ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.182
Committed: Tue May 29 02:44:52 2018 UTC (6 years ago) by jsr166
Branch: MAIN
Changes since 1.181: +1 -3 lines
Log Message:
coalesce catch clauses

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.67 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.138
9 dl 1.160 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.130 import java.io.Serializable;
12 dl 1.118 import java.util.AbstractCollection;
13     import java.util.AbstractMap;
14     import java.util.AbstractSet;
15     import java.util.ArrayList;
16     import java.util.Collection;
17     import java.util.Collections;
18     import java.util.Comparator;
19     import java.util.Iterator;
20     import java.util.List;
21     import java.util.Map;
22     import java.util.NavigableSet;
23     import java.util.NoSuchElementException;
24     import java.util.Set;
25     import java.util.SortedMap;
26 dl 1.83 import java.util.Spliterator;
27 jsr166 1.138 import java.util.function.BiConsumer;
28 dl 1.118 import java.util.function.BiFunction;
29 dl 1.94 import java.util.function.Consumer;
30 dl 1.109 import java.util.function.Function;
31 dl 1.143 import java.util.function.Predicate;
32 dl 1.169 import java.util.concurrent.atomic.LongAdder;
33 dl 1.83
34 dl 1.1 /**
35 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
36     * The map is sorted according to the {@linkplain Comparable natural
37     * ordering} of its keys, or by a {@link Comparator} provided at map
38     * creation time, depending on which constructor is used.
39 dl 1.1 *
40     * <p>This class implements a concurrent variant of <a
41 dl 1.66 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
42     * providing expected average <i>log(n)</i> time cost for the
43 jsr166 1.82 * {@code containsKey}, {@code get}, {@code put} and
44     * {@code remove} operations and their variants. Insertion, removal,
45 dl 1.1 * update, and access operations safely execute concurrently by
46 jsr166 1.133 * multiple threads.
47     *
48     * <p>Iterators and spliterators are
49     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
50     *
51     * <p>Ascending key ordered views and their iterators are faster than
52     * descending ones.
53 dl 1.1 *
54 jsr166 1.82 * <p>All {@code Map.Entry} pairs returned by methods in this class
55 dl 1.1 * and its views represent snapshots of mappings at the time they were
56 jsr166 1.82 * produced. They do <em>not</em> support the {@code Entry.setValue}
57 dl 1.1 * method. (Note however that it is possible to change mappings in the
58 jsr166 1.82 * associated map using {@code put}, {@code putIfAbsent}, or
59     * {@code replace}, depending on exactly which effect you need.)
60 dl 1.1 *
61 dl 1.169 * <p>Beware that bulk operations {@code putAll}, {@code equals},
62 jsr166 1.82 * {@code toArray}, {@code containsValue}, and {@code clear} are
63 dl 1.69 * <em>not</em> guaranteed to be performed atomically. For example, an
64 jsr166 1.82 * iterator operating concurrently with a {@code putAll} operation
65 dl 1.69 * might view only some of the added elements.
66 dl 1.1 *
67     * <p>This class and its views and iterators implement all of the
68     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
69     * interfaces. Like most other concurrent collections, this class does
70 jsr166 1.82 * <em>not</em> permit the use of {@code null} keys or values because some
71 jsr166 1.22 * null return values cannot be reliably distinguished from the absence of
72     * elements.
73 dl 1.1 *
74 jsr166 1.21 * <p>This class is a member of the
75 jsr166 1.168 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
76 jsr166 1.21 * Java Collections Framework</a>.
77     *
78 dl 1.1 * @author Doug Lea
79     * @param <K> the type of keys maintained by this map
80 dl 1.9 * @param <V> the type of mapped values
81 jsr166 1.20 * @since 1.6
82 dl 1.1 */
83 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
84 jsr166 1.130 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
85 dl 1.1 /*
86     * This class implements a tree-like two-dimensionally linked skip
87     * list in which the index levels are represented in separate
88     * nodes from the base nodes holding data. There are two reasons
89     * for taking this approach instead of the usual array-based
90     * structure: 1) Array based implementations seem to encounter
91     * more complexity and overhead 2) We can use cheaper algorithms
92     * for the heavily-traversed index lists than can be used for the
93     * base lists. Here's a picture of some of the basics for a
94     * possible list with 2 levels of index:
95     *
96     * Head nodes Index nodes
97 dl 1.9 * +-+ right +-+ +-+
98 dl 1.1 * |2|---------------->| |--------------------->| |->null
99 dl 1.9 * +-+ +-+ +-+
100 dl 1.1 * | down | |
101     * v v v
102 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
103 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
104 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
105 dl 1.1 * v | | | | |
106     * Nodes next v v v v v
107 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
108 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
109 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
110 dl 1.1 *
111     * The base lists use a variant of the HM linked ordered set
112     * algorithm. See Tim Harris, "A pragmatic implementation of
113     * non-blocking linked lists"
114     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
115     * Michael "High Performance Dynamic Lock-Free Hash Tables and
116     * List-Based Sets"
117     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
118     * basic idea in these lists is to mark the "next" pointers of
119     * deleted nodes when deleting to avoid conflicts with concurrent
120     * insertions, and when traversing to keep track of triples
121     * (predecessor, node, successor) in order to detect when and how
122     * to unlink these deleted nodes.
123     *
124     * Rather than using mark-bits to mark list deletions (which can
125     * be slow and space-intensive using AtomicMarkedReference), nodes
126     * use direct CAS'able next pointers. On deletion, instead of
127     * marking a pointer, they splice in another node that can be
128 dl 1.169 * thought of as standing for a marked pointer (see method
129     * unlinkNode). Using plain nodes acts roughly like "boxed"
130     * implementations of marked pointers, but uses new nodes only
131     * when nodes are deleted, not for every link. This requires less
132     * space and supports faster traversal. Even if marked references
133     * were better supported by JVMs, traversal using this technique
134     * might still be faster because any search need only read ahead
135     * one more node than otherwise required (to check for trailing
136     * marker) rather than unmasking mark bits or whatever on each
137     * read.
138 dl 1.1 *
139     * This approach maintains the essential property needed in the HM
140     * algorithm of changing the next-pointer of a deleted node so
141     * that any other CAS of it will fail, but implements the idea by
142 dl 1.169 * changing the pointer to point to a different node (with
143     * otherwise illegal null fields), not by marking it. While it
144     * would be possible to further squeeze space by defining marker
145     * nodes not to have key/value fields, it isn't worth the extra
146     * type-testing overhead. The deletion markers are rarely
147     * encountered during traversal, are easily detected via null
148     * checks that are needed anyway, and are normally quickly garbage
149     * collected. (Note that this technique would not work well in
150     * systems without garbage collection.)
151 dl 1.1 *
152     * In addition to using deletion markers, the lists also use
153     * nullness of value fields to indicate deletion, in a style
154     * similar to typical lazy-deletion schemes. If a node's value is
155     * null, then it is considered logically deleted and ignored even
156 dl 1.169 * though it is still reachable.
157 dl 1.1 *
158     * Here's the sequence of events for a deletion of node n with
159     * predecessor b and successor f, initially:
160     *
161 dl 1.9 * +------+ +------+ +------+
162 dl 1.1 * ... | b |------>| n |----->| f | ...
163 dl 1.9 * +------+ +------+ +------+
164 dl 1.1 *
165     * 1. CAS n's value field from non-null to null.
166 dl 1.169 * Traversals encountering a node with null value ignore it.
167     * However, ongoing insertions and deletions might still modify
168 dl 1.1 * n's next pointer.
169     *
170     * 2. CAS n's next pointer to point to a new marker node.
171     * From this point on, no other nodes can be appended to n.
172     * which avoids deletion errors in CAS-based linked lists.
173     *
174     * +------+ +------+ +------+ +------+
175     * ... | b |------>| n |----->|marker|------>| f | ...
176 dl 1.9 * +------+ +------+ +------+ +------+
177 dl 1.1 *
178     * 3. CAS b's next pointer over both n and its marker.
179     * From this point on, no new traversals will encounter n,
180     * and it can eventually be GCed.
181     * +------+ +------+
182     * ... | b |----------------------------------->| f | ...
183 dl 1.9 * +------+ +------+
184     *
185 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
186     * with another operation. Steps 2-3 can fail because some other
187     * thread noticed during a traversal a node with null value and
188     * helped out by marking and/or unlinking. This helping-out
189     * ensures that no thread can become stuck waiting for progress of
190 dl 1.169 * the deleting thread.
191 dl 1.1 *
192     * Skip lists add indexing to this scheme, so that the base-level
193     * traversals start close to the locations being found, inserted
194     * or deleted -- usually base level traversals only traverse a few
195     * nodes. This doesn't change the basic algorithm except for the
196     * need to make sure base traversals start at predecessors (here,
197     * b) that are not (structurally) deleted, otherwise retrying
198 dl 1.9 * after processing the deletion.
199 dl 1.1 *
200 dl 1.169 * Index levels are maintained using CAS to link and unlink
201     * successors ("right" fields). Races are allowed in index-list
202     * operations that can (rarely) fail to link in a new index node.
203     * (We can't do this of course for data nodes.) However, even
204     * when this happens, the index lists correctly guide search.
205     * This can impact performance, but since skip lists are
206     * probabilistic anyway, the net result is that under contention,
207     * the effective "p" value may be lower than its nominal value.
208     *
209     * Index insertion and deletion sometimes require a separate
210     * traversal pass occurring after the base-level action, to add or
211     * remove index nodes. This adds to single-threaded overhead, but
212     * improves contended multithreaded performance by narrowing
213     * interference windows, and allows deletion to ensure that all
214     * index nodes will be made unreachable upon return from a public
215     * remove operation, thus avoiding unwanted garbage retention.
216 dl 1.1 *
217     * Indexing uses skip list parameters that maintain good search
218     * performance while using sparser-than-usual indices: The
219 dl 1.169 * hardwired parameters k=1, p=0.5 (see method doPut) mean that
220     * about one-quarter of the nodes have indices. Of those that do,
221     * half have one level, a quarter have two, and so on (see Pugh's
222     * Skip List Cookbook, sec 3.4), up to a maximum of 62 levels
223     * (appropriate for up to 2^63 elements). The expected total
224     * space requirement for a map is slightly less than for the
225     * current implementation of java.util.TreeMap.
226 dl 1.1 *
227     * Changing the level of the index (i.e, the height of the
228 dl 1.169 * tree-like structure) also uses CAS. Creation of an index with
229     * height greater than the current level adds a level to the head
230     * index by CAS'ing on a new top-most head. To maintain good
231     * performance after a lot of removals, deletion methods
232     * heuristically try to reduce the height if the topmost levels
233     * appear to be empty. This may encounter races in which it is
234     * possible (but rare) to reduce and "lose" a level just as it is
235     * about to contain an index (that will then never be
236     * encountered). This does no structural harm, and in practice
237     * appears to be a better option than allowing unrestrained growth
238     * of levels.
239     *
240     * This class provides concurrent-reader-style memory consistency,
241     * ensuring that read-only methods report status and/or values no
242     * staler than those holding at method entry. This is done by
243     * performing all publication and structural updates using
244     * (volatile) CAS, placing an acquireFence in a few access
245     * methods, and ensuring that linked objects are transitively
246     * acquired via dependent reads (normally once) unless performing
247     * a volatile-mode CAS operation (that also acts as an acquire and
248 jsr166 1.171 * release). This form of fence-hoisting is similar to RCU and
249     * related techniques (see McKenney's online book
250 dl 1.169 * https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)
251     * It minimizes overhead that may otherwise occur when using so
252     * many volatile-mode reads. Using explicit acquireFences is
253     * logistically easier than targeting particular fields to be read
254     * in acquire mode: fences are just hoisted up as far as possible,
255     * to the entry points or loop headers of a few methods. A
256     * potential disadvantage is that these few remaining fences are
257     * not easily optimized away by compilers under exclusively
258 jsr166 1.172 * single-thread use. It requires some care to avoid volatile
259     * mode reads of other fields. (Note that the memory semantics of
260     * a reference dependently read in plain mode exactly once are
261 dl 1.169 * equivalent to those for atomic opaque mode.) Iterators and
262     * other traversals encounter each node and value exactly once.
263     * Other operations locate an element (or position to insert an
264     * element) via a sequence of dereferences. This search is broken
265     * into two parts. Method findPredecessor (and its specialized
266     * embeddings) searches index nodes only, returning a base-level
267     * predecessor of the key. Callers carry out the base-level
268     * search, restarting if encountering a marker preventing link
269     * modification. In some cases, it is possible to encounter a
270     * node multiple times while descending levels. For mutative
271     * operations, the reported value is validated using CAS (else
272     * retrying), preserving linearizability with respect to each
273     * other. Others may return any (non-null) value holding in the
274     * course of the method call. (Search-based methods also include
275     * some useless-looking explicit null checks designed to allow
276     * more fields to be nulled out upon removal, to reduce floating
277     * garbage, but which is not currently done, pending discovery of
278     * a way to do this with less impact on other operations.)
279 dl 1.1 *
280 dl 1.92 * To produce random values without interference across threads,
281     * we use within-JDK thread local random support (via the
282     * "secondary seed", to avoid interference with user-level
283     * ThreadLocalRandom.)
284     *
285 dl 1.1 * For explanation of algorithms sharing at least a couple of
286     * features with this one, see Mikhail Fomitchev's thesis
287     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
288 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
289 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
290     *
291     * Notation guide for local variables
292 dl 1.169 * Node: b, n, f, p for predecessor, node, successor, aux
293 dl 1.1 * Index: q, r, d for index node, right, down.
294     * Head: h
295     * Keys: k, key
296     * Values: v, value
297     * Comparisons: c
298     */
299    
300     private static final long serialVersionUID = -8627078645895051609L;
301    
302     /**
303 dl 1.118 * The comparator used to maintain order in this map, or null if
304     * using natural ordering. (Non-private to simplify access in
305 jsr166 1.120 * nested classes.)
306 dl 1.1 * @serial
307     */
308 dl 1.118 final Comparator<? super K> comparator;
309 dl 1.1
310 dl 1.169 /** Lazily initialized topmost index of the skiplist. */
311     private transient Index<K,V> head;
312     /** Lazily initialized element count */
313     private transient LongAdder adder;
314 dl 1.1 /** Lazily initialized key set */
315 jsr166 1.147 private transient KeySet<K,V> keySet;
316 jsr166 1.158 /** Lazily initialized values collection */
317     private transient Values<K,V> values;
318 dl 1.1 /** Lazily initialized entry set */
319 jsr166 1.71 private transient EntrySet<K,V> entrySet;
320 jsr166 1.175 /** Lazily initialized descending map */
321 jsr166 1.158 private transient SubMap<K,V> descendingMap;
322 dl 1.1
323     /**
324     * Nodes hold keys and values, and are singly linked in sorted
325     * order, possibly with some intervening marker nodes. The list is
326 dl 1.169 * headed by a header node accessible as head.node. Headers and
327 jsr166 1.174 * marker nodes have null keys. The val field (but currently not
328     * the key field) is nulled out upon deletion.
329 dl 1.1 */
330     static final class Node<K,V> {
331 dl 1.169 final K key; // currently, never detached
332     V val;
333     Node<K,V> next;
334     Node(K key, V value, Node<K,V> next) {
335 dl 1.1 this.key = key;
336 dl 1.169 this.val = value;
337 dl 1.1 this.next = next;
338     }
339     }
340    
341     /**
342 dl 1.169 * Index nodes represent the levels of the skip list.
343 dl 1.1 */
344 dl 1.169 static final class Index<K,V> {
345     final Node<K,V> node; // currently, never detached
346 dl 1.1 final Index<K,V> down;
347 dl 1.169 Index<K,V> right;
348 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
349     this.node = node;
350     this.down = down;
351     this.right = right;
352     }
353 dl 1.169 }
354 dl 1.1
355 dl 1.169 /* ---------------- Utilities -------------- */
356 dl 1.1
357 dl 1.169 /**
358     * Compares using comparator or natural ordering if null.
359     * Called only by methods that have performed required type checks.
360     */
361     @SuppressWarnings({"unchecked", "rawtypes"})
362     static int cpr(Comparator c, Object x, Object y) {
363     return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
364     }
365 dl 1.1
366 dl 1.169 /**
367     * Returns the header for base node list, or null if uninitialized
368     */
369     final Node<K,V> baseHead() {
370     Index<K,V> h;
371     VarHandle.acquireFence();
372     return ((h = head) == null) ? null : h.node;
373     }
374 dl 1.1
375 dl 1.169 /**
376     * Tries to unlink deleted node n from predecessor b (if both
377     * exist), by first splicing in a marker if not already present.
