ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.142
Committed: Mon Feb 23 19:47:31 2015 UTC (9 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.141: +0 -4 lines
Log Message:
remove unused variable

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.67 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.138
9 jsr166 1.130 import java.io.Serializable;
10 dl 1.118 import java.util.AbstractCollection;
11     import java.util.AbstractMap;
12     import java.util.AbstractSet;
13     import java.util.ArrayList;
14     import java.util.Collection;
15     import java.util.Collections;
16     import java.util.Comparator;
17     import java.util.Iterator;
18     import java.util.List;
19     import java.util.Map;
20     import java.util.NavigableMap;
21     import java.util.NavigableSet;
22     import java.util.NoSuchElementException;
23     import java.util.Set;
24     import java.util.SortedMap;
25 dl 1.83 import java.util.Spliterator;
26 jsr166 1.138 import java.util.function.BiConsumer;
27 dl 1.118 import java.util.function.BiFunction;
28 dl 1.94 import java.util.function.Consumer;
29 dl 1.109 import java.util.function.Function;
30 dl 1.83
31 dl 1.1 /**
32 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
33     * The map is sorted according to the {@linkplain Comparable natural
34     * ordering} of its keys, or by a {@link Comparator} provided at map
35     * creation time, depending on which constructor is used.
36 dl 1.1 *
37     * <p>This class implements a concurrent variant of <a
38 dl 1.66 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
39     * providing expected average <i>log(n)</i> time cost for the
40 jsr166 1.82 * {@code containsKey}, {@code get}, {@code put} and
41     * {@code remove} operations and their variants. Insertion, removal,
42 dl 1.1 * update, and access operations safely execute concurrently by
43 jsr166 1.133 * multiple threads.
44     *
45     * <p>Iterators and spliterators are
46     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
47     *
48     * <p>Ascending key ordered views and their iterators are faster than
49     * descending ones.
50 dl 1.1 *
51 jsr166 1.82 * <p>All {@code Map.Entry} pairs returned by methods in this class
52 dl 1.1 * and its views represent snapshots of mappings at the time they were
53 jsr166 1.82 * produced. They do <em>not</em> support the {@code Entry.setValue}
54 dl 1.1 * method. (Note however that it is possible to change mappings in the
55 jsr166 1.82 * associated map using {@code put}, {@code putIfAbsent}, or
56     * {@code replace}, depending on exactly which effect you need.)
57 dl 1.1 *
58 jsr166 1.82 * <p>Beware that, unlike in most collections, the {@code size}
59 dl 1.1 * method is <em>not</em> a constant-time operation. Because of the
60     * asynchronous nature of these maps, determining the current number
61 dl 1.69 * of elements requires a traversal of the elements, and so may report
62     * inaccurate results if this collection is modified during traversal.
63 jsr166 1.82 * Additionally, the bulk operations {@code putAll}, {@code equals},
64     * {@code toArray}, {@code containsValue}, and {@code clear} are
65 dl 1.69 * <em>not</em> guaranteed to be performed atomically. For example, an
66 jsr166 1.82 * iterator operating concurrently with a {@code putAll} operation
67 dl 1.69 * might view only some of the added elements.
68 dl 1.1 *
69     * <p>This class and its views and iterators implement all of the
70     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
71     * interfaces. Like most other concurrent collections, this class does
72 jsr166 1.82 * <em>not</em> permit the use of {@code null} keys or values because some
73 jsr166 1.22 * null return values cannot be reliably distinguished from the absence of
74     * elements.
75 dl 1.1 *
76 jsr166 1.21 * <p>This class is a member of the
77 jsr166 1.51 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
78 jsr166 1.21 * Java Collections Framework</a>.
79     *
80 dl 1.1 * @author Doug Lea
81     * @param <K> the type of keys maintained by this map
82 dl 1.9 * @param <V> the type of mapped values
83 jsr166 1.20 * @since 1.6
84 dl 1.1 */
85 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
86 jsr166 1.130 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
87 dl 1.1 /*
88     * This class implements a tree-like two-dimensionally linked skip
89     * list in which the index levels are represented in separate
90     * nodes from the base nodes holding data. There are two reasons
91     * for taking this approach instead of the usual array-based
92     * structure: 1) Array based implementations seem to encounter
93     * more complexity and overhead 2) We can use cheaper algorithms
94     * for the heavily-traversed index lists than can be used for the
95     * base lists. Here's a picture of some of the basics for a
96     * possible list with 2 levels of index:
97     *
98     * Head nodes Index nodes
99 dl 1.9 * +-+ right +-+ +-+
100 dl 1.1 * |2|---------------->| |--------------------->| |->null
101 dl 1.9 * +-+ +-+ +-+
102 dl 1.1 * | down | |
103     * v v v
104 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
105 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
106 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
107 dl 1.1 * v | | | | |
108     * Nodes next v v v v v
109 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
110 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
111 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
112 dl 1.1 *
113     * The base lists use a variant of the HM linked ordered set
114     * algorithm. See Tim Harris, "A pragmatic implementation of
115     * non-blocking linked lists"
116     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
117     * Michael "High Performance Dynamic Lock-Free Hash Tables and
118     * List-Based Sets"
119     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
120     * basic idea in these lists is to mark the "next" pointers of
121     * deleted nodes when deleting to avoid conflicts with concurrent
122     * insertions, and when traversing to keep track of triples
123     * (predecessor, node, successor) in order to detect when and how
124     * to unlink these deleted nodes.
125     *
126     * Rather than using mark-bits to mark list deletions (which can
127     * be slow and space-intensive using AtomicMarkedReference), nodes
128     * use direct CAS'able next pointers. On deletion, instead of
129     * marking a pointer, they splice in another node that can be
130     * thought of as standing for a marked pointer (indicating this by
131     * using otherwise impossible field values). Using plain nodes
132     * acts roughly like "boxed" implementations of marked pointers,
133     * but uses new nodes only when nodes are deleted, not for every
134     * link. This requires less space and supports faster
135     * traversal. Even if marked references were better supported by
136     * JVMs, traversal using this technique might still be faster
137     * because any search need only read ahead one more node than
138     * otherwise required (to check for trailing marker) rather than
139     * unmasking mark bits or whatever on each read.
140     *
141     * This approach maintains the essential property needed in the HM
142     * algorithm of changing the next-pointer of a deleted node so
143     * that any other CAS of it will fail, but implements the idea by
144     * changing the pointer to point to a different node, not by
145     * marking it. While it would be possible to further squeeze
146     * space by defining marker nodes not to have key/value fields, it
147     * isn't worth the extra type-testing overhead. The deletion
148     * markers are rarely encountered during traversal and are
149     * normally quickly garbage collected. (Note that this technique
150     * would not work well in systems without garbage collection.)
151     *
152     * In addition to using deletion markers, the lists also use
153     * nullness of value fields to indicate deletion, in a style
154     * similar to typical lazy-deletion schemes. If a node's value is
155     * null, then it is considered logically deleted and ignored even
156     * though it is still reachable. This maintains proper control of
157     * concurrent replace vs delete operations -- an attempted replace
158     * must fail if a delete beat it by nulling field, and a delete
159     * must return the last non-null value held in the field. (Note:
160     * Null, rather than some special marker, is used for value fields
161     * here because it just so happens to mesh with the Map API
162     * requirement that method get returns null if there is no
163     * mapping, which allows nodes to remain concurrently readable
164     * even when deleted. Using any other marker value here would be
165     * messy at best.)
166     *
167     * Here's the sequence of events for a deletion of node n with
168     * predecessor b and successor f, initially:
169     *
170 dl 1.9 * +------+ +------+ +------+
171 dl 1.1 * ... | b |------>| n |----->| f | ...
172 dl 1.9 * +------+ +------+ +------+
173 dl 1.1 *
174     * 1. CAS n's value field from non-null to null.
175     * From this point on, no public operations encountering
176     * the node consider this mapping to exist. However, other
177     * ongoing insertions and deletions might still modify
178     * n's next pointer.
179     *
180     * 2. CAS n's next pointer to point to a new marker node.
181     * From this point on, no other nodes can be appended to n.
182     * which avoids deletion errors in CAS-based linked lists.
183     *
184     * +------+ +------+ +------+ +------+
185     * ... | b |------>| n |----->|marker|------>| f | ...
186 dl 1.9 * +------+ +------+ +------+ +------+
187 dl 1.1 *
188     * 3. CAS b's next pointer over both n and its marker.
189     * From this point on, no new traversals will encounter n,
190     * and it can eventually be GCed.
191     * +------+ +------+
192     * ... | b |----------------------------------->| f | ...
193 dl 1.9 * +------+ +------+
194     *
195 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
196     * with another operation. Steps 2-3 can fail because some other
197     * thread noticed during a traversal a node with null value and
198     * helped out by marking and/or unlinking. This helping-out
199     * ensures that no thread can become stuck waiting for progress of
200     * the deleting thread. The use of marker nodes slightly
201     * complicates helping-out code because traversals must track
202     * consistent reads of up to four nodes (b, n, marker, f), not
203     * just (b, n, f), although the next field of a marker is
204     * immutable, and once a next field is CAS'ed to point to a
205     * marker, it never again changes, so this requires less care.
206     *
207     * Skip lists add indexing to this scheme, so that the base-level
208     * traversals start close to the locations being found, inserted
209     * or deleted -- usually base level traversals only traverse a few
210     * nodes. This doesn't change the basic algorithm except for the
211     * need to make sure base traversals start at predecessors (here,
212     * b) that are not (structurally) deleted, otherwise retrying
213 dl 1.9 * after processing the deletion.
214 dl 1.1 *
215     * Index levels are maintained as lists with volatile next fields,
216     * using CAS to link and unlink. Races are allowed in index-list
217     * operations that can (rarely) fail to link in a new index node
218     * or delete one. (We can't do this of course for data nodes.)
219     * However, even when this happens, the index lists remain sorted,
220     * so correctly serve as indices. This can impact performance,
221     * but since skip lists are probabilistic anyway, the net result
222     * is that under contention, the effective "p" value may be lower
223     * than its nominal value. And race windows are kept small enough
224     * that in practice these failures are rare, even under a lot of
225     * contention.
226     *
227     * The fact that retries (for both base and index lists) are
228     * relatively cheap due to indexing allows some minor
229     * simplifications of retry logic. Traversal restarts are
230     * performed after most "helping-out" CASes. This isn't always
231     * strictly necessary, but the implicit backoffs tend to help
232     * reduce other downstream failed CAS's enough to outweigh restart
233     * cost. This worsens the worst case, but seems to improve even
234     * highly contended cases.
235     *
236     * Unlike most skip-list implementations, index insertion and
237 jsr166 1.135 * deletion here require a separate traversal pass occurring after
238 dl 1.1 * the base-level action, to add or remove index nodes. This adds
239     * to single-threaded overhead, but improves contended
240     * multithreaded performance by narrowing interference windows,
241     * and allows deletion to ensure that all index nodes will be made
242     * unreachable upon return from a public remove operation, thus
243     * avoiding unwanted garbage retention. This is more important
244     * here than in some other data structures because we cannot null
245     * out node fields referencing user keys since they might still be
246     * read by other ongoing traversals.
247     *
248     * Indexing uses skip list parameters that maintain good search
249     * performance while using sparser-than-usual indices: The
250 dl 1.118 * hardwired parameters k=1, p=0.5 (see method doPut) mean
251 dl 1.1 * that about one-quarter of the nodes have indices. Of those that
252     * do, half have one level, a quarter have two, and so on (see
253     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
254     * requirement for a map is slightly less than for the current
255     * implementation of java.util.TreeMap.
256     *
257     * Changing the level of the index (i.e, the height of the
258     * tree-like structure) also uses CAS. The head index has initial
259     * level/height of one. Creation of an index with height greater
260     * than the current level adds a level to the head index by
261     * CAS'ing on a new top-most head. To maintain good performance
262     * after a lot of removals, deletion methods heuristically try to
263     * reduce the height if the topmost levels appear to be empty.
264     * This may encounter races in which it possible (but rare) to
265     * reduce and "lose" a level just as it is about to contain an
266     * index (that will then never be encountered). This does no
267     * structural harm, and in practice appears to be a better option
268     * than allowing unrestrained growth of levels.
269     *
270     * The code for all this is more verbose than you'd like. Most
271     * operations entail locating an element (or position to insert an
272     * element). The code to do this can't be nicely factored out
273     * because subsequent uses require a snapshot of predecessor
274     * and/or successor and/or value fields which can't be returned
275     * all at once, at least not without creating yet another object
276     * to hold them -- creating such little objects is an especially
277     * bad idea for basic internal search operations because it adds
278     * to GC overhead. (This is one of the few times I've wished Java
279     * had macros.) Instead, some traversal code is interleaved within
280     * insertion and removal operations. The control logic to handle
281     * all the retry conditions is sometimes twisty. Most search is
282     * broken into 2 parts. findPredecessor() searches index nodes
283     * only, returning a base-level predecessor of the key. findNode()
284     * finishes out the base-level search. Even with this factoring,
285     * there is a fair amount of near-duplication of code to handle
286     * variants.
287     *
288 dl 1.92 * To produce random values without interference across threads,
289     * we use within-JDK thread local random support (via the
290     * "secondary seed", to avoid interference with user-level
291     * ThreadLocalRandom.)
292     *
293 dl 1.88 * A previous version of this class wrapped non-comparable keys
294     * with their comparators to emulate Comparables when using
295 dl 1.118 * comparators vs Comparables. However, JVMs now appear to better
296     * handle infusing comparator-vs-comparable choice into search
297     * loops. Static method cpr(comparator, x, y) is used for all
298     * comparisons, which works well as long as the comparator
299     * argument is set up outside of loops (thus sometimes passed as
300     * an argument to internal methods) to avoid field re-reads.
301 dl 1.88 *
302 dl 1.1 * For explanation of algorithms sharing at least a couple of
303     * features with this one, see Mikhail Fomitchev's thesis
304     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
305 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
306 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
307     *
308     * Given the use of tree-like index nodes, you might wonder why
309     * this doesn't use some kind of search tree instead, which would
310     * support somewhat faster search operations. The reason is that
311     * there are no known efficient lock-free insertion and deletion
312     * algorithms for search trees. The immutability of the "down"
313     * links of index nodes (as opposed to mutable "left" fields in
314     * true trees) makes this tractable using only CAS operations.
315     *
316     * Notation guide for local variables
317     * Node: b, n, f for predecessor, node, successor
318     * Index: q, r, d for index node, right, down.
319     * t for another index node
320     * Head: h
321     * Levels: j
322     * Keys: k, key
323     * Values: v, value
324     * Comparisons: c
325     */
326    
327     private static final long serialVersionUID = -8627078645895051609L;
328    
329     /**
330     * Special value used to identify base-level header
331 dl 1.9 */
332 dl 1.1 private static final Object BASE_HEADER = new Object();
333    
334     /**
335 dl 1.9 * The topmost head index of the skiplist.
336 dl 1.1 */
337     private transient volatile HeadIndex<K,V> head;
338    
339     /**
340 dl 1.118 * The comparator used to maintain order in this map, or null if
341     * using natural ordering. (Non-private to simplify access in
342 jsr166 1.120 * nested classes.)
343 dl 1.1 * @serial
344     */
345 dl 1.118 final Comparator<? super K> comparator;
346 dl 1.1
347     /** Lazily initialized key set */
348 dl 1.118 private transient KeySet<K> keySet;
349 dl 1.1 /** Lazily initialized entry set */
350 jsr166 1.71 private transient EntrySet<K,V> entrySet;
351 dl 1.1 /** Lazily initialized values collection */
352 jsr166 1.71 private transient Values<V> values;
353 dl 1.1 /** Lazily initialized descending key set */
354 dl 1.46 private transient ConcurrentNavigableMap<K,V> descendingMap;
355 dl 1.1
356     /**
357 jsr166 1.13 * Initializes or resets state. Needed by constructors, clone,
358 dl 1.1 * clear, readObject. and ConcurrentSkipListSet.clone.
359     * (Note that comparator must be separately initialized.)
360     */
361 dl 1.118 private void initialize() {
362 dl 1.1 keySet = null;
363 dl 1.9 entrySet = null;
364 dl 1.1 values = null;
365 dl 1.46 descendingMap = null;
366 dl 1.1 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
367     null, null, 1);
368     }
369    
370     /**
371     * compareAndSet head node
372     */
373     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
374 jsr166 1.141 return U.compareAndSwapObject(this, HEAD, cmp, val);
375 dl 1.1 }
376    
377     /* ---------------- Nodes -------------- */
378    
379     /**
380     * Nodes hold keys and values, and are singly linked in sorted
381     * order, possibly with some intervening marker nodes. The list is
382     * headed by a dummy node accessible as head.node. The value field
383     * is declared only as Object because it takes special non-V
384     * values for marker and header nodes.
