ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.133
Committed: Thu Aug 8 20:12:10 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.132: +13 -22 lines
Log Message:
refactor definitions of "weakly consistent" into package-info.java

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.67 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.130 import java.io.Serializable;
9 dl 1.118 import java.util.AbstractCollection;
10     import java.util.AbstractMap;
11     import java.util.AbstractSet;
12     import java.util.ArrayList;
13     import java.util.Collection;
14     import java.util.Collections;
15     import java.util.Comparator;
16     import java.util.Iterator;
17     import java.util.List;
18     import java.util.Map;
19     import java.util.NavigableMap;
20     import java.util.NavigableSet;
21     import java.util.NoSuchElementException;
22     import java.util.Set;
23     import java.util.SortedMap;
24     import java.util.SortedSet;
25 dl 1.83 import java.util.Spliterator;
26 dl 1.118 import java.util.concurrent.ConcurrentMap;
27     import java.util.concurrent.ConcurrentNavigableMap;
28     import java.util.function.BiFunction;
29 dl 1.94 import java.util.function.Consumer;
30 dl 1.123 import java.util.function.BiConsumer;
31 dl 1.109 import java.util.function.Function;
32 dl 1.83
33 dl 1.1 /**
34 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
35     * The map is sorted according to the {@linkplain Comparable natural
36     * ordering} of its keys, or by a {@link Comparator} provided at map
37     * creation time, depending on which constructor is used.
38 dl 1.1 *
39     * <p>This class implements a concurrent variant of <a
40 dl 1.66 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
41     * providing expected average <i>log(n)</i> time cost for the
42 jsr166 1.82 * {@code containsKey}, {@code get}, {@code put} and
43     * {@code remove} operations and their variants. Insertion, removal,
44 dl 1.1 * update, and access operations safely execute concurrently by
45 jsr166 1.133 * multiple threads.
46     *
47     * <p>Iterators and spliterators are
48     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
49     *
50     * <p>Ascending key ordered views and their iterators are faster than
51     * descending ones.
52 dl 1.1 *
53 jsr166 1.82 * <p>All {@code Map.Entry} pairs returned by methods in this class
54 dl 1.1 * and its views represent snapshots of mappings at the time they were
55 jsr166 1.82 * produced. They do <em>not</em> support the {@code Entry.setValue}
56 dl 1.1 * method. (Note however that it is possible to change mappings in the
57 jsr166 1.82 * associated map using {@code put}, {@code putIfAbsent}, or
58     * {@code replace}, depending on exactly which effect you need.)
59 dl 1.1 *
60 jsr166 1.82 * <p>Beware that, unlike in most collections, the {@code size}
61 dl 1.1 * method is <em>not</em> a constant-time operation. Because of the
62     * asynchronous nature of these maps, determining the current number
63 dl 1.69 * of elements requires a traversal of the elements, and so may report
64     * inaccurate results if this collection is modified during traversal.
65 jsr166 1.82 * Additionally, the bulk operations {@code putAll}, {@code equals},
66     * {@code toArray}, {@code containsValue}, and {@code clear} are
67 dl 1.69 * <em>not</em> guaranteed to be performed atomically. For example, an
68 jsr166 1.82 * iterator operating concurrently with a {@code putAll} operation
69 dl 1.69 * might view only some of the added elements.
70 dl 1.1 *
71     * <p>This class and its views and iterators implement all of the
72     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
73     * interfaces. Like most other concurrent collections, this class does
74 jsr166 1.82 * <em>not</em> permit the use of {@code null} keys or values because some
75 jsr166 1.22 * null return values cannot be reliably distinguished from the absence of
76     * elements.
77 dl 1.1 *
78 jsr166 1.21 * <p>This class is a member of the
79 jsr166 1.51 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
80 jsr166 1.21 * Java Collections Framework</a>.
81     *
82 dl 1.1 * @author Doug Lea
83     * @param <K> the type of keys maintained by this map
84 dl 1.9 * @param <V> the type of mapped values
85 jsr166 1.20 * @since 1.6
86 dl 1.1 */
87 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
88 jsr166 1.130 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
89 dl 1.1 /*
90     * This class implements a tree-like two-dimensionally linked skip
91     * list in which the index levels are represented in separate
92     * nodes from the base nodes holding data. There are two reasons
93     * for taking this approach instead of the usual array-based
94     * structure: 1) Array based implementations seem to encounter
95     * more complexity and overhead 2) We can use cheaper algorithms
96     * for the heavily-traversed index lists than can be used for the
97     * base lists. Here's a picture of some of the basics for a
98     * possible list with 2 levels of index:
99     *
100     * Head nodes Index nodes
101 dl 1.9 * +-+ right +-+ +-+
102 dl 1.1 * |2|---------------->| |--------------------->| |->null
103 dl 1.9 * +-+ +-+ +-+
104 dl 1.1 * | down | |
105     * v v v
106 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
107 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
108 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
109 dl 1.1 * v | | | | |
110     * Nodes next v v v v v
111 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
112 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
113 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
114 dl 1.1 *
115     * The base lists use a variant of the HM linked ordered set
116     * algorithm. See Tim Harris, "A pragmatic implementation of
117     * non-blocking linked lists"
118     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
119     * Michael "High Performance Dynamic Lock-Free Hash Tables and
120     * List-Based Sets"
121     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
122     * basic idea in these lists is to mark the "next" pointers of
123     * deleted nodes when deleting to avoid conflicts with concurrent
124     * insertions, and when traversing to keep track of triples
125     * (predecessor, node, successor) in order to detect when and how
126     * to unlink these deleted nodes.
127     *
128     * Rather than using mark-bits to mark list deletions (which can
129     * be slow and space-intensive using AtomicMarkedReference), nodes
130     * use direct CAS'able next pointers. On deletion, instead of
131     * marking a pointer, they splice in another node that can be
132     * thought of as standing for a marked pointer (indicating this by
133     * using otherwise impossible field values). Using plain nodes
134     * acts roughly like "boxed" implementations of marked pointers,
135     * but uses new nodes only when nodes are deleted, not for every
136     * link. This requires less space and supports faster
137     * traversal. Even if marked references were better supported by
138     * JVMs, traversal using this technique might still be faster
139     * because any search need only read ahead one more node than
140     * otherwise required (to check for trailing marker) rather than
141     * unmasking mark bits or whatever on each read.
142     *
143     * This approach maintains the essential property needed in the HM
144     * algorithm of changing the next-pointer of a deleted node so
145     * that any other CAS of it will fail, but implements the idea by
146     * changing the pointer to point to a different node, not by
147     * marking it. While it would be possible to further squeeze
148     * space by defining marker nodes not to have key/value fields, it
149     * isn't worth the extra type-testing overhead. The deletion
150     * markers are rarely encountered during traversal and are
151     * normally quickly garbage collected. (Note that this technique
152     * would not work well in systems without garbage collection.)
153     *
154     * In addition to using deletion markers, the lists also use
155     * nullness of value fields to indicate deletion, in a style
156     * similar to typical lazy-deletion schemes. If a node's value is
157     * null, then it is considered logically deleted and ignored even
158     * though it is still reachable. This maintains proper control of
159     * concurrent replace vs delete operations -- an attempted replace
160     * must fail if a delete beat it by nulling field, and a delete
161     * must return the last non-null value held in the field. (Note:
162     * Null, rather than some special marker, is used for value fields
163     * here because it just so happens to mesh with the Map API
164     * requirement that method get returns null if there is no
165     * mapping, which allows nodes to remain concurrently readable
166     * even when deleted. Using any other marker value here would be
167     * messy at best.)
168     *
169     * Here's the sequence of events for a deletion of node n with
170     * predecessor b and successor f, initially:
171     *
172 dl 1.9 * +------+ +------+ +------+
173 dl 1.1 * ... | b |------>| n |----->| f | ...
174 dl 1.9 * +------+ +------+ +------+
175 dl 1.1 *
176     * 1. CAS n's value field from non-null to null.
177     * From this point on, no public operations encountering
178     * the node consider this mapping to exist. However, other
179     * ongoing insertions and deletions might still modify
180     * n's next pointer.
181     *
182     * 2. CAS n's next pointer to point to a new marker node.
183     * From this point on, no other nodes can be appended to n.
184     * which avoids deletion errors in CAS-based linked lists.
185     *
186     * +------+ +------+ +------+ +------+
187     * ... | b |------>| n |----->|marker|------>| f | ...
188 dl 1.9 * +------+ +------+ +------+ +------+
189 dl 1.1 *
190     * 3. CAS b's next pointer over both n and its marker.
191     * From this point on, no new traversals will encounter n,
192     * and it can eventually be GCed.
193     * +------+ +------+
194     * ... | b |----------------------------------->| f | ...
195 dl 1.9 * +------+ +------+
196     *
197 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
198     * with another operation. Steps 2-3 can fail because some other
199     * thread noticed during a traversal a node with null value and
200     * helped out by marking and/or unlinking. This helping-out
201     * ensures that no thread can become stuck waiting for progress of
202     * the deleting thread. The use of marker nodes slightly
203     * complicates helping-out code because traversals must track
204     * consistent reads of up to four nodes (b, n, marker, f), not
205     * just (b, n, f), although the next field of a marker is
206     * immutable, and once a next field is CAS'ed to point to a
207     * marker, it never again changes, so this requires less care.
208     *
209     * Skip lists add indexing to this scheme, so that the base-level
210     * traversals start close to the locations being found, inserted
211     * or deleted -- usually base level traversals only traverse a few
212     * nodes. This doesn't change the basic algorithm except for the
213     * need to make sure base traversals start at predecessors (here,
214     * b) that are not (structurally) deleted, otherwise retrying
215 dl 1.9 * after processing the deletion.
216 dl 1.1 *
217     * Index levels are maintained as lists with volatile next fields,
218     * using CAS to link and unlink. Races are allowed in index-list
219     * operations that can (rarely) fail to link in a new index node
220     * or delete one. (We can't do this of course for data nodes.)
221     * However, even when this happens, the index lists remain sorted,
222     * so correctly serve as indices. This can impact performance,
223     * but since skip lists are probabilistic anyway, the net result
224     * is that under contention, the effective "p" value may be lower
225     * than its nominal value. And race windows are kept small enough
226     * that in practice these failures are rare, even under a lot of
227     * contention.
228     *
229     * The fact that retries (for both base and index lists) are
230     * relatively cheap due to indexing allows some minor
231     * simplifications of retry logic. Traversal restarts are
232     * performed after most "helping-out" CASes. This isn't always
233     * strictly necessary, but the implicit backoffs tend to help
234     * reduce other downstream failed CAS's enough to outweigh restart
235     * cost. This worsens the worst case, but seems to improve even
236     * highly contended cases.
237     *
238     * Unlike most skip-list implementations, index insertion and
239     * deletion here require a separate traversal pass occuring after
240     * the base-level action, to add or remove index nodes. This adds
241     * to single-threaded overhead, but improves contended
242     * multithreaded performance by narrowing interference windows,
243     * and allows deletion to ensure that all index nodes will be made
244     * unreachable upon return from a public remove operation, thus
245     * avoiding unwanted garbage retention. This is more important
246     * here than in some other data structures because we cannot null
247     * out node fields referencing user keys since they might still be
248     * read by other ongoing traversals.
249     *
250     * Indexing uses skip list parameters that maintain good search
251     * performance while using sparser-than-usual indices: The
252 dl 1.118 * hardwired parameters k=1, p=0.5 (see method doPut) mean
253 dl 1.1 * that about one-quarter of the nodes have indices. Of those that
254     * do, half have one level, a quarter have two, and so on (see
255     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
256     * requirement for a map is slightly less than for the current
257     * implementation of java.util.TreeMap.
258     *
259     * Changing the level of the index (i.e, the height of the
260     * tree-like structure) also uses CAS. The head index has initial
261     * level/height of one. Creation of an index with height greater
262     * than the current level adds a level to the head index by
263     * CAS'ing on a new top-most head. To maintain good performance
264     * after a lot of removals, deletion methods heuristically try to
265     * reduce the height if the topmost levels appear to be empty.
266     * This may encounter races in which it possible (but rare) to
267     * reduce and "lose" a level just as it is about to contain an
268     * index (that will then never be encountered). This does no
269     * structural harm, and in practice appears to be a better option
270     * than allowing unrestrained growth of levels.
271     *
272     * The code for all this is more verbose than you'd like. Most
273     * operations entail locating an element (or position to insert an
274     * element). The code to do this can't be nicely factored out
275     * because subsequent uses require a snapshot of predecessor
276     * and/or successor and/or value fields which can't be returned
277     * all at once, at least not without creating yet another object
278     * to hold them -- creating such little objects is an especially
279     * bad idea for basic internal search operations because it adds
280     * to GC overhead. (This is one of the few times I've wished Java
281     * had macros.) Instead, some traversal code is interleaved within
282     * insertion and removal operations. The control logic to handle
283     * all the retry conditions is sometimes twisty. Most search is
284     * broken into 2 parts. findPredecessor() searches index nodes
285     * only, returning a base-level predecessor of the key. findNode()
286     * finishes out the base-level search. Even with this factoring,
287     * there is a fair amount of near-duplication of code to handle
288     * variants.
289     *
290 dl 1.92 * To produce random values without interference across threads,
291     * we use within-JDK thread local random support (via the
292     * "secondary seed", to avoid interference with user-level
293     * ThreadLocalRandom.)
294     *
295 dl 1.88 * A previous version of this class wrapped non-comparable keys
296     * with their comparators to emulate Comparables when using
297 dl 1.118 * comparators vs Comparables. However, JVMs now appear to better
298     * handle infusing comparator-vs-comparable choice into search
299     * loops. Static method cpr(comparator, x, y) is used for all
300     * comparisons, which works well as long as the comparator
301     * argument is set up outside of loops (thus sometimes passed as
302     * an argument to internal methods) to avoid field re-reads.
303 dl 1.88 *
304 dl 1.1 * For explanation of algorithms sharing at least a couple of
305     * features with this one, see Mikhail Fomitchev's thesis
306     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
307 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
308 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
309     *
310     * Given the use of tree-like index nodes, you might wonder why
311     * this doesn't use some kind of search tree instead, which would
312     * support somewhat faster search operations. The reason is that
313     * there are no known efficient lock-free insertion and deletion
314     * algorithms for search trees. The immutability of the "down"
315     * links of index nodes (as opposed to mutable "left" fields in
316     * true trees) makes this tractable using only CAS operations.
317     *
318     * Notation guide for local variables
319     * Node: b, n, f for predecessor, node, successor
320     * Index: q, r, d for index node, right, down.
321     * t for another index node
322     * Head: h
323     * Levels: j
324     * Keys: k, key
325     * Values: v, value
326     * Comparisons: c
327     */
328    
329     private static final long serialVersionUID = -8627078645895051609L;
330    
331     /**
332     * Special value used to identify base-level header
333 dl 1.9 */
334 dl 1.1 private static final Object BASE_HEADER = new Object();
335    
336     /**
337 dl 1.9 * The topmost head index of the skiplist.
338 dl 1.1 */
339     private transient volatile HeadIndex<K,V> head;
340    
341     /**
342 dl 1.118 * The comparator used to maintain order in this map, or null if
343     * using natural ordering. (Non-private to simplify access in
344 jsr166 1.120 * nested classes.)
345 dl 1.1 * @serial
346     */
347 dl 1.118 final Comparator<? super K> comparator;
348 dl 1.1
349     /** Lazily initialized key set */
350 dl 1.118 private transient KeySet<K> keySet;
351 dl 1.1 /** Lazily initialized entry set */
352 jsr166 1.71 private transient EntrySet<K,V> entrySet;
353 dl 1.1 /** Lazily initialized values collection */
354 jsr166 1.71 private transient Values<V> values;
355 dl 1.1 /** Lazily initialized descending key set */
356 dl 1.46 private transient ConcurrentNavigableMap<K,V> descendingMap;
357 dl 1.1
358     /**
359 jsr166 1.13 * Initializes or resets state. Needed by constructors, clone,
360 dl 1.1 * clear, readObject. and ConcurrentSkipListSet.clone.
361     * (Note that comparator must be separately initialized.)
362     */
363 dl 1.118 private void initialize() {
364 dl 1.1 keySet = null;
365 dl 1.9 entrySet = null;
366 dl 1.1 values = null;
367 dl 1.46 descendingMap = null;
368 dl 1.1 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
369     null, null, 1);
370     }
371    
372     /**
373     * compareAndSet head node
374     */
375     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
376 dl 1.59 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
377 dl 1.1 }
378    
379     /* ---------------- Nodes -------------- */
380    
381     /**
382     * Nodes hold keys and values, and are singly linked in sorted
383     * order, possibly with some intervening marker nodes. The list is
384     * headed by a dummy node accessible as head.node. The value field
385     * is declared only as Object because it takes special non-V
386     * values for marker and header nodes.
