successor
465     */
466     void helpDelete(Node<K,V> b, Node<K,V> f) {
467     /*
468     * Rechecking links and then doing only one of the
469     * help-out stages per call tends to minimize CAS
470     * interference among helping threads.
471     */
472     if (f == next && this == b.next) {
473     if (f == null || f.value != f) // not already marked
474 dl 1.118 casNext(f, new Node<K,V>(f));
475 dl 1.1 else
476     b.casNext(this, f.next);
477     }
478     }
479    
480     /**
481 jsr166 1.11 * Returns value if this node contains a valid key-value pair,
482 dl 1.9 * else null.
483 dl 1.1 * @return this node's value if it isn't a marker or header or
484 jsr166 1.126 * is deleted, else null
485 dl 1.1 */
486     V getValidValue() {
487     Object v = value;
488     if (v == this || v == BASE_HEADER)
489     return null;
490 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
491     return vv;
492 dl 1.1 }
493    
494     /**
495 jsr166 1.10 * Creates and returns a new SimpleImmutableEntry holding current
496     * mapping if this node holds a valid value, else null.
497 dl 1.1 * @return new entry or null
498     */
499 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
500 dl 1.118 Object v = value;
501     if (v == null || v == this || v == BASE_HEADER)
502 dl 1.1 return null;
503 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
504     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
505 dl 1.1 }
506 dl 1.59
507 dl 1.65 // UNSAFE mechanics
508    
509     private static final sun.misc.Unsafe UNSAFE;
510     private static final long valueOffset;
511     private static final long nextOffset;
512 dl 1.59
513 dl 1.65 static {
514     try {
515     UNSAFE = sun.misc.Unsafe.getUnsafe();
516 jsr166 1.72 Class<?> k = Node.class;
517 dl 1.65 valueOffset = UNSAFE.objectFieldOffset
518     (k.getDeclaredField("value"));
519     nextOffset = UNSAFE.objectFieldOffset
520     (k.getDeclaredField("next"));
521     } catch (Exception e) {
522     throw new Error(e);
523     }
524     }
525 dl 1.1 }
526    
527     /* ---------------- Indexing -------------- */
528    
529     /**
530 dl 1.40 * Index nodes represent the levels of the skip list. Note that
531     * even though both Nodes and Indexes have forward-pointing
532     * fields, they have different types and are handled in different
533     * ways, that can't nicely be captured by placing field in a
534     * shared abstract class.
535 dl 1.1 */
536     static class Index<K,V> {
537     final Node<K,V> node;
538     final Index<K,V> down;
539     volatile Index<K,V> right;
540    
541     /**
542 jsr166 1.10 * Creates index node with given values.
543 dl 1.9 */
544 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
545     this.node = node;
546     this.down = down;
547     this.right = right;
548     }
549    
550     /**
551     * compareAndSet right field
552     */
553     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
554 dl 1.59 return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val);
555 dl 1.1 }
556    
557     /**
558     * Returns true if the node this indexes has been deleted.
559     * @return true if indexed node is known to be deleted
560     */
561     final boolean indexesDeletedNode() {
562     return node.value == null;
563     }
564    
565     /**
566     * Tries to CAS newSucc as successor. To minimize races with
567     * unlink that may lose this index node, if the node being
568     * indexed is known to be deleted, it doesn't try to link in.
569     * @param succ the expected current successor
570     * @param newSucc the new successor
571     * @return true if successful
572     */
573     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
574     Node<K,V> n = node;
575 dl 1.9 newSucc.right = succ;
576 dl 1.1 return n.value != null && casRight(succ, newSucc);
577     }
578    
579     /**
580     * Tries to CAS right field to skip over apparent successor
581     * succ. Fails (forcing a retraversal by caller) if this node
582     * is known to be deleted.
583     * @param succ the expected current successor
584     * @return true if successful
585     */
586     final boolean unlink(Index<K,V> succ) {
587 dl 1.118 return node.value != null && casRight(succ, succ.right);
588 dl 1.1 }
589 dl 1.59
590     // Unsafe mechanics
591 dl 1.65 private static final sun.misc.Unsafe UNSAFE;
592     private static final long rightOffset;
593     static {
594     try {
595     UNSAFE = sun.misc.Unsafe.getUnsafe();
596 jsr166 1.72 Class<?> k = Index.class;
597 dl 1.65 rightOffset = UNSAFE.objectFieldOffset
598     (k.getDeclaredField("right"));
599     } catch (Exception e) {
600     throw new Error(e);
601     }
602     }
603 dl 1.1 }
604    
605     /* ---------------- Head nodes -------------- */
606    
607     /**
608     * Nodes heading each level keep track of their level.
609     */
610     static final class HeadIndex<K,V> extends Index<K,V> {
611     final int level;
612     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
613     super(node, down, right);
614     this.level = level;
615     }
616 dl 1.9 }
617 dl 1.1
618     /* ---------------- Comparison utilities -------------- */
619    
620     /**
621 dl 1.118 * Compares using comparator or natural ordering if null.
622     * Called only by methods that have performed required type checks.
623 dl 1.1 */
624 dl 1.118 @SuppressWarnings({"unchecked", "rawtypes"})
625     static final int cpr(Comparator c, Object x, Object y) {
626     return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
627 dl 1.1 }
628    
629     /* ---------------- Traversal -------------- */
630    
631     /**
632 jsr166 1.10 * Returns a base-level node with key strictly less than given key,
633 dl 1.1 * or the base-level header if there is no such node. Also
634     * unlinks indexes to deleted nodes found along the way. Callers
635     * rely on this side-effect of clearing indices to deleted nodes.
636     * @param key the key
637 dl 1.9 * @return a predecessor of key
638 dl 1.1 */
639 dl 1.118 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
640 jsr166 1.41 if (key == null)
641 dl 1.40 throw new NullPointerException(); // don't postpone errors
642 dl 1.1 for (;;) {
643 dl 1.118 for (Index<K,V> q = head, r = q.right, d;;) {
644 dl 1.40 if (r != null) {
645     Node<K,V> n = r.node;
646     K k = n.key;
647     if (n.value == null) {
648     if (!q.unlink(r))
649     break; // restart
650     r = q.right; // reread r
651     continue;
652 dl 1.1 }
653 dl 1.118 if (cpr(cmp, key, k) > 0) {
654 dl 1.1 q = r;
655 dl 1.40 r = r.right;
656 dl 1.1 continue;
657     }
658     }
659 dl 1.118 if ((d = q.down) == null)
660 dl 1.1 return q.node;
661 dl 1.118 q = d;
662     r = d.right;
663 dl 1.1 }
664     }
665     }
666    
667     /**
668 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
669 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
670     * base-level looking for key starting at predecessor returned
671     * from findPredecessor, processing base-level deletions as
672     * encountered. Some callers rely on this side-effect of clearing
673     * deleted nodes.
674     *
675     * Restarts occur, at traversal step centered on node n, if:
676     *
677     * (1) After reading n's next field, n is no longer assumed
678     * predecessor b's current successor, which means that
679     * we don't have a consistent 3-node snapshot and so cannot
680     * unlink any subsequent deleted nodes encountered.
681     *
682     * (2) n's value field is null, indicating n is deleted, in
683     * which case we help out an ongoing structural deletion
684     * before retrying. Even though there are cases where such
685     * unlinking doesn't require restart, they aren't sorted out
686     * here because doing so would not usually outweigh cost of
687     * restarting.
688     *
689 dl 1.9 * (3) n is a marker or n's predecessor's value field is null,
690 dl 1.1 * indicating (among other possibilities) that
691     * findPredecessor returned a deleted node. We can't unlink
692     * the node because we don't know its predecessor, so rely
693     * on another call to findPredecessor to notice and return
694     * some earlier predecessor, which it will do. This check is
695     * only strictly needed at beginning of loop, (and the
696     * b.value check isn't strictly needed at all) but is done
697     * each iteration to help avoid contention with other
698     * threads by callers that will fail to be able to change
699     * links, and so will retry anyway.
700     *
701     * The traversal loops in doPut, doRemove, and findNear all
702     * include the same three kinds of checks. And specialized
703 dl 1.31 * versions appear in findFirst, and findLast and their
704     * variants. They can't easily share code because each uses the
705 dl 1.1 * reads of fields held in locals occurring in the orders they
706     * were performed.
707 dl 1.9 *
708 dl 1.1 * @param key the key
709 jsr166 1.22 * @return node holding key, or null if no such
710 dl 1.1 */
711 dl 1.118 private Node<K,V> findNode(Object key) {
712 dl 1.88 if (key == null)
713     throw new NullPointerException(); // don't postpone errors
714 dl 1.118 Comparator<? super K> cmp = comparator;
715     outer: for (;;) {
716     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
717     Object v; int c;
718 dl 1.9 if (n == null)
719 dl 1.118 break outer;
720 dl 1.1 Node<K,V> f = n.next;
721     if (n != b.next) // inconsistent read
722     break;
723 dl 1.118 if ((v = n.value) == null) { // n is deleted
724 dl 1.1 n.helpDelete(b, f);
725     break;
726     }
727 dl 1.118 if (b.value == null || v == n) // b is deleted
728 dl 1.1 break;
729 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0)
730 dl 1.40 return n;
731 dl 1.1 if (c < 0)
732 dl 1.118 break outer;
733 dl 1.1 b = n;
734     n = f;
735     }
736     }
737 dl 1.118 return null;
738 dl 1.1 }
739    
740 dl 1.9 /**
741 dl 1.88 * Gets value for key. Almost the same as findNode, but returns
742     * the found value (to avoid retries during re-reads)
743     *
744 dl 1.118 * @param key the key
745 dl 1.1 * @return the value, or null if absent
746     */
747 dl 1.118 private V doGet(Object key) {
748     if (key == null)
749 dl 1.88 throw new NullPointerException();
750 dl 1.118 Comparator<? super K> cmp = comparator;
751     outer: for (;;) {
752     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
753     Object v; int c;
754 dl 1.88 if (n == null)
755 dl 1.118 break outer;
756 dl 1.88 Node<K,V> f = n.next;
757     if (n != b.next) // inconsistent read
758     break;
759 dl 1.118 if ((v = n.value) == null) { // n is deleted
760 dl 1.88 n.helpDelete(b, f);
761     break;
762     }
763 dl 1.118 if (b.value == null || v == n) // b is deleted
764 dl 1.88 break;
765 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0) {
766     @SuppressWarnings("unchecked") V vv = (V)v;
767 dl 1.100 return vv;
768 dl 1.118 }
769 dl 1.88 if (c < 0)
770 dl 1.118 break outer;
771 dl 1.88 b = n;
772     n = f;
773     }
774 dl 1.1 }
775 dl 1.118 return null;
776 dl 1.1 }
777    
778     /* ---------------- Insertion -------------- */
779    
780     /**
781     * Main insertion method. Adds element if not present, or
782     * replaces value if present and onlyIfAbsent is false.
783 dl 1.118 * @param key the key
784 jsr166 1.103 * @param value the value that must be associated with key
785 dl 1.1 * @param onlyIfAbsent if should not insert if already present
786     * @return the old value, or null if newly inserted
787     */
788 dl 1.118 private V doPut(K key, V value, boolean onlyIfAbsent) {
789     Node<K,V> z; // added node
790     if (key == null)
791 dl 1.88 throw new NullPointerException();
792 dl 1.118 Comparator<? super K> cmp = comparator;
793     outer: for (;;) {
794     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
795 dl 1.1 if (n != null) {
796 dl 1.118 Object v; int c;
797 dl 1.1 Node<K,V> f = n.next;
798     if (n != b.next) // inconsistent read
799 jsr166 1.57 break;
800 dl 1.118 if ((v = n.value) == null) { // n is deleted
801 dl 1.1 n.helpDelete(b, f);
802     break;
803     }
804 dl 1.118 if (b.value == null || v == n) // b is deleted
805 dl 1.1 break;
806 dl 1.118 if ((c = cpr(cmp, key, n.key)) > 0) {
807 dl 1.1 b = n;
808     n = f;
809     continue;
810     }
811     if (c == 0) {
812 dl 1.118 if (onlyIfAbsent || n.casValue(v, value)) {
813     @SuppressWarnings("unchecked") V vv = (V)v;
814 dl 1.100 return vv;
815 dl 1.118 }
816     break; // restart if lost race to replace value
817 dl 1.1 }
818     // else c < 0; fall through
819     }
820 dl 1.9
821 dl 1.118 z = new Node<K,V>(key, value, n);
822 dl 1.9 if (!b.casNext(n, z))
823 dl 1.1 break; // restart if lost race to append to b
824 dl 1.118 break outer;
825 dl 1.1 }
826     }
827    
828 dl 1.122 int rnd = ThreadLocalRandom.nextSecondarySeed();
829 dl 1.92 if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
830     int level = 1, max;
831     while (((rnd >>>= 1) & 1) != 0)
832     ++level;
833 dl 1.1 Index<K,V> idx = null;
834 dl 1.92 HeadIndex<K,V> h = head;
835     if (level <= (max = h.level)) {
836     for (int i = 1; i <= level; ++i)
837     idx = new Index<K,V>(z, idx, null);
838 dl 1.1 }
839 dl 1.92 else { // try to grow by one level
840     level = max + 1; // hold in array and later pick the one to use
841 dl 1.118 @SuppressWarnings("unchecked")Index<K,V>[] idxs =
842     (Index<K,V>[])new Index<?,?>[level+1];
843 dl 1.92 for (int i = 1; i <= level; ++i)
844     idxs[i] = idx = new Index<K,V>(z, idx, null);
845     for (;;) {
846     h = head;
847     int oldLevel = h.level;
848     if (level <= oldLevel) // lost race to add level
849     break;
850     HeadIndex<K,V> newh = h;
851     Node<K,V> oldbase = h.node;
852     for (int j = oldLevel+1; j <= level; ++j)
853     newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
854     if (casHead(h, newh)) {
855     h = newh;
856     idx = idxs[level = oldLevel];
857     break;
858 dl 1.1 }
859     }
860 dl 1.92 }
861 dl 1.118 // find insertion points and splice in
862     splice: for (int insertionLevel = level;;) {
863 dl 1.92 int j = h.level;
864 dl 1.118 for (Index<K,V> q = h, r = q.right, t = idx;;) {
865 dl 1.92 if (q == null || t == null)
866 dl 1.118 break splice;
867 dl 1.92 if (r != null) {
868     Node<K,V> n = r.node;
869     // compare before deletion check avoids needing recheck
870 dl 1.118 int c = cpr(cmp, key, n.key);
871 dl 1.92 if (n.value == null) {
872     if (!q.unlink(r))
873     break;
874     r = q.right;
875     continue;
876     }
877     if (c > 0) {
878     q = r;
879     r = r.right;
880     continue;
881     }
882 dl 1.1 }
883 dl 1.92
884     if (j == insertionLevel) {
885     if (!q.link(r, t))
886     break; // restart
887     if (t.node.value == null) {
888 dl 1.118 findNode(key);
889     break splice;
890 dl 1.88 }
891 dl 1.92 if (--insertionLevel == 0)
892 dl 1.118 break splice;
893 dl 1.1 }
894 dl 1.92
895     if (--j >= insertionLevel && j < level)
896     t = t.down;
897     q = q.down;
898     r = q.right;
899 dl 1.1 }
900     }
901     }
902 dl 1.118 return null;
903 dl 1.1 }
904    
905     /* ---------------- Deletion -------------- */
906    
907     /**
908     * Main deletion method. Locates node, nulls value, appends a
909     * deletion marker, unlinks predecessor, removes associated index
910     * nodes, and possibly reduces head index level.