378     * Upon return, node n is sure to be unlinked from b, possibly
379     * via the actions of some other thread.
380     *
381     * @param b if nonnull, predecessor
382     * @param n if nonnull, node known to be deleted
383     */
384     static <K,V> void unlinkNode(Node<K,V> b, Node<K,V> n) {
385     if (b != null && n != null) {
386     Node<K,V> f, p;
387     for (;;) {
388     if ((f = n.next) != null && f.key == null) {
389     p = f.next; // already marked
390     break;
391     }
392     else if (NEXT.compareAndSet(n, f,
393     new Node<K,V>(null, null, f))) {
394     p = f; // add marker
395     break;
396     }
397 dl 1.65 }
398 dl 1.176 NEXT.compareAndSet(b, n, p);
399 dl 1.65 }
400 dl 1.1 }
401 jsr166 1.161
402 dl 1.1 /**
403 dl 1.169 * Adds to element count, initializing adder if necessary
404     *
405     * @param c count to add
406 dl 1.1 */
407 dl 1.169 private void addCount(long c) {
408     LongAdder a;
409     do {} while ((a = adder) == null &&
410     !ADDER.compareAndSet(this, null, a = new LongAdder()));
411     a.add(c);
412 dl 1.9 }
413 dl 1.1
414     /**
415 dl 1.169 * Returns element count, initializing adder if necessary.
416 dl 1.1 */
417 dl 1.169 final long getAdderCount() {
418     LongAdder a; long c;
419     do {} while ((a = adder) == null &&
420     !ADDER.compareAndSet(this, null, a = new LongAdder()));
421     return ((c = a.sum()) <= 0L) ? 0L : c; // ignore transient negatives
422 dl 1.1 }
423    
424     /* ---------------- Traversal -------------- */
425    
426     /**
427 dl 1.169 * Returns an index node with key strictly less than given key.
428     * Also unlinks indexes to deleted nodes found along the way.
429     * Callers rely on this side-effect of clearing indices to deleted
430     * nodes.
431     *
432     * @param key if nonnull the key
433     * @return a predecessor node of key, or null if uninitialized or null key
434 dl 1.1 */
435 dl 1.118 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
436 dl 1.169 Index<K,V> q;
437     VarHandle.acquireFence();
438     if ((q = head) == null || key == null)
439     return null;
440     else {
441     for (Index<K,V> r, d;;) {
442     while ((r = q.right) != null) {
443     Node<K,V> p; K k;
444     if ((p = r.node) == null || (k = p.key) == null ||
445 dl 1.176 p.val == null) // unlink index to deleted node
446     RIGHT.compareAndSet(q, r, r.right);
447 dl 1.169 else if (cpr(cmp, key, k) > 0)
448 dl 1.1 q = r;
449 dl 1.169 else
450     break;
451 dl 1.1 }
452 dl 1.169 if ((d = q.down) != null)
453     q = d;
454     else
455 dl 1.1 return q.node;
456     }
457     }
458     }
459    
460     /**
461 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
462 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
463     * base-level looking for key starting at predecessor returned
464     * from findPredecessor, processing base-level deletions as
465 dl 1.169 * encountered. Restarts occur, at traversal step encountering
466     * node n, if n's key field is null, indicating it is a marker, so
467     * its predecessor is deleted before continuing, which we help do
468     * by re-finding a valid predecessor. The traversal loops in
469     * doPut, doRemove, and findNear all include the same checks.
470 dl 1.9 *
471 dl 1.1 * @param key the key
472 jsr166 1.22 * @return node holding key, or null if no such
473 dl 1.1 */
474 dl 1.118 private Node<K,V> findNode(Object key) {
475 dl 1.88 if (key == null)
476     throw new NullPointerException(); // don't postpone errors
477 dl 1.118 Comparator<? super K> cmp = comparator;
478 dl 1.169 Node<K,V> b;
479     outer: while ((b = findPredecessor(key, cmp)) != null) {
480     for (;;) {
481     Node<K,V> n; K k; V v; int c;
482     if ((n = b.next) == null)
483     break outer; // empty
484     else if ((k = n.key) == null)
485     break; // b is deleted
486     else if ((v = n.val) == null)
487     unlinkNode(b, n); // n is deleted
488     else if ((c = cpr(cmp, key, k)) > 0)
489     b = n;
490     else if (c == 0)
491 dl 1.40 return n;
492 dl 1.169 else
493 dl 1.118 break outer;
494 dl 1.1 }
495     }
496 dl 1.118 return null;
497 dl 1.1 }
498    
499 dl 1.9 /**
500 dl 1.169 * Gets value for key. Same idea as findNode, except skips over
501     * deletions and markers, and returns first encountered value to
502     * avoid possibly inconsistent rereads.
503 dl 1.88 *
504 dl 1.118 * @param key the key
505 dl 1.1 * @return the value, or null if absent
506     */
507 dl 1.118 private V doGet(Object key) {
508 dl 1.169 Index<K,V> q;
509     VarHandle.acquireFence();
510 dl 1.118 if (key == null)
511 dl 1.88 throw new NullPointerException();
512 dl 1.118 Comparator<? super K> cmp = comparator;
513 dl 1.169 V result = null;
514     if ((q = head) != null) {
515     outer: for (Index<K,V> r, d;;) {
516     while ((r = q.right) != null) {
517     Node<K,V> p; K k; V v; int c;
518     if ((p = r.node) == null || (k = p.key) == null ||
519 dl 1.176 (v = p.val) == null)
520     RIGHT.compareAndSet(q, r, r.right);
521 dl 1.169 else if ((c = cpr(cmp, key, k)) > 0)
522     q = r;
523     else if (c == 0) {
524     result = v;
525     break outer;
526     }
527     else
528     break;
529 dl 1.88 }
530 dl 1.169 if ((d = q.down) != null)
531     q = d;
532     else {
533     Node<K,V> b, n;
534     if ((b = q.node) != null) {
535     while ((n = b.next) != null) {
536     V v; int c;
537     K k = n.key;
538     if ((v = n.val) == null || k == null ||
539     (c = cpr(cmp, key, k)) > 0)
540     b = n;
541     else {
542     if (c == 0)
543     result = v;
544     break;
545     }
546     }
547     }
548 dl 1.88 break;
549 dl 1.118 }
550 dl 1.88 }
551 dl 1.1 }
552 dl 1.169 return result;
553 dl 1.1 }
554    
555     /* ---------------- Insertion -------------- */
556    
557     /**
558     * Main insertion method. Adds element if not present, or
559     * replaces value if present and onlyIfAbsent is false.
560 dl 1.169 *
561 dl 1.118 * @param key the key
562 jsr166 1.103 * @param value the value that must be associated with key
563 dl 1.1 * @param onlyIfAbsent if should not insert if already present
564     * @return the old value, or null if newly inserted
565     */
566 dl 1.118 private V doPut(K key, V value, boolean onlyIfAbsent) {
567     if (key == null)
568 dl 1.88 throw new NullPointerException();
569 dl 1.118 Comparator<? super K> cmp = comparator;
570 dl 1.169 for (;;) {
571     Index<K,V> h; Node<K,V> b;
572     VarHandle.acquireFence();
573     int levels = 0; // number of levels descended
574     if ((h = head) == null) { // try to initialize
575     Node<K,V> base = new Node<K,V>(null, null, null);
576     h = new Index<K,V>(base, null, null);
577     b = (HEAD.compareAndSet(this, null, h)) ? base : null;
578     }
579     else {
580     for (Index<K,V> q = h, r, d;;) { // count while descending
581     while ((r = q.right) != null) {
582     Node<K,V> p; K k;
583     if ((p = r.node) == null || (k = p.key) == null ||
584 dl 1.176 p.val == null)
585     RIGHT.compareAndSet(q, r, r.right);
586 dl 1.169 else if (cpr(cmp, key, k) > 0)
587     q = r;
588     else
589     break;
590     }
591     if ((d = q.down) != null) {
592     ++levels;
593     q = d;
594     }
595     else {
596     b = q.node;
597 dl 1.1 break;
598     }
599 dl 1.169 }
600     }
601     if (b != null) {
602     Node<K,V> z = null; // new node, if inserted
603     for (;;) { // find insertion point
604     Node<K,V> n, p; K k; V v; int c;
605     if ((n = b.next) == null) {
606     if (b.key == null) // if empty, type check key now
607     cpr(cmp, key, key);
608     c = -1;
609 dl 1.1 }
610 dl 1.169 else if ((k = n.key) == null)
611     break; // can't append; restart
612     else if ((v = n.val) == null) {
613     unlinkNode(b, n);
614     c = 1;
615 dl 1.1 }
616 dl 1.169 else if ((c = cpr(cmp, key, k)) > 0)
617     b = n;
618     else if (c == 0 &&
619     (onlyIfAbsent || VAL.compareAndSet(n, v, value)))
620     return v;
621    
622     if (c < 0 &&
623     NEXT.compareAndSet(b, n,
624     p = new Node<K,V>(key, value, n))) {
625     z = p;
626 dl 1.92 break;
627 dl 1.1 }
628     }
629 dl 1.169
630     if (z != null) {
631     int lr = ThreadLocalRandom.nextSecondarySeed();
632     if ((lr & 0x3) == 0) { // add indices with 1/4 prob
633     int hr = ThreadLocalRandom.nextSecondarySeed();
634     long rnd = ((long)hr << 32) | ((long)lr & 0xffffffffL);
635     int skips = levels; // levels to descend before add
636     Index<K,V> x = null;
637     for (;;) { // create at most 62 indices
638     x = new Index<K,V>(z, x, null);
639     if (rnd >= 0L || --skips < 0)
640 dl 1.92 break;
641 dl 1.169 else
642     rnd <<= 1;
643 dl 1.92 }
644 dl 1.169 if (addIndices(h, skips, x, cmp) && skips < 0 &&
645     head == h) { // try to add new level
646     Index<K,V> hx = new Index<K,V>(z, x, null);
647     Index<K,V> nh = new Index<K,V>(h.node, h, hx);
648 dl 1.176 HEAD.compareAndSet(this, h, nh);
649 dl 1.92 }
650 dl 1.169 if (z.val == null) // deleted while adding indices
651     findPredecessor(key, cmp); // clean
652 dl 1.1 }
653 dl 1.169 addCount(1L);
654     return null;
655     }
656     }
657     }
658     }
659 dl 1.92
660 dl 1.169 /**
661     * Add indices after an insertion. Descends iteratively to the
662     * highest level of insertion, then recursively, to chain index
663     * nodes to lower ones. Returns null on (staleness) failure,
664     * disabling higher-level insertions. Recursion depths are
665     * exponentially less probable.
666     *
667     * @param q starting index for current level
668     * @param skips levels to skip before inserting
669     * @param x index for this insertion
670     * @param cmp comparator
671     */
672     static <K,V> boolean addIndices(Index<K,V> q, int skips, Index<K,V> x,
673     Comparator<? super K> cmp) {
674     Node<K,V> z; K key;
675     if (x != null && (z = x.node) != null && (key = z.key) != null &&
676     q != null) { // hoist checks
677     boolean retrying = false;
678     for (;;) { // find splice point
679     Index<K,V> r, d; int c;
680     if ((r = q.right) != null) {
681     Node<K,V> p; K k;
682     if ((p = r.node) == null || (k = p.key) == null ||
683     p.val == null) {
684 dl 1.176 RIGHT.compareAndSet(q, r, r.right);
685 dl 1.169 c = 0;
686 dl 1.1 }
687 dl 1.169 else if ((c = cpr(cmp, key, k)) > 0)
688     q = r;
689     else if (c == 0)
690     break; // stale
691     }
692     else
693     c = -1;
694 dl 1.92
695 dl 1.169 if (c < 0) {
696     if ((d = q.down) != null && skips > 0) {
697     --skips;
698     q = d;
699     }
700     else if (d != null && !retrying &&
701     !addIndices(d, 0, x.down, cmp))
702     break;
703     else {
704     x.right = r;
705     if (RIGHT.compareAndSet(q, r, x))
706     return true;
707     else
708     retrying = true; // re-find splice point
709     }
710 dl 1.1 }
711     }
712     }
713 dl 1.169 return false;
714 dl 1.1 }
715    
716     /* ---------------- Deletion -------------- */
717    
718     /**
719     * Main deletion method. Locates node, nulls value, appends a
720     * deletion marker, unlinks predecessor, removes associated index
721     * nodes, and possibly reduces head index level.
722     *
723 dl 1.118 * @param key the key
724 dl 1.1 * @param value if non-null, the value that must be
725     * associated with key
726     * @return the node, or null if not found
727     */
728 dl 1.118 final V doRemove(Object key, Object value) {
729     if (key == null)
730 dl 1.88 throw new NullPointerException();
731 dl 1.118 Comparator<? super K> cmp = comparator;
732 dl 1.169 V result = null;
733     Node<K,V> b;
734     outer: while ((b = findPredecessor(key, cmp)) != null &&
735     result == null) {
736     for (;;) {
737     Node<K,V> n; K k; V v; int c;
738     if ((n = b.next) == null)
739 dl 1.118 break outer;
740 dl 1.169 else if ((k = n.key) == null)
741 dl 1.1 break;
742 dl 1.169 else if ((v = n.val) == null)
743     unlinkNode(b, n);
744     else if ((c = cpr(cmp, key, k)) > 0)
745     b = n;
746     else if (c < 0)
747 dl 1.118 break outer;
748 dl 1.169 else if (value != null && !value.equals(v))
749 dl 1.118 break outer;
750 dl 1.169 else if (VAL.compareAndSet(n, v, null)) {
751     result = v;
752     unlinkNode(b, n);
753     break; // loop to clean up
754 dl 1.1 }
755     }
756     }
757 dl 1.169 if (result != null) {
758     tryReduceLevel();
759     addCount(-1L);
760     }
761     return result;
762 dl 1.1 }
763    
764     /**
765     * Possibly reduce head level if it has no nodes. This method can
766     * (rarely) make mistakes, in which case levels can disappear even
767     * though they are about to contain index nodes. This impacts
768     * performance, not correctness. To minimize mistakes as well as
769     * to reduce hysteresis, the level is reduced by one only if the
770     * topmost three levels look empty. Also, if the removed level
771     * looks non-empty after CAS, we try to change it back quick
772     * before anyone notices our mistake! (This trick works pretty
773     * well because this method will practically never make mistakes
774     * unless current thread stalls immediately before first CAS, in
775     * which case it is very unlikely to stall again immediately
776     * afterwards, so will recover.)
777     *
778     * We put up with all this rather than just let levels grow
779     * because otherwise, even a small map that has undergone a large
780     * number of insertions and removals will have a lot of levels,
781     * slowing down access more than would an occasional unwanted
782     * reduction.
783     */
784     private void tryReduceLevel() {
785 dl 1.169 Index<K,V> h, d, e;
786     if ((h = head) != null && h.right == null &&
787     (d = h.down) != null && d.right == null &&
788     (e = d.down) != null && e.right == null &&
789     HEAD.compareAndSet(this, h, d) &&
790 dl 1.176 h.right != null) // recheck
791     HEAD.compareAndSet(this, d, h); // try to backout
792 dl 1.1 }
793    
794     /* ---------------- Finding and removing first element -------------- */
795    
796     /**
797 dl 1.169 * Gets first valid node, unlinking deleted nodes if encountered.
798 dl 1.1 * @return first node or null if empty
799     */
800 dl 1.118 final Node<K,V> findFirst() {
801 dl 1.169 Node<K,V> b, n;
802     if ((b = baseHead()) != null) {
803     while ((n = b.next) != null) {
804     if (n.val == null)
805     unlinkNode(b, n);
806     else
807     return n;
808 dl 1.1 }
809 jsr166 1.55 }
810 dl 1.169 return null;
811 dl 1.1 }
812    
813     /**
814 dl 1.169 * Entry snapshot version of findFirst
815 dl 1.1 */
816 dl 1.169 final AbstractMap.SimpleImmutableEntry<K,V> findFirstEntry() {
817     Node<K,V> b, n; V v;
818     if ((b = baseHead()) != null) {
819     while ((n = b.next) != null) {
820     if ((v = n.val) == null)
821     unlinkNode(b, n);
822     else
823     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
824 dl 1.1 }
825     }
826 dl 1.169 return null;
827 dl 1.1 }
828    
829 dl 1.88 /**
830 dl 1.169 * Removes first entry; returns its snapshot.