387     */
388     static final class Node<K,V> {
389     final K key;
390     volatile Object value;
391     volatile Node<K,V> next;
392    
393     /**
394     * Creates a new regular node.
395     */
396     Node(K key, Object value, Node<K,V> next) {
397     this.key = key;
398     this.value = value;
399     this.next = next;
400     }
401    
402     /**
403     * Creates a new marker node. A marker is distinguished by
404     * having its value field point to itself. Marker nodes also
405     * have null keys, a fact that is exploited in a few places,
406     * but this doesn't distinguish markers from the base-level
407     * header node (head.node), which also has a null key.
408     */
409     Node(Node<K,V> next) {
410     this.key = null;
411     this.value = this;
412     this.next = next;
413     }
414    
415     /**
416     * compareAndSet value field
417     */
418     boolean casValue(Object cmp, Object val) {
419 dl 1.59 return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val);
420 dl 1.1 }
421 jsr166 1.60
422 dl 1.1 /**
423     * compareAndSet next field
424     */
425     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
426 dl 1.59 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
427 dl 1.1 }
428    
429     /**
430 jsr166 1.10 * Returns true if this node is a marker. This method isn't
431     * actually called in any current code checking for markers
432 dl 1.1 * because callers will have already read value field and need
433     * to use that read (not another done here) and so directly
434     * test if value points to node.
435 jsr166 1.93 *
436 dl 1.1 * @return true if this node is a marker node
437     */
438     boolean isMarker() {
439     return value == this;
440     }
441    
442     /**
443 jsr166 1.10 * Returns true if this node is the header of base-level list.
444 dl 1.1 * @return true if this node is header node
445     */
446     boolean isBaseHeader() {
447     return value == BASE_HEADER;
448     }
449    
450     /**
451     * Tries to append a deletion marker to this node.
452     * @param f the assumed current successor of this node
453     * @return true if successful
454     */
455     boolean appendMarker(Node<K,V> f) {
456     return casNext(f, new Node<K,V>(f));
457     }
458    
459     /**
460     * Helps out a deletion by appending marker or unlinking from
461     * predecessor. This is called during traversals when value
462     * field seen to be null.
463     * @param b predecessor
464     * @param f successor
465     */
466     void helpDelete(Node<K,V> b, Node<K,V> f) {
467     /*
468     * Rechecking links and then doing only one of the
469     * help-out stages per call tends to minimize CAS
470     * interference among helping threads.
471     */
472     if (f == next && this == b.next) {
473     if (f == null || f.value != f) // not already marked
474 dl 1.118 casNext(f, new Node<K,V>(f));
475 dl 1.1 else
476     b.casNext(this, f.next);
477     }
478     }
479    
480     /**
481 jsr166 1.11 * Returns value if this node contains a valid key-value pair,
482 dl 1.9 * else null.
483 dl 1.1 * @return this node's value if it isn't a marker or header or
484 jsr166 1.126 * is deleted, else null
485 dl 1.1 */
486     V getValidValue() {
487     Object v = value;
488     if (v == this || v == BASE_HEADER)
489     return null;
490 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
491     return vv;
492 dl 1.1 }
493    
494     /**
495 jsr166 1.10 * Creates and returns a new SimpleImmutableEntry holding current
496     * mapping if this node holds a valid value, else null.
497 dl 1.1 * @return new entry or null
498     */
499 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
500 dl 1.118 Object v = value;
501     if (v == null || v == this || v == BASE_HEADER)
502 dl 1.1 return null;
503 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
504     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
505 dl 1.1 }
506 dl 1.59
507 dl 1.65 // UNSAFE mechanics
508    
509     private static final sun.misc.Unsafe UNSAFE;
510     private static final long valueOffset;
511     private static final long nextOffset;
512 dl 1.59
513 dl 1.65 static {
514     try {
515     UNSAFE = sun.misc.Unsafe.getUnsafe();
516 jsr166 1.72 Class<?> k = Node.class;
517 dl 1.65 valueOffset = UNSAFE.objectFieldOffset
518     (k.getDeclaredField("value"));
519     nextOffset = UNSAFE.objectFieldOffset
520     (k.getDeclaredField("next"));
521     } catch (Exception e) {
522     throw new Error(e);
523     }
524     }
525 dl 1.1 }
526    
527     /* ---------------- Indexing -------------- */
528    
529     /**
530 dl 1.40 * Index nodes represent the levels of the skip list. Note that
531     * even though both Nodes and Indexes have forward-pointing
532     * fields, they have different types and are handled in different
533     * ways, that can't nicely be captured by placing field in a
534     * shared abstract class.
535 dl 1.1 */
536     static class Index<K,V> {
537     final Node<K,V> node;
538     final Index<K,V> down;
539     volatile Index<K,V> right;
540    
541     /**
542 jsr166 1.10 * Creates index node with given values.
543 dl 1.9 */
544 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
545     this.node = node;
546     this.down = down;
547     this.right = right;
548     }
549    
550     /**
551     * compareAndSet right field
552     */
553     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
554 dl 1.59 return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val);
555 dl 1.1 }
556    
557     /**
558     * Returns true if the node this indexes has been deleted.
559     * @return true if indexed node is known to be deleted
560     */
561     final boolean indexesDeletedNode() {
562     return node.value == null;
563     }
564    
565     /**
566     * Tries to CAS newSucc as successor. To minimize races with
567     * unlink that may lose this index node, if the node being
568     * indexed is known to be deleted, it doesn't try to link in.
569     * @param succ the expected current successor
570     * @param newSucc the new successor
571     * @return true if successful
572     */
573     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
574     Node<K,V> n = node;
575 dl 1.9 newSucc.right = succ;
576 dl 1.1 return n.value != null && casRight(succ, newSucc);
577     }
578    
579     /**
580     * Tries to CAS right field to skip over apparent successor
581     * succ. Fails (forcing a retraversal by caller) if this node
582     * is known to be deleted.
583     * @param succ the expected current successor
584     * @return true if successful
585     */
586     final boolean unlink(Index<K,V> succ) {
587 dl 1.118 return node.value != null && casRight(succ, succ.right);
588 dl 1.1 }
589 dl 1.59
590     // Unsafe mechanics
591 dl 1.65 private static final sun.misc.Unsafe UNSAFE;
592     private static final long rightOffset;
593     static {
594     try {
595     UNSAFE = sun.misc.Unsafe.getUnsafe();
596 jsr166 1.72 Class<?> k = Index.class;
597 dl 1.65 rightOffset = UNSAFE.objectFieldOffset
598     (k.getDeclaredField("right"));
599     } catch (Exception e) {
600     throw new Error(e);
601     }
602     }
603 dl 1.1 }
604    
605     /* ---------------- Head nodes -------------- */
606    
607     /**
608     * Nodes heading each level keep track of their level.
609     */
610     static final class HeadIndex<K,V> extends Index<K,V> {
611     final int level;
612     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
613     super(node, down, right);
614     this.level = level;
615     }
616 dl 1.9 }
617 dl 1.1
618     /* ---------------- Comparison utilities -------------- */
619    
620     /**
621 dl 1.118 * Compares using comparator or natural ordering if null.
622     * Called only by methods that have performed required type checks.
623 dl 1.1 */
624 dl 1.118 @SuppressWarnings({"unchecked", "rawtypes"})
625     static final int cpr(Comparator c, Object x, Object y) {
626     return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
627 dl 1.1 }
628    
629     /* ---------------- Traversal -------------- */
630    
631     /**
632 jsr166 1.10 * Returns a base-level node with key strictly less than given key,
633 dl 1.1 * or the base-level header if there is no such node. Also
634     * unlinks indexes to deleted nodes found along the way. Callers
635     * rely on this side-effect of clearing indices to deleted nodes.
636     * @param key the key
637 dl 1.9 * @return a predecessor of key
638 dl 1.1 */
639 dl 1.118 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
640 jsr166 1.41 if (key == null)
641 dl 1.40 throw new NullPointerException(); // don't postpone errors
642 dl 1.1 for (;;) {
643 dl 1.118 for (Index<K,V> q = head, r = q.right, d;;) {
644 dl 1.40 if (r != null) {
645     Node<K,V> n = r.node;
646     K k = n.key;
647     if (n.value == null) {
648     if (!q.unlink(r))
649     break; // restart
650     r = q.right; // reread r
651     continue;
652 dl 1.1 }
653 dl 1.118 if (cpr(cmp, key, k) > 0) {
654 dl 1.1 q = r;
655 dl 1.40 r = r.right;
656 dl 1.1 continue;
657     }
658     }
659 dl 1.118 if ((d = q.down) == null)
660 dl 1.1 return q.node;
661 dl 1.118 q = d;
662     r = d.right;
663 dl 1.1 }
664     }
665     }
666    
667     /**
668 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
669 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
670     * base-level looking for key starting at predecessor returned
671     * from findPredecessor, processing base-level deletions as
672     * encountered. Some callers rely on this side-effect of clearing
673     * deleted nodes.
674     *
675     * Restarts occur, at traversal step centered on node n, if:
676     *
677     * (1) After reading n's next field, n is no longer assumed
678     * predecessor b's current successor, which means that
679     * we don't have a consistent 3-node snapshot and so cannot
680     * unlink any subsequent deleted nodes encountered.
681     *
682     * (2) n's value field is null, indicating n is deleted, in
683     * which case we help out an ongoing structural deletion
684     * before retrying. Even though there are cases where such
685     * unlinking doesn't require restart, they aren't sorted out
686     * here because doing so would not usually outweigh cost of
687     * restarting.
688     *
689 dl 1.9 * (3) n is a marker or n's predecessor's value field is null,
690 dl 1.1 * indicating (among other possibilities) that
691     * findPredecessor returned a deleted node. We can't unlink
692     * the node because we don't know its predecessor, so rely
693     * on another call to findPredecessor to notice and return
694     * some earlier predecessor, which it will do. This check is
695     * only strictly needed at beginning of loop, (and the
696     * b.value check isn't strictly needed at all) but is done
697     * each iteration to help avoid contention with other
698     * threads by callers that will fail to be able to change
699     * links, and so will retry anyway.
700     *
701     * The traversal loops in doPut, doRemove, and findNear all
702     * include the same three kinds of checks. And specialized
703 dl 1.31 * versions appear in findFirst, and findLast and their
704     * variants. They can't easily share code because each uses the
705 dl 1.1 * reads of fields held in locals occurring in the orders they
706     * were performed.
707 dl 1.9 *
708 dl 1.1 * @param key the key
709 jsr166 1.22 * @return node holding key, or null if no such
710 dl 1.1 */
711 dl 1.118 private Node<K,V> findNode(Object key) {
712 dl 1.88 if (key == null)
713     throw new NullPointerException(); // don't postpone errors
714 dl 1.118 Comparator<? super K> cmp = comparator;
715     outer: for (;;) {
716     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
717     Object v; int c;
718 dl 1.9 if (n == null)
719 dl 1.118 break outer;
720 dl 1.1 Node<K,V> f = n.next;
721     if (n != b.next) // inconsistent read
722     break;
723 dl 1.118 if ((v = n.value) == null) { // n is deleted
724 dl 1.1 n.helpDelete(b, f);
725     break;
726     }
727 dl 1.118 if (b.value == null || v == n) // b is deleted
728 dl 1.1 break;
729 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0)
730 dl 1.40 return n;
731 dl 1.1 if (c < 0)
732 dl 1.118 break outer;
733 dl 1.1 b = n;
734     n = f;
735     }
736     }
737 dl 1.118 return null;
738 dl 1.1 }
739    
740 dl 1.9 /**
741 dl 1.88 * Gets value for key. Almost the same as findNode, but returns
742     * the found value (to avoid retries during re-reads)
743     *
744 dl 1.118 * @param key the key
745 dl 1.1 * @return the value, or null if absent
746     */
747 dl 1.118 private V doGet(Object key) {
748     if (key == null)
749 dl 1.88 throw new NullPointerException();
750 dl 1.118 Comparator<? super K> cmp = comparator;
751     outer: for (;;) {
752     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
753     Object v; int c;
754 dl 1.88 if (n == null)
755 dl 1.118 break outer;
756 dl 1.88 Node<K,V> f = n.next;
757     if (n != b.next) // inconsistent read
758     break;
759 dl 1.118 if ((v = n.value) == null) { // n is deleted
760 dl 1.88 n.helpDelete(b, f);
761     break;
762     }
763 dl 1.118 if (b.value == null || v == n) // b is deleted
764 dl 1.88 break;
765 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0) {
766     @SuppressWarnings("unchecked") V vv = (V)v;
767 dl 1.100 return vv;
768 dl 1.118 }
769 dl 1.88 if (c < 0)
770 dl 1.118 break outer;
771 dl 1.88 b = n;
772     n = f;
773     }
774 dl 1.1 }
775 dl 1.118 return null;
776 dl 1.1 }
777    
778     /* ---------------- Insertion -------------- */
779    
780     /**
781     * Main insertion method. Adds element if not present, or
782     * replaces value if present and onlyIfAbsent is false.
783 dl 1.118 * @param key the key
784 jsr166 1.103 * @param value the value that must be associated with key
785 dl 1.1 * @param onlyIfAbsent if should not insert if already present
786     * @return the old value, or null if newly inserted
787     */
788 dl 1.118 private V doPut(K key, V value, boolean onlyIfAbsent) {
789     Node<K,V> z; // added node
790     if (key == null)
791 dl 1.88 throw new NullPointerException();
792 dl 1.118 Comparator<? super K> cmp = comparator;
793     outer: for (;;) {
794     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
795 dl 1.1 if (n != null) {
796 dl 1.118 Object v; int c;
797 dl 1.1 Node<K,V> f = n.next;
798     if (n != b.next) // inconsistent read
799 jsr166 1.57 break;
800 dl 1.118 if ((v = n.value) == null) { // n is deleted
801 dl 1.1 n.helpDelete(b, f);
802     break;
803     }
804 dl 1.118 if (b.value == null || v == n) // b is deleted
805 dl 1.1 break;
806 dl 1.118 if ((c = cpr(cmp, key, n.key)) > 0) {
807 dl 1.1 b = n;
808     n = f;
809     continue;
810     }
811     if (c == 0) {
812 dl 1.118 if (onlyIfAbsent || n.casValue(v, value)) {
813     @SuppressWarnings("unchecked") V vv = (V)v;
814 dl 1.100 return vv;
815 dl 1.118 }
816     break; // restart if lost race to replace value
817 dl 1.1 }
818     // else c < 0; fall through
819     }
820 dl 1.9
821 dl 1.118 z = new Node<K,V>(key, value, n);
822 dl 1.9 if (!b.casNext(n, z))
823 dl 1.1 break; // restart if lost race to append to b
824 dl 1.118 break outer;
825 dl 1.1 }
826     }
827    
828 dl 1.122 int rnd = ThreadLocalRandom.nextSecondarySeed();
829 dl 1.92 if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
830     int level = 1, max;
831     while (((rnd >>>= 1) & 1) != 0)
832     ++level;
833 dl 1.1 Index<K,V> idx = null;
834 dl 1.92 HeadIndex<K,V> h = head;
835     if (level <= (max = h.level)) {
836     for (int i = 1; i <= level; ++i)
837     idx = new Index<K,V>(z, idx, null);
838 dl 1.1 }
839 dl 1.92 else { // try to grow by one level
840     level = max + 1; // hold in array and later pick the one to use
841 dl 1.118 @SuppressWarnings("unchecked")Index<K,V>[] idxs =
842     (Index<K,V>[])new Index<?,?>[level+1];
843 dl 1.92 for (int i = 1; i <= level; ++i)
844     idxs[i] = idx = new Index<K,V>(z, idx, null);
845     for (;;) {
846     h = head;
847     int oldLevel = h.level;
848     if (level <= oldLevel) // lost race to add level
849     break;
850     HeadIndex<K,V> newh = h;
851     Node<K,V> oldbase = h.node;
852     for (int j = oldLevel+1; j <= level; ++j)
853     newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
854     if (casHead(h, newh)) {
855     h = newh;
856     idx = idxs[level = oldLevel];
857     break;
858 dl 1.1 }
859     }
860 dl 1.92 }
861 dl 1.118 // find insertion points and splice in
862     splice: for (int insertionLevel = level;;) {
863 dl 1.92 int j = h.level;
864 dl 1.118 for (Index<K,V> q = h, r = q.right, t = idx;;) {
865 dl 1.92 if (q == null || t == null)
866 dl 1.118 break splice;
867 dl 1.92 if (r != null) {
868     Node<K,V> n = r.node;
869     // compare before deletion check avoids needing recheck
870 dl 1.118 int c = cpr(cmp, key, n.key);
871 dl 1.92 if (n.value == null) {
872     if (!q.unlink(r))
873     break;
874     r = q.right;
875     continue;
876     }
877     if (c > 0) {
878     q = r;
879     r = r.right;
880     continue;
881     }
882 dl 1.1 }
883 dl 1.92
884     if (j == insertionLevel) {
885     if (!q.link(r, t))
886     break; // restart
887     if (t.node.value == null) {
888 dl 1.118 findNode(key);
889     break splice;
890 dl 1.88 }
891 dl 1.92 if (--insertionLevel == 0)
892 dl 1.118 break splice;
893 dl 1.1 }
894 dl 1.92
895     if (--j >= insertionLevel && j < level)
896     t = t.down;
897     q = q.down;
898     r = q.right;
899 dl 1.1 }
900     }
901     }
902 dl 1.118 return null;
903 dl 1.1 }
904    
905     /* ---------------- Deletion -------------- */
906    
907     /**
908     * Main deletion method. Locates node, nulls value, appends a
909     * deletion marker, unlinks predecessor, removes associated index
910     * nodes, and possibly reduces head index level.
