ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.186
Committed: Thu Oct 17 01:51:37 2019 UTC (4 years, 7 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.185: +3 -0 lines
Log Message:
8232230: Suppress warnings on non-serializable non-transient instance fields in java.util.concurrent

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.67 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.138
9 dl 1.160 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.130 import java.io.Serializable;
12 dl 1.118 import java.util.AbstractCollection;
13     import java.util.AbstractMap;
14     import java.util.AbstractSet;
15     import java.util.ArrayList;
16     import java.util.Collection;
17     import java.util.Collections;
18     import java.util.Comparator;
19     import java.util.Iterator;
20     import java.util.List;
21     import java.util.Map;
22     import java.util.NavigableSet;
23     import java.util.NoSuchElementException;
24     import java.util.Set;
25     import java.util.SortedMap;
26 dl 1.83 import java.util.Spliterator;
27 jsr166 1.138 import java.util.function.BiConsumer;
28 dl 1.118 import java.util.function.BiFunction;
29 dl 1.94 import java.util.function.Consumer;
30 dl 1.109 import java.util.function.Function;
31 dl 1.143 import java.util.function.Predicate;
32 dl 1.169 import java.util.concurrent.atomic.LongAdder;
33 dl 1.83
34 dl 1.1 /**
35 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
36     * The map is sorted according to the {@linkplain Comparable natural
37     * ordering} of its keys, or by a {@link Comparator} provided at map
38     * creation time, depending on which constructor is used.
39 dl 1.1 *
40     * <p>This class implements a concurrent variant of <a
41 dl 1.66 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
42     * providing expected average <i>log(n)</i> time cost for the
43 jsr166 1.82 * {@code containsKey}, {@code get}, {@code put} and
44     * {@code remove} operations and their variants. Insertion, removal,
45 dl 1.1 * update, and access operations safely execute concurrently by
46 jsr166 1.133 * multiple threads.
47     *
48     * <p>Iterators and spliterators are
49     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
50     *
51     * <p>Ascending key ordered views and their iterators are faster than
52     * descending ones.
53 dl 1.1 *
54 jsr166 1.82 * <p>All {@code Map.Entry} pairs returned by methods in this class
55 dl 1.1 * and its views represent snapshots of mappings at the time they were
56 jsr166 1.82 * produced. They do <em>not</em> support the {@code Entry.setValue}
57 dl 1.1 * method. (Note however that it is possible to change mappings in the
58 jsr166 1.82 * associated map using {@code put}, {@code putIfAbsent}, or
59     * {@code replace}, depending on exactly which effect you need.)
60 dl 1.1 *
61 dl 1.169 * <p>Beware that bulk operations {@code putAll}, {@code equals},
62 jsr166 1.82 * {@code toArray}, {@code containsValue}, and {@code clear} are
63 dl 1.69 * <em>not</em> guaranteed to be performed atomically. For example, an
64 jsr166 1.82 * iterator operating concurrently with a {@code putAll} operation
65 dl 1.69 * might view only some of the added elements.
66 dl 1.1 *
67     * <p>This class and its views and iterators implement all of the
68     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
69     * interfaces. Like most other concurrent collections, this class does
70 jsr166 1.82 * <em>not</em> permit the use of {@code null} keys or values because some
71 jsr166 1.22 * null return values cannot be reliably distinguished from the absence of
72     * elements.
73 dl 1.1 *
74 jsr166 1.21 * <p>This class is a member of the
75 jsr166 1.183 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
76 jsr166 1.21 * Java Collections Framework</a>.