831     * @return null if empty, else snapshot of first entry
832 dl 1.88 */
833 dl 1.169 private AbstractMap.SimpleImmutableEntry<K,V> doRemoveFirstEntry() {
834     Node<K,V> b, n; V v;
835     if ((b = baseHead()) != null) {
836     while ((n = b.next) != null) {
837     if ((v = n.val) == null || VAL.compareAndSet(n, v, null)) {
838     K k = n.key;
839     unlinkNode(b, n);
840     if (v != null) {
841 dl 1.88 tryReduceLevel();
842 dl 1.169 findPredecessor(k, comparator); // clean index
843     addCount(-1L);
844     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
845     }
846 dl 1.88 }
847     }
848     }
849 dl 1.169 return null;
850 dl 1.88 }
851 dl 1.1
852     /* ---------------- Finding and removing last element -------------- */
853    
854     /**
855 jsr166 1.10 * Specialized version of find to get last valid node.
856 dl 1.1 * @return last node or null if empty
857     */
858 dl 1.118 final Node<K,V> findLast() {
859 dl 1.169 outer: for (;;) {
860     Index<K,V> q; Node<K,V> b;
861     VarHandle.acquireFence();
862     if ((q = head) == null)
863     break;
864     for (Index<K,V> r, d;;) {
865     while ((r = q.right) != null) {
866     Node<K,V> p;
867 dl 1.176 if ((p = r.node) == null || p.val == null)
868     RIGHT.compareAndSet(q, r, r.right);
869 dl 1.169 else
870     q = r;
871     }
872     if ((d = q.down) != null)
873     q = d;
874     else {
875     b = q.node;
876     break;
877 dl 1.9 }
878 dl 1.169 }
879     if (b != null) {
880     for (;;) {
881     Node<K,V> n;
882     if ((n = b.next) == null) {
883     if (b.key == null) // empty
884     break outer;
885     else
886     return b;
887 dl 1.1 }
888 dl 1.169 else if (n.key == null)
889 dl 1.1 break;
890 dl 1.169 else if (n.val == null)
891     unlinkNode(b, n);
892     else
893     b = n;
894 dl 1.1 }
895     }
896     }
897 dl 1.169 return null;
898 dl 1.1 }
899    
900 dl 1.31 /**
901 dl 1.169 * Entry version of findLast
902     * @return Entry for last node or null if empty
903 dl 1.31 */
904 dl 1.169 final AbstractMap.SimpleImmutableEntry<K,V> findLastEntry() {
905 dl 1.31 for (;;) {
906 dl 1.169 Node<K,V> n; V v;
907     if ((n = findLast()) == null)
908     return null;
909     if ((v = n.val) != null)
910     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
911     }
912     }
913    
914     /**
915     * Removes last entry; returns its snapshot.
916     * Specialized variant of doRemove.
917     * @return null if empty, else snapshot of last entry
918     */
919     private Map.Entry<K,V> doRemoveLastEntry() {
920     outer: for (;;) {
921     Index<K,V> q; Node<K,V> b;
922     VarHandle.acquireFence();
923     if ((q = head) == null)
924     break;
925     for (;;) {
926     Index<K,V> d, r; Node<K,V> p;
927     while ((r = q.right) != null) {
928 dl 1.176 if ((p = r.node) == null || p.val == null)
929     RIGHT.compareAndSet(q, r, r.right);
930 dl 1.169 else if (p.next != null)
931     q = r; // continue only if a successor
932     else
933     break;
934 dl 1.31 }
935     if ((d = q.down) != null)
936     q = d;
937 dl 1.169 else {
938     b = q.node;
939     break;
940     }
941     }
942     if (b != null) {
943     for (;;) {
944     Node<K,V> n; K k; V v;
945     if ((n = b.next) == null) {
946     if (b.key == null) // empty
947     break outer;
948     else
949     break; // retry
950     }
951     else if ((k = n.key) == null)
952     break;
953     else if ((v = n.val) == null)
954     unlinkNode(b, n);
955     else if (n.next != null)
956     b = n;
957     else if (VAL.compareAndSet(n, v, null)) {
958     unlinkNode(b, n);
959     tryReduceLevel();
960     findPredecessor(k, comparator); // clean index
961     addCount(-1L);
962     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
963     }
964     }
965 dl 1.31 }
966     }
967 dl 1.169 return null;
968 dl 1.31 }
969 dl 1.1
970 dl 1.88 /* ---------------- Relational operations -------------- */
971    
972     // Control values OR'ed as arguments to findNear
973    
974     private static final int EQ = 1;
975     private static final int LT = 2;
976     private static final int GT = 0; // Actually checked as !LT
977    
978 dl 1.1 /**
979 dl 1.88 * Utility for ceiling, floor, lower, higher methods.
980 dl 1.118 * @param key the key
981 dl 1.88 * @param rel the relation -- OR'ed combination of EQ, LT, GT
982     * @return nearest node fitting relation, or null if no such
983 dl 1.1 */
984 dl 1.118 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
985     if (key == null)
986     throw new NullPointerException();
987 dl 1.169 Node<K,V> result;
988     outer: for (Node<K,V> b;;) {
989     if ((b = findPredecessor(key, cmp)) == null) {
990     result = null;
991     break; // empty
992     }
993     for (;;) {
994     Node<K,V> n; K k; int c;
995     if ((n = b.next) == null) {
996     result = ((rel & LT) != 0 && b.key != null) ? b : null;
997     break outer;
998     }
999     else if ((k = n.key) == null)
1000 dl 1.88 break;
1001 dl 1.169 else if (n.val == null)
1002     unlinkNode(b, n);
1003     else if (((c = cpr(cmp, key, k)) == 0 && (rel & EQ) != 0) ||
1004     (c < 0 && (rel & LT) == 0)) {
1005     result = n;
1006     break outer;
1007     }
1008     else if (c <= 0 && (rel & LT) != 0) {
1009     result = (b.key != null) ? b : null;
1010     break outer;
1011 dl 1.88 }
1012 dl 1.169 else
1013     b = n;
1014 dl 1.88 }
1015     }
1016 dl 1.169 return result;
1017 dl 1.88 }
1018    
1019 dl 1.1 /**
1020 dl 1.169 * Variant of findNear returning SimpleImmutableEntry
1021 dl 1.40 * @param key the key
1022 dl 1.1 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1023     * @return Entry fitting relation, or null if no such
1024     */
1025 dl 1.169 final AbstractMap.SimpleImmutableEntry<K,V> findNearEntry(K key, int rel,
1026     Comparator<? super K> cmp) {
1027 dl 1.1 for (;;) {
1028 dl 1.169 Node<K,V> n; V v;
1029     if ((n = findNear(key, rel, cmp)) == null)
1030 dl 1.1 return null;
1031 dl 1.169 if ((v = n.val) != null)
1032     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
1033 dl 1.1 }
1034     }
1035    
1036     /* ---------------- Constructors -------------- */
1037    
1038     /**
1039 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1040     * {@linkplain Comparable natural ordering} of the keys.
1041 dl 1.1 */
1042     public ConcurrentSkipListMap() {
1043     this.comparator = null;
1044     }
1045    
1046     /**
1047 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1048     * comparator.
1049 dl 1.1 *
1050 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1051 jsr166 1.82 * If {@code null}, the {@linkplain Comparable natural
1052 jsr166 1.22 * ordering} of the keys will be used.
1053 dl 1.1 */
1054 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1055     this.comparator = comparator;
1056 dl 1.1 }
1057    
1058     /**
1059     * Constructs a new map containing the same mappings as the given map,
1060 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1061     * the keys.
1062 dl 1.1 *
1063 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1064 jsr166 1.82 * @throws ClassCastException if the keys in {@code m} are not
1065 jsr166 1.22 * {@link Comparable}, or are not mutually comparable
1066     * @throws NullPointerException if the specified map or any of its keys
1067     * or values are null
1068 dl 1.1 */
1069     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1070     this.comparator = null;
1071     putAll(m);
1072     }
1073    
1074     /**
1075 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1076     * same ordering as the specified sorted map.
1077     *
1078 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1079 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1080     * @throws NullPointerException if the specified sorted map or any of
1081     * its keys or values are null
1082 dl 1.1 */
1083     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1084     this.comparator = m.comparator();
1085 dl 1.169 buildFromSorted(m); // initializes transients
1086 dl 1.1 }
1087    
1088     /**
1089 jsr166 1.82 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1090 jsr166 1.22 * instance. (The keys and values themselves are not cloned.)
1091 dl 1.1 *
1092 jsr166 1.22 * @return a shallow copy of this map
1093 dl 1.1 */
1094 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1095 dl 1.1 try {
1096 jsr166 1.76 @SuppressWarnings("unchecked")
1097     ConcurrentSkipListMap<K,V> clone =
1098     (ConcurrentSkipListMap<K,V>) super.clone();
1099 dl 1.169 clone.keySet = null;
1100     clone.entrySet = null;
1101     clone.values = null;
1102     clone.descendingMap = null;
1103 jsr166 1.76 clone.buildFromSorted(this);
1104     return clone;
1105 dl 1.1 } catch (CloneNotSupportedException e) {
1106     throw new InternalError();
1107     }
1108     }
1109    
1110     /**
1111     * Streamlined bulk insertion to initialize from elements of
1112     * given sorted map. Call only from constructor or clone
1113     * method.
1114     */
1115     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1116     if (map == null)
1117     throw new NullPointerException();
1118 dl 1.169 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1119     map.entrySet().iterator();
1120 dl 1.1
1121 dl 1.169 /*
1122     * Add equally spaced indices at log intervals, using the bits
1123     * of count during insertion. The maximum possible resulting
1124     * level is less than the number of bits in a long (64). The
1125     * preds array tracks the current rightmost node at each
1126     * level.
1127     */
1128     @SuppressWarnings("unchecked")
1129     Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1130     Node<K,V> bp = new Node<K,V>(null, null, null);
1131     Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1132     long count = 0;
1133 dl 1.1
1134     while (it.hasNext()) {
1135     Map.Entry<? extends K, ? extends V> e = it.next();
1136     K k = e.getKey();
1137     V v = e.getValue();
1138     if (k == null || v == null)
1139     throw new NullPointerException();
1140     Node<K,V> z = new Node<K,V>(k, v, null);
1141 dl 1.169 bp = bp.next = z;
1142     if ((++count & 3L) == 0L) {
1143     long m = count >>> 2;
1144     int i = 0;
1145     Index<K,V> idx = null, q;
1146     do {
1147 dl 1.1 idx = new Index<K,V>(z, idx, null);
1148 dl 1.169 if ((q = preds[i]) == null)
1149     preds[i] = h = new Index<K,V>(h.node, h, idx);
1150     else
1151     preds[i] = q.right = idx;
1152     } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1153 dl 1.1 }
1154     }
1155 dl 1.169 if (count != 0L) {
1156     VarHandle.releaseFence(); // emulate volatile stores
1157     addCount(count);
1158     head = h;
1159     VarHandle.fullFence();
1160     }
1161 dl 1.1 }
1162    
1163     /* ---------------- Serialization -------------- */
1164    
1165     /**
1166 jsr166 1.80 * Saves this map to a stream (that is, serializes it).
1167 dl 1.1 *
1168 jsr166 1.128 * @param s the stream
1169 jsr166 1.129 * @throws java.io.IOException if an I/O error occurs
1170 dl 1.1 * @serialData The key (Object) and value (Object) for each
1171 jsr166 1.10 * key-value mapping represented by the map, followed by
1172 jsr166 1.82 * {@code null}. The key-value mappings are emitted in key-order
1173 dl 1.1 * (as determined by the Comparator, or by the keys' natural
1174     * ordering if no Comparator).
1175     */
1176     private void writeObject(java.io.ObjectOutputStream s)
1177     throws java.io.IOException {
1178     // Write out the Comparator and any hidden stuff
1179     s.defaultWriteObject();
1180    
1181     // Write out keys and values (alternating)
1182 dl 1.169 Node<K,V> b, n; V v;
1183     if ((b = baseHead()) != null) {
1184     while ((n = b.next) != null) {
1185     if ((v = n.val) != null) {
1186     s.writeObject(n.key);
1187     s.writeObject(v);
1188     }
1189     b = n;
1190 dl 1.1 }
1191     }
1192     s.writeObject(null);
1193     }
1194    
1195     /**
1196 jsr166 1.80 * Reconstitutes this map from a stream (that is, deserializes it).
1197 jsr166 1.128 * @param s the stream
1198 jsr166 1.129 * @throws ClassNotFoundException if the class of a serialized object
1199     * could not be found
1200     * @throws java.io.IOException if an I/O error occurs
1201 dl 1.1 */
1202 dl 1.100 @SuppressWarnings("unchecked")
1203 dl 1.1 private void readObject(final java.io.ObjectInputStream s)
1204     throws java.io.IOException, ClassNotFoundException {
1205     // Read in the Comparator and any hidden stuff
1206     s.defaultReadObject();
1207    
1208 dl 1.169 // Same idea as buildFromSorted
1209     @SuppressWarnings("unchecked")
1210     Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1211     Node<K,V> bp = new Node<K,V>(null, null, null);
1212     Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1213     Comparator<? super K> cmp = comparator;
1214     K prevKey = null;
1215     long count = 0;
1216 dl 1.1
1217     for (;;) {
1218 dl 1.169 K k = (K)s.readObject();
1219 dl 1.1 if (k == null)
1220     break;
1221 dl 1.169 V v = (V)s.readObject();
1222 dl 1.9 if (v == null)
1223 dl 1.1 throw new NullPointerException();
1224 dl 1.169 if (prevKey != null && cpr(cmp, prevKey, k) > 0)
1225     throw new IllegalStateException("out of order");
1226     prevKey = k;
1227     Node<K,V> z = new Node<K,V>(k, v, null);
1228     bp = bp.next = z;
1229     if ((++count & 3L) == 0L) {
1230     long m = count >>> 2;
1231     int i = 0;
1232     Index<K,V> idx = null, q;
1233 dl 1.92 do {
1234 dl 1.1 idx = new Index<K,V>(z, idx, null);
1235 dl 1.169 if ((q = preds[i]) == null)
1236     preds[i] = h = new Index<K,V>(h.node, h, idx);
1237     else
1238     preds[i] = q.right = idx;
1239     } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1240 dl 1.1 }
1241     }
1242 dl 1.169 if (count != 0L) {
1243     VarHandle.releaseFence();
1244     addCount(count);
1245     head = h;
1246     VarHandle.fullFence();
1247     }
1248 dl 1.1 }
1249    
1250     /* ------ Map API methods ------ */
1251    
1252     /**
1253 jsr166 1.82 * Returns {@code true} if this map contains a mapping for the specified
1254 dl 1.1 * key.
1255 jsr166 1.22 *
1256     * @param key key whose presence in this map is to be tested
1257 jsr166 1.82 * @return {@code true} if this map contains a mapping for the specified key
1258 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1259     * with the keys currently in the map
1260     * @throws NullPointerException if the specified key is null
1261 dl 1.1 */
1262     public boolean containsKey(Object key) {
1263 dl 1.118 return doGet(key) != null;
1264 dl 1.1 }
1265    
1266     /**
1267 jsr166 1.42 * Returns the value to which the specified key is mapped,
1268     * or {@code null} if this map contains no mapping for the key.
1269     *
1270     * <p>More formally, if this map contains a mapping from a key
1271     * {@code k} to a value {@code v} such that {@code key} compares
1272     * equal to {@code k} according to the map's ordering, then this
1273     * method returns {@code v}; otherwise it returns {@code null}.
1274     * (There can be at most one such mapping.)
1275 dl 1.1 *
1276 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1277     * with the keys currently in the map
1278     * @throws NullPointerException if the specified key is null
1279 dl 1.1 */
1280     public V get(Object key) {
1281 dl 1.118 return doGet(key);
1282 dl 1.1 }
1283    
1284     /**
1285 dl 1.109 * Returns the value to which the specified key is mapped,
1286     * or the given defaultValue if this map contains no mapping for the key.