385     */
386     static final class Node<K,V> {
387     final K key;
388     volatile Object value;
389     volatile Node<K,V> next;
390    
391     /**
392     * Creates a new regular node.
393     */
394     Node(K key, Object value, Node<K,V> next) {
395     this.key = key;
396     this.value = value;
397     this.next = next;
398     }
399    
400     /**
401     * Creates a new marker node. A marker is distinguished by
402     * having its value field point to itself. Marker nodes also
403     * have null keys, a fact that is exploited in a few places,
404     * but this doesn't distinguish markers from the base-level
405     * header node (head.node), which also has a null key.
406     */
407     Node(Node<K,V> next) {
408     this.key = null;
409     this.value = this;
410     this.next = next;
411     }
412    
413     /**
414     * compareAndSet value field
415     */
416     boolean casValue(Object cmp, Object val) {
417 jsr166 1.141 return U.compareAndSwapObject(this, VALUE, cmp, val);
418 dl 1.1 }
419 jsr166 1.60
420 dl 1.1 /**
421     * compareAndSet next field
422     */
423     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
424 jsr166 1.141 return U.compareAndSwapObject(this, NEXT, cmp, val);
425 dl 1.1 }
426    
427     /**
428 jsr166 1.10 * Returns true if this node is a marker. This method isn't
429     * actually called in any current code checking for markers
430 dl 1.1 * because callers will have already read value field and need
431     * to use that read (not another done here) and so directly
432     * test if value points to node.
433 jsr166 1.93 *
434 dl 1.1 * @return true if this node is a marker node
435     */
436     boolean isMarker() {
437     return value == this;
438     }
439    
440     /**
441 jsr166 1.10 * Returns true if this node is the header of base-level list.
442 dl 1.1 * @return true if this node is header node
443     */
444     boolean isBaseHeader() {
445     return value == BASE_HEADER;
446     }
447    
448     /**
449     * Tries to append a deletion marker to this node.
450     * @param f the assumed current successor of this node
451     * @return true if successful
452     */
453     boolean appendMarker(Node<K,V> f) {
454     return casNext(f, new Node<K,V>(f));
455     }
456    
457     /**
458     * Helps out a deletion by appending marker or unlinking from
459     * predecessor. This is called during traversals when value
460     * field seen to be null.
461     * @param b predecessor
462     * @param f successor
463     */
464     void helpDelete(Node<K,V> b, Node<K,V> f) {
465     /*
466     * Rechecking links and then doing only one of the
467     * help-out stages per call tends to minimize CAS
468     * interference among helping threads.
469     */
470     if (f == next && this == b.next) {
471     if (f == null || f.value != f) // not already marked
472 dl 1.118 casNext(f, new Node<K,V>(f));
473 dl 1.1 else
474     b.casNext(this, f.next);
475     }
476     }
477    
478     /**
479 jsr166 1.11 * Returns value if this node contains a valid key-value pair,
480 dl 1.9 * else null.
481 dl 1.1 * @return this node's value if it isn't a marker or header or
482 jsr166 1.126 * is deleted, else null
483 dl 1.1 */
484     V getValidValue() {
485     Object v = value;
486     if (v == this || v == BASE_HEADER)
487     return null;
488 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
489     return vv;
490 dl 1.1 }
491    
492     /**
493 jsr166 1.10 * Creates and returns a new SimpleImmutableEntry holding current
494     * mapping if this node holds a valid value, else null.
495 dl 1.1 * @return new entry or null
496     */
497 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
498 dl 1.118 Object v = value;
499     if (v == null || v == this || v == BASE_HEADER)
500 dl 1.1 return null;
501 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
502     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
503 dl 1.1 }
504 dl 1.59
505 jsr166 1.141 // Unsafe mechanics
506 dl 1.65
507 jsr166 1.141 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
508     private static final long VALUE;
509     private static final long NEXT;
510 dl 1.59
511 dl 1.65 static {
512     try {
513 jsr166 1.141 VALUE = U.objectFieldOffset
514     (Node.class.getDeclaredField("value"));
515     NEXT = U.objectFieldOffset
516     (Node.class.getDeclaredField("next"));
517 jsr166 1.140 } catch (ReflectiveOperationException e) {
518 dl 1.65 throw new Error(e);
519     }
520     }
521 dl 1.1 }
522    
523     /* ---------------- Indexing -------------- */
524    
525     /**
526 dl 1.40 * Index nodes represent the levels of the skip list. Note that
527     * even though both Nodes and Indexes have forward-pointing
528     * fields, they have different types and are handled in different
529     * ways, that can't nicely be captured by placing field in a
530     * shared abstract class.
531 dl 1.1 */
532     static class Index<K,V> {
533     final Node<K,V> node;
534     final Index<K,V> down;
535     volatile Index<K,V> right;
536    
537     /**
538 jsr166 1.10 * Creates index node with given values.
539 dl 1.9 */
540 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
541     this.node = node;
542     this.down = down;
543     this.right = right;
544     }
545    
546     /**
547     * compareAndSet right field
548     */
549     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
550 jsr166 1.141 return U.compareAndSwapObject(this, RIGHT, cmp, val);
551 dl 1.1 }
552    
553     /**
554     * Returns true if the node this indexes has been deleted.
555     * @return true if indexed node is known to be deleted
556     */
557     final boolean indexesDeletedNode() {
558     return node.value == null;
559     }
560    
561     /**
562     * Tries to CAS newSucc as successor. To minimize races with
563     * unlink that may lose this index node, if the node being
564     * indexed is known to be deleted, it doesn't try to link in.
565     * @param succ the expected current successor
566     * @param newSucc the new successor
567     * @return true if successful
568     */
569     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
570     Node<K,V> n = node;
571 dl 1.9 newSucc.right = succ;
572 dl 1.1 return n.value != null && casRight(succ, newSucc);
573     }
574    
575     /**
576     * Tries to CAS right field to skip over apparent successor
577     * succ. Fails (forcing a retraversal by caller) if this node
578     * is known to be deleted.
579     * @param succ the expected current successor
580     * @return true if successful
581     */
582     final boolean unlink(Index<K,V> succ) {
583 dl 1.118 return node.value != null && casRight(succ, succ.right);
584 dl 1.1 }
585 dl 1.59
586     // Unsafe mechanics
587 jsr166 1.141 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
588     private static final long RIGHT;
589 dl 1.65 static {
590     try {
591 jsr166 1.141 RIGHT = U.objectFieldOffset
592     (Index.class.getDeclaredField("right"));
593 jsr166 1.140 } catch (ReflectiveOperationException e) {
594 dl 1.65 throw new Error(e);
595     }
596     }
597 dl 1.1 }
598    
599     /* ---------------- Head nodes -------------- */
600    
601     /**
602     * Nodes heading each level keep track of their level.
603     */
604     static final class HeadIndex<K,V> extends Index<K,V> {
605     final int level;
606     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
607     super(node, down, right);
608     this.level = level;
609     }
610 dl 1.9 }
611 dl 1.1
612     /* ---------------- Comparison utilities -------------- */
613    
614     /**
615 dl 1.118 * Compares using comparator or natural ordering if null.
616     * Called only by methods that have performed required type checks.
617 dl 1.1 */
618 dl 1.118 @SuppressWarnings({"unchecked", "rawtypes"})
619     static final int cpr(Comparator c, Object x, Object y) {
620     return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
621 dl 1.1 }
622    
623     /* ---------------- Traversal -------------- */
624    
625     /**
626 jsr166 1.10 * Returns a base-level node with key strictly less than given key,
627 dl 1.1 * or the base-level header if there is no such node. Also
628     * unlinks indexes to deleted nodes found along the way. Callers
629     * rely on this side-effect of clearing indices to deleted nodes.
630     * @param key the key
631 dl 1.9 * @return a predecessor of key
632 dl 1.1 */
633 dl 1.118 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
634 jsr166 1.41 if (key == null)
635 dl 1.40 throw new NullPointerException(); // don't postpone errors
636 dl 1.1 for (;;) {
637 dl 1.118 for (Index<K,V> q = head, r = q.right, d;;) {
638 dl 1.40 if (r != null) {
639     Node<K,V> n = r.node;
640     K k = n.key;
641     if (n.value == null) {
642     if (!q.unlink(r))
643     break; // restart
644     r = q.right; // reread r
645     continue;
646 dl 1.1 }
647 dl 1.118 if (cpr(cmp, key, k) > 0) {
648 dl 1.1 q = r;
649 dl 1.40 r = r.right;
650 dl 1.1 continue;
651     }
652     }
653 dl 1.118 if ((d = q.down) == null)
654 dl 1.1 return q.node;
655 dl 1.118 q = d;
656     r = d.right;
657 dl 1.1 }
658     }
659     }
660    
661     /**
662 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
663 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
664     * base-level looking for key starting at predecessor returned
665     * from findPredecessor, processing base-level deletions as
666     * encountered. Some callers rely on this side-effect of clearing
667     * deleted nodes.
668     *
669     * Restarts occur, at traversal step centered on node n, if:
670     *
671     * (1) After reading n's next field, n is no longer assumed
672     * predecessor b's current successor, which means that
673     * we don't have a consistent 3-node snapshot and so cannot
674     * unlink any subsequent deleted nodes encountered.
675     *
676     * (2) n's value field is null, indicating n is deleted, in
677     * which case we help out an ongoing structural deletion
678     * before retrying. Even though there are cases where such
679     * unlinking doesn't require restart, they aren't sorted out
680     * here because doing so would not usually outweigh cost of
681     * restarting.
682     *
683 dl 1.9 * (3) n is a marker or n's predecessor's value field is null,
684 dl 1.1 * indicating (among other possibilities) that
685     * findPredecessor returned a deleted node. We can't unlink
686     * the node because we don't know its predecessor, so rely
687     * on another call to findPredecessor to notice and return
688     * some earlier predecessor, which it will do. This check is
689     * only strictly needed at beginning of loop, (and the
690     * b.value check isn't strictly needed at all) but is done
691     * each iteration to help avoid contention with other
692     * threads by callers that will fail to be able to change
693     * links, and so will retry anyway.
694     *
695     * The traversal loops in doPut, doRemove, and findNear all
696     * include the same three kinds of checks. And specialized
697 dl 1.31 * versions appear in findFirst, and findLast and their
698     * variants. They can't easily share code because each uses the
699 dl 1.1 * reads of fields held in locals occurring in the orders they
700     * were performed.
701 dl 1.9 *
702 dl 1.1 * @param key the key
703 jsr166 1.22 * @return node holding key, or null if no such
704 dl 1.1 */
705 dl 1.118 private Node<K,V> findNode(Object key) {
706 dl 1.88 if (key == null)
707     throw new NullPointerException(); // don't postpone errors
708 dl 1.118 Comparator<? super K> cmp = comparator;
709     outer: for (;;) {
710     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
711     Object v; int c;
712 dl 1.9 if (n == null)
713 dl 1.118 break outer;
714 dl 1.1 Node<K,V> f = n.next;
715     if (n != b.next) // inconsistent read
716     break;
717 dl 1.118 if ((v = n.value) == null) { // n is deleted
718 dl 1.1 n.helpDelete(b, f);
719     break;
720     }
721 dl 1.118 if (b.value == null || v == n) // b is deleted
722 dl 1.1 break;
723 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0)
724 dl 1.40 return n;
725 dl 1.1 if (c < 0)
726 dl 1.118 break outer;
727 dl 1.1 b = n;
728     n = f;
729     }
730     }
731 dl 1.118 return null;
732 dl 1.1 }
733    
734 dl 1.9 /**
735 dl 1.88 * Gets value for key. Almost the same as findNode, but returns
736     * the found value (to avoid retries during re-reads)
737     *
738 dl 1.118 * @param key the key
739 dl 1.1 * @return the value, or null if absent
740     */
741 dl 1.118 private V doGet(Object key) {
742     if (key == null)
743 dl 1.88 throw new NullPointerException();
744 dl 1.118 Comparator<? super K> cmp = comparator;
745     outer: for (;;) {
746     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
747     Object v; int c;
748 dl 1.88 if (n == null)
749 dl 1.118 break outer;
750 dl 1.88 Node<K,V> f = n.next;
751     if (n != b.next) // inconsistent read
752     break;
753 dl 1.118 if ((v = n.value) == null) { // n is deleted
754 dl 1.88 n.helpDelete(b, f);
755     break;
756     }
757 dl 1.118 if (b.value == null || v == n) // b is deleted
758 dl 1.88 break;
759 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0) {
760     @SuppressWarnings("unchecked") V vv = (V)v;
761 dl 1.100 return vv;
762 dl 1.118 }
763 dl 1.88 if (c < 0)
764 dl 1.118 break outer;
765 dl 1.88 b = n;
766     n = f;
767     }
768 dl 1.1 }
769 dl 1.118 return null;
770 dl 1.1 }
771    
772     /* ---------------- Insertion -------------- */
773    
774     /**
775     * Main insertion method. Adds element if not present, or
776     * replaces value if present and onlyIfAbsent is false.
777 dl 1.118 * @param key the key
778 jsr166 1.103 * @param value the value that must be associated with key
779 dl 1.1 * @param onlyIfAbsent if should not insert if already present
780     * @return the old value, or null if newly inserted
781     */
782 dl 1.118 private V doPut(K key, V value, boolean onlyIfAbsent) {
783     Node<K,V> z; // added node
784     if (key == null)
785 dl 1.88 throw new NullPointerException();
786 dl 1.118 Comparator<? super K> cmp = comparator;
787     outer: for (;;) {
788     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
789 dl 1.1 if (n != null) {
790 dl 1.118 Object v; int c;
791 dl 1.1 Node<K,V> f = n.next;
792     if (n != b.next) // inconsistent read
793 jsr166 1.57 break;
794 dl 1.118 if ((v = n.value) == null) { // n is deleted
795 dl 1.1 n.helpDelete(b, f);
796     break;
797     }
798 dl 1.118 if (b.value == null || v == n) // b is deleted
799 dl 1.1 break;
800 dl 1.118 if ((c = cpr(cmp, key, n.key)) > 0) {
801 dl 1.1 b = n;
802     n = f;
803     continue;
804     }
805     if (c == 0) {
806 dl 1.118 if (onlyIfAbsent || n.casValue(v, value)) {
807     @SuppressWarnings("unchecked") V vv = (V)v;
808 dl 1.100 return vv;
809 dl 1.118 }
810     break; // restart if lost race to replace value
811 dl 1.1 }
812     // else c < 0; fall through
813     }
814 dl 1.9
815 dl 1.118 z = new Node<K,V>(key, value, n);
816 dl 1.9 if (!b.casNext(n, z))
817 dl 1.1 break; // restart if lost race to append to b
818 dl 1.118 break outer;
819 dl 1.1 }
820     }
821    
822 dl 1.122 int rnd = ThreadLocalRandom.nextSecondarySeed();
823 dl 1.92 if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
824     int level = 1, max;
825     while (((rnd >>>= 1) & 1) != 0)
826     ++level;
827 dl 1.1 Index<K,V> idx = null;
828 dl 1.92 HeadIndex<K,V> h = head;
829     if (level <= (max = h.level)) {
830     for (int i = 1; i <= level; ++i)
831     idx = new Index<K,V>(z, idx, null);
832 dl 1.1 }
833 dl 1.92 else { // try to grow by one level
834     level = max + 1; // hold in array and later pick the one to use
835 dl 1.118 @SuppressWarnings("unchecked")Index<K,V>[] idxs =
836     (Index<K,V>[])new Index<?,?>[level+1];
837 dl 1.92 for (int i = 1; i <= level; ++i)
838     idxs[i] = idx = new Index<K,V>(z, idx, null);
839     for (;;) {
840     h = head;
841     int oldLevel = h.level;
842     if (level <= oldLevel) // lost race to add level
843     break;
844     HeadIndex<K,V> newh = h;
845     Node<K,V> oldbase = h.node;
846     for (int j = oldLevel+1; j <= level; ++j)
847     newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
848     if (casHead(h, newh)) {
849     h = newh;
850     idx = idxs[level = oldLevel];
851     break;
852 dl 1.1 }
853     }
854 dl 1.92 }
855 dl 1.118 // find insertion points and splice in
856     splice: for (int insertionLevel = level;;) {
857 dl 1.92 int j = h.level;
858 dl 1.118 for (Index<K,V> q = h, r = q.right, t = idx;;) {
859 dl 1.92 if (q == null || t == null)
860 dl 1.118 break splice;
861 dl 1.92 if (r != null) {
862     Node<K,V> n = r.node;
863     // compare before deletion check avoids needing recheck
864 dl 1.118 int c = cpr(cmp, key, n.key);
865 dl 1.92 if (n.value == null) {
866     if (!q.unlink(r))
867     break;
868     r = q.right;
869     continue;
870     }
871     if (c > 0) {
872     q = r;
873     r = r.right;
874     continue;
875     }
876 dl 1.1 }
877 dl 1.92
878     if (j == insertionLevel) {
879     if (!q.link(r, t))
880     break; // restart
881     if (t.node.value == null) {
882 dl 1.118 findNode(key);
883     break splice;
884 dl 1.88 }
885 dl 1.92 if (--insertionLevel == 0)
886 dl 1.118 break splice;
887 dl 1.1 }
888 dl 1.92
889     if (--j >= insertionLevel && j < level)
890     t = t.down;
891     q = q.down;
892     r = q.right;
893 dl 1.1 }
894     }
895     }
896 dl 1.118 return null;
897 dl 1.1 }
898    
899     /* ---------------- Deletion -------------- */
900    
901     /**
902     * Main deletion method. Locates node, nulls value, appends a
903     * deletion marker, unlinks predecessor, removes associated index
904     * nodes, and possibly reduces head index level.
