ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.163
Committed: Wed Jun 15 20:16:10 2016 UTC (7 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.162: +3 -0 lines
Log Message:
8066070: PriorityQueue corrupted when adding non-Comparable

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.67 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.138
9 dl 1.160 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.130 import java.io.Serializable;
12 dl 1.118 import java.util.AbstractCollection;
13     import java.util.AbstractMap;
14     import java.util.AbstractSet;
15     import java.util.ArrayList;
16     import java.util.Collection;
17     import java.util.Collections;
18     import java.util.Comparator;
19     import java.util.Iterator;
20     import java.util.List;
21     import java.util.Map;
22     import java.util.NavigableMap;
23     import java.util.NavigableSet;
24     import java.util.NoSuchElementException;
25     import java.util.Set;
26     import java.util.SortedMap;
27 dl 1.83 import java.util.Spliterator;
28 jsr166 1.138 import java.util.function.BiConsumer;
29 dl 1.118 import java.util.function.BiFunction;
30 dl 1.94 import java.util.function.Consumer;
31 dl 1.109 import java.util.function.Function;
32 dl 1.143 import java.util.function.Predicate;
33 dl 1.83
34 dl 1.1 /**
35 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
36     * The map is sorted according to the {@linkplain Comparable natural
37     * ordering} of its keys, or by a {@link Comparator} provided at map
38     * creation time, depending on which constructor is used.
39 dl 1.1 *
40     * <p>This class implements a concurrent variant of <a
41 dl 1.66 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
42     * providing expected average <i>log(n)</i> time cost for the
43 jsr166 1.82 * {@code containsKey}, {@code get}, {@code put} and
44     * {@code remove} operations and their variants. Insertion, removal,
45 dl 1.1 * update, and access operations safely execute concurrently by
46 jsr166 1.133 * multiple threads.
47     *
48     * <p>Iterators and spliterators are
49     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
50     *
51     * <p>Ascending key ordered views and their iterators are faster than
52     * descending ones.
53 dl 1.1 *
54 jsr166 1.82 * <p>All {@code Map.Entry} pairs returned by methods in this class
55 dl 1.1 * and its views represent snapshots of mappings at the time they were
56 jsr166 1.82 * produced. They do <em>not</em> support the {@code Entry.setValue}
57 dl 1.1 * method. (Note however that it is possible to change mappings in the
58 jsr166 1.82 * associated map using {@code put}, {@code putIfAbsent}, or
59     * {@code replace}, depending on exactly which effect you need.)
60 dl 1.1 *
61 jsr166 1.82 * <p>Beware that, unlike in most collections, the {@code size}
62 dl 1.1 * method is <em>not</em> a constant-time operation. Because of the
63     * asynchronous nature of these maps, determining the current number
64 dl 1.69 * of elements requires a traversal of the elements, and so may report
65     * inaccurate results if this collection is modified during traversal.
66 jsr166 1.82 * Additionally, the bulk operations {@code putAll}, {@code equals},
67     * {@code toArray}, {@code containsValue}, and {@code clear} are
68 dl 1.69 * <em>not</em> guaranteed to be performed atomically. For example, an
69 jsr166 1.82 * iterator operating concurrently with a {@code putAll} operation
70 dl 1.69 * might view only some of the added elements.
71 dl 1.1 *
72     * <p>This class and its views and iterators implement all of the
73     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
74     * interfaces. Like most other concurrent collections, this class does
75 jsr166 1.82 * <em>not</em> permit the use of {@code null} keys or values because some
76 jsr166 1.22 * null return values cannot be reliably distinguished from the absence of
77     * elements.
78 dl 1.1 *
79 jsr166 1.21 * <p>This class is a member of the
80 jsr166 1.51 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
81 jsr166 1.21 * Java Collections Framework</a>.
82     *
83 dl 1.1 * @author Doug Lea
84     * @param <K> the type of keys maintained by this map
85 dl 1.9 * @param <V> the type of mapped values
86 jsr166 1.20 * @since 1.6
87 dl 1.1 */
88 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
89 jsr166 1.130 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
90 dl 1.1 /*
91     * This class implements a tree-like two-dimensionally linked skip
92     * list in which the index levels are represented in separate
93     * nodes from the base nodes holding data. There are two reasons
94     * for taking this approach instead of the usual array-based
95     * structure: 1) Array based implementations seem to encounter
96     * more complexity and overhead 2) We can use cheaper algorithms
97     * for the heavily-traversed index lists than can be used for the
98     * base lists. Here's a picture of some of the basics for a
99     * possible list with 2 levels of index:
100     *
101     * Head nodes Index nodes
102 dl 1.9 * +-+ right +-+ +-+
103 dl 1.1 * |2|---------------->| |--------------------->| |->null
104 dl 1.9 * +-+ +-+ +-+
105 dl 1.1 * | down | |
106     * v v v
107 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
108 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
109 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
110 dl 1.1 * v | | | | |
111     * Nodes next v v v v v
112 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
113 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
114 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
115 dl 1.1 *
116     * The base lists use a variant of the HM linked ordered set
117     * algorithm. See Tim Harris, "A pragmatic implementation of
118     * non-blocking linked lists"
119     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
120     * Michael "High Performance Dynamic Lock-Free Hash Tables and
121     * List-Based Sets"
122     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
123     * basic idea in these lists is to mark the "next" pointers of
124     * deleted nodes when deleting to avoid conflicts with concurrent
125     * insertions, and when traversing to keep track of triples
126     * (predecessor, node, successor) in order to detect when and how
127     * to unlink these deleted nodes.
128     *
129     * Rather than using mark-bits to mark list deletions (which can
130     * be slow and space-intensive using AtomicMarkedReference), nodes
131     * use direct CAS'able next pointers. On deletion, instead of
132     * marking a pointer, they splice in another node that can be
133     * thought of as standing for a marked pointer (indicating this by
134     * using otherwise impossible field values). Using plain nodes
135     * acts roughly like "boxed" implementations of marked pointers,
136     * but uses new nodes only when nodes are deleted, not for every
137     * link. This requires less space and supports faster
138     * traversal. Even if marked references were better supported by
139     * JVMs, traversal using this technique might still be faster
140     * because any search need only read ahead one more node than
141     * otherwise required (to check for trailing marker) rather than
142     * unmasking mark bits or whatever on each read.
143     *
144     * This approach maintains the essential property needed in the HM
145     * algorithm of changing the next-pointer of a deleted node so
146     * that any other CAS of it will fail, but implements the idea by
147     * changing the pointer to point to a different node, not by
148     * marking it. While it would be possible to further squeeze
149     * space by defining marker nodes not to have key/value fields, it
150     * isn't worth the extra type-testing overhead. The deletion
151     * markers are rarely encountered during traversal and are
152     * normally quickly garbage collected. (Note that this technique
153     * would not work well in systems without garbage collection.)
154     *
155     * In addition to using deletion markers, the lists also use
156     * nullness of value fields to indicate deletion, in a style
157     * similar to typical lazy-deletion schemes. If a node's value is
158     * null, then it is considered logically deleted and ignored even
159     * though it is still reachable. This maintains proper control of
160     * concurrent replace vs delete operations -- an attempted replace
161     * must fail if a delete beat it by nulling field, and a delete
162     * must return the last non-null value held in the field. (Note:
163     * Null, rather than some special marker, is used for value fields
164     * here because it just so happens to mesh with the Map API
165     * requirement that method get returns null if there is no
166     * mapping, which allows nodes to remain concurrently readable
167     * even when deleted. Using any other marker value here would be
168     * messy at best.)
169     *
170     * Here's the sequence of events for a deletion of node n with
171     * predecessor b and successor f, initially:
172     *
173 dl 1.9 * +------+ +------+ +------+
174 dl 1.1 * ... | b |------>| n |----->| f | ...
175 dl 1.9 * +------+ +------+ +------+
176 dl 1.1 *
177     * 1. CAS n's value field from non-null to null.
178     * From this point on, no public operations encountering
179     * the node consider this mapping to exist. However, other
180     * ongoing insertions and deletions might still modify
181     * n's next pointer.
182     *
183     * 2. CAS n's next pointer to point to a new marker node.
184     * From this point on, no other nodes can be appended to n.
185     * which avoids deletion errors in CAS-based linked lists.
186     *
187     * +------+ +------+ +------+ +------+
188     * ... | b |------>| n |----->|marker|------>| f | ...
189 dl 1.9 * +------+ +------+ +------+ +------+
190 dl 1.1 *
191     * 3. CAS b's next pointer over both n and its marker.
192     * From this point on, no new traversals will encounter n,
193     * and it can eventually be GCed.
194     * +------+ +------+
195     * ... | b |----------------------------------->| f | ...
196 dl 1.9 * +------+ +------+
197     *
198 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
199     * with another operation. Steps 2-3 can fail because some other
200     * thread noticed during a traversal a node with null value and
201     * helped out by marking and/or unlinking. This helping-out
202     * ensures that no thread can become stuck waiting for progress of
203     * the deleting thread. The use of marker nodes slightly
204     * complicates helping-out code because traversals must track
205     * consistent reads of up to four nodes (b, n, marker, f), not
206     * just (b, n, f), although the next field of a marker is
207     * immutable, and once a next field is CAS'ed to point to a
208     * marker, it never again changes, so this requires less care.
209     *
210     * Skip lists add indexing to this scheme, so that the base-level
211     * traversals start close to the locations being found, inserted
212     * or deleted -- usually base level traversals only traverse a few
213     * nodes. This doesn't change the basic algorithm except for the
214     * need to make sure base traversals start at predecessors (here,
215     * b) that are not (structurally) deleted, otherwise retrying
216 dl 1.9 * after processing the deletion.
217 dl 1.1 *
218     * Index levels are maintained as lists with volatile next fields,
219     * using CAS to link and unlink. Races are allowed in index-list
220     * operations that can (rarely) fail to link in a new index node
221     * or delete one. (We can't do this of course for data nodes.)
222     * However, even when this happens, the index lists remain sorted,
223     * so correctly serve as indices. This can impact performance,
224     * but since skip lists are probabilistic anyway, the net result
225     * is that under contention, the effective "p" value may be lower
226     * than its nominal value. And race windows are kept small enough
227     * that in practice these failures are rare, even under a lot of
228     * contention.
229     *
230     * The fact that retries (for both base and index lists) are
231     * relatively cheap due to indexing allows some minor
232     * simplifications of retry logic. Traversal restarts are
233     * performed after most "helping-out" CASes. This isn't always
234     * strictly necessary, but the implicit backoffs tend to help
235     * reduce other downstream failed CAS's enough to outweigh restart
236     * cost. This worsens the worst case, but seems to improve even
237     * highly contended cases.
238     *
239     * Unlike most skip-list implementations, index insertion and
240 jsr166 1.135 * deletion here require a separate traversal pass occurring after
241 dl 1.1 * the base-level action, to add or remove index nodes. This adds
242     * to single-threaded overhead, but improves contended
243     * multithreaded performance by narrowing interference windows,
244     * and allows deletion to ensure that all index nodes will be made
245     * unreachable upon return from a public remove operation, thus
246     * avoiding unwanted garbage retention. This is more important
247     * here than in some other data structures because we cannot null
248     * out node fields referencing user keys since they might still be
249     * read by other ongoing traversals.
250     *
251     * Indexing uses skip list parameters that maintain good search
252     * performance while using sparser-than-usual indices: The
253 dl 1.118 * hardwired parameters k=1, p=0.5 (see method doPut) mean
254 dl 1.1 * that about one-quarter of the nodes have indices. Of those that
255     * do, half have one level, a quarter have two, and so on (see
256     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
257     * requirement for a map is slightly less than for the current
258     * implementation of java.util.TreeMap.
259     *
260     * Changing the level of the index (i.e, the height of the
261     * tree-like structure) also uses CAS. The head index has initial
262     * level/height of one. Creation of an index with height greater
263     * than the current level adds a level to the head index by
264     * CAS'ing on a new top-most head. To maintain good performance
265     * after a lot of removals, deletion methods heuristically try to
266     * reduce the height if the topmost levels appear to be empty.
267     * This may encounter races in which it possible (but rare) to
268     * reduce and "lose" a level just as it is about to contain an
269     * index (that will then never be encountered). This does no
270     * structural harm, and in practice appears to be a better option
271     * than allowing unrestrained growth of levels.
272     *
273     * The code for all this is more verbose than you'd like. Most
274     * operations entail locating an element (or position to insert an
275     * element). The code to do this can't be nicely factored out
276     * because subsequent uses require a snapshot of predecessor
277     * and/or successor and/or value fields which can't be returned
278     * all at once, at least not without creating yet another object
279     * to hold them -- creating such little objects is an especially
280     * bad idea for basic internal search operations because it adds
281     * to GC overhead. (This is one of the few times I've wished Java
282     * had macros.) Instead, some traversal code is interleaved within
283     * insertion and removal operations. The control logic to handle
284     * all the retry conditions is sometimes twisty. Most search is
285     * broken into 2 parts. findPredecessor() searches index nodes
286     * only, returning a base-level predecessor of the key. findNode()
287     * finishes out the base-level search. Even with this factoring,
288     * there is a fair amount of near-duplication of code to handle
289     * variants.
290     *
291 dl 1.92 * To produce random values without interference across threads,
292     * we use within-JDK thread local random support (via the
293     * "secondary seed", to avoid interference with user-level
294     * ThreadLocalRandom.)
295     *
296 dl 1.88 * A previous version of this class wrapped non-comparable keys
297     * with their comparators to emulate Comparables when using
298 dl 1.118 * comparators vs Comparables. However, JVMs now appear to better
299     * handle infusing comparator-vs-comparable choice into search
300     * loops. Static method cpr(comparator, x, y) is used for all
301     * comparisons, which works well as long as the comparator
302     * argument is set up outside of loops (thus sometimes passed as
303     * an argument to internal methods) to avoid field re-reads.
304 dl 1.88 *
305 dl 1.1 * For explanation of algorithms sharing at least a couple of
306     * features with this one, see Mikhail Fomitchev's thesis
307     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
308 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
309 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
310     *
311     * Given the use of tree-like index nodes, you might wonder why
312     * this doesn't use some kind of search tree instead, which would
313     * support somewhat faster search operations. The reason is that
314     * there are no known efficient lock-free insertion and deletion
315     * algorithms for search trees. The immutability of the "down"
316     * links of index nodes (as opposed to mutable "left" fields in
317     * true trees) makes this tractable using only CAS operations.
318     *
319     * Notation guide for local variables
320     * Node: b, n, f for predecessor, node, successor
321     * Index: q, r, d for index node, right, down.
322     * t for another index node
323     * Head: h
324     * Levels: j
325     * Keys: k, key
326     * Values: v, value
327     * Comparisons: c
328     */
329    
330     private static final long serialVersionUID = -8627078645895051609L;
331    
332     /**
333 jsr166 1.154 * Special value used to identify base-level header.
334 dl 1.9 */
335 jsr166 1.153 static final Object BASE_HEADER = new Object();
336 dl 1.1
337     /**
338 dl 1.9 * The topmost head index of the skiplist.
339 dl 1.1 */
340     private transient volatile HeadIndex<K,V> head;
341    
342     /**
343 dl 1.118 * The comparator used to maintain order in this map, or null if
344     * using natural ordering. (Non-private to simplify access in
345 jsr166 1.120 * nested classes.)
346 dl 1.1 * @serial
347     */
348 dl 1.118 final Comparator<? super K> comparator;
349 dl 1.1
350     /** Lazily initialized key set */
351 jsr166 1.147 private transient KeySet<K,V> keySet;
352 jsr166 1.158 /** Lazily initialized values collection */
353     private transient Values<K,V> values;
354 dl 1.1 /** Lazily initialized entry set */
355 jsr166 1.71 private transient EntrySet<K,V> entrySet;
356 dl 1.1 /** Lazily initialized descending key set */
357 jsr166 1.158 private transient SubMap<K,V> descendingMap;
358 dl 1.1
359     /**
360 jsr166 1.13 * Initializes or resets state. Needed by constructors, clone,
361 dl 1.1 * clear, readObject. and ConcurrentSkipListSet.clone.
362     * (Note that comparator must be separately initialized.)
363     */
364 dl 1.118 private void initialize() {
365 dl 1.1 keySet = null;
366 dl 1.9 entrySet = null;
367 dl 1.1 values = null;
368 dl 1.46 descendingMap = null;
369 dl 1.1 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
370     null, null, 1);
371     }
372    
373     /**
374 jsr166 1.154 * compareAndSet head node.
375 dl 1.1 */
376     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
377 dl 1.160 return HEAD.compareAndSet(this, cmp, val);
378 dl 1.1 }
379    
380     /* ---------------- Nodes -------------- */
381    
382     /**
383     * Nodes hold keys and values, and are singly linked in sorted
384     * order, possibly with some intervening marker nodes. The list is
385     * headed by a dummy node accessible as head.node. The value field
386     * is declared only as Object because it takes special non-V
387     * values for marker and header nodes.