77     *
78 dl 1.1 * @author Doug Lea
79     * @param <K> the type of keys maintained by this map
80 dl 1.9 * @param <V> the type of mapped values
81 jsr166 1.20 * @since 1.6
82 dl 1.1 */
83 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
84 jsr166 1.130 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
85 dl 1.1 /*
86     * This class implements a tree-like two-dimensionally linked skip
87     * list in which the index levels are represented in separate
88     * nodes from the base nodes holding data. There are two reasons
89     * for taking this approach instead of the usual array-based
90     * structure: 1) Array based implementations seem to encounter
91     * more complexity and overhead 2) We can use cheaper algorithms
92     * for the heavily-traversed index lists than can be used for the
93     * base lists. Here's a picture of some of the basics for a
94     * possible list with 2 levels of index:
95     *
96     * Head nodes Index nodes
97 dl 1.9 * +-+ right +-+ +-+
98 dl 1.1 * |2|---------------->| |--------------------->| |->null
99 dl 1.9 * +-+ +-+ +-+
100 dl 1.1 * | down | |
101     * v v v
102 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
103 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
104 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
105 dl 1.1 * v | | | | |
106     * Nodes next v v v v v
107 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
108 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
109 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
110 dl 1.1 *
111     * The base lists use a variant of the HM linked ordered set
112     * algorithm. See Tim Harris, "A pragmatic implementation of
113     * non-blocking linked lists"
114     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
115     * Michael "High Performance Dynamic Lock-Free Hash Tables and
116     * List-Based Sets"
117     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
118     * basic idea in these lists is to mark the "next" pointers of
119     * deleted nodes when deleting to avoid conflicts with concurrent
120     * insertions, and when traversing to keep track of triples
121     * (predecessor, node, successor) in order to detect when and how
122     * to unlink these deleted nodes.
123     *
124     * Rather than using mark-bits to mark list deletions (which can
125     * be slow and space-intensive using AtomicMarkedReference), nodes
126     * use direct CAS'able next pointers. On deletion, instead of
127     * marking a pointer, they splice in another node that can be
128 dl 1.169 * thought of as standing for a marked pointer (see method
129     * unlinkNode). Using plain nodes acts roughly like "boxed"
130     * implementations of marked pointers, but uses new nodes only
131     * when nodes are deleted, not for every link. This requires less
132     * space and supports faster traversal. Even if marked references
133     * were better supported by JVMs, traversal using this technique
134     * might still be faster because any search need only read ahead
135     * one more node than otherwise required (to check for trailing
136     * marker) rather than unmasking mark bits or whatever on each
137     * read.
138 dl 1.1 *
139     * This approach maintains the essential property needed in the HM
140     * algorithm of changing the next-pointer of a deleted node so
141     * that any other CAS of it will fail, but implements the idea by
142 dl 1.169 * changing the pointer to point to a different node (with
143     * otherwise illegal null fields), not by marking it. While it
144     * would be possible to further squeeze space by defining marker
145     * nodes not to have key/value fields, it isn't worth the extra
146     * type-testing overhead. The deletion markers are rarely
147     * encountered during traversal, are easily detected via null
148     * checks that are needed anyway, and are normally quickly garbage
149     * collected. (Note that this technique would not work well in
150     * systems without garbage collection.)
151 dl 1.1 *
152     * In addition to using deletion markers, the lists also use
153     * nullness of value fields to indicate deletion, in a style
154     * similar to typical lazy-deletion schemes. If a node's value is
155     * null, then it is considered logically deleted and ignored even
156 dl 1.169 * though it is still reachable.
157 dl 1.1 *
158     * Here's the sequence of events for a deletion of node n with
159     * predecessor b and successor f, initially:
160     *
161 dl 1.9 * +------+ +------+ +------+
162 dl 1.1 * ... | b |------>| n |----->| f | ...
163 dl 1.9 * +------+ +------+ +------+
164 dl 1.1 *
165     * 1. CAS n's value field from non-null to null.
166 dl 1.169 * Traversals encountering a node with null value ignore it.
167     * However, ongoing insertions and deletions might still modify
168 dl 1.1 * n's next pointer.
169     *
170     * 2. CAS n's next pointer to point to a new marker node.
171     * From this point on, no other nodes can be appended to n.
172     * which avoids deletion errors in CAS-based linked lists.
173     *
174     * +------+ +------+ +------+ +------+
175     * ... | b |------>| n |----->|marker|------>| f | ...
176 dl 1.9 * +------+ +------+ +------+ +------+
177 dl 1.1 *
178     * 3. CAS b's next pointer over both n and its marker.