905     *
906     * Index nodes are cleared out simply by calling findPredecessor.
907     * which unlinks indexes to deleted nodes found along path to key,
908     * which will include the indexes to this node. This is done
909     * unconditionally. We can't check beforehand whether there are
910     * index nodes because it might be the case that some or all
911     * indexes hadn't been inserted yet for this node during initial
912     * search for it, and we'd like to ensure lack of garbage
913 dl 1.9 * retention, so must call to be sure.
914 dl 1.1 *
915 dl 1.118 * @param key the key
916 dl 1.1 * @param value if non-null, the value that must be
917     * associated with key
918     * @return the node, or null if not found
919     */
920 dl 1.118 final V doRemove(Object key, Object value) {
921     if (key == null)
922 dl 1.88 throw new NullPointerException();
923 dl 1.118 Comparator<? super K> cmp = comparator;
924     outer: for (;;) {
925     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
926     Object v; int c;
927 dl 1.9 if (n == null)
928 dl 1.118 break outer;
929 dl 1.1 Node<K,V> f = n.next;
930     if (n != b.next) // inconsistent read
931     break;
932 dl 1.118 if ((v = n.value) == null) { // n is deleted
933 dl 1.1 n.helpDelete(b, f);
934     break;
935     }
936 dl 1.118 if (b.value == null || v == n) // b is deleted
937 dl 1.1 break;
938 dl 1.118 if ((c = cpr(cmp, key, n.key)) < 0)
939     break outer;
940 dl 1.1 if (c > 0) {
941     b = n;
942     n = f;
943     continue;
944     }
945 dl 1.9 if (value != null && !value.equals(v))
946 dl 1.118 break outer;
947 dl 1.9 if (!n.casValue(v, null))
948 dl 1.1 break;
949 dl 1.9 if (!n.appendMarker(f) || !b.casNext(n, f))
950 dl 1.118 findNode(key); // retry via findNode
951 dl 1.1 else {
952 dl 1.118 findPredecessor(key, cmp); // clean index
953 dl 1.9 if (head.right == null)
954 dl 1.1 tryReduceLevel();
955     }
956 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
957     return vv;
958 dl 1.1 }
959     }
960 dl 1.118 return null;
961 dl 1.1 }
962    
963     /**
964     * Possibly reduce head level if it has no nodes. This method can
965     * (rarely) make mistakes, in which case levels can disappear even
966     * though they are about to contain index nodes. This impacts
967     * performance, not correctness. To minimize mistakes as well as
968     * to reduce hysteresis, the level is reduced by one only if the
969     * topmost three levels look empty. Also, if the removed level
970     * looks non-empty after CAS, we try to change it back quick
971     * before anyone notices our mistake! (This trick works pretty
972     * well because this method will practically never make mistakes
973     * unless current thread stalls immediately before first CAS, in
974     * which case it is very unlikely to stall again immediately
975     * afterwards, so will recover.)
976     *
977     * We put up with all this rather than just let levels grow
978     * because otherwise, even a small map that has undergone a large
979     * number of insertions and removals will have a lot of levels,
980     * slowing down access more than would an occasional unwanted
981     * reduction.
982     */
983     private void tryReduceLevel() {
984     HeadIndex<K,V> h = head;
985     HeadIndex<K,V> d;
986     HeadIndex<K,V> e;
987     if (h.level > 3 &&
988 dl 1.9 (d = (HeadIndex<K,V>)h.down) != null &&
989     (e = (HeadIndex<K,V>)d.down) != null &&
990     e.right == null &&
991     d.right == null &&
992 dl 1.1 h.right == null &&
993     casHead(h, d) && // try to set
994     h.right != null) // recheck
995     casHead(d, h); // try to backout
996     }
997    
998     /* ---------------- Finding and removing first element -------------- */
999    
1000     /**
1001 jsr166 1.22 * Specialized variant of findNode to get first valid node.
1002 dl 1.1 * @return first node or null if empty
1003     */
1004 dl 1.118 final Node<K,V> findFirst() {
1005     for (Node<K,V> b, n;;) {
1006     if ((n = (b = head.node).next) == null)
1007 dl 1.1 return null;
1008 dl 1.9 if (n.value != null)
1009 dl 1.1 return n;
1010     n.helpDelete(b, n.next);
1011     }
1012     }
1013    
1014     /**
1015 dl 1.25 * Removes first entry; returns its snapshot.
1016 jsr166 1.28 * @return null if empty, else snapshot of first entry
1017 dl 1.1 */
1018 dl 1.118 private Map.Entry<K,V> doRemoveFirstEntry() {
1019     for (Node<K,V> b, n;;) {
1020     if ((n = (b = head.node).next) == null)
1021 dl 1.1 return null;
1022     Node<K,V> f = n.next;
1023     if (n != b.next)
1024     continue;
1025     Object v = n.value;
1026     if (v == null) {
1027     n.helpDelete(b, f);
1028     continue;
1029     }
1030     if (!n.casValue(v, null))
1031     continue;
1032     if (!n.appendMarker(f) || !b.casNext(n, f))
1033     findFirst(); // retry
1034     clearIndexToFirst();
1035 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
1036     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, vv);
1037 jsr166 1.55 }
1038 dl 1.1 }
1039    
1040     /**
1041 jsr166 1.10 * Clears out index nodes associated with deleted first entry.
1042 dl 1.1 */
1043     private void clearIndexToFirst() {
1044     for (;;) {
1045 dl 1.118 for (Index<K,V> q = head;;) {
1046 dl 1.1 Index<K,V> r = q.right;
1047     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1048 dl 1.9 break;
1049 dl 1.1 if ((q = q.down) == null) {
1050 dl 1.9 if (head.right == null)
1051 dl 1.1 tryReduceLevel();
1052     return;
1053     }
1054     }
1055     }
1056     }
1057    
1058 dl 1.88 /**
1059     * Removes last entry; returns its snapshot.
1060     * Specialized variant of doRemove.
1061     * @return null if empty, else snapshot of last entry
1062     */
1063 dl 1.118 private Map.Entry<K,V> doRemoveLastEntry() {
1064 dl 1.88 for (;;) {
1065     Node<K,V> b = findPredecessorOfLast();
1066     Node<K,V> n = b.next;
1067     if (n == null) {
1068     if (b.isBaseHeader()) // empty
1069     return null;
1070     else
1071     continue; // all b's successors are deleted; retry
1072     }
1073     for (;;) {
1074     Node<K,V> f = n.next;
1075     if (n != b.next) // inconsistent read
1076     break;
1077     Object v = n.value;
1078     if (v == null) { // n is deleted
1079     n.helpDelete(b, f);
1080     break;
1081     }
1082 dl 1.118 if (b.value == null || v == n) // b is deleted
1083 dl 1.88 break;
1084     if (f != null) {
1085     b = n;
1086     n = f;
1087     continue;
1088     }
1089     if (!n.casValue(v, null))
1090     break;
1091     K key = n.key;
1092 dl 1.118 if (!n.appendMarker(f) || !b.casNext(n, f))
1093     findNode(key); // retry via findNode
1094     else { // clean index
1095     findPredecessor(key, comparator);
1096 dl 1.88 if (head.right == null)
1097     tryReduceLevel();
1098     }
1099 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
1100     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
1101 dl 1.88 }
1102     }
1103     }
1104 dl 1.1
1105     /* ---------------- Finding and removing last element -------------- */
1106    
1107     /**
1108 jsr166 1.10 * Specialized version of find to get last valid node.
1109 dl 1.1 * @return last node or null if empty
1110     */
1111 dl 1.118 final Node<K,V> findLast() {
1112 dl 1.1 /*
1113     * findPredecessor can't be used to traverse index level
1114     * because this doesn't use comparisons. So traversals of
1115     * both levels are folded together.
1116     */
1117     Index<K,V> q = head;
1118     for (;;) {
1119     Index<K,V> d, r;
1120     if ((r = q.right) != null) {
1121     if (r.indexesDeletedNode()) {
1122     q.unlink(r);
1123     q = head; // restart
1124 dl 1.9 }
1125 dl 1.1 else
1126     q = r;
1127     } else if ((d = q.down) != null) {
1128     q = d;
1129     } else {
1130 dl 1.118 for (Node<K,V> b = q.node, n = b.next;;) {
1131 dl 1.9 if (n == null)
1132 jsr166 1.61 return b.isBaseHeader() ? null : b;
1133 dl 1.1 Node<K,V> f = n.next; // inconsistent read
1134     if (n != b.next)
1135     break;
1136     Object v = n.value;
1137     if (v == null) { // n is deleted
1138     n.helpDelete(b, f);
1139     break;
1140     }
1141 dl 1.118 if (b.value == null || v == n) // b is deleted
1142 dl 1.1 break;
1143     b = n;
1144     n = f;
1145     }
1146     q = head; // restart
1147     }
1148     }
1149     }
1150    
1151 dl 1.31 /**
1152 jsr166 1.32 * Specialized variant of findPredecessor to get predecessor of last
1153     * valid node. Needed when removing the last entry. It is possible
1154     * that all successors of returned node will have been deleted upon
1155 dl 1.31 * return, in which case this method can be retried.
1156     * @return likely predecessor of last node
1157     */
1158     private Node<K,V> findPredecessorOfLast() {
1159     for (;;) {
1160 dl 1.118 for (Index<K,V> q = head;;) {
1161 dl 1.31 Index<K,V> d, r;
1162     if ((r = q.right) != null) {
1163     if (r.indexesDeletedNode()) {
1164     q.unlink(r);
1165     break; // must restart
1166     }
1167     // proceed as far across as possible without overshooting
1168     if (r.node.next != null) {
1169     q = r;
1170     continue;
1171     }
1172     }
1173     if ((d = q.down) != null)
1174     q = d;
1175     else
1176     return q.node;
1177     }
1178     }
1179     }
1180 dl 1.1
1181 dl 1.88 /* ---------------- Relational operations -------------- */
1182    
1183     // Control values OR'ed as arguments to findNear
1184    
1185     private static final int EQ = 1;
1186     private static final int LT = 2;
1187     private static final int GT = 0; // Actually checked as !LT
1188    
1189 dl 1.1 /**
1190 dl 1.88 * Utility for ceiling, floor, lower, higher methods.
1191 dl 1.118 * @param key the key
1192 dl 1.88 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1193     * @return nearest node fitting relation, or null if no such
1194 dl 1.1 */
1195 dl 1.118 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1196     if (key == null)
1197     throw new NullPointerException();
1198 dl 1.88 for (;;) {
1199 dl 1.118 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
1200     Object v;
1201 dl 1.88 if (n == null)
1202     return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1203     Node<K,V> f = n.next;
1204     if (n != b.next) // inconsistent read
1205     break;
1206 dl 1.118 if ((v = n.value) == null) { // n is deleted
1207 dl 1.88 n.helpDelete(b, f);
1208     break;
1209     }
1210 dl 1.118 if (b.value == null || v == n) // b is deleted
1211 dl 1.88 break;
1212 dl 1.118 int c = cpr(cmp, key, n.key);
1213 dl 1.88 if ((c == 0 && (rel & EQ) != 0) ||
1214     (c < 0 && (rel & LT) == 0))
1215     return n;
1216     if ( c <= 0 && (rel & LT) != 0)
1217     return b.isBaseHeader() ? null : b;
1218     b = n;
1219     n = f;
1220     }
1221     }
1222     }
1223    
1224 dl 1.1 /**
1225 jsr166 1.10 * Returns SimpleImmutableEntry for results of findNear.
1226 dl 1.40 * @param key the key
1227 dl 1.1 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1228     * @return Entry fitting relation, or null if no such
1229     */
1230 dl 1.118 final AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1231     Comparator<? super K> cmp = comparator;
1232 dl 1.1 for (;;) {
1233 dl 1.118 Node<K,V> n = findNear(key, rel, cmp);
1234 dl 1.1 if (n == null)
1235     return null;
1236 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1237 dl 1.1 if (e != null)
1238     return e;
1239     }
1240     }
1241    
1242     /* ---------------- Constructors -------------- */
1243    
1244     /**
1245 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1246     * {@linkplain Comparable natural ordering} of the keys.
1247 dl 1.1 */
1248     public ConcurrentSkipListMap() {
1249     this.comparator = null;
1250     initialize();
1251     }
1252    
1253     /**
1254 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1255     * comparator.
1256 dl 1.1 *
1257 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1258 jsr166 1.82 * If {@code null}, the {@linkplain Comparable natural
1259 jsr166 1.22 * ordering} of the keys will be used.
1260 dl 1.1 */
1261 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1262     this.comparator = comparator;
1263 dl 1.1 initialize();
1264     }
1265    
1266     /**
1267     * Constructs a new map containing the same mappings as the given map,
1268 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1269     * the keys.
1270 dl 1.1 *
1271 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1272 jsr166 1.82 * @throws ClassCastException if the keys in {@code m} are not
1273 jsr166 1.22 * {@link Comparable}, or are not mutually comparable
1274     * @throws NullPointerException if the specified map or any of its keys
1275     * or values are null
1276 dl 1.1 */
1277     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1278     this.comparator = null;
1279     initialize();
1280     putAll(m);
1281     }
1282    
1283     /**
1284 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1285     * same ordering as the specified sorted map.
1286     *
1287 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1288 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1289     * @throws NullPointerException if the specified sorted map or any of
1290     * its keys or values are null
1291 dl 1.1 */
1292     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1293     this.comparator = m.comparator();
1294     initialize();
1295     buildFromSorted(m);
1296     }
1297    
1298     /**
1299 jsr166 1.82 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1300 jsr166 1.22 * instance. (The keys and values themselves are not cloned.)
1301 dl 1.1 *
1302 jsr166 1.22 * @return a shallow copy of this map
1303 dl 1.1 */
1304 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1305 dl 1.1 try {
1306 jsr166 1.76 @SuppressWarnings("unchecked")
1307     ConcurrentSkipListMap<K,V> clone =
1308     (ConcurrentSkipListMap<K,V>) super.clone();
1309     clone.initialize();
1310     clone.buildFromSorted(this);
1311     return clone;
1312 dl 1.1 } catch (CloneNotSupportedException e) {
1313     throw new InternalError();
1314     }
1315     }
1316    
1317     /**
1318     * Streamlined bulk insertion to initialize from elements of
1319     * given sorted map. Call only from constructor or clone
1320     * method.
1321     */
1322     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1323     if (map == null)
1324     throw new NullPointerException();
1325    
1326     HeadIndex<K,V> h = head;
1327     Node<K,V> basepred = h.node;
1328    
1329     // Track the current rightmost node at each level. Uses an
1330     // ArrayList to avoid committing to initial or maximum level.
1331 jsr166 1.137 ArrayList<Index<K,V>> preds = new ArrayList<>();
1332 dl 1.1
1333     // initialize
1334 dl 1.9 for (int i = 0; i <= h.level; ++i)
1335 dl 1.1 preds.add(null);
1336     Index<K,V> q = h;
1337     for (int i = h.level; i > 0; --i) {
1338     preds.set(i, q);
1339     q = q.down;
1340     }
1341    
1342 dl 1.9 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1343 dl 1.1 map.entrySet().iterator();
1344     while (it.hasNext()) {
1345     Map.Entry<? extends K, ? extends V> e = it.next();
1346 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1347     int j = 0;
1348     if ((rnd & 0x80000001) == 0) {
1349     do {
1350     ++j;
1351     } while (((rnd >>>= 1) & 1) != 0);
1352     if (j > h.level) j = h.level + 1;
1353     }
1354 dl 1.1 K k = e.getKey();
1355     V v = e.getValue();
1356     if (k == null || v == null)
1357     throw new NullPointerException();
1358     Node<K,V> z = new Node<K,V>(k, v, null);
1359     basepred.next = z;
1360     basepred = z;
1361     if (j > 0) {
1362     Index<K,V> idx = null;
1363     for (int i = 1; i <= j; ++i) {
1364     idx = new Index<K,V>(z, idx, null);
1365 dl 1.9 if (i > h.level)
1366 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1367    
1368     if (i < preds.size()) {
1369     preds.get(i).right = idx;
1370     preds.set(i, idx);
1371     } else
1372     preds.add(idx);
1373     }
1374     }
1375     }
1376     head = h;
1377     }
1378    
1379     /* ---------------- Serialization -------------- */
1380    
1381     /**
1382 jsr166 1.80 * Saves this map to a stream (that is, serializes it).
