ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.149
Committed: Tue May 5 21:35:28 2015 UTC (9 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.148: +11 -11 lines
Log Message:
tidy

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.67 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.138
9 jsr166 1.130 import java.io.Serializable;
10 dl 1.118 import java.util.AbstractCollection;
11     import java.util.AbstractMap;
12     import java.util.AbstractSet;
13     import java.util.ArrayList;
14     import java.util.Collection;
15     import java.util.Collections;
16     import java.util.Comparator;
17     import java.util.Iterator;
18     import java.util.List;
19     import java.util.Map;
20     import java.util.NavigableMap;
21     import java.util.NavigableSet;
22     import java.util.NoSuchElementException;
23     import java.util.Set;
24     import java.util.SortedMap;
25 dl 1.83 import java.util.Spliterator;
26 jsr166 1.138 import java.util.function.BiConsumer;
27 dl 1.118 import java.util.function.BiFunction;
28 dl 1.94 import java.util.function.Consumer;
29 dl 1.109 import java.util.function.Function;
30 dl 1.143 import java.util.function.Predicate;
31 dl 1.83
32 dl 1.1 /**
33 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
34     * The map is sorted according to the {@linkplain Comparable natural
35     * ordering} of its keys, or by a {@link Comparator} provided at map
36     * creation time, depending on which constructor is used.
37 dl 1.1 *
38     * <p>This class implements a concurrent variant of <a
39 dl 1.66 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
40     * providing expected average <i>log(n)</i> time cost for the
41 jsr166 1.82 * {@code containsKey}, {@code get}, {@code put} and
42     * {@code remove} operations and their variants. Insertion, removal,
43 dl 1.1 * update, and access operations safely execute concurrently by
44 jsr166 1.133 * multiple threads.
45     *
46     * <p>Iterators and spliterators are
47     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
48     *
49     * <p>Ascending key ordered views and their iterators are faster than
50     * descending ones.
51 dl 1.1 *
52 jsr166 1.82 * <p>All {@code Map.Entry} pairs returned by methods in this class
53 dl 1.1 * and its views represent snapshots of mappings at the time they were
54 jsr166 1.82 * produced. They do <em>not</em> support the {@code Entry.setValue}
55 dl 1.1 * method. (Note however that it is possible to change mappings in the
56 jsr166 1.82 * associated map using {@code put}, {@code putIfAbsent}, or
57     * {@code replace}, depending on exactly which effect you need.)
58 dl 1.1 *
59 jsr166 1.82 * <p>Beware that, unlike in most collections, the {@code size}
60 dl 1.1 * method is <em>not</em> a constant-time operation. Because of the
61     * asynchronous nature of these maps, determining the current number
62 dl 1.69 * of elements requires a traversal of the elements, and so may report
63     * inaccurate results if this collection is modified during traversal.
64 jsr166 1.82 * Additionally, the bulk operations {@code putAll}, {@code equals},
65     * {@code toArray}, {@code containsValue}, and {@code clear} are
66 dl 1.69 * <em>not</em> guaranteed to be performed atomically. For example, an
67 jsr166 1.82 * iterator operating concurrently with a {@code putAll} operation
68 dl 1.69 * might view only some of the added elements.
69 dl 1.1 *
70     * <p>This class and its views and iterators implement all of the
71     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
72     * interfaces. Like most other concurrent collections, this class does
73 jsr166 1.82 * <em>not</em> permit the use of {@code null} keys or values because some
74 jsr166 1.22 * null return values cannot be reliably distinguished from the absence of
75     * elements.
76 dl 1.1 *
77 jsr166 1.21 * <p>This class is a member of the
78 jsr166 1.51 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
79 jsr166 1.21 * Java Collections Framework</a>.
80     *
81 dl 1.1 * @author Doug Lea
82     * @param <K> the type of keys maintained by this map
83 dl 1.9 * @param <V> the type of mapped values
84 jsr166 1.20 * @since 1.6
85 dl 1.1 */
86 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
87 jsr166 1.130 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
88 dl 1.1 /*
89     * This class implements a tree-like two-dimensionally linked skip
90     * list in which the index levels are represented in separate
91     * nodes from the base nodes holding data. There are two reasons
92     * for taking this approach instead of the usual array-based
93     * structure: 1) Array based implementations seem to encounter
94     * more complexity and overhead 2) We can use cheaper algorithms
95     * for the heavily-traversed index lists than can be used for the
96     * base lists. Here's a picture of some of the basics for a
97     * possible list with 2 levels of index:
98     *
99     * Head nodes Index nodes
100 dl 1.9 * +-+ right +-+ +-+
101 dl 1.1 * |2|---------------->| |--------------------->| |->null
102 dl 1.9 * +-+ +-+ +-+
103 dl 1.1 * | down | |
104     * v v v
105 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
106 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
107 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
108 dl 1.1 * v | | | | |
109     * Nodes next v v v v v
110 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
111 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
112 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
113 dl 1.1 *
114     * The base lists use a variant of the HM linked ordered set
115     * algorithm. See Tim Harris, "A pragmatic implementation of
116     * non-blocking linked lists"
117     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
118     * Michael "High Performance Dynamic Lock-Free Hash Tables and
119     * List-Based Sets"
120     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
121     * basic idea in these lists is to mark the "next" pointers of
122     * deleted nodes when deleting to avoid conflicts with concurrent
123     * insertions, and when traversing to keep track of triples
124     * (predecessor, node, successor) in order to detect when and how
125     * to unlink these deleted nodes.
126     *
127     * Rather than using mark-bits to mark list deletions (which can
128     * be slow and space-intensive using AtomicMarkedReference), nodes
129     * use direct CAS'able next pointers. On deletion, instead of
130     * marking a pointer, they splice in another node that can be
131     * thought of as standing for a marked pointer (indicating this by
132     * using otherwise impossible field values). Using plain nodes
133     * acts roughly like "boxed" implementations of marked pointers,
134     * but uses new nodes only when nodes are deleted, not for every
135     * link. This requires less space and supports faster
136     * traversal. Even if marked references were better supported by
137     * JVMs, traversal using this technique might still be faster
138     * because any search need only read ahead one more node than
139     * otherwise required (to check for trailing marker) rather than
140     * unmasking mark bits or whatever on each read.
141     *
142     * This approach maintains the essential property needed in the HM
143     * algorithm of changing the next-pointer of a deleted node so
144     * that any other CAS of it will fail, but implements the idea by
145     * changing the pointer to point to a different node, not by
146     * marking it. While it would be possible to further squeeze
147     * space by defining marker nodes not to have key/value fields, it
148     * isn't worth the extra type-testing overhead. The deletion
149     * markers are rarely encountered during traversal and are
150     * normally quickly garbage collected. (Note that this technique
151     * would not work well in systems without garbage collection.)
152     *
153     * In addition to using deletion markers, the lists also use
154     * nullness of value fields to indicate deletion, in a style
155     * similar to typical lazy-deletion schemes. If a node's value is
156     * null, then it is considered logically deleted and ignored even
157     * though it is still reachable. This maintains proper control of
158     * concurrent replace vs delete operations -- an attempted replace
159     * must fail if a delete beat it by nulling field, and a delete
160     * must return the last non-null value held in the field. (Note:
161     * Null, rather than some special marker, is used for value fields
162     * here because it just so happens to mesh with the Map API
163     * requirement that method get returns null if there is no
164     * mapping, which allows nodes to remain concurrently readable
165     * even when deleted. Using any other marker value here would be
166     * messy at best.)
167     *
168     * Here's the sequence of events for a deletion of node n with
169     * predecessor b and successor f, initially:
170     *
171 dl 1.9 * +------+ +------+ +------+
172 dl 1.1 * ... | b |------>| n |----->| f | ...
173 dl 1.9 * +------+ +------+ +------+
174 dl 1.1 *
175     * 1. CAS n's value field from non-null to null.
176     * From this point on, no public operations encountering
177     * the node consider this mapping to exist. However, other
178     * ongoing insertions and deletions might still modify
179     * n's next pointer.
180     *
181     * 2. CAS n's next pointer to point to a new marker node.
182     * From this point on, no other nodes can be appended to n.
183     * which avoids deletion errors in CAS-based linked lists.
184     *
185     * +------+ +------+ +------+ +------+
186     * ... | b |------>| n |----->|marker|------>| f | ...
187 dl 1.9 * +------+ +------+ +------+ +------+
188 dl 1.1 *
189     * 3. CAS b's next pointer over both n and its marker.
190     * From this point on, no new traversals will encounter n,
191     * and it can eventually be GCed.
192     * +------+ +------+
193     * ... | b |----------------------------------->| f | ...
194 dl 1.9 * +------+ +------+
195     *
196 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
197     * with another operation. Steps 2-3 can fail because some other
198     * thread noticed during a traversal a node with null value and
199     * helped out by marking and/or unlinking. This helping-out
200     * ensures that no thread can become stuck waiting for progress of
201     * the deleting thread. The use of marker nodes slightly
202     * complicates helping-out code because traversals must track
203     * consistent reads of up to four nodes (b, n, marker, f), not
204     * just (b, n, f), although the next field of a marker is
205     * immutable, and once a next field is CAS'ed to point to a
206     * marker, it never again changes, so this requires less care.
207     *
208     * Skip lists add indexing to this scheme, so that the base-level
209     * traversals start close to the locations being found, inserted
210     * or deleted -- usually base level traversals only traverse a few
211     * nodes. This doesn't change the basic algorithm except for the
212     * need to make sure base traversals start at predecessors (here,
213     * b) that are not (structurally) deleted, otherwise retrying
214 dl 1.9 * after processing the deletion.
215 dl 1.1 *
216     * Index levels are maintained as lists with volatile next fields,
217     * using CAS to link and unlink. Races are allowed in index-list
218     * operations that can (rarely) fail to link in a new index node
219     * or delete one. (We can't do this of course for data nodes.)
220     * However, even when this happens, the index lists remain sorted,
221     * so correctly serve as indices. This can impact performance,
222     * but since skip lists are probabilistic anyway, the net result
223     * is that under contention, the effective "p" value may be lower
224     * than its nominal value. And race windows are kept small enough
225     * that in practice these failures are rare, even under a lot of
226     * contention.
227     *
228     * The fact that retries (for both base and index lists) are
229     * relatively cheap due to indexing allows some minor
230     * simplifications of retry logic. Traversal restarts are
231     * performed after most "helping-out" CASes. This isn't always
232     * strictly necessary, but the implicit backoffs tend to help
233     * reduce other downstream failed CAS's enough to outweigh restart
234     * cost. This worsens the worst case, but seems to improve even
235     * highly contended cases.
236     *
237     * Unlike most skip-list implementations, index insertion and
238 jsr166 1.135 * deletion here require a separate traversal pass occurring after
239 dl 1.1 * the base-level action, to add or remove index nodes. This adds
240     * to single-threaded overhead, but improves contended
241     * multithreaded performance by narrowing interference windows,
242     * and allows deletion to ensure that all index nodes will be made
243     * unreachable upon return from a public remove operation, thus
244     * avoiding unwanted garbage retention. This is more important
245     * here than in some other data structures because we cannot null
246     * out node fields referencing user keys since they might still be
247     * read by other ongoing traversals.
248     *
249     * Indexing uses skip list parameters that maintain good search
250     * performance while using sparser-than-usual indices: The
251 dl 1.118 * hardwired parameters k=1, p=0.5 (see method doPut) mean
252 dl 1.1 * that about one-quarter of the nodes have indices. Of those that
253     * do, half have one level, a quarter have two, and so on (see
254     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
255     * requirement for a map is slightly less than for the current
256     * implementation of java.util.TreeMap.
257     *
258     * Changing the level of the index (i.e, the height of the
259     * tree-like structure) also uses CAS. The head index has initial
260     * level/height of one. Creation of an index with height greater
261     * than the current level adds a level to the head index by
262     * CAS'ing on a new top-most head. To maintain good performance
263     * after a lot of removals, deletion methods heuristically try to
264     * reduce the height if the topmost levels appear to be empty.
265     * This may encounter races in which it possible (but rare) to
266     * reduce and "lose" a level just as it is about to contain an
267     * index (that will then never be encountered). This does no
268     * structural harm, and in practice appears to be a better option
269     * than allowing unrestrained growth of levels.
270     *
271     * The code for all this is more verbose than you'd like. Most
272     * operations entail locating an element (or position to insert an
273     * element). The code to do this can't be nicely factored out
274     * because subsequent uses require a snapshot of predecessor
275     * and/or successor and/or value fields which can't be returned
276     * all at once, at least not without creating yet another object
277     * to hold them -- creating such little objects is an especially
278     * bad idea for basic internal search operations because it adds
279     * to GC overhead. (This is one of the few times I've wished Java
280     * had macros.) Instead, some traversal code is interleaved within
281     * insertion and removal operations. The control logic to handle
282     * all the retry conditions is sometimes twisty. Most search is
283     * broken into 2 parts. findPredecessor() searches index nodes
284     * only, returning a base-level predecessor of the key. findNode()
285     * finishes out the base-level search. Even with this factoring,
286     * there is a fair amount of near-duplication of code to handle
287     * variants.
288     *
289 dl 1.92 * To produce random values without interference across threads,
290     * we use within-JDK thread local random support (via the
291     * "secondary seed", to avoid interference with user-level
292     * ThreadLocalRandom.)
293     *
294 dl 1.88 * A previous version of this class wrapped non-comparable keys
295     * with their comparators to emulate Comparables when using
296 dl 1.118 * comparators vs Comparables. However, JVMs now appear to better
297     * handle infusing comparator-vs-comparable choice into search
298     * loops. Static method cpr(comparator, x, y) is used for all
299     * comparisons, which works well as long as the comparator
300     * argument is set up outside of loops (thus sometimes passed as
301     * an argument to internal methods) to avoid field re-reads.
302 dl 1.88 *
303 dl 1.1 * For explanation of algorithms sharing at least a couple of
304     * features with this one, see Mikhail Fomitchev's thesis
305     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
306 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
307 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
308     *
309     * Given the use of tree-like index nodes, you might wonder why
310     * this doesn't use some kind of search tree instead, which would
311     * support somewhat faster search operations. The reason is that
312     * there are no known efficient lock-free insertion and deletion
313     * algorithms for search trees. The immutability of the "down"
314     * links of index nodes (as opposed to mutable "left" fields in
315     * true trees) makes this tractable using only CAS operations.
316     *
317     * Notation guide for local variables
318     * Node: b, n, f for predecessor, node, successor
319     * Index: q, r, d for index node, right, down.
320     * t for another index node
321     * Head: h
322     * Levels: j
323     * Keys: k, key
324     * Values: v, value
325     * Comparisons: c
326     */
327    
328     private static final long serialVersionUID = -8627078645895051609L;
329    
330     /**
331     * Special value used to identify base-level header
332 dl 1.9 */
333 dl 1.1 private static final Object BASE_HEADER = new Object();
334    
335     /**
336 dl 1.9 * The topmost head index of the skiplist.
337 dl 1.1 */
338     private transient volatile HeadIndex<K,V> head;
339    
340     /**
341 dl 1.118 * The comparator used to maintain order in this map, or null if
342     * using natural ordering. (Non-private to simplify access in
343 jsr166 1.120 * nested classes.)
344 dl 1.1 * @serial
345     */
346 dl 1.118 final Comparator<? super K> comparator;
347 dl 1.1
348     /** Lazily initialized key set */
349 jsr166 1.147 private transient KeySet<K,V> keySet;
350 dl 1.1 /** Lazily initialized entry set */
351 jsr166 1.71 private transient EntrySet<K,V> entrySet;
352 dl 1.1 /** Lazily initialized values collection */
353 jsr166 1.147 private transient Values<K,V> values;
354 dl 1.1 /** Lazily initialized descending key set */
355 dl 1.46 private transient ConcurrentNavigableMap<K,V> descendingMap;
356 dl 1.1
357     /**
358 jsr166 1.13 * Initializes or resets state. Needed by constructors, clone,
359 dl 1.1 * clear, readObject. and ConcurrentSkipListSet.clone.
360     * (Note that comparator must be separately initialized.)
361     */
362 dl 1.118 private void initialize() {
363 dl 1.1 keySet = null;
364 dl 1.9 entrySet = null;
365 dl 1.1 values = null;
366 dl 1.46 descendingMap = null;
367 dl 1.1 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
368     null, null, 1);
369     }
370    
371     /**
372     * compareAndSet head node
373     */
374     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
375 jsr166 1.141 return U.compareAndSwapObject(this, HEAD, cmp, val);
376 dl 1.1 }
377    
378     /* ---------------- Nodes -------------- */
379    
380     /**
381     * Nodes hold keys and values, and are singly linked in sorted
382     * order, possibly with some intervening marker nodes. The list is
383     * headed by a dummy node accessible as head.node. The value field
384     * is declared only as Object because it takes special non-V
385     * values for marker and header nodes.
386     */
387     static final class Node<K,V> {
388     final K key;
389     volatile Object value;
390     volatile Node<K,V> next;
391    
392     /**
393     * Creates a new regular node.