388     */
389     static final class Node<K,V> {
390     final K key;
391     volatile Object value;
392     volatile Node<K,V> next;
393    
394     /**
395     * Creates a new regular node.
396     */
397     Node(K key, Object value, Node<K,V> next) {
398     this.key = key;
399     this.value = value;
400     this.next = next;
401     }
402    
403     /**
404     * Creates a new marker node. A marker is distinguished by
405     * having its value field point to itself. Marker nodes also
406     * have null keys, a fact that is exploited in a few places,
407     * but this doesn't distinguish markers from the base-level
408     * header node (head.node), which also has a null key.
409     */
410     Node(Node<K,V> next) {
411     this.key = null;
412     this.value = this;
413     this.next = next;
414     }
415    
416     /**
417 jsr166 1.154 * compareAndSet value field.
418 dl 1.1 */
419     boolean casValue(Object cmp, Object val) {
420 dl 1.160 return VALUE.compareAndSet(this, cmp, val);
421 dl 1.1 }
422 jsr166 1.60
423 dl 1.1 /**
424 jsr166 1.154 * compareAndSet next field.
425 dl 1.1 */
426     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
427 dl 1.160 return NEXT.compareAndSet(this, cmp, val);
428 dl 1.1 }
429    
430     /**
431 jsr166 1.10 * Returns true if this node is a marker. This method isn't
432     * actually called in any current code checking for markers
433 dl 1.1 * because callers will have already read value field and need
434     * to use that read (not another done here) and so directly
435     * test if value points to node.
436 jsr166 1.93 *
437 dl 1.1 * @return true if this node is a marker node
438     */
439     boolean isMarker() {
440     return value == this;
441     }
442    
443     /**
444 jsr166 1.10 * Returns true if this node is the header of base-level list.
445 dl 1.1 * @return true if this node is header node
446     */
447     boolean isBaseHeader() {
448     return value == BASE_HEADER;
449     }
450    
451     /**
452     * Tries to append a deletion marker to this node.
453     * @param f the assumed current successor of this node
454     * @return true if successful
455     */
456     boolean appendMarker(Node<K,V> f) {
457     return casNext(f, new Node<K,V>(f));
458     }
459    
460     /**
461     * Helps out a deletion by appending marker or unlinking from
462     * predecessor. This is called during traversals when value
463     * field seen to be null.
464     * @param b predecessor
465     * @param f successor
466     */
467     void helpDelete(Node<K,V> b, Node<K,V> f) {
468     /*
469     * Rechecking links and then doing only one of the
470     * help-out stages per call tends to minimize CAS
471     * interference among helping threads.
472     */
473     if (f == next && this == b.next) {
474     if (f == null || f.value != f) // not already marked
475 dl 1.118 casNext(f, new Node<K,V>(f));
476 dl 1.1 else
477     b.casNext(this, f.next);
478     }
479     }
480    
481     /**
482 jsr166 1.11 * Returns value if this node contains a valid key-value pair,
483 dl 1.9 * else null.
484 dl 1.1 * @return this node's value if it isn't a marker or header or
485 jsr166 1.126 * is deleted, else null
486 dl 1.1 */
487     V getValidValue() {
488     Object v = value;
489     if (v == this || v == BASE_HEADER)
490     return null;
491 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
492     return vv;
493 dl 1.1 }
494    
495     /**
496 jsr166 1.10 * Creates and returns a new SimpleImmutableEntry holding current
497     * mapping if this node holds a valid value, else null.
498 dl 1.1 * @return new entry or null
499     */
500 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
501 dl 1.118 Object v = value;
502     if (v == null || v == this || v == BASE_HEADER)
503 dl 1.1 return null;
504 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
505     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
506 dl 1.1 }
507 dl 1.59
508 dl 1.160 // VarHandle mechanics
509     private static final VarHandle VALUE;
510     private static final VarHandle NEXT;
511 dl 1.65 static {
512     try {
513 dl 1.160 MethodHandles.Lookup l = MethodHandles.lookup();
514     VALUE = l.findVarHandle(Node.class, "value", Object.class);
515     NEXT = l.findVarHandle(Node.class, "next", Node.class);
516 jsr166 1.140 } catch (ReflectiveOperationException e) {
517 dl 1.160 throw new Error(e);
518 dl 1.65 }
519     }
520 dl 1.1 }
521    
522     /* ---------------- Indexing -------------- */
523    
524     /**
525 dl 1.40 * Index nodes represent the levels of the skip list. Note that
526     * even though both Nodes and Indexes have forward-pointing
527     * fields, they have different types and are handled in different
528     * ways, that can't nicely be captured by placing field in a
529     * shared abstract class.
530 dl 1.1 */
531     static class Index<K,V> {
532     final Node<K,V> node;
533     final Index<K,V> down;
534     volatile Index<K,V> right;
535    
536     /**
537 jsr166 1.10 * Creates index node with given values.
538 dl 1.9 */
539 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
540     this.node = node;
541     this.down = down;
542     this.right = right;
543     }
544    
545     /**
546 jsr166 1.154 * compareAndSet right field.
547 dl 1.1 */
548     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
549 dl 1.160 return RIGHT.compareAndSet(this, cmp, val);
550 dl 1.1 }
551    
552     /**
553     * Returns true if the node this indexes has been deleted.
554     * @return true if indexed node is known to be deleted
555     */
556     final boolean indexesDeletedNode() {
557     return node.value == null;
558     }
559    
560     /**
561     * Tries to CAS newSucc as successor. To minimize races with
562     * unlink that may lose this index node, if the node being
563     * indexed is known to be deleted, it doesn't try to link in.
564     * @param succ the expected current successor
565     * @param newSucc the new successor
566     * @return true if successful
567     */
568     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
569     Node<K,V> n = node;
570 dl 1.9 newSucc.right = succ;
571 dl 1.1 return n.value != null && casRight(succ, newSucc);
572     }
573    
574     /**
575     * Tries to CAS right field to skip over apparent successor
576     * succ. Fails (forcing a retraversal by caller) if this node
577     * is known to be deleted.
578     * @param succ the expected current successor
579     * @return true if successful
580     */
581     final boolean unlink(Index<K,V> succ) {
582 dl 1.118 return node.value != null && casRight(succ, succ.right);
583 dl 1.1 }
584 dl 1.59
585 dl 1.160 // VarHandle mechanics
586     private static final VarHandle RIGHT;
587 dl 1.65 static {
588     try {
589 dl 1.160 MethodHandles.Lookup l = MethodHandles.lookup();
590     RIGHT = l.findVarHandle(Index.class, "right", Index.class);
591 jsr166 1.140 } catch (ReflectiveOperationException e) {
592 dl 1.65 throw new Error(e);
593     }
594     }
595 dl 1.1 }
596 jsr166 1.161
597 dl 1.1 /* ---------------- Head nodes -------------- */
598    
599     /**
600     * Nodes heading each level keep track of their level.
601     */
602     static final class HeadIndex<K,V> extends Index<K,V> {
603     final int level;
604     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
605     super(node, down, right);
606     this.level = level;
607     }
608 dl 1.9 }
609 dl 1.1
610     /* ---------------- Comparison utilities -------------- */
611    
612     /**
613 dl 1.118 * Compares using comparator or natural ordering if null.
614     * Called only by methods that have performed required type checks.
615 dl 1.1 */
616 dl 1.118 @SuppressWarnings({"unchecked", "rawtypes"})
617     static final int cpr(Comparator c, Object x, Object y) {
618     return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
619 dl 1.1 }
620    
621     /* ---------------- Traversal -------------- */
622    
623     /**
624 jsr166 1.10 * Returns a base-level node with key strictly less than given key,
625 dl 1.1 * or the base-level header if there is no such node. Also
626     * unlinks indexes to deleted nodes found along the way. Callers
627     * rely on this side-effect of clearing indices to deleted nodes.
628     * @param key the key
629 dl 1.9 * @return a predecessor of key
630 dl 1.1 */
631 dl 1.118 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
632 jsr166 1.41 if (key == null)
633 dl 1.40 throw new NullPointerException(); // don't postpone errors
634 dl 1.1 for (;;) {
635 dl 1.118 for (Index<K,V> q = head, r = q.right, d;;) {
636 dl 1.40 if (r != null) {
637     Node<K,V> n = r.node;
638     K k = n.key;
639     if (n.value == null) {
640     if (!q.unlink(r))
641     break; // restart
642     r = q.right; // reread r
643     continue;
644 dl 1.1 }
645 dl 1.118 if (cpr(cmp, key, k) > 0) {
646 dl 1.1 q = r;
647 dl 1.40 r = r.right;
648 dl 1.1 continue;
649     }
650     }
651 dl 1.118 if ((d = q.down) == null)
652 dl 1.1 return q.node;
653 dl 1.118 q = d;
654     r = d.right;
655 dl 1.1 }
656     }
657     }
658    
659     /**
660 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
661 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
662     * base-level looking for key starting at predecessor returned
663     * from findPredecessor, processing base-level deletions as
664     * encountered. Some callers rely on this side-effect of clearing
665     * deleted nodes.
666     *
667     * Restarts occur, at traversal step centered on node n, if:
668     *
669     * (1) After reading n's next field, n is no longer assumed
670     * predecessor b's current successor, which means that
671     * we don't have a consistent 3-node snapshot and so cannot
672     * unlink any subsequent deleted nodes encountered.
673     *
674     * (2) n's value field is null, indicating n is deleted, in
675     * which case we help out an ongoing structural deletion
676     * before retrying. Even though there are cases where such
677     * unlinking doesn't require restart, they aren't sorted out
678     * here because doing so would not usually outweigh cost of
679     * restarting.
680     *
681 dl 1.9 * (3) n is a marker or n's predecessor's value field is null,
682 dl 1.1 * indicating (among other possibilities) that
683     * findPredecessor returned a deleted node. We can't unlink
684     * the node because we don't know its predecessor, so rely
685     * on another call to findPredecessor to notice and return
686     * some earlier predecessor, which it will do. This check is
687     * only strictly needed at beginning of loop, (and the
688     * b.value check isn't strictly needed at all) but is done
689     * each iteration to help avoid contention with other
690     * threads by callers that will fail to be able to change
691     * links, and so will retry anyway.
692     *
693     * The traversal loops in doPut, doRemove, and findNear all
694     * include the same three kinds of checks. And specialized
695 jsr166 1.149 * versions appear in findFirst, and findLast and their variants.
696     * They can't easily share code because each uses the reads of
697     * fields held in locals occurring in the orders they were
698     * performed.
699 dl 1.9 *
700 dl 1.1 * @param key the key
701 jsr166 1.22 * @return node holding key, or null if no such
702 dl 1.1 */
703 dl 1.118 private Node<K,V> findNode(Object key) {
704 dl 1.88 if (key == null)
705     throw new NullPointerException(); // don't postpone errors
706 dl 1.118 Comparator<? super K> cmp = comparator;
707     outer: for (;;) {
708     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
709     Object v; int c;
710 dl 1.9 if (n == null)
711 dl 1.118 break outer;
712 dl 1.1 Node<K,V> f = n.next;
713     if (n != b.next) // inconsistent read
714     break;
715 dl 1.118 if ((v = n.value) == null) { // n is deleted
716 dl 1.1 n.helpDelete(b, f);
717     break;
718     }
719 dl 1.118 if (b.value == null || v == n) // b is deleted
720 dl 1.1 break;
721 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0)
722 dl 1.40 return n;
723 dl 1.1 if (c < 0)
724 dl 1.118 break outer;
725 dl 1.1 b = n;
726     n = f;
727     }
728     }
729 dl 1.118 return null;
730 dl 1.1 }
731    
732 dl 1.9 /**
733 dl 1.88 * Gets value for key. Almost the same as findNode, but returns
734     * the found value (to avoid retries during re-reads)
735     *
736 dl 1.118 * @param key the key
737 dl 1.1 * @return the value, or null if absent
738     */
739 dl 1.118 private V doGet(Object key) {
740     if (key == null)
741 dl 1.88 throw new NullPointerException();
742 dl 1.118 Comparator<? super K> cmp = comparator;
743     outer: for (;;) {
744     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
745     Object v; int c;
746 dl 1.88 if (n == null)
747 dl 1.118 break outer;
748 dl 1.88 Node<K,V> f = n.next;
749     if (n != b.next) // inconsistent read
750     break;
751 dl 1.118 if ((v = n.value) == null) { // n is deleted
752 dl 1.88 n.helpDelete(b, f);
753     break;
754     }
755 dl 1.118 if (b.value == null || v == n) // b is deleted
756 dl 1.88 break;
757 dl 1.118 if ((c = cpr(cmp, key, n.key)) == 0) {
758     @SuppressWarnings("unchecked") V vv = (V)v;
759 dl 1.100 return vv;
760 dl 1.118 }
761 dl 1.88 if (c < 0)
762 dl 1.118 break outer;
763 dl 1.88 b = n;
764     n = f;
765     }
766 dl 1.1 }
767 dl 1.118 return null;
768 dl 1.1 }
769    
770     /* ---------------- Insertion -------------- */
771    
772     /**
773     * Main insertion method. Adds element if not present, or
774     * replaces value if present and onlyIfAbsent is false.
775 dl 1.118 * @param key the key
776 jsr166 1.103 * @param value the value that must be associated with key
777 dl 1.1 * @param onlyIfAbsent if should not insert if already present
778     * @return the old value, or null if newly inserted
779     */
780 dl 1.118 private V doPut(K key, V value, boolean onlyIfAbsent) {
781     Node<K,V> z; // added node
782     if (key == null)
783 dl 1.88 throw new NullPointerException();
784 dl 1.118 Comparator<? super K> cmp = comparator;
785     outer: for (;;) {
786     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
787 dl 1.1 if (n != null) {
788 dl 1.118 Object v; int c;
789 dl 1.1 Node<K,V> f = n.next;
790     if (n != b.next) // inconsistent read
791 jsr166 1.57 break;
792 dl 1.118 if ((v = n.value) == null) { // n is deleted
793 dl 1.1 n.helpDelete(b, f);
794     break;
795     }
796 dl 1.118 if (b.value == null || v == n) // b is deleted
797 dl 1.1 break;
798 dl 1.118 if ((c = cpr(cmp, key, n.key)) > 0) {
799 dl 1.1 b = n;
800     n = f;
801     continue;
802     }
803     if (c == 0) {
804 dl 1.118 if (onlyIfAbsent || n.casValue(v, value)) {
805     @SuppressWarnings("unchecked") V vv = (V)v;
806 dl 1.100 return vv;
807 dl 1.118 }
808     break; // restart if lost race to replace value
809 dl 1.1 }
810     // else c < 0; fall through
811 jsr166 1.163 } else if (b == head.node) {
812     // map is empty, so type check key now
813     cpr(cmp, key, key);
814 dl 1.1 }
815 dl 1.9
816 dl 1.118 z = new Node<K,V>(key, value, n);
817 dl 1.9 if (!b.casNext(n, z))
818 dl 1.1 break; // restart if lost race to append to b
819 dl 1.118 break outer;
820 dl 1.1 }
821     }
822    
823 dl 1.122 int rnd = ThreadLocalRandom.nextSecondarySeed();
824 dl 1.92 if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
825     int level = 1, max;
826     while (((rnd >>>= 1) & 1) != 0)
827     ++level;
828 dl 1.1 Index<K,V> idx = null;
829 dl 1.92 HeadIndex<K,V> h = head;
830     if (level <= (max = h.level)) {
831     for (int i = 1; i <= level; ++i)
832     idx = new Index<K,V>(z, idx, null);
833 dl 1.1 }
834 dl 1.92 else { // try to grow by one level
835     level = max + 1; // hold in array and later pick the one to use
836 dl 1.118 @SuppressWarnings("unchecked")Index<K,V>[] idxs =
837     (Index<K,V>[])new Index<?,?>[level+1];
838 dl 1.92 for (int i = 1; i <= level; ++i)
839     idxs[i] = idx = new Index<K,V>(z, idx, null);
840     for (;;) {
841     h = head;
842     int oldLevel = h.level;
843     if (level <= oldLevel) // lost race to add level
844     break;
845     HeadIndex<K,V> newh = h;
846     Node<K,V> oldbase = h.node;
847     for (int j = oldLevel+1; j <= level; ++j)
848     newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
849     if (casHead(h, newh)) {
850     h = newh;
851     idx = idxs[level = oldLevel];
852     break;
853 dl 1.1 }
854     }
855 dl 1.92 }
856 dl 1.118 // find insertion points and splice in
857     splice: for (int insertionLevel = level;;) {
858 dl 1.92 int j = h.level;
859 dl 1.118 for (Index<K,V> q = h, r = q.right, t = idx;;) {
860 dl 1.92 if (q == null || t == null)
861 dl 1.118 break splice;
862 dl 1.92 if (r != null) {
863     Node<K,V> n = r.node;
864     // compare before deletion check avoids needing recheck
865 dl 1.118 int c = cpr(cmp, key, n.key);
866 dl 1.92 if (n.value == null) {
867     if (!q.unlink(r))
868     break;
869     r = q.right;
870     continue;
871     }
872     if (c > 0) {
873     q = r;
874     r = r.right;
875     continue;
876     }
877 dl 1.1 }
878 dl 1.92
879     if (j == insertionLevel) {
880     if (!q.link(r, t))
881     break; // restart
882     if (t.node.value == null) {
883 dl 1.118 findNode(key);
884     break splice;
885 dl 1.88 }
886 dl 1.92 if (--insertionLevel == 0)
887 dl 1.118 break splice;
888 dl 1.1 }
889 dl 1.92
890     if (--j >= insertionLevel && j < level)
891     t = t.down;
892     q = q.down;
893     r = q.right;
894 dl 1.1 }
895     }
896     }
897 dl 1.118 return null;
898 dl 1.1 }
899    
900     /* ---------------- Deletion -------------- */
901    
902     /**
903     * Main deletion method. Locates node, nulls value, appends a
904     * deletion marker, unlinks predecessor, removes associated index
905     * nodes, and possibly reduces head index level.