911     *
912     * Index nodes are cleared out simply by calling findPredecessor.
913     * which unlinks indexes to deleted nodes found along path to key,
914     * which will include the indexes to this node. This is done
915     * unconditionally. We can't check beforehand whether there are
916     * index nodes because it might be the case that some or all
917     * indexes hadn't been inserted yet for this node during initial
918     * search for it, and we'd like to ensure lack of garbage
919 dl 1.9 * retention, so must call to be sure.
920 dl 1.1 *
921 dl 1.118 * @param key the key
922 dl 1.1 * @param value if non-null, the value that must be
923     * associated with key
924     * @return the node, or null if not found
925     */
926 dl 1.118 final V doRemove(Object key, Object value) {
927     if (key == null)
928 dl 1.88 throw new NullPointerException();
929 dl 1.118 Comparator<? super K> cmp = comparator;
930     outer: for (;;) {
931     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
932     Object v; int c;
933 dl 1.9 if (n == null)
934 dl 1.118 break outer;
935 dl 1.1 Node<K,V> f = n.next;
936     if (n != b.next) // inconsistent read
937     break;
938 dl 1.118 if ((v = n.value) == null) { // n is deleted
939 dl 1.1 n.helpDelete(b, f);
940     break;
941     }
942 dl 1.118 if (b.value == null || v == n) // b is deleted
943 dl 1.1 break;
944 dl 1.118 if ((c = cpr(cmp, key, n.key)) < 0)
945     break outer;
946 dl 1.1 if (c > 0) {
947     b = n;
948     n = f;
949     continue;
950     }
951 dl 1.9 if (value != null && !value.equals(v))
952 dl 1.118 break outer;
953 dl 1.9 if (!n.casValue(v, null))
954 dl 1.1 break;
955 dl 1.9 if (!n.appendMarker(f) || !b.casNext(n, f))
956 dl 1.118 findNode(key); // retry via findNode
957 dl 1.1 else {
958 dl 1.118 findPredecessor(key, cmp); // clean index
959 dl 1.9 if (head.right == null)
960 dl 1.1 tryReduceLevel();
961     }
962 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
963     return vv;
964 dl 1.1 }
965     }
966 dl 1.118 return null;
967 dl 1.1 }
968    
969     /**
970     * Possibly reduce head level if it has no nodes. This method can
971     * (rarely) make mistakes, in which case levels can disappear even
972     * though they are about to contain index nodes. This impacts
973     * performance, not correctness. To minimize mistakes as well as
974     * to reduce hysteresis, the level is reduced by one only if the
975     * topmost three levels look empty. Also, if the removed level
976     * looks non-empty after CAS, we try to change it back quick
977     * before anyone notices our mistake! (This trick works pretty
978     * well because this method will practically never make mistakes
979     * unless current thread stalls immediately before first CAS, in
980     * which case it is very unlikely to stall again immediately
981     * afterwards, so will recover.)
982     *
983     * We put up with all this rather than just let levels grow
984     * because otherwise, even a small map that has undergone a large
985     * number of insertions and removals will have a lot of levels,
986     * slowing down access more than would an occasional unwanted
987     * reduction.
988     */
989     private void tryReduceLevel() {
990     HeadIndex<K,V> h = head;
991     HeadIndex<K,V> d;
992     HeadIndex<K,V> e;
993     if (h.level > 3 &&
994 dl 1.9 (d = (HeadIndex<K,V>)h.down) != null &&
995     (e = (HeadIndex<K,V>)d.down) != null &&
996     e.right == null &&
997     d.right == null &&
998 dl 1.1 h.right == null &&
999     casHead(h, d) && // try to set
1000     h.right != null) // recheck
1001     casHead(d, h); // try to backout
1002     }
1003    
1004     /* ---------------- Finding and removing first element -------------- */
1005    
1006     /**
1007 jsr166 1.22 * Specialized variant of findNode to get first valid node.
1008 dl 1.1 * @return first node or null if empty
1009     */
1010 dl 1.118 final Node<K,V> findFirst() {
1011     for (Node<K,V> b, n;;) {
1012     if ((n = (b = head.node).next) == null)
1013 dl 1.1 return null;
1014 dl 1.9 if (n.value != null)
1015 dl 1.1 return n;
1016     n.helpDelete(b, n.next);
1017     }
1018     }
1019    
1020     /**
1021 dl 1.25 * Removes first entry; returns its snapshot.
1022 jsr166 1.28 * @return null if empty, else snapshot of first entry
1023 dl 1.1 */
1024 dl 1.118 private Map.Entry<K,V> doRemoveFirstEntry() {
1025     for (Node<K,V> b, n;;) {
1026     if ((n = (b = head.node).next) == null)
1027 dl 1.1 return null;
1028     Node<K,V> f = n.next;
1029     if (n != b.next)
1030     continue;
1031     Object v = n.value;
1032     if (v == null) {
1033     n.helpDelete(b, f);
1034     continue;
1035     }
1036     if (!n.casValue(v, null))
1037     continue;
1038     if (!n.appendMarker(f) || !b.casNext(n, f))
1039     findFirst(); // retry
1040     clearIndexToFirst();
1041 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
1042     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, vv);
1043 jsr166 1.55 }
1044 dl 1.1 }
1045    
1046     /**
1047 jsr166 1.10 * Clears out index nodes associated with deleted first entry.
1048 dl 1.1 */
1049     private void clearIndexToFirst() {
1050     for (;;) {
1051 dl 1.118 for (Index<K,V> q = head;;) {
1052 dl 1.1 Index<K,V> r = q.right;
1053     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1054 dl 1.9 break;
1055 dl 1.1 if ((q = q.down) == null) {
1056 dl 1.9 if (head.right == null)
1057 dl 1.1 tryReduceLevel();
1058     return;
1059     }
1060     }
1061     }
1062     }
1063    
1064 dl 1.88 /**
1065     * Removes last entry; returns its snapshot.
1066     * Specialized variant of doRemove.
1067     * @return null if empty, else snapshot of last entry
1068     */
1069 dl 1.118 private Map.Entry<K,V> doRemoveLastEntry() {
1070 dl 1.88 for (;;) {
1071     Node<K,V> b = findPredecessorOfLast();
1072     Node<K,V> n = b.next;
1073     if (n == null) {
1074     if (b.isBaseHeader()) // empty
1075     return null;
1076     else
1077     continue; // all b's successors are deleted; retry
1078     }
1079     for (;;) {
1080     Node<K,V> f = n.next;
1081     if (n != b.next) // inconsistent read
1082     break;
1083     Object v = n.value;
1084     if (v == null) { // n is deleted
1085     n.helpDelete(b, f);
1086     break;
1087     }
1088 dl 1.118 if (b.value == null || v == n) // b is deleted
1089 dl 1.88 break;
1090     if (f != null) {
1091     b = n;
1092     n = f;
1093     continue;
1094     }
1095     if (!n.casValue(v, null))
1096     break;
1097     K key = n.key;
1098 dl 1.118 if (!n.appendMarker(f) || !b.casNext(n, f))
1099     findNode(key); // retry via findNode
1100     else { // clean index
1101     findPredecessor(key, comparator);
1102 dl 1.88 if (head.right == null)
1103     tryReduceLevel();
1104     }
1105 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
1106     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
1107 dl 1.88 }
1108     }
1109     }
1110 dl 1.1
1111     /* ---------------- Finding and removing last element -------------- */
1112    
1113     /**
1114 jsr166 1.10 * Specialized version of find to get last valid node.
1115 dl 1.1 * @return last node or null if empty
1116     */
1117 dl 1.118 final Node<K,V> findLast() {
1118 dl 1.1 /*
1119     * findPredecessor can't be used to traverse index level
1120     * because this doesn't use comparisons. So traversals of
1121     * both levels are folded together.
1122     */
1123     Index<K,V> q = head;
1124     for (;;) {
1125     Index<K,V> d, r;
1126     if ((r = q.right) != null) {
1127     if (r.indexesDeletedNode()) {
1128     q.unlink(r);
1129     q = head; // restart
1130 dl 1.9 }
1131 dl 1.1 else
1132     q = r;
1133     } else if ((d = q.down) != null) {
1134     q = d;
1135     } else {
1136 dl 1.118 for (Node<K,V> b = q.node, n = b.next;;) {
1137 dl 1.9 if (n == null)
1138 jsr166 1.61 return b.isBaseHeader() ? null : b;
1139 dl 1.1 Node<K,V> f = n.next; // inconsistent read
1140     if (n != b.next)
1141     break;
1142     Object v = n.value;
1143     if (v == null) { // n is deleted
1144     n.helpDelete(b, f);
1145     break;
1146     }
1147 dl 1.118 if (b.value == null || v == n) // b is deleted
1148 dl 1.1 break;
1149     b = n;
1150     n = f;
1151     }
1152     q = head; // restart
1153     }
1154     }
1155     }
1156    
1157 dl 1.31 /**
1158 jsr166 1.32 * Specialized variant of findPredecessor to get predecessor of last
1159     * valid node. Needed when removing the last entry. It is possible
1160     * that all successors of returned node will have been deleted upon
1161 dl 1.31 * return, in which case this method can be retried.
1162     * @return likely predecessor of last node
1163     */
1164     private Node<K,V> findPredecessorOfLast() {
1165     for (;;) {
1166 dl 1.118 for (Index<K,V> q = head;;) {
1167 dl 1.31 Index<K,V> d, r;
1168     if ((r = q.right) != null) {
1169     if (r.indexesDeletedNode()) {
1170     q.unlink(r);
1171     break; // must restart
1172     }
1173     // proceed as far across as possible without overshooting
1174     if (r.node.next != null) {
1175     q = r;
1176     continue;
1177     }
1178     }
1179     if ((d = q.down) != null)
1180     q = d;
1181     else
1182     return q.node;
1183     }
1184     }
1185     }
1186 dl 1.1
1187 dl 1.88 /* ---------------- Relational operations -------------- */
1188    
1189     // Control values OR'ed as arguments to findNear
1190    
1191     private static final int EQ = 1;
1192     private static final int LT = 2;
1193     private static final int GT = 0; // Actually checked as !LT
1194    
1195 dl 1.1 /**
1196 dl 1.88 * Utility for ceiling, floor, lower, higher methods.
1197 dl 1.118 * @param key the key
1198 dl 1.88 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1199     * @return nearest node fitting relation, or null if no such
1200 dl 1.1 */
1201 dl 1.118 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1202     if (key == null)
1203     throw new NullPointerException();
1204 dl 1.88 for (;;) {
1205 dl 1.118 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
1206     Object v;
1207 dl 1.88 if (n == null)
1208     return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1209     Node<K,V> f = n.next;
1210     if (n != b.next) // inconsistent read
1211     break;
1212 dl 1.118 if ((v = n.value) == null) { // n is deleted
1213 dl 1.88 n.helpDelete(b, f);
1214     break;
1215     }
1216 dl 1.118 if (b.value == null || v == n) // b is deleted
1217 dl 1.88 break;
1218 dl 1.118 int c = cpr(cmp, key, n.key);
1219 dl 1.88 if ((c == 0 && (rel & EQ) != 0) ||
1220     (c < 0 && (rel & LT) == 0))
1221     return n;
1222     if ( c <= 0 && (rel & LT) != 0)
1223     return b.isBaseHeader() ? null : b;
1224     b = n;
1225     n = f;
1226     }
1227     }
1228     }
1229    
1230 dl 1.1 /**
1231 jsr166 1.10 * Returns SimpleImmutableEntry for results of findNear.
1232 dl 1.40 * @param key the key
1233 dl 1.1 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1234     * @return Entry fitting relation, or null if no such
1235     */
1236 dl 1.118 final AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1237     Comparator<? super K> cmp = comparator;
1238 dl 1.1 for (;;) {
1239 dl 1.118 Node<K,V> n = findNear(key, rel, cmp);
1240 dl 1.1 if (n == null)
1241     return null;
1242 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1243 dl 1.1 if (e != null)
1244     return e;
1245     }
1246     }
1247    
1248     /* ---------------- Constructors -------------- */
1249    
1250     /**
1251 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1252     * {@linkplain Comparable natural ordering} of the keys.
1253 dl 1.1 */
1254     public ConcurrentSkipListMap() {
1255     this.comparator = null;
1256     initialize();
1257     }
1258    
1259     /**
1260 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1261     * comparator.
1262 dl 1.1 *
1263 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1264 jsr166 1.82 * If {@code null}, the {@linkplain Comparable natural
1265 jsr166 1.22 * ordering} of the keys will be used.
1266 dl 1.1 */
1267 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1268     this.comparator = comparator;
1269 dl 1.1 initialize();
1270     }
1271    
1272     /**
1273     * Constructs a new map containing the same mappings as the given map,
1274 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1275     * the keys.
1276 dl 1.1 *
1277 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1278 jsr166 1.82 * @throws ClassCastException if the keys in {@code m} are not
1279 jsr166 1.22 * {@link Comparable}, or are not mutually comparable
1280     * @throws NullPointerException if the specified map or any of its keys
1281     * or values are null
1282 dl 1.1 */
1283     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1284     this.comparator = null;
1285     initialize();
1286     putAll(m);
1287     }
1288    
1289     /**
1290 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1291     * same ordering as the specified sorted map.