394     */
395     Node(K key, Object value, Node<K,V> next) {
396     this.key = key;
397     this.value = value;
398     this.next = next;
399     }
400    
401     /**
402     * Creates a new marker node. A marker is distinguished by
403     * having its value field point to itself. Marker nodes also
404     * have null keys, a fact that is exploited in a few places,
405     * but this doesn't distinguish markers from the base-level
406     * header node (head.node), which also has a null key.
407     */
408     Node(Node<K,V> next) {
409     this.key = null;
410     this.value = this;
411     this.next = next;
412     }
413    
414     /**
415     * compareAndSet value field
416     */
417     boolean casValue(Object cmp, Object val) {
418 jsr166 1.141 return U.compareAndSwapObject(this, VALUE, cmp, val);
419 dl 1.1 }
420 jsr166 1.60
421 dl 1.1 /**
422     * compareAndSet next field
423     */
424     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
425 jsr166 1.141 return U.compareAndSwapObject(this, NEXT, cmp, val);
426 dl 1.1 }
427    
428     /**
429 jsr166 1.10 * Returns true if this node is a marker. This method isn't
430     * actually called in any current code checking for markers
431 dl 1.1 * because callers will have already read value field and need
432     * to use that read (not another done here) and so directly
433     * test if value points to node.
434 jsr166 1.93 *
435 dl 1.1 * @return true if this node is a marker node
436     */
437     boolean isMarker() {
438     return value == this;
439     }
440    
441     /**
442 jsr166 1.10 * Returns true if this node is the header of base-level list.
443 dl 1.1 * @return true if this node is header node
444     */
445     boolean isBaseHeader() {
446     return value == BASE_HEADER;
447     }
448    
449     /**
450     * Tries to append a deletion marker to this node.
451     * @param f the assumed current successor of this node
452     * @return true if successful
453     */
454     boolean appendMarker(Node<K,V> f) {
455     return casNext(f, new Node<K,V>(f));
456     }
457    
458     /**
459     * Helps out a deletion by appending marker or unlinking from
460     * predecessor. This is called during traversals when value
461     * field seen to be null.
462     * @param b predecessor
463     * @param f successor
464     */
465     void helpDelete(Node<K,V> b, Node<K,V> f) {
466     /*
467     * Rechecking links and then doing only one of the
468     * help-out stages per call tends to minimize CAS
469     * interference among helping threads.
470     */
471     if (f == next && this == b.next) {
472     if (f == null || f.value != f) // not already marked
473 dl 1.118 casNext(f, new Node<K,V>(f));
474 dl 1.1 else
475     b.casNext(this, f.next);
476     }
477     }
478    
479     /**
480 jsr166 1.11 * Returns value if this node contains a valid key-value pair,
481 dl 1.9 * else null.
482 dl 1.1 * @return this node's value if it isn't a marker or header or
483 jsr166 1.126 * is deleted, else null
484 dl 1.1 */
485     V getValidValue() {
486     Object v = value;
487     if (v == this || v == BASE_HEADER)
488     return null;
489 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
490     return vv;
491 dl 1.1 }
492    
493     /**
494 jsr166 1.10 * Creates and returns a new SimpleImmutableEntry holding current
495     * mapping if this node holds a valid value, else null.
496 dl 1.1 * @return new entry or null
497     */
498 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
499 dl 1.118 Object v = value;
500     if (v == null || v == this || v == BASE_HEADER)
501 dl 1.1 return null;
502 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
503     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
504 dl 1.1 }
505 dl 1.59
506 jsr166 1.141 // Unsafe mechanics
507 dl 1.65
508 jsr166 1.141 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
509     private static final long VALUE;
510     private static final long NEXT;
511 dl 1.59
512 dl 1.65 static {
513     try {
514 jsr166 1.141 VALUE = U.objectFieldOffset
515     (Node.class.getDeclaredField("value"));
516     NEXT = U.objectFieldOffset
517     (Node.class.getDeclaredField("next"));
518 jsr166 1.140 } catch (ReflectiveOperationException e) {
519 dl 1.65 throw new Error(e);
520     }
521     }
522 dl 1.1 }
523    
524     /* ---------------- Indexing -------------- */
525    
526     /**
527 dl 1.40 * Index nodes represent the levels of the skip list. Note that
528     * even though both Nodes and Indexes have forward-pointing
529     * fields, they have different types and are handled in different
530     * ways, that can't nicely be captured by placing field in a
531     * shared abstract class.
532 dl 1.1 */
533     static class Index<K,V> {
534     final Node<K,V> node;
535     final Index<K,V> down;
536     volatile Index<K,V> right;
537    
538     /**
539 jsr166 1.10 * Creates index node with given values.
540 dl 1.9 */
541 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
542     this.node = node;
543     this.down = down;
544     this.right = right;
545     }
546    
547     /**
548     * compareAndSet right field
549     */
550     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
551 jsr166 1.141 return U.compareAndSwapObject(this, RIGHT, cmp, val);
552 dl 1.1 }
553    
554     /**
555     * Returns true if the node this indexes has been deleted.
556     * @return true if indexed node is known to be deleted
557     */
558     final boolean indexesDeletedNode() {
559     return node.value == null;
560     }
561    
562     /**
563     * Tries to CAS newSucc as successor. To minimize races with
564     * unlink that may lose this index node, if the node being
565     * indexed is known to be deleted, it doesn't try to link in.
566     * @param succ the expected current successor
567     * @param newSucc the new successor
568     * @return true if successful
569     */
570     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
571     Node<K,V> n = node;
572 dl 1.9 newSucc.right = succ;
573 dl 1.1 return n.value != null && casRight(succ, newSucc);
574     }
575    
576     /**
577     * Tries to CAS right field to skip over apparent successor
578     * succ. Fails (forcing a retraversal by caller) if this node
579     * is known to be deleted.
580     * @param succ the expected current successor
581     * @return true if successful
582     */
583     final boolean unlink(Index<K,V> succ) {
584 dl 1.118 return node.value != null && casRight(succ, succ.right);
585 dl 1.1 }
586 dl 1.59
587     // Unsafe mechanics
588 jsr166 1.141 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
589     private static final long RIGHT;
590 dl 1.65 static {
591     try {
592 jsr166 1.141 RIGHT = U.objectFieldOffset
593     (Index.class.getDeclaredField("right"));
594 jsr166 1.140 } catch (ReflectiveOperationException e) {
595 dl 1.65 throw new Error(e);
596     }
597     }
598 dl 1.1 }
599    
600     /* ---------------- Head nodes -------------- */
601    
602     /**
603     * Nodes heading each level keep track of their level.
604     */
605     static final class HeadIndex<K,V> extends Index<K,V> {
606     final int level;
607     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
608     super(node, down, right);
609     this.level = level;
610     }
611 dl 1.9 }
612 dl 1.1
613     /* ---------------- Comparison utilities -------------- */
614    
615     /**
616 dl 1.118 * Compares using comparator or natural ordering if null.
617     * Called only by methods that have performed required type checks.
618 dl 1.1 */
619 dl 1.118 @SuppressWarnings({"unchecked", "rawtypes"})
620     static final int cpr(Comparator c, Object x, Object y) {
621     return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
622 dl 1.1 }
623    
624     /* ---------------- Traversal -------------- */
625    
626     /**
627 jsr166 1.10 * Returns a base-level node with key strictly less than given key,
628 dl 1.1 * or the base-level header if there is no such node. Also
629     * unlinks indexes to deleted nodes found along the way. Callers
630     * rely on this side-effect of clearing indices to deleted nodes.
631     * @param key the key
632 dl 1.9 * @return a predecessor of key
633 dl 1.1 */
634 dl 1.118 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
635 jsr166 1.41 if (key == null)
636 dl 1.40 throw new NullPointerException(); // don't postpone errors
637 dl 1.1 for (;;) {
638 dl 1.118 for (Index<K,V> q = head, r = q.right, d;;) {
639 dl 1.40 if (r != null) {
640     Node<K,V> n = r.node;
641     K k = n.key;
642     if (n.value == null) {
643     if (!q.unlink(r))
644     break; // restart
645     r = q.right; // reread r
646     continue;
647 dl 1.1 }
648 dl 1.118 if (cpr(cmp, key, k) > 0) {
649 dl 1.1 q = r;
650 dl 1.40 r = r.right;
651 dl 1.1 continue;
652     }
653     }
654 dl 1.118 if ((d = q.down) == null)
655 dl 1.1 return q.node;
656 dl 1.118 q = d;
657     r = d.right;
658 dl 1.1 }
659     }
660     }
661    
662     /**
663 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
664 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
665     * base-level looking for key starting at predecessor returned
666     * from findPredecessor, processing base-level deletions as
667     * encountered. Some callers rely on this side-effect of clearing
668     * deleted nodes.
669     *
670     * Restarts occur, at traversal step centered on node n, if:
671     *
672     * (1) After reading n's next field, n is no longer assumed
673     * predecessor b's current successor, which means that
674     * we don't have a consistent 3-node snapshot and so cannot
675     * unlink any subsequent deleted nodes encountered.
676     *
677     * (2) n's value field is null, indicating n is deleted, in
678     * which case we help out an ongoing structural deletion
679     * before retrying. Even though there are cases where such
680     * unlinking doesn't require restart, they aren't sorted out
681     * here because doing so would not usually outweigh cost of
682     * restarting.
683     *
684 dl 1.9 * (3) n is a marker or n's predecessor's value field is null,
685 dl 1.1 * indicating (among other possibilities) that
686     * findPredecessor returned a deleted node. We can't unlink
687     * the node because we don't know its predecessor, so rely
688     * on another call to findPredecessor to notice and return
689     * some earlier predecessor, which it will do. This check is
690     * only strictly needed at beginning of loop, (and the
691     * b.value check isn't strictly needed at all) but is done
692     * each iteration to help avoid contention with other
693     * threads by callers that will fail to be able to change
694     * links, and so will retry anyway.
695     *
696     * The traversal loops in doPut, doRemove, and findNear all
697     * include the same three kinds of checks. And specialized
698 jsr166 1.149 * versions appear in findFirst, and findLast and their variants.
699     * They can't easily share code because each uses the reads of
700     * fields held in locals occurring in the orders they were
701     * performed.
702 dl 1.9 *
703 dl 1.1 * @param key the key
704 jsr166 1.22 * @return node holding key, or null if no such
705 dl 1.1 */
706 dl 1.118 private Node<K,V> findNode(Object key) {
707 dl 1.88 if (key == null)
708     throw new NullPointerException(); // don't postpone errors
709 dl 1.118 Comparator<? super K> cmp = comparator;
710     outer: for (;;) {
711     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
712     Object v; int c;
713 dl 1.9 if (n == null)
714 dl 1.118 break outer;
715 dl 1.1 Node<K,V> f = n.next;
716     if (n != b.next) // inconsistent read
717     break;
718 dl 1.118 if ((v = n.value) == null) { // n is deleted
719 dl 1.1 n.helpDelete(b, f);
720     break;
721     }
722 dl 1.118 if (b.value == null || v == n) // b is deleted
723 dl 1.1 break;
724 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0)
725 dl 1.40 return n;
726 dl 1.1 if (c < 0)
727 dl 1.118 break outer;
728 dl 1.1 b = n;
729     n = f;
730     }
731     }
732 dl 1.118 return null;
733 dl 1.1 }
734    
735 dl 1.9 /**
736 dl 1.88 * Gets value for key. Almost the same as findNode, but returns
737     * the found value (to avoid retries during re-reads)
738     *
739 dl 1.118 * @param key the key
740 dl 1.1 * @return the value, or null if absent
741     */
742 dl 1.118 private V doGet(Object key) {
743     if (key == null)
744 dl 1.88 throw new NullPointerException();
745 dl 1.118 Comparator<? super K> cmp = comparator;
746     outer: for (;;) {
747     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
748     Object v; int c;
749 dl 1.88 if (n == null)
750 dl 1.118 break outer;
751 dl 1.88 Node<K,V> f = n.next;
752     if (n != b.next) // inconsistent read
753     break;
754 dl 1.118 if ((v = n.value) == null) { // n is deleted
755 dl 1.88 n.helpDelete(b, f);
756     break;
757     }
758 dl 1.118 if (b.value == null || v == n) // b is deleted
759 dl 1.88 break;
760 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0) {
761     @SuppressWarnings("unchecked") V vv = (V)v;
762 dl 1.100 return vv;
763 dl 1.118 }
764 dl 1.88 if (c < 0)
765 dl 1.118 break outer;
766 dl 1.88 b = n;
767     n = f;
768     }
769 dl 1.1 }
770 dl 1.118 return null;
771 dl 1.1 }
772    
773     /* ---------------- Insertion -------------- */
774    
775     /**
776     * Main insertion method. Adds element if not present, or
777     * replaces value if present and onlyIfAbsent is false.
778 dl 1.118 * @param key the key
779 jsr166 1.103 * @param value the value that must be associated with key
780 dl 1.1 * @param onlyIfAbsent if should not insert if already present
781     * @return the old value, or null if newly inserted
782     */
783 dl 1.118 private V doPut(K key, V value, boolean onlyIfAbsent) {
784     Node<K,V> z; // added node
785     if (key == null)
786 dl 1.88 throw new NullPointerException();
787 dl 1.118 Comparator<? super K> cmp = comparator;
788     outer: for (;;) {
789     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
790 dl 1.1 if (n != null) {
791 dl 1.118 Object v; int c;
792 dl 1.1 Node<K,V> f = n.next;
793     if (n != b.next) // inconsistent read
794 jsr166 1.57 break;
795 dl 1.118 if ((v = n.value) == null) { // n is deleted
796 dl 1.1 n.helpDelete(b, f);
797     break;
798     }
799 dl 1.118 if (b.value == null || v == n) // b is deleted
800 dl 1.1 break;
801 dl 1.118 if ((c = cpr(cmp, key, n.key)) > 0) {
802 dl 1.1 b = n;
803     n = f;
804     continue;
805     }
806     if (c == 0) {
807 dl 1.118 if (onlyIfAbsent || n.casValue(v, value)) {
808     @SuppressWarnings("unchecked") V vv = (V)v;
809 dl 1.100 return vv;
810 dl 1.118 }
811     break; // restart if lost race to replace value
812 dl 1.1 }
813     // else c < 0; fall through
814     }
815 dl 1.9
816 dl 1.118 z = new Node<K,V>(key, value, n);
817 dl 1.9 if (!b.casNext(n, z))
818 dl 1.1 break; // restart if lost race to append to b
819 dl 1.118 break outer;
820 dl 1.1 }
821     }
822    
823 dl 1.122 int rnd = ThreadLocalRandom.nextSecondarySeed();
824 dl 1.92 if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
825     int level = 1, max;
826     while (((rnd >>>= 1) & 1) != 0)
827     ++level;
828 dl 1.1 Index<K,V> idx = null;
829 dl 1.92 HeadIndex<K,V> h = head;
830     if (level <= (max = h.level)) {
831     for (int i = 1; i <= level; ++i)
832     idx = new Index<K,V>(z, idx, null);
833 dl 1.1 }
834 dl 1.92 else { // try to grow by one level
835     level = max + 1; // hold in array and later pick the one to use
836 dl 1.118 @SuppressWarnings("unchecked")Index<K,V>[] idxs =
837     (Index<K,V>[])new Index<?,?>[level+1];
838 dl 1.92 for (int i = 1; i <= level; ++i)
839     idxs[i] = idx = new Index<K,V>(z, idx, null);
840     for (;;) {
841     h = head;
842     int oldLevel = h.level;
843     if (level <= oldLevel) // lost race to add level
844     break;
845     HeadIndex<K,V> newh = h;
846     Node<K,V> oldbase = h.node;
847     for (int j = oldLevel+1; j <= level; ++j)
848     newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
849     if (casHead(h, newh)) {
850     h = newh;
851     idx = idxs[level = oldLevel];
852     break;
853 dl 1.1 }
854     }
855 dl 1.92 }
856 dl 1.118 // find insertion points and splice in
857     splice: for (int insertionLevel = level;;) {
858 dl 1.92 int j = h.level;
859 dl 1.118 for (Index<K,V> q = h, r = q.right, t = idx;;) {
860 dl 1.92 if (q == null || t == null)
861 dl 1.118 break splice;
862 dl 1.92 if (r != null) {
863     Node<K,V> n = r.node;
864     // compare before deletion check avoids needing recheck
865 dl 1.118 int c = cpr(cmp, key, n.key);
866 dl 1.92 if (n.value == null) {
867     if (!q.unlink(r))
868     break;
869     r = q.right;
870     continue;
871     }
872     if (c > 0) {
873     q = r;
874     r = r.right;
875     continue;
876     }
877 dl 1.1 }
878 dl 1.92
879     if (j == insertionLevel) {
880     if (!q.link(r, t))
881     break; // restart
882     if (t.node.value == null) {
883 dl 1.118 findNode(key);
884     break splice;
885 dl 1.88 }
886 dl 1.92 if (--insertionLevel == 0)
887 dl 1.118 break splice;
888 dl 1.1 }
889 dl 1.92
890     if (--j >= insertionLevel && j < level)
891     t = t.down;
892     q = q.down;
893     r = q.right;
894 dl 1.1 }
895     }
896     }
897 dl 1.118 return null;
898 dl 1.1 }
899    
900     /* ---------------- Deletion -------------- */
901    
902     /**
903     * Main deletion method. Locates node, nulls value, appends a
904     * deletion marker, unlinks predecessor, removes associated index
905     * nodes, and possibly reduces head index level.