911     *
912     * Index nodes are cleared out simply by calling findPredecessor.
913     * which unlinks indexes to deleted nodes found along path to key,
914     * which will include the indexes to this node. This is done
915     * unconditionally. We can't check beforehand whether there are
916     * index nodes because it might be the case that some or all
917     * indexes hadn't been inserted yet for this node during initial
918     * search for it, and we'd like to ensure lack of garbage
919 dl 1.9 * retention, so must call to be sure.
920 dl 1.1 *
921 dl 1.118 * @param key the key
922 dl 1.1 * @param value if non-null, the value that must be
923     * associated with key
924     * @return the node, or null if not found
925     */
926 dl 1.118 final V doRemove(Object key, Object value) {
927     if (key == null)
928 dl 1.88 throw new NullPointerException();
929 dl 1.118 Comparator<? super K> cmp = comparator;
930     outer: for (;;) {
931     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
932     Object v; int c;
933 dl 1.9 if (n == null)
934 dl 1.118 break outer;
935 dl 1.1 Node<K,V> f = n.next;
936     if (n != b.next) // inconsistent read
937     break;
938 dl 1.118 if ((v = n.value) == null) { // n is deleted
939 dl 1.1 n.helpDelete(b, f);
940     break;
941     }
942 dl 1.118 if (b.value == null || v == n) // b is deleted
943 dl 1.1 break;
944 dl 1.118 if ((c = cpr(cmp, key, n.key)) < 0)
945     break outer;
946 dl 1.1 if (c > 0) {
947     b = n;
948     n = f;
949     continue;
950     }
951 dl 1.9 if (value != null && !value.equals(v))
952 dl 1.118 break outer;
953 dl 1.9 if (!n.casValue(v, null))
954 dl 1.1 break;
955 dl 1.9 if (!n.appendMarker(f) || !b.casNext(n, f))
956 dl 1.118 findNode(key); // retry via findNode
957 dl 1.1 else {
958 dl 1.118 findPredecessor(key, cmp); // clean index
959 dl 1.9 if (head.right == null)
960 dl 1.1 tryReduceLevel();
961     }
962 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
963     return vv;
964 dl 1.1 }
965     }
966 dl 1.118 return null;
967 dl 1.1 }
968    
969     /**
970     * Possibly reduce head level if it has no nodes. This method can
971     * (rarely) make mistakes, in which case levels can disappear even
972     * though they are about to contain index nodes. This impacts
973     * performance, not correctness. To minimize mistakes as well as
974     * to reduce hysteresis, the level is reduced by one only if the
975     * topmost three levels look empty. Also, if the removed level
976     * looks non-empty after CAS, we try to change it back quick
977     * before anyone notices our mistake! (This trick works pretty
978     * well because this method will practically never make mistakes
979     * unless current thread stalls immediately before first CAS, in
980     * which case it is very unlikely to stall again immediately
981     * afterwards, so will recover.)
982     *
983     * We put up with all this rather than just let levels grow
984     * because otherwise, even a small map that has undergone a large
985     * number of insertions and removals will have a lot of levels,
986     * slowing down access more than would an occasional unwanted
987     * reduction.
988     */
989     private void tryReduceLevel() {
990     HeadIndex<K,V> h = head;
991     HeadIndex<K,V> d;
992     HeadIndex<K,V> e;
993     if (h.level > 3 &&
994 dl 1.9 (d = (HeadIndex<K,V>)h.down) != null &&
995     (e = (HeadIndex<K,V>)d.down) != null &&
996     e.right == null &&
997     d.right == null &&
998 dl 1.1 h.right == null &&
999     casHead(h, d) && // try to set
1000     h.right != null) // recheck
1001     casHead(d, h); // try to backout
1002     }
1003    
1004     /* ---------------- Finding and removing first element -------------- */
1005    
1006     /**
1007 jsr166 1.22 * Specialized variant of findNode to get first valid node.
1008 dl 1.1 * @return first node or null if empty
1009     */
1010 dl 1.118 final Node<K,V> findFirst() {
1011     for (Node<K,V> b, n;;) {
1012     if ((n = (b = head.node).next) == null)
1013 dl 1.1 return null;
1014 dl 1.9 if (n.value != null)
1015 dl 1.1 return n;
1016     n.helpDelete(b, n.next);
1017     }
1018     }
1019    
1020     /**
1021 dl 1.25 * Removes first entry; returns its snapshot.
1022 jsr166 1.28 * @return null if empty, else snapshot of first entry
1023 dl 1.1 */
1024 dl 1.118 private Map.Entry<K,V> doRemoveFirstEntry() {
1025     for (Node<K,V> b, n;;) {
1026     if ((n = (b = head.node).next) == null)
1027 dl 1.1 return null;
1028     Node<K,V> f = n.next;
1029     if (n != b.next)
1030     continue;
1031     Object v = n.value;
1032     if (v == null) {
1033     n.helpDelete(b, f);
1034     continue;
1035     }
1036     if (!n.casValue(v, null))
1037     continue;
1038     if (!n.appendMarker(f) || !b.casNext(n, f))
1039     findFirst(); // retry
1040     clearIndexToFirst();
1041 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
1042     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, vv);
1043 jsr166 1.55 }
1044 dl 1.1 }
1045    
1046     /**
1047 jsr166 1.10 * Clears out index nodes associated with deleted first entry.
1048 dl 1.1 */
1049     private void clearIndexToFirst() {
1050     for (;;) {
1051 dl 1.118 for (Index<K,V> q = head;;) {
1052 dl 1.1 Index<K,V> r = q.right;
1053     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1054 dl 1.9 break;
1055 dl 1.1 if ((q = q.down) == null) {
1056 dl 1.9 if (head.right == null)
1057 dl 1.1 tryReduceLevel();
1058     return;
1059     }
1060     }
1061     }
1062     }
1063    
1064 dl 1.88 /**
1065     * Removes last entry; returns its snapshot.
1066     * Specialized variant of doRemove.
1067     * @return null if empty, else snapshot of last entry
1068     */
1069 dl 1.118 private Map.Entry<K,V> doRemoveLastEntry() {
1070 dl 1.88 for (;;) {
1071     Node<K,V> b = findPredecessorOfLast();
1072     Node<K,V> n = b.next;
1073     if (n == null) {
1074     if (b.isBaseHeader()) // empty
1075     return null;
1076     else
1077     continue; // all b's successors are deleted; retry
1078     }
1079     for (;;) {
1080     Node<K,V> f = n.next;
1081     if (n != b.next) // inconsistent read
1082     break;
1083     Object v = n.value;
1084     if (v == null) { // n is deleted
1085     n.helpDelete(b, f);
1086     break;
1087     }
1088 dl 1.118 if (b.value == null || v == n) // b is deleted
1089 dl 1.88 break;
1090     if (f != null) {
1091     b = n;
1092     n = f;
1093     continue;
1094     }
1095     if (!n.casValue(v, null))
1096     break;
1097     K key = n.key;
1098 dl 1.118 if (!n.appendMarker(f) || !b.casNext(n, f))
1099     findNode(key); // retry via findNode
1100     else { // clean index
1101     findPredecessor(key, comparator);
1102 dl 1.88 if (head.right == null)
1103     tryReduceLevel();
1104     }
1105 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
1106     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
1107 dl 1.88 }
1108     }
1109     }
1110 dl 1.1
1111     /* ---------------- Finding and removing last element -------------- */
1112    
1113     /**
1114 jsr166 1.10 * Specialized version of find to get last valid node.
1115 dl 1.1 * @return last node or null if empty
1116     */
1117 dl 1.118 final Node<K,V> findLast() {
1118 dl 1.1 /*
1119     * findPredecessor can't be used to traverse index level
1120     * because this doesn't use comparisons. So traversals of
1121     * both levels are folded together.
1122     */
1123     Index<K,V> q = head;
1124     for (;;) {
1125     Index<K,V> d, r;
1126     if ((r = q.right) != null) {
1127     if (r.indexesDeletedNode()) {
1128     q.unlink(r);
1129     q = head; // restart
1130 dl 1.9 }
1131 dl 1.1 else
1132     q = r;
1133     } else if ((d = q.down) != null) {
1134     q = d;
1135     } else {
1136 dl 1.118 for (Node<K,V> b = q.node, n = b.next;;) {
1137 dl 1.9 if (n == null)
1138 jsr166 1.61 return b.isBaseHeader() ? null : b;
1139 dl 1.1 Node<K,V> f = n.next; // inconsistent read
1140     if (n != b.next)
1141     break;
1142     Object v = n.value;
1143     if (v == null) { // n is deleted
1144     n.helpDelete(b, f);
1145     break;
1146     }
1147 dl 1.118 if (b.value == null || v == n) // b is deleted
1148 dl 1.1 break;
1149     b = n;
1150     n = f;
1151     }
1152     q = head; // restart
1153     }
1154     }
1155     }
1156    
1157 dl 1.31 /**
1158 jsr166 1.32 * Specialized variant of findPredecessor to get predecessor of last
1159     * valid node. Needed when removing the last entry. It is possible
1160     * that all successors of returned node will have been deleted upon
1161 dl 1.31 * return, in which case this method can be retried.
1162     * @return likely predecessor of last node
1163     */
1164     private Node<K,V> findPredecessorOfLast() {
1165     for (;;) {
1166 dl 1.118 for (Index<K,V> q = head;;) {
1167 dl 1.31 Index<K,V> d, r;
1168     if ((r = q.right) != null) {
1169     if (r.indexesDeletedNode()) {
1170     q.unlink(r);
1171     break; // must restart
1172     }
1173     // proceed as far across as possible without overshooting
1174     if (r.node.next != null) {
1175     q = r;
1176     continue;
1177     }
1178     }
1179     if ((d = q.down) != null)
1180     q = d;
1181     else
1182     return q.node;
1183     }
1184     }
1185     }
1186 dl 1.1
1187 dl 1.88 /* ---------------- Relational operations -------------- */
1188    
1189     // Control values OR'ed as arguments to findNear
1190    
1191     private static final int EQ = 1;
1192     private static final int LT = 2;
1193     private static final int GT = 0; // Actually checked as !LT
1194    
1195 dl 1.1 /**
1196 dl 1.88 * Utility for ceiling, floor, lower, higher methods.
1197 dl 1.118 * @param key the key
1198 dl 1.88 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1199     * @return nearest node fitting relation, or null if no such
1200 dl 1.1 */
1201 dl 1.118 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1202     if (key == null)
1203     throw new NullPointerException();
1204 dl 1.88 for (;;) {
1205 dl 1.118 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
1206     Object v;
1207 dl 1.88 if (n == null)
1208     return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1209     Node<K,V> f = n.next;
1210     if (n != b.next) // inconsistent read
1211     break;
1212 dl 1.118 if ((v = n.value) == null) { // n is deleted
1213 dl 1.88 n.helpDelete(b, f);
1214     break;
1215     }
1216 dl 1.118 if (b.value == null || v == n) // b is deleted
1217 dl 1.88 break;
1218 dl 1.118 int c = cpr(cmp, key, n.key);
1219 dl 1.88 if ((c == 0 && (rel & EQ) != 0) ||
1220     (c < 0 && (rel & LT) == 0))
1221     return n;
1222     if ( c <= 0 && (rel & LT) != 0)
1223     return b.isBaseHeader() ? null : b;
1224     b = n;
1225     n = f;
1226     }
1227     }
1228     }
1229    
1230 dl 1.1 /**
1231 jsr166 1.10 * Returns SimpleImmutableEntry for results of findNear.
1232 dl 1.40 * @param key the key
1233 dl 1.1 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1234     * @return Entry fitting relation, or null if no such
1235     */
1236 dl 1.118 final AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1237     Comparator<? super K> cmp = comparator;
1238 dl 1.1 for (;;) {
1239 dl 1.118 Node<K,V> n = findNear(key, rel, cmp);
1240 dl 1.1 if (n == null)
1241     return null;
1242 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1243 dl 1.1 if (e != null)
1244     return e;
1245     }
1246     }
1247    
1248     /* ---------------- Constructors -------------- */
1249    
1250     /**
1251 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1252     * {@linkplain Comparable natural ordering} of the keys.
1253 dl 1.1 */
1254     public ConcurrentSkipListMap() {
1255     this.comparator = null;
1256     initialize();
1257     }
1258    
1259     /**
1260 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1261     * comparator.
1262 dl 1.1 *
1263 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1264 jsr166 1.82 * If {@code null}, the {@linkplain Comparable natural
1265 jsr166 1.22 * ordering} of the keys will be used.
1266 dl 1.1 */
1267 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1268     this.comparator = comparator;
1269 dl 1.1 initialize();
1270     }
1271    
1272     /**
1273     * Constructs a new map containing the same mappings as the given map,
1274 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1275     * the keys.
1276 dl 1.1 *
1277 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1278 jsr166 1.82 * @throws ClassCastException if the keys in {@code m} are not
1279 jsr166 1.22 * {@link Comparable}, or are not mutually comparable
1280     * @throws NullPointerException if the specified map or any of its keys
1281     * or values are null
1282 dl 1.1 */
1283     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1284     this.comparator = null;
1285     initialize();
1286     putAll(m);
1287     }
1288    
1289     /**
1290 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1291     * same ordering as the specified sorted map.
1292     *
1293 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1294 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1295     * @throws NullPointerException if the specified sorted map or any of
1296     * its keys or values are null
1297 dl 1.1 */
1298     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1299     this.comparator = m.comparator();
1300     initialize();
1301     buildFromSorted(m);
1302     }
1303    
1304     /**
1305 jsr166 1.82 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1306 jsr166 1.22 * instance. (The keys and values themselves are not cloned.)
1307 dl 1.1 *
1308 jsr166 1.22 * @return a shallow copy of this map
1309 dl 1.1 */
1310 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1311 dl 1.1 try {
1312 jsr166 1.76 @SuppressWarnings("unchecked")
1313     ConcurrentSkipListMap<K,V> clone =
1314     (ConcurrentSkipListMap<K,V>) super.clone();
1315     clone.initialize();
1316     clone.buildFromSorted(this);
1317     return clone;
1318 dl 1.1 } catch (CloneNotSupportedException e) {
1319     throw new InternalError();
1320     }
1321     }
1322    
1323     /**
1324     * Streamlined bulk insertion to initialize from elements of
1325     * given sorted map. Call only from constructor or clone
1326     * method.
1327     */
1328     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1329     if (map == null)
1330     throw new NullPointerException();
1331    
1332     HeadIndex<K,V> h = head;
1333     Node<K,V> basepred = h.node;
1334    
1335     // Track the current rightmost node at each level. Uses an
1336     // ArrayList to avoid committing to initial or maximum level.
1337     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1338    
1339     // initialize
1340 dl 1.9 for (int i = 0; i <= h.level; ++i)
1341 dl 1.1 preds.add(null);
1342     Index<K,V> q = h;
1343     for (int i = h.level; i > 0; --i) {
1344     preds.set(i, q);
1345     q = q.down;
1346     }
1347    
1348 dl 1.9 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1349 dl 1.1 map.entrySet().iterator();
1350     while (it.hasNext()) {
1351     Map.Entry<? extends K, ? extends V> e = it.next();
1352 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1353     int j = 0;
1354     if ((rnd & 0x80000001) == 0) {
1355     do {
1356     ++j;
1357     } while (((rnd >>>= 1) & 1) != 0);
1358     if (j > h.level) j = h.level + 1;
1359     }
1360 dl 1.1 K k = e.getKey();
1361     V v = e.getValue();
1362     if (k == null || v == null)
1363     throw new NullPointerException();
1364     Node<K,V> z = new Node<K,V>(k, v, null);
1365     basepred.next = z;
1366     basepred = z;
1367     if (j > 0) {
1368     Index<K,V> idx = null;
1369     for (int i = 1; i <= j; ++i) {
1370     idx = new Index<K,V>(z, idx, null);
1371 dl 1.9 if (i > h.level)
1372 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1373    
1374     if (i < preds.size()) {
1375     preds.get(i).right = idx;
1376     preds.set(i, idx);
1377     } else
1378     preds.add(idx);
1379     }
1380     }
1381     }
1382     head = h;
1383     }
1384    
1385     /* ---------------- Serialization -------------- */
1386    
1387     /**
1388 jsr166 1.80 * Saves this map to a stream (that is, serializes it).