906     *
907     * Index nodes are cleared out simply by calling findPredecessor.
908     * which unlinks indexes to deleted nodes found along path to key,
909     * which will include the indexes to this node. This is done
910     * unconditionally. We can't check beforehand whether there are
911     * index nodes because it might be the case that some or all
912     * indexes hadn't been inserted yet for this node during initial
913     * search for it, and we'd like to ensure lack of garbage
914 dl 1.9 * retention, so must call to be sure.
915 dl 1.1 *
916 dl 1.118 * @param key the key
917 dl 1.1 * @param value if non-null, the value that must be
918     * associated with key
919     * @return the node, or null if not found
920     */
921 dl 1.118 final V doRemove(Object key, Object value) {
922     if (key == null)
923 dl 1.88 throw new NullPointerException();
924 dl 1.118 Comparator<? super K> cmp = comparator;
925     outer: for (;;) {
926     for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
927     Object v; int c;
928 dl 1.9 if (n == null)
929 dl 1.118 break outer;
930 dl 1.1 Node<K,V> f = n.next;
931     if (n != b.next) // inconsistent read
932     break;
933 dl 1.118 if ((v = n.value) == null) { // n is deleted
934 dl 1.1 n.helpDelete(b, f);
935     break;
936     }
937 dl 1.118 if (b.value == null || v == n) // b is deleted
938 dl 1.1 break;
939 dl 1.118 if ((c = cpr(cmp, key, n.key)) < 0)
940     break outer;
941 dl 1.1 if (c > 0) {
942     b = n;
943     n = f;
944     continue;
945     }
946 dl 1.9 if (value != null && !value.equals(v))
947 dl 1.118 break outer;
948 dl 1.9 if (!n.casValue(v, null))
949 dl 1.1 break;
950 dl 1.9 if (!n.appendMarker(f) || !b.casNext(n, f))
951 dl 1.118 findNode(key); // retry via findNode
952 dl 1.1 else {
953 dl 1.118 findPredecessor(key, cmp); // clean index
954 dl 1.9 if (head.right == null)
955 dl 1.1 tryReduceLevel();
956     }
957 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
958     return vv;
959 dl 1.1 }
960     }
961 dl 1.118 return null;
962 dl 1.1 }
963    
964     /**
965     * Possibly reduce head level if it has no nodes. This method can
966     * (rarely) make mistakes, in which case levels can disappear even
967     * though they are about to contain index nodes. This impacts
968     * performance, not correctness. To minimize mistakes as well as
969     * to reduce hysteresis, the level is reduced by one only if the
970     * topmost three levels look empty. Also, if the removed level
971     * looks non-empty after CAS, we try to change it back quick
972     * before anyone notices our mistake! (This trick works pretty
973     * well because this method will practically never make mistakes
974     * unless current thread stalls immediately before first CAS, in
975     * which case it is very unlikely to stall again immediately
976     * afterwards, so will recover.)
977     *
978     * We put up with all this rather than just let levels grow
979     * because otherwise, even a small map that has undergone a large
980     * number of insertions and removals will have a lot of levels,
981     * slowing down access more than would an occasional unwanted
982     * reduction.
983     */
984     private void tryReduceLevel() {
985     HeadIndex<K,V> h = head;
986     HeadIndex<K,V> d;
987     HeadIndex<K,V> e;
988     if (h.level > 3 &&
989 dl 1.9 (d = (HeadIndex<K,V>)h.down) != null &&
990     (e = (HeadIndex<K,V>)d.down) != null &&
991     e.right == null &&
992     d.right == null &&
993 dl 1.1 h.right == null &&
994     casHead(h, d) && // try to set
995     h.right != null) // recheck
996     casHead(d, h); // try to backout
997     }
998    
999     /* ---------------- Finding and removing first element -------------- */
1000    
1001     /**
1002 jsr166 1.22 * Specialized variant of findNode to get first valid node.
1003 dl 1.1 * @return first node or null if empty
1004     */
1005 dl 1.118 final Node<K,V> findFirst() {
1006     for (Node<K,V> b, n;;) {
1007     if ((n = (b = head.node).next) == null)
1008 dl 1.1 return null;
1009 dl 1.9 if (n.value != null)
1010 dl 1.1 return n;
1011     n.helpDelete(b, n.next);
1012     }
1013     }
1014    
1015     /**
1016 dl 1.25 * Removes first entry; returns its snapshot.
1017 jsr166 1.28 * @return null if empty, else snapshot of first entry
1018 dl 1.1 */
1019 dl 1.118 private Map.Entry<K,V> doRemoveFirstEntry() {
1020     for (Node<K,V> b, n;;) {
1021     if ((n = (b = head.node).next) == null)
1022 dl 1.1 return null;
1023     Node<K,V> f = n.next;
1024     if (n != b.next)
1025     continue;
1026     Object v = n.value;
1027     if (v == null) {
1028     n.helpDelete(b, f);
1029     continue;
1030     }
1031     if (!n.casValue(v, null))
1032     continue;
1033     if (!n.appendMarker(f) || !b.casNext(n, f))
1034     findFirst(); // retry
1035     clearIndexToFirst();
1036 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
1037     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, vv);
1038 jsr166 1.55 }
1039 dl 1.1 }
1040    
1041     /**
1042 jsr166 1.10 * Clears out index nodes associated with deleted first entry.
1043 dl 1.1 */
1044     private void clearIndexToFirst() {
1045     for (;;) {
1046 dl 1.118 for (Index<K,V> q = head;;) {
1047 dl 1.1 Index<K,V> r = q.right;
1048     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1049 dl 1.9 break;
1050 dl 1.1 if ((q = q.down) == null) {
1051 dl 1.9 if (head.right == null)
1052 dl 1.1 tryReduceLevel();
1053     return;
1054     }
1055     }
1056     }
1057     }
1058    
1059 dl 1.88 /**
1060     * Removes last entry; returns its snapshot.
1061     * Specialized variant of doRemove.
1062     * @return null if empty, else snapshot of last entry
1063     */
1064 dl 1.118 private Map.Entry<K,V> doRemoveLastEntry() {
1065 dl 1.88 for (;;) {
1066     Node<K,V> b = findPredecessorOfLast();
1067     Node<K,V> n = b.next;
1068     if (n == null) {
1069     if (b.isBaseHeader()) // empty
1070     return null;
1071     else
1072     continue; // all b's successors are deleted; retry
1073     }
1074     for (;;) {
1075     Node<K,V> f = n.next;
1076     if (n != b.next) // inconsistent read
1077     break;
1078     Object v = n.value;
1079     if (v == null) { // n is deleted
1080     n.helpDelete(b, f);
1081     break;
1082     }
1083 dl 1.118 if (b.value == null || v == n) // b is deleted
1084 dl 1.88 break;
1085     if (f != null) {
1086     b = n;
1087     n = f;
1088     continue;
1089     }
1090     if (!n.casValue(v, null))
1091     break;
1092     K key = n.key;
1093 dl 1.118 if (!n.appendMarker(f) || !b.casNext(n, f))
1094     findNode(key); // retry via findNode
1095     else { // clean index
1096     findPredecessor(key, comparator);
1097 dl 1.88 if (head.right == null)
1098     tryReduceLevel();
1099     }
1100 dl 1.118 @SuppressWarnings("unchecked") V vv = (V)v;
1101     return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
1102 dl 1.88 }
1103     }
1104     }
1105 dl 1.1
1106     /* ---------------- Finding and removing last element -------------- */
1107    
1108     /**
1109 jsr166 1.10 * Specialized version of find to get last valid node.
1110 dl 1.1 * @return last node or null if empty
1111     */
1112 dl 1.118 final Node<K,V> findLast() {
1113 dl 1.1 /*
1114     * findPredecessor can't be used to traverse index level
1115     * because this doesn't use comparisons. So traversals of
1116     * both levels are folded together.
1117     */
1118     Index<K,V> q = head;
1119     for (;;) {
1120     Index<K,V> d, r;
1121     if ((r = q.right) != null) {
1122     if (r.indexesDeletedNode()) {
1123     q.unlink(r);
1124     q = head; // restart
1125 dl 1.9 }
1126 dl 1.1 else
1127     q = r;
1128     } else if ((d = q.down) != null) {
1129     q = d;
1130     } else {
1131 dl 1.118 for (Node<K,V> b = q.node, n = b.next;;) {
1132 dl 1.9 if (n == null)
1133 jsr166 1.61 return b.isBaseHeader() ? null : b;
1134 dl 1.1 Node<K,V> f = n.next; // inconsistent read
1135     if (n != b.next)
1136     break;
1137     Object v = n.value;
1138     if (v == null) { // n is deleted
1139     n.helpDelete(b, f);
1140     break;
1141     }
1142 dl 1.118 if (b.value == null || v == n) // b is deleted
1143 dl 1.1 break;
1144     b = n;
1145     n = f;
1146     }
1147     q = head; // restart
1148     }
1149     }
1150     }
1151    
1152 dl 1.31 /**
1153 jsr166 1.32 * Specialized variant of findPredecessor to get predecessor of last
1154     * valid node. Needed when removing the last entry. It is possible
1155     * that all successors of returned node will have been deleted upon
1156 dl 1.31 * return, in which case this method can be retried.
1157     * @return likely predecessor of last node
1158     */
1159     private Node<K,V> findPredecessorOfLast() {
1160     for (;;) {
1161 dl 1.118 for (Index<K,V> q = head;;) {
1162 dl 1.31 Index<K,V> d, r;
1163     if ((r = q.right) != null) {
1164     if (r.indexesDeletedNode()) {
1165     q.unlink(r);
1166     break; // must restart
1167     }
1168     // proceed as far across as possible without overshooting
1169     if (r.node.next != null) {
1170     q = r;
1171     continue;
1172     }
1173     }
1174     if ((d = q.down) != null)
1175     q = d;
1176     else
1177     return q.node;
1178     }
1179     }
1180     }
1181 dl 1.1
1182 dl 1.88 /* ---------------- Relational operations -------------- */
1183    
1184     // Control values OR'ed as arguments to findNear
1185    
1186     private static final int EQ = 1;
1187     private static final int LT = 2;
1188     private static final int GT = 0; // Actually checked as !LT
1189    
1190 dl 1.1 /**
1191 dl 1.88 * Utility for ceiling, floor, lower, higher methods.
1192 dl 1.118 * @param key the key
1193 dl 1.88 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1194     * @return nearest node fitting relation, or null if no such
1195 dl 1.1 */
1196 dl 1.118 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1197     if (key == null)
1198     throw new NullPointerException();
1199 dl 1.88 for (;;) {
1200 dl 1.118 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
1201     Object v;
1202 dl 1.88 if (n == null)
1203     return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1204     Node<K,V> f = n.next;
1205     if (n != b.next) // inconsistent read
1206     break;
1207 dl 1.118 if ((v = n.value) == null) { // n is deleted
1208 dl 1.88 n.helpDelete(b, f);
1209     break;
1210     }
1211 dl 1.118 if (b.value == null || v == n) // b is deleted
1212 dl 1.88 break;
1213 dl 1.118 int c = cpr(cmp, key, n.key);
1214 dl 1.88 if ((c == 0 && (rel & EQ) != 0) ||
1215     (c < 0 && (rel & LT) == 0))
1216     return n;
1217     if ( c <= 0 && (rel & LT) != 0)
1218     return b.isBaseHeader() ? null : b;
1219     b = n;
1220     n = f;
1221     }
1222     }
1223     }
1224    
1225 dl 1.1 /**
1226 jsr166 1.10 * Returns SimpleImmutableEntry for results of findNear.
1227 dl 1.40 * @param key the key
1228 dl 1.1 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1229     * @return Entry fitting relation, or null if no such
1230     */
1231 dl 1.118 final AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1232     Comparator<? super K> cmp = comparator;
1233 dl 1.1 for (;;) {
1234 dl 1.118 Node<K,V> n = findNear(key, rel, cmp);
1235 dl 1.1 if (n == null)
1236     return null;
1237 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1238 dl 1.1 if (e != null)
1239     return e;
1240     }
1241     }
1242    
1243     /* ---------------- Constructors -------------- */
1244    
1245     /**
1246 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1247     * {@linkplain Comparable natural ordering} of the keys.
1248 dl 1.1 */
1249     public ConcurrentSkipListMap() {
1250     this.comparator = null;
1251     initialize();
1252     }
1253    
1254     /**
1255 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1256     * comparator.
1257 dl 1.1 *
1258 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1259 jsr166 1.82 * If {@code null}, the {@linkplain Comparable natural
1260 jsr166 1.22 * ordering} of the keys will be used.
1261 dl 1.1 */
1262 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1263     this.comparator = comparator;
1264 dl 1.1 initialize();
1265     }
1266    
1267     /**
1268     * Constructs a new map containing the same mappings as the given map,
1269 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1270     * the keys.
1271 dl 1.1 *
1272 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1273 jsr166 1.82 * @throws ClassCastException if the keys in {@code m} are not
1274 jsr166 1.22 * {@link Comparable}, or are not mutually comparable
1275     * @throws NullPointerException if the specified map or any of its keys
1276     * or values are null
1277 dl 1.1 */
1278     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1279     this.comparator = null;
1280     initialize();
1281     putAll(m);
1282     }
1283    
1284     /**
1285 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1286     * same ordering as the specified sorted map.
1287     *
1288 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1289 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1290     * @throws NullPointerException if the specified sorted map or any of
1291     * its keys or values are null
1292 dl 1.1 */
1293     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1294     this.comparator = m.comparator();
1295     initialize();
1296     buildFromSorted(m);
1297     }
1298    
1299     /**
1300 jsr166 1.82 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1301 jsr166 1.22 * instance. (The keys and values themselves are not cloned.)
1302 dl 1.1 *
1303 jsr166 1.22 * @return a shallow copy of this map
1304 dl 1.1 */
1305 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1306 dl 1.1 try {
1307 jsr166 1.76 @SuppressWarnings("unchecked")
1308     ConcurrentSkipListMap<K,V> clone =
1309     (ConcurrentSkipListMap<K,V>) super.clone();
1310     clone.initialize();
1311     clone.buildFromSorted(this);
1312     return clone;
1313 dl 1.1 } catch (CloneNotSupportedException e) {
1314     throw new InternalError();
1315     }
1316     }
1317    
1318     /**
1319     * Streamlined bulk insertion to initialize from elements of
1320     * given sorted map. Call only from constructor or clone
1321     * method.
1322     */
1323     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1324     if (map == null)
1325     throw new NullPointerException();
1326    
1327     HeadIndex<K,V> h = head;
1328     Node<K,V> basepred = h.node;
1329    
1330     // Track the current rightmost node at each level. Uses an
1331     // ArrayList to avoid committing to initial or maximum level.
1332 jsr166 1.137 ArrayList<Index<K,V>> preds = new ArrayList<>();
1333 dl 1.1
1334     // initialize
1335 dl 1.9 for (int i = 0; i <= h.level; ++i)
1336 dl 1.1 preds.add(null);
1337     Index<K,V> q = h;
1338     for (int i = h.level; i > 0; --i) {
1339     preds.set(i, q);
1340     q = q.down;
1341     }
1342    
1343 dl 1.9 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1344 dl 1.1 map.entrySet().iterator();
1345     while (it.hasNext()) {
1346     Map.Entry<? extends K, ? extends V> e = it.next();
1347 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1348     int j = 0;
1349     if ((rnd & 0x80000001) == 0) {
1350     do {
1351     ++j;
1352     } while (((rnd >>>= 1) & 1) != 0);
1353     if (j > h.level) j = h.level + 1;
1354     }
1355 dl 1.1 K k = e.getKey();
1356     V v = e.getValue();
1357     if (k == null || v == null)
1358     throw new NullPointerException();
1359     Node<K,V> z = new Node<K,V>(k, v, null);
1360     basepred.next = z;
1361     basepred = z;
1362     if (j > 0) {
1363     Index<K,V> idx = null;
1364     for (int i = 1; i <= j; ++i) {
1365     idx = new Index<K,V>(z, idx, null);
1366 dl 1.9 if (i > h.level)
1367 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1368    
1369     if (i < preds.size()) {
1370     preds.get(i).right = idx;
1371     preds.set(i, idx);
1372     } else
1373     preds.add(idx);
1374     }
1375     }
1376     }
1377     head = h;
1378     }
1379    
1380     /* ---------------- Serialization -------------- */
1381    
1382     /**
1383 jsr166 1.80 * Saves this map to a stream (that is, serializes it).