1292     *
1293 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1294 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1295     * @throws NullPointerException if the specified sorted map or any of
1296     * its keys or values are null
1297 dl 1.1 */
1298     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1299     this.comparator = m.comparator();
1300     initialize();
1301     buildFromSorted(m);
1302     }
1303    
1304     /**
1305 jsr166 1.82 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1306 jsr166 1.22 * instance. (The keys and values themselves are not cloned.)
1307 dl 1.1 *
1308 jsr166 1.22 * @return a shallow copy of this map
1309 dl 1.1 */
1310 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1311 dl 1.1 try {
1312 jsr166 1.76 @SuppressWarnings("unchecked")
1313     ConcurrentSkipListMap<K,V> clone =
1314     (ConcurrentSkipListMap<K,V>) super.clone();
1315     clone.initialize();
1316     clone.buildFromSorted(this);
1317     return clone;
1318 dl 1.1 } catch (CloneNotSupportedException e) {
1319     throw new InternalError();
1320     }
1321     }
1322    
1323     /**
1324     * Streamlined bulk insertion to initialize from elements of
1325     * given sorted map. Call only from constructor or clone
1326     * method.
1327     */
1328     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1329     if (map == null)
1330     throw new NullPointerException();
1331    
1332     HeadIndex<K,V> h = head;
1333     Node<K,V> basepred = h.node;
1334    
1335     // Track the current rightmost node at each level. Uses an
1336     // ArrayList to avoid committing to initial or maximum level.
1337     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1338    
1339     // initialize
1340 dl 1.9 for (int i = 0; i <= h.level; ++i)
1341 dl 1.1 preds.add(null);
1342     Index<K,V> q = h;
1343     for (int i = h.level; i > 0; --i) {
1344     preds.set(i, q);
1345     q = q.down;
1346     }
1347    
1348 dl 1.9 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1349 dl 1.1 map.entrySet().iterator();
1350     while (it.hasNext()) {
1351     Map.Entry<? extends K, ? extends V> e = it.next();
1352 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1353     int j = 0;
1354     if ((rnd & 0x80000001) == 0) {
1355     do {
1356     ++j;
1357     } while (((rnd >>>= 1) & 1) != 0);
1358     if (j > h.level) j = h.level + 1;
1359     }
1360 dl 1.1 K k = e.getKey();
1361     V v = e.getValue();
1362     if (k == null || v == null)
1363     throw new NullPointerException();
1364     Node<K,V> z = new Node<K,V>(k, v, null);
1365     basepred.next = z;
1366     basepred = z;
1367     if (j > 0) {
1368     Index<K,V> idx = null;
1369     for (int i = 1; i <= j; ++i) {
1370     idx = new Index<K,V>(z, idx, null);
1371 dl 1.9 if (i > h.level)
1372 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1373    
1374     if (i < preds.size()) {
1375     preds.get(i).right = idx;
1376     preds.set(i, idx);
1377     } else
1378     preds.add(idx);
1379     }
1380     }
1381     }
1382     head = h;
1383     }
1384    
1385     /* ---------------- Serialization -------------- */
1386    
1387     /**
1388 jsr166 1.80 * Saves this map to a stream (that is, serializes it).
1389 dl 1.1 *
1390 jsr166 1.128 * @param s the stream
1391 dl 1.1 * @serialData The key (Object) and value (Object) for each
1392 jsr166 1.10 * key-value mapping represented by the map, followed by
1393 jsr166 1.82 * {@code null}. The key-value mappings are emitted in key-order
1394 dl 1.1 * (as determined by the Comparator, or by the keys' natural
1395     * ordering if no Comparator).
1396     */
1397     private void writeObject(java.io.ObjectOutputStream s)
1398     throws java.io.IOException {
1399     // Write out the Comparator and any hidden stuff
1400     s.defaultWriteObject();
1401    
1402     // Write out keys and values (alternating)
1403     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1404     V v = n.getValidValue();
1405     if (v != null) {
1406     s.writeObject(n.key);
1407     s.writeObject(v);
1408     }
1409     }
1410     s.writeObject(null);
1411     }
1412    
1413     /**
1414 jsr166 1.80 * Reconstitutes this map from a stream (that is, deserializes it).
1415 jsr166 1.128 * @param s the stream
1416 dl 1.1 */
1417 dl 1.100 @SuppressWarnings("unchecked")
1418 dl 1.1 private void readObject(final java.io.ObjectInputStream s)
1419     throws java.io.IOException, ClassNotFoundException {
1420     // Read in the Comparator and any hidden stuff
1421     s.defaultReadObject();
1422     // Reset transients
1423     initialize();
1424    
1425 dl 1.9 /*
1426 dl 1.1 * This is nearly identical to buildFromSorted, but is
1427     * distinct because readObject calls can't be nicely adapted
1428     * as the kind of iterator needed by buildFromSorted. (They
1429     * can be, but doing so requires type cheats and/or creation
1430     * of adaptor classes.) It is simpler to just adapt the code.
1431     */
1432    
1433     HeadIndex<K,V> h = head;
1434     Node<K,V> basepred = h.node;
1435     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1436 dl 1.9 for (int i = 0; i <= h.level; ++i)
1437 dl 1.1 preds.add(null);
1438     Index<K,V> q = h;
1439     for (int i = h.level; i > 0; --i) {
1440     preds.set(i, q);
1441     q = q.down;
1442     }
1443    
1444     for (;;) {
1445     Object k = s.readObject();
1446     if (k == null)
1447     break;
1448     Object v = s.readObject();
1449 dl 1.9 if (v == null)
1450 dl 1.1 throw new NullPointerException();
1451     K key = (K) k;
1452     V val = (V) v;
1453 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1454     int j = 0;
1455     if ((rnd & 0x80000001) == 0) {
1456     do {
1457     ++j;
1458     } while (((rnd >>>= 1) & 1) != 0);
1459     if (j > h.level) j = h.level + 1;
1460     }
1461 dl 1.1 Node<K,V> z = new Node<K,V>(key, val, null);
1462     basepred.next = z;
1463     basepred = z;
1464     if (j > 0) {
1465     Index<K,V> idx = null;
1466     for (int i = 1; i <= j; ++i) {
1467     idx = new Index<K,V>(z, idx, null);
1468 dl 1.9 if (i > h.level)
1469 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1470    
1471     if (i < preds.size()) {
1472     preds.get(i).right = idx;
1473     preds.set(i, idx);
1474     } else
1475     preds.add(idx);
1476     }
1477     }
1478     }
1479     head = h;
1480     }
1481    
1482     /* ------ Map API methods ------ */
1483    
1484     /**
1485 jsr166 1.82 * Returns {@code true} if this map contains a mapping for the specified
1486 dl 1.1 * key.
1487 jsr166 1.22 *
1488     * @param key key whose presence in this map is to be tested
1489 jsr166 1.82 * @return {@code true} if this map contains a mapping for the specified key
1490 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1491     * with the keys currently in the map
1492     * @throws NullPointerException if the specified key is null
1493 dl 1.1 */
1494     public boolean containsKey(Object key) {
1495 dl 1.118 return doGet(key) != null;
1496 dl 1.1 }
1497    
1498     /**
1499 jsr166 1.42 * Returns the value to which the specified key is mapped,
1500     * or {@code null} if this map contains no mapping for the key.
1501     *
1502     * <p>More formally, if this map contains a mapping from a key
1503     * {@code k} to a value {@code v} such that {@code key} compares
1504     * equal to {@code k} according to the map's ordering, then this
1505     * method returns {@code v}; otherwise it returns {@code null}.
1506     * (There can be at most one such mapping.)
1507 dl 1.1 *
1508 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1509     * with the keys currently in the map
1510     * @throws NullPointerException if the specified key is null
1511 dl 1.1 */
1512     public V get(Object key) {
1513 dl 1.118 return doGet(key);
1514 dl 1.1 }
1515    
1516     /**
1517 dl 1.109 * Returns the value to which the specified key is mapped,
1518     * or the given defaultValue if this map contains no mapping for the key.
1519     *
1520     * @param key the key
1521     * @param defaultValue the value to return if this map contains
1522     * no mapping for the given key
1523     * @return the mapping for the key, if present; else the defaultValue
1524     * @throws NullPointerException if the specified key is null
1525     * @since 1.8
1526     */
1527     public V getOrDefault(Object key, V defaultValue) {
1528     V v;
1529 dl 1.118 return (v = doGet(key)) == null ? defaultValue : v;
1530 dl 1.109 }
1531    
1532     /**
1533 dl 1.1 * Associates the specified value with the specified key in this map.
1534 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1535 dl 1.1 * value is replaced.
1536     *
1537 jsr166 1.22 * @param key key with which the specified value is to be associated
1538     * @param value value to be associated with the specified key
1539     * @return the previous value associated with the specified key, or
1540 jsr166 1.82 * {@code null} if there was no mapping for the key
1541 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1542     * with the keys currently in the map
1543     * @throws NullPointerException if the specified key or value is null
1544 dl 1.1 */
1545     public V put(K key, V value) {
1546 dl 1.9 if (value == null)
1547 dl 1.1 throw new NullPointerException();
1548 dl 1.118 return doPut(key, value, false);
1549 dl 1.1 }
1550    
1551     /**
1552 jsr166 1.36 * Removes the mapping for the specified key from this map if present.
1553 dl 1.1 *
1554     * @param key key for which mapping should be removed
1555 jsr166 1.22 * @return the previous value associated with the specified key, or
1556 jsr166 1.82 * {@code null} if there was no mapping for the key
1557 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1558     * with the keys currently in the map
1559     * @throws NullPointerException if the specified key is null
1560 dl 1.1 */
1561     public V remove(Object key) {
1562 dl 1.118 return doRemove(key, null);
1563 dl 1.1 }
1564    
1565     /**
1566 jsr166 1.82 * Returns {@code true} if this map maps one or more keys to the
1567 dl 1.1 * specified value. This operation requires time linear in the
1568 dl 1.69 * map size. Additionally, it is possible for the map to change
1569     * during execution of this method, in which case the returned
1570     * result may be inaccurate.
1571 dl 1.1 *
1572 jsr166 1.22 * @param value value whose presence in this map is to be tested
1573 jsr166 1.82 * @return {@code true} if a mapping to {@code value} exists;
1574     * {@code false} otherwise
1575 jsr166 1.22 * @throws NullPointerException if the specified value is null
1576 dl 1.9 */
1577 dl 1.1 public boolean containsValue(Object value) {
1578 dl 1.9 if (value == null)
1579 dl 1.1 throw new NullPointerException();
1580     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1581     V v = n.getValidValue();
1582     if (v != null && value.equals(v))
1583     return true;
1584     }
1585     return false;
1586     }
1587    
1588     /**
1589 dl 1.6 * Returns the number of key-value mappings in this map. If this map
1590 jsr166 1.82 * contains more than {@code Integer.MAX_VALUE} elements, it
1591     * returns {@code Integer.MAX_VALUE}.
1592 dl 1.1 *
1593     * <p>Beware that, unlike in most collections, this method is
1594     * <em>NOT</em> a constant-time operation. Because of the
1595     * asynchronous nature of these maps, determining the current
1596     * number of elements requires traversing them all to count them.
1597     * Additionally, it is possible for the size to change during
1598     * execution of this method, in which case the returned result
1599     * will be inaccurate. Thus, this method is typically not very
1600     * useful in concurrent applications.
1601     *
1602 jsr166 1.22 * @return the number of elements in this map
1603 dl 1.1 */
1604     public int size() {
1605     long count = 0;
1606     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1607     if (n.getValidValue() != null)
1608     ++count;
1609     }
1610 jsr166 1.61 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1611 dl 1.1 }
1612    
1613     /**
1614 jsr166 1.82 * Returns {@code true} if this map contains no key-value mappings.
1615     * @return {@code true} if this map contains no key-value mappings
1616 dl 1.1 */
1617     public boolean isEmpty() {
1618     return findFirst() == null;
1619     }
1620    
1621     /**
1622 jsr166 1.22 * Removes all of the mappings from this map.
1623 dl 1.1 */
1624     public void clear() {
1625     initialize();
1626     }
1627    
1628 dl 1.109 /**
1629     * If the specified key is not already associated with a value,
1630     * attempts to compute its value using the given mapping function
1631     * and enters it into this map unless {@code null}. The function
1632     * is <em>NOT</em> guaranteed to be applied once atomically only
1633     * if the value is not present.
1634     *
1635     * @param key key with which the specified value is to be associated
1636     * @param mappingFunction the function to compute a value
1637     * @return the current (existing or computed) value associated with
1638     * the specified key, or null if the computed value is null
1639     * @throws NullPointerException if the specified key is null
1640     * or the mappingFunction is null
1641     * @since 1.8
1642     */
1643 jsr166 1.110 public V computeIfAbsent(K key,
1644 dl 1.109 Function<? super K, ? extends V> mappingFunction) {
1645 jsr166 1.110 if (key == null || mappingFunction == null)
1646     throw new NullPointerException();
1647     V v, p, r;
1648 dl 1.118 if ((v = doGet(key)) == null &&
1649     (r = mappingFunction.apply(key)) != null)
1650     v = (p = doPut(key, r, true)) == null ? r : p;
1651 dl 1.109 return v;
1652     }
1653    
1654     /**
1655     * If the value for the specified key is present, attempts to
1656     * compute a new mapping given the key and its current mapped
1657     * value. The function is <em>NOT</em> guaranteed to be applied
1658     * once atomically.
1659     *
1660 dl 1.111 * @param key key with which a value may be associated
1661 dl 1.109 * @param remappingFunction the function to compute a value
1662     * @return the new value associated with the specified key, or null if none
1663     * @throws NullPointerException if the specified key is null
1664     * or the remappingFunction is null
1665     * @since 1.8
1666     */
1667 jsr166 1.110 public V computeIfPresent(K key,
1668 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1669 jsr166 1.110 if (key == null || remappingFunction == null)
1670     throw new NullPointerException();
1671 dl 1.118 Node<K,V> n; Object v;
1672     while ((n = findNode(key)) != null) {
1673     if ((v = n.value) != null) {
1674     @SuppressWarnings("unchecked") V vv = (V) v;
1675     V r = remappingFunction.apply(key, vv);
1676     if (r != null) {
1677     if (n.casValue(vv, r))
1678     return r;
1679 dl 1.109 }
1680 dl 1.118 else if (doRemove(key, vv) != null)
1681     break;
1682 dl 1.109 }
1683 jsr166 1.110 }
1684     return null;
1685 dl 1.109 }
1686    
1687     /**
1688     * Attempts to compute a mapping for the specified key and its
1689     * current mapped value (or {@code null} if there is no current
1690     * mapping). The function is <em>NOT</em> guaranteed to be applied
1691     * once atomically.