906     *
907     * Index nodes are cleared out simply by calling findPredecessor.
908     * which unlinks indexes to deleted nodes found along path to key,
909     * which will include the indexes to this node. This is done
910     * unconditionally. We can't check beforehand whether there are
911     * index nodes because it might be the case that some or all
912     * indexes hadn't been inserted yet for this node during initial
913     * search for it, and we'd like to ensure lack of garbage
914 dl 1.9 * retention, so must call to be sure.
915 dl 1.1 *
916 dl 1.118 * @param key the key
917 dl 1.1 * @param value if non-null, the value that must be
918     * associated with key
919     * @return the node, or null if not found
920     */
921 dl 1.118 final V doRemove(Object key, Object value) {
922     if (key == null)
923 dl 1.88 throw new NullPointerException();
924 dl 1.118 Comparator<? super K> cmp = comparator;
925     outer: for (;;) {
926     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
927     Object v; int c;
928 dl 1.9 if (n == null)
929 dl 1.118 break outer;
930 dl 1.1 Node<K,V> f = n.next;
931     if (n != b.next) // inconsistent read
932     break;
933 dl 1.118 if ((v = n.value) == null) { // n is deleted
934 dl 1.1 n.helpDelete(b, f);
935     break;
936     }
937 dl 1.118 if (b.value == null || v == n) // b is deleted
938 dl 1.1 break;
939 dl 1.118 if ((c = cpr(cmp, key, n.key)) < 0)
940     break outer;
941 dl 1.1 if (c > 0) {
942     b = n;
943     n = f;
944     continue;
945     }
946 dl 1.9 if (value != null && !value.equals(v))
947 dl 1.118 break outer;
948 dl 1.9 if (!n.casValue(v, null))
949 dl 1.1 break;
950 dl 1.9 if (!n.appendMarker(f) || !b.casNext(n, f))
951 dl 1.118 findNode(key); // retry via findNode
952 dl 1.1 else {
953 dl 1.118 findPredecessor(key, cmp); // clean index
954 dl 1.9 if (head.right == null)
955 dl 1.1 tryReduceLevel();
956     }
957 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
958     return vv;
959 dl 1.1 }
960     }
961 dl 1.118 return null;
962 dl 1.1 }
963    
964     /**
965     * Possibly reduce head level if it has no nodes. This method can
966     * (rarely) make mistakes, in which case levels can disappear even
967     * though they are about to contain index nodes. This impacts
968     * performance, not correctness. To minimize mistakes as well as
969     * to reduce hysteresis, the level is reduced by one only if the
970     * topmost three levels look empty. Also, if the removed level
971     * looks non-empty after CAS, we try to change it back quick
972     * before anyone notices our mistake! (This trick works pretty
973     * well because this method will practically never make mistakes
974     * unless current thread stalls immediately before first CAS, in
975     * which case it is very unlikely to stall again immediately
976     * afterwards, so will recover.)
977     *
978     * We put up with all this rather than just let levels grow
979     * because otherwise, even a small map that has undergone a large
980     * number of insertions and removals will have a lot of levels,
981     * slowing down access more than would an occasional unwanted
982     * reduction.
983     */
984     private void tryReduceLevel() {
985     HeadIndex<K,V> h = head;
986     HeadIndex<K,V> d;
987     HeadIndex<K,V> e;
988     if (h.level > 3 &&
989 dl 1.9 (d = (HeadIndex<K,V>)h.down) != null &&
990     (e = (HeadIndex<K,V>)d.down) != null &&
991     e.right == null &&
992     d.right == null &&
993 dl 1.1 h.right == null &&
994     casHead(h, d) && // try to set
995     h.right != null) // recheck
996     casHead(d, h); // try to backout
997     }
998    
999     /* ---------------- Finding and removing first element -------------- */
1000    
1001     /**
1002 jsr166 1.22 * Specialized variant of findNode to get first valid node.
1003 dl 1.1 * @return first node or null if empty
1004     */
1005 dl 1.118 final Node<K,V> findFirst() {
1006     for (Node<K,V> b, n;;) {
1007     if ((n = (b = head.node).next) == null)
1008 dl 1.1 return null;
1009 dl 1.9 if (n.value != null)
1010 dl 1.1 return n;
1011     n.helpDelete(b, n.next);
1012     }
1013     }
1014    
1015     /**
1016 dl 1.25 * Removes first entry; returns its snapshot.
1017 jsr166 1.28 * @return null if empty, else snapshot of first entry
1018 dl 1.1 */
1019 dl 1.118 private Map.Entry<K,V> doRemoveFirstEntry() {
1020     for (Node<K,V> b, n;;) {
1021     if ((n = (b = head.node).next) == null)
1022 dl 1.1 return null;
1023     Node<K,V> f = n.next;
1024     if (n != b.next)
1025     continue;
1026     Object v = n.value;
1027     if (v == null) {
1028     n.helpDelete(b, f);
1029     continue;
1030     }
1031     if (!n.casValue(v, null))
1032     continue;
1033     if (!n.appendMarker(f) || !b.casNext(n, f))
1034     findFirst(); // retry
1035     clearIndexToFirst();
1036 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
1037     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, vv);
1038 jsr166 1.55 }
1039 dl 1.1 }
1040    
1041     /**
1042 jsr166 1.10 * Clears out index nodes associated with deleted first entry.
1043 dl 1.1 */
1044     private void clearIndexToFirst() {
1045     for (;;) {
1046 dl 1.118 for (Index<K,V> q = head;;) {
1047 dl 1.1 Index<K,V> r = q.right;
1048     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1049 dl 1.9 break;
1050 dl 1.1 if ((q = q.down) == null) {
1051 dl 1.9 if (head.right == null)
1052 dl 1.1 tryReduceLevel();
1053     return;
1054     }
1055     }
1056     }
1057     }
1058    
1059 dl 1.88 /**
1060     * Removes last entry; returns its snapshot.
1061     * Specialized variant of doRemove.
1062     * @return null if empty, else snapshot of last entry
1063     */
1064 dl 1.118 private Map.Entry<K,V> doRemoveLastEntry() {
1065 dl 1.88 for (;;) {
1066     Node<K,V> b = findPredecessorOfLast();
1067     Node<K,V> n = b.next;
1068     if (n == null) {
1069     if (b.isBaseHeader()) // empty
1070     return null;
1071     else
1072     continue; // all b's successors are deleted; retry
1073     }
1074     for (;;) {
1075     Node<K,V> f = n.next;
1076     if (n != b.next) // inconsistent read
1077     break;
1078     Object v = n.value;
1079     if (v == null) { // n is deleted
1080     n.helpDelete(b, f);
1081     break;
1082     }
1083 dl 1.118 if (b.value == null || v == n) // b is deleted
1084 dl 1.88 break;
1085     if (f != null) {
1086     b = n;
1087     n = f;
1088     continue;
1089     }
1090     if (!n.casValue(v, null))
1091     break;
1092     K key = n.key;
1093 dl 1.118 if (!n.appendMarker(f) || !b.casNext(n, f))
1094     findNode(key); // retry via findNode
1095     else { // clean index
1096     findPredecessor(key, comparator);
1097 dl 1.88 if (head.right == null)
1098     tryReduceLevel();
1099     }
1100 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
1101     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
1102 dl 1.88 }
1103     }
1104     }
1105 dl 1.1
1106     /* ---------------- Finding and removing last element -------------- */
1107    
1108     /**
1109 jsr166 1.10 * Specialized version of find to get last valid node.
1110 dl 1.1 * @return last node or null if empty
1111     */
1112 dl 1.118 final Node<K,V> findLast() {
1113 dl 1.1 /*
1114     * findPredecessor can't be used to traverse index level
1115     * because this doesn't use comparisons. So traversals of
1116     * both levels are folded together.
1117     */
1118     Index<K,V> q = head;
1119     for (;;) {
1120     Index<K,V> d, r;
1121     if ((r = q.right) != null) {
1122     if (r.indexesDeletedNode()) {
1123     q.unlink(r);
1124     q = head; // restart
1125 dl 1.9 }
1126 dl 1.1 else
1127     q = r;
1128     } else if ((d = q.down) != null) {
1129     q = d;
1130     } else {
1131 dl 1.118 for (Node<K,V> b = q.node, n = b.next;;) {
1132 dl 1.9 if (n == null)
1133 jsr166 1.61 return b.isBaseHeader() ? null : b;
1134 dl 1.1 Node<K,V> f = n.next; // inconsistent read
1135     if (n != b.next)
1136     break;
1137     Object v = n.value;
1138     if (v == null) { // n is deleted
1139     n.helpDelete(b, f);
1140     break;
1141     }
1142 dl 1.118 if (b.value == null || v == n) // b is deleted
1143 dl 1.1 break;
1144     b = n;
1145     n = f;
1146     }
1147     q = head; // restart
1148     }
1149     }
1150     }
1151    
1152 dl 1.31 /**
1153 jsr166 1.32 * Specialized variant of findPredecessor to get predecessor of last
1154     * valid node. Needed when removing the last entry. It is possible
1155     * that all successors of returned node will have been deleted upon
1156 dl 1.31 * return, in which case this method can be retried.
1157     * @return likely predecessor of last node
1158     */
1159     private Node<K,V> findPredecessorOfLast() {
1160     for (;;) {
1161 dl 1.118 for (Index<K,V> q = head;;) {
1162 dl 1.31 Index<K,V> d, r;
1163     if ((r = q.right) != null) {
1164     if (r.indexesDeletedNode()) {
1165     q.unlink(r);
1166     break; // must restart
1167     }
1168     // proceed as far across as possible without overshooting
1169     if (r.node.next != null) {
1170     q = r;
1171     continue;
1172     }
1173     }
1174     if ((d = q.down) != null)
1175     q = d;
1176     else
1177     return q.node;
1178     }
1179     }
1180     }
1181 dl 1.1
1182 dl 1.88 /* ---------------- Relational operations -------------- */
1183    
1184     // Control values OR'ed as arguments to findNear
1185    
1186     private static final int EQ = 1;
1187     private static final int LT = 2;
1188     private static final int GT = 0; // Actually checked as !LT
1189    
1190 dl 1.1 /**
1191 dl 1.88 * Utility for ceiling, floor, lower, higher methods.
1192 dl 1.118 * @param key the key
1193 dl 1.88 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1194     * @return nearest node fitting relation, or null if no such
1195 dl 1.1 */
1196 dl 1.118 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1197     if (key == null)
1198     throw new NullPointerException();
1199 dl 1.88 for (;;) {
1200 dl 1.118 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
1201     Object v;
1202 dl 1.88 if (n == null)
1203     return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1204     Node<K,V> f = n.next;
1205     if (n != b.next) // inconsistent read
1206     break;
1207 dl 1.118 if ((v = n.value) == null) { // n is deleted
1208 dl 1.88 n.helpDelete(b, f);
1209     break;
1210     }
1211 dl 1.118 if (b.value == null || v == n) // b is deleted
1212 dl 1.88 break;
1213 dl 1.118 int c = cpr(cmp, key, n.key);
1214 dl 1.88 if ((c == 0 && (rel & EQ) != 0) ||
1215     (c < 0 && (rel & LT) == 0))
1216     return n;
1217     if ( c <= 0 && (rel & LT) != 0)
1218     return b.isBaseHeader() ? null : b;
1219     b = n;
1220     n = f;
1221     }
1222     }
1223     }
1224    
1225 dl 1.1 /**
1226 jsr166 1.10 * Returns SimpleImmutableEntry for results of findNear.
1227 dl 1.40 * @param key the key
1228 dl 1.1 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1229     * @return Entry fitting relation, or null if no such
1230     */
1231 dl 1.118 final AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1232     Comparator<? super K> cmp = comparator;
1233 dl 1.1 for (;;) {
1234 dl 1.118 Node<K,V> n = findNear(key, rel, cmp);
1235 dl 1.1 if (n == null)
1236     return null;
1237 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1238 dl 1.1 if (e != null)
1239     return e;
1240     }
1241     }
1242    
1243     /* ---------------- Constructors -------------- */
1244    
1245     /**
1246 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1247     * {@linkplain Comparable natural ordering} of the keys.
1248 dl 1.1 */
1249     public ConcurrentSkipListMap() {
1250     this.comparator = null;
1251     initialize();
1252     }
1253    
1254     /**
1255 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1256     * comparator.
1257 dl 1.1 *
1258 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1259 jsr166 1.82 * If {@code null}, the {@linkplain Comparable natural
1260 jsr166 1.22 * ordering} of the keys will be used.
1261 dl 1.1 */
1262 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1263     this.comparator = comparator;
1264 dl 1.1 initialize();
1265     }
1266    
1267     /**
1268     * Constructs a new map containing the same mappings as the given map,
1269 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1270     * the keys.
1271 dl 1.1 *
1272 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1273 jsr166 1.82 * @throws ClassCastException if the keys in {@code m} are not
1274 jsr166 1.22 * {@link Comparable}, or are not mutually comparable
1275     * @throws NullPointerException if the specified map or any of its keys
1276     * or values are null
1277 dl 1.1 */
1278     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1279     this.comparator = null;
1280     initialize();
1281     putAll(m);
1282     }
1283    
1284     /**
1285 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1286     * same ordering as the specified sorted map.
1287     *
1288 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1289 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1290     * @throws NullPointerException if the specified sorted map or any of
1291     * its keys or values are null
1292 dl 1.1 */
1293     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1294     this.comparator = m.comparator();
1295     initialize();
1296     buildFromSorted(m);
1297     }
1298    
1299     /**
1300 jsr166 1.82 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1301 jsr166 1.22 * instance. (The keys and values themselves are not cloned.)
1302 dl 1.1 *
1303 jsr166 1.22 * @return a shallow copy of this map
1304 dl 1.1 */
1305 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1306 dl 1.1 try {
1307 jsr166 1.76 @SuppressWarnings("unchecked")
1308     ConcurrentSkipListMap<K,V> clone =
1309     (ConcurrentSkipListMap<K,V>) super.clone();
1310     clone.initialize();
1311     clone.buildFromSorted(this);
1312     return clone;
1313 dl 1.1 } catch (CloneNotSupportedException e) {
1314     throw new InternalError();
1315     }
1316     }
1317    
1318     /**
1319     * Streamlined bulk insertion to initialize from elements of
1320     * given sorted map. Call only from constructor or clone
1321     * method.
1322     */
1323     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1324     if (map == null)
1325     throw new NullPointerException();
1326    
1327     HeadIndex<K,V> h = head;
1328     Node<K,V> basepred = h.node;
1329    
1330     // Track the current rightmost node at each level. Uses an
1331     // ArrayList to avoid committing to initial or maximum level.
1332 jsr166 1.137 ArrayList<Index<K,V>> preds = new ArrayList<>();
1333 dl 1.1
1334     // initialize
1335 dl 1.9 for (int i = 0; i <= h.level; ++i)
1336 dl 1.1 preds.add(null);
1337     Index<K,V> q = h;
1338     for (int i = h.level; i > 0; --i) {
1339     preds.set(i, q);
1340     q = q.down;
1341     }
1342    
1343 dl 1.9 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1344 dl 1.1 map.entrySet().iterator();
1345     while (it.hasNext()) {
1346     Map.Entry<? extends K, ? extends V> e = it.next();
1347 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1348     int j = 0;
1349     if ((rnd & 0x80000001) == 0) {
1350     do {
1351     ++j;
1352     } while (((rnd >>>= 1) & 1) != 0);
1353     if (j > h.level) j = h.level + 1;
1354     }
1355 dl 1.1 K k = e.getKey();
1356     V v = e.getValue();
1357     if (k == null || v == null)
1358     throw new NullPointerException();
1359     Node<K,V> z = new Node<K,V>(k, v, null);
1360     basepred.next = z;
1361     basepred = z;
1362     if (j > 0) {
1363     Index<K,V> idx = null;
1364     for (int i = 1; i <= j; ++i) {
1365     idx = new Index<K,V>(z, idx, null);
1366 dl 1.9 if (i > h.level)
1367 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1368    
1369     if (i < preds.size()) {
1370     preds.get(i).right = idx;
1371     preds.set(i, idx);
1372     } else
1373     preds.add(idx);
1374     }
1375     }
1376     }
1377     head = h;
1378     }
1379    
1380     /* ---------------- Serialization -------------- */
1381    
1382     /**
1383 jsr166 1.80 * Saves this map to a stream (that is, serializes it).