1287     *
1288     * @param key the key
1289     * @param defaultValue the value to return if this map contains
1290     * no mapping for the given key
1291     * @return the mapping for the key, if present; else the defaultValue
1292     * @throws NullPointerException if the specified key is null
1293     * @since 1.8
1294     */
1295     public V getOrDefault(Object key, V defaultValue) {
1296     V v;
1297 dl 1.118 return (v = doGet(key)) == null ? defaultValue : v;
1298 dl 1.109 }
1299    
1300     /**
1301 dl 1.1 * Associates the specified value with the specified key in this map.
1302 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1303 dl 1.1 * value is replaced.
1304     *
1305 jsr166 1.22 * @param key key with which the specified value is to be associated
1306     * @param value value to be associated with the specified key
1307     * @return the previous value associated with the specified key, or
1308 jsr166 1.82 * {@code null} if there was no mapping for the key
1309 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1310     * with the keys currently in the map
1311     * @throws NullPointerException if the specified key or value is null
1312 dl 1.1 */
1313     public V put(K key, V value) {
1314 dl 1.9 if (value == null)
1315 dl 1.1 throw new NullPointerException();
1316 dl 1.118 return doPut(key, value, false);
1317 dl 1.1 }
1318    
1319     /**
1320 jsr166 1.36 * Removes the mapping for the specified key from this map if present.
1321 dl 1.1 *
1322     * @param key key for which mapping should be removed
1323 jsr166 1.22 * @return the previous value associated with the specified key, or
1324 jsr166 1.82 * {@code null} if there was no mapping for the key
1325 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1326     * with the keys currently in the map
1327     * @throws NullPointerException if the specified key is null
1328 dl 1.1 */
1329     public V remove(Object key) {
1330 dl 1.118 return doRemove(key, null);
1331 dl 1.1 }
1332    
1333     /**
1334 jsr166 1.82 * Returns {@code true} if this map maps one or more keys to the
1335 dl 1.1 * specified value. This operation requires time linear in the
1336 dl 1.69 * map size. Additionally, it is possible for the map to change
1337     * during execution of this method, in which case the returned
1338     * result may be inaccurate.
1339 dl 1.1 *
1340 jsr166 1.22 * @param value value whose presence in this map is to be tested
1341 jsr166 1.82 * @return {@code true} if a mapping to {@code value} exists;
1342     * {@code false} otherwise
1343 jsr166 1.22 * @throws NullPointerException if the specified value is null
1344 dl 1.9 */
1345 dl 1.1 public boolean containsValue(Object value) {
1346 dl 1.9 if (value == null)
1347 dl 1.1 throw new NullPointerException();
1348 dl 1.169 Node<K,V> b, n; V v;
1349     if ((b = baseHead()) != null) {
1350     while ((n = b.next) != null) {
1351     if ((v = n.val) != null && value.equals(v))
1352     return true;
1353     else
1354     b = n;
1355     }
1356 dl 1.1 }
1357     return false;
1358     }
1359    
1360     /**
1361 dl 1.169 * {@inheritDoc}
1362 dl 1.1 */
1363     public int size() {
1364 dl 1.169 long c;
1365     return ((baseHead() == null) ? 0 :
1366     ((c = getAdderCount()) >= Integer.MAX_VALUE) ?
1367     Integer.MAX_VALUE : (int) c);
1368 dl 1.1 }
1369    
1370     /**
1371 dl 1.169 * {@inheritDoc}
1372 dl 1.1 */
1373     public boolean isEmpty() {
1374     return findFirst() == null;
1375     }
1376    
1377     /**
1378 jsr166 1.22 * Removes all of the mappings from this map.
1379 dl 1.1 */
1380 jsr166 1.165 public void clear() {
1381 dl 1.169 Index<K,V> h, r, d; Node<K,V> b;
1382     VarHandle.acquireFence();
1383     while ((h = head) != null) {
1384 dl 1.176 if ((r = h.right) != null) // remove indices
1385     RIGHT.compareAndSet(h, r, null);
1386     else if ((d = h.down) != null) // remove levels
1387     HEAD.compareAndSet(this, h, d);
1388 dl 1.169 else {
1389     long count = 0L;
1390     if ((b = h.node) != null) { // remove nodes
1391     Node<K,V> n; V v;
1392     while ((n = b.next) != null) {
1393     if ((v = n.val) != null &&
1394     VAL.compareAndSet(n, v, null)) {
1395     --count;
1396     v = null;
1397     }
1398     if (v == null)
1399     unlinkNode(b, n);
1400     }
1401 dl 1.164 }
1402 dl 1.169 if (count != 0L)
1403     addCount(count);
1404     else
1405     break;
1406 dl 1.164 }
1407     }
1408 dl 1.1 }
1409 jsr166 1.165
1410 dl 1.109 /**
1411     * If the specified key is not already associated with a value,
1412     * attempts to compute its value using the given mapping function
1413     * and enters it into this map unless {@code null}. The function
1414     * is <em>NOT</em> guaranteed to be applied once atomically only
1415     * if the value is not present.
1416     *
1417     * @param key key with which the specified value is to be associated
1418     * @param mappingFunction the function to compute a value
1419     * @return the current (existing or computed) value associated with
1420     * the specified key, or null if the computed value is null
1421     * @throws NullPointerException if the specified key is null
1422     * or the mappingFunction is null
1423     * @since 1.8
1424     */
1425 jsr166 1.110 public V computeIfAbsent(K key,
1426 dl 1.109 Function<? super K, ? extends V> mappingFunction) {
1427 jsr166 1.110 if (key == null || mappingFunction == null)
1428     throw new NullPointerException();
1429     V v, p, r;
1430 dl 1.118 if ((v = doGet(key)) == null &&
1431     (r = mappingFunction.apply(key)) != null)
1432     v = (p = doPut(key, r, true)) == null ? r : p;
1433 dl 1.109 return v;
1434     }
1435    
1436     /**
1437     * If the value for the specified key is present, attempts to
1438     * compute a new mapping given the key and its current mapped
1439     * value. The function is <em>NOT</em> guaranteed to be applied
1440     * once atomically.
1441     *
1442 dl 1.111 * @param key key with which a value may be associated
1443 dl 1.109 * @param remappingFunction the function to compute a value
1444     * @return the new value associated with the specified key, or null if none
1445     * @throws NullPointerException if the specified key is null
1446     * or the remappingFunction is null
1447     * @since 1.8
1448     */
1449 jsr166 1.110 public V computeIfPresent(K key,
1450 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1451 jsr166 1.110 if (key == null || remappingFunction == null)
1452     throw new NullPointerException();
1453 dl 1.169 Node<K,V> n; V v;
1454 dl 1.118 while ((n = findNode(key)) != null) {
1455 dl 1.169 if ((v = n.val) != null) {
1456     V r = remappingFunction.apply(key, v);
1457 dl 1.118 if (r != null) {
1458 dl 1.169 if (VAL.compareAndSet(n, v, r))
1459 dl 1.118 return r;
1460 dl 1.109 }
1461 dl 1.169 else if (doRemove(key, v) != null)
1462 dl 1.118 break;
1463 dl 1.109 }
1464 jsr166 1.110 }
1465     return null;
1466 dl 1.109 }
1467    
1468     /**
1469     * Attempts to compute a mapping for the specified key and its
1470     * current mapped value (or {@code null} if there is no current
1471     * mapping). The function is <em>NOT</em> guaranteed to be applied
1472     * once atomically.
1473     *
1474     * @param key key with which the specified value is to be associated
1475     * @param remappingFunction the function to compute a value
1476     * @return the new value associated with the specified key, or null if none
1477     * @throws NullPointerException if the specified key is null
1478     * or the remappingFunction is null
1479     * @since 1.8
1480     */
1481 jsr166 1.110 public V compute(K key,
1482 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1483 jsr166 1.110 if (key == null || remappingFunction == null)
1484     throw new NullPointerException();
1485 dl 1.118 for (;;) {
1486 dl 1.169 Node<K,V> n; V v; V r;
1487 dl 1.118 if ((n = findNode(key)) == null) {
1488     if ((r = remappingFunction.apply(key, null)) == null)
1489     break;
1490 dl 1.124 if (doPut(key, r, true) == null)
1491 dl 1.118 return r;
1492     }
1493 dl 1.169 else if ((v = n.val) != null) {
1494     if ((r = remappingFunction.apply(key, v)) != null) {
1495     if (VAL.compareAndSet(n, v, r))
1496 dl 1.109 return r;
1497     }
1498 dl 1.169 else if (doRemove(key, v) != null)
1499 dl 1.118 break;
1500 dl 1.109 }
1501     }
1502 jsr166 1.110 return null;
1503 dl 1.109 }
1504    
1505     /**
1506     * If the specified key is not already associated with a value,
1507     * associates it with the given value. Otherwise, replaces the
1508     * value with the results of the given remapping function, or
1509     * removes if {@code null}. The function is <em>NOT</em>
1510     * guaranteed to be applied once atomically.
1511     *
1512     * @param key key with which the specified value is to be associated
1513     * @param value the value to use if absent
1514     * @param remappingFunction the function to recompute a value if present
1515     * @return the new value associated with the specified key, or null if none
1516     * @throws NullPointerException if the specified key or value is null
1517     * or the remappingFunction is null
1518     * @since 1.8
1519     */
1520     public V merge(K key, V value,
1521     BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1522 jsr166 1.110 if (key == null || value == null || remappingFunction == null)
1523     throw new NullPointerException();
1524 dl 1.118 for (;;) {
1525 dl 1.169 Node<K,V> n; V v; V r;
1526 dl 1.118 if ((n = findNode(key)) == null) {
1527 dl 1.124 if (doPut(key, value, true) == null)
1528 dl 1.118 return value;
1529     }
1530 dl 1.169 else if ((v = n.val) != null) {
1531     if ((r = remappingFunction.apply(v, value)) != null) {
1532     if (VAL.compareAndSet(n, v, r))
1533 dl 1.118 return r;
1534 dl 1.109 }
1535 dl 1.169 else if (doRemove(key, v) != null)
1536 dl 1.118 return null;
1537 dl 1.109 }
1538 jsr166 1.110 }
1539 dl 1.109 }
1540    
1541 dl 1.46 /* ---------------- View methods -------------- */
1542    
1543     /*
1544     * Note: Lazy initialization works for views because view classes
1545     * are stateless/immutable so it doesn't matter wrt correctness if
1546     * more than one is created (which will only rarely happen). Even
1547     * so, the following idiom conservatively ensures that the method
1548     * returns the one it created if it does so, not one created by
1549     * another racing thread.
1550     */
1551    
1552 dl 1.1 /**
1553 jsr166 1.51 * Returns a {@link NavigableSet} view of the keys contained in this map.
1554 jsr166 1.132 *
1555     * <p>The set's iterator returns the keys in ascending order.
1556     * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1557     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1558     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1559 jsr166 1.167 * key order.
1560     *
1561     * <p>The {@linkplain Spliterator#getComparator() spliterator's comparator}
1562     * is {@code null} if the {@linkplain #comparator() map's comparator}
1563     * is {@code null}.
1564 jsr166 1.132 * Otherwise, the spliterator's comparator is the same as or imposes the
1565     * same total ordering as the map's comparator.
1566     *
1567     * <p>The set is backed by the map, so changes to the map are
1568 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1569     * removal, which removes the corresponding mapping from the map,
1570 jsr166 1.51 * via the {@code Iterator.remove}, {@code Set.remove},
1571     * {@code removeAll}, {@code retainAll}, and {@code clear}
1572     * operations. It does not support the {@code add} or {@code addAll}
1573 jsr166 1.22 * operations.
1574     *
1575 jsr166 1.133 * <p>The view's iterators and spliterators are
1576     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1577 dl 1.1 *
1578 jsr166 1.51 * <p>This method is equivalent to method {@code navigableKeySet}.
1579     *
1580     * @return a navigable set view of the keys in this map
1581 dl 1.1 */
1582 jsr166 1.68 public NavigableSet<K> keySet() {
1583 jsr166 1.157 KeySet<K,V> ks;
1584     if ((ks = keySet) != null) return ks;
1585     return keySet = new KeySet<>(this);
1586 dl 1.1 }
1587    
1588 dl 1.46 public NavigableSet<K> navigableKeySet() {
1589 jsr166 1.157 KeySet<K,V> ks;
1590     if ((ks = keySet) != null) return ks;
1591     return keySet = new KeySet<>(this);
1592 dl 1.83 }
1593    
1594     /**
1595 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1596 jsr166 1.132 * <p>The collection's iterator returns the values in ascending order
1597     * of the corresponding keys. The collections's spliterator additionally
1598     * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1599     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1600     * order of the corresponding keys.
1601     *
1602     * <p>The collection is backed by the map, so changes to the map are
1603 dl 1.1 * reflected in the collection, and vice-versa. The collection
1604     * supports element removal, which removes the corresponding
1605 jsr166 1.82 * mapping from the map, via the {@code Iterator.remove},
1606     * {@code Collection.remove}, {@code removeAll},
1607     * {@code retainAll} and {@code clear} operations. It does not
1608     * support the {@code add} or {@code addAll} operations.
1609 dl 1.1 *
1610 jsr166 1.133 * <p>The view's iterators and spliterators are
1611     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1612 dl 1.1 */
1613     public Collection<V> values() {
1614 jsr166 1.157 Values<K,V> vs;
1615     if ((vs = values) != null) return vs;
1616     return values = new Values<>(this);
1617 dl 1.1 }
1618    
1619     /**
1620 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
1621 jsr166 1.132 *
1622     * <p>The set's iterator returns the entries in ascending key order. The
1623     * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1624     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1625     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1626     * key order.
1627     *
1628     * <p>The set is backed by the map, so changes to the map are
1629 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1630     * removal, which removes the corresponding mapping from the map,
1631 jsr166 1.82 * via the {@code Iterator.remove}, {@code Set.remove},
1632     * {@code removeAll}, {@code retainAll} and {@code clear}
1633     * operations. It does not support the {@code add} or
1634     * {@code addAll} operations.
1635 jsr166 1.22 *
1636 jsr166 1.133 * <p>The view's iterators and spliterators are
1637     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1638 jsr166 1.132 *
1639     * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1640     * or {@code spliterator} do <em>not</em> support the {@code setValue}
1641     * operation.
1642 dl 1.1 *
1643 jsr166 1.22 * @return a set view of the mappings contained in this map,
1644     * sorted in ascending key order
1645 dl 1.1 */
1646     public Set<Map.Entry<K,V>> entrySet() {
1647 jsr166 1.157 EntrySet<K,V> es;
1648     if ((es = entrySet) != null) return es;
1649     return entrySet = new EntrySet<K,V>(this);
1650 dl 1.46 }
1651    
1652     public ConcurrentNavigableMap<K,V> descendingMap() {
1653 jsr166 1.157 ConcurrentNavigableMap<K,V> dm;
1654     if ((dm = descendingMap) != null) return dm;
1655     return descendingMap =
1656     new SubMap<K,V>(this, null, false, null, false, true);
1657 dl 1.1 }
1658    
1659 dl 1.46 public NavigableSet<K> descendingKeySet() {
1660     return descendingMap().navigableKeySet();
1661 dl 1.1 }
1662    
1663     /* ---------------- AbstractMap Overrides -------------- */
1664    
1665     /**
1666     * Compares the specified object with this map for equality.
1667 jsr166 1.82 * Returns {@code true} if the given object is also a map and the
1668 dl 1.1 * two maps represent the same mappings. More formally, two maps
1669 jsr166 1.82 * {@code m1} and {@code m2} represent the same mappings if
1670     * {@code m1.entrySet().equals(m2.entrySet())}. This
1671 dl 1.1 * operation may return misleading results if either map is
1672     * concurrently modified during execution of this method.