1692     *
1693     * @param key key with which the specified value is to be associated
1694     * @param remappingFunction the function to compute a value
1695     * @return the new value associated with the specified key, or null if none
1696     * @throws NullPointerException if the specified key is null
1697     * or the remappingFunction is null
1698     * @since 1.8
1699     */
1700 jsr166 1.110 public V compute(K key,
1701 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1702 jsr166 1.110 if (key == null || remappingFunction == null)
1703     throw new NullPointerException();
1704 dl 1.118 for (;;) {
1705     Node<K,V> n; Object v; V r;
1706     if ((n = findNode(key)) == null) {
1707     if ((r = remappingFunction.apply(key, null)) == null)
1708     break;
1709 dl 1.124 if (doPut(key, r, true) == null)
1710 dl 1.118 return r;
1711     }
1712     else if ((v = n.value) != null) {
1713     @SuppressWarnings("unchecked") V vv = (V) v;
1714     if ((r = remappingFunction.apply(key, vv)) != null) {
1715     if (n.casValue(vv, r))
1716 dl 1.109 return r;
1717     }
1718 dl 1.118 else if (doRemove(key, vv) != null)
1719     break;
1720 dl 1.109 }
1721     }
1722 jsr166 1.110 return null;
1723 dl 1.109 }
1724    
1725     /**
1726     * If the specified key is not already associated with a value,
1727     * associates it with the given value. Otherwise, replaces the
1728     * value with the results of the given remapping function, or
1729     * removes if {@code null}. The function is <em>NOT</em>
1730     * guaranteed to be applied once atomically.
1731     *
1732     * @param key key with which the specified value is to be associated
1733     * @param value the value to use if absent
1734     * @param remappingFunction the function to recompute a value if present
1735     * @return the new value associated with the specified key, or null if none
1736     * @throws NullPointerException if the specified key or value is null
1737     * or the remappingFunction is null
1738     * @since 1.8
1739     */
1740     public V merge(K key, V value,
1741     BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1742 jsr166 1.110 if (key == null || value == null || remappingFunction == null)
1743     throw new NullPointerException();
1744 dl 1.118 for (;;) {
1745     Node<K,V> n; Object v; V r;
1746     if ((n = findNode(key)) == null) {
1747 dl 1.124 if (doPut(key, value, true) == null)
1748 dl 1.118 return value;
1749     }
1750     else if ((v = n.value) != null) {
1751     @SuppressWarnings("unchecked") V vv = (V) v;
1752     if ((r = remappingFunction.apply(vv, value)) != null) {
1753     if (n.casValue(vv, r))
1754     return r;
1755 dl 1.109 }
1756 dl 1.118 else if (doRemove(key, vv) != null)
1757     return null;
1758 dl 1.109 }
1759 jsr166 1.110 }
1760 dl 1.109 }
1761    
1762 dl 1.46 /* ---------------- View methods -------------- */
1763    
1764     /*
1765     * Note: Lazy initialization works for views because view classes
1766     * are stateless/immutable so it doesn't matter wrt correctness if
1767     * more than one is created (which will only rarely happen). Even
1768     * so, the following idiom conservatively ensures that the method
1769     * returns the one it created if it does so, not one created by
1770     * another racing thread.
1771     */
1772    
1773 dl 1.1 /**
1774 jsr166 1.51 * Returns a {@link NavigableSet} view of the keys contained in this map.
1775 jsr166 1.22 * The set's iterator returns the keys in ascending order.
1776     * The set is backed by the map, so changes to the map are
1777     * reflected in the set, and vice-versa. The set supports element
1778     * removal, which removes the corresponding mapping from the map,
1779 jsr166 1.51 * via the {@code Iterator.remove}, {@code Set.remove},
1780     * {@code removeAll}, {@code retainAll}, and {@code clear}
1781     * operations. It does not support the {@code add} or {@code addAll}
1782 jsr166 1.22 * operations.
1783     *
1784 jsr166 1.121 * <p>The view's {@code iterator} is a "weakly consistent" iterator that
1785     * will never throw {@link java.util.ConcurrentModificationException
1786     * ConcurrentModificationException}, and guarantees to traverse elements
1787     * as they existed upon construction of the iterator, and may (but is not
1788     * guaranteed to) reflect any modifications subsequent to construction.
1789 dl 1.1 *
1790 jsr166 1.51 * <p>This method is equivalent to method {@code navigableKeySet}.
1791     *
1792     * @return a navigable set view of the keys in this map
1793 dl 1.1 */
1794 jsr166 1.68 public NavigableSet<K> keySet() {
1795 dl 1.118 KeySet<K> ks = keySet;
1796     return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1797 dl 1.1 }
1798    
1799 dl 1.46 public NavigableSet<K> navigableKeySet() {
1800 dl 1.118 KeySet<K> ks = keySet;
1801     return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1802 dl 1.83 }
1803    
1804     /**
1805 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1806     * The collection's iterator returns the values in ascending order
1807     * of the corresponding keys.
1808 dl 1.1 * The collection is backed by the map, so changes to the map are
1809     * reflected in the collection, and vice-versa. The collection
1810     * supports element removal, which removes the corresponding
1811 jsr166 1.82 * mapping from the map, via the {@code Iterator.remove},
1812     * {@code Collection.remove}, {@code removeAll},
1813     * {@code retainAll} and {@code clear} operations. It does not
1814     * support the {@code add} or {@code addAll} operations.
1815 dl 1.1 *
1816 jsr166 1.121 * <p>The view's {@code iterator} is a "weakly consistent" iterator that
1817     * will never throw {@link java.util.ConcurrentModificationException
1818     * ConcurrentModificationException}, and guarantees to traverse elements
1819     * as they existed upon construction of the iterator, and may (but is not
1820     * guaranteed to) reflect any modifications subsequent to construction.
1821 dl 1.1 */
1822     public Collection<V> values() {
1823 jsr166 1.71 Values<V> vs = values;
1824     return (vs != null) ? vs : (values = new Values<V>(this));
1825 dl 1.1 }
1826    
1827     /**
1828 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
1829     * The set's iterator returns the entries in ascending key order.
1830     * The set is backed by the map, so changes to the map are
1831     * reflected in the set, and vice-versa. The set supports element
1832     * removal, which removes the corresponding mapping from the map,
1833 jsr166 1.82 * via the {@code Iterator.remove}, {@code Set.remove},
1834     * {@code removeAll}, {@code retainAll} and {@code clear}
1835     * operations. It does not support the {@code add} or
1836     * {@code addAll} operations.
1837 jsr166 1.22 *
1838 jsr166 1.121 * <p>The view's {@code iterator} is a "weakly consistent" iterator that
1839     * will never throw {@link java.util.ConcurrentModificationException
1840     * ConcurrentModificationException}, and guarantees to traverse elements
1841     * as they existed upon construction of the iterator, and may (but is not
1842     * guaranteed to) reflect any modifications subsequent to construction.
1843 jsr166 1.22 *
1844 jsr166 1.82 * <p>The {@code Map.Entry} elements returned by
1845     * {@code iterator.next()} do <em>not</em> support the
1846     * {@code setValue} operation.
1847 dl 1.1 *
1848 jsr166 1.22 * @return a set view of the mappings contained in this map,
1849     * sorted in ascending key order
1850 dl 1.1 */
1851     public Set<Map.Entry<K,V>> entrySet() {
1852 jsr166 1.71 EntrySet<K,V> es = entrySet;
1853     return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1854 dl 1.46 }
1855    
1856     public ConcurrentNavigableMap<K,V> descendingMap() {
1857     ConcurrentNavigableMap<K,V> dm = descendingMap;
1858     return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1859     (this, null, false, null, false, true));
1860 dl 1.1 }
1861    
1862 dl 1.46 public NavigableSet<K> descendingKeySet() {
1863     return descendingMap().navigableKeySet();
1864 dl 1.1 }
1865    
1866     /* ---------------- AbstractMap Overrides -------------- */
1867    
1868     /**
1869     * Compares the specified object with this map for equality.
1870 jsr166 1.82 * Returns {@code true} if the given object is also a map and the
1871 dl 1.1 * two maps represent the same mappings. More formally, two maps
1872 jsr166 1.82 * {@code m1} and {@code m2} represent the same mappings if
1873     * {@code m1.entrySet().equals(m2.entrySet())}. This
1874 dl 1.1 * operation may return misleading results if either map is
1875     * concurrently modified during execution of this method.
1876     *
1877 jsr166 1.22 * @param o object to be compared for equality with this map
1878 jsr166 1.82 * @return {@code true} if the specified object is equal to this map
1879 dl 1.1 */
1880     public boolean equals(Object o) {
1881 jsr166 1.55 if (o == this)
1882     return true;
1883     if (!(o instanceof Map))
1884     return false;
1885     Map<?,?> m = (Map<?,?>) o;
1886 dl 1.1 try {
1887 jsr166 1.55 for (Map.Entry<K,V> e : this.entrySet())
1888     if (! e.getValue().equals(m.get(e.getKey())))
1889 dl 1.25 return false;
1890 jsr166 1.55 for (Map.Entry<?,?> e : m.entrySet()) {
1891 dl 1.25 Object k = e.getKey();
1892     Object v = e.getValue();
1893 jsr166 1.55 if (k == null || v == null || !v.equals(get(k)))
1894 dl 1.25 return false;
1895     }
1896     return true;
1897 jsr166 1.15 } catch (ClassCastException unused) {
1898 dl 1.1 return false;
1899 jsr166 1.15 } catch (NullPointerException unused) {
1900 dl 1.1 return false;
1901     }
1902     }
1903    
1904     /* ------ ConcurrentMap API methods ------ */
1905    
1906     /**
1907 jsr166 1.22 * {@inheritDoc}
1908     *
1909     * @return the previous value associated with the specified key,
1910 jsr166 1.82 * or {@code null} if there was no mapping for the key
1911 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1912     * with the keys currently in the map
1913     * @throws NullPointerException if the specified key or value is null
1914 dl 1.1 */
1915     public V putIfAbsent(K key, V value) {
1916 dl 1.9 if (value == null)
1917 dl 1.1 throw new NullPointerException();
1918 dl 1.118 return doPut(key, value, true);
1919 dl 1.1 }
1920    
1921     /**
1922 jsr166 1.22 * {@inheritDoc}
1923     *
1924     * @throws ClassCastException if the specified key cannot be compared
1925     * with the keys currently in the map
1926 dl 1.23 * @throws NullPointerException if the specified key is null
1927 dl 1.1 */
1928     public boolean remove(Object key, Object value) {
1929 dl 1.45 if (key == null)
1930     throw new NullPointerException();
1931 dl 1.118 return value != null && doRemove(key, value) != null;
1932 dl 1.1 }
1933    
1934     /**
1935 jsr166 1.22 * {@inheritDoc}
1936     *
1937     * @throws ClassCastException if the specified key cannot be compared
1938     * with the keys currently in the map
1939     * @throws NullPointerException if any of the arguments are null
1940 dl 1.1 */
1941     public boolean replace(K key, V oldValue, V newValue) {
1942 dl 1.118 if (key == null || oldValue == null || newValue == null)
1943 dl 1.1 throw new NullPointerException();
1944     for (;;) {
1945 dl 1.118 Node<K,V> n; Object v;
1946     if ((n = findNode(key)) == null)
1947 dl 1.1 return false;
1948 dl 1.118 if ((v = n.value) != null) {
1949 dl 1.1 if (!oldValue.equals(v))
1950     return false;
1951     if (n.casValue(v, newValue))
1952     return true;
1953     }
1954     }
1955     }
1956    
1957     /**
1958 jsr166 1.22 * {@inheritDoc}
1959     *
1960     * @return the previous value associated with the specified key,
1961 jsr166 1.82 * or {@code null} if there was no mapping for the key
1962 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1963     * with the keys currently in the map
1964     * @throws NullPointerException if the specified key or value is null
1965 dl 1.1 */
1966     public V replace(K key, V value) {
1967 dl 1.118 if (key == null || value == null)
1968 dl 1.1 throw new NullPointerException();
1969     for (;;) {
1970 dl 1.118 Node<K,V> n; Object v;
1971     if ((n = findNode(key)) == null)
1972 dl 1.1 return null;
1973 dl 1.118 if ((v = n.value) != null && n.casValue(v, value)) {
1974     @SuppressWarnings("unchecked") V vv = (V)v;
1975     return vv;
1976     }
1977 dl 1.1 }
1978     }
1979    
1980     /* ------ SortedMap API methods ------ */
1981    
1982     public Comparator<? super K> comparator() {
1983     return comparator;
1984     }
1985    
1986     /**
1987 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
1988 dl 1.1 */
1989 dl 1.9 public K firstKey() {
1990 dl 1.1 Node<K,V> n = findFirst();
1991     if (n == null)
1992     throw new NoSuchElementException();
1993     return n.key;
1994     }
1995    
1996     /**
1997 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
1998 dl 1.1 */
1999     public K lastKey() {
2000     Node<K,V> n = findLast();
2001     if (n == null)
2002     throw new NoSuchElementException();
2003     return n.key;
2004     }
2005    
2006     /**
2007 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2008     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2009 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2010 dl 1.1 */
2011 dl 1.47 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
2012     boolean fromInclusive,
2013     K toKey,
2014     boolean toInclusive) {
2015 dl 1.1 if (fromKey == null || toKey == null)
2016     throw new NullPointerException();
2017 dl 1.46 return new SubMap<K,V>
2018     (this, fromKey, fromInclusive, toKey, toInclusive, false);
2019 dl 1.1 }
2020    
2021     /**
2022 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2023     * @throws NullPointerException if {@code toKey} is null
2024 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2025 dl 1.1 */
2026 dl 1.47 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2027     boolean inclusive) {
2028 dl 1.1 if (toKey == null)
2029     throw new NullPointerException();
2030 dl 1.46 return new SubMap<K,V>
2031     (this, null, false, toKey, inclusive, false);
2032 dl 1.1 }
2033    
2034     /**
2035 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2036     * @throws NullPointerException if {@code fromKey} is null
2037 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2038 dl 1.1 */
2039 dl 1.47 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2040     boolean inclusive) {
2041 dl 1.6 if (fromKey == null)
2042     throw new NullPointerException();
2043 dl 1.46 return new SubMap<K,V>
2044     (this, fromKey, inclusive, null, false, false);
2045 dl 1.6 }
2046    
2047     /**
2048 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2049     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2050 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2051 dl 1.6 */
2052 dl 1.37 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2053 dl 1.47 return subMap(fromKey, true, toKey, false);
2054 dl 1.6 }
2055    
2056     /**
2057 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2058     * @throws NullPointerException if {@code toKey} is null
2059 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2060 dl 1.6 */
2061 dl 1.37 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2062 dl 1.47 return headMap(toKey, false);
2063 dl 1.6 }
2064    
2065     /**
2066 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2067     * @throws NullPointerException if {@code fromKey} is null
2068 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2069 dl 1.6 */
2070 dl 1.37 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2071 dl 1.47 return tailMap(fromKey, true);
2072 dl 1.1 }
2073    
2074     /* ---------------- Relational operations -------------- */
2075    
2076     /**
2077 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2078 jsr166 1.82 * strictly less than the given key, or {@code null} if there is
2079 jsr166 1.22 * no such key. The returned entry does <em>not</em> support the
2080 jsr166 1.82 * {@code Entry.setValue} method.