1384 dl 1.1 *
1385 jsr166 1.128 * @param s the stream
1386 jsr166 1.129 * @throws java.io.IOException if an I/O error occurs
1387 dl 1.1 * @serialData The key (Object) and value (Object) for each
1388 jsr166 1.10 * key-value mapping represented by the map, followed by
1389 jsr166 1.82 * {@code null}. The key-value mappings are emitted in key-order
1390 dl 1.1 * (as determined by the Comparator, or by the keys' natural
1391     * ordering if no Comparator).
1392     */
1393     private void writeObject(java.io.ObjectOutputStream s)
1394     throws java.io.IOException {
1395     // Write out the Comparator and any hidden stuff
1396     s.defaultWriteObject();
1397    
1398     // Write out keys and values (alternating)
1399     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1400     V v = n.getValidValue();
1401     if (v != null) {
1402     s.writeObject(n.key);
1403     s.writeObject(v);
1404     }
1405     }
1406     s.writeObject(null);
1407     }
1408    
1409     /**
1410 jsr166 1.80 * Reconstitutes this map from a stream (that is, deserializes it).
1411 jsr166 1.128 * @param s the stream
1412 jsr166 1.129 * @throws ClassNotFoundException if the class of a serialized object
1413     * could not be found
1414     * @throws java.io.IOException if an I/O error occurs
1415 dl 1.1 */
1416 dl 1.100 @SuppressWarnings("unchecked")
1417 dl 1.1 private void readObject(final java.io.ObjectInputStream s)
1418     throws java.io.IOException, ClassNotFoundException {
1419     // Read in the Comparator and any hidden stuff
1420     s.defaultReadObject();
1421     // Reset transients
1422     initialize();
1423    
1424 dl 1.9 /*
1425 dl 1.1 * This is nearly identical to buildFromSorted, but is
1426     * distinct because readObject calls can't be nicely adapted
1427     * as the kind of iterator needed by buildFromSorted. (They
1428     * can be, but doing so requires type cheats and/or creation
1429     * of adaptor classes.) It is simpler to just adapt the code.
1430     */
1431    
1432     HeadIndex<K,V> h = head;
1433     Node<K,V> basepred = h.node;
1434 jsr166 1.137 ArrayList<Index<K,V>> preds = new ArrayList<>();
1435 dl 1.9 for (int i = 0; i <= h.level; ++i)
1436 dl 1.1 preds.add(null);
1437     Index<K,V> q = h;
1438     for (int i = h.level; i > 0; --i) {
1439     preds.set(i, q);
1440     q = q.down;
1441     }
1442    
1443     for (;;) {
1444     Object k = s.readObject();
1445     if (k == null)
1446     break;
1447     Object v = s.readObject();
1448 dl 1.9 if (v == null)
1449 dl 1.1 throw new NullPointerException();
1450     K key = (K) k;
1451     V val = (V) v;
1452 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1453     int j = 0;
1454     if ((rnd & 0x80000001) == 0) {
1455     do {
1456     ++j;
1457     } while (((rnd >>>= 1) & 1) != 0);
1458     if (j > h.level) j = h.level + 1;
1459     }
1460 dl 1.1 Node<K,V> z = new Node<K,V>(key, val, null);
1461     basepred.next = z;
1462     basepred = z;
1463     if (j > 0) {
1464     Index<K,V> idx = null;
1465     for (int i = 1; i <= j; ++i) {
1466     idx = new Index<K,V>(z, idx, null);
1467 dl 1.9 if (i > h.level)
1468 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1469    
1470     if (i < preds.size()) {
1471     preds.get(i).right = idx;
1472     preds.set(i, idx);
1473     } else
1474     preds.add(idx);
1475     }
1476     }
1477     }
1478     head = h;
1479     }
1480    
1481     /* ------ Map API methods ------ */
1482    
1483     /**
1484 jsr166 1.82 * Returns {@code true} if this map contains a mapping for the specified
1485 dl 1.1 * key.
1486 jsr166 1.22 *
1487     * @param key key whose presence in this map is to be tested
1488 jsr166 1.82 * @return {@code true} if this map contains a mapping for the specified key
1489 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1490     * with the keys currently in the map
1491     * @throws NullPointerException if the specified key is null
1492 dl 1.1 */
1493     public boolean containsKey(Object key) {
1494 dl 1.118 return doGet(key) != null;
1495 dl 1.1 }
1496    
1497     /**
1498 jsr166 1.42 * Returns the value to which the specified key is mapped,
1499     * or {@code null} if this map contains no mapping for the key.
1500     *
1501     * <p>More formally, if this map contains a mapping from a key
1502     * {@code k} to a value {@code v} such that {@code key} compares
1503     * equal to {@code k} according to the map's ordering, then this
1504     * method returns {@code v}; otherwise it returns {@code null}.
1505     * (There can be at most one such mapping.)
1506 dl 1.1 *
1507 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1508     * with the keys currently in the map
1509     * @throws NullPointerException if the specified key is null
1510 dl 1.1 */
1511     public V get(Object key) {
1512 dl 1.118 return doGet(key);
1513 dl 1.1 }
1514    
1515     /**
1516 dl 1.109 * Returns the value to which the specified key is mapped,
1517     * or the given defaultValue if this map contains no mapping for the key.
1518     *
1519     * @param key the key
1520     * @param defaultValue the value to return if this map contains
1521     * no mapping for the given key
1522     * @return the mapping for the key, if present; else the defaultValue
1523     * @throws NullPointerException if the specified key is null
1524     * @since 1.8
1525     */
1526     public V getOrDefault(Object key, V defaultValue) {
1527     V v;
1528 dl 1.118 return (v = doGet(key)) == null ? defaultValue : v;
1529 dl 1.109 }
1530    
1531     /**
1532 dl 1.1 * Associates the specified value with the specified key in this map.
1533 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1534 dl 1.1 * value is replaced.
1535     *
1536 jsr166 1.22 * @param key key with which the specified value is to be associated
1537     * @param value value to be associated with the specified key
1538     * @return the previous value associated with the specified key, or
1539 jsr166 1.82 * {@code null} if there was no mapping for the key
1540 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1541     * with the keys currently in the map
1542     * @throws NullPointerException if the specified key or value is null
1543 dl 1.1 */
1544     public V put(K key, V value) {
1545 dl 1.9 if (value == null)
1546 dl 1.1 throw new NullPointerException();
1547 dl 1.118 return doPut(key, value, false);
1548 dl 1.1 }
1549    
1550     /**
1551 jsr166 1.36 * Removes the mapping for the specified key from this map if present.
1552 dl 1.1 *
1553     * @param key key for which mapping should be removed
1554 jsr166 1.22 * @return the previous value associated with the specified key, or
1555 jsr166 1.82 * {@code null} if there was no mapping for the key
1556 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1557     * with the keys currently in the map
1558     * @throws NullPointerException if the specified key is null
1559 dl 1.1 */
1560     public V remove(Object key) {
1561 dl 1.118 return doRemove(key, null);
1562 dl 1.1 }
1563    
1564     /**
1565 jsr166 1.82 * Returns {@code true} if this map maps one or more keys to the
1566 dl 1.1 * specified value. This operation requires time linear in the
1567 dl 1.69 * map size. Additionally, it is possible for the map to change
1568     * during execution of this method, in which case the returned
1569     * result may be inaccurate.
1570 dl 1.1 *
1571 jsr166 1.22 * @param value value whose presence in this map is to be tested
1572 jsr166 1.82 * @return {@code true} if a mapping to {@code value} exists;
1573     * {@code false} otherwise
1574 jsr166 1.22 * @throws NullPointerException if the specified value is null
1575 dl 1.9 */
1576 dl 1.1 public boolean containsValue(Object value) {
1577 dl 1.9 if (value == null)
1578 dl 1.1 throw new NullPointerException();
1579     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1580     V v = n.getValidValue();
1581     if (v != null && value.equals(v))
1582     return true;
1583     }
1584     return false;
1585     }
1586    
1587     /**
1588 dl 1.6 * Returns the number of key-value mappings in this map. If this map
1589 jsr166 1.82 * contains more than {@code Integer.MAX_VALUE} elements, it
1590     * returns {@code Integer.MAX_VALUE}.
1591 dl 1.1 *
1592     * <p>Beware that, unlike in most collections, this method is
1593     * <em>NOT</em> a constant-time operation. Because of the
1594     * asynchronous nature of these maps, determining the current
1595     * number of elements requires traversing them all to count them.
1596     * Additionally, it is possible for the size to change during
1597     * execution of this method, in which case the returned result
1598     * will be inaccurate. Thus, this method is typically not very
1599     * useful in concurrent applications.
1600     *
1601 jsr166 1.22 * @return the number of elements in this map
1602 dl 1.1 */
1603     public int size() {
1604     long count = 0;
1605     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1606     if (n.getValidValue() != null)
1607     ++count;
1608     }
1609 jsr166 1.61 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1610 dl 1.1 }
1611    
1612     /**
1613 jsr166 1.82 * Returns {@code true} if this map contains no key-value mappings.
1614     * @return {@code true} if this map contains no key-value mappings
1615 dl 1.1 */
1616     public boolean isEmpty() {
1617     return findFirst() == null;
1618     }
1619    
1620     /**
1621 jsr166 1.22 * Removes all of the mappings from this map.
1622 dl 1.1 */
1623     public void clear() {
1624     initialize();
1625     }
1626    
1627 dl 1.109 /**
1628     * If the specified key is not already associated with a value,
1629     * attempts to compute its value using the given mapping function
1630     * and enters it into this map unless {@code null}. The function
1631     * is <em>NOT</em> guaranteed to be applied once atomically only
1632     * if the value is not present.
1633     *
1634     * @param key key with which the specified value is to be associated
1635     * @param mappingFunction the function to compute a value
1636     * @return the current (existing or computed) value associated with
1637     * the specified key, or null if the computed value is null
1638     * @throws NullPointerException if the specified key is null
1639     * or the mappingFunction is null
1640     * @since 1.8
1641     */
1642 jsr166 1.110 public V computeIfAbsent(K key,
1643 dl 1.109 Function<? super K, ? extends V> mappingFunction) {
1644 jsr166 1.110 if (key == null || mappingFunction == null)
1645     throw new NullPointerException();
1646     V v, p, r;
1647 dl 1.118 if ((v = doGet(key)) == null &&
1648     (r = mappingFunction.apply(key)) != null)
1649     v = (p = doPut(key, r, true)) == null ? r : p;
1650 dl 1.109 return v;
1651     }
1652    
1653     /**
1654     * If the value for the specified key is present, attempts to
1655     * compute a new mapping given the key and its current mapped
1656     * value. The function is <em>NOT</em> guaranteed to be applied
1657     * once atomically.
1658     *
1659 dl 1.111 * @param key key with which a value may be associated
1660 dl 1.109 * @param remappingFunction the function to compute a value
1661     * @return the new value associated with the specified key, or null if none
1662     * @throws NullPointerException if the specified key is null
1663     * or the remappingFunction is null
1664     * @since 1.8
1665     */
1666 jsr166 1.110 public V computeIfPresent(K key,
1667 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1668 jsr166 1.110 if (key == null || remappingFunction == null)
1669     throw new NullPointerException();
1670 dl 1.118 Node<K,V> n; Object v;
1671     while ((n = findNode(key)) != null) {
1672     if ((v = n.value) != null) {
1673     @SuppressWarnings("unchecked") V vv = (V) v;
1674     V r = remappingFunction.apply(key, vv);
1675     if (r != null) {
1676     if (n.casValue(vv, r))
1677     return r;
1678 dl 1.109 }
1679 dl 1.118 else if (doRemove(key, vv) != null)
1680     break;
1681 dl 1.109 }
1682 jsr166 1.110 }
1683     return null;
1684 dl 1.109 }
1685    
1686     /**
1687     * Attempts to compute a mapping for the specified key and its
1688     * current mapped value (or {@code null} if there is no current
1689     * mapping). The function is <em>NOT</em> guaranteed to be applied
1690     * once atomically.
1691     *
1692     * @param key key with which the specified value is to be associated
1693     * @param remappingFunction the function to compute a value
1694     * @return the new value associated with the specified key, or null if none
1695     * @throws NullPointerException if the specified key is null
1696     * or the remappingFunction is null
1697     * @since 1.8
1698     */
1699 jsr166 1.110 public V compute(K key,
1700 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1701 jsr166 1.110 if (key == null || remappingFunction == null)
1702     throw new NullPointerException();
1703 dl 1.118 for (;;) {
1704     Node<K,V> n; Object v; V r;
1705     if ((n = findNode(key)) == null) {
1706     if ((r = remappingFunction.apply(key, null)) == null)
1707     break;
1708 dl 1.124 if (doPut(key, r, true) == null)
1709 dl 1.118 return r;
1710     }
1711     else if ((v = n.value) != null) {
1712     @SuppressWarnings("unchecked") V vv = (V) v;
1713     if ((r = remappingFunction.apply(key, vv)) != null) {
1714     if (n.casValue(vv, r))
1715 dl 1.109 return r;
1716     }
1717 dl 1.118 else if (doRemove(key, vv) != null)
1718     break;
1719 dl 1.109 }
1720     }
1721 jsr166 1.110 return null;
1722 dl 1.109 }
1723    
1724     /**
1725     * If the specified key is not already associated with a value,
1726     * associates it with the given value. Otherwise, replaces the
1727     * value with the results of the given remapping function, or
1728     * removes if {@code null}. The function is <em>NOT</em>
1729     * guaranteed to be applied once atomically.
1730     *
1731     * @param key key with which the specified value is to be associated
1732     * @param value the value to use if absent
1733     * @param remappingFunction the function to recompute a value if present
1734     * @return the new value associated with the specified key, or null if none
1735     * @throws NullPointerException if the specified key or value is null
1736     * or the remappingFunction is null
1737     * @since 1.8
1738     */
1739     public V merge(K key, V value,
1740     BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1741 jsr166 1.110 if (key == null || value == null || remappingFunction == null)
1742     throw new NullPointerException();
1743 dl 1.118 for (;;) {
1744     Node<K,V> n; Object v; V r;
1745     if ((n = findNode(key)) == null) {
1746 dl 1.124 if (doPut(key, value, true) == null)
1747 dl 1.118 return value;
1748     }
1749     else if ((v = n.value) != null) {
1750     @SuppressWarnings("unchecked") V vv = (V) v;
1751     if ((r = remappingFunction.apply(vv, value)) != null) {
1752     if (n.casValue(vv, r))
1753     return r;
1754 dl 1.109 }
1755 dl 1.118 else if (doRemove(key, vv) != null)
1756     return null;
1757 dl 1.109 }
1758 jsr166 1.110 }
1759 dl 1.109 }
1760    
1761 dl 1.46 /* ---------------- View methods -------------- */
1762    
1763     /*
1764     * Note: Lazy initialization works for views because view classes
1765     * are stateless/immutable so it doesn't matter wrt correctness if
1766     * more than one is created (which will only rarely happen). Even
1767     * so, the following idiom conservatively ensures that the method
1768     * returns the one it created if it does so, not one created by
1769     * another racing thread.
1770     */
1771    
1772 dl 1.1 /**
1773 jsr166 1.51 * Returns a {@link NavigableSet} view of the keys contained in this map.
1774 jsr166 1.132 *
1775     * <p>The set's iterator returns the keys in ascending order.
1776     * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1777     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1778     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1779     * key order. The spliterator's comparator (see
1780     * {@link java.util.Spliterator#getComparator()}) is {@code null} if
1781     * the map's comparator (see {@link #comparator()}) is {@code null}.
1782     * Otherwise, the spliterator's comparator is the same as or imposes the
1783     * same total ordering as the map's comparator.
1784     *
1785     * <p>The set is backed by the map, so changes to the map are
1786 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1787     * removal, which removes the corresponding mapping from the map,
1788 jsr166 1.51 * via the {@code Iterator.remove}, {@code Set.remove},
1789     * {@code removeAll}, {@code retainAll}, and {@code clear}
1790     * operations. It does not support the {@code add} or {@code addAll}
1791 jsr166 1.22 * operations.
1792     *
1793 jsr166 1.133 * <p>The view's iterators and spliterators are
1794     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1795 dl 1.1 *
1796 jsr166 1.51 * <p>This method is equivalent to method {@code navigableKeySet}.
1797     *
1798     * @return a navigable set view of the keys in this map
1799 dl 1.1 */
1800 jsr166 1.68 public NavigableSet<K> keySet() {
1801 jsr166 1.147 KeySet<K,V> ks = keySet;
1802     return (ks != null) ? ks : (keySet = new KeySet<>(this));
1803 dl 1.1 }
1804    
1805 dl 1.46 public NavigableSet<K> navigableKeySet() {
1806 jsr166 1.147 KeySet<K,V> ks = keySet;
1807     return (ks != null) ? ks : (keySet = new KeySet<>(this));
1808 dl 1.83 }
1809    
1810     /**
1811 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1812 jsr166 1.132 * <p>The collection's iterator returns the values in ascending order
1813     * of the corresponding keys. The collections's spliterator additionally
1814     * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1815     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1816     * order of the corresponding keys.