179     * From this point on, no new traversals will encounter n,
180     * and it can eventually be GCed.
181     * +------+ +------+
182     * ... | b |----------------------------------->| f | ...
183 dl 1.9 * +------+ +------+
184     *
185 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
186     * with another operation. Steps 2-3 can fail because some other
187     * thread noticed during a traversal a node with null value and
188     * helped out by marking and/or unlinking. This helping-out
189     * ensures that no thread can become stuck waiting for progress of
190 dl 1.169 * the deleting thread.
191 dl 1.1 *
192     * Skip lists add indexing to this scheme, so that the base-level
193     * traversals start close to the locations being found, inserted
194     * or deleted -- usually base level traversals only traverse a few
195     * nodes. This doesn't change the basic algorithm except for the
196     * need to make sure base traversals start at predecessors (here,
197     * b) that are not (structurally) deleted, otherwise retrying
198 dl 1.9 * after processing the deletion.
199 dl 1.1 *
200 dl 1.169 * Index levels are maintained using CAS to link and unlink
201     * successors ("right" fields). Races are allowed in index-list
202     * operations that can (rarely) fail to link in a new index node.
203     * (We can't do this of course for data nodes.) However, even
204     * when this happens, the index lists correctly guide search.
205     * This can impact performance, but since skip lists are
206     * probabilistic anyway, the net result is that under contention,
207     * the effective "p" value may be lower than its nominal value.
208     *
209     * Index insertion and deletion sometimes require a separate
210     * traversal pass occurring after the base-level action, to add or
211     * remove index nodes. This adds to single-threaded overhead, but
212     * improves contended multithreaded performance by narrowing
213     * interference windows, and allows deletion to ensure that all
214     * index nodes will be made unreachable upon return from a public
215     * remove operation, thus avoiding unwanted garbage retention.
216 dl 1.1 *
217     * Indexing uses skip list parameters that maintain good search
218     * performance while using sparser-than-usual indices: The
219 dl 1.169 * hardwired parameters k=1, p=0.5 (see method doPut) mean that
220     * about one-quarter of the nodes have indices. Of those that do,
221     * half have one level, a quarter have two, and so on (see Pugh's
222     * Skip List Cookbook, sec 3.4), up to a maximum of 62 levels
223     * (appropriate for up to 2^63 elements). The expected total
224     * space requirement for a map is slightly less than for the
225     * current implementation of java.util.TreeMap.
226 dl 1.1 *
227     * Changing the level of the index (i.e, the height of the
228 dl 1.169 * tree-like structure) also uses CAS. Creation of an index with
229     * height greater than the current level adds a level to the head
230     * index by CAS'ing on a new top-most head. To maintain good
231     * performance after a lot of removals, deletion methods
232     * heuristically try to reduce the height if the topmost levels
233     * appear to be empty. This may encounter races in which it is
234     * possible (but rare) to reduce and "lose" a level just as it is
235     * about to contain an index (that will then never be
236     * encountered). This does no structural harm, and in practice
237     * appears to be a better option than allowing unrestrained growth
238     * of levels.
239     *
240     * This class provides concurrent-reader-style memory consistency,
241     * ensuring that read-only methods report status and/or values no
242     * staler than those holding at method entry. This is done by
243     * performing all publication and structural updates using
244     * (volatile) CAS, placing an acquireFence in a few access
245     * methods, and ensuring that linked objects are transitively
246     * acquired via dependent reads (normally once) unless performing
247     * a volatile-mode CAS operation (that also acts as an acquire and
248 jsr166 1.171 * release). This form of fence-hoisting is similar to RCU and
249     * related techniques (see McKenney's online book
250 dl 1.169 * https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)
251     * It minimizes overhead that may otherwise occur when using so
252     * many volatile-mode reads. Using explicit acquireFences is
253     * logistically easier than targeting particular fields to be read
254     * in acquire mode: fences are just hoisted up as far as possible,
255     * to the entry points or loop headers of a few methods. A
256     * potential disadvantage is that these few remaining fences are
257     * not easily optimized away by compilers under exclusively
258 jsr166 1.172 * single-thread use. It requires some care to avoid volatile
259     * mode reads of other fields. (Note that the memory semantics of
260     * a reference dependently read in plain mode exactly once are
261 dl 1.169 * equivalent to those for atomic opaque mode.) Iterators and
262     * other traversals encounter each node and value exactly once.