1673     *
1674 jsr166 1.22 * @param o object to be compared for equality with this map
1675 jsr166 1.82 * @return {@code true} if the specified object is equal to this map
1676 dl 1.1 */
1677     public boolean equals(Object o) {
1678 jsr166 1.55 if (o == this)
1679     return true;
1680     if (!(o instanceof Map))
1681     return false;
1682     Map<?,?> m = (Map<?,?>) o;
1683 dl 1.1 try {
1684 jsr166 1.178 Comparator<? super K> cmp = comparator;
1685 dl 1.169 @SuppressWarnings("unchecked")
1686     Iterator<Map.Entry<?,?>> it =
1687     (Iterator<Map.Entry<?,?>>)m.entrySet().iterator();
1688     if (m instanceof SortedMap &&
1689 dl 1.177 ((SortedMap<?,?>)m).comparator() == cmp) {
1690 dl 1.169 Node<K,V> b, n;
1691     if ((b = baseHead()) != null) {
1692     while ((n = b.next) != null) {
1693     K k; V v;
1694     if ((v = n.val) != null && (k = n.key) != null) {
1695     if (!it.hasNext())
1696     return false;
1697     Map.Entry<?,?> e = it.next();
1698     Object mk = e.getKey();
1699     Object mv = e.getValue();
1700 dl 1.177 if (mk == null || mv == null)
1701     return false;
1702     try {
1703     if (cpr(cmp, k, mk) != 0)
1704     return false;
1705     } catch (ClassCastException cce) {
1706     return false;
1707     }
1708     if (!mv.equals(v))
1709 dl 1.169 return false;
1710     }
1711     b = n;
1712     }
1713     }
1714     return !it.hasNext();
1715     }
1716     else {
1717     while (it.hasNext()) {
1718     V v;
1719     Map.Entry<?,?> e = it.next();
1720     Object mk = e.getKey();
1721     Object mv = e.getValue();
1722     if (mk == null || mv == null ||
1723     (v = get(mk)) == null || !v.equals(mv))
1724     return false;
1725     }
1726     Node<K,V> b, n;
1727     if ((b = baseHead()) != null) {
1728     K k; V v; Object mv;
1729     while ((n = b.next) != null) {
1730     if ((v = n.val) != null && (k = n.key) != null &&
1731     ((mv = m.get(k)) == null || !mv.equals(v)))
1732     return false;
1733     b = n;
1734     }
1735     }
1736     return true;
1737 dl 1.25 }
1738 jsr166 1.182 } catch (ClassCastException | NullPointerException unused) {
1739 dl 1.1 return false;
1740     }
1741     }
1742    
1743     /* ------ ConcurrentMap API methods ------ */
1744    
1745     /**
1746 jsr166 1.22 * {@inheritDoc}
1747     *
1748     * @return the previous value associated with the specified key,
1749 jsr166 1.82 * or {@code null} if there was no mapping for the key
1750 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1751     * with the keys currently in the map
1752     * @throws NullPointerException if the specified key or value is null
1753 dl 1.1 */
1754     public V putIfAbsent(K key, V value) {
1755 dl 1.9 if (value == null)
1756 dl 1.1 throw new NullPointerException();
1757 dl 1.118 return doPut(key, value, true);
1758 dl 1.1 }
1759    
1760     /**
1761 jsr166 1.22 * {@inheritDoc}
1762     *
1763     * @throws ClassCastException if the specified key cannot be compared
1764     * with the keys currently in the map
1765 dl 1.23 * @throws NullPointerException if the specified key is null
1766 dl 1.1 */
1767     public boolean remove(Object key, Object value) {
1768 dl 1.45 if (key == null)
1769     throw new NullPointerException();
1770 dl 1.118 return value != null && doRemove(key, value) != null;
1771 dl 1.1 }
1772    
1773     /**
1774 jsr166 1.22 * {@inheritDoc}
1775     *
1776     * @throws ClassCastException if the specified key cannot be compared
1777     * with the keys currently in the map
1778     * @throws NullPointerException if any of the arguments are null
1779 dl 1.1 */
1780     public boolean replace(K key, V oldValue, V newValue) {
1781 dl 1.118 if (key == null || oldValue == null || newValue == null)
1782 dl 1.1 throw new NullPointerException();
1783     for (;;) {
1784 dl 1.169 Node<K,V> n; V v;
1785 dl 1.118 if ((n = findNode(key)) == null)
1786 dl 1.1 return false;
1787 dl 1.169 if ((v = n.val) != null) {
1788 dl 1.1 if (!oldValue.equals(v))
1789     return false;
1790 dl 1.169 if (VAL.compareAndSet(n, v, newValue))
1791 dl 1.1 return true;
1792     }
1793     }
1794     }
1795    
1796     /**
1797 jsr166 1.22 * {@inheritDoc}
1798     *
1799     * @return the previous value associated with the specified key,
1800 jsr166 1.82 * or {@code null} if there was no mapping for the key
1801 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1802     * with the keys currently in the map
1803     * @throws NullPointerException if the specified key or value is null
1804 dl 1.1 */
1805     public V replace(K key, V value) {
1806 dl 1.118 if (key == null || value == null)
1807 dl 1.1 throw new NullPointerException();
1808     for (;;) {
1809 dl 1.169 Node<K,V> n; V v;
1810 dl 1.118 if ((n = findNode(key)) == null)
1811 dl 1.1 return null;
1812 dl 1.169 if ((v = n.val) != null && VAL.compareAndSet(n, v, value))
1813     return v;
1814 dl 1.1 }
1815     }
1816    
1817     /* ------ SortedMap API methods ------ */
1818    
1819     public Comparator<? super K> comparator() {
1820     return comparator;
1821     }
1822    
1823     /**
1824 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
1825 dl 1.1 */
1826 dl 1.9 public K firstKey() {
1827 dl 1.1 Node<K,V> n = findFirst();
1828     if (n == null)
1829     throw new NoSuchElementException();
1830     return n.key;
1831     }
1832    
1833     /**
1834 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
1835 dl 1.1 */
1836     public K lastKey() {
1837     Node<K,V> n = findLast();
1838     if (n == null)
1839     throw new NoSuchElementException();
1840     return n.key;
1841     }
1842    
1843     /**
1844 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1845     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1846 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1847 dl 1.1 */
1848 dl 1.47 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
1849     boolean fromInclusive,
1850     K toKey,
1851     boolean toInclusive) {
1852 dl 1.1 if (fromKey == null || toKey == null)
1853     throw new NullPointerException();
1854 dl 1.46 return new SubMap<K,V>
1855     (this, fromKey, fromInclusive, toKey, toInclusive, false);
1856 dl 1.1 }
1857    
1858     /**
1859 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1860     * @throws NullPointerException if {@code toKey} is null
1861 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1862 dl 1.1 */
1863 dl 1.47 public ConcurrentNavigableMap<K,V> headMap(K toKey,
1864     boolean inclusive) {
1865 dl 1.1 if (toKey == null)
1866     throw new NullPointerException();
1867 dl 1.46 return new SubMap<K,V>
1868     (this, null, false, toKey, inclusive, false);
1869 dl 1.1 }
1870    
1871     /**
1872 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1873     * @throws NullPointerException if {@code fromKey} is null
1874 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1875 dl 1.1 */
1876 dl 1.47 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
1877     boolean inclusive) {
1878 dl 1.6 if (fromKey == null)
1879     throw new NullPointerException();
1880 dl 1.46 return new SubMap<K,V>
1881     (this, fromKey, inclusive, null, false, false);
1882 dl 1.6 }
1883    
1884     /**
1885 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1886     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1887 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1888 dl 1.6 */
1889 dl 1.37 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
1890 dl 1.47 return subMap(fromKey, true, toKey, false);
1891 dl 1.6 }
1892    
1893     /**
1894 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1895     * @throws NullPointerException if {@code toKey} is null
1896 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1897 dl 1.6 */
1898 dl 1.37 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
1899 dl 1.47 return headMap(toKey, false);
1900 dl 1.6 }
1901    
1902     /**
1903 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1904     * @throws NullPointerException if {@code fromKey} is null
1905 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1906 dl 1.6 */
1907 dl 1.37 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
1908 dl 1.47 return tailMap(fromKey, true);
1909 dl 1.1 }
1910    
1911     /* ---------------- Relational operations -------------- */
1912    
1913     /**
1914 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
1915 jsr166 1.82 * strictly less than the given key, or {@code null} if there is
1916 jsr166 1.22 * no such key. The returned entry does <em>not</em> support the
1917 jsr166 1.82 * {@code Entry.setValue} method.
1918 dl 1.9 *
1919 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
1920     * @throws NullPointerException if the specified key is null
1921 dl 1.1 */
1922 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
1923 dl 1.169 return findNearEntry(key, LT, comparator);
1924 dl 1.1 }
1925    
1926     /**
1927 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
1928     * @throws NullPointerException if the specified key is null
1929 dl 1.1 */
1930 jsr166 1.22 public K lowerKey(K key) {
1931 dl 1.118 Node<K,V> n = findNear(key, LT, comparator);
1932 jsr166 1.61 return (n == null) ? null : n.key;
1933 dl 1.1 }
1934    
1935     /**
1936 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
1937 jsr166 1.82 * less than or equal to the given key, or {@code null} if there
1938 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
1939 jsr166 1.82 * the {@code Entry.setValue} method.
1940 dl 1.9 *
1941 jsr166 1.22 * @param key the key
1942     * @throws ClassCastException {@inheritDoc}
1943     * @throws NullPointerException if the specified key is null
1944 dl 1.1 */
1945 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
1946 dl 1.169 return findNearEntry(key, LT|EQ, comparator);
1947 dl 1.1 }
1948    
1949     /**
1950 jsr166 1.22 * @param key the key
1951     * @throws ClassCastException {@inheritDoc}
1952     * @throws NullPointerException if the specified key is null
1953 dl 1.1 */
1954 jsr166 1.22 public K floorKey(K key) {
1955 dl 1.118 Node<K,V> n = findNear(key, LT|EQ, comparator);
1956 jsr166 1.61 return (n == null) ? null : n.key;
1957 dl 1.1 }
1958    
1959     /**
1960 jsr166 1.22 * Returns a key-value mapping associated with the least key
1961 jsr166 1.82 * greater than or equal to the given key, or {@code null} if
1962 jsr166 1.22 * there is no such entry. The returned entry does <em>not</em>
1963 jsr166 1.82 * support the {@code Entry.setValue} method.
1964 dl 1.9 *
1965 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
1966     * @throws NullPointerException if the specified key is null
1967 dl 1.1 */
1968 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
1969 dl 1.169 return findNearEntry(key, GT|EQ, comparator);
1970 dl 1.1 }
1971    
1972     /**
1973 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
1974     * @throws NullPointerException if the specified key is null
1975 dl 1.1 */
1976 jsr166 1.22 public K ceilingKey(K key) {
1977 dl 1.118 Node<K,V> n = findNear(key, GT|EQ, comparator);
1978 jsr166 1.61 return (n == null) ? null : n.key;
1979 dl 1.1 }
1980    
1981     /**
1982     * Returns a key-value mapping associated with the least key
1983 jsr166 1.82 * strictly greater than the given key, or {@code null} if there
1984 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
1985 jsr166 1.82 * the {@code Entry.setValue} method.
1986 dl 1.9 *
1987 jsr166 1.22 * @param key the key
1988     * @throws ClassCastException {@inheritDoc}
1989     * @throws NullPointerException if the specified key is null
1990 dl 1.1 */
1991     public Map.Entry<K,V> higherEntry(K key) {
1992 dl 1.169 return findNearEntry(key, GT, comparator);
1993 dl 1.1 }
1994    
1995     /**
1996 jsr166 1.22 * @param key the key
1997     * @throws ClassCastException {@inheritDoc}
1998     * @throws NullPointerException if the specified key is null
1999 dl 1.1 */
2000     public K higherKey(K key) {
2001 dl 1.118 Node<K,V> n = findNear(key, GT, comparator);
2002 jsr166 1.61 return (n == null) ? null : n.key;
2003 dl 1.1 }
2004    
2005     /**
2006     * Returns a key-value mapping associated with the least
2007 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2008 dl 1.1 * The returned entry does <em>not</em> support
2009 jsr166 1.82 * the {@code Entry.setValue} method.
2010 dl 1.1 */
2011     public Map.Entry<K,V> firstEntry() {
2012 dl 1.169 return findFirstEntry();
2013 dl 1.1 }
2014    
2015     /**
2016     * Returns a key-value mapping associated with the greatest
2017 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2018 dl 1.1 * The returned entry does <em>not</em> support
2019 jsr166 1.82 * the {@code Entry.setValue} method.
2020 dl 1.1 */
2021     public Map.Entry<K,V> lastEntry() {
2022 dl 1.169 return findLastEntry();
2023 dl 1.1 }
2024    
2025     /**
2026     * Removes and returns a key-value mapping associated with
2027 jsr166 1.82 * the least key in this map, or {@code null} if the map is empty.
2028 dl 1.1 * The returned entry does <em>not</em> support
2029 jsr166 1.82 * the {@code Entry.setValue} method.
2030 dl 1.1 */
2031     public Map.Entry<K,V> pollFirstEntry() {
2032 dl 1.25 return doRemoveFirstEntry();
2033 dl 1.1 }
2034    
2035     /**
2036     * Removes and returns a key-value mapping associated with
2037 jsr166 1.82 * the greatest key in this map, or {@code null} if the map is empty.
2038 dl 1.1 * The returned entry does <em>not</em> support
2039 jsr166 1.82 * the {@code Entry.setValue} method.
2040 dl 1.1 */
2041     public Map.Entry<K,V> pollLastEntry() {
2042 dl 1.31 return doRemoveLastEntry();
2043 dl 1.1 }
2044    
2045     /* ---------------- Iterators -------------- */
2046    
2047     /**
2048 dl 1.169 * Base of iterator classes
2049 dl 1.1 */
2050 dl 1.46 abstract class Iter<T> implements Iterator<T> {
2051 dl 1.1 /** the last node returned by next() */
2052 jsr166 1.52 Node<K,V> lastReturned;
2053 dl 1.1 /** the next node to return from next(); */
2054     Node<K,V> next;
2055 jsr166 1.55 /** Cache of next value field to maintain weak consistency */
2056     V nextValue;
2057 dl 1.1
2058 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2059 dl 1.46 Iter() {
2060 dl 1.169 advance(baseHead());
2061 dl 1.1 }
2062    
2063 dl 1.46 public final boolean hasNext() {
2064     return next != null;
2065 dl 1.1 }
2066 dl 1.46
2067 jsr166 1.13 /** Advances next to higher entry. */
2068 dl 1.169 final void advance(Node<K,V> b) {
2069     Node<K,V> n = null;
2070     V v = null;
2071 dl 1.170 if ((lastReturned = b) != null) {
2072     while ((n = b.next) != null && (v = n.val) == null)
2073     b = n;
2074     }
2075 dl 1.169 nextValue = v;
2076     next = n;
2077 dl 1.1 }
2078    
2079 dl 1.169 public final void remove() {
2080     Node<K,V> n; K k;
2081     if ((n = lastReturned) == null || (k = n.key) == null)
2082 dl 1.1 throw new IllegalStateException();
2083     // It would not be worth all of the overhead to directly
2084     // unlink from here. Using remove is fast enough.
2085 dl 1.169 ConcurrentSkipListMap.this.remove(k);
2086 jsr166 1.55 lastReturned = null;
2087 dl 1.1 }
2088     }
2089    
2090 dl 1.46 final class ValueIterator extends Iter<V> {
2091 dl 1.9 public V next() {
2092 dl 1.169 V v;
2093     if ((v = nextValue) == null)
2094     throw new NoSuchElementException();
2095     advance(next);
2096 jsr166 1.52 return v;
2097 dl 1.1 }
2098     }
2099    
2100 dl 1.46 final class KeyIterator extends Iter<K> {
2101 dl 1.9 public K next() {
2102 dl 1.169 Node<K,V> n;
2103     if ((n = next) == null)
2104     throw new NoSuchElementException();
2105     K k = n.key;
2106     advance(n);
2107     return k;
2108 dl 1.1 }
2109     }
2110    
2111 dl 1.46 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2112     public Map.Entry<K,V> next() {
2113 dl 1.169 Node<K,V> n;
2114     if ((n = next) == null)
2115     throw new NoSuchElementException();
2116     K k = n.key;
2117 jsr166 1.52 V v = nextValue;
2118 dl 1.169 advance(n);
2119     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2120 dl 1.1 }
2121 dl 1.46 }
2122 dl 1.1
2123 dl 1.46 /* ---------------- View Classes -------------- */
2124    
2125     /*
2126     * View classes are static, delegating to a ConcurrentNavigableMap
2127     * to allow use by SubMaps, which outweighs the ugliness of
2128     * needing type-tests for Iterator methods.
2129     */
2130    
2131 jsr166 1.53 static final <E> List<E> toList(Collection<E> c) {
2132 jsr166 1.55 // Using size() here would be a pessimization.