2081 dl 1.9 *
2082 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2083     * @throws NullPointerException if the specified key is null
2084 dl 1.1 */
2085 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
2086     return getNear(key, LT);
2087 dl 1.1 }
2088    
2089     /**
2090 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2091     * @throws NullPointerException if the specified key is null
2092 dl 1.1 */
2093 jsr166 1.22 public K lowerKey(K key) {
2094 dl 1.118 Node<K,V> n = findNear(key, LT, comparator);
2095 jsr166 1.61 return (n == null) ? null : n.key;
2096 dl 1.1 }
2097    
2098     /**
2099 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2100 jsr166 1.82 * less than or equal to the given key, or {@code null} if there
2101 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2102 jsr166 1.82 * the {@code Entry.setValue} method.
2103 dl 1.9 *
2104 jsr166 1.22 * @param key the key
2105     * @throws ClassCastException {@inheritDoc}
2106     * @throws NullPointerException if the specified key is null
2107 dl 1.1 */
2108 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
2109     return getNear(key, LT|EQ);
2110 dl 1.1 }
2111    
2112     /**
2113 jsr166 1.22 * @param key the key
2114     * @throws ClassCastException {@inheritDoc}
2115     * @throws NullPointerException if the specified key is null
2116 dl 1.1 */
2117 jsr166 1.22 public K floorKey(K key) {
2118 dl 1.118 Node<K,V> n = findNear(key, LT|EQ, comparator);
2119 jsr166 1.61 return (n == null) ? null : n.key;
2120 dl 1.1 }
2121    
2122     /**
2123 jsr166 1.22 * Returns a key-value mapping associated with the least key
2124 jsr166 1.82 * greater than or equal to the given key, or {@code null} if
2125 jsr166 1.22 * there is no such entry. The returned entry does <em>not</em>
2126 jsr166 1.82 * support the {@code Entry.setValue} method.
2127 dl 1.9 *
2128 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2129     * @throws NullPointerException if the specified key is null
2130 dl 1.1 */
2131 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
2132     return getNear(key, GT|EQ);
2133 dl 1.1 }
2134    
2135     /**
2136 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2137     * @throws NullPointerException if the specified key is null
2138 dl 1.1 */
2139 jsr166 1.22 public K ceilingKey(K key) {
2140 dl 1.118 Node<K,V> n = findNear(key, GT|EQ, comparator);
2141 jsr166 1.61 return (n == null) ? null : n.key;
2142 dl 1.1 }
2143    
2144     /**
2145     * Returns a key-value mapping associated with the least key
2146 jsr166 1.82 * strictly greater than the given key, or {@code null} if there
2147 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2148 jsr166 1.82 * the {@code Entry.setValue} method.
2149 dl 1.9 *
2150 jsr166 1.22 * @param key the key
2151     * @throws ClassCastException {@inheritDoc}
2152     * @throws NullPointerException if the specified key is null
2153 dl 1.1 */
2154     public Map.Entry<K,V> higherEntry(K key) {
2155     return getNear(key, GT);
2156     }
2157    
2158     /**
2159 jsr166 1.22 * @param key the key
2160     * @throws ClassCastException {@inheritDoc}
2161     * @throws NullPointerException if the specified key is null
2162 dl 1.1 */
2163     public K higherKey(K key) {
2164 dl 1.118 Node<K,V> n = findNear(key, GT, comparator);
2165 jsr166 1.61 return (n == null) ? null : n.key;
2166 dl 1.1 }
2167    
2168     /**
2169     * Returns a key-value mapping associated with the least
2170 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2171 dl 1.1 * The returned entry does <em>not</em> support
2172 jsr166 1.82 * the {@code Entry.setValue} method.
2173 dl 1.1 */
2174     public Map.Entry<K,V> firstEntry() {
2175     for (;;) {
2176     Node<K,V> n = findFirst();
2177 dl 1.9 if (n == null)
2178 dl 1.1 return null;
2179 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2180 dl 1.1 if (e != null)
2181     return e;
2182     }
2183     }
2184    
2185     /**
2186     * Returns a key-value mapping associated with the greatest
2187 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2188 dl 1.1 * The returned entry does <em>not</em> support
2189 jsr166 1.82 * the {@code Entry.setValue} method.
2190 dl 1.1 */
2191     public Map.Entry<K,V> lastEntry() {
2192     for (;;) {
2193     Node<K,V> n = findLast();
2194 dl 1.9 if (n == null)
2195 dl 1.1 return null;
2196 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2197 dl 1.1 if (e != null)
2198     return e;
2199     }
2200     }
2201    
2202     /**
2203     * Removes and returns a key-value mapping associated with
2204 jsr166 1.82 * the least key in this map, or {@code null} if the map is empty.
2205 dl 1.1 * The returned entry does <em>not</em> support
2206 jsr166 1.82 * the {@code Entry.setValue} method.
2207 dl 1.1 */
2208     public Map.Entry<K,V> pollFirstEntry() {
2209 dl 1.25 return doRemoveFirstEntry();
2210 dl 1.1 }
2211    
2212     /**
2213     * Removes and returns a key-value mapping associated with
2214 jsr166 1.82 * the greatest key in this map, or {@code null} if the map is empty.
2215 dl 1.1 * The returned entry does <em>not</em> support
2216 jsr166 1.82 * the {@code Entry.setValue} method.
2217 dl 1.1 */
2218     public Map.Entry<K,V> pollLastEntry() {
2219 dl 1.31 return doRemoveLastEntry();
2220 dl 1.1 }
2221    
2222    
2223     /* ---------------- Iterators -------------- */
2224    
2225     /**
2226 dl 1.46 * Base of iterator classes:
2227 dl 1.1 */
2228 dl 1.46 abstract class Iter<T> implements Iterator<T> {
2229 dl 1.1 /** the last node returned by next() */
2230 jsr166 1.52 Node<K,V> lastReturned;
2231 dl 1.1 /** the next node to return from next(); */
2232     Node<K,V> next;
2233 jsr166 1.55 /** Cache of next value field to maintain weak consistency */
2234     V nextValue;
2235 dl 1.1
2236 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2237 dl 1.46 Iter() {
2238 dl 1.118 while ((next = findFirst()) != null) {
2239 jsr166 1.52 Object x = next.value;
2240     if (x != null && x != next) {
2241 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2242     nextValue = vv;
2243 dl 1.1 break;
2244 jsr166 1.55 }
2245 dl 1.1 }
2246     }
2247    
2248 dl 1.46 public final boolean hasNext() {
2249     return next != null;
2250 dl 1.1 }
2251 dl 1.46
2252 jsr166 1.13 /** Advances next to higher entry. */
2253 dl 1.46 final void advance() {
2254 jsr166 1.54 if (next == null)
2255 dl 1.1 throw new NoSuchElementException();
2256 jsr166 1.55 lastReturned = next;
2257 dl 1.118 while ((next = next.next) != null) {
2258 jsr166 1.52 Object x = next.value;
2259     if (x != null && x != next) {
2260 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2261     nextValue = vv;
2262 dl 1.1 break;
2263 jsr166 1.55 }
2264 dl 1.1 }
2265     }
2266    
2267     public void remove() {
2268 jsr166 1.52 Node<K,V> l = lastReturned;
2269 dl 1.1 if (l == null)
2270     throw new IllegalStateException();
2271     // It would not be worth all of the overhead to directly
2272     // unlink from here. Using remove is fast enough.
2273     ConcurrentSkipListMap.this.remove(l.key);
2274 jsr166 1.55 lastReturned = null;
2275 dl 1.1 }
2276    
2277     }
2278    
2279 dl 1.46 final class ValueIterator extends Iter<V> {
2280 dl 1.9 public V next() {
2281 jsr166 1.52 V v = nextValue;
2282 dl 1.46 advance();
2283 jsr166 1.52 return v;
2284 dl 1.1 }
2285     }
2286    
2287 dl 1.46 final class KeyIterator extends Iter<K> {
2288 dl 1.9 public K next() {
2289 dl 1.1 Node<K,V> n = next;
2290 dl 1.46 advance();
2291 dl 1.1 return n.key;
2292     }
2293     }
2294    
2295 dl 1.46 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2296     public Map.Entry<K,V> next() {
2297     Node<K,V> n = next;
2298 jsr166 1.52 V v = nextValue;
2299 dl 1.46 advance();
2300     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2301 dl 1.1 }
2302 dl 1.46 }
2303 dl 1.1
2304 dl 1.46 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2305    
2306     Iterator<K> keyIterator() {
2307 dl 1.1 return new KeyIterator();
2308     }
2309    
2310 dl 1.46 Iterator<V> valueIterator() {
2311     return new ValueIterator();
2312 dl 1.1 }
2313    
2314 dl 1.46 Iterator<Map.Entry<K,V>> entryIterator() {
2315     return new EntryIterator();
2316 dl 1.1 }
2317    
2318 dl 1.46 /* ---------------- View Classes -------------- */
2319    
2320     /*
2321     * View classes are static, delegating to a ConcurrentNavigableMap
2322     * to allow use by SubMaps, which outweighs the ugliness of
2323     * needing type-tests for Iterator methods.
2324     */
2325    
2326 jsr166 1.53 static final <E> List<E> toList(Collection<E> c) {
2327 jsr166 1.55 // Using size() here would be a pessimization.