1817     *
1818     * <p>The collection is backed by the map, so changes to the map are
1819 dl 1.1 * reflected in the collection, and vice-versa. The collection
1820     * supports element removal, which removes the corresponding
1821 jsr166 1.82 * mapping from the map, via the {@code Iterator.remove},
1822     * {@code Collection.remove}, {@code removeAll},
1823     * {@code retainAll} and {@code clear} operations. It does not
1824     * support the {@code add} or {@code addAll} operations.
1825 dl 1.1 *
1826 jsr166 1.133 * <p>The view's iterators and spliterators are
1827     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1828 dl 1.1 */
1829     public Collection<V> values() {
1830 jsr166 1.147 Values<K,V> vs = values;
1831     return (vs != null) ? vs : (values = new Values<>(this));
1832 dl 1.1 }
1833    
1834     /**
1835 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
1836 jsr166 1.132 *
1837     * <p>The set's iterator returns the entries in ascending key order. The
1838     * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1839     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1840     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1841     * key order.
1842     *
1843     * <p>The set is backed by the map, so changes to the map are
1844 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1845     * removal, which removes the corresponding mapping from the map,
1846 jsr166 1.82 * via the {@code Iterator.remove}, {@code Set.remove},
1847     * {@code removeAll}, {@code retainAll} and {@code clear}
1848     * operations. It does not support the {@code add} or
1849     * {@code addAll} operations.
1850 jsr166 1.22 *
1851 jsr166 1.133 * <p>The view's iterators and spliterators are
1852     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1853 jsr166 1.132 *
1854     * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1855     * or {@code spliterator} do <em>not</em> support the {@code setValue}
1856     * operation.
1857 dl 1.1 *
1858 jsr166 1.22 * @return a set view of the mappings contained in this map,
1859     * sorted in ascending key order
1860 dl 1.1 */
1861     public Set<Map.Entry<K,V>> entrySet() {
1862 jsr166 1.71 EntrySet<K,V> es = entrySet;
1863     return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1864 dl 1.46 }
1865    
1866     public ConcurrentNavigableMap<K,V> descendingMap() {
1867     ConcurrentNavigableMap<K,V> dm = descendingMap;
1868     return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1869     (this, null, false, null, false, true));
1870 dl 1.1 }
1871    
1872 dl 1.46 public NavigableSet<K> descendingKeySet() {
1873     return descendingMap().navigableKeySet();
1874 dl 1.1 }
1875    
1876     /* ---------------- AbstractMap Overrides -------------- */
1877    
1878     /**
1879     * Compares the specified object with this map for equality.
1880 jsr166 1.82 * Returns {@code true} if the given object is also a map and the
1881 dl 1.1 * two maps represent the same mappings. More formally, two maps
1882 jsr166 1.82 * {@code m1} and {@code m2} represent the same mappings if
1883     * {@code m1.entrySet().equals(m2.entrySet())}. This
1884 dl 1.1 * operation may return misleading results if either map is
1885     * concurrently modified during execution of this method.
1886     *
1887 jsr166 1.22 * @param o object to be compared for equality with this map
1888 jsr166 1.82 * @return {@code true} if the specified object is equal to this map
1889 dl 1.1 */
1890     public boolean equals(Object o) {
1891 jsr166 1.55 if (o == this)
1892     return true;
1893     if (!(o instanceof Map))
1894     return false;
1895     Map<?,?> m = (Map<?,?>) o;
1896 dl 1.1 try {
1897 jsr166 1.55 for (Map.Entry<K,V> e : this.entrySet())
1898     if (! e.getValue().equals(m.get(e.getKey())))
1899 dl 1.25 return false;
1900 jsr166 1.55 for (Map.Entry<?,?> e : m.entrySet()) {
1901 dl 1.25 Object k = e.getKey();
1902     Object v = e.getValue();
1903 jsr166 1.55 if (k == null || v == null || !v.equals(get(k)))
1904 dl 1.25 return false;
1905     }
1906     return true;
1907 jsr166 1.15 } catch (ClassCastException unused) {
1908 dl 1.1 return false;
1909 jsr166 1.15 } catch (NullPointerException unused) {
1910 dl 1.1 return false;
1911     }
1912     }
1913    
1914     /* ------ ConcurrentMap API methods ------ */
1915    
1916     /**
1917 jsr166 1.22 * {@inheritDoc}
1918     *
1919     * @return the previous value associated with the specified key,
1920 jsr166 1.82 * or {@code null} if there was no mapping for the key
1921 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1922     * with the keys currently in the map
1923     * @throws NullPointerException if the specified key or value is null
1924 dl 1.1 */
1925     public V putIfAbsent(K key, V value) {
1926 dl 1.9 if (value == null)
1927 dl 1.1 throw new NullPointerException();
1928 dl 1.118 return doPut(key, value, true);
1929 dl 1.1 }
1930    
1931     /**
1932 jsr166 1.22 * {@inheritDoc}
1933     *
1934     * @throws ClassCastException if the specified key cannot be compared
1935     * with the keys currently in the map
1936 dl 1.23 * @throws NullPointerException if the specified key is null
1937 dl 1.1 */
1938     public boolean remove(Object key, Object value) {
1939 dl 1.45 if (key == null)
1940     throw new NullPointerException();
1941 dl 1.118 return value != null && doRemove(key, value) != null;
1942 dl 1.1 }
1943    
1944     /**
1945 jsr166 1.22 * {@inheritDoc}
1946     *
1947     * @throws ClassCastException if the specified key cannot be compared
1948     * with the keys currently in the map
1949     * @throws NullPointerException if any of the arguments are null
1950 dl 1.1 */
1951     public boolean replace(K key, V oldValue, V newValue) {
1952 dl 1.118 if (key == null || oldValue == null || newValue == null)
1953 dl 1.1 throw new NullPointerException();
1954     for (;;) {
1955 dl 1.118 Node<K,V> n; Object v;
1956     if ((n = findNode(key)) == null)
1957 dl 1.1 return false;
1958 dl 1.118 if ((v = n.value) != null) {
1959 dl 1.1 if (!oldValue.equals(v))
1960     return false;
1961     if (n.casValue(v, newValue))
1962     return true;
1963     }
1964     }
1965     }
1966    
1967     /**
1968 jsr166 1.22 * {@inheritDoc}
1969     *
1970     * @return the previous value associated with the specified key,
1971 jsr166 1.82 * or {@code null} if there was no mapping for the key
1972 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1973     * with the keys currently in the map
1974     * @throws NullPointerException if the specified key or value is null
1975 dl 1.1 */
1976     public V replace(K key, V value) {
1977 dl 1.118 if (key == null || value == null)
1978 dl 1.1 throw new NullPointerException();
1979     for (;;) {
1980 dl 1.118 Node<K,V> n; Object v;
1981     if ((n = findNode(key)) == null)
1982 dl 1.1 return null;
1983 dl 1.118 if ((v = n.value) != null && n.casValue(v, value)) {
1984     @SuppressWarnings("unchecked") V vv = (V)v;
1985     return vv;
1986     }
1987 dl 1.1 }
1988     }
1989    
1990     /* ------ SortedMap API methods ------ */
1991    
1992     public Comparator<? super K> comparator() {
1993     return comparator;
1994     }
1995    
1996     /**
1997 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
1998 dl 1.1 */
1999 dl 1.9 public K firstKey() {
2000 dl 1.1 Node<K,V> n = findFirst();
2001     if (n == null)
2002     throw new NoSuchElementException();
2003     return n.key;
2004     }
2005    
2006     /**
2007 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2008 dl 1.1 */
2009     public K lastKey() {
2010     Node<K,V> n = findLast();
2011     if (n == null)
2012     throw new NoSuchElementException();
2013     return n.key;
2014     }
2015    
2016     /**
2017 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2018     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2019 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2020 dl 1.1 */
2021 dl 1.47 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
2022     boolean fromInclusive,
2023     K toKey,
2024     boolean toInclusive) {
2025 dl 1.1 if (fromKey == null || toKey == null)
2026     throw new NullPointerException();
2027 dl 1.46 return new SubMap<K,V>
2028     (this, fromKey, fromInclusive, toKey, toInclusive, false);
2029 dl 1.1 }
2030    
2031     /**
2032 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2033     * @throws NullPointerException if {@code toKey} is null
2034 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2035 dl 1.1 */
2036 dl 1.47 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2037     boolean inclusive) {
2038 dl 1.1 if (toKey == null)
2039     throw new NullPointerException();
2040 dl 1.46 return new SubMap<K,V>
2041     (this, null, false, toKey, inclusive, false);
2042 dl 1.1 }
2043    
2044     /**
2045 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2046     * @throws NullPointerException if {@code fromKey} is null
2047 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2048 dl 1.1 */
2049 dl 1.47 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2050     boolean inclusive) {
2051 dl 1.6 if (fromKey == null)
2052     throw new NullPointerException();
2053 dl 1.46 return new SubMap<K,V>
2054     (this, fromKey, inclusive, null, false, false);
2055 dl 1.6 }
2056    
2057     /**
2058 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2059     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2060 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2061 dl 1.6 */
2062 dl 1.37 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2063 dl 1.47 return subMap(fromKey, true, toKey, false);
2064 dl 1.6 }
2065    
2066     /**
2067 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2068     * @throws NullPointerException if {@code toKey} is null
2069 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2070 dl 1.6 */
2071 dl 1.37 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2072 dl 1.47 return headMap(toKey, false);
2073 dl 1.6 }
2074    
2075     /**
2076 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2077     * @throws NullPointerException if {@code fromKey} is null
2078 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2079 dl 1.6 */
2080 dl 1.37 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2081 dl 1.47 return tailMap(fromKey, true);
2082 dl 1.1 }
2083    
2084     /* ---------------- Relational operations -------------- */
2085    
2086     /**
2087 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2088 jsr166 1.82 * strictly less than the given key, or {@code null} if there is
2089 jsr166 1.22 * no such key. The returned entry does <em>not</em> support the
2090 jsr166 1.82 * {@code Entry.setValue} method.
2091 dl 1.9 *
2092 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2093     * @throws NullPointerException if the specified key is null
2094 dl 1.1 */
2095 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
2096     return getNear(key, LT);
2097 dl 1.1 }
2098    
2099     /**
2100 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2101     * @throws NullPointerException if the specified key is null
2102 dl 1.1 */
2103 jsr166 1.22 public K lowerKey(K key) {
2104 dl 1.118 Node<K,V> n = findNear(key, LT, comparator);
2105 jsr166 1.61 return (n == null) ? null : n.key;
2106 dl 1.1 }
2107    
2108     /**
2109 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2110 jsr166 1.82 * less than or equal to the given key, or {@code null} if there
2111 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2112 jsr166 1.82 * the {@code Entry.setValue} method.
2113 dl 1.9 *
2114 jsr166 1.22 * @param key the key
2115     * @throws ClassCastException {@inheritDoc}
2116     * @throws NullPointerException if the specified key is null
2117 dl 1.1 */
2118 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
2119     return getNear(key, LT|EQ);
2120 dl 1.1 }
2121    
2122     /**
2123 jsr166 1.22 * @param key the key
2124     * @throws ClassCastException {@inheritDoc}
2125     * @throws NullPointerException if the specified key is null
2126 dl 1.1 */
2127 jsr166 1.22 public K floorKey(K key) {
2128 dl 1.118 Node<K,V> n = findNear(key, LT|EQ, comparator);
2129 jsr166 1.61 return (n == null) ? null : n.key;
2130 dl 1.1 }
2131    
2132     /**
2133 jsr166 1.22 * Returns a key-value mapping associated with the least key
2134 jsr166 1.82 * greater than or equal to the given key, or {@code null} if
2135 jsr166 1.22 * there is no such entry. The returned entry does <em>not</em>
2136 jsr166 1.82 * support the {@code Entry.setValue} method.
2137 dl 1.9 *
2138 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2139     * @throws NullPointerException if the specified key is null
2140 dl 1.1 */
2141 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
2142     return getNear(key, GT|EQ);
2143 dl 1.1 }
2144    
2145     /**
2146 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2147     * @throws NullPointerException if the specified key is null
2148 dl 1.1 */
2149 jsr166 1.22 public K ceilingKey(K key) {
2150 dl 1.118 Node<K,V> n = findNear(key, GT|EQ, comparator);
2151 jsr166 1.61 return (n == null) ? null : n.key;
2152 dl 1.1 }
2153    
2154     /**
2155     * Returns a key-value mapping associated with the least key
2156 jsr166 1.82 * strictly greater than the given key, or {@code null} if there
2157 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2158 jsr166 1.82 * the {@code Entry.setValue} method.
2159 dl 1.9 *
2160 jsr166 1.22 * @param key the key
2161     * @throws ClassCastException {@inheritDoc}
2162     * @throws NullPointerException if the specified key is null
2163 dl 1.1 */
2164     public Map.Entry<K,V> higherEntry(K key) {
2165     return getNear(key, GT);
2166     }
2167    
2168     /**
2169 jsr166 1.22 * @param key the key
2170     * @throws ClassCastException {@inheritDoc}
2171     * @throws NullPointerException if the specified key is null
2172 dl 1.1 */
2173     public K higherKey(K key) {
2174 dl 1.118 Node<K,V> n = findNear(key, GT, comparator);
2175 jsr166 1.61 return (n == null) ? null : n.key;
2176 dl 1.1 }
2177    
2178     /**
2179     * Returns a key-value mapping associated with the least
2180 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2181 dl 1.1 * The returned entry does <em>not</em> support
2182 jsr166 1.82 * the {@code Entry.setValue} method.
2183 dl 1.1 */
2184     public Map.Entry<K,V> firstEntry() {
2185     for (;;) {
2186     Node<K,V> n = findFirst();
2187 dl 1.9 if (n == null)
2188 dl 1.1 return null;
2189 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2190 dl 1.1 if (e != null)
2191     return e;
2192     }
2193     }
2194    
2195     /**
2196     * Returns a key-value mapping associated with the greatest
2197 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2198 dl 1.1 * The returned entry does <em>not</em> support
2199 jsr166 1.82 * the {@code Entry.setValue} method.
2200 dl 1.1 */
2201     public Map.Entry<K,V> lastEntry() {
2202     for (;;) {
2203     Node<K,V> n = findLast();
2204 dl 1.9 if (n == null)
2205 dl 1.1 return null;
2206 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2207 dl 1.1 if (e != null)
2208     return e;
2209     }
2210     }
2211    
2212     /**
2213     * Removes and returns a key-value mapping associated with
2214 jsr166 1.82 * the least key in this map, or {@code null} if the map is empty.
2215 dl 1.1 * The returned entry does <em>not</em> support
2216 jsr166 1.82 * the {@code Entry.setValue} method.
2217 dl 1.1 */
2218     public Map.Entry<K,V> pollFirstEntry() {
2219 dl 1.25 return doRemoveFirstEntry();
2220 dl 1.1 }
2221    
2222     /**
2223     * Removes and returns a key-value mapping associated with
2224 jsr166 1.82 * the greatest key in this map, or {@code null} if the map is empty.
2225 dl 1.1 * The returned entry does <em>not</em> support
2226 jsr166 1.82 * the {@code Entry.setValue} method.
2227 dl 1.1 */
2228     public Map.Entry<K,V> pollLastEntry() {
2229 dl 1.31 return doRemoveLastEntry();
2230 dl 1.1 }
2231    
2232    
2233     /* ---------------- Iterators -------------- */
2234    
2235     /**
2236 dl 1.46 * Base of iterator classes:
2237 dl 1.1 */
2238 dl 1.46 abstract class Iter<T> implements Iterator<T> {
2239 dl 1.1 /** the last node returned by next() */
2240 jsr166 1.52 Node<K,V> lastReturned;
2241 dl 1.1 /** the next node to return from next(); */
2242     Node<K,V> next;
2243 jsr166 1.55 /** Cache of next value field to maintain weak consistency */
2244     V nextValue;
2245 dl 1.1
2246 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2247 dl 1.46 Iter() {
2248 dl 1.118 while ((next = findFirst()) != null) {
2249 jsr166 1.52 Object x = next.value;
2250     if (x != null && x != next) {
2251 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2252     nextValue = vv;
2253 dl 1.1 break;
2254 jsr166 1.55 }
2255 dl 1.1 }
2256     }
2257    
2258 dl 1.46 public final boolean hasNext() {
2259     return next != null;
2260 dl 1.1 }
2261 dl 1.46
2262 jsr166 1.13 /** Advances next to higher entry. */
2263 dl 1.46 final void advance() {
2264 jsr166 1.54 if (next == null)
2265 dl 1.1 throw new NoSuchElementException();
2266 jsr166 1.55 lastReturned = next;
2267 dl 1.118 while ((next = next.next) != null) {
2268 jsr166 1.52 Object x = next.value;
2269     if (x != null && x != next) {
2270 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2271     nextValue = vv;
2272 dl 1.1 break;
2273 jsr166 1.55 }
2274 dl 1.1 }
2275     }
2276    
2277     public void remove() {
2278 jsr166 1.52 Node<K,V> l = lastReturned;
2279 dl 1.1 if (l == null)
2280     throw new IllegalStateException();
2281     // It would not be worth all of the overhead to directly
2282     // unlink from here. Using remove is fast enough.