1384 dl 1.1 *
1385 jsr166 1.128 * @param s the stream
1386 jsr166 1.129 * @throws java.io.IOException if an I/O error occurs
1387 dl 1.1 * @serialData The key (Object) and value (Object) for each
1388 jsr166 1.10 * key-value mapping represented by the map, followed by
1389 jsr166 1.82 * {@code null}. The key-value mappings are emitted in key-order
1390 dl 1.1 * (as determined by the Comparator, or by the keys' natural
1391     * ordering if no Comparator).
1392     */
1393     private void writeObject(java.io.ObjectOutputStream s)
1394     throws java.io.IOException {
1395     // Write out the Comparator and any hidden stuff
1396     s.defaultWriteObject();
1397    
1398     // Write out keys and values (alternating)
1399     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1400     V v = n.getValidValue();
1401     if (v != null) {
1402     s.writeObject(n.key);
1403     s.writeObject(v);
1404     }
1405     }
1406     s.writeObject(null);
1407     }
1408    
1409     /**
1410 jsr166 1.80 * Reconstitutes this map from a stream (that is, deserializes it).
1411 jsr166 1.128 * @param s the stream
1412 jsr166 1.129 * @throws ClassNotFoundException if the class of a serialized object
1413     * could not be found
1414     * @throws java.io.IOException if an I/O error occurs
1415 dl 1.1 */
1416 dl 1.100 @SuppressWarnings("unchecked")
1417 dl 1.1 private void readObject(final java.io.ObjectInputStream s)
1418     throws java.io.IOException, ClassNotFoundException {
1419     // Read in the Comparator and any hidden stuff
1420     s.defaultReadObject();
1421     // Reset transients
1422     initialize();
1423    
1424 dl 1.9 /*
1425 dl 1.1 * This is nearly identical to buildFromSorted, but is
1426     * distinct because readObject calls can't be nicely adapted
1427     * as the kind of iterator needed by buildFromSorted. (They
1428     * can be, but doing so requires type cheats and/or creation
1429 jsr166 1.152 * of adapter classes.) It is simpler to just adapt the code.
1430 dl 1.1 */
1431    
1432     HeadIndex<K,V> h = head;
1433     Node<K,V> basepred = h.node;
1434 jsr166 1.137 ArrayList<Index<K,V>> preds = new ArrayList<>();
1435 dl 1.9 for (int i = 0; i <= h.level; ++i)
1436 dl 1.1 preds.add(null);
1437     Index<K,V> q = h;
1438     for (int i = h.level; i > 0; --i) {
1439     preds.set(i, q);
1440     q = q.down;
1441     }
1442    
1443     for (;;) {
1444     Object k = s.readObject();
1445     if (k == null)
1446     break;
1447     Object v = s.readObject();
1448 dl 1.9 if (v == null)
1449 dl 1.1 throw new NullPointerException();
1450     K key = (K) k;
1451     V val = (V) v;
1452 dl 1.92 int rnd = ThreadLocalRandom.current().nextInt();
1453     int j = 0;
1454     if ((rnd & 0x80000001) == 0) {
1455     do {
1456     ++j;
1457     } while (((rnd >>>= 1) & 1) != 0);
1458     if (j > h.level) j = h.level + 1;
1459     }
1460 dl 1.1 Node<K,V> z = new Node<K,V>(key, val, null);
1461     basepred.next = z;
1462     basepred = z;
1463     if (j > 0) {
1464     Index<K,V> idx = null;
1465     for (int i = 1; i <= j; ++i) {
1466     idx = new Index<K,V>(z, idx, null);
1467 dl 1.9 if (i > h.level)
1468 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1469    
1470     if (i < preds.size()) {
1471     preds.get(i).right = idx;
1472     preds.set(i, idx);
1473     } else
1474     preds.add(idx);
1475     }
1476     }
1477     }
1478     head = h;
1479     }
1480    
1481     /* ------ Map API methods ------ */
1482    
1483     /**
1484 jsr166 1.82 * Returns {@code true} if this map contains a mapping for the specified
1485 dl 1.1 * key.
1486 jsr166 1.22 *
1487     * @param key key whose presence in this map is to be tested
1488 jsr166 1.82 * @return {@code true} if this map contains a mapping for the specified key
1489 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1490     * with the keys currently in the map
1491     * @throws NullPointerException if the specified key is null
1492 dl 1.1 */
1493     public boolean containsKey(Object key) {
1494 dl 1.118 return doGet(key) != null;
1495 dl 1.1 }
1496    
1497     /**
1498 jsr166 1.42 * Returns the value to which the specified key is mapped,
1499     * or {@code null} if this map contains no mapping for the key.
1500     *
1501     * <p>More formally, if this map contains a mapping from a key
1502     * {@code k} to a value {@code v} such that {@code key} compares
1503     * equal to {@code k} according to the map's ordering, then this
1504     * method returns {@code v}; otherwise it returns {@code null}.
1505     * (There can be at most one such mapping.)
1506 dl 1.1 *
1507 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1508     * with the keys currently in the map
1509     * @throws NullPointerException if the specified key is null
1510 dl 1.1 */
1511     public V get(Object key) {
1512 dl 1.118 return doGet(key);
1513 dl 1.1 }
1514    
1515     /**
1516 dl 1.109 * Returns the value to which the specified key is mapped,
1517     * or the given defaultValue if this map contains no mapping for the key.
1518     *
1519     * @param key the key
1520     * @param defaultValue the value to return if this map contains
1521     * no mapping for the given key
1522     * @return the mapping for the key, if present; else the defaultValue
1523     * @throws NullPointerException if the specified key is null
1524     * @since 1.8
1525     */
1526     public V getOrDefault(Object key, V defaultValue) {
1527     V v;
1528 dl 1.118 return (v = doGet(key)) == null ? defaultValue : v;
1529 dl 1.109 }
1530    
1531     /**
1532 dl 1.1 * Associates the specified value with the specified key in this map.
1533 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1534 dl 1.1 * value is replaced.
1535     *
1536 jsr166 1.22 * @param key key with which the specified value is to be associated
1537     * @param value value to be associated with the specified key
1538     * @return the previous value associated with the specified key, or
1539 jsr166 1.82 * {@code null} if there was no mapping for the key
1540 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1541     * with the keys currently in the map
1542     * @throws NullPointerException if the specified key or value is null
1543 dl 1.1 */
1544     public V put(K key, V value) {
1545 dl 1.9 if (value == null)
1546 dl 1.1 throw new NullPointerException();
1547 dl 1.118 return doPut(key, value, false);
1548 dl 1.1 }
1549    
1550     /**
1551 jsr166 1.36 * Removes the mapping for the specified key from this map if present.
1552 dl 1.1 *
1553     * @param key key for which mapping should be removed
1554 jsr166 1.22 * @return the previous value associated with the specified key, or
1555 jsr166 1.82 * {@code null} if there was no mapping for the key
1556 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1557     * with the keys currently in the map
1558     * @throws NullPointerException if the specified key is null
1559 dl 1.1 */
1560     public V remove(Object key) {
1561 dl 1.118 return doRemove(key, null);
1562 dl 1.1 }
1563    
1564     /**
1565 jsr166 1.82 * Returns {@code true} if this map maps one or more keys to the
1566 dl 1.1 * specified value. This operation requires time linear in the
1567 dl 1.69 * map size. Additionally, it is possible for the map to change
1568     * during execution of this method, in which case the returned
1569     * result may be inaccurate.
1570 dl 1.1 *
1571 jsr166 1.22 * @param value value whose presence in this map is to be tested
1572 jsr166 1.82 * @return {@code true} if a mapping to {@code value} exists;
1573     * {@code false} otherwise
1574 jsr166 1.22 * @throws NullPointerException if the specified value is null
1575 dl 1.9 */
1576 dl 1.1 public boolean containsValue(Object value) {
1577 dl 1.9 if (value == null)
1578 dl 1.1 throw new NullPointerException();
1579     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1580     V v = n.getValidValue();
1581     if (v != null && value.equals(v))
1582     return true;
1583     }
1584     return false;
1585     }
1586    
1587     /**
1588 dl 1.6 * Returns the number of key-value mappings in this map. If this map
1589 jsr166 1.82 * contains more than {@code Integer.MAX_VALUE} elements, it
1590     * returns {@code Integer.MAX_VALUE}.
1591 dl 1.1 *
1592     * <p>Beware that, unlike in most collections, this method is
1593     * <em>NOT</em> a constant-time operation. Because of the
1594     * asynchronous nature of these maps, determining the current
1595     * number of elements requires traversing them all to count them.
1596     * Additionally, it is possible for the size to change during
1597     * execution of this method, in which case the returned result
1598     * will be inaccurate. Thus, this method is typically not very
1599     * useful in concurrent applications.
1600     *
1601 jsr166 1.22 * @return the number of elements in this map
1602 dl 1.1 */
1603     public int size() {
1604     long count = 0;
1605     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1606     if (n.getValidValue() != null)
1607     ++count;
1608     }
1609 jsr166 1.61 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1610 dl 1.1 }
1611    
1612     /**
1613 jsr166 1.82 * Returns {@code true} if this map contains no key-value mappings.
1614     * @return {@code true} if this map contains no key-value mappings
1615 dl 1.1 */
1616     public boolean isEmpty() {
1617     return findFirst() == null;
1618     }
1619    
1620     /**
1621 jsr166 1.22 * Removes all of the mappings from this map.
1622 dl 1.1 */
1623     public void clear() {
1624     initialize();
1625     }
1626    
1627 dl 1.109 /**
1628     * If the specified key is not already associated with a value,
1629     * attempts to compute its value using the given mapping function
1630     * and enters it into this map unless {@code null}. The function
1631     * is <em>NOT</em> guaranteed to be applied once atomically only
1632     * if the value is not present.
1633     *
1634     * @param key key with which the specified value is to be associated
1635     * @param mappingFunction the function to compute a value
1636     * @return the current (existing or computed) value associated with
1637     * the specified key, or null if the computed value is null
1638     * @throws NullPointerException if the specified key is null
1639     * or the mappingFunction is null
1640     * @since 1.8
1641     */
1642 jsr166 1.110 public V computeIfAbsent(K key,
1643 dl 1.109 Function<? super K, ? extends V> mappingFunction) {
1644 jsr166 1.110 if (key == null || mappingFunction == null)
1645     throw new NullPointerException();
1646     V v, p, r;
1647 dl 1.118 if ((v = doGet(key)) == null &&
1648     (r = mappingFunction.apply(key)) != null)
1649     v = (p = doPut(key, r, true)) == null ? r : p;
1650 dl 1.109 return v;
1651     }
1652    
1653     /**
1654     * If the value for the specified key is present, attempts to
1655     * compute a new mapping given the key and its current mapped
1656     * value. The function is <em>NOT</em> guaranteed to be applied
1657     * once atomically.
1658     *
1659 dl 1.111 * @param key key with which a value may be associated
1660 dl 1.109 * @param remappingFunction the function to compute a value
1661     * @return the new value associated with the specified key, or null if none
1662     * @throws NullPointerException if the specified key is null
1663     * or the remappingFunction is null
1664     * @since 1.8
1665     */
1666 jsr166 1.110 public V computeIfPresent(K key,
1667 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1668 jsr166 1.110 if (key == null || remappingFunction == null)
1669     throw new NullPointerException();
1670 dl 1.118 Node<K,V> n; Object v;
1671     while ((n = findNode(key)) != null) {
1672     if ((v = n.value) != null) {
1673     @SuppressWarnings("unchecked") V vv = (V) v;
1674     V r = remappingFunction.apply(key, vv);
1675     if (r != null) {
1676     if (n.casValue(vv, r))
1677     return r;
1678 dl 1.109 }
1679 dl 1.118 else if (doRemove(key, vv) != null)
1680     break;
1681 dl 1.109 }
1682 jsr166 1.110 }
1683     return null;
1684 dl 1.109 }
1685    
1686     /**
1687     * Attempts to compute a mapping for the specified key and its
1688     * current mapped value (or {@code null} if there is no current
1689     * mapping). The function is <em>NOT</em> guaranteed to be applied
1690     * once atomically.
1691     *
1692     * @param key key with which the specified value is to be associated
1693     * @param remappingFunction the function to compute a value
1694     * @return the new value associated with the specified key, or null if none
1695     * @throws NullPointerException if the specified key is null
1696     * or the remappingFunction is null
1697     * @since 1.8
1698     */
1699 jsr166 1.110 public V compute(K key,
1700 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1701 jsr166 1.110 if (key == null || remappingFunction == null)
1702     throw new NullPointerException();
1703 dl 1.118 for (;;) {
1704     Node<K,V> n; Object v; V r;
1705     if ((n = findNode(key)) == null) {
1706     if ((r = remappingFunction.apply(key, null)) == null)
1707     break;
1708 dl 1.124 if (doPut(key, r, true) == null)
1709 dl 1.118 return r;
1710     }
1711     else if ((v = n.value) != null) {
1712     @SuppressWarnings("unchecked") V vv = (V) v;
1713     if ((r = remappingFunction.apply(key, vv)) != null) {
1714     if (n.casValue(vv, r))
1715 dl 1.109 return r;
1716     }
1717 dl 1.118 else if (doRemove(key, vv) != null)
1718     break;
1719 dl 1.109 }
1720     }
1721 jsr166 1.110 return null;
1722 dl 1.109 }
1723    
1724     /**
1725     * If the specified key is not already associated with a value,
1726     * associates it with the given value. Otherwise, replaces the
1727     * value with the results of the given remapping function, or
1728     * removes if {@code null}. The function is <em>NOT</em>
1729     * guaranteed to be applied once atomically.
1730     *
1731     * @param key key with which the specified value is to be associated
1732     * @param value the value to use if absent
1733     * @param remappingFunction the function to recompute a value if present
1734     * @return the new value associated with the specified key, or null if none
1735     * @throws NullPointerException if the specified key or value is null
1736     * or the remappingFunction is null
1737     * @since 1.8
1738     */
1739     public V merge(K key, V value,
1740     BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1741 jsr166 1.110 if (key == null || value == null || remappingFunction == null)
1742     throw new NullPointerException();
1743 dl 1.118 for (;;) {
1744     Node<K,V> n; Object v; V r;
1745     if ((n = findNode(key)) == null) {
1746 dl 1.124 if (doPut(key, value, true) == null)
1747 dl 1.118 return value;
1748     }
1749     else if ((v = n.value) != null) {
1750     @SuppressWarnings("unchecked") V vv = (V) v;
1751     if ((r = remappingFunction.apply(vv, value)) != null) {
1752     if (n.casValue(vv, r))
1753     return r;
1754 dl 1.109 }
1755 dl 1.118 else if (doRemove(key, vv) != null)
1756     return null;
1757 dl 1.109 }
1758 jsr166 1.110 }
1759 dl 1.109 }
1760    
1761 dl 1.46 /* ---------------- View methods -------------- */
1762    
1763     /*
1764     * Note: Lazy initialization works for views because view classes
1765     * are stateless/immutable so it doesn't matter wrt correctness if
1766     * more than one is created (which will only rarely happen). Even
1767     * so, the following idiom conservatively ensures that the method
1768     * returns the one it created if it does so, not one created by
1769     * another racing thread.
1770     */
1771    
1772 dl 1.1 /**
1773 jsr166 1.51 * Returns a {@link NavigableSet} view of the keys contained in this map.
1774 jsr166 1.132 *
1775     * <p>The set's iterator returns the keys in ascending order.
1776     * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1777     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1778     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1779     * key order. The spliterator's comparator (see
1780     * {@link java.util.Spliterator#getComparator()}) is {@code null} if
1781     * the map's comparator (see {@link #comparator()}) is {@code null}.
1782     * Otherwise, the spliterator's comparator is the same as or imposes the
1783     * same total ordering as the map's comparator.
1784     *
1785     * <p>The set is backed by the map, so changes to the map are
1786 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1787     * removal, which removes the corresponding mapping from the map,
1788 jsr166 1.51 * via the {@code Iterator.remove}, {@code Set.remove},
1789     * {@code removeAll}, {@code retainAll}, and {@code clear}
1790     * operations. It does not support the {@code add} or {@code addAll}
1791 jsr166 1.22 * operations.
1792     *
1793 jsr166 1.133 * <p>The view's iterators and spliterators are
1794     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1795 dl 1.1 *
1796 jsr166 1.51 * <p>This method is equivalent to method {@code navigableKeySet}.