263     * Other operations locate an element (or position to insert an
264     * element) via a sequence of dereferences. This search is broken
265     * into two parts. Method findPredecessor (and its specialized
266     * embeddings) searches index nodes only, returning a base-level
267     * predecessor of the key. Callers carry out the base-level
268     * search, restarting if encountering a marker preventing link
269     * modification. In some cases, it is possible to encounter a
270     * node multiple times while descending levels. For mutative
271     * operations, the reported value is validated using CAS (else
272     * retrying), preserving linearizability with respect to each
273     * other. Others may return any (non-null) value holding in the
274     * course of the method call. (Search-based methods also include
275     * some useless-looking explicit null checks designed to allow
276     * more fields to be nulled out upon removal, to reduce floating
277     * garbage, but which is not currently done, pending discovery of
278     * a way to do this with less impact on other operations.)
279 dl 1.1 *
280 dl 1.92 * To produce random values without interference across threads,
281     * we use within-JDK thread local random support (via the
282     * "secondary seed", to avoid interference with user-level
283     * ThreadLocalRandom.)
284     *
285 dl 1.1 * For explanation of algorithms sharing at least a couple of
286     * features with this one, see Mikhail Fomitchev's thesis
287     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
288 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
289 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
290     *
291     * Notation guide for local variables
292 dl 1.169 * Node: b, n, f, p for predecessor, node, successor, aux
293 dl 1.1 * Index: q, r, d for index node, right, down.
294     * Head: h
295     * Keys: k, key
296     * Values: v, value
297     * Comparisons: c
298     */
299    
300     private static final long serialVersionUID = -8627078645895051609L;
301    
302     /**
303 dl 1.118 * The comparator used to maintain order in this map, or null if
304     * using natural ordering. (Non-private to simplify access in
305 jsr166 1.120 * nested classes.)
306 dl 1.1 * @serial
307     */
308 jsr166 1.186 @SuppressWarnings("serial") // Conditionally serializable
309 dl 1.118 final Comparator<? super K> comparator;
310 dl 1.1
311 dl 1.169 /** Lazily initialized topmost index of the skiplist. */
312     private transient Index<K,V> head;
313     /** Lazily initialized element count */
314     private transient LongAdder adder;
315 dl 1.1 /** Lazily initialized key set */
316 jsr166 1.147 private transient KeySet<K,V> keySet;
317 jsr166 1.158 /** Lazily initialized values collection */
318     private transient Values<K,V> values;
319 dl 1.1 /** Lazily initialized entry set */
320 jsr166 1.71 private transient EntrySet<K,V> entrySet;
321 jsr166 1.175 /** Lazily initialized descending map */
322 jsr166 1.158 private transient SubMap<K,V> descendingMap;
323 dl 1.1
324     /**
325     * Nodes hold keys and values, and are singly linked in sorted
326     * order, possibly with some intervening marker nodes. The list is
327 dl 1.169 * headed by a header node accessible as head.node. Headers and
328 jsr166 1.174 * marker nodes have null keys. The val field (but currently not
329     * the key field) is nulled out upon deletion.
330 dl 1.1 */
331     static final class Node<K,V> {
332 dl 1.169 final K key; // currently, never detached
333     V val;
334     Node<K,V> next;
335     Node(K key, V value, Node<K,V> next) {
336 dl 1.1 this.key = key;
337 dl 1.169 this.val = value;
338 dl 1.1 this.next = next;
339     }
340     }
341    
342     /**
343 dl 1.169 * Index nodes represent the levels of the skip list.