2283     ConcurrentSkipListMap.this.remove(l.key);
2284 jsr166 1.55 lastReturned = null;
2285 dl 1.1 }
2286    
2287     }
2288    
2289 dl 1.46 final class ValueIterator extends Iter<V> {
2290 dl 1.9 public V next() {
2291 jsr166 1.52 V v = nextValue;
2292 dl 1.46 advance();
2293 jsr166 1.52 return v;
2294 dl 1.1 }
2295     }
2296    
2297 dl 1.46 final class KeyIterator extends Iter<K> {
2298 dl 1.9 public K next() {
2299 dl 1.1 Node<K,V> n = next;
2300 dl 1.46 advance();
2301 dl 1.1 return n.key;
2302     }
2303     }
2304    
2305 dl 1.46 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2306     public Map.Entry<K,V> next() {
2307     Node<K,V> n = next;
2308 jsr166 1.52 V v = nextValue;
2309 dl 1.46 advance();
2310     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2311 dl 1.1 }
2312 dl 1.46 }
2313 dl 1.1
2314 dl 1.46 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2315    
2316     Iterator<K> keyIterator() {
2317 dl 1.1 return new KeyIterator();
2318     }
2319    
2320 dl 1.46 Iterator<V> valueIterator() {
2321     return new ValueIterator();
2322 dl 1.1 }
2323    
2324 dl 1.46 Iterator<Map.Entry<K,V>> entryIterator() {
2325     return new EntryIterator();
2326 dl 1.1 }
2327    
2328 dl 1.46 /* ---------------- View Classes -------------- */
2329    
2330     /*
2331     * View classes are static, delegating to a ConcurrentNavigableMap
2332     * to allow use by SubMaps, which outweighs the ugliness of
2333     * needing type-tests for Iterator methods.
2334     */
2335    
2336 jsr166 1.53 static final <E> List<E> toList(Collection<E> c) {
2337 jsr166 1.55 // Using size() here would be a pessimization.
2338 jsr166 1.90 ArrayList<E> list = new ArrayList<E>();
2339 jsr166 1.55 for (E e : c)
2340     list.add(e);
2341     return list;
2342 jsr166 1.53 }
2343    
2344 jsr166 1.147 static final class KeySet<K,V>
2345     extends AbstractSet<K> implements NavigableSet<K> {
2346     final ConcurrentNavigableMap<K,V> m;
2347     KeySet(ConcurrentNavigableMap<K,V> map) { m = map; }
2348 dl 1.46 public int size() { return m.size(); }
2349     public boolean isEmpty() { return m.isEmpty(); }
2350     public boolean contains(Object o) { return m.containsKey(o); }
2351     public boolean remove(Object o) { return m.remove(o) != null; }
2352     public void clear() { m.clear(); }
2353 jsr166 1.147 public K lower(K e) { return m.lowerKey(e); }
2354     public K floor(K e) { return m.floorKey(e); }
2355     public K ceiling(K e) { return m.ceilingKey(e); }
2356     public K higher(K e) { return m.higherKey(e); }
2357     public Comparator<? super K> comparator() { return m.comparator(); }
2358     public K first() { return m.firstKey(); }
2359     public K last() { return m.lastKey(); }
2360     public K pollFirst() {
2361     Map.Entry<K,V> e = m.pollFirstEntry();
2362 jsr166 1.61 return (e == null) ? null : e.getKey();
2363 dl 1.46 }
2364 jsr166 1.147 public K pollLast() {
2365     Map.Entry<K,V> e = m.pollLastEntry();
2366 jsr166 1.61 return (e == null) ? null : e.getKey();
2367 dl 1.46 }
2368 jsr166 1.147 public Iterator<K> iterator() {
2369 dl 1.46 if (m instanceof ConcurrentSkipListMap)
2370 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).keyIterator();
2371 dl 1.46 else
2372 jsr166 1.147 return ((ConcurrentSkipListMap.SubMap<K,V>)m).keyIterator();
2373 dl 1.1 }
2374 dl 1.45 public boolean equals(Object o) {
2375     if (o == this)
2376     return true;
2377     if (!(o instanceof Set))
2378     return false;
2379     Collection<?> c = (Collection<?>) o;
2380     try {
2381     return containsAll(c) && c.containsAll(this);
2382 jsr166 1.81 } catch (ClassCastException unused) {
2383 dl 1.45 return false;
2384     } catch (NullPointerException unused) {
2385     return false;
2386     }
2387     }
2388 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2389     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2390 jsr166 1.147 public Iterator<K> descendingIterator() {
2391 dl 1.46 return descendingSet().iterator();
2392     }
2393 jsr166 1.147 public NavigableSet<K> subSet(K fromElement,
2394 dl 1.47 boolean fromInclusive,
2395 jsr166 1.147 K toElement,
2396 dl 1.47 boolean toInclusive) {
2397 jsr166 1.147 return new KeySet<>(m.subMap(fromElement, fromInclusive,
2398     toElement, toInclusive));
2399 dl 1.46 }
2400 jsr166 1.147 public NavigableSet<K> headSet(K toElement, boolean inclusive) {
2401     return new KeySet<>(m.headMap(toElement, inclusive));
2402 dl 1.46 }
2403 jsr166 1.147 public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
2404     return new KeySet<>(m.tailMap(fromElement, inclusive));
2405 dl 1.46 }
2406 jsr166 1.147 public NavigableSet<K> subSet(K fromElement, K toElement) {
2407 dl 1.47 return subSet(fromElement, true, toElement, false);
2408 dl 1.46 }
2409 jsr166 1.147 public NavigableSet<K> headSet(K toElement) {
2410 dl 1.47 return headSet(toElement, false);
2411 dl 1.46 }
2412 jsr166 1.147 public NavigableSet<K> tailSet(K fromElement) {
2413 dl 1.47 return tailSet(fromElement, true);
2414 dl 1.46 }
2415 jsr166 1.147 public NavigableSet<K> descendingSet() {
2416     return new KeySet<>(m.descendingMap());
2417 dl 1.46 }
2418 dl 1.100 @SuppressWarnings("unchecked")
2419 jsr166 1.147 public Spliterator<K> spliterator() {
2420 dl 1.100 if (m instanceof ConcurrentSkipListMap)
2421 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).keySpliterator();
2422 dl 1.100 else
2423 jsr166 1.147 return (Spliterator<K>)((SubMap<K,V>)m).keyIterator();
2424 dl 1.100 }
2425 dl 1.1 }
2426    
2427 jsr166 1.147 static final class Values<K,V> extends AbstractCollection<V> {
2428     final ConcurrentNavigableMap<K,V> m;
2429     Values(ConcurrentNavigableMap<K,V> map) {
2430 dl 1.46 m = map;
2431 dl 1.1 }
2432 jsr166 1.147 public Iterator<V> iterator() {
2433 dl 1.46 if (m instanceof ConcurrentSkipListMap)
2434 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).valueIterator();
2435 dl 1.46 else
2436 jsr166 1.147 return ((SubMap<K,V>)m).valueIterator();
2437 dl 1.1 }
2438 jsr166 1.147 public int size() { return m.size(); }
2439     public boolean isEmpty() { return m.isEmpty(); }
2440     public boolean contains(Object o) { return m.containsValue(o); }
2441     public void clear() { m.clear(); }
2442 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2443     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2444 dl 1.100 @SuppressWarnings("unchecked")
2445 jsr166 1.147 public Spliterator<V> spliterator() {
2446 dl 1.100 if (m instanceof ConcurrentSkipListMap)
2447 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).valueSpliterator();
2448 dl 1.100 else
2449 jsr166 1.147 return (Spliterator<V>)((SubMap<K,V>)m).valueIterator();
2450 dl 1.100 }
2451 dl 1.146
2452 jsr166 1.147 public boolean removeIf(Predicate<? super V> filter) {
2453 dl 1.146 if (filter == null) throw new NullPointerException();
2454     if (m instanceof ConcurrentSkipListMap)
2455 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).removeValueIf(filter);
2456 dl 1.146 // else use iterator
2457 jsr166 1.147 Iterator<Map.Entry<K,V>> it = ((SubMap<K,V>)m).entryIterator();
2458 dl 1.146 boolean removed = false;
2459     while (it.hasNext()) {
2460 jsr166 1.147 Map.Entry<K,V> e = it.next();
2461     V v = e.getValue();
2462 dl 1.146 if (filter.test(v) && m.remove(e.getKey(), v))
2463     removed = true;
2464     }
2465     return removed;
2466 dl 1.144 }
2467 dl 1.1 }
2468    
2469 jsr166 1.147 static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
2470     final ConcurrentNavigableMap<K,V> m;
2471     EntrySet(ConcurrentNavigableMap<K,V> map) {
2472 dl 1.46 m = map;
2473 dl 1.1 }
2474 jsr166 1.147 public Iterator<Map.Entry<K,V>> iterator() {
2475 dl 1.46 if (m instanceof ConcurrentSkipListMap)
2476 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).entryIterator();
2477 dl 1.46 else
2478 jsr166 1.147 return ((SubMap<K,V>)m).entryIterator();
2479 dl 1.46 }
2480 dl 1.47
2481 dl 1.1 public boolean contains(Object o) {
2482     if (!(o instanceof Map.Entry))
2483     return false;
2484 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2485 jsr166 1.147 V v = m.get(e.getKey());
2486 dl 1.1 return v != null && v.equals(e.getValue());
2487     }
2488     public boolean remove(Object o) {
2489     if (!(o instanceof Map.Entry))
2490     return false;
2491 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2492 dl 1.46 return m.remove(e.getKey(),
2493 dl 1.47 e.getValue());
2494 dl 1.1 }
2495     public boolean isEmpty() {
2496 dl 1.46 return m.isEmpty();
2497 dl 1.1 }
2498     public int size() {
2499 dl 1.46 return m.size();
2500 dl 1.1 }
2501     public void clear() {
2502 dl 1.46 m.clear();
2503 dl 1.1 }
2504 dl 1.45 public boolean equals(Object o) {
2505     if (o == this)
2506     return true;
2507     if (!(o instanceof Set))
2508     return false;
2509     Collection<?> c = (Collection<?>) o;
2510     try {
2511     return containsAll(c) && c.containsAll(this);
2512 jsr166 1.81 } catch (ClassCastException unused) {
2513 dl 1.45 return false;
2514     } catch (NullPointerException unused) {
2515     return false;
2516     }
2517     }
2518 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2519     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2520 dl 1.100 @SuppressWarnings("unchecked")
2521 jsr166 1.147 public Spliterator<Map.Entry<K,V>> spliterator() {
2522 dl 1.83 if (m instanceof ConcurrentSkipListMap)
2523 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).entrySpliterator();
2524 dl 1.83 else
2525 jsr166 1.147 return (Spliterator<Map.Entry<K,V>>)
2526     ((SubMap<K,V>)m).entryIterator();
2527 dl 1.100 }
2528 jsr166 1.147 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
2529 dl 1.146 if (filter == null) throw new NullPointerException();
2530     if (m instanceof ConcurrentSkipListMap)
2531 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).removeEntryIf(filter);
2532 dl 1.146 // else use iterator
2533 jsr166 1.147 Iterator<Map.Entry<K,V>> it = ((SubMap<K,V>)m).entryIterator();
2534 dl 1.146 boolean removed = false;
2535     while (it.hasNext()) {
2536 jsr166 1.147 Map.Entry<K,V> e = it.next();
2537 dl 1.146 if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
2538     removed = true;
2539     }
2540     return removed;
2541 dl 1.143 }
2542 dl 1.1 }
2543    
2544     /**
2545     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2546 jsr166 1.149 * represent a subrange of mappings of their underlying maps.
2547     * Instances of this class support all methods of their underlying
2548     * maps, differing in that mappings outside their range are ignored,
2549     * and attempts to add mappings outside their ranges result in {@link
2550     * IllegalArgumentException}. Instances of this class are constructed
2551     * only using the {@code subMap}, {@code headMap}, and {@code tailMap}
2552     * methods of their underlying maps.
2553 jsr166 1.52 *
2554     * @serial include
2555 dl 1.1 */
2556 dl 1.46 static final class SubMap<K,V> extends AbstractMap<K,V>
2557 jsr166 1.130 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
2558 dl 1.1 private static final long serialVersionUID = -7647078645895051609L;
2559    
2560     /** Underlying map */
2561     private final ConcurrentSkipListMap<K,V> m;
2562     /** lower bound key, or null if from start */
2563 dl 1.46 private final K lo;
2564     /** upper bound key, or null if to end */
2565     private final K hi;
2566     /** inclusion flag for lo */
2567     private final boolean loInclusive;
2568     /** inclusion flag for hi */
2569     private final boolean hiInclusive;
2570     /** direction */
2571     private final boolean isDescending;
2572    
2573 dl 1.1 // Lazily initialized view holders
2574 jsr166 1.147 private transient KeySet<K,V> keySetView;
2575 dl 1.1 private transient Set<Map.Entry<K,V>> entrySetView;
2576     private transient Collection<V> valuesView;
2577    
2578     /**
2579 jsr166 1.87 * Creates a new submap, initializing all fields.
2580 dl 1.46 */
2581     SubMap(ConcurrentSkipListMap<K,V> map,
2582     K fromKey, boolean fromInclusive,
2583     K toKey, boolean toInclusive,
2584     boolean isDescending) {
2585 dl 1.118 Comparator<? super K> cmp = map.comparator;
2586 dl 1.47 if (fromKey != null && toKey != null &&
2587 dl 1.118 cpr(cmp, fromKey, toKey) > 0)
2588 dl 1.1 throw new IllegalArgumentException("inconsistent range");
2589     this.m = map;
2590 dl 1.46 this.lo = fromKey;
2591     this.hi = toKey;
2592     this.loInclusive = fromInclusive;
2593     this.hiInclusive = toInclusive;
2594     this.isDescending = isDescending;
2595 dl 1.1 }
2596    
2597     /* ---------------- Utilities -------------- */
2598    
2599 dl 1.118 boolean tooLow(Object key, Comparator<? super K> cmp) {
2600     int c;
2601     return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2602     (c == 0 && !loInclusive)));
2603 dl 1.1 }
2604    
2605 dl 1.118 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2606     int c;
2607     return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2608     (c == 0 && !hiInclusive)));
2609 dl 1.1 }
2610    
2611 dl 1.118 boolean inBounds(Object key, Comparator<? super K> cmp) {
2612     return !tooLow(key, cmp) && !tooHigh(key, cmp);
2613 dl 1.1 }
2614    
2615 dl 1.118 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2616 dl 1.46 if (key == null)
2617     throw new NullPointerException();
2618 dl 1.118 if (!inBounds(key, cmp))
2619 dl 1.46 throw new IllegalArgumentException("key out of range");
2620 dl 1.1 }
2621    
2622 dl 1.46 /**
2623 jsr166 1.87 * Returns true if node key is less than upper bound of range.
2624 dl 1.46 */
2625 dl 1.118 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2626     Comparator<? super K> cmp) {
2627 dl 1.46 if (n == null)
2628     return false;
2629     if (hi == null)
2630     return true;
2631     K k = n.key;
2632     if (k == null) // pass by markers and headers
2633     return true;
2634 dl 1.118 int c = cpr(cmp, k, hi);
2635 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive))
2636     return false;
2637     return true;
2638 dl 1.1 }
2639    
2640 dl 1.46 /**
2641     * Returns lowest node. This node might not be in range, so
2642 jsr166 1.87 * most usages need to check bounds.
2643 dl 1.46 */
2644 dl 1.118 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2645 dl 1.46 if (lo == null)
2646     return m.findFirst();
2647     else if (loInclusive)
2648 dl 1.118 return m.findNear(lo, GT|EQ, cmp);
2649 dl 1.46 else
2650 dl 1.118 return m.findNear(lo, GT, cmp);
2651 dl 1.1 }
2652    
2653     /**
2654 dl 1.46 * Returns highest node. This node might not be in range, so
2655 jsr166 1.87 * most usages need to check bounds.
2656 dl 1.1 */
2657 dl 1.118 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2658 dl 1.46 if (hi == null)
2659     return m.findLast();
2660     else if (hiInclusive)
2661 dl 1.118 return m.findNear(hi, LT|EQ, cmp);
2662 dl 1.46 else
2663 dl 1.118 return m.findNear(hi, LT, cmp);
2664 dl 1.1 }
2665    
2666     /**
2667 jsr166 1.136 * Returns lowest absolute key (ignoring directionality).
2668 dl 1.1 */
2669 dl 1.118 K lowestKey() {
2670     Comparator<? super K> cmp = m.comparator;
2671     ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2672     if (isBeforeEnd(n, cmp))
2673 dl 1.46 return n.key;
2674     else
2675     throw new NoSuchElementException();
2676 dl 1.47 }
2677 dl 1.46
2678     /**
2679 jsr166 1.136 * Returns highest absolute key (ignoring directionality).