1797     *
1798     * @return a navigable set view of the keys in this map
1799 dl 1.1 */
1800 jsr166 1.68 public NavigableSet<K> keySet() {
1801 jsr166 1.157 KeySet<K,V> ks;
1802     if ((ks = keySet) != null) return ks;
1803     return keySet = new KeySet<>(this);
1804 dl 1.1 }
1805    
1806 dl 1.46 public NavigableSet<K> navigableKeySet() {
1807 jsr166 1.157 KeySet<K,V> ks;
1808     if ((ks = keySet) != null) return ks;
1809     return keySet = new KeySet<>(this);
1810 dl 1.83 }
1811    
1812     /**
1813 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1814 jsr166 1.132 * <p>The collection's iterator returns the values in ascending order
1815     * of the corresponding keys. The collections's spliterator additionally
1816     * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1817     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1818     * order of the corresponding keys.
1819     *
1820     * <p>The collection is backed by the map, so changes to the map are
1821 dl 1.1 * reflected in the collection, and vice-versa. The collection
1822     * supports element removal, which removes the corresponding
1823 jsr166 1.82 * mapping from the map, via the {@code Iterator.remove},
1824     * {@code Collection.remove}, {@code removeAll},
1825     * {@code retainAll} and {@code clear} operations. It does not
1826     * support the {@code add} or {@code addAll} operations.
1827 dl 1.1 *
1828 jsr166 1.133 * <p>The view's iterators and spliterators are
1829     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1830 dl 1.1 */
1831     public Collection<V> values() {
1832 jsr166 1.157 Values<K,V> vs;
1833     if ((vs = values) != null) return vs;
1834     return values = new Values<>(this);
1835 dl 1.1 }
1836    
1837     /**
1838 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
1839 jsr166 1.132 *
1840     * <p>The set's iterator returns the entries in ascending key order. The
1841     * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1842     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1843     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1844     * key order.
1845     *
1846     * <p>The set is backed by the map, so changes to the map are
1847 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1848     * removal, which removes the corresponding mapping from the map,
1849 jsr166 1.82 * via the {@code Iterator.remove}, {@code Set.remove},
1850     * {@code removeAll}, {@code retainAll} and {@code clear}
1851     * operations. It does not support the {@code add} or
1852     * {@code addAll} operations.
1853 jsr166 1.22 *
1854 jsr166 1.133 * <p>The view's iterators and spliterators are
1855     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1856 jsr166 1.132 *
1857     * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1858     * or {@code spliterator} do <em>not</em> support the {@code setValue}
1859     * operation.
1860 dl 1.1 *
1861 jsr166 1.22 * @return a set view of the mappings contained in this map,
1862     * sorted in ascending key order
1863 dl 1.1 */
1864     public Set<Map.Entry<K,V>> entrySet() {
1865 jsr166 1.157 EntrySet<K,V> es;
1866     if ((es = entrySet) != null) return es;
1867     return entrySet = new EntrySet<K,V>(this);
1868 dl 1.46 }
1869    
1870     public ConcurrentNavigableMap<K,V> descendingMap() {
1871 jsr166 1.157 ConcurrentNavigableMap<K,V> dm;
1872     if ((dm = descendingMap) != null) return dm;
1873     return descendingMap =
1874     new SubMap<K,V>(this, null, false, null, false, true);
1875 dl 1.1 }
1876    
1877 dl 1.46 public NavigableSet<K> descendingKeySet() {
1878     return descendingMap().navigableKeySet();
1879 dl 1.1 }
1880    
1881     /* ---------------- AbstractMap Overrides -------------- */
1882    
1883     /**
1884     * Compares the specified object with this map for equality.
1885 jsr166 1.82 * Returns {@code true} if the given object is also a map and the
1886 dl 1.1 * two maps represent the same mappings. More formally, two maps
1887 jsr166 1.82 * {@code m1} and {@code m2} represent the same mappings if
1888     * {@code m1.entrySet().equals(m2.entrySet())}. This
1889 dl 1.1 * operation may return misleading results if either map is
1890     * concurrently modified during execution of this method.
1891     *
1892 jsr166 1.22 * @param o object to be compared for equality with this map
1893 jsr166 1.82 * @return {@code true} if the specified object is equal to this map
1894 dl 1.1 */
1895     public boolean equals(Object o) {
1896 jsr166 1.55 if (o == this)
1897     return true;
1898     if (!(o instanceof Map))
1899     return false;
1900     Map<?,?> m = (Map<?,?>) o;
1901 dl 1.1 try {
1902 jsr166 1.55 for (Map.Entry<K,V> e : this.entrySet())
1903     if (! e.getValue().equals(m.get(e.getKey())))
1904 dl 1.25 return false;
1905 jsr166 1.55 for (Map.Entry<?,?> e : m.entrySet()) {
1906 dl 1.25 Object k = e.getKey();
1907     Object v = e.getValue();
1908 jsr166 1.55 if (k == null || v == null || !v.equals(get(k)))
1909 dl 1.25 return false;
1910     }
1911     return true;
1912 jsr166 1.15 } catch (ClassCastException unused) {
1913 dl 1.1 return false;
1914 jsr166 1.15 } catch (NullPointerException unused) {
1915 dl 1.1 return false;
1916     }
1917     }
1918    
1919     /* ------ ConcurrentMap API methods ------ */
1920    
1921     /**
1922 jsr166 1.22 * {@inheritDoc}
1923     *
1924     * @return the previous value associated with the specified key,
1925 jsr166 1.82 * or {@code null} if there was no mapping for the key
1926 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1927     * with the keys currently in the map
1928     * @throws NullPointerException if the specified key or value is null
1929 dl 1.1 */
1930     public V putIfAbsent(K key, V value) {
1931 dl 1.9 if (value == null)
1932 dl 1.1 throw new NullPointerException();
1933 dl 1.118 return doPut(key, value, true);
1934 dl 1.1 }
1935    
1936     /**
1937 jsr166 1.22 * {@inheritDoc}
1938     *
1939     * @throws ClassCastException if the specified key cannot be compared
1940     * with the keys currently in the map
1941 dl 1.23 * @throws NullPointerException if the specified key is null
1942 dl 1.1 */
1943     public boolean remove(Object key, Object value) {
1944 dl 1.45 if (key == null)
1945     throw new NullPointerException();
1946 dl 1.118 return value != null && doRemove(key, value) != null;
1947 dl 1.1 }
1948    
1949     /**
1950 jsr166 1.22 * {@inheritDoc}
1951     *
1952     * @throws ClassCastException if the specified key cannot be compared
1953     * with the keys currently in the map
1954     * @throws NullPointerException if any of the arguments are null
1955 dl 1.1 */
1956     public boolean replace(K key, V oldValue, V newValue) {
1957 dl 1.118 if (key == null || oldValue == null || newValue == null)
1958 dl 1.1 throw new NullPointerException();
1959     for (;;) {
1960 dl 1.118 Node<K,V> n; Object v;
1961     if ((n = findNode(key)) == null)
1962 dl 1.1 return false;
1963 dl 1.118 if ((v = n.value) != null) {
1964 dl 1.1 if (!oldValue.equals(v))
1965     return false;
1966     if (n.casValue(v, newValue))
1967     return true;
1968     }
1969     }
1970     }
1971    
1972     /**
1973 jsr166 1.22 * {@inheritDoc}
1974     *
1975     * @return the previous value associated with the specified key,
1976 jsr166 1.82 * or {@code null} if there was no mapping for the key
1977 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1978     * with the keys currently in the map
1979     * @throws NullPointerException if the specified key or value is null
1980 dl 1.1 */
1981     public V replace(K key, V value) {
1982 dl 1.118 if (key == null || value == null)
1983 dl 1.1 throw new NullPointerException();
1984     for (;;) {
1985 dl 1.118 Node<K,V> n; Object v;
1986     if ((n = findNode(key)) == null)
1987 dl 1.1 return null;
1988 dl 1.118 if ((v = n.value) != null && n.casValue(v, value)) {
1989     @SuppressWarnings("unchecked") V vv = (V)v;
1990     return vv;
1991     }
1992 dl 1.1 }
1993     }
1994    
1995     /* ------ SortedMap API methods ------ */
1996    
1997     public Comparator<? super K> comparator() {
1998     return comparator;
1999     }
2000    
2001     /**
2002 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2003 dl 1.1 */
2004 dl 1.9 public K firstKey() {
2005 dl 1.1 Node<K,V> n = findFirst();
2006     if (n == null)
2007     throw new NoSuchElementException();
2008     return n.key;
2009     }
2010    
2011     /**
2012 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2013 dl 1.1 */
2014     public K lastKey() {
2015     Node<K,V> n = findLast();
2016     if (n == null)
2017     throw new NoSuchElementException();
2018     return n.key;
2019     }
2020    
2021     /**
2022 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2023     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2024 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2025 dl 1.1 */
2026 dl 1.47 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
2027     boolean fromInclusive,
2028     K toKey,
2029     boolean toInclusive) {
2030 dl 1.1 if (fromKey == null || toKey == null)
2031     throw new NullPointerException();
2032 dl 1.46 return new SubMap<K,V>
2033     (this, fromKey, fromInclusive, toKey, toInclusive, false);
2034 dl 1.1 }
2035    
2036     /**
2037 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2038     * @throws NullPointerException if {@code toKey} is null
2039 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2040 dl 1.1 */
2041 dl 1.47 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2042     boolean inclusive) {
2043 dl 1.1 if (toKey == null)
2044     throw new NullPointerException();
2045 dl 1.46 return new SubMap<K,V>
2046     (this, null, false, toKey, inclusive, false);
2047 dl 1.1 }
2048    
2049     /**
2050 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2051     * @throws NullPointerException if {@code fromKey} is null
2052 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2053 dl 1.1 */
2054 dl 1.47 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2055     boolean inclusive) {
2056 dl 1.6 if (fromKey == null)
2057     throw new NullPointerException();
2058 dl 1.46 return new SubMap<K,V>
2059     (this, fromKey, inclusive, null, false, false);
2060 dl 1.6 }
2061    
2062     /**
2063 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2064     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2065 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2066 dl 1.6 */
2067 dl 1.37 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2068 dl 1.47 return subMap(fromKey, true, toKey, false);
2069 dl 1.6 }
2070    
2071     /**
2072 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2073     * @throws NullPointerException if {@code toKey} is null
2074 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2075 dl 1.6 */
2076 dl 1.37 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2077 dl 1.47 return headMap(toKey, false);
2078 dl 1.6 }
2079    
2080     /**
2081 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
2082     * @throws NullPointerException if {@code fromKey} is null
2083 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
2084 dl 1.6 */
2085 dl 1.37 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2086 dl 1.47 return tailMap(fromKey, true);
2087 dl 1.1 }
2088    
2089     /* ---------------- Relational operations -------------- */
2090    
2091     /**
2092 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2093 jsr166 1.82 * strictly less than the given key, or {@code null} if there is
2094 jsr166 1.22 * no such key. The returned entry does <em>not</em> support the
2095 jsr166 1.82 * {@code Entry.setValue} method.
2096 dl 1.9 *
2097 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2098     * @throws NullPointerException if the specified key is null
2099 dl 1.1 */
2100 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
2101     return getNear(key, LT);
2102 dl 1.1 }
2103    
2104     /**
2105 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2106     * @throws NullPointerException if the specified key is null
2107 dl 1.1 */
2108 jsr166 1.22 public K lowerKey(K key) {
2109 dl 1.118 Node<K,V> n = findNear(key, LT, comparator);
2110 jsr166 1.61 return (n == null) ? null : n.key;
2111 dl 1.1 }
2112    
2113     /**
2114 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2115 jsr166 1.82 * less than or equal to the given key, or {@code null} if there
2116 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2117 jsr166 1.82 * the {@code Entry.setValue} method.
2118 dl 1.9 *
2119 jsr166 1.22 * @param key the key
2120     * @throws ClassCastException {@inheritDoc}
2121     * @throws NullPointerException if the specified key is null
2122 dl 1.1 */
2123 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
2124     return getNear(key, LT|EQ);
2125 dl 1.1 }
2126    
2127     /**
2128 jsr166 1.22 * @param key the key
2129     * @throws ClassCastException {@inheritDoc}
2130     * @throws NullPointerException if the specified key is null
2131 dl 1.1 */
2132 jsr166 1.22 public K floorKey(K key) {
2133 dl 1.118 Node<K,V> n = findNear(key, LT|EQ, comparator);
2134 jsr166 1.61 return (n == null) ? null : n.key;
2135 dl 1.1 }
2136    
2137     /**
2138 jsr166 1.22 * Returns a key-value mapping associated with the least key
2139 jsr166 1.82 * greater than or equal to the given key, or {@code null} if
2140 jsr166 1.22 * there is no such entry. The returned entry does <em>not</em>
2141 jsr166 1.82 * support the {@code Entry.setValue} method.
2142 dl 1.9 *
2143 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2144     * @throws NullPointerException if the specified key is null
2145 dl 1.1 */
2146 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
2147     return getNear(key, GT|EQ);
2148 dl 1.1 }
2149    
2150     /**
2151 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2152     * @throws NullPointerException if the specified key is null
2153 dl 1.1 */
2154 jsr166 1.22 public K ceilingKey(K key) {
2155 dl 1.118 Node<K,V> n = findNear(key, GT|EQ, comparator);
2156 jsr166 1.61 return (n == null) ? null : n.key;
2157 dl 1.1 }
2158    
2159     /**
2160     * Returns a key-value mapping associated with the least key
2161 jsr166 1.82 * strictly greater than the given key, or {@code null} if there
2162 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2163 jsr166 1.82 * the {@code Entry.setValue} method.
2164 dl 1.9 *
2165 jsr166 1.22 * @param key the key
2166     * @throws ClassCastException {@inheritDoc}
2167     * @throws NullPointerException if the specified key is null
2168 dl 1.1 */
2169     public Map.Entry<K,V> higherEntry(K key) {
2170     return getNear(key, GT);
2171     }
2172    
2173     /**
2174 jsr166 1.22 * @param key the key
2175     * @throws ClassCastException {@inheritDoc}
2176     * @throws NullPointerException if the specified key is null
2177 dl 1.1 */
2178     public K higherKey(K key) {
2179 dl 1.118 Node<K,V> n = findNear(key, GT, comparator);
2180 jsr166 1.61 return (n == null) ? null : n.key;
2181 dl 1.1 }
2182    
2183     /**
2184     * Returns a key-value mapping associated with the least
2185 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2186 dl 1.1 * The returned entry does <em>not</em> support
2187 jsr166 1.82 * the {@code Entry.setValue} method.
2188 dl 1.1 */
2189     public Map.Entry<K,V> firstEntry() {
2190     for (;;) {
2191     Node<K,V> n = findFirst();
2192 dl 1.9 if (n == null)
2193 dl 1.1 return null;
2194 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2195 dl 1.1 if (e != null)
2196     return e;
2197     }
2198     }
2199    
2200     /**
2201     * Returns a key-value mapping associated with the greatest
2202 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2203 dl 1.1 * The returned entry does <em>not</em> support
2204 jsr166 1.82 * the {@code Entry.setValue} method.
2205 dl 1.1 */
2206     public Map.Entry<K,V> lastEntry() {
2207     for (;;) {
2208     Node<K,V> n = findLast();
2209 dl 1.9 if (n == null)
2210 dl 1.1 return null;
2211 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2212 dl 1.1 if (e != null)
2213     return e;
2214     }
2215     }
2216    
2217     /**
2218     * Removes and returns a key-value mapping associated with
2219 jsr166 1.82 * the least key in this map, or {@code null} if the map is empty.
2220 dl 1.1 * The returned entry does <em>not</em> support
2221 jsr166 1.82 * the {@code Entry.setValue} method.
2222 dl 1.1 */
2223     public Map.Entry<K,V> pollFirstEntry() {
2224 dl 1.25 return doRemoveFirstEntry();
2225 dl 1.1 }
2226    
2227     /**
2228     * Removes and returns a key-value mapping associated with
2229 jsr166 1.82 * the greatest key in this map, or {@code null} if the map is empty.
2230 dl 1.1 * The returned entry does <em>not</em> support
2231 jsr166 1.82 * the {@code Entry.setValue} method.