344 dl 1.1 */
345 dl 1.169 static final class Index<K,V> {
346     final Node<K,V> node; // currently, never detached
347 dl 1.1 final Index<K,V> down;
348 dl 1.169 Index<K,V> right;
349 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
350     this.node = node;
351     this.down = down;
352     this.right = right;
353     }
354 dl 1.169 }
355 dl 1.1
356 dl 1.169 /* ---------------- Utilities -------------- */
357 dl 1.1
358 dl 1.169 /**
359     * Compares using comparator or natural ordering if null.
360     * Called only by methods that have performed required type checks.
361     */
362     @SuppressWarnings({"unchecked", "rawtypes"})
363     static int cpr(Comparator c, Object x, Object y) {
364     return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
365     }
366 dl 1.1
367 dl 1.169 /**
368     * Returns the header for base node list, or null if uninitialized
369     */
370     final Node<K,V> baseHead() {
371     Index<K,V> h;
372     VarHandle.acquireFence();
373     return ((h = head) == null) ? null : h.node;
374     }
375 dl 1.1
376 dl 1.169 /**
377     * Tries to unlink deleted node n from predecessor b (if both
378     * exist), by first splicing in a marker if not already present.
379     * Upon return, node n is sure to be unlinked from b, possibly
380     * via the actions of some other thread.
381     *
382     * @param b if nonnull, predecessor
383     * @param n if nonnull, node known to be deleted
384     */
385     static <K,V> void unlinkNode(Node<K,V> b, Node<K,V> n) {
386     if (b != null && n != null) {
387     Node<K,V> f, p;
388     for (;;) {
389     if ((f = n.next) != null && f.key == null) {
390     p = f.next; // already marked
391     break;
392     }
393     else if (NEXT.compareAndSet(n, f,
394     new Node<K,V>(null, null, f))) {
395     p = f; // add marker
396     break;
397     }
398 dl 1.65 }
399 dl 1.176 NEXT.compareAndSet(b, n, p);
400 dl 1.65 }
401 dl 1.1 }
402 jsr166 1.161
403 dl 1.1 /**
404 dl 1.169 * Adds to element count, initializing adder if necessary
405     *
406     * @param c count to add
407 dl 1.1 */
408 dl 1.169 private void addCount(long c) {
409     LongAdder a;
410     do {} while ((a = adder) == null &&
411     !ADDER.compareAndSet(this, null, a = new LongAdder()));
412     a.add(c);
413 dl 1.9 }
414 dl 1.1
415     /**
416 dl 1.169 * Returns element count, initializing adder if necessary.
417 dl 1.1 */
418 dl 1.169 final long getAdderCount() {
419     LongAdder a; long c;
420     do {} while ((a = adder) == null &&
421     !ADDER.compareAndSet(this, null, a = new LongAdder()));
422     return ((c = a.sum()) <= 0L) ? 0L : c; // ignore transient negatives
423 dl 1.1 }
424    
425     /* ---------------- Traversal -------------- */
426    
427     /**
428 dl 1.169 * Returns an index node with key strictly less than given key.
429     * Also unlinks indexes to deleted nodes found along the way.
430     * Callers rely on this side-effect of clearing indices to deleted
431     * nodes.
432     *
433     * @param key if nonnull the key
434     * @return a predecessor node of key, or null if uninitialized or null key
435 dl 1.1 */
436 dl 1.118 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
437 dl 1.169 Index<K,V> q;
438     VarHandle.acquireFence();
439     if ((q = head) == null || key == null)
440     return null;
441     else {
442     for (Index<K,V> r, d;;) {
443     while ((r = q.right) != null) {
444     Node<K,V> p; K k;
445     if ((p = r.node) == null || (k = p.key) == null ||
446 dl 1.176 p.val == null) // unlink index to deleted node
447     RIGHT.compareAndSet(q, r, r.right);
448 dl 1.169 else if (cpr(cmp, key, k) > 0)
449 dl 1.1 q = r;
450 dl 1.169 else
451     break;
452 dl 1.1 }
453 dl 1.169 if ((d = q.down) != null)
454     q = d;
455     else
456 dl 1.1 return q.node;
457     }
458     }
459     }
460    
461     /**
462 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
463 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
464     * base-level looking for key starting at predecessor returned
465     * from findPredecessor, processing base-level deletions as
466 dl 1.169 * encountered. Restarts occur, at traversal step encountering
467     * node n, if n's key field is null, indicating it is a marker, so
468     * its predecessor is deleted before continuing, which we help do
469     * by re-finding a valid predecessor. The traversal loops in
470     * doPut, doRemove, and findNear all include the same checks.