2680 dl 1.46 */
2681 dl 1.118 K highestKey() {
2682     Comparator<? super K> cmp = m.comparator;
2683     ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2684 dl 1.46 if (n != null) {
2685     K last = n.key;
2686 dl 1.118 if (inBounds(last, cmp))
2687 dl 1.46 return last;
2688     }
2689     throw new NoSuchElementException();
2690     }
2691    
2692 dl 1.118 Map.Entry<K,V> lowestEntry() {
2693     Comparator<? super K> cmp = m.comparator;
2694 dl 1.46 for (;;) {
2695 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2696     if (!isBeforeEnd(n, cmp))
2697 dl 1.46 return null;
2698     Map.Entry<K,V> e = n.createSnapshot();
2699     if (e != null)
2700     return e;
2701     }
2702     }
2703    
2704 dl 1.118 Map.Entry<K,V> highestEntry() {
2705     Comparator<? super K> cmp = m.comparator;
2706 dl 1.46 for (;;) {
2707 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2708     if (n == null || !inBounds(n.key, cmp))
2709 dl 1.46 return null;
2710     Map.Entry<K,V> e = n.createSnapshot();
2711     if (e != null)
2712     return e;
2713     }
2714     }
2715    
2716 dl 1.118 Map.Entry<K,V> removeLowest() {
2717     Comparator<? super K> cmp = m.comparator;
2718 dl 1.46 for (;;) {
2719 dl 1.118 Node<K,V> n = loNode(cmp);
2720 dl 1.46 if (n == null)
2721     return null;
2722     K k = n.key;
2723 dl 1.118 if (!inBounds(k, cmp))
2724 dl 1.46 return null;
2725 dl 1.118 V v = m.doRemove(k, null);
2726 dl 1.46 if (v != null)
2727     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2728     }
2729     }
2730    
2731 dl 1.118 Map.Entry<K,V> removeHighest() {
2732     Comparator<? super K> cmp = m.comparator;
2733 dl 1.46 for (;;) {
2734 dl 1.118 Node<K,V> n = hiNode(cmp);
2735 dl 1.46 if (n == null)
2736     return null;
2737     K k = n.key;
2738 dl 1.118 if (!inBounds(k, cmp))
2739 dl 1.46 return null;
2740 dl 1.118 V v = m.doRemove(k, null);
2741 dl 1.46 if (v != null)
2742     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2743     }
2744 dl 1.1 }
2745    
2746     /**
2747 dl 1.46 * Submap version of ConcurrentSkipListMap.getNearEntry
2748 dl 1.1 */
2749 dl 1.118 Map.Entry<K,V> getNearEntry(K key, int rel) {
2750     Comparator<? super K> cmp = m.comparator;
2751 dl 1.46 if (isDescending) { // adjust relation for direction
2752 jsr166 1.70 if ((rel & LT) == 0)
2753     rel |= LT;
2754 dl 1.46 else
2755 jsr166 1.70 rel &= ~LT;
2756 dl 1.46 }
2757 dl 1.118 if (tooLow(key, cmp))
2758 jsr166 1.70 return ((rel & LT) != 0) ? null : lowestEntry();
2759 dl 1.118 if (tooHigh(key, cmp))
2760 jsr166 1.70 return ((rel & LT) != 0) ? highestEntry() : null;
2761 dl 1.46 for (;;) {
2762 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2763     if (n == null || !inBounds(n.key, cmp))
2764 dl 1.46 return null;
2765     K k = n.key;
2766     V v = n.getValidValue();
2767     if (v != null)
2768     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2769     }
2770 dl 1.1 }
2771    
2772 jsr166 1.48 // Almost the same as getNearEntry, except for keys
2773 dl 1.118 K getNearKey(K key, int rel) {
2774     Comparator<? super K> cmp = m.comparator;
2775 dl 1.46 if (isDescending) { // adjust relation for direction
2776 jsr166 1.70 if ((rel & LT) == 0)
2777     rel |= LT;
2778 dl 1.46 else
2779 jsr166 1.70 rel &= ~LT;
2780 dl 1.46 }
2781 dl 1.118 if (tooLow(key, cmp)) {
2782 jsr166 1.70 if ((rel & LT) == 0) {
2783 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2784     if (isBeforeEnd(n, cmp))
2785 dl 1.46 return n.key;
2786     }
2787     return null;
2788     }
2789 dl 1.118 if (tooHigh(key, cmp)) {
2790 jsr166 1.70 if ((rel & LT) != 0) {
2791 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2792 dl 1.46 if (n != null) {
2793     K last = n.key;
2794 dl 1.118 if (inBounds(last, cmp))
2795 dl 1.46 return last;
2796     }
2797     }
2798     return null;
2799     }
2800     for (;;) {
2801 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2802     if (n == null || !inBounds(n.key, cmp))
2803 dl 1.46 return null;
2804     K k = n.key;
2805     V v = n.getValidValue();
2806     if (v != null)
2807     return k;
2808     }
2809     }
2810 dl 1.1
2811     /* ---------------- Map API methods -------------- */
2812    
2813     public boolean containsKey(Object key) {
2814 dl 1.46 if (key == null) throw new NullPointerException();
2815 dl 1.118 return inBounds(key, m.comparator) && m.containsKey(key);
2816 dl 1.1 }
2817    
2818     public V get(Object key) {
2819 dl 1.46 if (key == null) throw new NullPointerException();
2820 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2821 dl 1.1 }
2822    
2823     public V put(K key, V value) {
2824 dl 1.118 checkKeyBounds(key, m.comparator);
2825 dl 1.1 return m.put(key, value);
2826     }
2827    
2828     public V remove(Object key) {
2829 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2830 dl 1.1 }
2831    
2832     public int size() {
2833 dl 1.118 Comparator<? super K> cmp = m.comparator;
2834 dl 1.1 long count = 0;
2835 dl 1.118 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2836     isBeforeEnd(n, cmp);
2837 dl 1.1 n = n.next) {
2838     if (n.getValidValue() != null)
2839     ++count;
2840     }
2841 jsr166 1.61 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2842 dl 1.1 }
2843    
2844     public boolean isEmpty() {
2845 dl 1.118 Comparator<? super K> cmp = m.comparator;
2846     return !isBeforeEnd(loNode(cmp), cmp);
2847 dl 1.1 }
2848    
2849     public boolean containsValue(Object value) {
2850 dl 1.9 if (value == null)
2851 dl 1.1 throw new NullPointerException();
2852 dl 1.118 Comparator<? super K> cmp = m.comparator;
2853     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2854     isBeforeEnd(n, cmp);
2855 dl 1.1 n = n.next) {
2856     V v = n.getValidValue();
2857     if (v != null && value.equals(v))
2858     return true;
2859     }
2860     return false;
2861     }
2862    
2863     public void clear() {
2864 dl 1.118 Comparator<? super K> cmp = m.comparator;
2865     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2866     isBeforeEnd(n, cmp);
2867 dl 1.1 n = n.next) {
2868     if (n.getValidValue() != null)
2869     m.remove(n.key);
2870     }
2871     }
2872    
2873     /* ---------------- ConcurrentMap API methods -------------- */
2874    
2875     public V putIfAbsent(K key, V value) {
2876 dl 1.118 checkKeyBounds(key, m.comparator);
2877 dl 1.1 return m.putIfAbsent(key, value);
2878     }
2879    
2880     public boolean remove(Object key, Object value) {
2881 dl 1.118 return inBounds(key, m.comparator) && m.remove(key, value);
2882 dl 1.1 }
2883    
2884     public boolean replace(K key, V oldValue, V newValue) {
2885 dl 1.118 checkKeyBounds(key, m.comparator);
2886 dl 1.1 return m.replace(key, oldValue, newValue);
2887     }
2888    
2889     public V replace(K key, V value) {
2890 dl 1.118 checkKeyBounds(key, m.comparator);
2891 dl 1.1 return m.replace(key, value);
2892     }
2893    
2894     /* ---------------- SortedMap API methods -------------- */
2895    
2896     public Comparator<? super K> comparator() {
2897 dl 1.46 Comparator<? super K> cmp = m.comparator();
2898 jsr166 1.55 if (isDescending)
2899     return Collections.reverseOrder(cmp);
2900     else
2901     return cmp;
2902 dl 1.1 }
2903 dl 1.47
2904 dl 1.46 /**
2905     * Utility to create submaps, where given bounds override
2906     * unbounded(null) ones and/or are checked against bounded ones.
2907     */
2908 dl 1.118 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2909     K toKey, boolean toInclusive) {
2910     Comparator<? super K> cmp = m.comparator;
2911 dl 1.46 if (isDescending) { // flip senses
2912 dl 1.47 K tk = fromKey;
2913     fromKey = toKey;
2914 dl 1.46 toKey = tk;
2915 dl 1.47 boolean ti = fromInclusive;
2916     fromInclusive = toInclusive;
2917 dl 1.46 toInclusive = ti;
2918     }
2919     if (lo != null) {
2920     if (fromKey == null) {
2921     fromKey = lo;
2922     fromInclusive = loInclusive;
2923     }
2924     else {
2925 dl 1.118 int c = cpr(cmp, fromKey, lo);
2926 dl 1.46 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2927     throw new IllegalArgumentException("key out of range");
2928     }
2929     }
2930     if (hi != null) {
2931     if (toKey == null) {
2932     toKey = hi;
2933     toInclusive = hiInclusive;
2934     }
2935     else {
2936 dl 1.118 int c = cpr(cmp, toKey, hi);
2937 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2938     throw new IllegalArgumentException("key out of range");
2939     }
2940 dl 1.1 }
2941 dl 1.47 return new SubMap<K,V>(m, fromKey, fromInclusive,
2942 dl 1.46 toKey, toInclusive, isDescending);
2943 dl 1.1 }
2944    
2945 dl 1.118 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2946     K toKey, boolean toInclusive) {
2947 dl 1.1 if (fromKey == null || toKey == null)
2948     throw new NullPointerException();
2949 dl 1.46 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2950 dl 1.1 }
2951 dl 1.47
2952 dl 1.118 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2953 dl 1.1 if (toKey == null)
2954     throw new NullPointerException();
2955 dl 1.46 return newSubMap(null, false, toKey, inclusive);
2956 dl 1.1 }
2957 dl 1.47
2958 dl 1.118 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2959 dl 1.1 if (fromKey == null)
2960     throw new NullPointerException();
2961 dl 1.46 return newSubMap(fromKey, inclusive, null, false);
2962     }
2963    
2964     public SubMap<K,V> subMap(K fromKey, K toKey) {
2965 dl 1.47 return subMap(fromKey, true, toKey, false);
2966 dl 1.1 }
2967    
2968 dl 1.46 public SubMap<K,V> headMap(K toKey) {
2969 dl 1.47 return headMap(toKey, false);
2970 dl 1.6 }
2971    
2972 dl 1.46 public SubMap<K,V> tailMap(K fromKey) {
2973 dl 1.47 return tailMap(fromKey, true);
2974 dl 1.6 }
2975    
2976 dl 1.46 public SubMap<K,V> descendingMap() {
2977 dl 1.47 return new SubMap<K,V>(m, lo, loInclusive,
2978 dl 1.46 hi, hiInclusive, !isDescending);
2979 dl 1.6 }
2980    
2981 dl 1.1 /* ---------------- Relational methods -------------- */
2982    
2983     public Map.Entry<K,V> ceilingEntry(K key) {
2984 jsr166 1.70 return getNearEntry(key, GT|EQ);
2985 dl 1.1 }
2986    
2987     public K ceilingKey(K key) {
2988 jsr166 1.70 return getNearKey(key, GT|EQ);
2989 dl 1.1 }
2990    
2991     public Map.Entry<K,V> lowerEntry(K key) {
2992 jsr166 1.70 return getNearEntry(key, LT);
2993 dl 1.1 }
2994    
2995     public K lowerKey(K key) {
2996 jsr166 1.70 return getNearKey(key, LT);
2997 dl 1.1 }
2998    
2999     public Map.Entry<K,V> floorEntry(K key) {
3000 jsr166 1.70 return getNearEntry(key, LT|EQ);
3001 dl 1.1 }
3002    
3003     public K floorKey(K key) {
3004 jsr166 1.70 return getNearKey(key, LT|EQ);
3005 dl 1.1 }
3006    
3007     public Map.Entry<K,V> higherEntry(K key) {
3008 jsr166 1.70 return getNearEntry(key, GT);
3009 dl 1.1 }
3010    
3011     public K higherKey(K key) {
3012 jsr166 1.70 return getNearKey(key, GT);
3013 dl 1.46 }
3014    
3015     public K firstKey() {
3016 jsr166 1.61 return isDescending ? highestKey() : lowestKey();
3017 dl 1.46 }
3018    
3019     public K lastKey() {
3020 jsr166 1.61 return isDescending ? lowestKey() : highestKey();
3021 dl 1.1 }
3022    
3023     public Map.Entry<K,V> firstEntry() {
3024 jsr166 1.61 return isDescending ? highestEntry() : lowestEntry();
3025 dl 1.1 }
3026    
3027     public Map.Entry<K,V> lastEntry() {
3028 jsr166 1.61 return isDescending ? lowestEntry() : highestEntry();
3029 dl 1.1 }
3030    
3031     public Map.Entry<K,V> pollFirstEntry() {
3032 jsr166 1.61 return isDescending ? removeHighest() : removeLowest();
3033 dl 1.1 }
3034    
3035     public Map.Entry<K,V> pollLastEntry() {
3036 jsr166 1.61 return isDescending ? removeLowest() : removeHighest();
3037 dl 1.1 }
3038    
3039     /* ---------------- Submap Views -------------- */
3040    
3041 jsr166 1.51 public NavigableSet<K> keySet() {
3042 jsr166 1.147 KeySet<K,V> ks = keySetView;
3043     return (ks != null) ? ks : (keySetView = new KeySet<>(this));
3044 dl 1.1 }
3045    
3046 dl 1.46 public NavigableSet<K> navigableKeySet() {
3047 jsr166 1.147 KeySet<K,V> ks = keySetView;
3048     return (ks != null) ? ks : (keySetView = new KeySet<>(this));
3049 dl 1.46 }
3050 dl 1.45
3051 dl 1.46 public Collection<V> values() {
3052     Collection<V> vs = valuesView;
3053 jsr166 1.147 return (vs != null) ? vs : (valuesView = new Values<>(this));
3054 dl 1.1 }
3055    
3056 dl 1.46 public Set<Map.Entry<K,V>> entrySet() {
3057     Set<Map.Entry<K,V>> es = entrySetView;
3058 jsr166 1.71 return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
3059 dl 1.1 }
3060    
3061 dl 1.46 public NavigableSet<K> descendingKeySet() {
3062     return descendingMap().navigableKeySet();
3063 dl 1.1 }
3064    
3065 dl 1.46 Iterator<K> keyIterator() {
3066     return new SubMapKeyIterator();
3067 dl 1.1 }
3068    
3069 dl 1.46 Iterator<V> valueIterator() {
3070     return new SubMapValueIterator();
3071 dl 1.1 }
3072    
3073 dl 1.46 Iterator<Map.Entry<K,V>> entryIterator() {
3074     return new SubMapEntryIterator();
3075 dl 1.1 }
3076    
3077 dl 1.46 /**
3078     * Variant of main Iter class to traverse through submaps.
3079 jsr166 1.148 * Also serves as back-up Spliterator for views.