1383 dl 1.1 *
1384 jsr166 1.128 * @param s the stream
1385 jsr166 1.129 * @throws java.io.IOException if an I/O error occurs
1386 dl 1.1 * @serialData The key (Object) and value (Object) for each
1387 jsr166 1.10 * key-value mapping represented by the map, followed by
1388 jsr166 1.82 * {@code null}. The key-value mappings are emitted in key-order
1389 dl 1.1 * (as determined by the Comparator, or by the keys' natural
1390     * ordering if no Comparator).
1391     */
1392     private void writeObject(java.io.ObjectOutputStream s)
1393     throws java.io.IOException {
1394     // Write out the Comparator and any hidden stuff
1395     s.defaultWriteObject();
1396    
1397     // Write out keys and values (alternating)
1398     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1399     V v = n.getValidValue();
1400     if (v != null) {
1401     s.writeObject(n.key);
1402     s.writeObject(v);
1403     }
1404     }
1405     s.writeObject(null);
1406     }
1407    
1408     /**
1409 jsr166 1.80 * Reconstitutes this map from a stream (that is, deserializes it).
1410 jsr166 1.128 * @param s the stream
1411 jsr166 1.129 * @throws ClassNotFoundException if the class of a serialized object
1412     * could not be found
1413     * @throws java.io.IOException if an I/O error occurs
1414 dl 1.1 */
1415 dl 1.100 @SuppressWarnings("unchecked")
1416 dl 1.1 private void readObject(final java.io.ObjectInputStream s)
1417     throws java.io.IOException, ClassNotFoundException {
1418     // Read in the Comparator and any hidden stuff
1419     s.defaultReadObject();
1420     // Reset transients
1421     initialize();
1422    
1423 dl 1.9 /*
1424 dl 1.1 * This is nearly identical to buildFromSorted, but is
1425     * distinct because readObject calls can't be nicely adapted
1426     * as the kind of iterator needed by buildFromSorted. (They
1427     * can be, but doing so requires type cheats and/or creation
1428     * of adaptor classes.) It is simpler to just adapt the code.
1429     */
1430    
1431     HeadIndex<K,V> h = head;
1432     Node<K,V> basepred = h.node;
1433 jsr166 1.137 ArrayList<Index<K,V>> preds = new ArrayList<>();
1434 dl 1.9 for (int i = 0; i <= h.level; ++i)
1435 dl 1.1 preds.add(null);
1436     Index<K,V> q = h;
1437     for (int i = h.level; i > 0; --i) {
1438     preds.set(i, q);
1439     q = q.down;
1440     }
1441    
1442     for (;;) {
1443     Object k = s.readObject();
1444     if (k == null)
1445     break;
1446     Object v = s.readObject();
1447 dl 1.9 if (v == null)
1448 dl 1.1 throw new NullPointerException();
1449     K key = (K) k;
1450     V val = (V) v;
1451 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1452     int j = 0;
1453     if ((rnd & 0x80000001) == 0) {
1454     do {
1455     ++j;
1456     } while (((rnd >>>= 1) & 1) != 0);
1457     if (j > h.level) j = h.level + 1;
1458     }
1459 dl 1.1 Node<K,V> z = new Node<K,V>(key, val, null);
1460     basepred.next = z;
1461     basepred = z;
1462     if (j > 0) {
1463     Index<K,V> idx = null;
1464     for (int i = 1; i <= j; ++i) {
1465     idx = new Index<K,V>(z, idx, null);
1466 dl 1.9 if (i > h.level)
1467 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1468    
1469     if (i < preds.size()) {
1470     preds.get(i).right = idx;
1471     preds.set(i, idx);
1472     } else
1473     preds.add(idx);
1474     }
1475     }
1476     }
1477     head = h;
1478     }
1479    
1480     /* ------ Map API methods ------ */
1481    
1482     /**
1483 jsr166 1.82 * Returns {@code true} if this map contains a mapping for the specified
1484 dl 1.1 * key.
1485 jsr166 1.22 *
1486     * @param key key whose presence in this map is to be tested
1487 jsr166 1.82 * @return {@code true} if this map contains a mapping for the specified key
1488 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1489     * with the keys currently in the map
1490     * @throws NullPointerException if the specified key is null
1491 dl 1.1 */
1492     public boolean containsKey(Object key) {
1493 dl 1.118 return doGet(key) != null;
1494 dl 1.1 }
1495    
1496     /**
1497 jsr166 1.42 * Returns the value to which the specified key is mapped,
1498     * or {@code null} if this map contains no mapping for the key.
1499     *
1500     * <p>More formally, if this map contains a mapping from a key
1501     * {@code k} to a value {@code v} such that {@code key} compares
1502     * equal to {@code k} according to the map's ordering, then this
1503     * method returns {@code v}; otherwise it returns {@code null}.
1504     * (There can be at most one such mapping.)
1505 dl 1.1 *
1506 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1507     * with the keys currently in the map
1508     * @throws NullPointerException if the specified key is null
1509 dl 1.1 */
1510     public V get(Object key) {
1511 dl 1.118 return doGet(key);
1512 dl 1.1 }
1513    
1514     /**
1515 dl 1.109 * Returns the value to which the specified key is mapped,
1516     * or the given defaultValue if this map contains no mapping for the key.
1517     *
1518     * @param key the key
1519     * @param defaultValue the value to return if this map contains
1520     * no mapping for the given key
1521     * @return the mapping for the key, if present; else the defaultValue
1522     * @throws NullPointerException if the specified key is null
1523     * @since 1.8
1524     */
1525     public V getOrDefault(Object key, V defaultValue) {
1526     V v;
1527 dl 1.118 return (v = doGet(key)) == null ? defaultValue : v;
1528 dl 1.109 }
1529    
1530     /**
1531 dl 1.1 * Associates the specified value with the specified key in this map.
1532 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1533 dl 1.1 * value is replaced.
1534     *
1535 jsr166 1.22 * @param key key with which the specified value is to be associated
1536     * @param value value to be associated with the specified key
1537     * @return the previous value associated with the specified key, or
1538 jsr166 1.82 * {@code null} if there was no mapping for the key
1539 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1540     * with the keys currently in the map
1541     * @throws NullPointerException if the specified key or value is null
1542 dl 1.1 */
1543     public V put(K key, V value) {
1544 dl 1.9 if (value == null)
1545 dl 1.1 throw new NullPointerException();
1546 dl 1.118 return doPut(key, value, false);
1547 dl 1.1 }
1548    
1549     /**
1550 jsr166 1.36 * Removes the mapping for the specified key from this map if present.
1551 dl 1.1 *
1552     * @param key key for which mapping should be removed
1553 jsr166 1.22 * @return the previous value associated with the specified key, or
1554 jsr166 1.82 * {@code null} if there was no mapping for the key
1555 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1556     * with the keys currently in the map
1557     * @throws NullPointerException if the specified key is null
1558 dl 1.1 */
1559     public V remove(Object key) {
1560 dl 1.118 return doRemove(key, null);
1561 dl 1.1 }
1562    
1563     /**
1564 jsr166 1.82 * Returns {@code true} if this map maps one or more keys to the
1565 dl 1.1 * specified value. This operation requires time linear in the
1566 dl 1.69 * map size. Additionally, it is possible for the map to change
1567     * during execution of this method, in which case the returned
1568     * result may be inaccurate.
1569 dl 1.1 *
1570 jsr166 1.22 * @param value value whose presence in this map is to be tested
1571 jsr166 1.82 * @return {@code true} if a mapping to {@code value} exists;
1572     * {@code false} otherwise
1573 jsr166 1.22 * @throws NullPointerException if the specified value is null
1574 dl 1.9 */
1575 dl 1.1 public boolean containsValue(Object value) {
1576 dl 1.9 if (value == null)
1577 dl 1.1 throw new NullPointerException();
1578     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1579     V v = n.getValidValue();
1580     if (v != null && value.equals(v))
1581     return true;
1582     }
1583     return false;
1584     }
1585    
1586     /**
1587 dl 1.6 * Returns the number of key-value mappings in this map. If this map
1588 jsr166 1.82 * contains more than {@code Integer.MAX_VALUE} elements, it
1589     * returns {@code Integer.MAX_VALUE}.
1590 dl 1.1 *
1591     * <p>Beware that, unlike in most collections, this method is
1592     * <em>NOT</em> a constant-time operation. Because of the
1593     * asynchronous nature of these maps, determining the current
1594     * number of elements requires traversing them all to count them.
1595     * Additionally, it is possible for the size to change during
1596     * execution of this method, in which case the returned result
1597     * will be inaccurate. Thus, this method is typically not very
1598     * useful in concurrent applications.
1599     *
1600 jsr166 1.22 * @return the number of elements in this map
1601 dl 1.1 */
1602     public int size() {
1603     long count = 0;
1604     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1605     if (n.getValidValue() != null)
1606     ++count;
1607     }
1608 jsr166 1.61 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1609 dl 1.1 }
1610    
1611     /**
1612 jsr166 1.82 * Returns {@code true} if this map contains no key-value mappings.
1613     * @return {@code true} if this map contains no key-value mappings
1614 dl 1.1 */
1615     public boolean isEmpty() {
1616     return findFirst() == null;
1617     }
1618    
1619     /**
1620 jsr166 1.22 * Removes all of the mappings from this map.
1621 dl 1.1 */
1622     public void clear() {
1623     initialize();
1624     }
1625    
1626 dl 1.109 /**
1627     * If the specified key is not already associated with a value,
1628     * attempts to compute its value using the given mapping function
1629     * and enters it into this map unless {@code null}. The function
1630     * is <em>NOT</em> guaranteed to be applied once atomically only
1631     * if the value is not present.
1632     *
1633     * @param key key with which the specified value is to be associated
1634     * @param mappingFunction the function to compute a value
1635     * @return the current (existing or computed) value associated with
1636     * the specified key, or null if the computed value is null
1637     * @throws NullPointerException if the specified key is null
1638     * or the mappingFunction is null
1639     * @since 1.8
1640     */
1641 jsr166 1.110 public V computeIfAbsent(K key,
1642 dl 1.109 Function<? super K, ? extends V> mappingFunction) {
1643 jsr166 1.110 if (key == null || mappingFunction == null)
1644     throw new NullPointerException();
1645     V v, p, r;
1646 dl 1.118 if ((v = doGet(key)) == null &&
1647     (r = mappingFunction.apply(key)) != null)
1648     v = (p = doPut(key, r, true)) == null ? r : p;
1649 dl 1.109 return v;
1650     }
1651    
1652     /**
1653     * If the value for the specified key is present, attempts to
1654     * compute a new mapping given the key and its current mapped
1655     * value. The function is <em>NOT</em> guaranteed to be applied
1656     * once atomically.
1657     *
1658 dl 1.111 * @param key key with which a value may be associated
1659 dl 1.109 * @param remappingFunction the function to compute a value
1660     * @return the new value associated with the specified key, or null if none
1661     * @throws NullPointerException if the specified key is null
1662     * or the remappingFunction is null
1663     * @since 1.8
1664     */
1665 jsr166 1.110 public V computeIfPresent(K key,
1666 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1667 jsr166 1.110 if (key == null || remappingFunction == null)
1668     throw new NullPointerException();
1669 dl 1.118 Node<K,V> n; Object v;
1670     while ((n = findNode(key)) != null) {
1671     if ((v = n.value) != null) {
1672     @SuppressWarnings("unchecked") V vv = (V) v;
1673     V r = remappingFunction.apply(key, vv);
1674     if (r != null) {
1675     if (n.casValue(vv, r))
1676     return r;
1677 dl 1.109 }
1678 dl 1.118 else if (doRemove(key, vv) != null)
1679     break;
1680 dl 1.109 }
1681 jsr166 1.110 }
1682     return null;
1683 dl 1.109 }
1684    
1685     /**
1686     * Attempts to compute a mapping for the specified key and its
1687     * current mapped value (or {@code null} if there is no current
1688     * mapping). The function is <em>NOT</em> guaranteed to be applied
1689     * once atomically.
1690     *
1691     * @param key key with which the specified value is to be associated
1692     * @param remappingFunction the function to compute a value
1693     * @return the new value associated with the specified key, or null if none
1694     * @throws NullPointerException if the specified key is null
1695     * or the remappingFunction is null
1696     * @since 1.8
1697     */
1698 jsr166 1.110 public V compute(K key,
1699 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1700 jsr166 1.110 if (key == null || remappingFunction == null)
1701     throw new NullPointerException();
1702 dl 1.118 for (;;) {
1703     Node<K,V> n; Object v; V r;
1704     if ((n = findNode(key)) == null) {
1705     if ((r = remappingFunction.apply(key, null)) == null)
1706     break;
1707 dl 1.124 if (doPut(key, r, true) == null)
1708 dl 1.118 return r;
1709     }
1710     else if ((v = n.value) != null) {
1711     @SuppressWarnings("unchecked") V vv = (V) v;
1712     if ((r = remappingFunction.apply(key, vv)) != null) {
1713     if (n.casValue(vv, r))
1714 dl 1.109 return r;
1715     }
1716 dl 1.118 else if (doRemove(key, vv) != null)
1717     break;
1718 dl 1.109 }
1719     }
1720 jsr166 1.110 return null;
1721 dl 1.109 }
1722    
1723     /**
1724     * If the specified key is not already associated with a value,
1725     * associates it with the given value. Otherwise, replaces the
1726     * value with the results of the given remapping function, or
1727     * removes if {@code null}. The function is <em>NOT</em>
1728     * guaranteed to be applied once atomically.
1729     *
1730     * @param key key with which the specified value is to be associated
1731     * @param value the value to use if absent
1732     * @param remappingFunction the function to recompute a value if present
1733     * @return the new value associated with the specified key, or null if none
1734     * @throws NullPointerException if the specified key or value is null
1735     * or the remappingFunction is null
1736     * @since 1.8
1737     */
1738     public V merge(K key, V value,
1739     BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1740 jsr166 1.110 if (key == null || value == null || remappingFunction == null)
1741     throw new NullPointerException();
1742 dl 1.118 for (;;) {
1743     Node<K,V> n; Object v; V r;
1744     if ((n = findNode(key)) == null) {
1745 dl 1.124 if (doPut(key, value, true) == null)
1746 dl 1.118 return value;
1747     }
1748     else if ((v = n.value) != null) {
1749     @SuppressWarnings("unchecked") V vv = (V) v;
1750     if ((r = remappingFunction.apply(vv, value)) != null) {
1751     if (n.casValue(vv, r))
1752     return r;
1753 dl 1.109 }
1754 dl 1.118 else if (doRemove(key, vv) != null)
1755     return null;
1756 dl 1.109 }
1757 jsr166 1.110 }
1758 dl 1.109 }
1759    
1760 dl 1.46 /* ---------------- View methods -------------- */
1761    
1762     /*
1763     * Note: Lazy initialization works for views because view classes
1764     * are stateless/immutable so it doesn't matter wrt correctness if
1765     * more than one is created (which will only rarely happen). Even
1766     * so, the following idiom conservatively ensures that the method
1767     * returns the one it created if it does so, not one created by
1768     * another racing thread.
1769     */
1770    
1771 dl 1.1 /**
1772 jsr166 1.51 * Returns a {@link NavigableSet} view of the keys contained in this map.
1773 jsr166 1.132 *
1774     * <p>The set's iterator returns the keys in ascending order.
1775     * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1776     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1777     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1778     * key order. The spliterator's comparator (see
1779     * {@link java.util.Spliterator#getComparator()}) is {@code null} if
1780     * the map's comparator (see {@link #comparator()}) is {@code null}.
1781     * Otherwise, the spliterator's comparator is the same as or imposes the
1782     * same total ordering as the map's comparator.