2328 jsr166 1.90 ArrayList<E> list = new ArrayList<E>();
2329 jsr166 1.55 for (E e : c)
2330     list.add(e);
2331     return list;
2332 jsr166 1.53 }
2333    
2334 jsr166 1.62 static final class KeySet<E>
2335     extends AbstractSet<E> implements NavigableSet<E> {
2336 dl 1.118 final ConcurrentNavigableMap<E,?> m;
2337 jsr166 1.71 KeySet(ConcurrentNavigableMap<E,?> map) { m = map; }
2338 dl 1.46 public int size() { return m.size(); }
2339     public boolean isEmpty() { return m.isEmpty(); }
2340     public boolean contains(Object o) { return m.containsKey(o); }
2341     public boolean remove(Object o) { return m.remove(o) != null; }
2342     public void clear() { m.clear(); }
2343     public E lower(E e) { return m.lowerKey(e); }
2344     public E floor(E e) { return m.floorKey(e); }
2345     public E ceiling(E e) { return m.ceilingKey(e); }
2346     public E higher(E e) { return m.higherKey(e); }
2347     public Comparator<? super E> comparator() { return m.comparator(); }
2348     public E first() { return m.firstKey(); }
2349     public E last() { return m.lastKey(); }
2350     public E pollFirst() {
2351 jsr166 1.71 Map.Entry<E,?> e = m.pollFirstEntry();
2352 jsr166 1.61 return (e == null) ? null : e.getKey();
2353 dl 1.46 }
2354     public E pollLast() {
2355 jsr166 1.71 Map.Entry<E,?> e = m.pollLastEntry();
2356 jsr166 1.61 return (e == null) ? null : e.getKey();
2357 dl 1.46 }
2358 dl 1.100 @SuppressWarnings("unchecked")
2359 dl 1.46 public Iterator<E> iterator() {
2360     if (m instanceof ConcurrentSkipListMap)
2361     return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
2362     else
2363     return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
2364 dl 1.1 }
2365 dl 1.45 public boolean equals(Object o) {
2366     if (o == this)
2367     return true;
2368     if (!(o instanceof Set))
2369     return false;
2370     Collection<?> c = (Collection<?>) o;
2371     try {
2372     return containsAll(c) && c.containsAll(this);
2373 jsr166 1.81 } catch (ClassCastException unused) {
2374 dl 1.45 return false;
2375     } catch (NullPointerException unused) {
2376     return false;
2377     }
2378     }
2379 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2380     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2381 dl 1.46 public Iterator<E> descendingIterator() {
2382     return descendingSet().iterator();
2383     }
2384 dl 1.47 public NavigableSet<E> subSet(E fromElement,
2385     boolean fromInclusive,
2386     E toElement,
2387     boolean toInclusive) {
2388 jsr166 1.56 return new KeySet<E>(m.subMap(fromElement, fromInclusive,
2389     toElement, toInclusive));
2390 dl 1.46 }
2391 dl 1.47 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2392 jsr166 1.56 return new KeySet<E>(m.headMap(toElement, inclusive));
2393 dl 1.46 }
2394 dl 1.47 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2395 jsr166 1.56 return new KeySet<E>(m.tailMap(fromElement, inclusive));
2396 dl 1.46 }
2397 jsr166 1.51 public NavigableSet<E> subSet(E fromElement, E toElement) {
2398 dl 1.47 return subSet(fromElement, true, toElement, false);
2399 dl 1.46 }
2400 jsr166 1.51 public NavigableSet<E> headSet(E toElement) {
2401 dl 1.47 return headSet(toElement, false);
2402 dl 1.46 }
2403 jsr166 1.51 public NavigableSet<E> tailSet(E fromElement) {
2404 dl 1.47 return tailSet(fromElement, true);
2405 dl 1.46 }
2406     public NavigableSet<E> descendingSet() {
2407 jsr166 1.71 return new KeySet<E>(m.descendingMap());
2408 dl 1.46 }
2409 dl 1.100 @SuppressWarnings("unchecked")
2410 dl 1.106 public Spliterator<E> spliterator() {
2411 dl 1.100 if (m instanceof ConcurrentSkipListMap)
2412     return ((ConcurrentSkipListMap<E,?>)m).keySpliterator();
2413     else
2414     return (Spliterator<E>)((SubMap<E,?>)m).keyIterator();
2415     }
2416 dl 1.1 }
2417    
2418 dl 1.46 static final class Values<E> extends AbstractCollection<E> {
2419 dl 1.118 final ConcurrentNavigableMap<?, E> m;
2420 jsr166 1.71 Values(ConcurrentNavigableMap<?, E> map) {
2421 dl 1.46 m = map;
2422 dl 1.1 }
2423 dl 1.100 @SuppressWarnings("unchecked")
2424 dl 1.46 public Iterator<E> iterator() {
2425     if (m instanceof ConcurrentSkipListMap)
2426 jsr166 1.71 return ((ConcurrentSkipListMap<?,E>)m).valueIterator();
2427 dl 1.46 else
2428 jsr166 1.71 return ((SubMap<?,E>)m).valueIterator();
2429 dl 1.1 }
2430     public boolean isEmpty() {
2431 dl 1.46 return m.isEmpty();
2432 dl 1.1 }
2433     public int size() {
2434 dl 1.46 return m.size();
2435 dl 1.1 }
2436     public boolean contains(Object o) {
2437 dl 1.46 return m.containsValue(o);
2438 dl 1.1 }
2439     public void clear() {
2440 dl 1.46 m.clear();
2441 dl 1.1 }
2442 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2443     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2444 dl 1.100 @SuppressWarnings("unchecked")
2445 dl 1.106 public Spliterator<E> spliterator() {
2446 dl 1.100 if (m instanceof ConcurrentSkipListMap)
2447     return ((ConcurrentSkipListMap<?,E>)m).valueSpliterator();
2448     else
2449     return (Spliterator<E>)((SubMap<?,E>)m).valueIterator();
2450     }
2451 dl 1.1 }
2452    
2453 dl 1.46 static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
2454 dl 1.118 final ConcurrentNavigableMap<K1, V1> m;
2455 dl 1.46 EntrySet(ConcurrentNavigableMap<K1, V1> map) {
2456     m = map;
2457 dl 1.1 }
2458 dl 1.100 @SuppressWarnings("unchecked")
2459 dl 1.46 public Iterator<Map.Entry<K1,V1>> iterator() {
2460     if (m instanceof ConcurrentSkipListMap)
2461     return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
2462     else
2463     return ((SubMap<K1,V1>)m).entryIterator();
2464     }
2465 dl 1.47
2466 dl 1.1 public boolean contains(Object o) {
2467     if (!(o instanceof Map.Entry))
2468     return false;
2469 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2470 dl 1.46 V1 v = m.get(e.getKey());
2471 dl 1.1 return v != null && v.equals(e.getValue());
2472     }
2473     public boolean remove(Object o) {
2474     if (!(o instanceof Map.Entry))
2475     return false;
2476 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2477 dl 1.46 return m.remove(e.getKey(),
2478 dl 1.47 e.getValue());
2479 dl 1.1 }
2480     public boolean isEmpty() {
2481 dl 1.46 return m.isEmpty();
2482 dl 1.1 }
2483     public int size() {
2484 dl 1.46 return m.size();
2485 dl 1.1 }
2486     public void clear() {
2487 dl 1.46 m.clear();
2488 dl 1.1 }
2489 dl 1.45 public boolean equals(Object o) {
2490     if (o == this)
2491     return true;
2492     if (!(o instanceof Set))
2493     return false;
2494     Collection<?> c = (Collection<?>) o;
2495     try {
2496     return containsAll(c) && c.containsAll(this);
2497 jsr166 1.81 } catch (ClassCastException unused) {
2498 dl 1.45 return false;
2499     } catch (NullPointerException unused) {
2500     return false;
2501     }
2502     }
2503 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2504     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2505 dl 1.100 @SuppressWarnings("unchecked")
2506 dl 1.106 public Spliterator<Map.Entry<K1,V1>> spliterator() {
2507 dl 1.83 if (m instanceof ConcurrentSkipListMap)
2508 dl 1.100 return ((ConcurrentSkipListMap<K1,V1>)m).entrySpliterator();
2509 dl 1.83 else
2510 dl 1.100 return (Spliterator<Map.Entry<K1,V1>>)
2511     ((SubMap<K1,V1>)m).entryIterator();
2512     }
2513 dl 1.1 }
2514    
2515     /**
2516     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2517     * represent a subrange of mappings of their underlying
2518     * maps. Instances of this class support all methods of their
2519     * underlying maps, differing in that mappings outside their range are
2520     * ignored, and attempts to add mappings outside their ranges result
2521     * in {@link IllegalArgumentException}. Instances of this class are
2522 jsr166 1.82 * constructed only using the {@code subMap}, {@code headMap}, and
2523     * {@code tailMap} methods of their underlying maps.
2524 jsr166 1.52 *
2525     * @serial include
2526 dl 1.1 */
2527 dl 1.46 static final class SubMap<K,V> extends AbstractMap<K,V>
2528     implements ConcurrentNavigableMap<K,V>, Cloneable,
2529     java.io.Serializable {
2530 dl 1.1 private static final long serialVersionUID = -7647078645895051609L;
2531    
2532     /** Underlying map */
2533     private final ConcurrentSkipListMap<K,V> m;
2534     /** lower bound key, or null if from start */
2535 dl 1.46 private final K lo;
2536     /** upper bound key, or null if to end */
2537     private final K hi;
2538     /** inclusion flag for lo */
2539     private final boolean loInclusive;
2540     /** inclusion flag for hi */
2541     private final boolean hiInclusive;
2542     /** direction */
2543     private final boolean isDescending;
2544    
2545 dl 1.1 // Lazily initialized view holders
2546 dl 1.46 private transient KeySet<K> keySetView;
2547 dl 1.1 private transient Set<Map.Entry<K,V>> entrySetView;
2548     private transient Collection<V> valuesView;
2549    
2550     /**
2551 jsr166 1.87 * Creates a new submap, initializing all fields.
2552 dl 1.46 */
2553     SubMap(ConcurrentSkipListMap<K,V> map,
2554     K fromKey, boolean fromInclusive,
2555     K toKey, boolean toInclusive,
2556     boolean isDescending) {
2557 dl 1.118 Comparator<? super K> cmp = map.comparator;
2558 dl 1.47 if (fromKey != null && toKey != null &&
2559 dl 1.118 cpr(cmp, fromKey, toKey) > 0)
2560 dl 1.1 throw new IllegalArgumentException("inconsistent range");
2561     this.m = map;
2562 dl 1.46 this.lo = fromKey;
2563     this.hi = toKey;
2564     this.loInclusive = fromInclusive;
2565     this.hiInclusive = toInclusive;
2566     this.isDescending = isDescending;
2567 dl 1.1 }
2568    
2569     /* ---------------- Utilities -------------- */
2570    
2571 dl 1.118 boolean tooLow(Object key, Comparator<? super K> cmp) {
2572     int c;
2573     return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2574     (c == 0 && !loInclusive)));
2575 dl 1.1 }
2576    
2577 dl 1.118 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2578     int c;
2579     return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2580     (c == 0 && !hiInclusive)));
2581 dl 1.1 }
2582    
2583 dl 1.118 boolean inBounds(Object key, Comparator<? super K> cmp) {
2584     return !tooLow(key, cmp) && !tooHigh(key, cmp);
2585 dl 1.1 }
2586    
2587 dl 1.118 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2588 dl 1.46 if (key == null)
2589     throw new NullPointerException();
2590 dl 1.118 if (!inBounds(key, cmp))
2591 dl 1.46 throw new IllegalArgumentException("key out of range");
2592 dl 1.1 }
2593    
2594 dl 1.46 /**
2595 jsr166 1.87 * Returns true if node key is less than upper bound of range.
2596 dl 1.46 */
2597 dl 1.118 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2598     Comparator<? super K> cmp) {
2599 dl 1.46 if (n == null)
2600     return false;
2601     if (hi == null)
2602     return true;
2603     K k = n.key;
2604     if (k == null) // pass by markers and headers
2605     return true;
2606 dl 1.118 int c = cpr(cmp, k, hi);
2607 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive))
2608     return false;
2609     return true;
2610 dl 1.1 }
2611    
2612 dl 1.46 /**
2613     * Returns lowest node. This node might not be in range, so
2614 jsr166 1.87 * most usages need to check bounds.
2615 dl 1.46 */
2616 dl 1.118 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2617 dl 1.46 if (lo == null)
2618     return m.findFirst();
2619     else if (loInclusive)
2620 dl 1.118 return m.findNear(lo, GT|EQ, cmp);
2621 dl 1.46 else
2622 dl 1.118 return m.findNear(lo, GT, cmp);
2623 dl 1.1 }
2624    
2625     /**
2626 dl 1.46 * Returns highest node. This node might not be in range, so
2627 jsr166 1.87 * most usages need to check bounds.
2628 dl 1.1 */
2629 dl 1.118 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2630 dl 1.46 if (hi == null)
2631     return m.findLast();
2632     else if (hiInclusive)
2633 dl 1.118 return m.findNear(hi, LT|EQ, cmp);
2634 dl 1.46 else
2635 dl 1.118 return m.findNear(hi, LT, cmp);
2636 dl 1.1 }
2637    
2638     /**
2639 jsr166 1.87 * Returns lowest absolute key (ignoring directonality).
2640 dl 1.1 */
2641 dl 1.118 K lowestKey() {
2642     Comparator<? super K> cmp = m.comparator;
2643     ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2644     if (isBeforeEnd(n, cmp))
2645 dl 1.46 return n.key;
2646     else
2647     throw new NoSuchElementException();
2648 dl 1.47 }
2649 dl 1.46
2650     /**
2651 jsr166 1.87 * Returns highest absolute key (ignoring directonality).