1389 dl 1.1 *
1390 jsr166 1.128 * @param s the stream
1391 jsr166 1.129 * @throws java.io.IOException if an I/O error occurs
1392 dl 1.1 * @serialData The key (Object) and value (Object) for each
1393 jsr166 1.10 * key-value mapping represented by the map, followed by
1394 jsr166 1.82 * {@code null}. The key-value mappings are emitted in key-order
1395 dl 1.1 * (as determined by the Comparator, or by the keys' natural
1396     * ordering if no Comparator).
1397     */
1398     private void writeObject(java.io.ObjectOutputStream s)
1399     throws java.io.IOException {
1400     // Write out the Comparator and any hidden stuff
1401     s.defaultWriteObject();
1402    
1403     // Write out keys and values (alternating)
1404     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1405     V v = n.getValidValue();
1406     if (v != null) {
1407     s.writeObject(n.key);
1408     s.writeObject(v);
1409     }
1410     }
1411     s.writeObject(null);
1412     }
1413    
1414     /**
1415 jsr166 1.80 * Reconstitutes this map from a stream (that is, deserializes it).
1416 jsr166 1.128 * @param s the stream
1417 jsr166 1.129 * @throws ClassNotFoundException if the class of a serialized object
1418     * could not be found
1419     * @throws java.io.IOException if an I/O error occurs
1420 dl 1.1 */
1421 dl 1.100 @SuppressWarnings("unchecked")
1422 dl 1.1 private void readObject(final java.io.ObjectInputStream s)
1423     throws java.io.IOException, ClassNotFoundException {
1424     // Read in the Comparator and any hidden stuff
1425     s.defaultReadObject();
1426     // Reset transients
1427     initialize();
1428    
1429 dl 1.9 /*
1430 dl 1.1 * This is nearly identical to buildFromSorted, but is
1431     * distinct because readObject calls can't be nicely adapted
1432     * as the kind of iterator needed by buildFromSorted. (They
1433     * can be, but doing so requires type cheats and/or creation
1434     * of adaptor classes.) It is simpler to just adapt the code.
1435     */
1436    
1437     HeadIndex<K,V> h = head;
1438     Node<K,V> basepred = h.node;
1439     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1440 dl 1.9 for (int i = 0; i <= h.level; ++i)
1441 dl 1.1 preds.add(null);
1442     Index<K,V> q = h;
1443     for (int i = h.level; i > 0; --i) {
1444     preds.set(i, q);
1445     q = q.down;
1446     }
1447    
1448     for (;;) {
1449     Object k = s.readObject();
1450     if (k == null)
1451     break;
1452     Object v = s.readObject();
1453 dl 1.9 if (v == null)
1454 dl 1.1 throw new NullPointerException();
1455     K key = (K) k;
1456     V val = (V) v;
1457 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1458     int j = 0;
1459     if ((rnd & 0x80000001) == 0) {
1460     do {
1461     ++j;
1462     } while (((rnd >>>= 1) & 1) != 0);
1463     if (j > h.level) j = h.level + 1;
1464     }
1465 dl 1.1 Node<K,V> z = new Node<K,V>(key, val, null);
1466     basepred.next = z;
1467     basepred = z;
1468     if (j > 0) {
1469     Index<K,V> idx = null;
1470     for (int i = 1; i <= j; ++i) {
1471     idx = new Index<K,V>(z, idx, null);
1472 dl 1.9 if (i > h.level)
1473 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1474    
1475     if (i < preds.size()) {
1476     preds.get(i).right = idx;
1477     preds.set(i, idx);
1478     } else
1479     preds.add(idx);
1480     }
1481     }
1482     }
1483     head = h;
1484     }
1485    
1486     /* ------ Map API methods ------ */
1487    
1488     /**
1489 jsr166 1.82 * Returns {@code true} if this map contains a mapping for the specified
1490 dl 1.1 * key.
1491 jsr166 1.22 *
1492     * @param key key whose presence in this map is to be tested
1493 jsr166 1.82 * @return {@code true} if this map contains a mapping for the specified key
1494 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1495     * with the keys currently in the map
1496     * @throws NullPointerException if the specified key is null
1497 dl 1.1 */
1498     public boolean containsKey(Object key) {
1499 dl 1.118 return doGet(key) != null;
1500 dl 1.1 }
1501    
1502     /**
1503 jsr166 1.42 * Returns the value to which the specified key is mapped,
1504     * or {@code null} if this map contains no mapping for the key.
1505     *
1506     * <p>More formally, if this map contains a mapping from a key
1507     * {@code k} to a value {@code v} such that {@code key} compares
1508     * equal to {@code k} according to the map's ordering, then this
1509     * method returns {@code v}; otherwise it returns {@code null}.
1510     * (There can be at most one such mapping.)
1511 dl 1.1 *
1512 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1513     * with the keys currently in the map
1514     * @throws NullPointerException if the specified key is null
1515 dl 1.1 */
1516     public V get(Object key) {
1517 dl 1.118 return doGet(key);
1518 dl 1.1 }
1519    
1520     /**
1521 dl 1.109 * Returns the value to which the specified key is mapped,
1522     * or the given defaultValue if this map contains no mapping for the key.
1523     *
1524     * @param key the key
1525     * @param defaultValue the value to return if this map contains
1526     * no mapping for the given key
1527     * @return the mapping for the key, if present; else the defaultValue
1528     * @throws NullPointerException if the specified key is null
1529     * @since 1.8
1530     */
1531     public V getOrDefault(Object key, V defaultValue) {
1532     V v;
1533 dl 1.118 return (v = doGet(key)) == null ? defaultValue : v;
1534 dl 1.109 }
1535    
1536     /**
1537 dl 1.1 * Associates the specified value with the specified key in this map.
1538 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1539 dl 1.1 * value is replaced.
1540     *
1541 jsr166 1.22 * @param key key with which the specified value is to be associated
1542     * @param value value to be associated with the specified key
1543     * @return the previous value associated with the specified key, or
1544 jsr166 1.82 * {@code null} if there was no mapping for the key
1545 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1546     * with the keys currently in the map
1547     * @throws NullPointerException if the specified key or value is null
1548 dl 1.1 */
1549     public V put(K key, V value) {
1550 dl 1.9 if (value == null)
1551 dl 1.1 throw new NullPointerException();
1552 dl 1.118 return doPut(key, value, false);
1553 dl 1.1 }
1554    
1555     /**
1556 jsr166 1.36 * Removes the mapping for the specified key from this map if present.
1557 dl 1.1 *
1558     * @param key key for which mapping should be removed
1559 jsr166 1.22 * @return the previous value associated with the specified key, or
1560 jsr166 1.82 * {@code null} if there was no mapping for the key
1561 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1562     * with the keys currently in the map
1563     * @throws NullPointerException if the specified key is null
1564 dl 1.1 */
1565     public V remove(Object key) {
1566 dl 1.118 return doRemove(key, null);
1567 dl 1.1 }
1568    
1569     /**
1570 jsr166 1.82 * Returns {@code true} if this map maps one or more keys to the
1571 dl 1.1 * specified value. This operation requires time linear in the
1572 dl 1.69 * map size. Additionally, it is possible for the map to change
1573     * during execution of this method, in which case the returned
1574     * result may be inaccurate.
1575 dl 1.1 *
1576 jsr166 1.22 * @param value value whose presence in this map is to be tested
1577 jsr166 1.82 * @return {@code true} if a mapping to {@code value} exists;
1578     * {@code false} otherwise
1579 jsr166 1.22 * @throws NullPointerException if the specified value is null
1580 dl 1.9 */
1581 dl 1.1 public boolean containsValue(Object value) {
1582 dl 1.9 if (value == null)
1583 dl 1.1 throw new NullPointerException();
1584     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1585     V v = n.getValidValue();
1586     if (v != null && value.equals(v))
1587     return true;
1588     }
1589     return false;
1590     }
1591    
1592     /**
1593 dl 1.6 * Returns the number of key-value mappings in this map. If this map
1594 jsr166 1.82 * contains more than {@code Integer.MAX_VALUE} elements, it
1595     * returns {@code Integer.MAX_VALUE}.
1596 dl 1.1 *
1597     * <p>Beware that, unlike in most collections, this method is
1598     * <em>NOT</em> a constant-time operation. Because of the
1599     * asynchronous nature of these maps, determining the current
1600     * number of elements requires traversing them all to count them.
1601     * Additionally, it is possible for the size to change during
1602     * execution of this method, in which case the returned result
1603     * will be inaccurate. Thus, this method is typically not very
1604     * useful in concurrent applications.
1605     *
1606 jsr166 1.22 * @return the number of elements in this map
1607 dl 1.1 */
1608     public int size() {
1609     long count = 0;
1610     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1611     if (n.getValidValue() != null)
1612     ++count;
1613     }
1614 jsr166 1.61 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1615 dl 1.1 }
1616    
1617     /**
1618 jsr166 1.82 * Returns {@code true} if this map contains no key-value mappings.
1619     * @return {@code true} if this map contains no key-value mappings
1620 dl 1.1 */
1621     public boolean isEmpty() {
1622     return findFirst() == null;
1623     }
1624    
1625     /**
1626 jsr166 1.22 * Removes all of the mappings from this map.
1627 dl 1.1 */
1628     public void clear() {
1629     initialize();
1630     }
1631    
1632 dl 1.109 /**
1633     * If the specified key is not already associated with a value,
1634     * attempts to compute its value using the given mapping function
1635     * and enters it into this map unless {@code null}. The function
1636     * is <em>NOT</em> guaranteed to be applied once atomically only
1637     * if the value is not present.
1638     *
1639     * @param key key with which the specified value is to be associated
1640     * @param mappingFunction the function to compute a value
1641     * @return the current (existing or computed) value associated with
1642     * the specified key, or null if the computed value is null
1643     * @throws NullPointerException if the specified key is null
1644     * or the mappingFunction is null
1645     * @since 1.8
1646     */
1647 jsr166 1.110 public V computeIfAbsent(K key,
1648 dl 1.109 Function<? super K, ? extends V> mappingFunction) {
1649 jsr166 1.110 if (key == null || mappingFunction == null)
1650     throw new NullPointerException();
1651     V v, p, r;
1652 dl 1.118 if ((v = doGet(key)) == null &&
1653     (r = mappingFunction.apply(key)) != null)
1654     v = (p = doPut(key, r, true)) == null ? r : p;
1655 dl 1.109 return v;
1656     }
1657    
1658     /**
1659     * If the value for the specified key is present, attempts to
1660     * compute a new mapping given the key and its current mapped
1661     * value. The function is <em>NOT</em> guaranteed to be applied
1662     * once atomically.
1663     *
1664 dl 1.111 * @param key key with which a value may be associated
1665 dl 1.109 * @param remappingFunction the function to compute a value
1666     * @return the new value associated with the specified key, or null if none
1667     * @throws NullPointerException if the specified key is null
1668     * or the remappingFunction is null
1669     * @since 1.8
1670     */
1671 jsr166 1.110 public V computeIfPresent(K key,
1672 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1673 jsr166 1.110 if (key == null || remappingFunction == null)
1674     throw new NullPointerException();
1675 dl 1.118 Node<K,V> n; Object v;
1676     while ((n = findNode(key)) != null) {
1677     if ((v = n.value) != null) {
1678     @SuppressWarnings("unchecked") V vv = (V) v;
1679     V r = remappingFunction.apply(key, vv);
1680     if (r != null) {
1681     if (n.casValue(vv, r))
1682     return r;
1683 dl 1.109 }
1684 dl 1.118 else if (doRemove(key, vv) != null)
1685     break;
1686 dl 1.109 }
1687 jsr166 1.110 }
1688     return null;
1689 dl 1.109 }
1690    
1691     /**
1692     * Attempts to compute a mapping for the specified key and its
1693     * current mapped value (or {@code null} if there is no current
1694     * mapping). The function is <em>NOT</em> guaranteed to be applied
1695     * once atomically.
1696     *
1697     * @param key key with which the specified value is to be associated
1698     * @param remappingFunction the function to compute a value
1699     * @return the new value associated with the specified key, or null if none
1700     * @throws NullPointerException if the specified key is null
1701     * or the remappingFunction is null
1702     * @since 1.8
1703     */
1704 jsr166 1.110 public V compute(K key,
1705 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1706 jsr166 1.110 if (key == null || remappingFunction == null)
1707     throw new NullPointerException();
1708 dl 1.118 for (;;) {
1709     Node<K,V> n; Object v; V r;
1710     if ((n = findNode(key)) == null) {
1711     if ((r = remappingFunction.apply(key, null)) == null)
1712     break;
1713 dl 1.124 if (doPut(key, r, true) == null)
1714 dl 1.118 return r;
1715     }
1716     else if ((v = n.value) != null) {
1717     @SuppressWarnings("unchecked") V vv = (V) v;
1718     if ((r = remappingFunction.apply(key, vv)) != null) {
1719     if (n.casValue(vv, r))
1720 dl 1.109 return r;
1721     }
1722 dl 1.118 else if (doRemove(key, vv) != null)
1723     break;
1724 dl 1.109 }
1725     }
1726 jsr166 1.110 return null;
1727 dl 1.109 }
1728    
1729     /**
1730     * If the specified key is not already associated with a value,
1731     * associates it with the given value. Otherwise, replaces the
1732     * value with the results of the given remapping function, or
1733     * removes if {@code null}. The function is <em>NOT</em>
1734     * guaranteed to be applied once atomically.
1735     *
1736     * @param key key with which the specified value is to be associated
1737     * @param value the value to use if absent
1738     * @param remappingFunction the function to recompute a value if present
1739     * @return the new value associated with the specified key, or null if none
1740     * @throws NullPointerException if the specified key or value is null
1741     * or the remappingFunction is null
1742     * @since 1.8
1743     */
1744     public V merge(K key, V value,
1745     BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1746 jsr166 1.110 if (key == null || value == null || remappingFunction == null)
1747     throw new NullPointerException();
1748 dl 1.118 for (;;) {
1749     Node<K,V> n; Object v; V r;
1750     if ((n = findNode(key)) == null) {
1751 dl 1.124 if (doPut(key, value, true) == null)
1752 dl 1.118 return value;
1753     }
1754     else if ((v = n.value) != null) {
1755     @SuppressWarnings("unchecked") V vv = (V) v;
1756     if ((r = remappingFunction.apply(vv, value)) != null) {
1757     if (n.casValue(vv, r))
1758     return r;
1759 dl 1.109 }
1760 dl 1.118 else if (doRemove(key, vv) != null)
1761     return null;
1762 dl 1.109 }
1763 jsr166 1.110 }
1764 dl 1.109 }
1765    
1766 dl 1.46 /* ---------------- View methods -------------- */
1767    
1768     /*
1769     * Note: Lazy initialization works for views because view classes
1770     * are stateless/immutable so it doesn't matter wrt correctness if
1771     * more than one is created (which will only rarely happen). Even
1772     * so, the following idiom conservatively ensures that the method
1773     * returns the one it created if it does so, not one created by
1774     * another racing thread.
1775     */
1776    
1777 dl 1.1 /**
1778 jsr166 1.51 * Returns a {@link NavigableSet} view of the keys contained in this map.
1779 jsr166 1.132 *
1780     * <p>The set's iterator returns the keys in ascending order.
1781     * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1782     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1783     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1784     * key order. The spliterator's comparator (see
1785     * {@link java.util.Spliterator#getComparator()}) is {@code null} if
1786     * the map's comparator (see {@link #comparator()}) is {@code null}.
1787     * Otherwise, the spliterator's comparator is the same as or imposes the
1788     * same total ordering as the map's comparator.
1789     *
1790     * <p>The set is backed by the map, so changes to the map are
1791 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1792     * removal, which removes the corresponding mapping from the map,
1793 jsr166 1.51 * via the {@code Iterator.remove}, {@code Set.remove},
1794     * {@code removeAll}, {@code retainAll}, and {@code clear}
1795     * operations. It does not support the {@code add} or {@code addAll}
1796 jsr166 1.22 * operations.