1783     *
1784     * <p>The set is backed by the map, so changes to the map are
1785 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1786     * removal, which removes the corresponding mapping from the map,
1787 jsr166 1.51 * via the {@code Iterator.remove}, {@code Set.remove},
1788     * {@code removeAll}, {@code retainAll}, and {@code clear}
1789     * operations. It does not support the {@code add} or {@code addAll}
1790 jsr166 1.22 * operations.
1791     *
1792 jsr166 1.133 * <p>The view's iterators and spliterators are
1793     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1794 dl 1.1 *
1795 jsr166 1.51 * <p>This method is equivalent to method {@code navigableKeySet}.
1796     *
1797     * @return a navigable set view of the keys in this map
1798 dl 1.1 */
1799 jsr166 1.68 public NavigableSet<K> keySet() {
1800 dl 1.118 KeySet<K> ks = keySet;
1801     return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1802 dl 1.1 }
1803    
1804 dl 1.46 public NavigableSet<K> navigableKeySet() {
1805 dl 1.118 KeySet<K> ks = keySet;
1806     return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1807 dl 1.83 }
1808    
1809     /**
1810 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1811 jsr166 1.132 * <p>The collection's iterator returns the values in ascending order
1812     * of the corresponding keys. The collections's spliterator additionally
1813     * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1814     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1815     * order of the corresponding keys.
1816     *
1817     * <p>The collection is backed by the map, so changes to the map are
1818 dl 1.1 * reflected in the collection, and vice-versa. The collection
1819     * supports element removal, which removes the corresponding
1820 jsr166 1.82 * mapping from the map, via the {@code Iterator.remove},
1821     * {@code Collection.remove}, {@code removeAll},
1822     * {@code retainAll} and {@code clear} operations. It does not
1823     * support the {@code add} or {@code addAll} operations.
1824 dl 1.1 *
1825 jsr166 1.133 * <p>The view's iterators and spliterators are
1826     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1827 dl 1.1 */
1828     public Collection<V> values() {
1829 jsr166 1.71 Values<V> vs = values;
1830     return (vs != null) ? vs : (values = new Values<V>(this));
1831 dl 1.1 }
1832    
1833     /**
1834 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
1835 jsr166 1.132 *
1836     * <p>The set's iterator returns the entries in ascending key order. The
1837     * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1838     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1839     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1840     * key order.
1841     *
1842     * <p>The set is backed by the map, so changes to the map are
1843 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1844     * removal, which removes the corresponding mapping from the map,
1845 jsr166 1.82 * via the {@code Iterator.remove}, {@code Set.remove},
1846     * {@code removeAll}, {@code retainAll} and {@code clear}
1847     * operations. It does not support the {@code add} or
1848     * {@code addAll} operations.
1849 jsr166 1.22 *
1850 jsr166 1.133 * <p>The view's iterators and spliterators are
1851     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1852 jsr166 1.132 *
1853     * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1854     * or {@code spliterator} do <em>not</em> support the {@code setValue}
1855     * operation.
1856 dl 1.1 *
1857 jsr166 1.22 * @return a set view of the mappings contained in this map,
1858     * sorted in ascending key order
1859 dl 1.1 */
1860     public Set<Map.Entry<K,V>> entrySet() {
1861 jsr166 1.71 EntrySet<K,V> es = entrySet;
1862     return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1863 dl 1.46 }
1864    
1865     public ConcurrentNavigableMap<K,V> descendingMap() {
1866     ConcurrentNavigableMap<K,V> dm = descendingMap;
1867     return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1868     (this, null, false, null, false, true));
1869 dl 1.1 }
1870    
1871 dl 1.46 public NavigableSet<K> descendingKeySet() {
1872     return descendingMap().navigableKeySet();
1873 dl 1.1 }
1874    
1875     /* ---------------- AbstractMap Overrides -------------- */
1876    
1877     /**
1878     * Compares the specified object with this map for equality.
1879 jsr166 1.82 * Returns {@code true} if the given object is also a map and the
1880 dl 1.1 * two maps represent the same mappings. More formally, two maps
1881 jsr166 1.82 * {@code m1} and {@code m2} represent the same mappings if
1882     * {@code m1.entrySet().equals(m2.entrySet())}. This
1883 dl 1.1 * operation may return misleading results if either map is
1884     * concurrently modified during execution of this method.
1885     *
1886 jsr166 1.22 * @param o object to be compared for equality with this map
1887 jsr166 1.82 * @return {@code true} if the specified object is equal to this map
1888 dl 1.1 */
1889     public boolean equals(Object o) {
1890 jsr166 1.55 if (o == this)
1891     return true;
1892     if (!(o instanceof Map))
1893     return false;
1894     Map<?,?> m = (Map<?,?>) o;
1895 dl 1.1 try {
1896 jsr166 1.55 for (Map.Entry<K,V> e : this.entrySet())
1897     if (! e.getValue().equals(m.get(e.getKey())))
1898 dl 1.25 return false;
1899 jsr166 1.55 for (Map.Entry<?,?> e : m.entrySet()) {
1900 dl 1.25 Object k = e.getKey();
1901     Object v = e.getValue();
1902 jsr166 1.55 if (k == null || v == null || !v.equals(get(k)))
1903 dl 1.25 return false;
1904     }
1905     return true;
1906 jsr166 1.15 } catch (ClassCastException unused) {
1907 dl 1.1 return false;
1908 jsr166 1.15 } catch (NullPointerException unused) {
1909 dl 1.1 return false;
1910     }
1911     }
1912    
1913     /* ------ ConcurrentMap API methods ------ */
1914    
1915     /**
1916 jsr166 1.22 * {@inheritDoc}
1917     *
1918     * @return the previous value associated with the specified key,
1919 jsr166 1.82 * or {@code null} if there was no mapping for the key
1920 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1921     * with the keys currently in the map
1922     * @throws NullPointerException if the specified key or value is null
1923 dl 1.1 */
1924     public V putIfAbsent(K key, V value) {
1925 dl 1.9 if (value == null)
1926 dl 1.1 throw new NullPointerException();
1927 dl 1.118 return doPut(key, value, true);
1928 dl 1.1 }
1929    
1930     /**
1931 jsr166 1.22 * {@inheritDoc}
1932     *
1933     * @throws ClassCastException if the specified key cannot be compared
1934     * with the keys currently in the map
1935 dl 1.23 * @throws NullPointerException if the specified key is null
1936 dl 1.1 */
1937     public boolean remove(Object key, Object value) {
1938 dl 1.45 if (key == null)
1939     throw new NullPointerException();
1940 dl 1.118 return value != null && doRemove(key, value) != null;
1941 dl 1.1 }
1942    
1943     /**
1944 jsr166 1.22 * {@inheritDoc}
1945     *
1946     * @throws ClassCastException if the specified key cannot be compared
1947     * with the keys currently in the map
1948     * @throws NullPointerException if any of the arguments are null
1949 dl 1.1 */
1950     public boolean replace(K key, V oldValue, V newValue) {
1951 dl 1.118 if (key == null || oldValue == null || newValue == null)
1952 dl 1.1 throw new NullPointerException();
1953     for (;;) {
1954 dl 1.118 Node<K,V> n; Object v;
1955     if ((n = findNode(key)) == null)
1956 dl 1.1 return false;
1957 dl 1.118 if ((v = n.value) != null) {
1958 dl 1.1 if (!oldValue.equals(v))
1959     return false;
1960     if (n.casValue(v, newValue))
1961     return true;
1962     }
1963     }
1964     }
1965    
1966     /**
1967 jsr166 1.22 * {@inheritDoc}
1968     *
1969     * @return the previous value associated with the specified key,
1970 jsr166 1.82 * or {@code null} if there was no mapping for the key
1971 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1972     * with the keys currently in the map
1973     * @throws NullPointerException if the specified key or value is null
1974 dl 1.1 */
1975     public V replace(K key, V value) {
1976 dl 1.118 if (key == null || value == null)
1977 dl 1.1 throw new NullPointerException();
1978     for (;;) {
1979 dl 1.118 Node<K,V> n; Object v;
1980     if ((n = findNode(key)) == null)
1981 dl 1.1 return null;
1982 dl 1.118 if ((v = n.value) != null && n.casValue(v, value)) {
1983     @SuppressWarnings("unchecked") V vv = (V)v;
1984     return vv;
1985     }
1986 dl 1.1 }
1987     }
1988    
1989     /* ------ SortedMap API methods ------ */
1990    
1991     public Comparator<? super K> comparator() {
1992     return comparator;
1993     }
1994    
1995     /**
1996 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
1997 dl 1.1 */
1998 dl 1.9 public K firstKey() {
1999 dl 1.1 Node<K,V> n = findFirst();
2000     if (n == null)
2001     throw new NoSuchElementException();
2002     return n.key;
2003     }
2004    
2005     /**
2006 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2007 dl 1.1 */
2008     public K lastKey() {
2009     Node<K,V> n = findLast();
2010     if (n == null)
2011     throw new NoSuchElementException();
2012     return n.key;
2013     }
2014    
2015     /**
2016 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2017     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2018 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2019 dl 1.1 */
2020 dl 1.47 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
2021     boolean fromInclusive,
2022     K toKey,
2023     boolean toInclusive) {
2024 dl 1.1 if (fromKey == null || toKey == null)
2025     throw new NullPointerException();
2026 dl 1.46 return new SubMap<K,V>
2027     (this, fromKey, fromInclusive, toKey, toInclusive, false);
2028 dl 1.1 }
2029    
2030     /**
2031 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2032     * @throws NullPointerException if {@code toKey} is null
2033 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2034 dl 1.1 */
2035 dl 1.47 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2036     boolean inclusive) {
2037 dl 1.1 if (toKey == null)
2038     throw new NullPointerException();
2039 dl 1.46 return new SubMap<K,V>
2040     (this, null, false, toKey, inclusive, false);
2041 dl 1.1 }
2042    
2043     /**
2044 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2045     * @throws NullPointerException if {@code fromKey} is null
2046 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2047 dl 1.1 */
2048 dl 1.47 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2049     boolean inclusive) {
2050 dl 1.6 if (fromKey == null)
2051     throw new NullPointerException();
2052 dl 1.46 return new SubMap<K,V>
2053     (this, fromKey, inclusive, null, false, false);
2054 dl 1.6 }
2055    
2056     /**
2057 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2058     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2059 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2060 dl 1.6 */
2061 dl 1.37 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2062 dl 1.47 return subMap(fromKey, true, toKey, false);
2063 dl 1.6 }
2064    
2065     /**
2066 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2067     * @throws NullPointerException if {@code toKey} is null
2068 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2069 dl 1.6 */
2070 dl 1.37 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2071 dl 1.47 return headMap(toKey, false);
2072 dl 1.6 }
2073    
2074     /**
2075 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2076     * @throws NullPointerException if {@code fromKey} is null
2077 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2078 dl 1.6 */
2079 dl 1.37 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2080 dl 1.47 return tailMap(fromKey, true);
2081 dl 1.1 }
2082    
2083     /* ---------------- Relational operations -------------- */
2084    
2085     /**
2086 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2087 jsr166 1.82 * strictly less than the given key, or {@code null} if there is
2088 jsr166 1.22 * no such key. The returned entry does <em>not</em> support the
2089 jsr166 1.82 * {@code Entry.setValue} method.
2090 dl 1.9 *
2091 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2092     * @throws NullPointerException if the specified key is null
2093 dl 1.1 */
2094 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
2095     return getNear(key, LT);
2096 dl 1.1 }
2097    
2098     /**
2099 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2100     * @throws NullPointerException if the specified key is null
2101 dl 1.1 */
2102 jsr166 1.22 public K lowerKey(K key) {
2103 dl 1.118 Node<K,V> n = findNear(key, LT, comparator);
2104 jsr166 1.61 return (n == null) ? null : n.key;
2105 dl 1.1 }
2106    
2107     /**
2108 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2109 jsr166 1.82 * less than or equal to the given key, or {@code null} if there
2110 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2111 jsr166 1.82 * the {@code Entry.setValue} method.
2112 dl 1.9 *
2113 jsr166 1.22 * @param key the key
2114     * @throws ClassCastException {@inheritDoc}
2115     * @throws NullPointerException if the specified key is null
2116 dl 1.1 */
2117 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
2118     return getNear(key, LT|EQ);
2119 dl 1.1 }
2120    
2121     /**
2122 jsr166 1.22 * @param key the key
2123     * @throws ClassCastException {@inheritDoc}
2124     * @throws NullPointerException if the specified key is null
2125 dl 1.1 */
2126 jsr166 1.22 public K floorKey(K key) {
2127 dl 1.118 Node<K,V> n = findNear(key, LT|EQ, comparator);
2128 jsr166 1.61 return (n == null) ? null : n.key;
2129 dl 1.1 }
2130    
2131     /**
2132 jsr166 1.22 * Returns a key-value mapping associated with the least key
2133 jsr166 1.82 * greater than or equal to the given key, or {@code null} if
2134 jsr166 1.22 * there is no such entry. The returned entry does <em>not</em>
2135 jsr166 1.82 * support the {@code Entry.setValue} method.
2136 dl 1.9 *
2137 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2138     * @throws NullPointerException if the specified key is null
2139 dl 1.1 */
2140 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
2141     return getNear(key, GT|EQ);
2142 dl 1.1 }
2143    
2144     /**
2145 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2146     * @throws NullPointerException if the specified key is null
2147 dl 1.1 */
2148 jsr166 1.22 public K ceilingKey(K key) {
2149 dl 1.118 Node<K,V> n = findNear(key, GT|EQ, comparator);
2150 jsr166 1.61 return (n == null) ? null : n.key;
2151 dl 1.1 }
2152    
2153     /**
2154     * Returns a key-value mapping associated with the least key
2155 jsr166 1.82 * strictly greater than the given key, or {@code null} if there
2156 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2157 jsr166 1.82 * the {@code Entry.setValue} method.
2158 dl 1.9 *
2159 jsr166 1.22 * @param key the key
2160     * @throws ClassCastException {@inheritDoc}
2161     * @throws NullPointerException if the specified key is null
2162 dl 1.1 */
2163     public Map.Entry<K,V> higherEntry(K key) {
2164     return getNear(key, GT);
2165     }
2166    
2167     /**
2168 jsr166 1.22 * @param key the key
2169     * @throws ClassCastException {@inheritDoc}
2170     * @throws NullPointerException if the specified key is null
2171 dl 1.1 */
2172     public K higherKey(K key) {
2173 dl 1.118 Node<K,V> n = findNear(key, GT, comparator);
2174 jsr166 1.61 return (n == null) ? null : n.key;
2175 dl 1.1 }
2176    
2177     /**
2178     * Returns a key-value mapping associated with the least
2179 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2180 dl 1.1 * The returned entry does <em>not</em> support
2181 jsr166 1.82 * the {@code Entry.setValue} method.
2182 dl 1.1 */
2183     public Map.Entry<K,V> firstEntry() {
2184     for (;;) {
2185     Node<K,V> n = findFirst();
2186 dl 1.9 if (n == null)
2187 dl 1.1 return null;
2188 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2189 dl 1.1 if (e != null)
2190     return e;
2191     }
2192     }
2193    
2194     /**
2195     * Returns a key-value mapping associated with the greatest
2196 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2197 dl 1.1 * The returned entry does <em>not</em> support
2198 jsr166 1.82 * the {@code Entry.setValue} method.
2199 dl 1.1 */
2200     public Map.Entry<K,V> lastEntry() {
2201     for (;;) {
2202     Node<K,V> n = findLast();
2203 dl 1.9 if (n == null)
2204 dl 1.1 return null;
2205 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2206 dl 1.1 if (e != null)
2207     return e;
2208     }
2209     }
2210    
2211     /**
2212     * Removes and returns a key-value mapping associated with
2213 jsr166 1.82 * the least key in this map, or {@code null} if the map is empty.
2214 dl 1.1 * The returned entry does <em>not</em> support
2215 jsr166 1.82 * the {@code Entry.setValue} method.
2216 dl 1.1 */
2217     public Map.Entry<K,V> pollFirstEntry() {
2218 dl 1.25 return doRemoveFirstEntry();
2219 dl 1.1 }
2220    
2221     /**
2222     * Removes and returns a key-value mapping associated with
2223 jsr166 1.82 * the greatest key in this map, or {@code null} if the map is empty.
2224 dl 1.1 * The returned entry does <em>not</em> support
2225 jsr166 1.82 * the {@code Entry.setValue} method.