2652 dl 1.46 */
2653 dl 1.118 K highestKey() {
2654     Comparator<? super K> cmp = m.comparator;
2655     ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2656 dl 1.46 if (n != null) {
2657     K last = n.key;
2658 dl 1.118 if (inBounds(last, cmp))
2659 dl 1.46 return last;
2660     }
2661     throw new NoSuchElementException();
2662     }
2663    
2664 dl 1.118 Map.Entry<K,V> lowestEntry() {
2665     Comparator<? super K> cmp = m.comparator;
2666 dl 1.46 for (;;) {
2667 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2668     if (!isBeforeEnd(n, cmp))
2669 dl 1.46 return null;
2670     Map.Entry<K,V> e = n.createSnapshot();
2671     if (e != null)
2672     return e;
2673     }
2674     }
2675    
2676 dl 1.118 Map.Entry<K,V> highestEntry() {
2677     Comparator<? super K> cmp = m.comparator;
2678 dl 1.46 for (;;) {
2679 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2680     if (n == null || !inBounds(n.key, cmp))
2681 dl 1.46 return null;
2682     Map.Entry<K,V> e = n.createSnapshot();
2683     if (e != null)
2684     return e;
2685     }
2686     }
2687    
2688 dl 1.118 Map.Entry<K,V> removeLowest() {
2689     Comparator<? super K> cmp = m.comparator;
2690 dl 1.46 for (;;) {
2691 dl 1.118 Node<K,V> n = loNode(cmp);
2692 dl 1.46 if (n == null)
2693     return null;
2694     K k = n.key;
2695 dl 1.118 if (!inBounds(k, cmp))
2696 dl 1.46 return null;
2697 dl 1.118 V v = m.doRemove(k, null);
2698 dl 1.46 if (v != null)
2699     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2700     }
2701     }
2702    
2703 dl 1.118 Map.Entry<K,V> removeHighest() {
2704     Comparator<? super K> cmp = m.comparator;
2705 dl 1.46 for (;;) {
2706 dl 1.118 Node<K,V> n = hiNode(cmp);
2707 dl 1.46 if (n == null)
2708     return null;
2709     K k = n.key;
2710 dl 1.118 if (!inBounds(k, cmp))
2711 dl 1.46 return null;
2712 dl 1.118 V v = m.doRemove(k, null);
2713 dl 1.46 if (v != null)
2714     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2715     }
2716 dl 1.1 }
2717    
2718     /**
2719 dl 1.46 * Submap version of ConcurrentSkipListMap.getNearEntry
2720 dl 1.1 */
2721 dl 1.118 Map.Entry<K,V> getNearEntry(K key, int rel) {
2722     Comparator<? super K> cmp = m.comparator;
2723 dl 1.46 if (isDescending) { // adjust relation for direction
2724 jsr166 1.70 if ((rel & LT) == 0)
2725     rel |= LT;
2726 dl 1.46 else
2727 jsr166 1.70 rel &= ~LT;
2728 dl 1.46 }
2729 dl 1.118 if (tooLow(key, cmp))
2730 jsr166 1.70 return ((rel & LT) != 0) ? null : lowestEntry();
2731 dl 1.118 if (tooHigh(key, cmp))
2732 jsr166 1.70 return ((rel & LT) != 0) ? highestEntry() : null;
2733 dl 1.46 for (;;) {
2734 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2735     if (n == null || !inBounds(n.key, cmp))
2736 dl 1.46 return null;
2737     K k = n.key;
2738     V v = n.getValidValue();
2739     if (v != null)
2740     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2741     }
2742 dl 1.1 }
2743    
2744 jsr166 1.48 // Almost the same as getNearEntry, except for keys
2745 dl 1.118 K getNearKey(K key, int rel) {
2746     Comparator<? super K> cmp = m.comparator;
2747 dl 1.46 if (isDescending) { // adjust relation for direction
2748 jsr166 1.70 if ((rel & LT) == 0)
2749     rel |= LT;
2750 dl 1.46 else
2751 jsr166 1.70 rel &= ~LT;
2752 dl 1.46 }
2753 dl 1.118 if (tooLow(key, cmp)) {
2754 jsr166 1.70 if ((rel & LT) == 0) {
2755 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2756     if (isBeforeEnd(n, cmp))
2757 dl 1.46 return n.key;
2758     }
2759     return null;
2760     }
2761 dl 1.118 if (tooHigh(key, cmp)) {
2762 jsr166 1.70 if ((rel & LT) != 0) {
2763 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2764 dl 1.46 if (n != null) {
2765     K last = n.key;
2766 dl 1.118 if (inBounds(last, cmp))
2767 dl 1.46 return last;
2768     }
2769     }
2770     return null;
2771     }
2772     for (;;) {
2773 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2774     if (n == null || !inBounds(n.key, cmp))
2775 dl 1.46 return null;
2776     K k = n.key;
2777     V v = n.getValidValue();
2778     if (v != null)
2779     return k;
2780     }
2781     }
2782 dl 1.1
2783     /* ---------------- Map API methods -------------- */
2784    
2785     public boolean containsKey(Object key) {
2786 dl 1.46 if (key == null) throw new NullPointerException();
2787 dl 1.118 return inBounds(key, m.comparator) && m.containsKey(key);
2788 dl 1.1 }
2789    
2790     public V get(Object key) {
2791 dl 1.46 if (key == null) throw new NullPointerException();
2792 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2793 dl 1.1 }
2794    
2795     public V put(K key, V value) {
2796 dl 1.118 checkKeyBounds(key, m.comparator);
2797 dl 1.1 return m.put(key, value);
2798     }
2799    
2800     public V remove(Object key) {
2801 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2802 dl 1.1 }
2803    
2804     public int size() {
2805 dl 1.118 Comparator<? super K> cmp = m.comparator;
2806 dl 1.1 long count = 0;
2807 dl 1.118 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2808     isBeforeEnd(n, cmp);
2809 dl 1.1 n = n.next) {
2810     if (n.getValidValue() != null)
2811     ++count;
2812     }
2813 jsr166 1.61 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2814 dl 1.1 }
2815    
2816     public boolean isEmpty() {
2817 dl 1.118 Comparator<? super K> cmp = m.comparator;
2818     return !isBeforeEnd(loNode(cmp), cmp);
2819 dl 1.1 }
2820    
2821     public boolean containsValue(Object value) {
2822 dl 1.9 if (value == null)
2823 dl 1.1 throw new NullPointerException();
2824 dl 1.118 Comparator<? super K> cmp = m.comparator;
2825     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2826     isBeforeEnd(n, cmp);
2827 dl 1.1 n = n.next) {
2828     V v = n.getValidValue();
2829     if (v != null && value.equals(v))
2830     return true;
2831     }
2832     return false;
2833     }
2834    
2835     public void clear() {
2836 dl 1.118 Comparator<? super K> cmp = m.comparator;
2837     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2838     isBeforeEnd(n, cmp);
2839 dl 1.1 n = n.next) {
2840     if (n.getValidValue() != null)
2841     m.remove(n.key);
2842     }
2843     }
2844    
2845     /* ---------------- ConcurrentMap API methods -------------- */
2846    
2847     public V putIfAbsent(K key, V value) {
2848 dl 1.118 checkKeyBounds(key, m.comparator);
2849 dl 1.1 return m.putIfAbsent(key, value);
2850     }
2851    
2852     public boolean remove(Object key, Object value) {
2853 dl 1.118 return inBounds(key, m.comparator) && m.remove(key, value);
2854 dl 1.1 }
2855    
2856     public boolean replace(K key, V oldValue, V newValue) {
2857 dl 1.118 checkKeyBounds(key, m.comparator);
2858 dl 1.1 return m.replace(key, oldValue, newValue);
2859     }
2860    
2861     public V replace(K key, V value) {
2862 dl 1.118 checkKeyBounds(key, m.comparator);
2863 dl 1.1 return m.replace(key, value);
2864     }
2865    
2866     /* ---------------- SortedMap API methods -------------- */
2867    
2868     public Comparator<? super K> comparator() {
2869 dl 1.46 Comparator<? super K> cmp = m.comparator();
2870 jsr166 1.55 if (isDescending)
2871     return Collections.reverseOrder(cmp);
2872     else
2873     return cmp;
2874 dl 1.1 }
2875 dl 1.47
2876 dl 1.46 /**
2877     * Utility to create submaps, where given bounds override
2878     * unbounded(null) ones and/or are checked against bounded ones.
2879     */
2880 dl 1.118 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2881     K toKey, boolean toInclusive) {
2882     Comparator<? super K> cmp = m.comparator;
2883 dl 1.46 if (isDescending) { // flip senses
2884 dl 1.47 K tk = fromKey;
2885     fromKey = toKey;
2886 dl 1.46 toKey = tk;
2887 dl 1.47 boolean ti = fromInclusive;
2888     fromInclusive = toInclusive;
2889 dl 1.46 toInclusive = ti;
2890     }
2891     if (lo != null) {
2892     if (fromKey == null) {
2893     fromKey = lo;
2894     fromInclusive = loInclusive;
2895     }
2896     else {
2897 dl 1.118 int c = cpr(cmp, fromKey, lo);
2898 dl 1.46 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2899     throw new IllegalArgumentException("key out of range");
2900     }
2901     }
2902     if (hi != null) {
2903     if (toKey == null) {
2904     toKey = hi;
2905     toInclusive = hiInclusive;
2906     }
2907     else {
2908 dl 1.118 int c = cpr(cmp, toKey, hi);
2909 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2910     throw new IllegalArgumentException("key out of range");
2911     }
2912 dl 1.1 }
2913 dl 1.47 return new SubMap<K,V>(m, fromKey, fromInclusive,
2914 dl 1.46 toKey, toInclusive, isDescending);
2915 dl 1.1 }
2916    
2917 dl 1.118 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2918     K toKey, boolean toInclusive) {
2919 dl 1.1 if (fromKey == null || toKey == null)
2920     throw new NullPointerException();
2921 dl 1.46 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2922 dl 1.1 }
2923 dl 1.47
2924 dl 1.118 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2925 dl 1.1 if (toKey == null)
2926     throw new NullPointerException();
2927 dl 1.46 return newSubMap(null, false, toKey, inclusive);
2928 dl 1.1 }
2929 dl 1.47
2930 dl 1.118 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2931 dl 1.1 if (fromKey == null)
2932     throw new NullPointerException();
2933 dl 1.46 return newSubMap(fromKey, inclusive, null, false);
2934     }
2935    
2936     public SubMap<K,V> subMap(K fromKey, K toKey) {
2937 dl 1.47 return subMap(fromKey, true, toKey, false);
2938 dl 1.1 }
2939    
2940 dl 1.46 public SubMap<K,V> headMap(K toKey) {
2941 dl 1.47 return headMap(toKey, false);
2942 dl 1.6 }
2943    
2944 dl 1.46 public SubMap<K,V> tailMap(K fromKey) {
2945 dl 1.47 return tailMap(fromKey, true);
2946 dl 1.6 }
2947    
2948 dl 1.46 public SubMap<K,V> descendingMap() {
2949 dl 1.47 return new SubMap<K,V>(m, lo, loInclusive,
2950 dl 1.46 hi, hiInclusive, !isDescending);
2951 dl 1.6 }
2952    
2953 dl 1.1 /* ---------------- Relational methods -------------- */
2954    
2955     public Map.Entry<K,V> ceilingEntry(K key) {
2956 jsr166 1.70 return getNearEntry(key, GT|EQ);
2957 dl 1.1 }
2958    
2959     public K ceilingKey(K key) {
2960 jsr166 1.70 return getNearKey(key, GT|EQ);
2961 dl 1.1 }
2962    
2963     public Map.Entry<K,V> lowerEntry(K key) {
2964 jsr166 1.70 return getNearEntry(key, LT);
2965 dl 1.1 }
2966    
2967     public K lowerKey(K key) {
2968 jsr166 1.70 return getNearKey(key, LT);
2969 dl 1.1 }
2970    
2971     public Map.Entry<K,V> floorEntry(K key) {
2972 jsr166 1.70 return getNearEntry(key, LT|EQ);
2973 dl 1.1 }
2974    
2975     public K floorKey(K key) {
2976 jsr166 1.70 return getNearKey(key, LT|EQ);
2977 dl 1.1 }
2978    
2979     public Map.Entry<K,V> higherEntry(K key) {
2980 jsr166 1.70 return getNearEntry(key, GT);
2981 dl 1.1 }
2982    
2983     public K higherKey(K key) {
2984 jsr166 1.70 return getNearKey(key, GT);
2985 dl 1.46 }
2986    
2987     public K firstKey() {
2988 jsr166 1.61 return isDescending ? highestKey() : lowestKey();
2989 dl 1.46 }
2990    
2991     public K lastKey() {
2992 jsr166 1.61 return isDescending ? lowestKey() : highestKey();
2993 dl 1.1 }
2994    
2995     public Map.Entry<K,V> firstEntry() {
2996 jsr166 1.61 return isDescending ? highestEntry() : lowestEntry();
2997 dl 1.1 }
2998    
2999     public Map.Entry<K,V> lastEntry() {
3000 jsr166 1.61 return isDescending ? lowestEntry() : highestEntry();
3001 dl 1.1 }
3002    
3003     public Map.Entry<K,V> pollFirstEntry() {
3004 jsr166 1.61 return isDescending ? removeHighest() : removeLowest();
3005 dl 1.1 }
3006    
3007     public Map.Entry<K,V> pollLastEntry() {
3008 jsr166 1.61 return isDescending ? removeLowest() : removeHighest();
3009 dl 1.1 }
3010    
3011     /* ---------------- Submap Views -------------- */
3012    
3013 jsr166 1.51 public NavigableSet<K> keySet() {
3014 dl 1.46 KeySet<K> ks = keySetView;
3015 jsr166 1.71 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3016 dl 1.1 }
3017    
3018 dl 1.46 public NavigableSet<K> navigableKeySet() {
3019     KeySet<K> ks = keySetView;
3020 jsr166 1.71 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3021 dl 1.46 }
3022 dl 1.45
3023 dl 1.46 public Collection<V> values() {
3024     Collection<V> vs = valuesView;
3025 jsr166 1.71 return (vs != null) ? vs : (valuesView = new Values<V>(this));
3026 dl 1.1 }
3027    
3028 dl 1.46 public Set<Map.Entry<K,V>> entrySet() {
3029     Set<Map.Entry<K,V>> es = entrySetView;
3030 jsr166 1.71 return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
3031 dl 1.1 }
3032    
3033 dl 1.46 public NavigableSet<K> descendingKeySet() {
3034     return descendingMap().navigableKeySet();
3035 dl 1.1 }
3036    
3037 dl 1.46 Iterator<K> keyIterator() {
3038     return new SubMapKeyIterator();
3039 dl 1.1 }
3040    
3041 dl 1.46 Iterator<V> valueIterator() {
3042     return new SubMapValueIterator();
3043 dl 1.1 }
3044    
3045 dl 1.46 Iterator<Map.Entry<K,V>> entryIterator() {
3046     return new SubMapEntryIterator();
3047 dl 1.1 }
3048    
3049 dl 1.46 /**
3050     * Variant of main Iter class to traverse through submaps.
3051 dl 1.100 * Also serves as back-up Spliterator for views
3052 dl 1.46 */
3053 dl 1.100 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
3054 dl 1.46 /** the last node returned by next() */
3055 jsr166 1.52 Node<K,V> lastReturned;
3056 dl 1.46 /** the next node to return from next(); */
3057     Node<K,V> next;
3058     /** Cache of next value field to maintain weak consistency */
3059 jsr166 1.52 V nextValue;
3060 dl 1.46
3061 dl 1.47 SubMapIter() {
3062 dl 1.118 Comparator<? super K> cmp = m.comparator;
3063 dl 1.46 for (;;) {
3064 dl 1.118 next = isDescending ? hiNode(cmp) : loNode(cmp);
3065 dl 1.46 if (next == null)
3066     break;
3067 jsr166 1.55 Object x = next.value;
3068 jsr166 1.52 if (x != null && x != next) {
3069 dl 1.118 if (! inBounds(next.key, cmp))
3070 dl 1.46 next = null;
3071 dl 1.118 else {
3072     @SuppressWarnings("unchecked") V vv = (V)x;
3073 dl 1.100 nextValue = vv;
3074 dl 1.118 }
3075 dl 1.46 break;
3076     }
3077     }
3078 dl 1.1 }
3079 dl 1.46
3080     public final boolean hasNext() {
3081     return next != null;
3082 dl 1.1 }
3083 dl 1.46
3084     final void advance() {
3085 jsr166 1.54 if (next == null)
3086 dl 1.46 throw new NoSuchElementException();
3087 jsr166 1.55 lastReturned = next;
3088 dl 1.46 if (isDescending)
3089     descend();
3090     else
3091     ascend();
3092 dl 1.1 }
3093 dl 1.46
3094     private void ascend() {
3095 dl 1.118 Comparator<? super K> cmp = m.comparator;
3096 dl 1.46 for (;;) {
3097     next = next.next;
3098     if (next == null)
3099     break;
3100 jsr166 1.55 Object x = next.value;
3101 jsr166 1.52 if (x != null && x != next) {
3102 dl 1.118 if (tooHigh(next.key, cmp))
3103 dl 1.46 next = null;
3104 dl 1.118 else {
3105     @SuppressWarnings("unchecked") V vv = (V)x;
3106 dl 1.100 nextValue = vv;
3107 dl 1.118 }
3108 dl 1.46 break;
3109     }
3110     }
3111     }
3112    
3113     private void descend() {
3114 dl 1.88 Comparator<? super K> cmp = m.comparator;
3115 dl 1.46 for (;;) {
3116 jsr166 1.125 next = m.findNear(lastReturned.key, LT, cmp);
3117 dl 1.46 if (next == null)
3118     break;
3119 jsr166 1.55 Object x = next.value;
3120 jsr166 1.52 if (x != null && x != next) {
3121 dl 1.118 if (tooLow(next.key, cmp))
3122 dl 1.46 next = null;
3123 dl 1.118 else {
3124     @SuppressWarnings("unchecked") V vv = (V)x;
3125 dl 1.100 nextValue = vv;
3126 dl 1.118 }
3127 dl 1.46 break;
3128     }
3129     }
3130 dl 1.1 }
3131 dl 1.46
3132     public void remove() {
3133 jsr166 1.52 Node<K,V> l = lastReturned;
3134 dl 1.46 if (l == null)
3135     throw new IllegalStateException();
3136     m.remove(l.key);
3137 jsr166 1.55 lastReturned = null;
3138 dl 1.1 }
3139 dl 1.46
3140 dl 1.107 public Spliterator<T> trySplit() {
3141     return null;
3142 jsr166 1.108 }
3143 dl 1.107
3144 dl 1.100 public boolean tryAdvance(Consumer<? super T> action) {
3145     if (hasNext()) {
3146     action.accept(next());
3147     return true;
3148     }
3149     return false;
3150     }
3151    
3152 dl 1.113 public void forEachRemaining(Consumer<? super T> action) {
3153 dl 1.100 while (hasNext())
3154     action.accept(next());
3155     }
3156 dl 1.113
3157 jsr166 1.114 public long estimateSize() {
3158     return Long.MAX_VALUE;
3159 dl 1.113 }
3160    
3161 dl 1.46 }
3162    
3163     final class SubMapValueIterator extends SubMapIter<V> {
3164     public V next() {
3165 jsr166 1.52 V v = nextValue;
3166 dl 1.46 advance();
3167 jsr166 1.52 return v;
3168 dl 1.45 }
3169 dl 1.100 public int characteristics() {
3170     return 0;
3171     }
3172 dl 1.1 }
3173    
3174 dl 1.46 final class SubMapKeyIterator extends SubMapIter<K> {
3175     public K next() {
3176     Node<K,V> n = next;
3177     advance();
3178     return n.key;
3179     }
3180 dl 1.100 public int characteristics() {
3181     return Spliterator.DISTINCT | Spliterator.ORDERED |
3182     Spliterator.SORTED;
3183     }
3184 jsr166 1.115 public final Comparator<? super K> getComparator() {
3185 dl 1.100 return SubMap.this.comparator();
3186     }
3187 dl 1.1 }
3188    
3189 dl 1.46 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3190     public Map.Entry<K,V> next() {
3191     Node<K,V> n = next;
3192 jsr166 1.52 V v = nextValue;
3193 dl 1.46 advance();
3194     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3195 dl 1.1 }
3196 dl 1.100 public int characteristics() {
3197     return Spliterator.DISTINCT;
3198     }
3199 dl 1.1 }
3200     }
3201 dl 1.59
3202 dl 1.123 // default Map method overrides
3203    
3204     public void forEach(BiConsumer<? super K, ? super V> action) {
3205     if (action == null) throw new NullPointerException();
3206     V v;
3207     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3208     if ((v = n.getValidValue()) != null)
3209     action.accept(n.key, v);
3210     }
3211     }
3212    
3213     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3214     if (function == null) throw new NullPointerException();
3215     V v;
3216     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3217     while ((v = n.getValidValue()) != null) {
3218     V r = function.apply(n.key, v);
3219     if (r == null) throw new NullPointerException();
3220     if (n.casValue(v, r))
3221     break;
3222     }
3223     }
3224     }
3225    
3226 dl 1.83 /**
3227     * Base class providing common structure for Spliterators.