471 dl 1.9 *
472 dl 1.1 * @param key the key
473 jsr166 1.22 * @return node holding key, or null if no such
474 dl 1.1 */
475 dl 1.118 private Node<K,V> findNode(Object key) {
476 dl 1.88 if (key == null)
477     throw new NullPointerException(); // don't postpone errors
478 dl 1.118 Comparator<? super K> cmp = comparator;
479 dl 1.169 Node<K,V> b;
480     outer: while ((b = findPredecessor(key, cmp)) != null) {
481     for (;;) {
482     Node<K,V> n; K k; V v; int c;
483     if ((n = b.next) == null)
484     break outer; // empty
485     else if ((k = n.key) == null)
486     break; // b is deleted
487     else if ((v = n.val) == null)
488     unlinkNode(b, n); // n is deleted
489     else if ((c = cpr(cmp, key, k)) > 0)
490     b = n;
491     else if (c == 0)
492 dl 1.40 return n;
493 dl 1.169 else
494 dl 1.118 break outer;
495 dl 1.1 }
496     }
497 dl 1.118 return null;
498 dl 1.1 }
499    
500 dl 1.9 /**
501 dl 1.169 * Gets value for key. Same idea as findNode, except skips over
502     * deletions and markers, and returns first encountered value to
503     * avoid possibly inconsistent rereads.
504 dl 1.88 *
505 dl 1.118 * @param key the key
506 dl 1.1 * @return the value, or null if absent
507     */
508 dl 1.118 private V doGet(Object key) {
509 dl 1.169 Index<K,V> q;
510     VarHandle.acquireFence();
511 dl 1.118 if (key == null)
512 dl 1.88 throw new NullPointerException();
513 dl 1.118 Comparator<? super K> cmp = comparator;
514 dl 1.169 V result = null;
515     if ((q = head) != null) {
516     outer: for (Index<K,V> r, d;;) {
517     while ((r = q.right) != null) {
518     Node<K,V> p; K k; V v; int c;
519     if ((p = r.node) == null || (k = p.key) == null ||
520 dl 1.176 (v = p.val) == null)
521     RIGHT.compareAndSet(q, r, r.right);
522 dl 1.169 else if ((c = cpr(cmp, key, k)) > 0)
523     q = r;
524     else if (c == 0) {
525     result = v;
526     break outer;
527     }
528     else
529     break;
530 dl 1.88 }
531 dl 1.169 if ((d = q.down) != null)
532     q = d;
533     else {
534     Node<K,V> b, n;
535     if ((b = q.node) != null) {
536     while ((n = b.next) != null) {
537     V v; int c;
538     K k = n.key;
539     if ((v = n.val) == null || k == null ||
540     (c = cpr(cmp, key, k)) > 0)
541     b = n;
542     else {
543     if (c == 0)
544     result = v;
545     break;
546     }
547     }
548     }
549 dl 1.88 break;
550 dl 1.118 }
551 dl 1.88 }
552 dl 1.1 }
553 dl 1.169 return result;
554 dl 1.1 }
555    
556     /* ---------------- Insertion -------------- */
557    
558     /**
559     * Main insertion method. Adds element if not present, or
560     * replaces value if present and onlyIfAbsent is false.