2226 dl 1.1 */
2227     public Map.Entry<K,V> pollLastEntry() {
2228 dl 1.31 return doRemoveLastEntry();
2229 dl 1.1 }
2230    
2231    
2232     /* ---------------- Iterators -------------- */
2233    
2234     /**
2235 dl 1.46 * Base of iterator classes:
2236 dl 1.1 */
2237 dl 1.46 abstract class Iter<T> implements Iterator<T> {
2238 dl 1.1 /** the last node returned by next() */
2239 jsr166 1.52 Node<K,V> lastReturned;
2240 dl 1.1 /** the next node to return from next(); */
2241     Node<K,V> next;
2242 jsr166 1.55 /** Cache of next value field to maintain weak consistency */
2243     V nextValue;
2244 dl 1.1
2245 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2246 dl 1.46 Iter() {
2247 dl 1.118 while ((next = findFirst()) != null) {
2248 jsr166 1.52 Object x = next.value;
2249     if (x != null && x != next) {
2250 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2251     nextValue = vv;
2252 dl 1.1 break;
2253 jsr166 1.55 }
2254 dl 1.1 }
2255     }
2256    
2257 dl 1.46 public final boolean hasNext() {
2258     return next != null;
2259 dl 1.1 }
2260 dl 1.46
2261 jsr166 1.13 /** Advances next to higher entry. */
2262 dl 1.46 final void advance() {
2263 jsr166 1.54 if (next == null)
2264 dl 1.1 throw new NoSuchElementException();
2265 jsr166 1.55 lastReturned = next;
2266 dl 1.118 while ((next = next.next) != null) {
2267 jsr166 1.52 Object x = next.value;
2268     if (x != null && x != next) {
2269 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2270     nextValue = vv;
2271 dl 1.1 break;
2272 jsr166 1.55 }
2273 dl 1.1 }
2274     }
2275    
2276     public void remove() {
2277 jsr166 1.52 Node<K,V> l = lastReturned;
2278 dl 1.1 if (l == null)
2279     throw new IllegalStateException();
2280     // It would not be worth all of the overhead to directly
2281     // unlink from here. Using remove is fast enough.
2282     ConcurrentSkipListMap.this.remove(l.key);
2283 jsr166 1.55 lastReturned = null;
2284 dl 1.1 }
2285    
2286     }
2287    
2288 dl 1.46 final class ValueIterator extends Iter<V> {
2289 dl 1.9 public V next() {
2290 jsr166 1.52 V v = nextValue;
2291 dl 1.46 advance();
2292 jsr166 1.52 return v;
2293 dl 1.1 }
2294     }
2295    
2296 dl 1.46 final class KeyIterator extends Iter<K> {
2297 dl 1.9 public K next() {
2298 dl 1.1 Node<K,V> n = next;
2299 dl 1.46 advance();
2300 dl 1.1 return n.key;
2301     }
2302     }
2303    
2304 dl 1.46 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2305     public Map.Entry<K,V> next() {
2306     Node<K,V> n = next;
2307 jsr166 1.52 V v = nextValue;
2308 dl 1.46 advance();
2309     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2310 dl 1.1 }
2311 dl 1.46 }
2312 dl 1.1
2313 dl 1.46 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2314    
2315     Iterator<K> keyIterator() {
2316 dl 1.1 return new KeyIterator();
2317     }
2318    
2319 dl 1.46 Iterator<V> valueIterator() {
2320     return new ValueIterator();
2321 dl 1.1 }
2322    
2323 dl 1.46 Iterator<Map.Entry<K,V>> entryIterator() {
2324     return new EntryIterator();
2325 dl 1.1 }
2326    
2327 dl 1.46 /* ---------------- View Classes -------------- */
2328    
2329     /*
2330     * View classes are static, delegating to a ConcurrentNavigableMap
2331     * to allow use by SubMaps, which outweighs the ugliness of
2332     * needing type-tests for Iterator methods.
2333     */
2334    
2335 jsr166 1.53 static final <E> List<E> toList(Collection<E> c) {
2336 jsr166 1.55 // Using size() here would be a pessimization.
2337 jsr166 1.90 ArrayList<E> list = new ArrayList<E>();
2338 jsr166 1.55 for (E e : c)
2339     list.add(e);
2340     return list;
2341 jsr166 1.53 }
2342    
2343 jsr166 1.62 static final class KeySet<E>
2344     extends AbstractSet<E> implements NavigableSet<E> {
2345 dl 1.118 final ConcurrentNavigableMap<E,?> m;
2346 jsr166 1.71 KeySet(ConcurrentNavigableMap<E,?> map) { m = map; }
2347 dl 1.46 public int size() { return m.size(); }
2348     public boolean isEmpty() { return m.isEmpty(); }
2349     public boolean contains(Object o) { return m.containsKey(o); }
2350     public boolean remove(Object o) { return m.remove(o) != null; }
2351     public void clear() { m.clear(); }
2352     public E lower(E e) { return m.lowerKey(e); }
2353     public E floor(E e) { return m.floorKey(e); }
2354     public E ceiling(E e) { return m.ceilingKey(e); }
2355     public E higher(E e) { return m.higherKey(e); }
2356     public Comparator<? super E> comparator() { return m.comparator(); }
2357     public E first() { return m.firstKey(); }
2358     public E last() { return m.lastKey(); }
2359     public E pollFirst() {
2360 jsr166 1.71 Map.Entry<E,?> e = m.pollFirstEntry();
2361 jsr166 1.61 return (e == null) ? null : e.getKey();
2362 dl 1.46 }
2363     public E pollLast() {
2364 jsr166 1.71 Map.Entry<E,?> e = m.pollLastEntry();
2365 jsr166 1.61 return (e == null) ? null : e.getKey();
2366 dl 1.46 }
2367 dl 1.100 @SuppressWarnings("unchecked")
2368 dl 1.46 public Iterator<E> iterator() {
2369     if (m instanceof ConcurrentSkipListMap)
2370     return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
2371     else
2372     return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
2373 dl 1.1 }
2374 dl 1.45 public boolean equals(Object o) {
2375     if (o == this)
2376     return true;
2377     if (!(o instanceof Set))
2378     return false;
2379     Collection<?> c = (Collection<?>) o;
2380     try {
2381     return containsAll(c) && c.containsAll(this);
2382 jsr166 1.81 } catch (ClassCastException unused) {
2383 dl 1.45 return false;
2384     } catch (NullPointerException unused) {
2385     return false;
2386     }
2387     }
2388 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2389     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2390 dl 1.46 public Iterator<E> descendingIterator() {
2391     return descendingSet().iterator();
2392     }
2393 dl 1.47 public NavigableSet<E> subSet(E fromElement,
2394     boolean fromInclusive,
2395     E toElement,
2396     boolean toInclusive) {
2397 jsr166 1.56 return new KeySet<E>(m.subMap(fromElement, fromInclusive,
2398     toElement, toInclusive));
2399 dl 1.46 }
2400 dl 1.47 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2401 jsr166 1.56 return new KeySet<E>(m.headMap(toElement, inclusive));
2402 dl 1.46 }
2403 dl 1.47 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2404 jsr166 1.56 return new KeySet<E>(m.tailMap(fromElement, inclusive));
2405 dl 1.46 }
2406 jsr166 1.51 public NavigableSet<E> subSet(E fromElement, E toElement) {
2407 dl 1.47 return subSet(fromElement, true, toElement, false);
2408 dl 1.46 }
2409 jsr166 1.51 public NavigableSet<E> headSet(E toElement) {
2410 dl 1.47 return headSet(toElement, false);
2411 dl 1.46 }
2412 jsr166 1.51 public NavigableSet<E> tailSet(E fromElement) {
2413 dl 1.47 return tailSet(fromElement, true);
2414 dl 1.46 }
2415     public NavigableSet<E> descendingSet() {
2416 jsr166 1.71 return new KeySet<E>(m.descendingMap());
2417 dl 1.46 }
2418 dl 1.100 @SuppressWarnings("unchecked")
2419 dl 1.106 public Spliterator<E> spliterator() {
2420 dl 1.100 if (m instanceof ConcurrentSkipListMap)
2421     return ((ConcurrentSkipListMap<E,?>)m).keySpliterator();
2422     else
2423     return (Spliterator<E>)((SubMap<E,?>)m).keyIterator();
2424     }
2425 dl 1.1 }
2426    
2427 dl 1.46 static final class Values<E> extends AbstractCollection<E> {
2428 jsr166 1.134 final ConcurrentNavigableMap<?,E> m;
2429     Values(ConcurrentNavigableMap<?,E> map) {
2430 dl 1.46 m = map;
2431 dl 1.1 }
2432 dl 1.100 @SuppressWarnings("unchecked")
2433 dl 1.46 public Iterator<E> iterator() {
2434     if (m instanceof ConcurrentSkipListMap)
2435 jsr166 1.71 return ((ConcurrentSkipListMap<?,E>)m).valueIterator();
2436 dl 1.46 else
2437 jsr166 1.71 return ((SubMap<?,E>)m).valueIterator();
2438 dl 1.1 }
2439     public boolean isEmpty() {
2440 dl 1.46 return m.isEmpty();
2441 dl 1.1 }
2442     public int size() {
2443 dl 1.46 return m.size();
2444 dl 1.1 }
2445     public boolean contains(Object o) {
2446 dl 1.46 return m.containsValue(o);
2447 dl 1.1 }
2448     public void clear() {
2449 dl 1.46 m.clear();
2450 dl 1.1 }
2451 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2452     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2453 dl 1.100 @SuppressWarnings("unchecked")
2454 dl 1.106 public Spliterator<E> spliterator() {
2455 dl 1.100 if (m instanceof ConcurrentSkipListMap)
2456     return ((ConcurrentSkipListMap<?,E>)m).valueSpliterator();
2457     else
2458     return (Spliterator<E>)((SubMap<?,E>)m).valueIterator();
2459     }
2460 dl 1.1 }
2461    
2462 dl 1.46 static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
2463 dl 1.118 final ConcurrentNavigableMap<K1, V1> m;
2464 dl 1.46 EntrySet(ConcurrentNavigableMap<K1, V1> map) {
2465     m = map;
2466 dl 1.1 }
2467 dl 1.100 @SuppressWarnings("unchecked")
2468 dl 1.46 public Iterator<Map.Entry<K1,V1>> iterator() {
2469     if (m instanceof ConcurrentSkipListMap)
2470     return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
2471     else
2472     return ((SubMap<K1,V1>)m).entryIterator();
2473     }
2474 dl 1.47
2475 dl 1.1 public boolean contains(Object o) {
2476     if (!(o instanceof Map.Entry))
2477     return false;
2478 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2479 dl 1.46 V1 v = m.get(e.getKey());
2480 dl 1.1 return v != null && v.equals(e.getValue());
2481     }
2482     public boolean remove(Object o) {
2483     if (!(o instanceof Map.Entry))
2484     return false;
2485 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2486 dl 1.46 return m.remove(e.getKey(),
2487 dl 1.47 e.getValue());
2488 dl 1.1 }
2489     public boolean isEmpty() {
2490 dl 1.46 return m.isEmpty();
2491 dl 1.1 }
2492     public int size() {
2493 dl 1.46 return m.size();
2494 dl 1.1 }
2495     public void clear() {
2496 dl 1.46 m.clear();
2497 dl 1.1 }
2498 dl 1.45 public boolean equals(Object o) {
2499     if (o == this)
2500     return true;
2501     if (!(o instanceof Set))
2502     return false;
2503     Collection<?> c = (Collection<?>) o;
2504     try {
2505     return containsAll(c) && c.containsAll(this);
2506 jsr166 1.81 } catch (ClassCastException unused) {
2507 dl 1.45 return false;
2508     } catch (NullPointerException unused) {
2509     return false;
2510     }
2511     }
2512 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2513     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2514 dl 1.100 @SuppressWarnings("unchecked")
2515 dl 1.106 public Spliterator<Map.Entry<K1,V1>> spliterator() {
2516 dl 1.83 if (m instanceof ConcurrentSkipListMap)
2517 dl 1.100 return ((ConcurrentSkipListMap<K1,V1>)m).entrySpliterator();
2518 dl 1.83 else
2519 dl 1.100 return (Spliterator<Map.Entry<K1,V1>>)
2520     ((SubMap<K1,V1>)m).entryIterator();
2521     }
2522 dl 1.1 }
2523    
2524     /**
2525     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2526     * represent a subrange of mappings of their underlying
2527     * maps. Instances of this class support all methods of their
2528     * underlying maps, differing in that mappings outside their range are
2529     * ignored, and attempts to add mappings outside their ranges result
2530     * in {@link IllegalArgumentException}. Instances of this class are
2531 jsr166 1.82 * constructed only using the {@code subMap}, {@code headMap}, and
2532     * {@code tailMap} methods of their underlying maps.
2533 jsr166 1.52 *
2534     * @serial include
2535 dl 1.1 */
2536 dl 1.46 static final class SubMap<K,V> extends AbstractMap<K,V>
2537 jsr166 1.130 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
2538 dl 1.1 private static final long serialVersionUID = -7647078645895051609L;
2539    
2540     /** Underlying map */
2541     private final ConcurrentSkipListMap<K,V> m;
2542     /** lower bound key, or null if from start */
2543 dl 1.46 private final K lo;
2544     /** upper bound key, or null if to end */
2545     private final K hi;
2546     /** inclusion flag for lo */
2547     private final boolean loInclusive;
2548     /** inclusion flag for hi */
2549     private final boolean hiInclusive;
2550     /** direction */
2551     private final boolean isDescending;
2552    
2553 dl 1.1 // Lazily initialized view holders
2554 dl 1.46 private transient KeySet<K> keySetView;
2555 dl 1.1 private transient Set<Map.Entry<K,V>> entrySetView;
2556     private transient Collection<V> valuesView;
2557    
2558     /**
2559 jsr166 1.87 * Creates a new submap, initializing all fields.
2560 dl 1.46 */
2561     SubMap(ConcurrentSkipListMap<K,V> map,
2562     K fromKey, boolean fromInclusive,
2563     K toKey, boolean toInclusive,
2564     boolean isDescending) {
2565 dl 1.118 Comparator<? super K> cmp = map.comparator;
2566 dl 1.47 if (fromKey != null && toKey != null &&
2567 dl 1.118 cpr(cmp, fromKey, toKey) > 0)
2568 dl 1.1 throw new IllegalArgumentException("inconsistent range");
2569     this.m = map;
2570 dl 1.46 this.lo = fromKey;
2571     this.hi = toKey;
2572     this.loInclusive = fromInclusive;
2573     this.hiInclusive = toInclusive;
2574     this.isDescending = isDescending;
2575 dl 1.1 }
2576    
2577     /* ---------------- Utilities -------------- */
2578    
2579 dl 1.118 boolean tooLow(Object key, Comparator<? super K> cmp) {
2580     int c;
2581     return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2582     (c == 0 && !loInclusive)));
2583 dl 1.1 }
2584    
2585 dl 1.118 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2586     int c;
2587     return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2588     (c == 0 && !hiInclusive)));
2589 dl 1.1 }
2590    
2591 dl 1.118 boolean inBounds(Object key, Comparator<? super K> cmp) {
2592     return !tooLow(key, cmp) && !tooHigh(key, cmp);
2593 dl 1.1 }
2594    
2595 dl 1.118 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2596 dl 1.46 if (key == null)
2597     throw new NullPointerException();
2598 dl 1.118 if (!inBounds(key, cmp))
2599 dl 1.46 throw new IllegalArgumentException("key out of range");
2600 dl 1.1 }
2601    
2602 dl 1.46 /**
2603 jsr166 1.87 * Returns true if node key is less than upper bound of range.
2604 dl 1.46 */
2605 dl 1.118 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2606     Comparator<? super K> cmp) {
2607 dl 1.46 if (n == null)
2608     return false;
2609     if (hi == null)
2610     return true;
2611     K k = n.key;
2612     if (k == null) // pass by markers and headers
2613     return true;
2614 dl 1.118 int c = cpr(cmp, k, hi);
2615 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive))
2616     return false;
2617     return true;
2618 dl 1.1 }
2619    
2620 dl 1.46 /**
2621     * Returns lowest node. This node might not be in range, so
2622 jsr166 1.87 * most usages need to check bounds.
2623 dl 1.46 */
2624 dl 1.118 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2625 dl 1.46 if (lo == null)
2626     return m.findFirst();
2627     else if (loInclusive)
2628 dl 1.118 return m.findNear(lo, GT|EQ, cmp);
2629 dl 1.46 else
2630 dl 1.118 return m.findNear(lo, GT, cmp);
2631 dl 1.1 }
2632    
2633     /**
2634 dl 1.46 * Returns highest node. This node might not be in range, so
2635 jsr166 1.87 * most usages need to check bounds.
2636 dl 1.1 */
2637 dl 1.118 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2638 dl 1.46 if (hi == null)
2639     return m.findLast();
2640     else if (hiInclusive)
2641 dl 1.118 return m.findNear(hi, LT|EQ, cmp);
2642 dl 1.46 else
2643 dl 1.118 return m.findNear(hi, LT, cmp);
2644 dl 1.1 }
2645    
2646     /**
2647 jsr166 1.136 * Returns lowest absolute key (ignoring directionality).