1797     *
1798 jsr166 1.133 * <p>The view's iterators and spliterators are
1799     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1800 dl 1.1 *
1801 jsr166 1.51 * <p>This method is equivalent to method {@code navigableKeySet}.
1802     *
1803     * @return a navigable set view of the keys in this map
1804 dl 1.1 */
1805 jsr166 1.68 public NavigableSet<K> keySet() {
1806 dl 1.118 KeySet<K> ks = keySet;
1807     return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1808 dl 1.1 }
1809    
1810 dl 1.46 public NavigableSet<K> navigableKeySet() {
1811 dl 1.118 KeySet<K> ks = keySet;
1812     return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1813 dl 1.83 }
1814    
1815     /**
1816 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1817 jsr166 1.132 * <p>The collection's iterator returns the values in ascending order
1818     * of the corresponding keys. The collections's spliterator additionally
1819     * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1820     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1821     * order of the corresponding keys.
1822     *
1823     * <p>The collection is backed by the map, so changes to the map are
1824 dl 1.1 * reflected in the collection, and vice-versa. The collection
1825     * supports element removal, which removes the corresponding
1826 jsr166 1.82 * mapping from the map, via the {@code Iterator.remove},
1827     * {@code Collection.remove}, {@code removeAll},
1828     * {@code retainAll} and {@code clear} operations. It does not
1829     * support the {@code add} or {@code addAll} operations.
1830 dl 1.1 *
1831 jsr166 1.133 * <p>The view's iterators and spliterators are
1832     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1833 dl 1.1 */
1834     public Collection<V> values() {
1835 jsr166 1.71 Values<V> vs = values;
1836     return (vs != null) ? vs : (values = new Values<V>(this));
1837 dl 1.1 }
1838    
1839     /**
1840 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
1841 jsr166 1.132 *
1842     * <p>The set's iterator returns the entries in ascending key order. The
1843     * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1844     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1845     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1846     * key order.
1847     *
1848     * <p>The set is backed by the map, so changes to the map are
1849 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1850     * removal, which removes the corresponding mapping from the map,
1851 jsr166 1.82 * via the {@code Iterator.remove}, {@code Set.remove},
1852     * {@code removeAll}, {@code retainAll} and {@code clear}
1853     * operations. It does not support the {@code add} or
1854     * {@code addAll} operations.
1855 jsr166 1.22 *
1856 jsr166 1.133 * <p>The view's iterators and spliterators are
1857     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1858 jsr166 1.132 *
1859     * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1860     * or {@code spliterator} do <em>not</em> support the {@code setValue}
1861     * operation.
1862 dl 1.1 *
1863 jsr166 1.22 * @return a set view of the mappings contained in this map,
1864     * sorted in ascending key order
1865 dl 1.1 */
1866     public Set<Map.Entry<K,V>> entrySet() {
1867 jsr166 1.71 EntrySet<K,V> es = entrySet;
1868     return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1869 dl 1.46 }
1870    
1871     public ConcurrentNavigableMap<K,V> descendingMap() {
1872     ConcurrentNavigableMap<K,V> dm = descendingMap;
1873     return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1874     (this, null, false, null, false, true));
1875 dl 1.1 }
1876    
1877 dl 1.46 public NavigableSet<K> descendingKeySet() {
1878     return descendingMap().navigableKeySet();
1879 dl 1.1 }
1880    
1881     /* ---------------- AbstractMap Overrides -------------- */
1882    
1883     /**
1884     * Compares the specified object with this map for equality.
1885 jsr166 1.82 * Returns {@code true} if the given object is also a map and the
1886 dl 1.1 * two maps represent the same mappings. More formally, two maps
1887 jsr166 1.82 * {@code m1} and {@code m2} represent the same mappings if
1888     * {@code m1.entrySet().equals(m2.entrySet())}. This
1889 dl 1.1 * operation may return misleading results if either map is
1890     * concurrently modified during execution of this method.
1891     *
1892 jsr166 1.22 * @param o object to be compared for equality with this map
1893 jsr166 1.82 * @return {@code true} if the specified object is equal to this map
1894 dl 1.1 */
1895     public boolean equals(Object o) {
1896 jsr166 1.55 if (o == this)
1897     return true;
1898     if (!(o instanceof Map))
1899     return false;
1900     Map<?,?> m = (Map<?,?>) o;
1901 dl 1.1 try {
1902 jsr166 1.55 for (Map.Entry<K,V> e : this.entrySet())
1903     if (! e.getValue().equals(m.get(e.getKey())))
1904 dl 1.25 return false;
1905 jsr166 1.55 for (Map.Entry<?,?> e : m.entrySet()) {
1906 dl 1.25 Object k = e.getKey();
1907     Object v = e.getValue();
1908 jsr166 1.55 if (k == null || v == null || !v.equals(get(k)))
1909 dl 1.25 return false;
1910     }
1911     return true;
1912 jsr166 1.15 } catch (ClassCastException unused) {
1913 dl 1.1 return false;
1914 jsr166 1.15 } catch (NullPointerException unused) {
1915 dl 1.1 return false;
1916     }
1917     }
1918    
1919     /* ------ ConcurrentMap API methods ------ */
1920    
1921     /**
1922 jsr166 1.22 * {@inheritDoc}
1923     *
1924     * @return the previous value associated with the specified key,
1925 jsr166 1.82 * or {@code null} if there was no mapping for the key
1926 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1927     * with the keys currently in the map
1928     * @throws NullPointerException if the specified key or value is null
1929 dl 1.1 */
1930     public V putIfAbsent(K key, V value) {
1931 dl 1.9 if (value == null)
1932 dl 1.1 throw new NullPointerException();
1933 dl 1.118 return doPut(key, value, true);
1934 dl 1.1 }
1935    
1936     /**
1937 jsr166 1.22 * {@inheritDoc}
1938     *
1939     * @throws ClassCastException if the specified key cannot be compared
1940     * with the keys currently in the map
1941 dl 1.23 * @throws NullPointerException if the specified key is null
1942 dl 1.1 */
1943     public boolean remove(Object key, Object value) {
1944 dl 1.45 if (key == null)
1945     throw new NullPointerException();
1946 dl 1.118 return value != null && doRemove(key, value) != null;
1947 dl 1.1 }
1948    
1949     /**
1950 jsr166 1.22 * {@inheritDoc}
1951     *
1952     * @throws ClassCastException if the specified key cannot be compared
1953     * with the keys currently in the map
1954     * @throws NullPointerException if any of the arguments are null
1955 dl 1.1 */
1956     public boolean replace(K key, V oldValue, V newValue) {
1957 dl 1.118 if (key == null || oldValue == null || newValue == null)
1958 dl 1.1 throw new NullPointerException();
1959     for (;;) {
1960 dl 1.118 Node<K,V> n; Object v;
1961     if ((n = findNode(key)) == null)
1962 dl 1.1 return false;
1963 dl 1.118 if ((v = n.value) != null) {
1964 dl 1.1 if (!oldValue.equals(v))
1965     return false;
1966     if (n.casValue(v, newValue))
1967     return true;
1968     }
1969     }
1970     }
1971    
1972     /**
1973 jsr166 1.22 * {@inheritDoc}
1974     *
1975     * @return the previous value associated with the specified key,
1976 jsr166 1.82 * or {@code null} if there was no mapping for the key
1977 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1978     * with the keys currently in the map
1979     * @throws NullPointerException if the specified key or value is null
1980 dl 1.1 */
1981     public V replace(K key, V value) {
1982 dl 1.118 if (key == null || value == null)
1983 dl 1.1 throw new NullPointerException();
1984     for (;;) {
1985 dl 1.118 Node<K,V> n; Object v;
1986     if ((n = findNode(key)) == null)
1987 dl 1.1 return null;
1988 dl 1.118 if ((v = n.value) != null && n.casValue(v, value)) {
1989     @SuppressWarnings("unchecked") V vv = (V)v;
1990     return vv;
1991     }
1992 dl 1.1 }
1993     }
1994    
1995     /* ------ SortedMap API methods ------ */
1996    
1997     public Comparator<? super K> comparator() {
1998     return comparator;
1999     }
2000    
2001     /**
2002 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2003 dl 1.1 */
2004 dl 1.9 public K firstKey() {
2005 dl 1.1 Node<K,V> n = findFirst();
2006     if (n == null)
2007     throw new NoSuchElementException();
2008     return n.key;
2009     }
2010    
2011     /**
2012 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2013 dl 1.1 */
2014     public K lastKey() {
2015     Node<K,V> n = findLast();
2016     if (n == null)
2017     throw new NoSuchElementException();
2018     return n.key;
2019     }
2020    
2021     /**
2022 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2023     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2024 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2025 dl 1.1 */
2026 dl 1.47 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
2027     boolean fromInclusive,
2028     K toKey,
2029     boolean toInclusive) {
2030 dl 1.1 if (fromKey == null || toKey == null)
2031     throw new NullPointerException();
2032 dl 1.46 return new SubMap<K,V>
2033     (this, fromKey, fromInclusive, toKey, toInclusive, false);
2034 dl 1.1 }
2035    
2036     /**
2037 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2038     * @throws NullPointerException if {@code toKey} is null
2039 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2040 dl 1.1 */
2041 dl 1.47 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2042     boolean inclusive) {
2043 dl 1.1 if (toKey == null)
2044     throw new NullPointerException();
2045 dl 1.46 return new SubMap<K,V>
2046     (this, null, false, toKey, inclusive, false);
2047 dl 1.1 }
2048    
2049     /**
2050 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2051     * @throws NullPointerException if {@code fromKey} is null
2052 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2053 dl 1.1 */
2054 dl 1.47 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2055     boolean inclusive) {
2056 dl 1.6 if (fromKey == null)
2057     throw new NullPointerException();
2058 dl 1.46 return new SubMap<K,V>
2059     (this, fromKey, inclusive, null, false, false);
2060 dl 1.6 }
2061    
2062     /**
2063 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2064     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2065 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2066 dl 1.6 */
2067 dl 1.37 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2068 dl 1.47 return subMap(fromKey, true, toKey, false);
2069 dl 1.6 }
2070    
2071     /**
2072 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2073     * @throws NullPointerException if {@code toKey} is null
2074 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2075 dl 1.6 */
2076 dl 1.37 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2077 dl 1.47 return headMap(toKey, false);
2078 dl 1.6 }
2079    
2080     /**
2081 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2082     * @throws NullPointerException if {@code fromKey} is null
2083 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2084 dl 1.6 */
2085 dl 1.37 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2086 dl 1.47 return tailMap(fromKey, true);
2087 dl 1.1 }
2088    
2089     /* ---------------- Relational operations -------------- */
2090    
2091     /**
2092 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2093 jsr166 1.82 * strictly less than the given key, or {@code null} if there is
2094 jsr166 1.22 * no such key. The returned entry does <em>not</em> support the
2095 jsr166 1.82 * {@code Entry.setValue} method.
2096 dl 1.9 *
2097 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2098     * @throws NullPointerException if the specified key is null
2099 dl 1.1 */
2100 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
2101     return getNear(key, LT);
2102 dl 1.1 }
2103    
2104     /**
2105 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2106     * @throws NullPointerException if the specified key is null
2107 dl 1.1 */
2108 jsr166 1.22 public K lowerKey(K key) {
2109 dl 1.118 Node<K,V> n = findNear(key, LT, comparator);
2110 jsr166 1.61 return (n == null) ? null : n.key;
2111 dl 1.1 }
2112    
2113     /**
2114 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2115 jsr166 1.82 * less than or equal to the given key, or {@code null} if there
2116 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2117 jsr166 1.82 * the {@code Entry.setValue} method.
2118 dl 1.9 *
2119 jsr166 1.22 * @param key the key
2120     * @throws ClassCastException {@inheritDoc}
2121     * @throws NullPointerException if the specified key is null
2122 dl 1.1 */
2123 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
2124     return getNear(key, LT|EQ);
2125 dl 1.1 }
2126    
2127     /**
2128 jsr166 1.22 * @param key the key
2129     * @throws ClassCastException {@inheritDoc}
2130     * @throws NullPointerException if the specified key is null
2131 dl 1.1 */
2132 jsr166 1.22 public K floorKey(K key) {
2133 dl 1.118 Node<K,V> n = findNear(key, LT|EQ, comparator);
2134 jsr166 1.61 return (n == null) ? null : n.key;
2135 dl 1.1 }
2136    
2137     /**
2138 jsr166 1.22 * Returns a key-value mapping associated with the least key
2139 jsr166 1.82 * greater than or equal to the given key, or {@code null} if
2140 jsr166 1.22 * there is no such entry. The returned entry does <em>not</em>
2141 jsr166 1.82 * support the {@code Entry.setValue} method.
2142 dl 1.9 *
2143 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2144     * @throws NullPointerException if the specified key is null
2145 dl 1.1 */
2146 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
2147     return getNear(key, GT|EQ);
2148 dl 1.1 }
2149    
2150     /**
2151 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2152     * @throws NullPointerException if the specified key is null
2153 dl 1.1 */
2154 jsr166 1.22 public K ceilingKey(K key) {
2155 dl 1.118 Node<K,V> n = findNear(key, GT|EQ, comparator);
2156 jsr166 1.61 return (n == null) ? null : n.key;
2157 dl 1.1 }
2158    
2159     /**
2160     * Returns a key-value mapping associated with the least key
2161 jsr166 1.82 * strictly greater than the given key, or {@code null} if there
2162 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2163 jsr166 1.82 * the {@code Entry.setValue} method.
2164 dl 1.9 *
2165 jsr166 1.22 * @param key the key
2166     * @throws ClassCastException {@inheritDoc}
2167     * @throws NullPointerException if the specified key is null
2168 dl 1.1 */
2169     public Map.Entry<K,V> higherEntry(K key) {
2170     return getNear(key, GT);
2171     }
2172    
2173     /**
2174 jsr166 1.22 * @param key the key
2175     * @throws ClassCastException {@inheritDoc}
2176     * @throws NullPointerException if the specified key is null
2177 dl 1.1 */
2178     public K higherKey(K key) {
2179 dl 1.118 Node<K,V> n = findNear(key, GT, comparator);
2180 jsr166 1.61 return (n == null) ? null : n.key;
2181 dl 1.1 }
2182    
2183     /**
2184     * Returns a key-value mapping associated with the least
2185 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2186 dl 1.1 * The returned entry does <em>not</em> support
2187 jsr166 1.82 * the {@code Entry.setValue} method.
2188 dl 1.1 */
2189     public Map.Entry<K,V> firstEntry() {
2190     for (;;) {
2191     Node<K,V> n = findFirst();
2192 dl 1.9 if (n == null)
2193 dl 1.1 return null;
2194 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2195 dl 1.1 if (e != null)
2196     return e;
2197     }
2198     }
2199    
2200     /**
2201     * Returns a key-value mapping associated with the greatest
2202 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2203 dl 1.1 * The returned entry does <em>not</em> support
2204 jsr166 1.82 * the {@code Entry.setValue} method.
2205 dl 1.1 */
2206     public Map.Entry<K,V> lastEntry() {
2207     for (;;) {
2208     Node<K,V> n = findLast();
2209 dl 1.9 if (n == null)
2210 dl 1.1 return null;
2211 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2212 dl 1.1 if (e != null)
2213     return e;
2214     }
2215     }
2216    
2217     /**
2218     * Removes and returns a key-value mapping associated with
2219 jsr166 1.82 * the least key in this map, or {@code null} if the map is empty.
2220 dl 1.1 * The returned entry does <em>not</em> support
2221 jsr166 1.82 * the {@code Entry.setValue} method.
2222 dl 1.1 */
2223     public Map.Entry<K,V> pollFirstEntry() {
2224 dl 1.25 return doRemoveFirstEntry();
2225 dl 1.1 }
2226    
2227     /**
2228     * Removes and returns a key-value mapping associated with
2229 jsr166 1.82 * the greatest key in this map, or {@code null} if the map is empty.
2230 dl 1.1 * The returned entry does <em>not</em> support
2231 jsr166 1.82 * the {@code Entry.setValue} method.