2232 dl 1.1 */
2233     public Map.Entry<K,V> pollLastEntry() {
2234 dl 1.31 return doRemoveLastEntry();
2235 dl 1.1 }
2236    
2237    
2238     /* ---------------- Iterators -------------- */
2239    
2240     /**
2241 dl 1.46 * Base of iterator classes:
2242 dl 1.1 */
2243 dl 1.46 abstract class Iter<T> implements Iterator<T> {
2244 dl 1.1 /** the last node returned by next() */
2245 jsr166 1.52 Node<K,V> lastReturned;
2246 dl 1.1 /** the next node to return from next(); */
2247     Node<K,V> next;
2248 jsr166 1.55 /** Cache of next value field to maintain weak consistency */
2249     V nextValue;
2250 dl 1.1
2251 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2252 dl 1.46 Iter() {
2253 dl 1.118 while ((next = findFirst()) != null) {
2254 jsr166 1.52 Object x = next.value;
2255     if (x != null && x != next) {
2256 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2257     nextValue = vv;
2258 dl 1.1 break;
2259 jsr166 1.55 }
2260 dl 1.1 }
2261     }
2262    
2263 dl 1.46 public final boolean hasNext() {
2264     return next != null;
2265 dl 1.1 }
2266 dl 1.46
2267 jsr166 1.13 /** Advances next to higher entry. */
2268 dl 1.46 final void advance() {
2269 jsr166 1.54 if (next == null)
2270 dl 1.1 throw new NoSuchElementException();
2271 jsr166 1.55 lastReturned = next;
2272 dl 1.118 while ((next = next.next) != null) {
2273 jsr166 1.52 Object x = next.value;
2274     if (x != null && x != next) {
2275 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)x;
2276     nextValue = vv;
2277 dl 1.1 break;
2278 jsr166 1.55 }
2279 dl 1.1 }
2280     }
2281    
2282     public void remove() {
2283 jsr166 1.52 Node<K,V> l = lastReturned;
2284 dl 1.1 if (l == null)
2285     throw new IllegalStateException();
2286     // It would not be worth all of the overhead to directly
2287     // unlink from here. Using remove is fast enough.
2288     ConcurrentSkipListMap.this.remove(l.key);
2289 jsr166 1.55 lastReturned = null;
2290 dl 1.1 }
2291    
2292     }
2293    
2294 dl 1.46 final class ValueIterator extends Iter<V> {
2295 dl 1.9 public V next() {
2296 jsr166 1.52 V v = nextValue;
2297 dl 1.46 advance();
2298 jsr166 1.52 return v;
2299 dl 1.1 }
2300     }
2301    
2302 dl 1.46 final class KeyIterator extends Iter<K> {
2303 dl 1.9 public K next() {
2304 dl 1.1 Node<K,V> n = next;
2305 dl 1.46 advance();
2306 dl 1.1 return n.key;
2307     }
2308     }
2309    
2310 dl 1.46 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2311     public Map.Entry<K,V> next() {
2312     Node<K,V> n = next;
2313 jsr166 1.52 V v = nextValue;
2314 dl 1.46 advance();
2315     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2316 dl 1.1 }
2317 dl 1.46 }
2318 dl 1.1
2319 dl 1.46 /* ---------------- View Classes -------------- */
2320    
2321     /*
2322     * View classes are static, delegating to a ConcurrentNavigableMap
2323     * to allow use by SubMaps, which outweighs the ugliness of
2324     * needing type-tests for Iterator methods.
2325     */
2326    
2327 jsr166 1.53 static final <E> List<E> toList(Collection<E> c) {
2328 jsr166 1.55 // Using size() here would be a pessimization.
2329 jsr166 1.90 ArrayList<E> list = new ArrayList<E>();
2330 jsr166 1.55 for (E e : c)
2331     list.add(e);
2332     return list;
2333 jsr166 1.53 }
2334    
2335 jsr166 1.147 static final class KeySet<K,V>
2336     extends AbstractSet<K> implements NavigableSet<K> {
2337     final ConcurrentNavigableMap<K,V> m;
2338     KeySet(ConcurrentNavigableMap<K,V> map) { m = map; }
2339 dl 1.46 public int size() { return m.size(); }
2340     public boolean isEmpty() { return m.isEmpty(); }
2341     public boolean contains(Object o) { return m.containsKey(o); }
2342     public boolean remove(Object o) { return m.remove(o) != null; }
2343     public void clear() { m.clear(); }
2344 jsr166 1.147 public K lower(K e) { return m.lowerKey(e); }
2345     public K floor(K e) { return m.floorKey(e); }
2346     public K ceiling(K e) { return m.ceilingKey(e); }
2347     public K higher(K e) { return m.higherKey(e); }
2348     public Comparator<? super K> comparator() { return m.comparator(); }
2349     public K first() { return m.firstKey(); }
2350     public K last() { return m.lastKey(); }
2351     public K pollFirst() {
2352     Map.Entry<K,V> e = m.pollFirstEntry();
2353 jsr166 1.61 return (e == null) ? null : e.getKey();
2354 dl 1.46 }
2355 jsr166 1.147 public K pollLast() {
2356     Map.Entry<K,V> e = m.pollLastEntry();
2357 jsr166 1.61 return (e == null) ? null : e.getKey();
2358 dl 1.46 }
2359 jsr166 1.147 public Iterator<K> iterator() {
2360 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2361     ? ((ConcurrentSkipListMap<K,V>)m).new KeyIterator()
2362     : ((SubMap<K,V>)m).new SubMapKeyIterator();
2363 dl 1.1 }
2364 dl 1.45 public boolean equals(Object o) {
2365     if (o == this)
2366     return true;
2367     if (!(o instanceof Set))
2368     return false;
2369     Collection<?> c = (Collection<?>) o;
2370     try {
2371     return containsAll(c) && c.containsAll(this);
2372 jsr166 1.81 } catch (ClassCastException unused) {
2373 dl 1.45 return false;
2374     } catch (NullPointerException unused) {
2375     return false;
2376     }
2377     }
2378 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2379     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2380 jsr166 1.147 public Iterator<K> descendingIterator() {
2381 dl 1.46 return descendingSet().iterator();
2382     }
2383 jsr166 1.147 public NavigableSet<K> subSet(K fromElement,
2384 dl 1.47 boolean fromInclusive,
2385 jsr166 1.147 K toElement,
2386 dl 1.47 boolean toInclusive) {
2387 jsr166 1.147 return new KeySet<>(m.subMap(fromElement, fromInclusive,
2388     toElement, toInclusive));
2389 dl 1.46 }
2390 jsr166 1.147 public NavigableSet<K> headSet(K toElement, boolean inclusive) {
2391     return new KeySet<>(m.headMap(toElement, inclusive));
2392 dl 1.46 }
2393 jsr166 1.147 public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
2394     return new KeySet<>(m.tailMap(fromElement, inclusive));
2395 dl 1.46 }
2396 jsr166 1.147 public NavigableSet<K> subSet(K fromElement, K toElement) {
2397 dl 1.47 return subSet(fromElement, true, toElement, false);
2398 dl 1.46 }
2399 jsr166 1.147 public NavigableSet<K> headSet(K toElement) {
2400 dl 1.47 return headSet(toElement, false);
2401 dl 1.46 }
2402 jsr166 1.147 public NavigableSet<K> tailSet(K fromElement) {
2403 dl 1.47 return tailSet(fromElement, true);
2404 dl 1.46 }
2405 jsr166 1.147 public NavigableSet<K> descendingSet() {
2406     return new KeySet<>(m.descendingMap());
2407 dl 1.46 }
2408 jsr166 1.150
2409 jsr166 1.147 public Spliterator<K> spliterator() {
2410 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2411     ? ((ConcurrentSkipListMap<K,V>)m).keySpliterator()
2412     : ((SubMap<K,V>)m).new SubMapKeyIterator();
2413 dl 1.100 }
2414 dl 1.1 }
2415    
2416 jsr166 1.147 static final class Values<K,V> extends AbstractCollection<V> {
2417     final ConcurrentNavigableMap<K,V> m;
2418     Values(ConcurrentNavigableMap<K,V> map) {
2419 dl 1.46 m = map;
2420 dl 1.1 }
2421 jsr166 1.147 public Iterator<V> iterator() {
2422 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2423     ? ((ConcurrentSkipListMap<K,V>)m).new ValueIterator()
2424     : ((SubMap<K,V>)m).new SubMapValueIterator();
2425 dl 1.1 }
2426 jsr166 1.147 public int size() { return m.size(); }
2427     public boolean isEmpty() { return m.isEmpty(); }
2428     public boolean contains(Object o) { return m.containsValue(o); }
2429     public void clear() { m.clear(); }
2430 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2431     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2432 jsr166 1.150
2433 jsr166 1.147 public Spliterator<V> spliterator() {
2434 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2435     ? ((ConcurrentSkipListMap<K,V>)m).valueSpliterator()
2436     : ((SubMap<K,V>)m).new SubMapValueIterator();
2437 dl 1.100 }
2438 dl 1.146
2439 jsr166 1.147 public boolean removeIf(Predicate<? super V> filter) {
2440 dl 1.146 if (filter == null) throw new NullPointerException();
2441     if (m instanceof ConcurrentSkipListMap)
2442 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).removeValueIf(filter);
2443 dl 1.146 // else use iterator
2444 jsr166 1.150 Iterator<Map.Entry<K,V>> it =
2445     ((SubMap<K,V>)m).new SubMapEntryIterator();
2446 dl 1.146 boolean removed = false;
2447     while (it.hasNext()) {
2448 jsr166 1.147 Map.Entry<K,V> e = it.next();
2449     V v = e.getValue();
2450 dl 1.146 if (filter.test(v) && m.remove(e.getKey(), v))
2451     removed = true;
2452     }
2453     return removed;
2454 dl 1.144 }
2455 dl 1.1 }
2456    
2457 jsr166 1.147 static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
2458     final ConcurrentNavigableMap<K,V> m;
2459     EntrySet(ConcurrentNavigableMap<K,V> map) {
2460 dl 1.46 m = map;
2461 dl 1.1 }
2462 jsr166 1.147 public Iterator<Map.Entry<K,V>> iterator() {
2463 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2464     ? ((ConcurrentSkipListMap<K,V>)m).new EntryIterator()
2465     : ((SubMap<K,V>)m).new SubMapEntryIterator();
2466 dl 1.46 }
2467 dl 1.47
2468 dl 1.1 public boolean contains(Object o) {
2469     if (!(o instanceof Map.Entry))
2470     return false;
2471 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2472 jsr166 1.147 V v = m.get(e.getKey());
2473 dl 1.1 return v != null && v.equals(e.getValue());
2474     }
2475     public boolean remove(Object o) {
2476     if (!(o instanceof Map.Entry))
2477     return false;
2478 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2479 dl 1.46 return m.remove(e.getKey(),
2480 dl 1.47 e.getValue());
2481 dl 1.1 }
2482     public boolean isEmpty() {
2483 dl 1.46 return m.isEmpty();
2484 dl 1.1 }
2485     public int size() {
2486 dl 1.46 return m.size();
2487 dl 1.1 }
2488     public void clear() {
2489 dl 1.46 m.clear();
2490 dl 1.1 }
2491 dl 1.45 public boolean equals(Object o) {
2492     if (o == this)
2493     return true;
2494     if (!(o instanceof Set))
2495     return false;
2496     Collection<?> c = (Collection<?>) o;
2497     try {
2498     return containsAll(c) && c.containsAll(this);
2499 jsr166 1.81 } catch (ClassCastException unused) {
2500 dl 1.45 return false;
2501     } catch (NullPointerException unused) {
2502     return false;
2503     }
2504     }
2505 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2506     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2507 jsr166 1.150
2508 jsr166 1.147 public Spliterator<Map.Entry<K,V>> spliterator() {
2509 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2510     ? ((ConcurrentSkipListMap<K,V>)m).entrySpliterator()
2511     : ((SubMap<K,V>)m).new SubMapEntryIterator();
2512 dl 1.100 }
2513 jsr166 1.147 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
2514 dl 1.146 if (filter == null) throw new NullPointerException();
2515     if (m instanceof ConcurrentSkipListMap)
2516 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).removeEntryIf(filter);
2517 dl 1.146 // else use iterator
2518 jsr166 1.150 Iterator<Map.Entry<K,V>> it =
2519     ((SubMap<K,V>)m).new SubMapEntryIterator();
2520 dl 1.146 boolean removed = false;
2521     while (it.hasNext()) {
2522 jsr166 1.147 Map.Entry<K,V> e = it.next();
2523 dl 1.146 if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
2524     removed = true;
2525     }
2526     return removed;
2527 dl 1.143 }
2528 dl 1.1 }
2529    
2530     /**
2531     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2532 jsr166 1.149 * represent a subrange of mappings of their underlying maps.
2533     * Instances of this class support all methods of their underlying
2534     * maps, differing in that mappings outside their range are ignored,
2535     * and attempts to add mappings outside their ranges result in {@link
2536     * IllegalArgumentException}. Instances of this class are constructed
2537     * only using the {@code subMap}, {@code headMap}, and {@code tailMap}
2538     * methods of their underlying maps.
2539 jsr166 1.52 *
2540     * @serial include
2541 dl 1.1 */
2542 dl 1.46 static final class SubMap<K,V> extends AbstractMap<K,V>
2543 jsr166 1.159 implements ConcurrentNavigableMap<K,V>, Serializable {
2544 dl 1.1 private static final long serialVersionUID = -7647078645895051609L;
2545    
2546     /** Underlying map */
2547 jsr166 1.153 final ConcurrentSkipListMap<K,V> m;
2548 dl 1.1 /** lower bound key, or null if from start */
2549 dl 1.46 private final K lo;
2550     /** upper bound key, or null if to end */
2551     private final K hi;
2552     /** inclusion flag for lo */
2553     private final boolean loInclusive;
2554     /** inclusion flag for hi */
2555     private final boolean hiInclusive;
2556     /** direction */
2557 jsr166 1.153 final boolean isDescending;
2558 dl 1.46
2559 dl 1.1 // Lazily initialized view holders
2560 jsr166 1.147 private transient KeySet<K,V> keySetView;
2561 jsr166 1.158 private transient Values<K,V> valuesView;
2562     private transient EntrySet<K,V> entrySetView;
2563 dl 1.1
2564     /**
2565 jsr166 1.87 * Creates a new submap, initializing all fields.
2566 dl 1.46 */
2567     SubMap(ConcurrentSkipListMap<K,V> map,
2568     K fromKey, boolean fromInclusive,
2569     K toKey, boolean toInclusive,
2570     boolean isDescending) {
2571 dl 1.118 Comparator<? super K> cmp = map.comparator;
2572 dl 1.47 if (fromKey != null && toKey != null &&
2573 dl 1.118 cpr(cmp, fromKey, toKey) > 0)
2574 dl 1.1 throw new IllegalArgumentException("inconsistent range");
2575     this.m = map;
2576 dl 1.46 this.lo = fromKey;
2577     this.hi = toKey;
2578     this.loInclusive = fromInclusive;
2579     this.hiInclusive = toInclusive;
2580     this.isDescending = isDescending;
2581 dl 1.1 }
2582    
2583     /* ---------------- Utilities -------------- */
2584    
2585 dl 1.118 boolean tooLow(Object key, Comparator<? super K> cmp) {
2586     int c;
2587     return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2588     (c == 0 && !loInclusive)));
2589 dl 1.1 }
2590    
2591 dl 1.118 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2592     int c;
2593     return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2594     (c == 0 && !hiInclusive)));
2595 dl 1.1 }
2596    
2597 dl 1.118 boolean inBounds(Object key, Comparator<? super K> cmp) {
2598     return !tooLow(key, cmp) && !tooHigh(key, cmp);
2599 dl 1.1 }
2600    
2601 dl 1.118 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2602 dl 1.46 if (key == null)
2603     throw new NullPointerException();
2604 dl 1.118 if (!inBounds(key, cmp))
2605 dl 1.46 throw new IllegalArgumentException("key out of range");
2606 dl 1.1 }
2607    
2608 dl 1.46 /**
2609 jsr166 1.87 * Returns true if node key is less than upper bound of range.
2610 dl 1.46 */
2611 dl 1.118 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2612     Comparator<? super K> cmp) {
2613 dl 1.46 if (n == null)
2614     return false;
2615     if (hi == null)
2616     return true;
2617     K k = n.key;
2618     if (k == null) // pass by markers and headers
2619     return true;
2620 dl 1.118 int c = cpr(cmp, k, hi);
2621 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive))
2622     return false;
2623     return true;
2624 dl 1.1 }
2625    
2626 dl 1.46 /**
2627     * Returns lowest node. This node might not be in range, so
2628 jsr166 1.87 * most usages need to check bounds.
2629 dl 1.46 */
2630 dl 1.118 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2631 dl 1.46 if (lo == null)
2632     return m.findFirst();
2633     else if (loInclusive)
2634 dl 1.118 return m.findNear(lo, GT|EQ, cmp);
2635 dl 1.46 else
2636 dl 1.118 return m.findNear(lo, GT, cmp);
2637 dl 1.1 }
2638    
2639     /**
2640 dl 1.46 * Returns highest node. This node might not be in range, so
2641 jsr166 1.87 * most usages need to check bounds.
2642 dl 1.1 */
2643 dl 1.118 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2644 dl 1.46 if (hi == null)
2645     return m.findLast();
2646     else if (hiInclusive)
2647 dl 1.118 return m.findNear(hi, LT|EQ, cmp);
2648 dl 1.46 else
2649 dl 1.118 return m.findNear(hi, LT, cmp);
2650 dl 1.1 }
2651    
2652     /**
2653 jsr166 1.136 * Returns lowest absolute key (ignoring directionality).
2654 dl 1.1 */
2655 dl 1.118 K lowestKey() {
2656     Comparator<? super K> cmp = m.comparator;
2657     ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2658     if (isBeforeEnd(n, cmp))
2659 dl 1.46 return n.key;
2660     else
2661     throw new NoSuchElementException();
2662 dl 1.47 }
2663 dl 1.46
2664     /**
2665 jsr166 1.136 * Returns highest absolute key (ignoring directionality).