2133 jsr166 1.90 ArrayList<E> list = new ArrayList<E>();
2134 jsr166 1.55 for (E e : c)
2135     list.add(e);
2136     return list;
2137 jsr166 1.53 }
2138    
2139 jsr166 1.147 static final class KeySet<K,V>
2140     extends AbstractSet<K> implements NavigableSet<K> {
2141     final ConcurrentNavigableMap<K,V> m;
2142     KeySet(ConcurrentNavigableMap<K,V> map) { m = map; }
2143 dl 1.46 public int size() { return m.size(); }
2144     public boolean isEmpty() { return m.isEmpty(); }
2145     public boolean contains(Object o) { return m.containsKey(o); }
2146     public boolean remove(Object o) { return m.remove(o) != null; }
2147     public void clear() { m.clear(); }
2148 jsr166 1.147 public K lower(K e) { return m.lowerKey(e); }
2149     public K floor(K e) { return m.floorKey(e); }
2150     public K ceiling(K e) { return m.ceilingKey(e); }
2151     public K higher(K e) { return m.higherKey(e); }
2152     public Comparator<? super K> comparator() { return m.comparator(); }
2153     public K first() { return m.firstKey(); }
2154     public K last() { return m.lastKey(); }
2155     public K pollFirst() {
2156     Map.Entry<K,V> e = m.pollFirstEntry();
2157 jsr166 1.61 return (e == null) ? null : e.getKey();
2158 dl 1.46 }
2159 jsr166 1.147 public K pollLast() {
2160     Map.Entry<K,V> e = m.pollLastEntry();
2161 jsr166 1.61 return (e == null) ? null : e.getKey();
2162 dl 1.46 }
2163 jsr166 1.147 public Iterator<K> iterator() {
2164 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2165     ? ((ConcurrentSkipListMap<K,V>)m).new KeyIterator()
2166     : ((SubMap<K,V>)m).new SubMapKeyIterator();
2167 dl 1.1 }
2168 dl 1.45 public boolean equals(Object o) {
2169     if (o == this)
2170     return true;
2171     if (!(o instanceof Set))
2172     return false;
2173     Collection<?> c = (Collection<?>) o;
2174     try {
2175     return containsAll(c) && c.containsAll(this);
2176 jsr166 1.180 } catch (ClassCastException | NullPointerException unused) {
2177 dl 1.45 return false;
2178     }
2179     }
2180 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2181     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2182 jsr166 1.147 public Iterator<K> descendingIterator() {
2183 dl 1.46 return descendingSet().iterator();
2184     }
2185 jsr166 1.147 public NavigableSet<K> subSet(K fromElement,
2186 dl 1.47 boolean fromInclusive,
2187 jsr166 1.147 K toElement,
2188 dl 1.47 boolean toInclusive) {
2189 jsr166 1.147 return new KeySet<>(m.subMap(fromElement, fromInclusive,
2190     toElement, toInclusive));
2191 dl 1.46 }
2192 jsr166 1.147 public NavigableSet<K> headSet(K toElement, boolean inclusive) {
2193     return new KeySet<>(m.headMap(toElement, inclusive));
2194 dl 1.46 }
2195 jsr166 1.147 public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
2196     return new KeySet<>(m.tailMap(fromElement, inclusive));
2197 dl 1.46 }
2198 jsr166 1.147 public NavigableSet<K> subSet(K fromElement, K toElement) {
2199 dl 1.47 return subSet(fromElement, true, toElement, false);
2200 dl 1.46 }
2201 jsr166 1.147 public NavigableSet<K> headSet(K toElement) {
2202 dl 1.47 return headSet(toElement, false);
2203 dl 1.46 }
2204 jsr166 1.147 public NavigableSet<K> tailSet(K fromElement) {
2205 dl 1.47 return tailSet(fromElement, true);
2206 dl 1.46 }
2207 jsr166 1.147 public NavigableSet<K> descendingSet() {
2208     return new KeySet<>(m.descendingMap());
2209 dl 1.46 }
2210 jsr166 1.150
2211 jsr166 1.147 public Spliterator<K> spliterator() {
2212 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2213     ? ((ConcurrentSkipListMap<K,V>)m).keySpliterator()
2214     : ((SubMap<K,V>)m).new SubMapKeyIterator();
2215 dl 1.100 }
2216 dl 1.1 }
2217    
2218 jsr166 1.147 static final class Values<K,V> extends AbstractCollection<V> {
2219     final ConcurrentNavigableMap<K,V> m;
2220     Values(ConcurrentNavigableMap<K,V> map) {
2221 dl 1.46 m = map;
2222 dl 1.1 }
2223 jsr166 1.147 public Iterator<V> iterator() {
2224 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2225     ? ((ConcurrentSkipListMap<K,V>)m).new ValueIterator()
2226     : ((SubMap<K,V>)m).new SubMapValueIterator();
2227 dl 1.1 }
2228 jsr166 1.147 public int size() { return m.size(); }
2229     public boolean isEmpty() { return m.isEmpty(); }
2230     public boolean contains(Object o) { return m.containsValue(o); }
2231     public void clear() { m.clear(); }
2232 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2233     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2234 jsr166 1.150
2235 jsr166 1.147 public Spliterator<V> spliterator() {
2236 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2237     ? ((ConcurrentSkipListMap<K,V>)m).valueSpliterator()
2238     : ((SubMap<K,V>)m).new SubMapValueIterator();
2239 dl 1.100 }
2240 dl 1.146
2241 jsr166 1.147 public boolean removeIf(Predicate<? super V> filter) {
2242 dl 1.146 if (filter == null) throw new NullPointerException();
2243     if (m instanceof ConcurrentSkipListMap)
2244 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).removeValueIf(filter);
2245 dl 1.146 // else use iterator
2246 jsr166 1.150 Iterator<Map.Entry<K,V>> it =
2247     ((SubMap<K,V>)m).new SubMapEntryIterator();
2248 dl 1.146 boolean removed = false;
2249     while (it.hasNext()) {
2250 jsr166 1.147 Map.Entry<K,V> e = it.next();
2251     V v = e.getValue();
2252 dl 1.146 if (filter.test(v) && m.remove(e.getKey(), v))
2253     removed = true;
2254     }
2255     return removed;
2256 dl 1.144 }
2257 dl 1.1 }
2258    
2259 jsr166 1.147 static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
2260     final ConcurrentNavigableMap<K,V> m;
2261     EntrySet(ConcurrentNavigableMap<K,V> map) {
2262 dl 1.46 m = map;
2263 dl 1.1 }
2264 jsr166 1.147 public Iterator<Map.Entry<K,V>> iterator() {
2265 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2266     ? ((ConcurrentSkipListMap<K,V>)m).new EntryIterator()
2267     : ((SubMap<K,V>)m).new SubMapEntryIterator();
2268 dl 1.46 }
2269 dl 1.47
2270 dl 1.1 public boolean contains(Object o) {
2271     if (!(o instanceof Map.Entry))
2272     return false;
2273 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2274 jsr166 1.147 V v = m.get(e.getKey());
2275 dl 1.1 return v != null && v.equals(e.getValue());
2276     }
2277     public boolean remove(Object o) {
2278     if (!(o instanceof Map.Entry))
2279     return false;
2280 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2281 dl 1.46 return m.remove(e.getKey(),
2282 dl 1.47 e.getValue());
2283 dl 1.1 }
2284     public boolean isEmpty() {
2285 dl 1.46 return m.isEmpty();
2286 dl 1.1 }
2287     public int size() {
2288 dl 1.46 return m.size();
2289 dl 1.1 }
2290     public void clear() {
2291 dl 1.46 m.clear();
2292 dl 1.1 }
2293 dl 1.45 public boolean equals(Object o) {
2294     if (o == this)
2295     return true;
2296     if (!(o instanceof Set))
2297     return false;
2298     Collection<?> c = (Collection<?>) o;
2299     try {
2300     return containsAll(c) && c.containsAll(this);
2301 jsr166 1.180 } catch (ClassCastException | NullPointerException unused) {
2302 dl 1.45 return false;
2303     }
2304     }
2305 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2306     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2307 jsr166 1.150
2308 jsr166 1.147 public Spliterator<Map.Entry<K,V>> spliterator() {
2309 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2310     ? ((ConcurrentSkipListMap<K,V>)m).entrySpliterator()
2311     : ((SubMap<K,V>)m).new SubMapEntryIterator();
2312 dl 1.100 }
2313 jsr166 1.147 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
2314 dl 1.146 if (filter == null) throw new NullPointerException();
2315     if (m instanceof ConcurrentSkipListMap)
2316 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).removeEntryIf(filter);
2317 dl 1.146 // else use iterator
2318 jsr166 1.150 Iterator<Map.Entry<K,V>> it =
2319     ((SubMap<K,V>)m).new SubMapEntryIterator();
2320 dl 1.146 boolean removed = false;
2321     while (it.hasNext()) {
2322 jsr166 1.147 Map.Entry<K,V> e = it.next();
2323 dl 1.146 if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
2324     removed = true;
2325     }
2326     return removed;
2327 dl 1.143 }
2328 dl 1.1 }
2329    
2330     /**
2331     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2332 jsr166 1.149 * represent a subrange of mappings of their underlying maps.
2333     * Instances of this class support all methods of their underlying
2334     * maps, differing in that mappings outside their range are ignored,
2335     * and attempts to add mappings outside their ranges result in {@link
2336     * IllegalArgumentException}. Instances of this class are constructed
2337     * only using the {@code subMap}, {@code headMap}, and {@code tailMap}
2338     * methods of their underlying maps.
2339 jsr166 1.52 *
2340     * @serial include
2341 dl 1.1 */
2342 dl 1.46 static final class SubMap<K,V> extends AbstractMap<K,V>
2343 jsr166 1.159 implements ConcurrentNavigableMap<K,V>, Serializable {
2344 dl 1.1 private static final long serialVersionUID = -7647078645895051609L;
2345    
2346     /** Underlying map */
2347 jsr166 1.153 final ConcurrentSkipListMap<K,V> m;
2348 dl 1.1 /** lower bound key, or null if from start */
2349 dl 1.46 private final K lo;
2350     /** upper bound key, or null if to end */
2351     private final K hi;
2352     /** inclusion flag for lo */
2353     private final boolean loInclusive;
2354     /** inclusion flag for hi */
2355     private final boolean hiInclusive;
2356     /** direction */
2357 jsr166 1.153 final boolean isDescending;
2358 dl 1.46
2359 dl 1.1 // Lazily initialized view holders
2360 jsr166 1.147 private transient KeySet<K,V> keySetView;
2361 jsr166 1.158 private transient Values<K,V> valuesView;
2362     private transient EntrySet<K,V> entrySetView;
2363 dl 1.1
2364     /**
2365 jsr166 1.87 * Creates a new submap, initializing all fields.
2366 dl 1.46 */
2367     SubMap(ConcurrentSkipListMap<K,V> map,
2368     K fromKey, boolean fromInclusive,
2369     K toKey, boolean toInclusive,
2370     boolean isDescending) {
2371 dl 1.118 Comparator<? super K> cmp = map.comparator;
2372 dl 1.47 if (fromKey != null && toKey != null &&
2373 dl 1.118 cpr(cmp, fromKey, toKey) > 0)
2374 dl 1.1 throw new IllegalArgumentException("inconsistent range");
2375     this.m = map;
2376 dl 1.46 this.lo = fromKey;
2377     this.hi = toKey;
2378     this.loInclusive = fromInclusive;
2379     this.hiInclusive = toInclusive;
2380     this.isDescending = isDescending;
2381 dl 1.1 }
2382    
2383     /* ---------------- Utilities -------------- */
2384    
2385 dl 1.118 boolean tooLow(Object key, Comparator<? super K> cmp) {
2386     int c;
2387     return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2388     (c == 0 && !loInclusive)));
2389 dl 1.1 }
2390    
2391 dl 1.118 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2392     int c;
2393     return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2394     (c == 0 && !hiInclusive)));
2395 dl 1.1 }
2396    
2397 dl 1.118 boolean inBounds(Object key, Comparator<? super K> cmp) {
2398     return !tooLow(key, cmp) && !tooHigh(key, cmp);
2399 dl 1.1 }
2400    
2401 dl 1.118 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2402 dl 1.46 if (key == null)
2403     throw new NullPointerException();
2404 dl 1.118 if (!inBounds(key, cmp))
2405 dl 1.46 throw new IllegalArgumentException("key out of range");
2406 dl 1.1 }
2407    
2408 dl 1.46 /**
2409 jsr166 1.87 * Returns true if node key is less than upper bound of range.
2410 dl 1.46 */
2411 dl 1.118 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2412     Comparator<? super K> cmp) {
2413 dl 1.46 if (n == null)
2414     return false;
2415     if (hi == null)
2416     return true;
2417     K k = n.key;
2418     if (k == null) // pass by markers and headers
2419     return true;
2420 dl 1.118 int c = cpr(cmp, k, hi);
2421 jsr166 1.179 return c < 0 || (c == 0 && hiInclusive);
2422 dl 1.1 }
2423    
2424 dl 1.46 /**
2425     * Returns lowest node. This node might not be in range, so
2426 jsr166 1.87 * most usages need to check bounds.
2427 dl 1.46 */
2428 dl 1.118 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2429 dl 1.46 if (lo == null)
2430     return m.findFirst();
2431     else if (loInclusive)
2432 dl 1.118 return m.findNear(lo, GT|EQ, cmp);
2433 dl 1.46 else
2434 dl 1.118 return m.findNear(lo, GT, cmp);
2435 dl 1.1 }
2436    
2437     /**
2438 dl 1.46 * Returns highest node. This node might not be in range, so
2439 jsr166 1.87 * most usages need to check bounds.
2440 dl 1.1 */
2441 dl 1.118 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2442 dl 1.46 if (hi == null)
2443     return m.findLast();
2444     else if (hiInclusive)
2445 dl 1.118 return m.findNear(hi, LT|EQ, cmp);
2446 dl 1.46 else
2447 dl 1.118 return m.findNear(hi, LT, cmp);
2448 dl 1.1 }
2449    
2450     /**
2451 jsr166 1.136 * Returns lowest absolute key (ignoring directionality).
2452 dl 1.1 */
2453 dl 1.118 K lowestKey() {
2454     Comparator<? super K> cmp = m.comparator;
2455     ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2456     if (isBeforeEnd(n, cmp))
2457 dl 1.46 return n.key;
2458     else
2459     throw new NoSuchElementException();
2460 dl 1.47 }
2461 dl 1.46
2462     /**
2463 jsr166 1.136 * Returns highest absolute key (ignoring directionality).
2464 dl 1.46 */
2465 dl 1.118 K highestKey() {
2466     Comparator<? super K> cmp = m.comparator;
2467     ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2468 dl 1.46 if (n != null) {
2469     K last = n.key;
2470 dl 1.118 if (inBounds(last, cmp))
2471 dl 1.46 return last;
2472     }
2473     throw new NoSuchElementException();
2474     }
2475    
2476 dl 1.118 Map.Entry<K,V> lowestEntry() {
2477     Comparator<? super K> cmp = m.comparator;
2478 dl 1.46 for (;;) {
2479 dl 1.169 ConcurrentSkipListMap.Node<K,V> n; V v;
2480     if ((n = loNode(cmp)) == null || !isBeforeEnd(n, cmp))
2481 dl 1.46 return null;
2482 dl 1.169 else if ((v = n.val) != null)
2483     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2484 dl 1.46 }
2485     }
2486    
2487 dl 1.118 Map.Entry<K,V> highestEntry() {
2488     Comparator<? super K> cmp = m.comparator;
2489 dl 1.46 for (;;) {
2490 dl 1.169 ConcurrentSkipListMap.Node<K,V> n; V v;
2491     if ((n = hiNode(cmp)) == null || !inBounds(n.key, cmp))
2492 dl 1.46 return null;
2493 dl 1.169 else if ((v = n.val) != null)
2494     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2495 dl 1.46 }
2496     }
2497    
2498 dl 1.118 Map.Entry<K,V> removeLowest() {
2499     Comparator<? super K> cmp = m.comparator;
2500 dl 1.46 for (;;) {
2501 dl 1.169 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2502     if ((n = loNode(cmp)) == null)
2503 dl 1.46 return null;
2504 dl 1.169 else if (!inBounds((k = n.key), cmp))
2505 dl 1.46 return null;
2506 dl 1.169 else if ((v = m.doRemove(k, null)) != null)
2507 dl 1.46 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2508     }
2509     }
2510    
2511 dl 1.118 Map.Entry<K,V> removeHighest() {
2512     Comparator<? super K> cmp = m.comparator;
2513 dl 1.46 for (;;) {
2514 dl 1.169 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2515     if ((n = hiNode(cmp)) == null)
2516 dl 1.46 return null;
2517 dl 1.169 else if (!inBounds((k = n.key), cmp))
2518 dl 1.46 return null;
2519 dl 1.169 else if ((v = m.doRemove(k, null)) != null)
2520 dl 1.46 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2521     }
2522 dl 1.1 }
2523    
2524     /**
2525 dl 1.169 * Submap version of ConcurrentSkipListMap.findNearEntry.