3080 dl 1.46 */
3081 dl 1.100 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
3082 dl 1.46 /** the last node returned by next() */
3083 jsr166 1.52 Node<K,V> lastReturned;
3084 dl 1.46 /** the next node to return from next(); */
3085     Node<K,V> next;
3086     /** Cache of next value field to maintain weak consistency */
3087 jsr166 1.52 V nextValue;
3088 dl 1.46
3089 dl 1.47 SubMapIter() {
3090 dl 1.118 Comparator<? super K> cmp = m.comparator;
3091 dl 1.46 for (;;) {
3092 dl 1.118 next = isDescending ? hiNode(cmp) : loNode(cmp);
3093 dl 1.46 if (next == null)
3094     break;
3095 jsr166 1.55 Object x = next.value;
3096 jsr166 1.52 if (x != null && x != next) {
3097 dl 1.118 if (! inBounds(next.key, cmp))
3098 dl 1.46 next = null;
3099 dl 1.118 else {
3100     @SuppressWarnings("unchecked") V vv = (V)x;
3101 dl 1.100 nextValue = vv;
3102 dl 1.118 }
3103 dl 1.46 break;
3104     }
3105     }
3106 dl 1.1 }
3107 dl 1.46
3108     public final boolean hasNext() {
3109     return next != null;
3110 dl 1.1 }
3111 dl 1.46
3112     final void advance() {
3113 jsr166 1.54 if (next == null)
3114 dl 1.46 throw new NoSuchElementException();
3115 jsr166 1.55 lastReturned = next;
3116 dl 1.46 if (isDescending)
3117     descend();
3118     else
3119     ascend();
3120 dl 1.1 }
3121 dl 1.46
3122     private void ascend() {
3123 dl 1.118 Comparator<? super K> cmp = m.comparator;
3124 dl 1.46 for (;;) {
3125     next = next.next;
3126     if (next == null)
3127     break;
3128 jsr166 1.55 Object x = next.value;
3129 jsr166 1.52 if (x != null && x != next) {
3130 dl 1.118 if (tooHigh(next.key, cmp))
3131 dl 1.46 next = null;
3132 dl 1.118 else {
3133     @SuppressWarnings("unchecked") V vv = (V)x;
3134 dl 1.100 nextValue = vv;
3135 dl 1.118 }
3136 dl 1.46 break;
3137     }
3138     }
3139     }
3140    
3141     private void descend() {
3142 dl 1.88 Comparator<? super K> cmp = m.comparator;
3143 dl 1.46 for (;;) {
3144 jsr166 1.125 next = m.findNear(lastReturned.key, LT, cmp);
3145 dl 1.46 if (next == null)
3146     break;
3147 jsr166 1.55 Object x = next.value;
3148 jsr166 1.52 if (x != null && x != next) {
3149 dl 1.118 if (tooLow(next.key, cmp))
3150 dl 1.46 next = null;
3151 dl 1.118 else {
3152     @SuppressWarnings("unchecked") V vv = (V)x;
3153 dl 1.100 nextValue = vv;
3154 dl 1.118 }
3155 dl 1.46 break;
3156     }
3157     }
3158 dl 1.1 }
3159 dl 1.46
3160     public void remove() {
3161 jsr166 1.52 Node<K,V> l = lastReturned;
3162 dl 1.46 if (l == null)
3163     throw new IllegalStateException();
3164     m.remove(l.key);
3165 jsr166 1.55 lastReturned = null;
3166 dl 1.1 }
3167 dl 1.46
3168 dl 1.107 public Spliterator<T> trySplit() {
3169     return null;
3170 jsr166 1.108 }
3171 dl 1.107
3172 dl 1.100 public boolean tryAdvance(Consumer<? super T> action) {
3173     if (hasNext()) {
3174     action.accept(next());
3175     return true;
3176     }
3177     return false;
3178     }
3179    
3180 dl 1.113 public void forEachRemaining(Consumer<? super T> action) {
3181 dl 1.100 while (hasNext())
3182     action.accept(next());
3183     }
3184 dl 1.113
3185 jsr166 1.114 public long estimateSize() {
3186     return Long.MAX_VALUE;
3187 dl 1.113 }
3188    
3189 dl 1.46 }
3190    
3191     final class SubMapValueIterator extends SubMapIter<V> {
3192     public V next() {
3193 jsr166 1.52 V v = nextValue;
3194 dl 1.46 advance();
3195 jsr166 1.52 return v;
3196 dl 1.45 }
3197 dl 1.100 public int characteristics() {
3198     return 0;
3199     }
3200 dl 1.1 }
3201    
3202 dl 1.46 final class SubMapKeyIterator extends SubMapIter<K> {
3203     public K next() {
3204     Node<K,V> n = next;
3205     advance();
3206     return n.key;
3207     }
3208 dl 1.100 public int characteristics() {
3209     return Spliterator.DISTINCT | Spliterator.ORDERED |
3210     Spliterator.SORTED;
3211     }
3212 jsr166 1.115 public final Comparator<? super K> getComparator() {
3213 dl 1.100 return SubMap.this.comparator();
3214     }
3215 dl 1.1 }
3216    
3217 dl 1.46 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3218     public Map.Entry<K,V> next() {
3219     Node<K,V> n = next;
3220 jsr166 1.52 V v = nextValue;
3221 dl 1.46 advance();
3222     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3223 dl 1.1 }
3224 dl 1.100 public int characteristics() {
3225     return Spliterator.DISTINCT;
3226     }
3227 dl 1.1 }
3228     }
3229 dl 1.59
3230 dl 1.123 // default Map method overrides
3231    
3232     public void forEach(BiConsumer<? super K, ? super V> action) {
3233     if (action == null) throw new NullPointerException();
3234     V v;
3235     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3236     if ((v = n.getValidValue()) != null)
3237     action.accept(n.key, v);
3238     }
3239     }
3240    
3241     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3242     if (function == null) throw new NullPointerException();
3243     V v;
3244     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3245     while ((v = n.getValidValue()) != null) {
3246     V r = function.apply(n.key, v);
3247     if (r == null) throw new NullPointerException();
3248     if (n.casValue(v, r))
3249     break;
3250     }
3251     }
3252     }
3253    
3254 dl 1.83 /**
3255 dl 1.143 * Helper method for EntrySet.removeIf
3256     */
3257 jsr166 1.145 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
3258 dl 1.143 if (function == null) throw new NullPointerException();
3259     boolean removed = false;
3260     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3261     V v;
3262     if ((v = n.getValidValue()) != null) {
3263     K k = n.key;
3264     Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
3265     if (function.test(e) && remove(k, v))
3266     removed = true;
3267     }
3268     }
3269     return removed;
3270     }
3271    
3272     /**
3273 dl 1.144 * Helper method for Values.removeIf
3274     */
3275     boolean removeValueIf(Predicate<? super V> function) {
3276     if (function == null) throw new NullPointerException();
3277     boolean removed = false;
3278     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3279     V v;
3280     if ((v = n.getValidValue()) != null) {
3281     K k = n.key;
3282     if (function.test(v) && remove(k, v))
3283     removed = true;
3284     }
3285     }
3286     return removed;
3287     }
3288    
3289     /**
3290 dl 1.83 * Base class providing common structure for Spliterators.
3291     * (Although not all that much common functionality; as usual for
3292     * view classes, details annoyingly vary in key, value, and entry
3293     * subclasses in ways that are not worth abstracting out for
3294     * internal classes.)
3295     *
3296     * The basic split strategy is to recursively descend from top
3297     * level, row by row, descending to next row when either split
3298     * off, or the end of row is encountered. Control of the number of
3299     * splits relies on some statistical estimation: The expected
3300     * remaining number of elements of a skip list when advancing
3301     * either across or down decreases by about 25%. To make this
3302     * observation useful, we need to know initial size, which we
3303 dl 1.104 * don't. But we can just use Integer.MAX_VALUE so that we
3304     * don't prematurely zero out while splitting.
3305 dl 1.83 */
3306 jsr166 1.119 abstract static class CSLMSpliterator<K,V> {
3307 dl 1.83 final Comparator<? super K> comparator;
3308     final K fence; // exclusive upper bound for keys, or null if to end
3309     Index<K,V> row; // the level to split out
3310     Node<K,V> current; // current traversal node; initialize at origin
3311     int est; // pseudo-size estimate
3312     CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3313     Node<K,V> origin, K fence, int est) {
3314     this.comparator = comparator; this.row = row;
3315     this.current = origin; this.fence = fence; this.est = est;
3316     }
3317    
3318     public final long estimateSize() { return (long)est; }
3319     }
3320    
3321     static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3322 dl 1.88 implements Spliterator<K> {
3323 dl 1.83 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3324     Node<K,V> origin, K fence, int est) {
3325     super(comparator, row, origin, fence, est);
3326     }
3327    
3328 dl 1.104 public Spliterator<K> trySplit() {
3329 dl 1.116 Node<K,V> e; K ek;
3330 dl 1.83 Comparator<? super K> cmp = comparator;
3331     K f = fence;
3332 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3333 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3334 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3335     if ((s = q.right) != null && (b = s.node) != null &&
3336     (n = b.next) != null && n.value != null &&
3337     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3338     (f == null || cpr(cmp, sk, f) < 0)) {
3339     current = n;
3340     Index<K,V> r = q.down;
3341     row = (s.right != null) ? s : s.down;
3342     est -= est >>> 2;
3343     return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3344 dl 1.83 }
3345     }
3346     }
3347     return null;
3348     }
3349    
3350 dl 1.113 public void forEachRemaining(Consumer<? super K> action) {
3351 dl 1.100 if (action == null) throw new NullPointerException();
3352 dl 1.118 Comparator<? super K> cmp = comparator;
3353 dl 1.83 K f = fence;
3354     Node<K,V> e = current;
3355     current = null;
3356 jsr166 1.84 for (; e != null; e = e.next) {
3357 dl 1.83 K k; Object v;
3358 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3359 dl 1.83 break;
3360     if ((v = e.value) != null && v != e)
3361 dl 1.100 action.accept(k);
3362 dl 1.83 }
3363     }
3364    
3365 dl 1.100 public boolean tryAdvance(Consumer<? super K> action) {
3366     if (action == null) throw new NullPointerException();
3367 dl 1.118 Comparator<? super K> cmp = comparator;
3368     K f = fence;
3369     Node<K,V> e = current;
3370     for (; e != null; e = e.next) {
3371 dl 1.83 K k; Object v;
3372 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3373 dl 1.83 e = null;
3374     break;
3375     }
3376     if ((v = e.value) != null && v != e) {
3377     current = e.next;
3378 dl 1.100 action.accept(k);
3379 dl 1.83 return true;
3380     }
3381     }
3382     current = e;
3383     return false;
3384     }
3385 dl 1.100
3386     public int characteristics() {
3387 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3388 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3389 dl 1.100 Spliterator.NONNULL;
3390     }
3391    
3392 jsr166 1.115 public final Comparator<? super K> getComparator() {
3393 dl 1.100 return comparator;
3394     }
3395 dl 1.83 }
3396 jsr166 1.120 // factory method for KeySpliterator
3397 dl 1.118 final KeySpliterator<K,V> keySpliterator() {
3398     Comparator<? super K> cmp = comparator;
3399     for (;;) { // ensure h corresponds to origin p
3400     HeadIndex<K,V> h; Node<K,V> p;
3401     Node<K,V> b = (h = head).node;
3402     if ((p = b.next) == null || p.value != null)
3403     return new KeySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3404     0 : Integer.MAX_VALUE);
3405     p.helpDelete(b, p.next);
3406     }
3407     }
3408 dl 1.83
3409     static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3410 dl 1.88 implements Spliterator<V> {
3411 dl 1.83 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3412     Node<K,V> origin, K fence, int est) {
3413     super(comparator, row, origin, fence, est);
3414     }
3415    
3416 dl 1.104 public Spliterator<V> trySplit() {
3417 dl 1.116 Node<K,V> e; K ek;
3418 dl 1.83 Comparator<? super K> cmp = comparator;
3419     K f = fence;
3420 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3421 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3422 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3423     if ((s = q.right) != null && (b = s.node) != null &&
3424     (n = b.next) != null && n.value != null &&
3425     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3426     (f == null || cpr(cmp, sk, f) < 0)) {
3427     current = n;
3428     Index<K,V> r = q.down;
3429     row = (s.right != null) ? s : s.down;
3430     est -= est >>> 2;
3431     return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3432 dl 1.83 }
3433     }
3434     }
3435     return null;
3436     }
3437    
3438 dl 1.113 public void forEachRemaining(Consumer<? super V> action) {
3439 dl 1.100 if (action == null) throw new NullPointerException();
3440 dl 1.118 Comparator<? super K> cmp = comparator;
3441 dl 1.83 K f = fence;
3442     Node<K,V> e = current;
3443     current = null;
3444 jsr166 1.84 for (; e != null; e = e.next) {
3445 dl 1.83 K k; Object v;
3446 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3447 dl 1.83 break;
3448 dl 1.100 if ((v = e.value) != null && v != e) {
3449     @SuppressWarnings("unchecked") V vv = (V)v;
3450     action.accept(vv);
3451     }
3452 dl 1.83 }
3453     }
3454    
3455 dl 1.100 public boolean tryAdvance(Consumer<? super V> action) {
3456     if (action == null) throw new NullPointerException();
3457 dl 1.118 Comparator<? super K> cmp = comparator;
3458     K f = fence;
3459     Node<K,V> e = current;
3460     for (; e != null; e = e.next) {
3461 dl 1.83 K k; Object v;
3462 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3463 dl 1.83 e = null;
3464     break;
3465     }
3466     if ((v = e.value) != null && v != e) {
3467     current = e.next;
3468 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3469     action.accept(vv);
3470 dl 1.83 return true;
3471     }
3472     }
3473     current = e;
3474     return false;
3475     }
3476 dl 1.100
3477     public int characteristics() {
3478 jsr166 1.130 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3479     Spliterator.NONNULL;
3480 dl 1.100 }
3481 dl 1.83 }
3482    
3483 dl 1.118 // Almost the same as keySpliterator()
3484     final ValueSpliterator<K,V> valueSpliterator() {
3485     Comparator<? super K> cmp = comparator;
3486     for (;;) {
3487     HeadIndex<K,V> h; Node<K,V> p;
3488     Node<K,V> b = (h = head).node;
3489     if ((p = b.next) == null || p.value != null)
3490     return new ValueSpliterator<K,V>(cmp, h, p, null, (p == null) ?
3491     0 : Integer.MAX_VALUE);
3492     p.helpDelete(b, p.next);
3493     }
3494     }
3495    
3496 dl 1.83 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3497 dl 1.88 implements Spliterator<Map.Entry<K,V>> {
3498 dl 1.83 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3499     Node<K,V> origin, K fence, int est) {
3500     super(comparator, row, origin, fence, est);
3501     }
3502    
3503 dl 1.104 public Spliterator<Map.Entry<K,V>> trySplit() {
3504 dl 1.116 Node<K,V> e; K ek;
3505 dl 1.83 Comparator<? super K> cmp = comparator;
3506     K f = fence;
3507 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3508 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3509 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3510     if ((s = q.right) != null && (b = s.node) != null &&
3511     (n = b.next) != null && n.value != null &&
3512     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3513     (f == null || cpr(cmp, sk, f) < 0)) {
3514     current = n;
3515     Index<K,V> r = q.down;
3516     row = (s.right != null) ? s : s.down;
3517     est -= est >>> 2;
3518     return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3519 dl 1.83 }
3520     }
3521     }
3522     return null;
3523     }
3524    
3525 dl 1.113 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3526 dl 1.100 if (action == null) throw new NullPointerException();
3527 dl 1.118 Comparator<? super K> cmp = comparator;
3528 dl 1.83 K f = fence;
3529     Node<K,V> e = current;
3530     current = null;
3531 jsr166 1.84 for (; e != null; e = e.next) {
3532 dl 1.83 K k; Object v;
3533 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3534 dl 1.83 break;
3535 dl 1.100 if ((v = e.value) != null && v != e) {
3536     @SuppressWarnings("unchecked") V vv = (V)v;
3537     action.accept
3538     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3539     }
3540 dl 1.83 }
3541     }
3542    
3543 dl 1.100 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3544     if (action == null) throw new NullPointerException();
3545 dl 1.118 Comparator<? super K> cmp = comparator;
3546     K f = fence;
3547     Node<K,V> e = current;
3548     for (; e != null; e = e.next) {
3549 dl 1.83 K k; Object v;
3550 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3551 dl 1.83 e = null;
3552     break;
3553     }
3554     if ((v = e.value) != null && v != e) {
3555     current = e.next;
3556 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3557     action.accept
3558     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3559 dl 1.83 return true;
3560     }
3561     }
3562     current = e;
3563     return false;
3564     }
3565 dl 1.100
3566     public int characteristics() {
3567 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3568 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3569 dl 1.100 Spliterator.NONNULL;
3570     }
3571 dl 1.113
3572     public final Comparator<Map.Entry<K,V>> getComparator() {
3573 jsr166 1.130 // Adapt or create a key-based comparator
3574     if (comparator != null) {
3575     return Map.Entry.comparingByKey(comparator);
3576     }
3577     else {
3578 jsr166 1.131 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3579 jsr166 1.130 @SuppressWarnings("unchecked")
3580     Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3581     return k1.compareTo(e2.getKey());
3582     };
3583     }
3584 dl 1.113 }
3585 dl 1.118 }
3586 dl 1.113
3587 dl 1.118 // Almost the same as keySpliterator()
3588     final EntrySpliterator<K,V> entrySpliterator() {
3589     Comparator<? super K> cmp = comparator;
3590     for (;;) { // almost same as key version
3591     HeadIndex<K,V> h; Node<K,V> p;
3592     Node<K,V> b = (h = head).node;
3593     if ((p = b.next) == null || p.value != null)
3594     return new EntrySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3595     0 : Integer.MAX_VALUE);
3596     p.helpDelete(b, p.next);
3597     }
3598 dl 1.83 }
3599    
3600 dl 1.59 // Unsafe mechanics
3601 jsr166 1.141 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3602     private static final long HEAD;
3603 dl 1.65 static {
3604 dl 1.59 try {
3605 jsr166 1.141 HEAD = U.objectFieldOffset
3606     (ConcurrentSkipListMap.class.getDeclaredField("head"));
3607 jsr166 1.140 } catch (ReflectiveOperationException e) {
3608 dl 1.65 throw new Error(e);
3609 dl 1.59 }
3610     }
3611 dl 1.1 }