2666 dl 1.46 */
2667 dl 1.118 K highestKey() {
2668     Comparator<? super K> cmp = m.comparator;
2669     ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2670 dl 1.46 if (n != null) {
2671     K last = n.key;
2672 dl 1.118 if (inBounds(last, cmp))
2673 dl 1.46 return last;
2674     }
2675     throw new NoSuchElementException();
2676     }
2677    
2678 dl 1.118 Map.Entry<K,V> lowestEntry() {
2679     Comparator<? super K> cmp = m.comparator;
2680 dl 1.46 for (;;) {
2681 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2682     if (!isBeforeEnd(n, cmp))
2683 dl 1.46 return null;
2684     Map.Entry<K,V> e = n.createSnapshot();
2685     if (e != null)
2686     return e;
2687     }
2688     }
2689    
2690 dl 1.118 Map.Entry<K,V> highestEntry() {
2691     Comparator<? super K> cmp = m.comparator;
2692 dl 1.46 for (;;) {
2693 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2694     if (n == null || !inBounds(n.key, cmp))
2695 dl 1.46 return null;
2696     Map.Entry<K,V> e = n.createSnapshot();
2697     if (e != null)
2698     return e;
2699     }
2700     }
2701    
2702 dl 1.118 Map.Entry<K,V> removeLowest() {
2703     Comparator<? super K> cmp = m.comparator;
2704 dl 1.46 for (;;) {
2705 dl 1.118 Node<K,V> n = loNode(cmp);
2706 dl 1.46 if (n == null)
2707     return null;
2708     K k = n.key;
2709 dl 1.118 if (!inBounds(k, cmp))
2710 dl 1.46 return null;
2711 dl 1.118 V v = m.doRemove(k, null);
2712 dl 1.46 if (v != null)
2713     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2714     }
2715     }
2716    
2717 dl 1.118 Map.Entry<K,V> removeHighest() {
2718     Comparator<? super K> cmp = m.comparator;
2719 dl 1.46 for (;;) {
2720 dl 1.118 Node<K,V> n = hiNode(cmp);
2721 dl 1.46 if (n == null)
2722     return null;
2723     K k = n.key;
2724 dl 1.118 if (!inBounds(k, cmp))
2725 dl 1.46 return null;
2726 dl 1.118 V v = m.doRemove(k, null);
2727 dl 1.46 if (v != null)
2728     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2729     }
2730 dl 1.1 }
2731    
2732     /**
2733 jsr166 1.154 * Submap version of ConcurrentSkipListMap.getNearEntry.
2734 dl 1.1 */
2735 dl 1.118 Map.Entry<K,V> getNearEntry(K key, int rel) {
2736     Comparator<? super K> cmp = m.comparator;
2737 dl 1.46 if (isDescending) { // adjust relation for direction
2738 jsr166 1.70 if ((rel & LT) == 0)
2739     rel |= LT;
2740 dl 1.46 else
2741 jsr166 1.70 rel &= ~LT;
2742 dl 1.46 }
2743 dl 1.118 if (tooLow(key, cmp))
2744 jsr166 1.70 return ((rel & LT) != 0) ? null : lowestEntry();
2745 dl 1.118 if (tooHigh(key, cmp))
2746 jsr166 1.70 return ((rel & LT) != 0) ? highestEntry() : null;
2747 dl 1.46 for (;;) {
2748 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2749     if (n == null || !inBounds(n.key, cmp))
2750 dl 1.46 return null;
2751     K k = n.key;
2752     V v = n.getValidValue();
2753     if (v != null)
2754     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2755     }
2756 dl 1.1 }
2757    
2758 jsr166 1.48 // Almost the same as getNearEntry, except for keys
2759 dl 1.118 K getNearKey(K key, int rel) {
2760     Comparator<? super K> cmp = m.comparator;
2761 dl 1.46 if (isDescending) { // adjust relation for direction
2762 jsr166 1.70 if ((rel & LT) == 0)
2763     rel |= LT;
2764 dl 1.46 else
2765 jsr166 1.70 rel &= ~LT;
2766 dl 1.46 }
2767 dl 1.118 if (tooLow(key, cmp)) {
2768 jsr166 1.70 if ((rel & LT) == 0) {
2769 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2770     if (isBeforeEnd(n, cmp))
2771 dl 1.46 return n.key;
2772     }
2773     return null;
2774     }
2775 dl 1.118 if (tooHigh(key, cmp)) {
2776 jsr166 1.70 if ((rel & LT) != 0) {
2777 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2778 dl 1.46 if (n != null) {
2779     K last = n.key;
2780 dl 1.118 if (inBounds(last, cmp))
2781 dl 1.46 return last;
2782     }
2783     }
2784     return null;
2785     }
2786     for (;;) {
2787 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2788     if (n == null || !inBounds(n.key, cmp))
2789 dl 1.46 return null;
2790     K k = n.key;
2791     V v = n.getValidValue();
2792     if (v != null)
2793     return k;
2794     }
2795     }
2796 dl 1.1
2797     /* ---------------- Map API methods -------------- */
2798    
2799     public boolean containsKey(Object key) {
2800 dl 1.46 if (key == null) throw new NullPointerException();
2801 dl 1.118 return inBounds(key, m.comparator) && m.containsKey(key);
2802 dl 1.1 }
2803    
2804     public V get(Object key) {
2805 dl 1.46 if (key == null) throw new NullPointerException();
2806 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2807 dl 1.1 }
2808    
2809     public V put(K key, V value) {
2810 dl 1.118 checkKeyBounds(key, m.comparator);
2811 dl 1.1 return m.put(key, value);
2812     }
2813    
2814     public V remove(Object key) {
2815 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2816 dl 1.1 }
2817    
2818     public int size() {
2819 dl 1.118 Comparator<? super K> cmp = m.comparator;
2820 dl 1.1 long count = 0;
2821 dl 1.118 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2822     isBeforeEnd(n, cmp);
2823 dl 1.1 n = n.next) {
2824     if (n.getValidValue() != null)
2825     ++count;
2826     }
2827 jsr166 1.61 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2828 dl 1.1 }
2829    
2830     public boolean isEmpty() {
2831 dl 1.118 Comparator<? super K> cmp = m.comparator;
2832     return !isBeforeEnd(loNode(cmp), cmp);
2833 dl 1.1 }
2834    
2835     public boolean containsValue(Object value) {
2836 dl 1.9 if (value == null)
2837 dl 1.1 throw new NullPointerException();
2838 dl 1.118 Comparator<? super K> cmp = m.comparator;
2839     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2840     isBeforeEnd(n, cmp);
2841 dl 1.1 n = n.next) {
2842     V v = n.getValidValue();
2843     if (v != null && value.equals(v))
2844     return true;
2845     }
2846     return false;
2847     }
2848    
2849     public void clear() {
2850 dl 1.118 Comparator<? super K> cmp = m.comparator;
2851     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2852     isBeforeEnd(n, cmp);
2853 dl 1.1 n = n.next) {
2854     if (n.getValidValue() != null)
2855     m.remove(n.key);
2856     }
2857     }
2858    
2859     /* ---------------- ConcurrentMap API methods -------------- */
2860    
2861     public V putIfAbsent(K key, V value) {
2862 dl 1.118 checkKeyBounds(key, m.comparator);
2863 dl 1.1 return m.putIfAbsent(key, value);
2864     }
2865    
2866     public boolean remove(Object key, Object value) {
2867 dl 1.118 return inBounds(key, m.comparator) && m.remove(key, value);
2868 dl 1.1 }
2869    
2870     public boolean replace(K key, V oldValue, V newValue) {
2871 dl 1.118 checkKeyBounds(key, m.comparator);
2872 dl 1.1 return m.replace(key, oldValue, newValue);
2873     }
2874    
2875     public V replace(K key, V value) {
2876 dl 1.118 checkKeyBounds(key, m.comparator);
2877 dl 1.1 return m.replace(key, value);
2878     }
2879    
2880     /* ---------------- SortedMap API methods -------------- */
2881    
2882     public Comparator<? super K> comparator() {
2883 dl 1.46 Comparator<? super K> cmp = m.comparator();
2884 jsr166 1.55 if (isDescending)
2885     return Collections.reverseOrder(cmp);
2886     else
2887     return cmp;
2888 dl 1.1 }
2889 dl 1.47
2890 dl 1.46 /**
2891     * Utility to create submaps, where given bounds override
2892     * unbounded(null) ones and/or are checked against bounded ones.
2893     */
2894 dl 1.118 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2895     K toKey, boolean toInclusive) {
2896     Comparator<? super K> cmp = m.comparator;
2897 dl 1.46 if (isDescending) { // flip senses
2898 dl 1.47 K tk = fromKey;
2899     fromKey = toKey;
2900 dl 1.46 toKey = tk;
2901 dl 1.47 boolean ti = fromInclusive;
2902     fromInclusive = toInclusive;
2903 dl 1.46 toInclusive = ti;
2904     }
2905     if (lo != null) {
2906     if (fromKey == null) {
2907     fromKey = lo;
2908     fromInclusive = loInclusive;
2909     }
2910     else {
2911 dl 1.118 int c = cpr(cmp, fromKey, lo);
2912 dl 1.46 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2913     throw new IllegalArgumentException("key out of range");
2914     }
2915     }
2916     if (hi != null) {
2917     if (toKey == null) {
2918     toKey = hi;
2919     toInclusive = hiInclusive;
2920     }
2921     else {
2922 dl 1.118 int c = cpr(cmp, toKey, hi);
2923 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2924     throw new IllegalArgumentException("key out of range");
2925     }
2926 dl 1.1 }
2927 dl 1.47 return new SubMap<K,V>(m, fromKey, fromInclusive,
2928 dl 1.46 toKey, toInclusive, isDescending);
2929 dl 1.1 }
2930    
2931 dl 1.118 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2932     K toKey, boolean toInclusive) {
2933 dl 1.1 if (fromKey == null || toKey == null)
2934     throw new NullPointerException();
2935 dl 1.46 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2936 dl 1.1 }
2937 dl 1.47
2938 dl 1.118 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2939 dl 1.1 if (toKey == null)
2940     throw new NullPointerException();
2941 dl 1.46 return newSubMap(null, false, toKey, inclusive);
2942 dl 1.1 }
2943 dl 1.47
2944 dl 1.118 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2945 dl 1.1 if (fromKey == null)
2946     throw new NullPointerException();
2947 dl 1.46 return newSubMap(fromKey, inclusive, null, false);
2948     }
2949    
2950     public SubMap<K,V> subMap(K fromKey, K toKey) {
2951 dl 1.47 return subMap(fromKey, true, toKey, false);
2952 dl 1.1 }
2953    
2954 dl 1.46 public SubMap<K,V> headMap(K toKey) {
2955 dl 1.47 return headMap(toKey, false);
2956 dl 1.6 }
2957    
2958 dl 1.46 public SubMap<K,V> tailMap(K fromKey) {
2959 dl 1.47 return tailMap(fromKey, true);
2960 dl 1.6 }
2961    
2962 dl 1.46 public SubMap<K,V> descendingMap() {
2963 dl 1.47 return new SubMap<K,V>(m, lo, loInclusive,
2964 dl 1.46 hi, hiInclusive, !isDescending);
2965 dl 1.6 }
2966    
2967 dl 1.1 /* ---------------- Relational methods -------------- */
2968    
2969     public Map.Entry<K,V> ceilingEntry(K key) {
2970 jsr166 1.70 return getNearEntry(key, GT|EQ);
2971 dl 1.1 }
2972    
2973     public K ceilingKey(K key) {
2974 jsr166 1.70 return getNearKey(key, GT|EQ);
2975 dl 1.1 }
2976    
2977     public Map.Entry<K,V> lowerEntry(K key) {
2978 jsr166 1.70 return getNearEntry(key, LT);
2979 dl 1.1 }
2980    
2981     public K lowerKey(K key) {
2982 jsr166 1.70 return getNearKey(key, LT);
2983 dl 1.1 }
2984    
2985     public Map.Entry<K,V> floorEntry(K key) {
2986 jsr166 1.70 return getNearEntry(key, LT|EQ);
2987 dl 1.1 }
2988    
2989     public K floorKey(K key) {
2990 jsr166 1.70 return getNearKey(key, LT|EQ);
2991 dl 1.1 }
2992    
2993     public Map.Entry<K,V> higherEntry(K key) {
2994 jsr166 1.70 return getNearEntry(key, GT);
2995 dl 1.1 }
2996    
2997     public K higherKey(K key) {
2998 jsr166 1.70 return getNearKey(key, GT);
2999 dl 1.46 }
3000    
3001     public K firstKey() {
3002 jsr166 1.61 return isDescending ? highestKey() : lowestKey();
3003 dl 1.46 }
3004    
3005     public K lastKey() {
3006 jsr166 1.61 return isDescending ? lowestKey() : highestKey();
3007 dl 1.1 }
3008    
3009     public Map.Entry<K,V> firstEntry() {
3010 jsr166 1.61 return isDescending ? highestEntry() : lowestEntry();
3011 dl 1.1 }
3012    
3013     public Map.Entry<K,V> lastEntry() {
3014 jsr166 1.61 return isDescending ? lowestEntry() : highestEntry();
3015 dl 1.1 }
3016    
3017     public Map.Entry<K,V> pollFirstEntry() {
3018 jsr166 1.61 return isDescending ? removeHighest() : removeLowest();
3019 dl 1.1 }
3020    
3021     public Map.Entry<K,V> pollLastEntry() {
3022 jsr166 1.61 return isDescending ? removeLowest() : removeHighest();
3023 dl 1.1 }
3024    
3025     /* ---------------- Submap Views -------------- */
3026    
3027 jsr166 1.51 public NavigableSet<K> keySet() {
3028 jsr166 1.157 KeySet<K,V> ks;
3029     if ((ks = keySetView) != null) return ks;
3030     return keySetView = new KeySet<>(this);
3031 dl 1.1 }
3032    
3033 dl 1.46 public NavigableSet<K> navigableKeySet() {
3034 jsr166 1.157 KeySet<K,V> ks;
3035     if ((ks = keySetView) != null) return ks;
3036     return keySetView = new KeySet<>(this);
3037 dl 1.46 }
3038 dl 1.45
3039 dl 1.46 public Collection<V> values() {
3040 jsr166 1.158 Values<K,V> vs;
3041 jsr166 1.157 if ((vs = valuesView) != null) return vs;
3042     return valuesView = new Values<>(this);
3043 dl 1.1 }
3044    
3045 dl 1.46 public Set<Map.Entry<K,V>> entrySet() {
3046 jsr166 1.158 EntrySet<K,V> es;
3047 jsr166 1.157 if ((es = entrySetView) != null) return es;
3048     return entrySetView = new EntrySet<K,V>(this);
3049 dl 1.1 }
3050    
3051 dl 1.46 public NavigableSet<K> descendingKeySet() {
3052     return descendingMap().navigableKeySet();
3053 dl 1.1 }
3054    
3055 dl 1.46 /**
3056     * Variant of main Iter class to traverse through submaps.
3057 jsr166 1.148 * Also serves as back-up Spliterator for views.