3228     * (Although not all that much common functionality; as usual for
3229     * view classes, details annoyingly vary in key, value, and entry
3230     * subclasses in ways that are not worth abstracting out for
3231     * internal classes.)
3232     *
3233     * The basic split strategy is to recursively descend from top
3234     * level, row by row, descending to next row when either split
3235     * off, or the end of row is encountered. Control of the number of
3236     * splits relies on some statistical estimation: The expected
3237     * remaining number of elements of a skip list when advancing
3238     * either across or down decreases by about 25%. To make this
3239     * observation useful, we need to know initial size, which we
3240 dl 1.104 * don't. But we can just use Integer.MAX_VALUE so that we
3241     * don't prematurely zero out while splitting.
3242 dl 1.83 */
3243 jsr166 1.119 abstract static class CSLMSpliterator<K,V> {
3244 dl 1.83 final Comparator<? super K> comparator;
3245     final K fence; // exclusive upper bound for keys, or null if to end
3246     Index<K,V> row; // the level to split out
3247     Node<K,V> current; // current traversal node; initialize at origin
3248     int est; // pseudo-size estimate
3249     CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3250     Node<K,V> origin, K fence, int est) {
3251     this.comparator = comparator; this.row = row;
3252     this.current = origin; this.fence = fence; this.est = est;
3253     }
3254    
3255     public final long estimateSize() { return (long)est; }
3256     }
3257    
3258     static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3259 dl 1.88 implements Spliterator<K> {
3260 dl 1.83 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3261     Node<K,V> origin, K fence, int est) {
3262     super(comparator, row, origin, fence, est);
3263     }
3264    
3265 dl 1.104 public Spliterator<K> trySplit() {
3266 dl 1.116 Node<K,V> e; K ek;
3267 dl 1.83 Comparator<? super K> cmp = comparator;
3268     K f = fence;
3269 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3270 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3271 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3272     if ((s = q.right) != null && (b = s.node) != null &&
3273     (n = b.next) != null && n.value != null &&
3274     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3275     (f == null || cpr(cmp, sk, f) < 0)) {
3276     current = n;
3277     Index<K,V> r = q.down;
3278     row = (s.right != null) ? s : s.down;
3279     est -= est >>> 2;
3280     return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3281 dl 1.83 }
3282     }
3283     }
3284     return null;
3285     }
3286    
3287 dl 1.113 public void forEachRemaining(Consumer<? super K> action) {
3288 dl 1.100 if (action == null) throw new NullPointerException();
3289 dl 1.118 Comparator<? super K> cmp = comparator;
3290 dl 1.83 K f = fence;
3291     Node<K,V> e = current;
3292     current = null;
3293 jsr166 1.84 for (; e != null; e = e.next) {
3294 dl 1.83 K k; Object v;
3295 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3296 dl 1.83 break;
3297     if ((v = e.value) != null && v != e)
3298 dl 1.100 action.accept(k);
3299 dl 1.83 }
3300     }
3301    
3302 dl 1.100 public boolean tryAdvance(Consumer<? super K> action) {
3303     if (action == null) throw new NullPointerException();
3304 dl 1.118 Comparator<? super K> cmp = comparator;
3305     K f = fence;
3306     Node<K,V> e = current;
3307     for (; e != null; e = e.next) {
3308 dl 1.83 K k; Object v;
3309 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3310 dl 1.83 e = null;
3311     break;
3312     }
3313     if ((v = e.value) != null && v != e) {
3314     current = e.next;
3315 dl 1.100 action.accept(k);
3316 dl 1.83 return true;
3317     }
3318     }
3319     current = e;
3320     return false;
3321     }
3322 dl 1.100
3323     public int characteristics() {
3324 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3325 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3326 dl 1.100 Spliterator.NONNULL;
3327     }
3328    
3329 jsr166 1.115 public final Comparator<? super K> getComparator() {
3330 dl 1.100 return comparator;
3331     }
3332 dl 1.83 }
3333 jsr166 1.120 // factory method for KeySpliterator
3334 dl 1.118 final KeySpliterator<K,V> keySpliterator() {
3335     Comparator<? super K> cmp = comparator;
3336     for (;;) { // ensure h corresponds to origin p
3337     HeadIndex<K,V> h; Node<K,V> p;
3338     Node<K,V> b = (h = head).node;
3339     if ((p = b.next) == null || p.value != null)
3340     return new KeySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3341     0 : Integer.MAX_VALUE);
3342     p.helpDelete(b, p.next);
3343     }
3344     }
3345 dl 1.83
3346     static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3347 dl 1.88 implements Spliterator<V> {
3348 dl 1.83 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3349     Node<K,V> origin, K fence, int est) {
3350     super(comparator, row, origin, fence, est);
3351     }
3352    
3353 dl 1.104 public Spliterator<V> trySplit() {
3354 dl 1.116 Node<K,V> e; K ek;
3355 dl 1.83 Comparator<? super K> cmp = comparator;
3356     K f = fence;
3357 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3358 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3359 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3360     if ((s = q.right) != null && (b = s.node) != null &&
3361     (n = b.next) != null && n.value != null &&
3362     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3363     (f == null || cpr(cmp, sk, f) < 0)) {
3364     current = n;
3365     Index<K,V> r = q.down;
3366     row = (s.right != null) ? s : s.down;
3367     est -= est >>> 2;
3368     return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3369 dl 1.83 }
3370     }
3371     }
3372     return null;
3373     }
3374    
3375 dl 1.113 public void forEachRemaining(Consumer<? super V> action) {
3376 dl 1.100 if (action == null) throw new NullPointerException();
3377 dl 1.118 Comparator<? super K> cmp = comparator;
3378 dl 1.83 K f = fence;
3379     Node<K,V> e = current;
3380     current = null;
3381 jsr166 1.84 for (; e != null; e = e.next) {
3382 dl 1.83 K k; Object v;
3383 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3384 dl 1.83 break;
3385 dl 1.100 if ((v = e.value) != null && v != e) {
3386     @SuppressWarnings("unchecked") V vv = (V)v;
3387     action.accept(vv);
3388     }
3389 dl 1.83 }
3390     }
3391    
3392 dl 1.100 public boolean tryAdvance(Consumer<? super V> action) {
3393     if (action == null) throw new NullPointerException();
3394 dl 1.118 Comparator<? super K> cmp = comparator;
3395     K f = fence;
3396     Node<K,V> e = current;
3397     for (; e != null; e = e.next) {
3398 dl 1.83 K k; Object v;
3399 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3400 dl 1.83 e = null;
3401     break;
3402     }
3403     if ((v = e.value) != null && v != e) {
3404     current = e.next;
3405 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3406     action.accept(vv);
3407 dl 1.83 return true;
3408     }
3409     }
3410     current = e;
3411     return false;
3412     }
3413 dl 1.100
3414     public int characteristics() {
3415     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3416     }
3417 dl 1.83 }
3418    
3419 dl 1.118 // Almost the same as keySpliterator()
3420     final ValueSpliterator<K,V> valueSpliterator() {
3421     Comparator<? super K> cmp = comparator;
3422     for (;;) {
3423     HeadIndex<K,V> h; Node<K,V> p;
3424     Node<K,V> b = (h = head).node;
3425     if ((p = b.next) == null || p.value != null)
3426     return new ValueSpliterator<K,V>(cmp, h, p, null, (p == null) ?
3427     0 : Integer.MAX_VALUE);
3428     p.helpDelete(b, p.next);
3429     }
3430     }
3431    
3432 dl 1.83 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3433 dl 1.88 implements Spliterator<Map.Entry<K,V>> {
3434 dl 1.83 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3435     Node<K,V> origin, K fence, int est) {
3436     super(comparator, row, origin, fence, est);
3437     }
3438    
3439 dl 1.104 public Spliterator<Map.Entry<K,V>> trySplit() {
3440 dl 1.116 Node<K,V> e; K ek;
3441 dl 1.83 Comparator<? super K> cmp = comparator;
3442     K f = fence;
3443 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3444 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3445 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3446     if ((s = q.right) != null && (b = s.node) != null &&
3447     (n = b.next) != null && n.value != null &&
3448     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3449     (f == null || cpr(cmp, sk, f) < 0)) {
3450     current = n;
3451     Index<K,V> r = q.down;
3452     row = (s.right != null) ? s : s.down;
3453     est -= est >>> 2;
3454     return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3455 dl 1.83 }
3456     }
3457     }
3458     return null;
3459     }
3460    
3461 dl 1.113 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3462 dl 1.100 if (action == null) throw new NullPointerException();
3463 dl 1.118 Comparator<? super K> cmp = comparator;
3464 dl 1.83 K f = fence;
3465     Node<K,V> e = current;
3466     current = null;
3467 jsr166 1.84 for (; e != null; e = e.next) {
3468 dl 1.83 K k; Object v;
3469 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3470 dl 1.83 break;
3471 dl 1.100 if ((v = e.value) != null && v != e) {
3472     @SuppressWarnings("unchecked") V vv = (V)v;
3473     action.accept
3474     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3475     }
3476 dl 1.83 }
3477     }
3478    
3479 dl 1.100 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3480     if (action == null) throw new NullPointerException();
3481 dl 1.118 Comparator<? super K> cmp = comparator;
3482     K f = fence;
3483     Node<K,V> e = current;
3484     for (; e != null; e = e.next) {
3485 dl 1.83 K k; Object v;
3486 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3487 dl 1.83 e = null;
3488     break;
3489     }
3490     if ((v = e.value) != null && v != e) {
3491     current = e.next;
3492 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3493     action.accept
3494     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3495 dl 1.83 return true;
3496     }
3497     }
3498     current = e;
3499     return false;
3500     }
3501 dl 1.100
3502     public int characteristics() {
3503 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3504 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3505 dl 1.100 Spliterator.NONNULL;
3506     }
3507 dl 1.113
3508     public final Comparator<Map.Entry<K,V>> getComparator() {
3509     return comparator == null ? null :
3510 dl 1.127 Entry.comparingByKey(comparator);
3511 dl 1.113 }
3512 dl 1.118 }
3513 dl 1.113
3514 dl 1.118 // Almost the same as keySpliterator()
3515     final EntrySpliterator<K,V> entrySpliterator() {
3516     Comparator<? super K> cmp = comparator;
3517     for (;;) { // almost same as key version
3518     HeadIndex<K,V> h; Node<K,V> p;
3519     Node<K,V> b = (h = head).node;
3520     if ((p = b.next) == null || p.value != null)
3521     return new EntrySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3522     0 : Integer.MAX_VALUE);
3523     p.helpDelete(b, p.next);
3524     }
3525 dl 1.83 }
3526    
3527 dl 1.59 // Unsafe mechanics
3528 dl 1.65 private static final sun.misc.Unsafe UNSAFE;
3529     private static final long headOffset;
3530 dl 1.92 private static final long SECONDARY;
3531 dl 1.65 static {
3532 dl 1.59 try {
3533 dl 1.65 UNSAFE = sun.misc.Unsafe.getUnsafe();
3534 jsr166 1.72 Class<?> k = ConcurrentSkipListMap.class;
3535 dl 1.65 headOffset = UNSAFE.objectFieldOffset
3536     (k.getDeclaredField("head"));
3537 dl 1.92 Class<?> tk = Thread.class;
3538     SECONDARY = UNSAFE.objectFieldOffset
3539     (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
3540    
3541 dl 1.65 } catch (Exception e) {
3542     throw new Error(e);
3543 dl 1.59 }
3544     }
3545 dl 1.1 }