2232 dl 1.1 */
2233     public Map.Entry<K,V> pollLastEntry() {
2234 dl 1.31 return doRemoveLastEntry();
2235 dl 1.1 }
2236    
2237    
2238     /* ---------------- Iterators -------------- */
2239    
2240     /**
2241 dl 1.46 * Base of iterator classes:
2242 dl 1.1 */
2243 dl 1.46 abstract class Iter<T> implements Iterator<T> {
2244 dl 1.1 /** the last node returned by next() */
2245 jsr166 1.52 Node<K,V> lastReturned;
2246 dl 1.1 /** the next node to return from next(); */
2247     Node<K,V> next;
2248 jsr166 1.55 /** Cache of next value field to maintain weak consistency */
2249     V nextValue;
2250 dl 1.1
2251 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2252 dl 1.46 Iter() {
2253 dl 1.118 while ((next = findFirst()) != null) {
2254 jsr166 1.52 Object x = next.value;
2255     if (x != null && x != next) {
2256 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2257     nextValue = vv;
2258 dl 1.1 break;
2259 jsr166 1.55 }
2260 dl 1.1 }
2261     }
2262    
2263 dl 1.46 public final boolean hasNext() {
2264     return next != null;
2265 dl 1.1 }
2266 dl 1.46
2267 jsr166 1.13 /** Advances next to higher entry. */
2268 dl 1.46 final void advance() {
2269 jsr166 1.54 if (next == null)
2270 dl 1.1 throw new NoSuchElementException();
2271 jsr166 1.55 lastReturned = next;
2272 dl 1.118 while ((next = next.next) != null) {
2273 jsr166 1.52 Object x = next.value;
2274     if (x != null && x != next) {
2275 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2276     nextValue = vv;
2277 dl 1.1 break;
2278 jsr166 1.55 }
2279 dl 1.1 }
2280     }
2281    
2282     public void remove() {
2283 jsr166 1.52 Node<K,V> l = lastReturned;
2284 dl 1.1 if (l == null)
2285     throw new IllegalStateException();
2286     // It would not be worth all of the overhead to directly
2287     // unlink from here. Using remove is fast enough.
2288     ConcurrentSkipListMap.this.remove(l.key);
2289 jsr166 1.55 lastReturned = null;
2290 dl 1.1 }
2291    
2292     }
2293    
2294 dl 1.46 final class ValueIterator extends Iter<V> {
2295 dl 1.9 public V next() {
2296 jsr166 1.52 V v = nextValue;
2297 dl 1.46 advance();
2298 jsr166 1.52 return v;
2299 dl 1.1 }
2300     }
2301    
2302 dl 1.46 final class KeyIterator extends Iter<K> {
2303 dl 1.9 public K next() {
2304 dl 1.1 Node<K,V> n = next;
2305 dl 1.46 advance();
2306 dl 1.1 return n.key;
2307     }
2308     }
2309    
2310 dl 1.46 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2311     public Map.Entry<K,V> next() {
2312     Node<K,V> n = next;
2313 jsr166 1.52 V v = nextValue;
2314 dl 1.46 advance();
2315     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2316 dl 1.1 }
2317 dl 1.46 }
2318 dl 1.1
2319 dl 1.46 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2320    
2321     Iterator<K> keyIterator() {
2322 dl 1.1 return new KeyIterator();
2323     }
2324    
2325 dl 1.46 Iterator<V> valueIterator() {
2326     return new ValueIterator();
2327 dl 1.1 }
2328    
2329 dl 1.46 Iterator<Map.Entry<K,V>> entryIterator() {
2330     return new EntryIterator();
2331 dl 1.1 }
2332    
2333 dl 1.46 /* ---------------- View Classes -------------- */
2334    
2335     /*
2336     * View classes are static, delegating to a ConcurrentNavigableMap
2337     * to allow use by SubMaps, which outweighs the ugliness of
2338     * needing type-tests for Iterator methods.
2339     */
2340    
2341 jsr166 1.53 static final <E> List<E> toList(Collection<E> c) {
2342 jsr166 1.55 // Using size() here would be a pessimization.
2343 jsr166 1.90 ArrayList<E> list = new ArrayList<E>();
2344 jsr166 1.55 for (E e : c)
2345     list.add(e);
2346     return list;
2347 jsr166 1.53 }
2348    
2349 jsr166 1.62 static final class KeySet<E>
2350     extends AbstractSet<E> implements NavigableSet<E> {
2351 dl 1.118 final ConcurrentNavigableMap<E,?> m;
2352 jsr166 1.71 KeySet(ConcurrentNavigableMap<E,?> map) { m = map; }
2353 dl 1.46 public int size() { return m.size(); }
2354     public boolean isEmpty() { return m.isEmpty(); }
2355     public boolean contains(Object o) { return m.containsKey(o); }
2356     public boolean remove(Object o) { return m.remove(o) != null; }
2357     public void clear() { m.clear(); }
2358     public E lower(E e) { return m.lowerKey(e); }
2359     public E floor(E e) { return m.floorKey(e); }
2360     public E ceiling(E e) { return m.ceilingKey(e); }
2361     public E higher(E e) { return m.higherKey(e); }
2362     public Comparator<? super E> comparator() { return m.comparator(); }
2363     public E first() { return m.firstKey(); }
2364     public E last() { return m.lastKey(); }
2365     public E pollFirst() {
2366 jsr166 1.71 Map.Entry<E,?> e = m.pollFirstEntry();
2367 jsr166 1.61 return (e == null) ? null : e.getKey();
2368 dl 1.46 }
2369     public E pollLast() {
2370 jsr166 1.71 Map.Entry<E,?> e = m.pollLastEntry();
2371 jsr166 1.61 return (e == null) ? null : e.getKey();
2372 dl 1.46 }
2373 dl 1.100 @SuppressWarnings("unchecked")
2374 dl 1.46 public Iterator<E> iterator() {
2375     if (m instanceof ConcurrentSkipListMap)
2376     return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
2377     else
2378     return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
2379 dl 1.1 }
2380 dl 1.45 public boolean equals(Object o) {
2381     if (o == this)
2382     return true;
2383     if (!(o instanceof Set))
2384     return false;
2385     Collection<?> c = (Collection<?>) o;
2386     try {
2387     return containsAll(c) && c.containsAll(this);
2388 jsr166 1.81 } catch (ClassCastException unused) {
2389 dl 1.45 return false;
2390     } catch (NullPointerException unused) {
2391     return false;
2392     }
2393     }
2394 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2395     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2396 dl 1.46 public Iterator<E> descendingIterator() {
2397     return descendingSet().iterator();
2398     }
2399 dl 1.47 public NavigableSet<E> subSet(E fromElement,
2400     boolean fromInclusive,
2401     E toElement,
2402     boolean toInclusive) {
2403 jsr166 1.56 return new KeySet<E>(m.subMap(fromElement, fromInclusive,
2404     toElement, toInclusive));
2405 dl 1.46 }
2406 dl 1.47 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2407 jsr166 1.56 return new KeySet<E>(m.headMap(toElement, inclusive));
2408 dl 1.46 }
2409 dl 1.47 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2410 jsr166 1.56 return new KeySet<E>(m.tailMap(fromElement, inclusive));
2411 dl 1.46 }
2412 jsr166 1.51 public NavigableSet<E> subSet(E fromElement, E toElement) {
2413 dl 1.47 return subSet(fromElement, true, toElement, false);
2414 dl 1.46 }
2415 jsr166 1.51 public NavigableSet<E> headSet(E toElement) {
2416 dl 1.47 return headSet(toElement, false);
2417 dl 1.46 }
2418 jsr166 1.51 public NavigableSet<E> tailSet(E fromElement) {
2419 dl 1.47 return tailSet(fromElement, true);
2420 dl 1.46 }
2421     public NavigableSet<E> descendingSet() {
2422 jsr166 1.71 return new KeySet<E>(m.descendingMap());
2423 dl 1.46 }
2424 dl 1.100 @SuppressWarnings("unchecked")
2425 dl 1.106 public Spliterator<E> spliterator() {
2426 dl 1.100 if (m instanceof ConcurrentSkipListMap)
2427     return ((ConcurrentSkipListMap<E,?>)m).keySpliterator();
2428     else
2429     return (Spliterator<E>)((SubMap<E,?>)m).keyIterator();
2430     }
2431 dl 1.1 }
2432    
2433 dl 1.46 static final class Values<E> extends AbstractCollection<E> {
2434 dl 1.118 final ConcurrentNavigableMap<?, E> m;
2435 jsr166 1.71 Values(ConcurrentNavigableMap<?, E> map) {
2436 dl 1.46 m = map;
2437 dl 1.1 }
2438 dl 1.100 @SuppressWarnings("unchecked")
2439 dl 1.46 public Iterator<E> iterator() {
2440     if (m instanceof ConcurrentSkipListMap)
2441 jsr166 1.71 return ((ConcurrentSkipListMap<?,E>)m).valueIterator();
2442 dl 1.46 else
2443 jsr166 1.71 return ((SubMap<?,E>)m).valueIterator();
2444 dl 1.1 }
2445     public boolean isEmpty() {
2446 dl 1.46 return m.isEmpty();
2447 dl 1.1 }
2448     public int size() {
2449 dl 1.46 return m.size();
2450 dl 1.1 }
2451     public boolean contains(Object o) {
2452 dl 1.46 return m.containsValue(o);
2453 dl 1.1 }
2454     public void clear() {
2455 dl 1.46 m.clear();
2456 dl 1.1 }
2457 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2458     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2459 dl 1.100 @SuppressWarnings("unchecked")
2460 dl 1.106 public Spliterator<E> spliterator() {
2461 dl 1.100 if (m instanceof ConcurrentSkipListMap)
2462     return ((ConcurrentSkipListMap<?,E>)m).valueSpliterator();
2463     else
2464     return (Spliterator<E>)((SubMap<?,E>)m).valueIterator();
2465     }
2466 dl 1.1 }
2467    
2468 dl 1.46 static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
2469 dl 1.118 final ConcurrentNavigableMap<K1, V1> m;
2470 dl 1.46 EntrySet(ConcurrentNavigableMap<K1, V1> map) {
2471     m = map;
2472 dl 1.1 }
2473 dl 1.100 @SuppressWarnings("unchecked")
2474 dl 1.46 public Iterator<Map.Entry<K1,V1>> iterator() {
2475     if (m instanceof ConcurrentSkipListMap)
2476     return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
2477     else
2478     return ((SubMap<K1,V1>)m).entryIterator();
2479     }
2480 dl 1.47
2481 dl 1.1 public boolean contains(Object o) {
2482     if (!(o instanceof Map.Entry))
2483     return false;
2484 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2485 dl 1.46 V1 v = m.get(e.getKey());
2486 dl 1.1 return v != null && v.equals(e.getValue());
2487     }
2488     public boolean remove(Object o) {
2489     if (!(o instanceof Map.Entry))
2490     return false;
2491 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2492 dl 1.46 return m.remove(e.getKey(),
2493 dl 1.47 e.getValue());
2494 dl 1.1 }
2495     public boolean isEmpty() {
2496 dl 1.46 return m.isEmpty();
2497 dl 1.1 }
2498     public int size() {
2499 dl 1.46 return m.size();
2500 dl 1.1 }
2501     public void clear() {
2502 dl 1.46 m.clear();
2503 dl 1.1 }
2504 dl 1.45 public boolean equals(Object o) {
2505     if (o == this)
2506     return true;
2507     if (!(o instanceof Set))
2508     return false;
2509     Collection<?> c = (Collection<?>) o;
2510     try {
2511     return containsAll(c) && c.containsAll(this);
2512 jsr166 1.81 } catch (ClassCastException unused) {
2513 dl 1.45 return false;
2514     } catch (NullPointerException unused) {
2515     return false;
2516     }
2517     }
2518 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2519     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2520 dl 1.100 @SuppressWarnings("unchecked")
2521 dl 1.106 public Spliterator<Map.Entry<K1,V1>> spliterator() {
2522 dl 1.83 if (m instanceof ConcurrentSkipListMap)
2523 dl 1.100 return ((ConcurrentSkipListMap<K1,V1>)m).entrySpliterator();
2524 dl 1.83 else
2525 dl 1.100 return (Spliterator<Map.Entry<K1,V1>>)
2526     ((SubMap<K1,V1>)m).entryIterator();
2527     }
2528 dl 1.1 }
2529    
2530     /**
2531     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2532     * represent a subrange of mappings of their underlying
2533     * maps. Instances of this class support all methods of their
2534     * underlying maps, differing in that mappings outside their range are
2535     * ignored, and attempts to add mappings outside their ranges result
2536     * in {@link IllegalArgumentException}. Instances of this class are
2537 jsr166 1.82 * constructed only using the {@code subMap}, {@code headMap}, and
2538     * {@code tailMap} methods of their underlying maps.
2539 jsr166 1.52 *
2540     * @serial include
2541 dl 1.1 */
2542 dl 1.46 static final class SubMap<K,V> extends AbstractMap<K,V>
2543 jsr166 1.130 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
2544 dl 1.1 private static final long serialVersionUID = -7647078645895051609L;
2545    
2546     /** Underlying map */
2547     private final ConcurrentSkipListMap<K,V> m;
2548     /** lower bound key, or null if from start */
2549 dl 1.46 private final K lo;
2550     /** upper bound key, or null if to end */
2551     private final K hi;
2552     /** inclusion flag for lo */
2553     private final boolean loInclusive;
2554     /** inclusion flag for hi */
2555     private final boolean hiInclusive;
2556     /** direction */
2557     private final boolean isDescending;
2558    
2559 dl 1.1 // Lazily initialized view holders
2560 dl 1.46 private transient KeySet<K> keySetView;
2561 dl 1.1 private transient Set<Map.Entry<K,V>> entrySetView;
2562     private transient Collection<V> valuesView;
2563    
2564     /**
2565 jsr166 1.87 * Creates a new submap, initializing all fields.
2566 dl 1.46 */
2567     SubMap(ConcurrentSkipListMap<K,V> map,
2568     K fromKey, boolean fromInclusive,
2569     K toKey, boolean toInclusive,
2570     boolean isDescending) {
2571 dl 1.118 Comparator<? super K> cmp = map.comparator;
2572 dl 1.47 if (fromKey != null && toKey != null &&
2573 dl 1.118 cpr(cmp, fromKey, toKey) > 0)
2574 dl 1.1 throw new IllegalArgumentException("inconsistent range");
2575     this.m = map;
2576 dl 1.46 this.lo = fromKey;
2577     this.hi = toKey;
2578     this.loInclusive = fromInclusive;
2579     this.hiInclusive = toInclusive;
2580     this.isDescending = isDescending;
2581 dl 1.1 }
2582    
2583     /* ---------------- Utilities -------------- */
2584    
2585 dl 1.118 boolean tooLow(Object key, Comparator<? super K> cmp) {
2586     int c;
2587     return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2588     (c == 0 && !loInclusive)));
2589 dl 1.1 }
2590    
2591 dl 1.118 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2592     int c;
2593     return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2594     (c == 0 && !hiInclusive)));
2595 dl 1.1 }
2596    
2597 dl 1.118 boolean inBounds(Object key, Comparator<? super K> cmp) {
2598     return !tooLow(key, cmp) && !tooHigh(key, cmp);
2599 dl 1.1 }
2600    
2601 dl 1.118 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2602 dl 1.46 if (key == null)
2603     throw new NullPointerException();
2604 dl 1.118 if (!inBounds(key, cmp))
2605 dl 1.46 throw new IllegalArgumentException("key out of range");
2606 dl 1.1 }
2607    
2608 dl 1.46 /**
2609 jsr166 1.87 * Returns true if node key is less than upper bound of range.
2610 dl 1.46 */
2611 dl 1.118 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2612     Comparator<? super K> cmp) {
2613 dl 1.46 if (n == null)
2614     return false;
2615     if (hi == null)
2616     return true;
2617     K k = n.key;
2618     if (k == null) // pass by markers and headers
2619     return true;
2620 dl 1.118 int c = cpr(cmp, k, hi);
2621 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive))
2622     return false;
2623     return true;
2624 dl 1.1 }
2625    
2626 dl 1.46 /**
2627     * Returns lowest node. This node might not be in range, so
2628 jsr166 1.87 * most usages need to check bounds.
2629 dl 1.46 */
2630 dl 1.118 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2631 dl 1.46 if (lo == null)
2632     return m.findFirst();
2633     else if (loInclusive)
2634 dl 1.118 return m.findNear(lo, GT|EQ, cmp);
2635 dl 1.46 else
2636 dl 1.118 return m.findNear(lo, GT, cmp);
2637 dl 1.1 }
2638    
2639     /**
2640 dl 1.46 * Returns highest node. This node might not be in range, so
2641 jsr166 1.87 * most usages need to check bounds.
2642 dl 1.1 */
2643 dl 1.118 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2644 dl 1.46 if (hi == null)
2645     return m.findLast();
2646     else if (hiInclusive)
2647 dl 1.118 return m.findNear(hi, LT|EQ, cmp);
2648 dl 1.46 else
2649 dl 1.118 return m.findNear(hi, LT, cmp);
2650 dl 1.1 }
2651    
2652     /**
2653 jsr166 1.87 * Returns lowest absolute key (ignoring directonality).