2526 dl 1.1 */
2527 dl 1.118 Map.Entry<K,V> getNearEntry(K key, int rel) {
2528     Comparator<? super K> cmp = m.comparator;
2529 dl 1.46 if (isDescending) { // adjust relation for direction
2530 jsr166 1.70 if ((rel & LT) == 0)
2531     rel |= LT;
2532 dl 1.46 else
2533 jsr166 1.70 rel &= ~LT;
2534 dl 1.46 }
2535 dl 1.118 if (tooLow(key, cmp))
2536 jsr166 1.70 return ((rel & LT) != 0) ? null : lowestEntry();
2537 dl 1.118 if (tooHigh(key, cmp))
2538 jsr166 1.70 return ((rel & LT) != 0) ? highestEntry() : null;
2539 dl 1.169 AbstractMap.SimpleImmutableEntry<K,V> e =
2540     m.findNearEntry(key, rel, cmp);
2541     if (e == null || !inBounds(e.getKey(), cmp))
2542     return null;
2543     else
2544     return e;
2545 dl 1.1 }
2546    
2547 jsr166 1.48 // Almost the same as getNearEntry, except for keys
2548 dl 1.118 K getNearKey(K key, int rel) {
2549     Comparator<? super K> cmp = m.comparator;
2550 dl 1.46 if (isDescending) { // adjust relation for direction
2551 jsr166 1.70 if ((rel & LT) == 0)
2552     rel |= LT;
2553 dl 1.46 else
2554 jsr166 1.70 rel &= ~LT;
2555 dl 1.46 }
2556 dl 1.118 if (tooLow(key, cmp)) {
2557 jsr166 1.70 if ((rel & LT) == 0) {
2558 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2559     if (isBeforeEnd(n, cmp))
2560 dl 1.46 return n.key;
2561     }
2562     return null;
2563     }
2564 dl 1.118 if (tooHigh(key, cmp)) {
2565 jsr166 1.70 if ((rel & LT) != 0) {
2566 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2567 dl 1.46 if (n != null) {
2568     K last = n.key;
2569 dl 1.118 if (inBounds(last, cmp))
2570 dl 1.46 return last;
2571     }
2572     }
2573     return null;
2574     }
2575     for (;;) {
2576 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2577     if (n == null || !inBounds(n.key, cmp))
2578 dl 1.46 return null;
2579 dl 1.169 if (n.val != null)
2580     return n.key;
2581 dl 1.46 }
2582     }
2583 dl 1.1
2584     /* ---------------- Map API methods -------------- */
2585    
2586     public boolean containsKey(Object key) {
2587 dl 1.46 if (key == null) throw new NullPointerException();
2588 dl 1.118 return inBounds(key, m.comparator) && m.containsKey(key);
2589 dl 1.1 }
2590    
2591     public V get(Object key) {
2592 dl 1.46 if (key == null) throw new NullPointerException();
2593 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2594 dl 1.1 }
2595    
2596     public V put(K key, V value) {
2597 dl 1.118 checkKeyBounds(key, m.comparator);
2598 dl 1.1 return m.put(key, value);
2599     }
2600    
2601     public V remove(Object key) {
2602 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2603 dl 1.1 }
2604    
2605     public int size() {
2606 dl 1.118 Comparator<? super K> cmp = m.comparator;
2607 dl 1.1 long count = 0;
2608 dl 1.118 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2609     isBeforeEnd(n, cmp);
2610 dl 1.1 n = n.next) {
2611 dl 1.169 if (n.val != null)
2612 dl 1.1 ++count;
2613     }
2614 jsr166 1.61 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2615 dl 1.1 }
2616    
2617     public boolean isEmpty() {
2618 dl 1.118 Comparator<? super K> cmp = m.comparator;
2619     return !isBeforeEnd(loNode(cmp), cmp);
2620 dl 1.1 }
2621    
2622     public boolean containsValue(Object value) {
2623 dl 1.9 if (value == null)
2624 dl 1.1 throw new NullPointerException();
2625 dl 1.118 Comparator<? super K> cmp = m.comparator;
2626     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2627     isBeforeEnd(n, cmp);
2628 dl 1.1 n = n.next) {
2629 dl 1.169 V v = n.val;
2630 dl 1.1 if (v != null && value.equals(v))
2631     return true;
2632     }
2633     return false;
2634     }
2635    
2636     public void clear() {
2637 dl 1.118 Comparator<? super K> cmp = m.comparator;
2638     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2639     isBeforeEnd(n, cmp);
2640 dl 1.1 n = n.next) {
2641 dl 1.169 if (n.val != null)
2642 dl 1.1 m.remove(n.key);
2643     }
2644     }
2645    
2646     /* ---------------- ConcurrentMap API methods -------------- */
2647    
2648     public V putIfAbsent(K key, V value) {
2649 dl 1.118 checkKeyBounds(key, m.comparator);
2650 dl 1.1 return m.putIfAbsent(key, value);
2651     }
2652    
2653     public boolean remove(Object key, Object value) {
2654 dl 1.118 return inBounds(key, m.comparator) && m.remove(key, value);
2655 dl 1.1 }
2656    
2657     public boolean replace(K key, V oldValue, V newValue) {
2658 dl 1.118 checkKeyBounds(key, m.comparator);
2659 dl 1.1 return m.replace(key, oldValue, newValue);
2660     }
2661    
2662     public V replace(K key, V value) {
2663 dl 1.118 checkKeyBounds(key, m.comparator);
2664 dl 1.1 return m.replace(key, value);
2665     }
2666    
2667     /* ---------------- SortedMap API methods -------------- */
2668    
2669     public Comparator<? super K> comparator() {
2670 dl 1.46 Comparator<? super K> cmp = m.comparator();
2671 jsr166 1.55 if (isDescending)
2672     return Collections.reverseOrder(cmp);
2673     else
2674     return cmp;
2675 dl 1.1 }
2676 dl 1.47
2677 dl 1.46 /**
2678     * Utility to create submaps, where given bounds override
2679     * unbounded(null) ones and/or are checked against bounded ones.
2680     */
2681 dl 1.118 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2682     K toKey, boolean toInclusive) {
2683     Comparator<? super K> cmp = m.comparator;
2684 dl 1.46 if (isDescending) { // flip senses
2685 dl 1.47 K tk = fromKey;
2686     fromKey = toKey;
2687 dl 1.46 toKey = tk;
2688 dl 1.47 boolean ti = fromInclusive;
2689     fromInclusive = toInclusive;
2690 dl 1.46 toInclusive = ti;
2691     }
2692     if (lo != null) {
2693     if (fromKey == null) {
2694     fromKey = lo;
2695     fromInclusive = loInclusive;
2696     }
2697     else {
2698 dl 1.118 int c = cpr(cmp, fromKey, lo);
2699 dl 1.46 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2700     throw new IllegalArgumentException("key out of range");
2701     }
2702     }
2703     if (hi != null) {
2704     if (toKey == null) {
2705     toKey = hi;
2706     toInclusive = hiInclusive;
2707     }
2708     else {
2709 dl 1.118 int c = cpr(cmp, toKey, hi);
2710 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2711     throw new IllegalArgumentException("key out of range");
2712     }
2713 dl 1.1 }
2714 dl 1.47 return new SubMap<K,V>(m, fromKey, fromInclusive,
2715 dl 1.46 toKey, toInclusive, isDescending);
2716 dl 1.1 }
2717    
2718 dl 1.118 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2719     K toKey, boolean toInclusive) {
2720 dl 1.1 if (fromKey == null || toKey == null)
2721     throw new NullPointerException();
2722 dl 1.46 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2723 dl 1.1 }
2724 dl 1.47
2725 dl 1.118 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2726 dl 1.1 if (toKey == null)
2727     throw new NullPointerException();
2728 dl 1.46 return newSubMap(null, false, toKey, inclusive);
2729 dl 1.1 }
2730 dl 1.47
2731 dl 1.118 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2732 dl 1.1 if (fromKey == null)
2733     throw new NullPointerException();
2734 dl 1.46 return newSubMap(fromKey, inclusive, null, false);
2735     }
2736    
2737     public SubMap<K,V> subMap(K fromKey, K toKey) {
2738 dl 1.47 return subMap(fromKey, true, toKey, false);
2739 dl 1.1 }
2740    
2741 dl 1.46 public SubMap<K,V> headMap(K toKey) {
2742 dl 1.47 return headMap(toKey, false);
2743 dl 1.6 }
2744    
2745 dl 1.46 public SubMap<K,V> tailMap(K fromKey) {
2746 dl 1.47 return tailMap(fromKey, true);
2747 dl 1.6 }
2748    
2749 dl 1.46 public SubMap<K,V> descendingMap() {
2750 dl 1.47 return new SubMap<K,V>(m, lo, loInclusive,
2751 dl 1.46 hi, hiInclusive, !isDescending);
2752 dl 1.6 }
2753    
2754 dl 1.1 /* ---------------- Relational methods -------------- */
2755    
2756     public Map.Entry<K,V> ceilingEntry(K key) {
2757 jsr166 1.70 return getNearEntry(key, GT|EQ);
2758 dl 1.1 }
2759    
2760     public K ceilingKey(K key) {
2761 jsr166 1.70 return getNearKey(key, GT|EQ);
2762 dl 1.1 }
2763    
2764     public Map.Entry<K,V> lowerEntry(K key) {
2765 jsr166 1.70 return getNearEntry(key, LT);
2766 dl 1.1 }
2767    
2768     public K lowerKey(K key) {
2769 jsr166 1.70 return getNearKey(key, LT);
2770 dl 1.1 }
2771    
2772     public Map.Entry<K,V> floorEntry(K key) {
2773 jsr166 1.70 return getNearEntry(key, LT|EQ);
2774 dl 1.1 }
2775    
2776     public K floorKey(K key) {
2777 jsr166 1.70 return getNearKey(key, LT|EQ);
2778 dl 1.1 }
2779    
2780     public Map.Entry<K,V> higherEntry(K key) {
2781 jsr166 1.70 return getNearEntry(key, GT);
2782 dl 1.1 }
2783    
2784     public K higherKey(K key) {
2785 jsr166 1.70 return getNearKey(key, GT);
2786 dl 1.46 }
2787    
2788     public K firstKey() {
2789 jsr166 1.61 return isDescending ? highestKey() : lowestKey();
2790 dl 1.46 }
2791    
2792     public K lastKey() {
2793 jsr166 1.61 return isDescending ? lowestKey() : highestKey();
2794 dl 1.1 }
2795    
2796     public Map.Entry<K,V> firstEntry() {
2797 jsr166 1.61 return isDescending ? highestEntry() : lowestEntry();
2798 dl 1.1 }
2799    
2800     public Map.Entry<K,V> lastEntry() {
2801 jsr166 1.61 return isDescending ? lowestEntry() : highestEntry();
2802 dl 1.1 }
2803    
2804     public Map.Entry<K,V> pollFirstEntry() {
2805 jsr166 1.61 return isDescending ? removeHighest() : removeLowest();
2806 dl 1.1 }
2807    
2808     public Map.Entry<K,V> pollLastEntry() {
2809 jsr166 1.61 return isDescending ? removeLowest() : removeHighest();
2810 dl 1.1 }
2811    
2812     /* ---------------- Submap Views -------------- */
2813    
2814 jsr166 1.51 public NavigableSet<K> keySet() {
2815 jsr166 1.157 KeySet<K,V> ks;
2816     if ((ks = keySetView) != null) return ks;
2817     return keySetView = new KeySet<>(this);
2818 dl 1.1 }
2819    
2820 dl 1.46 public NavigableSet<K> navigableKeySet() {
2821 jsr166 1.157 KeySet<K,V> ks;
2822     if ((ks = keySetView) != null) return ks;
2823     return keySetView = new KeySet<>(this);
2824 dl 1.46 }
2825 dl 1.45
2826 dl 1.46 public Collection<V> values() {
2827 jsr166 1.158 Values<K,V> vs;
2828 jsr166 1.157 if ((vs = valuesView) != null) return vs;
2829     return valuesView = new Values<>(this);
2830 dl 1.1 }
2831    
2832 dl 1.46 public Set<Map.Entry<K,V>> entrySet() {
2833 jsr166 1.158 EntrySet<K,V> es;
2834 jsr166 1.157 if ((es = entrySetView) != null) return es;
2835     return entrySetView = new EntrySet<K,V>(this);
2836 dl 1.1 }
2837    
2838 dl 1.46 public NavigableSet<K> descendingKeySet() {
2839     return descendingMap().navigableKeySet();
2840 dl 1.1 }
2841    
2842 dl 1.46 /**
2843     * Variant of main Iter class to traverse through submaps.
2844 jsr166 1.148 * Also serves as back-up Spliterator for views.
2845 dl 1.46 */
2846 dl 1.100 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
2847 dl 1.46 /** the last node returned by next() */
2848 jsr166 1.52 Node<K,V> lastReturned;
2849 dl 1.46 /** the next node to return from next(); */
2850     Node<K,V> next;
2851     /** Cache of next value field to maintain weak consistency */
2852 jsr166 1.52 V nextValue;
2853 dl 1.46
2854 dl 1.47 SubMapIter() {
2855 dl 1.173 VarHandle.acquireFence();
2856 dl 1.118 Comparator<? super K> cmp = m.comparator;
2857 dl 1.46 for (;;) {
2858 dl 1.118 next = isDescending ? hiNode(cmp) : loNode(cmp);
2859 dl 1.46 if (next == null)
2860     break;
2861 dl 1.169 V x = next.val;
2862     if (x != null) {
2863 dl 1.118 if (! inBounds(next.key, cmp))
2864 dl 1.46 next = null;
2865 dl 1.169 else
2866     nextValue = x;
2867 dl 1.46 break;
2868     }
2869     }
2870 dl 1.1 }
2871 dl 1.46
2872     public final boolean hasNext() {
2873     return next != null;
2874 dl 1.1 }
2875 dl 1.46
2876     final void advance() {
2877 jsr166 1.54 if (next == null)
2878 dl 1.46 throw new NoSuchElementException();
2879 jsr166 1.55 lastReturned = next;
2880 dl 1.46 if (isDescending)
2881     descend();
2882     else
2883     ascend();
2884 dl 1.1 }
2885 dl 1.46
2886     private void ascend() {
2887 dl 1.118 Comparator<? super K> cmp = m.comparator;
2888 dl 1.46 for (;;) {
2889     next = next.next;
2890     if (next == null)
2891     break;
2892 dl 1.169 V x = next.val;
2893     if (x != null) {
2894 dl 1.118 if (tooHigh(next.key, cmp))
2895 dl 1.46 next = null;
2896 dl 1.169 else
2897     nextValue = x;
2898 dl 1.46 break;
2899     }
2900     }
2901     }
2902    
2903     private void descend() {
2904 dl 1.88 Comparator<? super K> cmp = m.comparator;
2905 dl 1.46 for (;;) {
2906 jsr166 1.125 next = m.findNear(lastReturned.key, LT, cmp);
2907 dl 1.46 if (next == null)
2908     break;
2909 dl 1.169 V x = next.val;
2910     if (x != null) {
2911 dl 1.118 if (tooLow(next.key, cmp))
2912 dl 1.46 next = null;
2913 dl 1.169 else
2914     nextValue = x;
2915 dl 1.46 break;
2916     }
2917     }
2918 dl 1.1 }
2919 dl 1.46
2920     public void remove() {
2921 jsr166 1.52 Node<K,V> l = lastReturned;
2922 dl 1.46 if (l == null)
2923     throw new IllegalStateException();
2924     m.remove(l.key);
2925 jsr166 1.55 lastReturned = null;
2926 dl 1.1 }
2927 dl 1.46
2928 dl 1.107 public Spliterator<T> trySplit() {
2929     return null;
2930 jsr166 1.108 }
2931 dl 1.107
2932 dl 1.100 public boolean tryAdvance(Consumer<? super T> action) {
2933     if (hasNext()) {
2934     action.accept(next());
2935     return true;
2936     }
2937     return false;
2938     }
2939    
2940 dl 1.113 public void forEachRemaining(Consumer<? super T> action) {
2941 dl 1.100 while (hasNext())
2942     action.accept(next());
2943     }
2944 dl 1.113
2945 jsr166 1.114 public long estimateSize() {
2946     return Long.MAX_VALUE;
2947 dl 1.113 }
2948    
2949 dl 1.46 }
2950    
2951     final class SubMapValueIterator extends SubMapIter<V> {
2952     public V next() {
2953 jsr166 1.52 V v = nextValue;
2954 dl 1.46 advance();
2955 jsr166 1.52 return v;
2956 dl 1.45 }
2957 dl 1.100 public int characteristics() {
2958     return 0;
2959     }
2960 dl 1.1 }
2961    
2962 dl 1.46 final class SubMapKeyIterator extends SubMapIter<K> {
2963     public K next() {
2964     Node<K,V> n = next;
2965     advance();
2966     return n.key;
2967     }
2968 dl 1.100 public int characteristics() {
2969     return Spliterator.DISTINCT | Spliterator.ORDERED |
2970     Spliterator.SORTED;
2971     }
2972 jsr166 1.115 public final Comparator<? super K> getComparator() {
2973 dl 1.100 return SubMap.this.comparator();
2974     }
2975 dl 1.1 }
2976    
2977 dl 1.46 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
2978     public Map.Entry<K,V> next() {
2979     Node<K,V> n = next;
2980 jsr166 1.52 V v = nextValue;
2981 dl 1.46 advance();
2982     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2983 dl 1.1 }
2984 dl 1.100 public int characteristics() {
2985     return Spliterator.DISTINCT;
2986     }
2987 dl 1.1 }
2988     }
2989 dl 1.59
2990 dl 1.123 // default Map method overrides
2991    
2992     public void forEach(BiConsumer<? super K, ? super V> action) {
2993     if (action == null) throw new NullPointerException();
2994 dl 1.169 Node<K,V> b, n; V v;
2995     if ((b = baseHead()) != null) {
2996     while ((n = b.next) != null) {
2997     if ((v = n.val) != null)
2998     action.accept(n.key, v);
2999     b = n;
3000     }
3001 dl 1.123 }
3002     }
3003    
3004     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3005     if (function == null) throw new NullPointerException();
3006 dl 1.169 Node<K,V> b, n; V v;
3007     if ((b = baseHead()) != null) {
3008     while ((n = b.next) != null) {
3009     while ((v = n.val) != null) {
3010     V r = function.apply(n.key, v);
3011     if (r == null) throw new NullPointerException();
3012     if (VAL.compareAndSet(n, v, r))
3013     break;
3014     }
3015     b = n;
3016 dl 1.123 }
3017     }
3018     }
3019    
3020 dl 1.83 /**
3021 jsr166 1.154 * Helper method for EntrySet.removeIf.