3058 dl 1.46 */
3059 dl 1.100 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
3060 dl 1.46 /** the last node returned by next() */
3061 jsr166 1.52 Node<K,V> lastReturned;
3062 dl 1.46 /** the next node to return from next(); */
3063     Node<K,V> next;
3064     /** Cache of next value field to maintain weak consistency */
3065 jsr166 1.52 V nextValue;
3066 dl 1.46
3067 dl 1.47 SubMapIter() {
3068 dl 1.118 Comparator<? super K> cmp = m.comparator;
3069 dl 1.46 for (;;) {
3070 dl 1.118 next = isDescending ? hiNode(cmp) : loNode(cmp);
3071 dl 1.46 if (next == null)
3072     break;
3073 jsr166 1.55 Object x = next.value;
3074 jsr166 1.52 if (x != null && x != next) {
3075 dl 1.118 if (! inBounds(next.key, cmp))
3076 dl 1.46 next = null;
3077 dl 1.118 else {
3078     @SuppressWarnings("unchecked") V vv = (V)x;
3079 dl 1.100 nextValue = vv;
3080 dl 1.118 }
3081 dl 1.46 break;
3082     }
3083     }
3084 dl 1.1 }
3085 dl 1.46
3086     public final boolean hasNext() {
3087     return next != null;
3088 dl 1.1 }
3089 dl 1.46
3090     final void advance() {
3091 jsr166 1.54 if (next == null)
3092 dl 1.46 throw new NoSuchElementException();
3093 jsr166 1.55 lastReturned = next;
3094 dl 1.46 if (isDescending)
3095     descend();
3096     else
3097     ascend();
3098 dl 1.1 }
3099 dl 1.46
3100     private void ascend() {
3101 dl 1.118 Comparator<? super K> cmp = m.comparator;
3102 dl 1.46 for (;;) {
3103     next = next.next;
3104     if (next == null)
3105     break;
3106 jsr166 1.55 Object x = next.value;
3107 jsr166 1.52 if (x != null && x != next) {
3108 dl 1.118 if (tooHigh(next.key, cmp))
3109 dl 1.46 next = null;
3110 dl 1.118 else {
3111     @SuppressWarnings("unchecked") V vv = (V)x;
3112 dl 1.100 nextValue = vv;
3113 dl 1.118 }
3114 dl 1.46 break;
3115     }
3116     }
3117     }
3118    
3119     private void descend() {
3120 dl 1.88 Comparator<? super K> cmp = m.comparator;
3121 dl 1.46 for (;;) {
3122 jsr166 1.125 next = m.findNear(lastReturned.key, LT, cmp);
3123 dl 1.46 if (next == null)
3124     break;
3125 jsr166 1.55 Object x = next.value;
3126 jsr166 1.52 if (x != null && x != next) {
3127 dl 1.118 if (tooLow(next.key, cmp))
3128 dl 1.46 next = null;
3129 dl 1.118 else {
3130     @SuppressWarnings("unchecked") V vv = (V)x;
3131 dl 1.100 nextValue = vv;
3132 dl 1.118 }
3133 dl 1.46 break;
3134     }
3135     }
3136 dl 1.1 }
3137 dl 1.46
3138     public void remove() {
3139 jsr166 1.52 Node<K,V> l = lastReturned;
3140 dl 1.46 if (l == null)
3141     throw new IllegalStateException();
3142     m.remove(l.key);
3143 jsr166 1.55 lastReturned = null;
3144 dl 1.1 }
3145 dl 1.46
3146 dl 1.107 public Spliterator<T> trySplit() {
3147     return null;
3148 jsr166 1.108 }
3149 dl 1.107
3150 dl 1.100 public boolean tryAdvance(Consumer<? super T> action) {
3151     if (hasNext()) {
3152     action.accept(next());
3153     return true;
3154     }
3155     return false;
3156     }
3157    
3158 dl 1.113 public void forEachRemaining(Consumer<? super T> action) {
3159 dl 1.100 while (hasNext())
3160     action.accept(next());
3161     }
3162 dl 1.113
3163 jsr166 1.114 public long estimateSize() {
3164     return Long.MAX_VALUE;
3165 dl 1.113 }
3166    
3167 dl 1.46 }
3168    
3169     final class SubMapValueIterator extends SubMapIter<V> {
3170     public V next() {
3171 jsr166 1.52 V v = nextValue;
3172 dl 1.46 advance();
3173 jsr166 1.52 return v;
3174 dl 1.45 }
3175 dl 1.100 public int characteristics() {
3176     return 0;
3177     }
3178 dl 1.1 }
3179    
3180 dl 1.46 final class SubMapKeyIterator extends SubMapIter<K> {
3181     public K next() {
3182     Node<K,V> n = next;
3183     advance();
3184     return n.key;
3185     }
3186 dl 1.100 public int characteristics() {
3187     return Spliterator.DISTINCT | Spliterator.ORDERED |
3188     Spliterator.SORTED;
3189     }
3190 jsr166 1.115 public final Comparator<? super K> getComparator() {
3191 dl 1.100 return SubMap.this.comparator();
3192     }
3193 dl 1.1 }
3194    
3195 dl 1.46 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3196     public Map.Entry<K,V> next() {
3197     Node<K,V> n = next;
3198 jsr166 1.52 V v = nextValue;
3199 dl 1.46 advance();
3200     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3201 dl 1.1 }
3202 dl 1.100 public int characteristics() {
3203     return Spliterator.DISTINCT;
3204     }
3205 dl 1.1 }
3206     }
3207 dl 1.59
3208 dl 1.123 // default Map method overrides
3209    
3210     public void forEach(BiConsumer<? super K, ? super V> action) {
3211     if (action == null) throw new NullPointerException();
3212     V v;
3213     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3214     if ((v = n.getValidValue()) != null)
3215     action.accept(n.key, v);
3216     }
3217     }
3218    
3219     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3220     if (function == null) throw new NullPointerException();
3221     V v;
3222     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3223     while ((v = n.getValidValue()) != null) {
3224     V r = function.apply(n.key, v);
3225     if (r == null) throw new NullPointerException();
3226     if (n.casValue(v, r))
3227     break;
3228     }
3229     }
3230     }
3231    
3232 dl 1.83 /**
3233 jsr166 1.154 * Helper method for EntrySet.removeIf.
3234 dl 1.143 */
3235 jsr166 1.145 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
3236 dl 1.143 if (function == null) throw new NullPointerException();
3237     boolean removed = false;
3238     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3239     V v;
3240     if ((v = n.getValidValue()) != null) {
3241     K k = n.key;
3242     Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
3243     if (function.test(e) && remove(k, v))
3244     removed = true;
3245     }
3246     }
3247     return removed;
3248     }
3249    
3250     /**
3251 jsr166 1.154 * Helper method for Values.removeIf.
3252 dl 1.144 */
3253     boolean removeValueIf(Predicate<? super V> function) {
3254     if (function == null) throw new NullPointerException();
3255     boolean removed = false;
3256     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3257     V v;
3258     if ((v = n.getValidValue()) != null) {
3259     K k = n.key;
3260     if (function.test(v) && remove(k, v))
3261     removed = true;
3262     }
3263     }
3264     return removed;
3265     }
3266    
3267     /**
3268 dl 1.83 * Base class providing common structure for Spliterators.
3269     * (Although not all that much common functionality; as usual for
3270     * view classes, details annoyingly vary in key, value, and entry
3271     * subclasses in ways that are not worth abstracting out for
3272     * internal classes.)
3273     *
3274     * The basic split strategy is to recursively descend from top
3275     * level, row by row, descending to next row when either split
3276     * off, or the end of row is encountered. Control of the number of
3277     * splits relies on some statistical estimation: The expected
3278     * remaining number of elements of a skip list when advancing
3279     * either across or down decreases by about 25%. To make this
3280     * observation useful, we need to know initial size, which we
3281 dl 1.104 * don't. But we can just use Integer.MAX_VALUE so that we
3282     * don't prematurely zero out while splitting.
3283 dl 1.83 */
3284 jsr166 1.119 abstract static class CSLMSpliterator<K,V> {
3285 dl 1.83 final Comparator<? super K> comparator;
3286     final K fence; // exclusive upper bound for keys, or null if to end
3287     Index<K,V> row; // the level to split out
3288     Node<K,V> current; // current traversal node; initialize at origin
3289     int est; // pseudo-size estimate
3290     CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3291     Node<K,V> origin, K fence, int est) {
3292     this.comparator = comparator; this.row = row;
3293     this.current = origin; this.fence = fence; this.est = est;
3294     }
3295    
3296     public final long estimateSize() { return (long)est; }
3297     }
3298    
3299     static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3300 dl 1.88 implements Spliterator<K> {
3301 dl 1.83 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3302     Node<K,V> origin, K fence, int est) {
3303     super(comparator, row, origin, fence, est);
3304     }
3305    
3306 jsr166 1.155 public KeySpliterator<K,V> trySplit() {
3307 dl 1.116 Node<K,V> e; K ek;
3308 dl 1.83 Comparator<? super K> cmp = comparator;
3309     K f = fence;
3310 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3311 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3312 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3313     if ((s = q.right) != null && (b = s.node) != null &&
3314     (n = b.next) != null && n.value != null &&
3315     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3316     (f == null || cpr(cmp, sk, f) < 0)) {
3317     current = n;
3318     Index<K,V> r = q.down;
3319     row = (s.right != null) ? s : s.down;
3320     est -= est >>> 2;
3321     return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3322 dl 1.83 }
3323     }
3324     }
3325     return null;
3326     }
3327    
3328 dl 1.113 public void forEachRemaining(Consumer<? super K> action) {
3329 dl 1.100 if (action == null) throw new NullPointerException();
3330 dl 1.118 Comparator<? super K> cmp = comparator;
3331 dl 1.83 K f = fence;
3332     Node<K,V> e = current;
3333     current = null;
3334 jsr166 1.84 for (; e != null; e = e.next) {
3335 dl 1.83 K k; Object v;
3336 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3337 dl 1.83 break;
3338     if ((v = e.value) != null && v != e)
3339 dl 1.100 action.accept(k);
3340 dl 1.83 }
3341     }
3342    
3343 dl 1.100 public boolean tryAdvance(Consumer<? super K> action) {
3344     if (action == null) throw new NullPointerException();
3345 dl 1.118 Comparator<? super K> cmp = comparator;
3346     K f = fence;
3347     Node<K,V> e = current;
3348     for (; e != null; e = e.next) {
3349 dl 1.83 K k; Object v;
3350 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3351 dl 1.83 e = null;
3352     break;
3353     }
3354     if ((v = e.value) != null && v != e) {
3355     current = e.next;
3356 dl 1.100 action.accept(k);
3357 dl 1.83 return true;
3358     }
3359     }
3360     current = e;
3361     return false;
3362     }
3363 dl 1.100
3364     public int characteristics() {
3365 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3366 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3367 dl 1.100 Spliterator.NONNULL;
3368     }
3369    
3370 jsr166 1.115 public final Comparator<? super K> getComparator() {
3371 dl 1.100 return comparator;
3372     }
3373 dl 1.83 }
3374 jsr166 1.120 // factory method for KeySpliterator
3375 dl 1.118 final KeySpliterator<K,V> keySpliterator() {
3376     Comparator<? super K> cmp = comparator;
3377     for (;;) { // ensure h corresponds to origin p
3378     HeadIndex<K,V> h; Node<K,V> p;
3379     Node<K,V> b = (h = head).node;
3380     if ((p = b.next) == null || p.value != null)
3381     return new KeySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3382     0 : Integer.MAX_VALUE);
3383     p.helpDelete(b, p.next);
3384     }
3385     }
3386 dl 1.83
3387     static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3388 dl 1.88 implements Spliterator<V> {
3389 dl 1.83 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3390     Node<K,V> origin, K fence, int est) {
3391     super(comparator, row, origin, fence, est);
3392     }
3393    
3394 jsr166 1.155 public ValueSpliterator<K,V> trySplit() {
3395 dl 1.116 Node<K,V> e; K ek;
3396 dl 1.83 Comparator<? super K> cmp = comparator;
3397     K f = fence;
3398 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3399 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3400 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3401     if ((s = q.right) != null && (b = s.node) != null &&
3402     (n = b.next) != null && n.value != null &&
3403     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3404     (f == null || cpr(cmp, sk, f) < 0)) {
3405     current = n;
3406     Index<K,V> r = q.down;
3407     row = (s.right != null) ? s : s.down;
3408     est -= est >>> 2;
3409     return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3410 dl 1.83 }
3411     }
3412     }
3413     return null;
3414     }
3415    
3416 dl 1.113 public void forEachRemaining(Consumer<? super V> action) {
3417 dl 1.100 if (action == null) throw new NullPointerException();
3418 dl 1.118 Comparator<? super K> cmp = comparator;
3419 dl 1.83 K f = fence;
3420     Node<K,V> e = current;
3421     current = null;
3422 jsr166 1.84 for (; e != null; e = e.next) {
3423 dl 1.83 K k; Object v;
3424 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3425 dl 1.83 break;
3426 dl 1.100 if ((v = e.value) != null && v != e) {
3427     @SuppressWarnings("unchecked") V vv = (V)v;
3428     action.accept(vv);
3429     }
3430 dl 1.83 }
3431     }
3432    
3433 dl 1.100 public boolean tryAdvance(Consumer<? super V> action) {
3434     if (action == null) throw new NullPointerException();
3435 dl 1.118 Comparator<? super K> cmp = comparator;
3436     K f = fence;
3437     Node<K,V> e = current;
3438     for (; e != null; e = e.next) {
3439 dl 1.83 K k; Object v;
3440 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3441 dl 1.83 e = null;
3442     break;
3443     }
3444     if ((v = e.value) != null && v != e) {
3445     current = e.next;
3446 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3447     action.accept(vv);
3448 dl 1.83 return true;
3449     }
3450     }
3451     current = e;
3452     return false;
3453     }
3454 dl 1.100
3455     public int characteristics() {
3456 jsr166 1.130 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3457     Spliterator.NONNULL;
3458 dl 1.100 }
3459 dl 1.83 }
3460    
3461 dl 1.118 // Almost the same as keySpliterator()
3462     final ValueSpliterator<K,V> valueSpliterator() {
3463     Comparator<? super K> cmp = comparator;
3464     for (;;) {
3465     HeadIndex<K,V> h; Node<K,V> p;
3466     Node<K,V> b = (h = head).node;
3467     if ((p = b.next) == null || p.value != null)
3468     return new ValueSpliterator<K,V>(cmp, h, p, null, (p == null) ?
3469     0 : Integer.MAX_VALUE);
3470     p.helpDelete(b, p.next);
3471     }
3472     }
3473    
3474 dl 1.83 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3475 dl 1.88 implements Spliterator<Map.Entry<K,V>> {
3476 dl 1.83 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3477     Node<K,V> origin, K fence, int est) {
3478     super(comparator, row, origin, fence, est);
3479     }
3480    
3481 jsr166 1.155 public EntrySpliterator<K,V> trySplit() {
3482 dl 1.116 Node<K,V> e; K ek;
3483 dl 1.83 Comparator<? super K> cmp = comparator;
3484     K f = fence;
3485 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3486 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3487 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3488     if ((s = q.right) != null && (b = s.node) != null &&
3489     (n = b.next) != null && n.value != null &&
3490     (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3491     (f == null || cpr(cmp, sk, f) < 0)) {
3492     current = n;
3493     Index<K,V> r = q.down;
3494     row = (s.right != null) ? s : s.down;
3495     est -= est >>> 2;
3496     return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3497 dl 1.83 }
3498     }
3499     }
3500     return null;
3501     }
3502    
3503 dl 1.113 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3504 dl 1.100 if (action == null) throw new NullPointerException();
3505 dl 1.118 Comparator<? super K> cmp = comparator;
3506 dl 1.83 K f = fence;
3507     Node<K,V> e = current;
3508     current = null;
3509 jsr166 1.84 for (; e != null; e = e.next) {
3510 dl 1.83 K k; Object v;
3511 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3512 dl 1.83 break;
3513 dl 1.100 if ((v = e.value) != null && v != e) {
3514     @SuppressWarnings("unchecked") V vv = (V)v;
3515     action.accept
3516     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3517     }
3518 dl 1.83 }
3519     }
3520    
3521 dl 1.100 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3522     if (action == null) throw new NullPointerException();
3523 dl 1.118 Comparator<? super K> cmp = comparator;
3524     K f = fence;
3525     Node<K,V> e = current;
3526     for (; e != null; e = e.next) {
3527 dl 1.83 K k; Object v;
3528 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3529 dl 1.83 e = null;
3530     break;
3531     }
3532     if ((v = e.value) != null && v != e) {
3533     current = e.next;
3534 dl 1.100 @SuppressWarnings("unchecked") V vv = (V)v;
3535     action.accept
3536     (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3537 dl 1.83 return true;
3538     }
3539     }
3540     current = e;
3541     return false;
3542     }
3543 dl 1.100
3544     public int characteristics() {
3545 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3546 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3547 dl 1.100 Spliterator.NONNULL;
3548     }
3549 dl 1.113
3550     public final Comparator<Map.Entry<K,V>> getComparator() {
3551 jsr166 1.130 // Adapt or create a key-based comparator
3552     if (comparator != null) {
3553     return Map.Entry.comparingByKey(comparator);
3554     }
3555     else {
3556 jsr166 1.131 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3557 jsr166 1.130 @SuppressWarnings("unchecked")
3558     Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3559     return k1.compareTo(e2.getKey());
3560     };
3561     }
3562 dl 1.113 }
3563 dl 1.118 }
3564 dl 1.113
3565 dl 1.118 // Almost the same as keySpliterator()
3566     final EntrySpliterator<K,V> entrySpliterator() {
3567     Comparator<? super K> cmp = comparator;
3568     for (;;) { // almost same as key version
3569     HeadIndex<K,V> h; Node<K,V> p;
3570     Node<K,V> b = (h = head).node;
3571     if ((p = b.next) == null || p.value != null)
3572     return new EntrySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3573     0 : Integer.MAX_VALUE);
3574     p.helpDelete(b, p.next);
3575     }
3576 dl 1.83 }
3577    
3578 jsr166 1.162 // VarHandle mechanics
3579 dl 1.160 private static final VarHandle HEAD;
3580 dl 1.65 static {
3581 dl 1.59 try {
3582 dl 1.160 MethodHandles.Lookup l = MethodHandles.lookup();
3583     HEAD = l.findVarHandle(ConcurrentSkipListMap.class, "head",
3584     HeadIndex.class);
3585 jsr166 1.140 } catch (ReflectiveOperationException e) {
3586 dl 1.65 throw new Error(e);
3587 dl 1.59 }
3588     }
3589 dl 1.1 }