2654 dl 1.1 */
2655 dl 1.118 K lowestKey() {
2656     Comparator<? super K> cmp = m.comparator;
2657     ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2658     if (isBeforeEnd(n, cmp))
2659 dl 1.46 return n.key;
2660     else
2661     throw new NoSuchElementException();
2662 dl 1.47 }
2663 dl 1.46
2664     /**
2665 jsr166 1.87 * Returns highest absolute key (ignoring directonality).
2666 dl 1.46 */
2667 dl 1.118 K highestKey() {
2668     Comparator<? super K> cmp = m.comparator;
2669     ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2670 dl 1.46 if (n != null) {
2671     K last = n.key;
2672 dl 1.118 if (inBounds(last, cmp))
2673 dl 1.46 return last;
2674     }
2675     throw new NoSuchElementException();
2676     }
2677    
2678 dl 1.118 Map.Entry<K,V> lowestEntry() {
2679     Comparator<? super K> cmp = m.comparator;
2680 dl 1.46 for (;;) {
2681 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2682     if (!isBeforeEnd(n, cmp))
2683 dl 1.46 return null;
2684     Map.Entry<K,V> e = n.createSnapshot();
2685     if (e != null)
2686     return e;
2687     }
2688     }
2689    
2690 dl 1.118 Map.Entry<K,V> highestEntry() {
2691     Comparator<? super K> cmp = m.comparator;
2692 dl 1.46 for (;;) {
2693 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2694     if (n == null || !inBounds(n.key, cmp))
2695 dl 1.46 return null;
2696     Map.Entry<K,V> e = n.createSnapshot();
2697     if (e != null)
2698     return e;
2699     }
2700     }
2701    
2702 dl 1.118 Map.Entry<K,V> removeLowest() {
2703     Comparator<? super K> cmp = m.comparator;
2704 dl 1.46 for (;;) {
2705 dl 1.118 Node<K,V> n = loNode(cmp);
2706 dl 1.46 if (n == null)
2707     return null;
2708     K k = n.key;
2709 dl 1.118 if (!inBounds(k, cmp))
2710 dl 1.46 return null;
2711 dl 1.118 V v = m.doRemove(k, null);
2712 dl 1.46 if (v != null)
2713     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2714     }
2715     }
2716    
2717 dl 1.118 Map.Entry<K,V> removeHighest() {
2718     Comparator<? super K> cmp = m.comparator;
2719 dl 1.46 for (;;) {
2720 dl 1.118 Node<K,V> n = hiNode(cmp);
2721 dl 1.46 if (n == null)
2722     return null;
2723     K k = n.key;
2724 dl 1.118 if (!inBounds(k, cmp))
2725 dl 1.46 return null;
2726 dl 1.118 V v = m.doRemove(k, null);
2727 dl 1.46 if (v != null)
2728     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2729     }
2730 dl 1.1 }
2731    
2732     /**
2733 dl 1.46 * Submap version of ConcurrentSkipListMap.getNearEntry
2734 dl 1.1 */
2735 dl 1.118 Map.Entry<K,V> getNearEntry(K key, int rel) {
2736     Comparator<? super K> cmp = m.comparator;
2737 dl 1.46 if (isDescending) { // adjust relation for direction
2738 jsr166 1.70 if ((rel & LT) == 0)
2739     rel |= LT;
2740 dl 1.46 else
2741 jsr166 1.70 rel &= ~LT;
2742 dl 1.46 }
2743 dl 1.118 if (tooLow(key, cmp))
2744 jsr166 1.70 return ((rel & LT) != 0) ? null : lowestEntry();
2745 dl 1.118 if (tooHigh(key, cmp))
2746 jsr166 1.70 return ((rel & LT) != 0) ? highestEntry() : null;
2747 dl 1.46 for (;;) {
2748 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2749     if (n == null || !inBounds(n.key, cmp))
2750 dl 1.46 return null;
2751     K k = n.key;
2752     V v = n.getValidValue();
2753     if (v != null)
2754     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2755     }
2756 dl 1.1 }
2757    
2758 jsr166 1.48 // Almost the same as getNearEntry, except for keys
2759 dl 1.118 K getNearKey(K key, int rel) {
2760     Comparator<? super K> cmp = m.comparator;
2761 dl 1.46 if (isDescending) { // adjust relation for direction
2762 jsr166 1.70 if ((rel & LT) == 0)
2763     rel |= LT;
2764 dl 1.46 else
2765 jsr166 1.70 rel &= ~LT;
2766 dl 1.46 }
2767 dl 1.118 if (tooLow(key, cmp)) {
2768 jsr166 1.70 if ((rel & LT) == 0) {
2769 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2770     if (isBeforeEnd(n, cmp))
2771 dl 1.46 return n.key;
2772     }
2773     return null;
2774     }
2775 dl 1.118 if (tooHigh(key, cmp)) {
2776 jsr166 1.70 if ((rel & LT) != 0) {
2777 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2778 dl 1.46 if (n != null) {
2779     K last = n.key;
2780 dl 1.118 if (inBounds(last, cmp))
2781 dl 1.46 return last;
2782     }
2783     }
2784     return null;
2785     }
2786     for (;;) {
2787 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2788     if (n == null || !inBounds(n.key, cmp))
2789 dl 1.46 return null;
2790     K k = n.key;
2791     V v = n.getValidValue();
2792     if (v != null)
2793     return k;
2794     }
2795     }
2796 dl 1.1
2797     /* ---------------- Map API methods -------------- */
2798    
2799     public boolean containsKey(Object key) {
2800 dl 1.46 if (key == null) throw new NullPointerException();
2801 dl 1.118 return inBounds(key, m.comparator) && m.containsKey(key);
2802 dl 1.1 }
2803    
2804     public V get(Object key) {
2805 dl 1.46 if (key == null) throw new NullPointerException();
2806 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2807 dl 1.1 }
2808    
2809     public V put(K key, V value) {
2810 dl 1.118 checkKeyBounds(key, m.comparator);
2811 dl 1.1 return m.put(key, value);
2812     }
2813    
2814     public V remove(Object key) {
2815 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2816 dl 1.1 }
2817    
2818     public int size() {
2819 dl 1.118 Comparator<? super K> cmp = m.comparator;
2820 dl 1.1 long count = 0;
2821 dl 1.118 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2822     isBeforeEnd(n, cmp);
2823 dl 1.1 n = n.next) {
2824     if (n.getValidValue() != null)
2825     ++count;
2826     }
2827 jsr166 1.61 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2828 dl 1.1 }
2829    
2830     public boolean isEmpty() {
2831 dl 1.118 Comparator<? super K> cmp = m.comparator;
2832     return !isBeforeEnd(loNode(cmp), cmp);
2833 dl 1.1 }
2834    
2835     public boolean containsValue(Object value) {
2836 dl 1.9 if (value == null)
2837 dl 1.1 throw new NullPointerException();
2838 dl 1.118 Comparator<? super K> cmp = m.comparator;
2839     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2840     isBeforeEnd(n, cmp);
2841 dl 1.1 n = n.next) {
2842     V v = n.getValidValue();
2843     if (v != null && value.equals(v))
2844     return true;
2845     }
2846     return false;
2847     }
2848    
2849     public void clear() {
2850 dl 1.118 Comparator<? super K> cmp = m.comparator;
2851     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2852     isBeforeEnd(n, cmp);
2853 dl 1.1 n = n.next) {
2854     if (n.getValidValue() != null)
2855     m.remove(n.key);
2856     }
2857     }
2858    
2859     /* ---------------- ConcurrentMap API methods -------------- */
2860    
2861     public V putIfAbsent(K key, V value) {
2862 dl 1.118 checkKeyBounds(key, m.comparator);
2863 dl 1.1 return m.putIfAbsent(key, value);
2864     }
2865    
2866     public boolean remove(Object key, Object value) {
2867 dl 1.118 return inBounds(key, m.comparator) && m.remove(key, value);
2868 dl 1.1 }
2869    
2870     public boolean replace(K key, V oldValue, V newValue) {
2871 dl 1.118 checkKeyBounds(key, m.comparator);
2872 dl 1.1 return m.replace(key, oldValue, newValue);
2873     }
2874    
2875     public V replace(K key, V value) {
2876 dl 1.118 checkKeyBounds(key, m.comparator);
2877 dl 1.1 return m.replace(key, value);
2878     }
2879    
2880     /* ---------------- SortedMap API methods -------------- */
2881    
2882     public Comparator<? super K> comparator() {
2883 dl 1.46 Comparator<? super K> cmp = m.comparator();
2884 jsr166 1.55 if (isDescending)
2885     return Collections.reverseOrder(cmp);
2886     else
2887     return cmp;
2888 dl 1.1 }
2889 dl 1.47
2890 dl 1.46 /**
2891     * Utility to create submaps, where given bounds override
2892     * unbounded(null) ones and/or are checked against bounded ones.
2893     */
2894 dl 1.118 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2895     K toKey, boolean toInclusive) {
2896     Comparator<? super K> cmp = m.comparator;
2897 dl 1.46 if (isDescending) { // flip senses
2898 dl 1.47 K tk = fromKey;
2899     fromKey = toKey;
2900 dl 1.46 toKey = tk;
2901 dl 1.47 boolean ti = fromInclusive;
2902     fromInclusive = toInclusive;
2903 dl 1.46 toInclusive = ti;
2904     }
2905     if (lo != null) {
2906     if (fromKey == null) {
2907     fromKey = lo;
2908     fromInclusive = loInclusive;
2909     }
2910     else {
2911 dl 1.118 int c = cpr(cmp, fromKey, lo);
2912 dl 1.46 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2913     throw new IllegalArgumentException("key out of range");
2914     }
2915     }
2916     if (hi != null) {
2917     if (toKey == null) {
2918     toKey = hi;
2919     toInclusive = hiInclusive;
2920     }
2921     else {
2922 dl 1.118 int c = cpr(cmp, toKey, hi);
2923 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2924     throw new IllegalArgumentException("key out of range");
2925     }
2926 dl 1.1 }
2927 dl 1.47 return new SubMap<K,V>(m, fromKey, fromInclusive,
2928 dl 1.46 toKey, toInclusive, isDescending);
2929 dl 1.1 }
2930    
2931 dl 1.118 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2932     K toKey, boolean toInclusive) {
2933 dl 1.1 if (fromKey == null || toKey == null)
2934     throw new NullPointerException();
2935 dl 1.46 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2936 dl 1.1 }
2937 dl 1.47
2938 dl 1.118 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2939 dl 1.1 if (toKey == null)
2940     throw new NullPointerException();
2941 dl 1.46 return newSubMap(null, false, toKey, inclusive);
2942 dl 1.1 }
2943 dl 1.47
2944 dl 1.118 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2945 dl 1.1 if (fromKey == null)
2946     throw new NullPointerException();
2947 dl 1.46 return newSubMap(fromKey, inclusive, null, false);
2948     }
2949    
2950     public SubMap<K,V> subMap(K fromKey, K toKey) {
2951 dl 1.47 return subMap(fromKey, true, toKey, false);
2952 dl 1.1 }
2953    
2954 dl 1.46 public SubMap<K,V> headMap(K toKey) {
2955 dl 1.47 return headMap(toKey, false);
2956 dl 1.6 }
2957    
2958 dl 1.46 public SubMap<K,V> tailMap(K fromKey) {
2959 dl 1.47 return tailMap(fromKey, true);
2960 dl 1.6 }
2961    
2962 dl 1.46 public SubMap<K,V> descendingMap() {
2963 dl 1.47 return new SubMap<K,V>(m, lo, loInclusive,
2964 dl 1.46 hi, hiInclusive, !isDescending);
2965 dl 1.6 }
2966    
2967 dl 1.1 /* ---------------- Relational methods -------------- */
2968    
2969     public Map.Entry<K,V> ceilingEntry(K key) {
2970 jsr166 1.70 return getNearEntry(key, GT|EQ);
2971 dl 1.1 }
2972    
2973     public K ceilingKey(K key) {
2974 jsr166 1.70 return getNearKey(key, GT|EQ);
2975 dl 1.1 }
2976    
2977     public Map.Entry<K,V> lowerEntry(K key) {
2978 jsr166 1.70 return getNearEntry(key, LT);
2979 dl 1.1 }
2980    
2981     public K lowerKey(K key) {
2982 jsr166 1.70 return getNearKey(key, LT);
2983 dl 1.1 }
2984    
2985     public Map.Entry<K,V> floorEntry(K key) {
2986 jsr166 1.70 return getNearEntry(key, LT|EQ);
2987 dl 1.1 }
2988    
2989     public K floorKey(K key) {
2990 jsr166 1.70 return getNearKey(key, LT|EQ);
2991 dl 1.1 }
2992    
2993     public Map.Entry<K,V> higherEntry(K key) {
2994 jsr166 1.70 return getNearEntry(key, GT);
2995 dl 1.1 }
2996    
2997     public K higherKey(K key) {
2998 jsr166 1.70 return getNearKey(key, GT);
2999 dl 1.46 }
3000    
3001     public K firstKey() {
3002 jsr166 1.61 return isDescending ? highestKey() : lowestKey();
3003 dl 1.46 }
3004    
3005     public K lastKey() {
3006 jsr166 1.61 return isDescending ? lowestKey() : highestKey();
3007 dl 1.1 }
3008    
3009     public Map.Entry<K,V> firstEntry() {
3010 jsr166 1.61 return isDescending ? highestEntry() : lowestEntry();
3011 dl 1.1 }
3012    
3013     public Map.Entry<K,V> lastEntry() {
3014 jsr166 1.61 return isDescending ? lowestEntry() : highestEntry();
3015 dl 1.1 }
3016    
3017     public Map.Entry<K,V> pollFirstEntry() {
3018 jsr166 1.61 return isDescending ? removeHighest() : removeLowest();
3019 dl 1.1 }
3020    
3021     public Map.Entry<K,V> pollLastEntry() {
3022 jsr166 1.61 return isDescending ? removeLowest() : removeHighest();
3023 dl 1.1 }
3024    
3025     /* ---------------- Submap Views -------------- */
3026    
3027 jsr166 1.51 public NavigableSet<K> keySet() {
3028 dl 1.46 KeySet<K> ks = keySetView;
3029 jsr166 1.71 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3030 dl 1.1 }
3031    
3032 dl 1.46 public NavigableSet<K> navigableKeySet() {
3033     KeySet<K> ks = keySetView;
3034 jsr166 1.71 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3035 dl 1.46 }
3036 dl 1.45
3037 dl 1.46 public Collection<V> values() {
3038     Collection<V> vs = valuesView;
3039 jsr166 1.71 return (vs != null) ? vs : (valuesView = new Values<V>(this));
3040 dl 1.1 }
3041    
3042 dl 1.46 public Set<Map.Entry<K,V>> entrySet() {
3043     Set<Map.Entry<K,V>> es = entrySetView;
3044 jsr166 1.71 return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
3045 dl 1.1 }
3046    
3047 dl 1.46 public NavigableSet<K> descendingKeySet() {
3048     return descendingMap().navigableKeySet();
3049 dl 1.1 }
3050    
3051 dl 1.46 Iterator<K> keyIterator() {
3052     return new SubMapKeyIterator();
3053 dl 1.1 }
3054    
3055 dl 1.46 Iterator<V> valueIterator() {
3056     return new SubMapValueIterator();
3057 dl 1.1 }
3058    
3059 dl 1.46 Iterator<Map.Entry<K,V>> entryIterator() {
3060     return new SubMapEntryIterator();
3061 dl 1.1 }
3062    
3063 dl 1.46 /**
3064     * Variant of main Iter class to traverse through submaps.