561 dl 1.169 *
562 dl 1.118 * @param key the key
563 jsr166 1.103 * @param value the value that must be associated with key
564 dl 1.1 * @param onlyIfAbsent if should not insert if already present
565     * @return the old value, or null if newly inserted
566     */
567 dl 1.118 private V doPut(K key, V value, boolean onlyIfAbsent) {
568     if (key == null)
569 dl 1.88 throw new NullPointerException();
570 dl 1.118 Comparator<? super K> cmp = comparator;
571 dl 1.169 for (;;) {
572     Index<K,V> h; Node<K,V> b;
573     VarHandle.acquireFence();
574     int levels = 0; // number of levels descended
575     if ((h = head) == null) { // try to initialize
576     Node<K,V> base = new Node<K,V>(null, null, null);
577     h = new Index<K,V>(base, null, null);
578     b = (HEAD.compareAndSet(this, null, h)) ? base : null;
579     }
580     else {
581     for (Index<K,V> q = h, r, d;;) { // count while descending
582     while ((r = q.right) != null) {
583     Node<K,V> p; K k;
584     if ((p = r.node) == null || (k = p.key) == null ||
585 dl 1.176 p.val == null)
586     RIGHT.compareAndSet(q, r, r.right);
587 dl 1.169 else if (cpr(cmp, key, k) > 0)
588     q = r;
589     else
590     break;
591     }
592     if ((d = q.down) != null) {
593     ++levels;
594     q = d;
595     }
596     else {
597     b = q.node;
598 dl 1.1 break;
599     }
600 dl 1.169 }
601     }
602     if (b != null) {
603     Node<K,V> z = null; // new node, if inserted
604     for (;;) { // find insertion point
605     Node<K,V> n, p; K k; V v; int c;
606     if ((n = b.next) == null) {
607     if (b.key == null) // if empty, type check key now
608     cpr(cmp, key, key);
609     c = -1;
610 dl 1.1 }
611 dl 1.169 else if ((k = n.key) == null)
612     break; // can't append; restart
613     else if ((v = n.val) == null) {
614     unlinkNode(b, n);
615     c = 1;
616 dl 1.1 }
617 dl 1.169 else if ((c = cpr(cmp, key, k)) > 0)
618     b = n;
619     else if (c == 0 &&
620     (onlyIfAbsent || VAL.compareAndSet(n, v, value)))
621     return v;
622    
623     if (c < 0 &&
624     NEXT.compareAndSet(b, n,
625     p = new Node<K,V>(key, value, n))) {
626     z = p;
627 dl 1.92 break;
628 dl 1.1 }
629     }
630 dl 1.169
631     if (z != null) {
632     int lr = ThreadLocalRandom.nextSecondarySeed();
633     if ((lr & 0x3) == 0) { // add indices with 1/4 prob
634     int hr = ThreadLocalRandom.nextSecondarySeed();
635     long rnd = ((long)hr << 32) | ((long)lr & 0xffffffffL);
636     int skips = levels; // levels to descend before add
637     Index<K,V> x = null;
638     for (;;) { // create at most 62 indices
639     x = new Index<K,V>(z, x, null);
640     if (rnd >= 0L || --skips < 0)
641 dl 1.92 break;
642 dl 1.169 else
643     rnd <<= 1;
644 dl 1.92 }
645 dl 1.169 if (addIndices(h, skips, x, cmp) && skips < 0 &&
646     head == h) { // try to add new level
647     Index<K,V> hx = new Index<K,V>(z, x, null);
648     Index<K,V> nh = new Index<K,V>(h.node, h, hx);
649 dl 1.176 HEAD.compareAndSet(this, h, nh);
650 dl 1.92 }
651 dl 1.169 if (z.val == null) // deleted while adding indices
652     findPredecessor(key, cmp); // clean
653 dl 1.1 }
654 dl 1.169 addCount(1L);
655     return null;
656     }
657     }
658     }
659     }
660 dl 1.92
661 dl 1.169 /**
662     * Add indices after an insertion. Descends iteratively to the
663     * highest level of insertion, then recursively, to chain index
664     * nodes to lower ones. Returns null on (staleness) failure,
665     * disabling higher-level insertions. Recursion depths are
666     * exponentially less probable.