2648 dl 1.1 */
2649 dl 1.118 K lowestKey() {
2650     Comparator<? super K> cmp = m.comparator;
2651     ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2652     if (isBeforeEnd(n, cmp))
2653 dl 1.46 return n.key;
2654     else
2655     throw new NoSuchElementException();
2656 dl 1.47 }
2657 dl 1.46
2658     /**
2659 jsr166 1.136 * Returns highest absolute key (ignoring directionality).
2660 dl 1.46 */
2661 dl 1.118 K highestKey() {
2662     Comparator<? super K> cmp = m.comparator;
2663     ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2664 dl 1.46 if (n != null) {
2665     K last = n.key;
2666 dl 1.118 if (inBounds(last, cmp))
2667 dl 1.46 return last;
2668     }
2669     throw new NoSuchElementException();
2670     }
2671    
2672 dl 1.118 Map.Entry<K,V> lowestEntry() {
2673     Comparator<? super K> cmp = m.comparator;
2674 dl 1.46 for (;;) {
2675 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2676     if (!isBeforeEnd(n, cmp))
2677 dl 1.46 return null;
2678     Map.Entry<K,V> e = n.createSnapshot();
2679     if (e != null)
2680     return e;
2681     }
2682     }
2683    
2684 dl 1.118 Map.Entry<K,V> highestEntry() {
2685     Comparator<? super K> cmp = m.comparator;
2686 dl 1.46 for (;;) {
2687 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2688     if (n == null || !inBounds(n.key, cmp))
2689 dl 1.46 return null;
2690     Map.Entry<K,V> e = n.createSnapshot();
2691     if (e != null)
2692     return e;
2693     }
2694     }
2695    
2696 dl 1.118 Map.Entry<K,V> removeLowest() {
2697     Comparator<? super K> cmp = m.comparator;
2698 dl 1.46 for (;;) {
2699 dl 1.118 Node<K,V> n = loNode(cmp);
2700 dl 1.46 if (n == null)
2701     return null;
2702     K k = n.key;
2703 dl 1.118 if (!inBounds(k, cmp))
2704 dl 1.46 return null;
2705 dl 1.118 V v = m.doRemove(k, null);
2706 dl 1.46 if (v != null)
2707     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2708     }
2709     }
2710    
2711 dl 1.118 Map.Entry<K,V> removeHighest() {
2712     Comparator<? super K> cmp = m.comparator;
2713 dl 1.46 for (;;) {
2714 dl 1.118 Node<K,V> n = hiNode(cmp);
2715 dl 1.46 if (n == null)
2716     return null;
2717     K k = n.key;
2718 dl 1.118 if (!inBounds(k, cmp))
2719 dl 1.46 return null;
2720 dl 1.118 V v = m.doRemove(k, null);
2721 dl 1.46 if (v != null)
2722     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2723     }
2724 dl 1.1 }
2725    
2726     /**
2727 dl 1.46 * Submap version of ConcurrentSkipListMap.getNearEntry
2728 dl 1.1 */
2729 dl 1.118 Map.Entry<K,V> getNearEntry(K key, int rel) {
2730     Comparator<? super K> cmp = m.comparator;
2731 dl 1.46 if (isDescending) { // adjust relation for direction
2732 jsr166 1.70 if ((rel & LT) == 0)
2733     rel |= LT;
2734 dl 1.46 else
2735 jsr166 1.70 rel &= ~LT;
2736 dl 1.46 }
2737 dl 1.118 if (tooLow(key, cmp))
2738 jsr166 1.70 return ((rel & LT) != 0) ? null : lowestEntry();
2739 dl 1.118 if (tooHigh(key, cmp))
2740 jsr166 1.70 return ((rel & LT) != 0) ? highestEntry() : null;
2741 dl 1.46 for (;;) {
2742 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2743     if (n == null || !inBounds(n.key, cmp))
2744 dl 1.46 return null;
2745     K k = n.key;
2746     V v = n.getValidValue();
2747     if (v != null)
2748     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2749     }
2750 dl 1.1 }
2751    
2752 jsr166 1.48 // Almost the same as getNearEntry, except for keys
2753 dl 1.118 K getNearKey(K key, int rel) {
2754     Comparator<? super K> cmp = m.comparator;
2755 dl 1.46 if (isDescending) { // adjust relation for direction
2756 jsr166 1.70 if ((rel & LT) == 0)
2757     rel |= LT;
2758 dl 1.46 else
2759 jsr166 1.70 rel &= ~LT;
2760 dl 1.46 }
2761 dl 1.118 if (tooLow(key, cmp)) {
2762 jsr166 1.70 if ((rel & LT) == 0) {
2763 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2764     if (isBeforeEnd(n, cmp))
2765 dl 1.46 return n.key;
2766     }
2767     return null;
2768     }
2769 dl 1.118 if (tooHigh(key, cmp)) {
2770 jsr166 1.70 if ((rel & LT) != 0) {
2771 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2772 dl 1.46 if (n != null) {
2773     K last = n.key;
2774 dl 1.118 if (inBounds(last, cmp))
2775 dl 1.46 return last;
2776     }
2777     }
2778     return null;
2779     }
2780     for (;;) {
2781 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2782     if (n == null || !inBounds(n.key, cmp))
2783 dl 1.46 return null;
2784     K k = n.key;
2785     V v = n.getValidValue();
2786     if (v != null)
2787     return k;
2788     }
2789     }
2790 dl 1.1
2791     /* ---------------- Map API methods -------------- */
2792    
2793     public boolean containsKey(Object key) {
2794 dl 1.46 if (key == null) throw new NullPointerException();
2795 dl 1.118 return inBounds(key, m.comparator) && m.containsKey(key);
2796 dl 1.1 }
2797    
2798     public V get(Object key) {
2799 dl 1.46 if (key == null) throw new NullPointerException();
2800 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2801 dl 1.1 }
2802    
2803     public V put(K key, V value) {
2804 dl 1.118 checkKeyBounds(key, m.comparator);
2805 dl 1.1 return m.put(key, value);
2806     }
2807    
2808     public V remove(Object key) {
2809 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2810 dl 1.1 }
2811    
2812     public int size() {
2813 dl 1.118 Comparator<? super K> cmp = m.comparator;
2814 dl 1.1 long count = 0;
2815 dl 1.118 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2816     isBeforeEnd(n, cmp);
2817 dl 1.1 n = n.next) {
2818     if (n.getValidValue() != null)
2819     ++count;
2820     }
2821 jsr166 1.61 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2822 dl 1.1 }
2823    
2824     public boolean isEmpty() {
2825 dl 1.118 Comparator<? super K> cmp = m.comparator;
2826     return !isBeforeEnd(loNode(cmp), cmp);
2827 dl 1.1 }
2828    
2829     public boolean containsValue(Object value) {
2830 dl 1.9 if (value == null)
2831 dl 1.1 throw new NullPointerException();
2832 dl 1.118 Comparator<? super K> cmp = m.comparator;
2833     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2834     isBeforeEnd(n, cmp);
2835 dl 1.1 n = n.next) {
2836     V v = n.getValidValue();
2837     if (v != null && value.equals(v))
2838     return true;
2839     }
2840     return false;
2841     }
2842    
2843     public void clear() {
2844 dl 1.118 Comparator<? super K> cmp = m.comparator;
2845     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2846     isBeforeEnd(n, cmp);
2847 dl 1.1 n = n.next) {
2848     if (n.getValidValue() != null)
2849     m.remove(n.key);
2850     }
2851     }
2852    
2853     /* ---------------- ConcurrentMap API methods -------------- */
2854    
2855     public V putIfAbsent(K key, V value) {
2856 dl 1.118 checkKeyBounds(key, m.comparator);
2857 dl 1.1 return m.putIfAbsent(key, value);
2858     }
2859    
2860     public boolean remove(Object key, Object value) {
2861 dl 1.118 return inBounds(key, m.comparator) && m.remove(key, value);
2862 dl 1.1 }
2863    
2864     public boolean replace(K key, V oldValue, V newValue) {
2865 dl 1.118 checkKeyBounds(key, m.comparator);
2866 dl 1.1 return m.replace(key, oldValue, newValue);
2867     }
2868    
2869     public V replace(K key, V value) {
2870 dl 1.118 checkKeyBounds(key, m.comparator);
2871 dl 1.1 return m.replace(key, value);
2872     }
2873    
2874     /* ---------------- SortedMap API methods -------------- */
2875    
2876     public Comparator<? super K> comparator() {
2877 dl 1.46 Comparator<? super K> cmp = m.comparator();
2878 jsr166 1.55 if (isDescending)
2879     return Collections.reverseOrder(cmp);
2880     else
2881     return cmp;
2882 dl 1.1 }
2883 dl 1.47
2884 dl 1.46 /**
2885     * Utility to create submaps, where given bounds override
2886     * unbounded(null) ones and/or are checked against bounded ones.
2887     */
2888 dl 1.118 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2889     K toKey, boolean toInclusive) {
2890     Comparator<? super K> cmp = m.comparator;
2891 dl 1.46 if (isDescending) { // flip senses
2892 dl 1.47 K tk = fromKey;
2893     fromKey = toKey;
2894 dl 1.46 toKey = tk;
2895 dl 1.47 boolean ti = fromInclusive;
2896     fromInclusive = toInclusive;
2897 dl 1.46 toInclusive = ti;
2898     }
2899     if (lo != null) {
2900     if (fromKey == null) {
2901     fromKey = lo;
2902     fromInclusive = loInclusive;
2903     }
2904     else {
2905 dl 1.118 int c = cpr(cmp, fromKey, lo);
2906 dl 1.46 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2907     throw new IllegalArgumentException("key out of range");
2908     }
2909     }
2910     if (hi != null) {
2911     if (toKey == null) {
2912     toKey = hi;
2913     toInclusive = hiInclusive;
2914     }
2915     else {
2916 dl 1.118 int c = cpr(cmp, toKey, hi);
2917 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2918     throw new IllegalArgumentException("key out of range");
2919     }
2920 dl 1.1 }
2921 dl 1.47 return new SubMap<K,V>(m, fromKey, fromInclusive,
2922 dl 1.46 toKey, toInclusive, isDescending);
2923 dl 1.1 }
2924    
2925 dl 1.118 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2926     K toKey, boolean toInclusive) {
2927 dl 1.1 if (fromKey == null || toKey == null)
2928     throw new NullPointerException();
2929 dl 1.46 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2930 dl 1.1 }
2931 dl 1.47
2932 dl 1.118 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2933 dl 1.1 if (toKey == null)
2934     throw new NullPointerException();
2935 dl 1.46 return newSubMap(null, false, toKey, inclusive);
2936 dl 1.1 }
2937 dl 1.47
2938 dl 1.118 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2939 dl 1.1 if (fromKey == null)
2940     throw new NullPointerException();
2941 dl 1.46 return newSubMap(fromKey, inclusive, null, false);
2942     }
2943    
2944     public SubMap<K,V> subMap(K fromKey, K toKey) {
2945 dl 1.47 return subMap(fromKey, true, toKey, false);
2946 dl 1.1 }
2947    
2948 dl 1.46 public SubMap<K,V> headMap(K toKey) {
2949 dl 1.47 return headMap(toKey, false);
2950 dl 1.6 }
2951    
2952 dl 1.46 public SubMap<K,V> tailMap(K fromKey) {
2953 dl 1.47 return tailMap(fromKey, true);
2954 dl 1.6 }
2955    
2956 dl 1.46 public SubMap<K,V> descendingMap() {
2957 dl 1.47 return new SubMap<K,V>(m, lo, loInclusive,
2958 dl 1.46 hi, hiInclusive, !isDescending);
2959 dl 1.6 }
2960    
2961 dl 1.1 /* ---------------- Relational methods -------------- */
2962    
2963     public Map.Entry<K,V> ceilingEntry(K key) {
2964 jsr166 1.70 return getNearEntry(key, GT|EQ);
2965 dl 1.1 }
2966    
2967     public K ceilingKey(K key) {
2968 jsr166 1.70 return getNearKey(key, GT|EQ);
2969 dl 1.1 }
2970    
2971     public Map.Entry<K,V> lowerEntry(K key) {
2972 jsr166 1.70 return getNearEntry(key, LT);
2973 dl 1.1 }
2974    
2975     public K lowerKey(K key) {
2976 jsr166 1.70 return getNearKey(key, LT);
2977 dl 1.1 }
2978    
2979     public Map.Entry<K,V> floorEntry(K key) {
2980 jsr166 1.70 return getNearEntry(key, LT|EQ);
2981 dl 1.1 }
2982    
2983     public K floorKey(K key) {
2984 jsr166 1.70 return getNearKey(key, LT|EQ);
2985 dl 1.1 }
2986    
2987     public Map.Entry<K,V> higherEntry(K key) {
2988 jsr166 1.70 return getNearEntry(key, GT);
2989 dl 1.1 }
2990    
2991     public K higherKey(K key) {
2992 jsr166 1.70 return getNearKey(key, GT);
2993 dl 1.46 }
2994    
2995     public K firstKey() {
2996 jsr166 1.61 return isDescending ? highestKey() : lowestKey();
2997 dl 1.46 }
2998    
2999     public K lastKey() {
3000 jsr166 1.61 return isDescending ? lowestKey() : highestKey();
3001 dl 1.1 }
3002    
3003     public Map.Entry<K,V> firstEntry() {
3004 jsr166 1.61 return isDescending ? highestEntry() : lowestEntry();
3005 dl 1.1 }
3006    
3007     public Map.Entry<K,V> lastEntry() {
3008 jsr166 1.61 return isDescending ? lowestEntry() : highestEntry();
3009 dl 1.1 }
3010    
3011     public Map.Entry<K,V> pollFirstEntry() {
3012 jsr166 1.61 return isDescending ? removeHighest() : removeLowest();
3013 dl 1.1 }
3014    
3015     public Map.Entry<K,V> pollLastEntry() {
3016 jsr166 1.61 return isDescending ? removeLowest() : removeHighest();
3017 dl 1.1 }
3018    
3019     /* ---------------- Submap Views -------------- */
3020    
3021 jsr166 1.51 public NavigableSet<K> keySet() {
3022 dl 1.46 KeySet<K> ks = keySetView;
3023 jsr166 1.71 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3024 dl 1.1 }
3025    
3026 dl 1.46 public NavigableSet<K> navigableKeySet() {
3027     KeySet<K> ks = keySetView;
3028 jsr166 1.71 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3029 dl 1.46 }
3030 dl 1.45
3031 dl 1.46 public Collection<V> values() {
3032     Collection<V> vs = valuesView;
3033 jsr166 1.71 return (vs != null) ? vs : (valuesView = new Values<V>(this));
3034 dl 1.1 }
3035    
3036 dl 1.46 public Set<Map.Entry<K,V>> entrySet() {
3037     Set<Map.Entry<K,V>> es = entrySetView;
3038 jsr166 1.71 return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
3039 dl 1.1 }
3040    
3041 dl 1.46 public NavigableSet<K> descendingKeySet() {
3042     return descendingMap().navigableKeySet();
3043 dl 1.1 }
3044    
3045 dl 1.46 Iterator<K> keyIterator() {
3046     return new SubMapKeyIterator();
3047 dl 1.1 }
3048    
3049 dl 1.46 Iterator<V> valueIterator() {
3050     return new SubMapValueIterator();
3051 dl 1.1 }
3052    
3053 dl 1.46 Iterator<Map.Entry<K,V>> entryIterator() {
3054     return new SubMapEntryIterator();
3055 dl 1.1 }
3056    
3057 dl 1.46 /**
3058     * Variant of main Iter class to traverse through submaps.