3065 dl 1.100 * Also serves as back-up Spliterator for views
3066 dl 1.46 */
3067 dl 1.100 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
3068 dl 1.46 /** the last node returned by next() */
3069 jsr166 1.52 Node<K,V> lastReturned;
3070 dl 1.46 /** the next node to return from next(); */
3071     Node<K,V> next;
3072     /** Cache of next value field to maintain weak consistency */
3073 jsr166 1.52 V nextValue;
3074 dl 1.46
3075 dl 1.47 SubMapIter() {
3076 dl 1.118 Comparator<? super K> cmp = m.comparator;
3077 dl 1.46 for (;;) {
3078 dl 1.118 next = isDescending ? hiNode(cmp) : loNode(cmp);
3079 dl 1.46 if (next == null)
3080     break;
3081 jsr166 1.55 Object x = next.value;
3082 jsr166 1.52 if (x != null && x != next) {
3083 dl 1.118 if (! inBounds(next.key, cmp))
3084 dl 1.46 next = null;
3085 dl 1.118 else {
3086     @SuppressWarnings("unchecked") V vv = (V)x;
3087 dl 1.100 nextValue = vv;
3088 dl 1.118 }
3089 dl 1.46 break;
3090     }
3091     }
3092 dl 1.1 }
3093 dl 1.46
3094     public final boolean hasNext() {
3095     return next != null;
3096 dl 1.1 }
3097 dl 1.46
3098     final void advance() {
3099 jsr166 1.54 if (next == null)
3100 dl 1.46 throw new NoSuchElementException();
3101 jsr166 1.55 lastReturned = next;
3102 dl 1.46 if (isDescending)
3103     descend();
3104     else
3105     ascend();
3106 dl 1.1 }
3107 dl 1.46
3108     private void ascend() {
3109 dl 1.118 Comparator<? super K> cmp = m.comparator;
3110 dl 1.46 for (;;) {
3111     next = next.next;
3112     if (next == null)
3113     break;
3114 jsr166 1.55 Object x = next.value;
3115 jsr166 1.52 if (x != null && x != next) {
3116 dl 1.118 if (tooHigh(next.key, cmp))
3117 dl 1.46 next = null;
3118 dl 1.118 else {
3119     @SuppressWarnings("unchecked") V vv = (V)x;
3120 dl 1.100 nextValue = vv;
3121 dl 1.118 }
3122 dl 1.46 break;
3123     }
3124     }
3125     }
3126    
3127     private void descend() {
3128 dl 1.88 Comparator<? super K> cmp = m.comparator;
3129 dl 1.46 for (;;) {
3130 jsr166 1.125 next = m.findNear(lastReturned.key, LT, cmp);
3131 dl 1.46 if (next == null)
3132     break;
3133 jsr166 1.55 Object x = next.value;
3134 jsr166 1.52 if (x != null && x != next) {
3135 dl 1.118 if (tooLow(next.key, cmp))
3136 dl 1.46 next = null;
3137 dl 1.118 else {
3138     @SuppressWarnings("unchecked") V vv = (V)x;
3139 dl 1.100 nextValue = vv;
3140 dl 1.118 }
3141 dl 1.46 break;
3142     }
3143     }
3144 dl 1.1 }
3145 dl 1.46
3146     public void remove() {
3147 jsr166 1.52 Node<K,V> l = lastReturned;
3148 dl 1.46 if (l == null)
3149     throw new IllegalStateException();
3150     m.remove(l.key);
3151 jsr166 1.55 lastReturned = null;
3152 dl 1.1 }
3153 dl 1.46
3154 dl 1.107 public Spliterator<T> trySplit() {
3155     return null;
3156 jsr166 1.108 }
3157 dl 1.107
3158 dl 1.100 public boolean tryAdvance(Consumer<? super T> action) {
3159     if (hasNext()) {
3160     action.accept(next());
3161     return true;
3162     }
3163     return false;
3164     }
3165    
3166 dl 1.113 public void forEachRemaining(Consumer<? super T> action) {
3167 dl 1.100 while (hasNext())
3168     action.accept(next());
3169     }
3170 dl 1.113
3171 jsr166 1.114 public long estimateSize() {
3172     return Long.MAX_VALUE;
3173 dl 1.113 }
3174    
3175 dl 1.46 }
3176    
3177     final class SubMapValueIterator extends SubMapIter<V> {
3178     public V next() {
3179 jsr166 1.52 V v = nextValue;
3180 dl 1.46 advance();
3181 jsr166 1.52 return v;
3182 dl 1.45 }
3183 dl 1.100 public int characteristics() {
3184     return 0;
3185     }
3186 dl 1.1 }
3187    
3188 dl 1.46 final class SubMapKeyIterator extends SubMapIter<K> {
3189     public K next() {
3190     Node<K,V> n = next;
3191     advance();
3192     return n.key;
3193     }
3194 dl 1.100 public int characteristics() {
3195     return Spliterator.DISTINCT | Spliterator.ORDERED |
3196     Spliterator.SORTED;
3197     }
3198 jsr166 1.115 public final Comparator<? super K> getComparator() {
3199 dl 1.100 return SubMap.this.comparator();
3200     }
3201 dl 1.1 }
3202    
3203 dl 1.46 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3204     public Map.Entry<K,V> next() {
3205     Node<K,V> n = next;
3206 jsr166 1.52 V v = nextValue;
3207 dl 1.46 advance();
3208     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3209 dl 1.1 }
3210 dl 1.100 public int characteristics() {
3211     return Spliterator.DISTINCT;
3212     }
3213 dl 1.1 }
3214     }
3215 dl 1.59
3216 dl 1.123 // default Map method overrides
3217    
3218     public void forEach(BiConsumer<? super K, ? super V> action) {
3219     if (action == null) throw new NullPointerException();
3220     V v;
3221     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3222     if ((v = n.getValidValue()) != null)
3223     action.accept(n.key, v);
3224     }
3225     }
3226    
3227     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3228     if (function == null) throw new NullPointerException();
3229     V v;
3230     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3231     while ((v = n.getValidValue()) != null) {
3232     V r = function.apply(n.key, v);
3233     if (r == null) throw new NullPointerException();
3234     if (n.casValue(v, r))
3235     break;
3236     }
3237     }
3238     }
3239    
3240 dl 1.83 /**
3241     * Base class providing common structure for Spliterators.
3242     * (Although not all that much common functionality; as usual for
3243     * view classes, details annoyingly vary in key, value, and entry
3244     * subclasses in ways that are not worth abstracting out for
3245     * internal classes.)
3246     *
3247     * The basic split strategy is to recursively descend from top
3248     * level, row by row, descending to next row when either split
3249     * off, or the end of row is encountered. Control of the number of
3250     * splits relies on some statistical estimation: The expected
3251     * remaining number of elements of a skip list when advancing
3252     * either across or down decreases by about 25%. To make this
3253     * observation useful, we need to know initial size, which we
3254 dl 1.104 * don't. But we can just use Integer.MAX_VALUE so that we
3255     * don't prematurely zero out while splitting.
3256 dl 1.83 */
3257 jsr166 1.119 abstract static class CSLMSpliterator<K,V> {
3258 dl 1.83 final Comparator<? super K> comparator;
3259     final K fence; // exclusive upper bound for keys, or null if to end
3260     Index<K,V> row; // the level to split out
3261     Node<K,V> current; // current traversal node; initialize at origin
3262     int est; // pseudo-size estimate
3263     CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3264     Node<K,V> origin, K fence, int est) {
3265     this.comparator = comparator; this.row = row;
3266     this.current = origin; this.fence = fence; this.est = est;
3267     }
3268    
3269     public final long estimateSize() { return (long)est; }
3270     }
3271    
3272     static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3273 dl 1.88 implements Spliterator<K> {
3274 dl 1.83 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3275     Node<K,V> origin, K fence, int est) {
3276     super(comparator, row, origin, fence, est);
3277     }
3278    
3279 dl 1.104 public Spliterator<K> trySplit() {
3280 dl 1.116 Node<K,V> e; K ek;
3281 dl 1.83 Comparator<? super K> cmp = comparator;
3282     K f = fence;
3283 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3284 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3285 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3286     if ((s = q.right) != null && (b = s.node) != null &&
3287     (n = b.next) != null && n.value != null &&
3288     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3289     (f == null || cpr(cmp, sk, f) < 0)) {
3290     current = n;
3291     Index<K,V> r = q.down;
3292     row = (s.right != null) ? s : s.down;
3293     est -= est >>> 2;
3294     return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3295 dl 1.83 }
3296     }
3297     }
3298     return null;
3299     }
3300    
3301 dl 1.113 public void forEachRemaining(Consumer<? super K> action) {
3302 dl 1.100 if (action == null) throw new NullPointerException();
3303 dl 1.118 Comparator<? super K> cmp = comparator;
3304 dl 1.83 K f = fence;
3305     Node<K,V> e = current;
3306     current = null;
3307 jsr166 1.84 for (; e != null; e = e.next) {
3308 dl 1.83 K k; Object v;
3309 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3310 dl 1.83 break;
3311     if ((v = e.value) != null && v != e)
3312 dl 1.100 action.accept(k);
3313 dl 1.83 }
3314     }
3315    
3316 dl 1.100 public boolean tryAdvance(Consumer<? super K> action) {
3317     if (action == null) throw new NullPointerException();
3318 dl 1.118 Comparator<? super K> cmp = comparator;
3319     K f = fence;
3320     Node<K,V> e = current;
3321     for (; e != null; e = e.next) {
3322 dl 1.83 K k; Object v;
3323 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3324 dl 1.83 e = null;
3325     break;
3326     }
3327     if ((v = e.value) != null && v != e) {
3328     current = e.next;
3329 dl 1.100 action.accept(k);
3330 dl 1.83 return true;
3331     }
3332     }
3333     current = e;
3334     return false;
3335     }
3336 dl 1.100
3337     public int characteristics() {
3338 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3339 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3340 dl 1.100 Spliterator.NONNULL;
3341     }
3342    
3343 jsr166 1.115 public final Comparator<? super K> getComparator() {
3344 dl 1.100 return comparator;
3345     }
3346 dl 1.83 }
3347 jsr166 1.120 // factory method for KeySpliterator
3348 dl 1.118 final KeySpliterator<K,V> keySpliterator() {
3349     Comparator<? super K> cmp = comparator;
3350     for (;;) { // ensure h corresponds to origin p
3351     HeadIndex<K,V> h; Node<K,V> p;
3352     Node<K,V> b = (h = head).node;
3353     if ((p = b.next) == null || p.value != null)
3354     return new KeySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3355     0 : Integer.MAX_VALUE);
3356     p.helpDelete(b, p.next);
3357     }
3358     }
3359 dl 1.83
3360     static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3361 dl 1.88 implements Spliterator<V> {
3362 dl 1.83 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3363     Node<K,V> origin, K fence, int est) {
3364     super(comparator, row, origin, fence, est);
3365     }
3366    
3367 dl 1.104 public Spliterator<V> trySplit() {
3368 dl 1.116 Node<K,V> e; K ek;
3369 dl 1.83 Comparator<? super K> cmp = comparator;
3370     K f = fence;
3371 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3372 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3373 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3374     if ((s = q.right) != null && (b = s.node) != null &&
3375     (n = b.next) != null && n.value != null &&
3376     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3377     (f == null || cpr(cmp, sk, f) < 0)) {
3378     current = n;
3379     Index<K,V> r = q.down;
3380     row = (s.right != null) ? s : s.down;
3381     est -= est >>> 2;
3382     return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3383 dl 1.83 }
3384     }
3385     }
3386     return null;
3387     }
3388    
3389 dl 1.113 public void forEachRemaining(Consumer<? super V> action) {
3390 dl 1.100 if (action == null) throw new NullPointerException();
3391 dl 1.118 Comparator<? super K> cmp = comparator;
3392 dl 1.83 K f = fence;
3393     Node<K,V> e = current;
3394     current = null;
3395 jsr166 1.84 for (; e != null; e = e.next) {
3396 dl 1.83 K k; Object v;
3397 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3398 dl 1.83 break;
3399 dl 1.100 if ((v = e.value) != null && v != e) {
3400     @SuppressWarnings("unchecked") V vv = (V)v;
3401     action.accept(vv);
3402     }
3403 dl 1.83 }
3404     }
3405    
3406 dl 1.100 public boolean tryAdvance(Consumer<? super V> action) {
3407     if (action == null) throw new NullPointerException();
3408 dl 1.118 Comparator<? super K> cmp = comparator;
3409     K f = fence;
3410     Node<K,V> e = current;
3411     for (; e != null; e = e.next) {
3412 dl 1.83 K k; Object v;
3413 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3414 dl 1.83 e = null;
3415     break;
3416     }
3417     if ((v = e.value) != null && v != e) {
3418     current = e.next;
3419 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3420     action.accept(vv);
3421 dl 1.83 return true;
3422     }
3423     }
3424     current = e;
3425     return false;
3426     }
3427 dl 1.100
3428     public int characteristics() {
3429 jsr166 1.130 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3430     Spliterator.NONNULL;
3431 dl 1.100 }
3432 dl 1.83 }
3433    
3434 dl 1.118 // Almost the same as keySpliterator()
3435     final ValueSpliterator<K,V> valueSpliterator() {
3436     Comparator<? super K> cmp = comparator;
3437     for (;;) {
3438     HeadIndex<K,V> h; Node<K,V> p;
3439     Node<K,V> b = (h = head).node;
3440     if ((p = b.next) == null || p.value != null)
3441     return new ValueSpliterator<K,V>(cmp, h, p, null, (p == null) ?
3442     0 : Integer.MAX_VALUE);
3443     p.helpDelete(b, p.next);
3444     }
3445     }
3446    
3447 dl 1.83 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3448 dl 1.88 implements Spliterator<Map.Entry<K,V>> {
3449 dl 1.83 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3450     Node<K,V> origin, K fence, int est) {
3451     super(comparator, row, origin, fence, est);
3452     }
3453    
3454 dl 1.104 public Spliterator<Map.Entry<K,V>> trySplit() {
3455 dl 1.116 Node<K,V> e; K ek;
3456 dl 1.83 Comparator<? super K> cmp = comparator;
3457     K f = fence;
3458 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3459 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3460 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3461     if ((s = q.right) != null && (b = s.node) != null &&
3462     (n = b.next) != null && n.value != null &&
3463     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3464     (f == null || cpr(cmp, sk, f) < 0)) {
3465     current = n;
3466     Index<K,V> r = q.down;
3467     row = (s.right != null) ? s : s.down;
3468     est -= est >>> 2;
3469     return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3470 dl 1.83 }
3471     }
3472     }
3473     return null;
3474     }
3475    
3476 dl 1.113 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3477 dl 1.100 if (action == null) throw new NullPointerException();
3478 dl 1.118 Comparator<? super K> cmp = comparator;
3479 dl 1.83 K f = fence;
3480     Node<K,V> e = current;
3481     current = null;
3482 jsr166 1.84 for (; e != null; e = e.next) {
3483 dl 1.83 K k; Object v;
3484 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3485 dl 1.83 break;
3486 dl 1.100 if ((v = e.value) != null && v != e) {
3487     @SuppressWarnings("unchecked") V vv = (V)v;
3488     action.accept
3489     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3490     }
3491 dl 1.83 }
3492     }
3493    
3494 dl 1.100 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3495     if (action == null) throw new NullPointerException();
3496 dl 1.118 Comparator<? super K> cmp = comparator;
3497     K f = fence;
3498     Node<K,V> e = current;
3499     for (; e != null; e = e.next) {
3500 dl 1.83 K k; Object v;
3501 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3502 dl 1.83 e = null;
3503     break;
3504     }
3505     if ((v = e.value) != null && v != e) {
3506     current = e.next;
3507 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3508     action.accept
3509     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3510 dl 1.83 return true;
3511     }
3512     }
3513     current = e;
3514     return false;
3515     }
3516 dl 1.100
3517     public int characteristics() {
3518 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3519 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3520 dl 1.100 Spliterator.NONNULL;
3521     }
3522 dl 1.113
3523     public final Comparator<Map.Entry<K,V>> getComparator() {
3524 jsr166 1.130 // Adapt or create a key-based comparator
3525     if (comparator != null) {
3526     return Map.Entry.comparingByKey(comparator);
3527     }
3528     else {
3529 jsr166 1.131 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3530 jsr166 1.130 @SuppressWarnings("unchecked")
3531     Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3532     return k1.compareTo(e2.getKey());
3533     };
3534     }
3535 dl 1.113 }
3536 dl 1.118 }
3537 dl 1.113
3538 dl 1.118 // Almost the same as keySpliterator()
3539     final EntrySpliterator<K,V> entrySpliterator() {
3540     Comparator<? super K> cmp = comparator;
3541     for (;;) { // almost same as key version
3542     HeadIndex<K,V> h; Node<K,V> p;
3543     Node<K,V> b = (h = head).node;
3544     if ((p = b.next) == null || p.value != null)
3545     return new EntrySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3546     0 : Integer.MAX_VALUE);
3547     p.helpDelete(b, p.next);
3548     }
3549 dl 1.83 }
3550    
3551 dl 1.59 // Unsafe mechanics
3552 dl 1.65 private static final sun.misc.Unsafe UNSAFE;
3553     private static final long headOffset;
3554 dl 1.92 private static final long SECONDARY;
3555 dl 1.65 static {
3556 dl 1.59 try {
3557 dl 1.65 UNSAFE = sun.misc.Unsafe.getUnsafe();
3558 jsr166 1.72 Class<?> k = ConcurrentSkipListMap.class;
3559 dl 1.65 headOffset = UNSAFE.objectFieldOffset
3560     (k.getDeclaredField("head"));
3561 dl 1.92 Class<?> tk = Thread.class;
3562     SECONDARY = UNSAFE.objectFieldOffset
3563     (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
3564    
3565 dl 1.65 } catch (Exception e) {
3566     throw new Error(e);
3567 dl 1.59 }
3568     }
3569 dl 1.1 }