3022 dl 1.143 */
3023 jsr166 1.145 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
3024 dl 1.143 if (function == null) throw new NullPointerException();
3025     boolean removed = false;
3026 dl 1.169 Node<K,V> b, n; V v;
3027     if ((b = baseHead()) != null) {
3028     while ((n = b.next) != null) {
3029     if ((v = n.val) != null) {
3030     K k = n.key;
3031     Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
3032     if (function.test(e) && remove(k, v))
3033     removed = true;
3034     }
3035     b = n;
3036 dl 1.143 }
3037     }
3038     return removed;
3039     }
3040    
3041     /**
3042 jsr166 1.154 * Helper method for Values.removeIf.
3043 dl 1.144 */
3044     boolean removeValueIf(Predicate<? super V> function) {
3045     if (function == null) throw new NullPointerException();
3046     boolean removed = false;
3047 dl 1.169 Node<K,V> b, n; V v;
3048     if ((b = baseHead()) != null) {
3049     while ((n = b.next) != null) {
3050     if ((v = n.val) != null && function.test(v) && remove(n.key, v))
3051 dl 1.144 removed = true;
3052 dl 1.169 b = n;
3053 dl 1.144 }
3054     }
3055     return removed;
3056     }
3057    
3058     /**
3059 dl 1.83 * Base class providing common structure for Spliterators.
3060     * (Although not all that much common functionality; as usual for
3061     * view classes, details annoyingly vary in key, value, and entry
3062     * subclasses in ways that are not worth abstracting out for
3063     * internal classes.)
3064     *
3065     * The basic split strategy is to recursively descend from top
3066     * level, row by row, descending to next row when either split
3067     * off, or the end of row is encountered. Control of the number of
3068     * splits relies on some statistical estimation: The expected
3069     * remaining number of elements of a skip list when advancing
3070 dl 1.169 * either across or down decreases by about 25%.
3071 dl 1.83 */
3072 jsr166 1.119 abstract static class CSLMSpliterator<K,V> {
3073 dl 1.83 final Comparator<? super K> comparator;
3074     final K fence; // exclusive upper bound for keys, or null if to end
3075     Index<K,V> row; // the level to split out
3076     Node<K,V> current; // current traversal node; initialize at origin
3077 dl 1.169 long est; // size estimate
3078 dl 1.83 CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3079 dl 1.169 Node<K,V> origin, K fence, long est) {
3080 dl 1.83 this.comparator = comparator; this.row = row;
3081     this.current = origin; this.fence = fence; this.est = est;
3082     }
3083    
3084 dl 1.169 public final long estimateSize() { return est; }
3085 dl 1.83 }
3086    
3087     static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3088 dl 1.88 implements Spliterator<K> {
3089 dl 1.83 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3090 dl 1.169 Node<K,V> origin, K fence, long est) {
3091 dl 1.83 super(comparator, row, origin, fence, est);
3092     }
3093    
3094 jsr166 1.155 public KeySpliterator<K,V> trySplit() {
3095 dl 1.116 Node<K,V> e; K ek;
3096 dl 1.83 Comparator<? super K> cmp = comparator;
3097     K f = fence;
3098 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3099 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3100 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3101     if ((s = q.right) != null && (b = s.node) != null &&
3102 dl 1.169 (n = b.next) != null && n.val != null &&
3103 dl 1.118 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3104     (f == null || cpr(cmp, sk, f) < 0)) {
3105     current = n;
3106     Index<K,V> r = q.down;
3107     row = (s.right != null) ? s : s.down;
3108     est -= est >>> 2;
3109     return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3110 dl 1.83 }
3111     }
3112     }
3113     return null;
3114     }
3115    
3116 dl 1.113 public void forEachRemaining(Consumer<? super K> action) {
3117 dl 1.100 if (action == null) throw new NullPointerException();
3118 dl 1.118 Comparator<? super K> cmp = comparator;
3119 dl 1.83 K f = fence;
3120     Node<K,V> e = current;
3121     current = null;
3122 jsr166 1.84 for (; e != null; e = e.next) {
3123 dl 1.169 K k;
3124 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3125 dl 1.83 break;
3126 dl 1.169 if (e.val != null)
3127 dl 1.100 action.accept(k);
3128 dl 1.83 }
3129     }
3130    
3131 dl 1.100 public boolean tryAdvance(Consumer<? super K> action) {
3132     if (action == null) throw new NullPointerException();
3133 dl 1.118 Comparator<? super K> cmp = comparator;
3134     K f = fence;
3135     Node<K,V> e = current;
3136     for (; e != null; e = e.next) {
3137 dl 1.169 K k;
3138 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3139 dl 1.83 e = null;
3140     break;
3141     }
3142 dl 1.169 if (e.val != null) {
3143 dl 1.83 current = e.next;
3144 dl 1.100 action.accept(k);
3145 dl 1.83 return true;
3146     }
3147     }
3148     current = e;
3149     return false;
3150     }
3151 dl 1.100
3152     public int characteristics() {
3153 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3154 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3155 dl 1.100 Spliterator.NONNULL;
3156     }
3157    
3158 jsr166 1.115 public final Comparator<? super K> getComparator() {
3159 dl 1.100 return comparator;
3160     }
3161 dl 1.83 }
3162 jsr166 1.120 // factory method for KeySpliterator
3163 dl 1.118 final KeySpliterator<K,V> keySpliterator() {
3164 dl 1.169 Index<K,V> h; Node<K,V> n; long est;
3165     VarHandle.acquireFence();
3166     if ((h = head) == null) {
3167     n = null;
3168     est = 0L;
3169     }
3170     else {
3171     n = h.node;
3172     est = getAdderCount();
3173 dl 1.118 }
3174 dl 1.169 return new KeySpliterator<K,V>(comparator, h, n, null, est);
3175 dl 1.118 }
3176 dl 1.83
3177     static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3178 dl 1.88 implements Spliterator<V> {
3179 dl 1.83 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3180 dl 1.169 Node<K,V> origin, K fence, long est) {
3181 dl 1.83 super(comparator, row, origin, fence, est);
3182     }
3183    
3184 jsr166 1.155 public ValueSpliterator<K,V> trySplit() {
3185 dl 1.116 Node<K,V> e; K ek;
3186 dl 1.83 Comparator<? super K> cmp = comparator;
3187     K f = fence;
3188 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3189 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3190 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3191     if ((s = q.right) != null && (b = s.node) != null &&
3192 dl 1.169 (n = b.next) != null && n.val != null &&
3193 dl 1.118 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3194     (f == null || cpr(cmp, sk, f) < 0)) {
3195     current = n;
3196     Index<K,V> r = q.down;
3197     row = (s.right != null) ? s : s.down;
3198     est -= est >>> 2;
3199     return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3200 dl 1.83 }
3201     }
3202     }
3203     return null;
3204     }
3205    
3206 dl 1.113 public void forEachRemaining(Consumer<? super V> action) {
3207 dl 1.100 if (action == null) throw new NullPointerException();
3208 dl 1.118 Comparator<? super K> cmp = comparator;
3209 dl 1.83 K f = fence;
3210     Node<K,V> e = current;
3211     current = null;
3212 jsr166 1.84 for (; e != null; e = e.next) {
3213 dl 1.169 K k; V v;
3214 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3215 dl 1.83 break;
3216 dl 1.169 if ((v = e.val) != null)
3217     action.accept(v);
3218 dl 1.83 }
3219     }
3220    
3221 dl 1.100 public boolean tryAdvance(Consumer<? super V> action) {
3222     if (action == null) throw new NullPointerException();
3223 dl 1.118 Comparator<? super K> cmp = comparator;
3224     K f = fence;
3225     Node<K,V> e = current;
3226     for (; e != null; e = e.next) {
3227 dl 1.169 K k; V v;
3228 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3229 dl 1.83 e = null;
3230     break;
3231     }
3232 dl 1.169 if ((v = e.val) != null) {
3233 dl 1.83 current = e.next;
3234 dl 1.169 action.accept(v);
3235 dl 1.83 return true;
3236     }
3237     }
3238     current = e;
3239     return false;
3240     }
3241 dl 1.100
3242     public int characteristics() {
3243 jsr166 1.130 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3244     Spliterator.NONNULL;
3245 dl 1.100 }
3246 dl 1.83 }
3247    
3248 dl 1.118 // Almost the same as keySpliterator()
3249     final ValueSpliterator<K,V> valueSpliterator() {
3250 dl 1.169 Index<K,V> h; Node<K,V> n; long est;
3251     VarHandle.acquireFence();
3252     if ((h = head) == null) {
3253     n = null;
3254     est = 0L;
3255     }
3256     else {
3257     n = h.node;
3258     est = getAdderCount();
3259 dl 1.118 }
3260 dl 1.169 return new ValueSpliterator<K,V>(comparator, h, n, null, est);
3261 dl 1.118 }
3262    
3263 dl 1.83 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3264 dl 1.88 implements Spliterator<Map.Entry<K,V>> {
3265 dl 1.83 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3266 dl 1.169 Node<K,V> origin, K fence, long est) {
3267 dl 1.83 super(comparator, row, origin, fence, est);
3268     }
3269    
3270 jsr166 1.155 public EntrySpliterator<K,V> trySplit() {
3271 dl 1.116 Node<K,V> e; K ek;
3272 dl 1.83 Comparator<? super K> cmp = comparator;
3273     K f = fence;
3274 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3275 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3276 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3277     if ((s = q.right) != null && (b = s.node) != null &&
3278 dl 1.169 (n = b.next) != null && n.val != null &&
3279 dl 1.118 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3280     (f == null || cpr(cmp, sk, f) < 0)) {
3281     current = n;
3282     Index<K,V> r = q.down;
3283     row = (s.right != null) ? s : s.down;
3284     est -= est >>> 2;
3285     return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3286 dl 1.83 }
3287     }
3288     }
3289     return null;
3290     }
3291    
3292 dl 1.113 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3293 dl 1.100 if (action == null) throw new NullPointerException();
3294 dl 1.118 Comparator<? super K> cmp = comparator;
3295 dl 1.83 K f = fence;
3296     Node<K,V> e = current;
3297     current = null;
3298 jsr166 1.84 for (; e != null; e = e.next) {
3299 dl 1.169 K k; V v;
3300 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3301 dl 1.83 break;
3302 dl 1.169 if ((v = e.val) != null) {
3303 dl 1.100 action.accept
3304 dl 1.169 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3305 dl 1.100 }
3306 dl 1.83 }
3307     }
3308    
3309 dl 1.100 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3310     if (action == null) throw new NullPointerException();
3311 dl 1.118 Comparator<? super K> cmp = comparator;
3312     K f = fence;
3313     Node<K,V> e = current;
3314     for (; e != null; e = e.next) {
3315 dl 1.169 K k; V v;
3316 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3317 dl 1.83 e = null;
3318     break;
3319     }
3320 dl 1.169 if ((v = e.val) != null) {
3321 dl 1.83 current = e.next;
3322 dl 1.100 action.accept
3323 dl 1.169 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3324 dl 1.83 return true;
3325     }
3326     }
3327     current = e;
3328     return false;
3329     }
3330 dl 1.100
3331     public int characteristics() {
3332 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3333 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3334 dl 1.100 Spliterator.NONNULL;
3335     }
3336 dl 1.113
3337     public final Comparator<Map.Entry<K,V>> getComparator() {
3338 jsr166 1.130 // Adapt or create a key-based comparator
3339     if (comparator != null) {
3340     return Map.Entry.comparingByKey(comparator);
3341     }
3342     else {
3343 jsr166 1.131 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3344 jsr166 1.130 @SuppressWarnings("unchecked")
3345     Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3346     return k1.compareTo(e2.getKey());
3347     };
3348     }
3349 dl 1.113 }
3350 dl 1.118 }
3351 dl 1.113
3352 dl 1.118 // Almost the same as keySpliterator()
3353     final EntrySpliterator<K,V> entrySpliterator() {
3354 dl 1.169 Index<K,V> h; Node<K,V> n; long est;
3355     VarHandle.acquireFence();
3356     if ((h = head) == null) {
3357     n = null;
3358     est = 0L;
3359     }
3360     else {
3361     n = h.node;
3362     est = getAdderCount();
3363 dl 1.118 }
3364 dl 1.169 return new EntrySpliterator<K,V>(comparator, h, n, null, est);
3365 dl 1.83 }
3366    
3367 jsr166 1.162 // VarHandle mechanics
3368 dl 1.160 private static final VarHandle HEAD;
3369 dl 1.169 private static final VarHandle ADDER;
3370     private static final VarHandle NEXT;
3371     private static final VarHandle VAL;
3372     private static final VarHandle RIGHT;
3373 dl 1.65 static {
3374 dl 1.59 try {
3375 dl 1.160 MethodHandles.Lookup l = MethodHandles.lookup();
3376     HEAD = l.findVarHandle(ConcurrentSkipListMap.class, "head",
3377 dl 1.169 Index.class);
3378     ADDER = l.findVarHandle(ConcurrentSkipListMap.class, "adder",
3379     LongAdder.class);
3380     NEXT = l.findVarHandle(Node.class, "next", Node.class);
3381     VAL = l.findVarHandle(Node.class, "val", Object.class);
3382     RIGHT = l.findVarHandle(Index.class, "right", Index.class);
3383 jsr166 1.140 } catch (ReflectiveOperationException e) {
3384 jsr166 1.181 throw new ExceptionInInitializerError(e);
3385 dl 1.59 }
3386     }
3387 dl 1.1 }