3059 dl 1.100 * Also serves as back-up Spliterator for views
3060 dl 1.46 */
3061 dl 1.100 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
3062 dl 1.46 /** the last node returned by next() */
3063 jsr166 1.52 Node<K,V> lastReturned;
3064 dl 1.46 /** the next node to return from next(); */
3065     Node<K,V> next;
3066     /** Cache of next value field to maintain weak consistency */
3067 jsr166 1.52 V nextValue;
3068 dl 1.46
3069 dl 1.47 SubMapIter() {
3070 dl 1.118 Comparator<? super K> cmp = m.comparator;
3071 dl 1.46 for (;;) {
3072 dl 1.118 next = isDescending ? hiNode(cmp) : loNode(cmp);
3073 dl 1.46 if (next == null)
3074     break;
3075 jsr166 1.55 Object x = next.value;
3076 jsr166 1.52 if (x != null && x != next) {
3077 dl 1.118 if (! inBounds(next.key, cmp))
3078 dl 1.46 next = null;
3079 dl 1.118 else {
3080     @SuppressWarnings("unchecked") V vv = (V)x;
3081 dl 1.100 nextValue = vv;
3082 dl 1.118 }
3083 dl 1.46 break;
3084     }
3085     }
3086 dl 1.1 }
3087 dl 1.46
3088     public final boolean hasNext() {
3089     return next != null;
3090 dl 1.1 }
3091 dl 1.46
3092     final void advance() {
3093 jsr166 1.54 if (next == null)
3094 dl 1.46 throw new NoSuchElementException();
3095 jsr166 1.55 lastReturned = next;
3096 dl 1.46 if (isDescending)
3097     descend();
3098     else
3099     ascend();
3100 dl 1.1 }
3101 dl 1.46
3102     private void ascend() {
3103 dl 1.118 Comparator<? super K> cmp = m.comparator;
3104 dl 1.46 for (;;) {
3105     next = next.next;
3106     if (next == null)
3107     break;
3108 jsr166 1.55 Object x = next.value;
3109 jsr166 1.52 if (x != null && x != next) {
3110 dl 1.118 if (tooHigh(next.key, cmp))
3111 dl 1.46 next = null;
3112 dl 1.118 else {
3113     @SuppressWarnings("unchecked") V vv = (V)x;
3114 dl 1.100 nextValue = vv;
3115 dl 1.118 }
3116 dl 1.46 break;
3117     }
3118     }
3119     }
3120    
3121     private void descend() {
3122 dl 1.88 Comparator<? super K> cmp = m.comparator;
3123 dl 1.46 for (;;) {
3124 jsr166 1.125 next = m.findNear(lastReturned.key, LT, cmp);
3125 dl 1.46 if (next == null)
3126     break;
3127 jsr166 1.55 Object x = next.value;
3128 jsr166 1.52 if (x != null && x != next) {
3129 dl 1.118 if (tooLow(next.key, cmp))
3130 dl 1.46 next = null;
3131 dl 1.118 else {
3132     @SuppressWarnings("unchecked") V vv = (V)x;
3133 dl 1.100 nextValue = vv;
3134 dl 1.118 }
3135 dl 1.46 break;
3136     }
3137     }
3138 dl 1.1 }
3139 dl 1.46
3140     public void remove() {
3141 jsr166 1.52 Node<K,V> l = lastReturned;
3142 dl 1.46 if (l == null)
3143     throw new IllegalStateException();
3144     m.remove(l.key);
3145 jsr166 1.55 lastReturned = null;
3146 dl 1.1 }
3147 dl 1.46
3148 dl 1.107 public Spliterator<T> trySplit() {
3149     return null;
3150 jsr166 1.108 }
3151 dl 1.107
3152 dl 1.100 public boolean tryAdvance(Consumer<? super T> action) {
3153     if (hasNext()) {
3154     action.accept(next());
3155     return true;
3156     }
3157     return false;
3158     }
3159    
3160 dl 1.113 public void forEachRemaining(Consumer<? super T> action) {
3161 dl 1.100 while (hasNext())
3162     action.accept(next());
3163     }
3164 dl 1.113
3165 jsr166 1.114 public long estimateSize() {
3166     return Long.MAX_VALUE;
3167 dl 1.113 }
3168    
3169 dl 1.46 }
3170    
3171     final class SubMapValueIterator extends SubMapIter<V> {
3172     public V next() {
3173 jsr166 1.52 V v = nextValue;
3174 dl 1.46 advance();
3175 jsr166 1.52 return v;
3176 dl 1.45 }
3177 dl 1.100 public int characteristics() {
3178     return 0;
3179     }
3180 dl 1.1 }
3181    
3182 dl 1.46 final class SubMapKeyIterator extends SubMapIter<K> {
3183     public K next() {
3184     Node<K,V> n = next;
3185     advance();
3186     return n.key;
3187     }
3188 dl 1.100 public int characteristics() {
3189     return Spliterator.DISTINCT | Spliterator.ORDERED |
3190     Spliterator.SORTED;
3191     }
3192 jsr166 1.115 public final Comparator<? super K> getComparator() {
3193 dl 1.100 return SubMap.this.comparator();
3194     }
3195 dl 1.1 }
3196    
3197 dl 1.46 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3198     public Map.Entry<K,V> next() {
3199     Node<K,V> n = next;
3200 jsr166 1.52 V v = nextValue;
3201 dl 1.46 advance();
3202     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3203 dl 1.1 }
3204 dl 1.100 public int characteristics() {
3205     return Spliterator.DISTINCT;
3206     }
3207 dl 1.1 }
3208     }
3209 dl 1.59
3210 dl 1.123 // default Map method overrides
3211    
3212     public void forEach(BiConsumer<? super K, ? super V> action) {
3213     if (action == null) throw new NullPointerException();
3214     V v;
3215     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3216     if ((v = n.getValidValue()) != null)
3217     action.accept(n.key, v);
3218     }
3219     }
3220    
3221     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3222     if (function == null) throw new NullPointerException();
3223     V v;
3224     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3225     while ((v = n.getValidValue()) != null) {
3226     V r = function.apply(n.key, v);
3227     if (r == null) throw new NullPointerException();
3228     if (n.casValue(v, r))
3229     break;
3230     }
3231     }
3232     }
3233    
3234 dl 1.83 /**
3235     * Base class providing common structure for Spliterators.
3236     * (Although not all that much common functionality; as usual for
3237     * view classes, details annoyingly vary in key, value, and entry
3238     * subclasses in ways that are not worth abstracting out for
3239     * internal classes.)
3240     *
3241     * The basic split strategy is to recursively descend from top
3242     * level, row by row, descending to next row when either split
3243     * off, or the end of row is encountered. Control of the number of
3244     * splits relies on some statistical estimation: The expected
3245     * remaining number of elements of a skip list when advancing
3246     * either across or down decreases by about 25%. To make this
3247     * observation useful, we need to know initial size, which we
3248 dl 1.104 * don't. But we can just use Integer.MAX_VALUE so that we
3249     * don't prematurely zero out while splitting.
3250 dl 1.83 */
3251 jsr166 1.119 abstract static class CSLMSpliterator<K,V> {
3252 dl 1.83 final Comparator<? super K> comparator;
3253     final K fence; // exclusive upper bound for keys, or null if to end
3254     Index<K,V> row; // the level to split out
3255     Node<K,V> current; // current traversal node; initialize at origin
3256     int est; // pseudo-size estimate
3257     CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3258     Node<K,V> origin, K fence, int est) {
3259     this.comparator = comparator; this.row = row;
3260     this.current = origin; this.fence = fence; this.est = est;
3261     }
3262    
3263     public final long estimateSize() { return (long)est; }
3264     }
3265    
3266     static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3267 dl 1.88 implements Spliterator<K> {
3268 dl 1.83 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3269     Node<K,V> origin, K fence, int est) {
3270     super(comparator, row, origin, fence, est);
3271     }
3272    
3273 dl 1.104 public Spliterator<K> trySplit() {
3274 dl 1.116 Node<K,V> e; K ek;
3275 dl 1.83 Comparator<? super K> cmp = comparator;
3276     K f = fence;
3277 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3278 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3279 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3280     if ((s = q.right) != null && (b = s.node) != null &&
3281     (n = b.next) != null && n.value != null &&
3282     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3283     (f == null || cpr(cmp, sk, f) < 0)) {
3284     current = n;
3285     Index<K,V> r = q.down;
3286     row = (s.right != null) ? s : s.down;
3287     est -= est >>> 2;
3288     return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3289 dl 1.83 }
3290     }
3291     }
3292     return null;
3293     }
3294    
3295 dl 1.113 public void forEachRemaining(Consumer<? super K> action) {
3296 dl 1.100 if (action == null) throw new NullPointerException();
3297 dl 1.118 Comparator<? super K> cmp = comparator;
3298 dl 1.83 K f = fence;
3299     Node<K,V> e = current;
3300     current = null;
3301 jsr166 1.84 for (; e != null; e = e.next) {
3302 dl 1.83 K k; Object v;
3303 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3304 dl 1.83 break;
3305     if ((v = e.value) != null && v != e)
3306 dl 1.100 action.accept(k);
3307 dl 1.83 }
3308     }
3309    
3310 dl 1.100 public boolean tryAdvance(Consumer<? super K> action) {
3311     if (action == null) throw new NullPointerException();
3312 dl 1.118 Comparator<? super K> cmp = comparator;
3313     K f = fence;
3314     Node<K,V> e = current;
3315     for (; e != null; e = e.next) {
3316 dl 1.83 K k; Object v;
3317 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3318 dl 1.83 e = null;
3319     break;
3320     }
3321     if ((v = e.value) != null && v != e) {
3322     current = e.next;
3323 dl 1.100 action.accept(k);
3324 dl 1.83 return true;
3325     }
3326     }
3327     current = e;
3328     return false;
3329     }
3330 dl 1.100
3331     public int characteristics() {
3332 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3333 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3334 dl 1.100 Spliterator.NONNULL;
3335     }
3336    
3337 jsr166 1.115 public final Comparator<? super K> getComparator() {
3338 dl 1.100 return comparator;
3339     }
3340 dl 1.83 }
3341 jsr166 1.120 // factory method for KeySpliterator
3342 dl 1.118 final KeySpliterator<K,V> keySpliterator() {
3343     Comparator<? super K> cmp = comparator;
3344     for (;;) { // ensure h corresponds to origin p
3345     HeadIndex<K,V> h; Node<K,V> p;
3346     Node<K,V> b = (h = head).node;
3347     if ((p = b.next) == null || p.value != null)
3348     return new KeySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3349     0 : Integer.MAX_VALUE);
3350     p.helpDelete(b, p.next);
3351     }
3352     }
3353 dl 1.83
3354     static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3355 dl 1.88 implements Spliterator<V> {
3356 dl 1.83 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3357     Node<K,V> origin, K fence, int est) {
3358     super(comparator, row, origin, fence, est);
3359     }
3360    
3361 dl 1.104 public Spliterator<V> trySplit() {
3362 dl 1.116 Node<K,V> e; K ek;
3363 dl 1.83 Comparator<? super K> cmp = comparator;
3364     K f = fence;
3365 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3366 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3367 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3368     if ((s = q.right) != null && (b = s.node) != null &&
3369     (n = b.next) != null && n.value != null &&
3370     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3371     (f == null || cpr(cmp, sk, f) < 0)) {
3372     current = n;
3373     Index<K,V> r = q.down;
3374     row = (s.right != null) ? s : s.down;
3375     est -= est >>> 2;
3376     return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3377 dl 1.83 }
3378     }
3379     }
3380     return null;
3381     }
3382    
3383 dl 1.113 public void forEachRemaining(Consumer<? super V> action) {
3384 dl 1.100 if (action == null) throw new NullPointerException();
3385 dl 1.118 Comparator<? super K> cmp = comparator;
3386 dl 1.83 K f = fence;
3387     Node<K,V> e = current;
3388     current = null;
3389 jsr166 1.84 for (; e != null; e = e.next) {
3390 dl 1.83 K k; Object v;
3391 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3392 dl 1.83 break;
3393 dl 1.100 if ((v = e.value) != null && v != e) {
3394     @SuppressWarnings("unchecked") V vv = (V)v;
3395     action.accept(vv);
3396     }
3397 dl 1.83 }
3398     }
3399    
3400 dl 1.100 public boolean tryAdvance(Consumer<? super V> action) {
3401     if (action == null) throw new NullPointerException();
3402 dl 1.118 Comparator<? super K> cmp = comparator;
3403     K f = fence;
3404     Node<K,V> e = current;
3405     for (; e != null; e = e.next) {
3406 dl 1.83 K k; Object v;
3407 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3408 dl 1.83 e = null;
3409     break;
3410     }
3411     if ((v = e.value) != null && v != e) {
3412     current = e.next;
3413 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3414     action.accept(vv);
3415 dl 1.83 return true;
3416     }
3417     }
3418     current = e;
3419     return false;
3420     }
3421 dl 1.100
3422     public int characteristics() {
3423 jsr166 1.130 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3424     Spliterator.NONNULL;
3425 dl 1.100 }
3426 dl 1.83 }
3427    
3428 dl 1.118 // Almost the same as keySpliterator()
3429     final ValueSpliterator<K,V> valueSpliterator() {
3430     Comparator<? super K> cmp = comparator;
3431     for (;;) {
3432     HeadIndex<K,V> h; Node<K,V> p;
3433     Node<K,V> b = (h = head).node;
3434     if ((p = b.next) == null || p.value != null)
3435     return new ValueSpliterator<K,V>(cmp, h, p, null, (p == null) ?
3436     0 : Integer.MAX_VALUE);
3437     p.helpDelete(b, p.next);
3438     }
3439     }
3440    
3441 dl 1.83 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3442 dl 1.88 implements Spliterator<Map.Entry<K,V>> {
3443 dl 1.83 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3444     Node<K,V> origin, K fence, int est) {
3445     super(comparator, row, origin, fence, est);
3446     }
3447    
3448 dl 1.104 public Spliterator<Map.Entry<K,V>> trySplit() {
3449 dl 1.116 Node<K,V> e; K ek;
3450 dl 1.83 Comparator<? super K> cmp = comparator;
3451     K f = fence;
3452 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3453 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3454 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3455     if ((s = q.right) != null && (b = s.node) != null &&
3456     (n = b.next) != null && n.value != null &&
3457     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3458     (f == null || cpr(cmp, sk, f) < 0)) {
3459     current = n;
3460     Index<K,V> r = q.down;
3461     row = (s.right != null) ? s : s.down;
3462     est -= est >>> 2;
3463     return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3464 dl 1.83 }
3465     }
3466     }
3467     return null;
3468     }
3469    
3470 dl 1.113 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3471 dl 1.100 if (action == null) throw new NullPointerException();
3472 dl 1.118 Comparator<? super K> cmp = comparator;
3473 dl 1.83 K f = fence;
3474     Node<K,V> e = current;
3475     current = null;
3476 jsr166 1.84 for (; e != null; e = e.next) {
3477 dl 1.83 K k; Object v;
3478 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3479 dl 1.83 break;
3480 dl 1.100 if ((v = e.value) != null && v != e) {
3481     @SuppressWarnings("unchecked") V vv = (V)v;
3482     action.accept
3483     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3484     }
3485 dl 1.83 }
3486     }
3487    
3488 dl 1.100 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3489     if (action == null) throw new NullPointerException();
3490 dl 1.118 Comparator<? super K> cmp = comparator;
3491     K f = fence;
3492     Node<K,V> e = current;
3493     for (; e != null; e = e.next) {
3494 dl 1.83 K k; Object v;
3495 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3496 dl 1.83 e = null;
3497     break;
3498     }
3499     if ((v = e.value) != null && v != e) {
3500     current = e.next;
3501 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3502     action.accept
3503     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3504 dl 1.83 return true;
3505     }
3506     }
3507     current = e;
3508     return false;
3509     }
3510 dl 1.100
3511     public int characteristics() {
3512 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3513 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3514 dl 1.100 Spliterator.NONNULL;
3515     }
3516 dl 1.113
3517     public final Comparator<Map.Entry<K,V>> getComparator() {
3518 jsr166 1.130 // Adapt or create a key-based comparator
3519     if (comparator != null) {
3520     return Map.Entry.comparingByKey(comparator);
3521     }
3522     else {
3523 jsr166 1.131 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3524 jsr166 1.130 @SuppressWarnings("unchecked")
3525     Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3526     return k1.compareTo(e2.getKey());
3527     };
3528     }
3529 dl 1.113 }
3530 dl 1.118 }
3531 dl 1.113
3532 dl 1.118 // Almost the same as keySpliterator()
3533     final EntrySpliterator<K,V> entrySpliterator() {
3534     Comparator<? super K> cmp = comparator;
3535     for (;;) { // almost same as key version
3536     HeadIndex<K,V> h; Node<K,V> p;
3537     Node<K,V> b = (h = head).node;
3538     if ((p = b.next) == null || p.value != null)
3539     return new EntrySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3540     0 : Integer.MAX_VALUE);
3541     p.helpDelete(b, p.next);
3542     }
3543 dl 1.83 }
3544    
3545 dl 1.59 // Unsafe mechanics
3546 jsr166 1.141 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3547     private static final long HEAD;
3548 dl 1.65 static {
3549 dl 1.59 try {
3550 jsr166 1.141 HEAD = U.objectFieldOffset
3551     (ConcurrentSkipListMap.class.getDeclaredField("head"));
3552 jsr166 1.140 } catch (ReflectiveOperationException e) {
3553 dl 1.65 throw new Error(e);
3554 dl 1.59 }
3555     }
3556 dl 1.1 }