667     *
668     * @param q starting index for current level
669     * @param skips levels to skip before inserting
670     * @param x index for this insertion
671     * @param cmp comparator
672     */
673     static <K,V> boolean addIndices(Index<K,V> q, int skips, Index<K,V> x,
674     Comparator<? super K> cmp) {
675     Node<K,V> z; K key;
676     if (x != null && (z = x.node) != null && (key = z.key) != null &&
677     q != null) { // hoist checks
678     boolean retrying = false;
679     for (;;) { // find splice point
680     Index<K,V> r, d; int c;
681     if ((r = q.right) != null) {
682     Node<K,V> p; K k;
683     if ((p = r.node) == null || (k = p.key) == null ||
684     p.val == null) {
685 dl 1.176 RIGHT.compareAndSet(q, r, r.right);
686 dl 1.169 c = 0;
687 dl 1.1 }
688 dl 1.169 else if ((c = cpr(cmp, key, k)) > 0)
689     q = r;
690     else if (c == 0)
691     break; // stale
692     }
693     else
694     c = -1;
695 dl 1.92
696 dl 1.169 if (c < 0) {
697     if ((d = q.down) != null && skips > 0) {
698     --skips;
699     q = d;
700     }
701     else if (d != null && !retrying &&
702     !addIndices(d, 0, x.down, cmp))
703     break;
704     else {
705     x.right = r;
706     if (RIGHT.compareAndSet(q, r, x))
707     return true;
708     else
709     retrying = true; // re-find splice point
710     }
711 dl 1.1 }
712     }
713     }
714 dl 1.169 return false;
715 dl 1.1 }
716    
717     /* ---------------- Deletion -------------- */
718    
719     /**
720     * Main deletion method. Locates node, nulls value, appends a
721     * deletion marker, unlinks predecessor, removes associated index
722     * nodes, and possibly reduces head index level.
723     *
724 dl 1.118 * @param key the key
725 dl 1.1 * @param value if non-null, the value that must be
726     * associated with key
727     * @return the node, or null if not found
728     */
729 dl 1.118 final V doRemove(Object key, Object value) {
730     if (key == null)
731 dl 1.88 throw new NullPointerException();
732 dl 1.118 Comparator<? super K> cmp = comparator;
733 dl 1.169 V result = null;
734     Node<K,V> b;
735     outer: while ((b = findPredecessor(key, cmp)) != null &&
736     result == null) {
737     for (;;) {
738     Node<K,V> n; K k; V v; int c;
739     if ((n = b.next) == null)
740 dl 1.118 break outer;
741 dl 1.169 else if ((k = n.key) == null)
742 dl 1.1 break;
743 dl 1.169 else if ((v = n.val) == null)
744     unlinkNode(b, n);
745     else if ((c = cpr(cmp, key, k)) > 0)
746     b = n;
747     else if (c < 0)
748 dl 1.118 break outer;
749 dl 1.169 else if (value != null && !value.equals(v))
750 dl 1.118 break outer;
751 dl 1.169 else if (VAL.compareAndSet(n, v, null)) {
752     result = v;
753     unlinkNode(b, n);
754     break; // loop to clean up
755 dl 1.1 }
756     }
757     }
758 dl 1.169 if (result != null) {
759     tryReduceLevel();
760     addCount(-1L);
761     }
762     return result;
763 dl 1.1 }
764    
765     /**
766     * Possibly reduce head level if it has no nodes. This method can
767     * (rarely) make mistakes, in which case levels can disappear even
768     * though they are about to contain index nodes. This impacts
769     * performance, not correctness. To minimize mistakes as well as
770     * to reduce hysteresis, the level is reduced by one only if the
771     * topmost three levels look empty. Also, if the removed level
772     * looks non-empty after CAS, we try to change it back quick
773     * before anyone notices our mistake! (This trick works pretty
774     * well because this method will practically never make mistakes
775     * unless current thread stalls immediately before first CAS, in
776     * which case it is very unlikely to stall again immediately
777     * afterwards, so will recover.)
778     *
779     * We put up with all this rather than just let levels grow
780     * because otherwise, even a small map that has undergone a large
781     * number of insertions and removals will have a lot of levels,
782     * slowing down access more than would an occasional unwanted
783     * reduction.
784     */
785     private void tryReduceLevel() {
786 dl 1.169 Index<K,V> h, d, e;
787     if ((h = head) != null && h.right == null &&
788     (d = h.down) != null && d.right == null &&
789     (e = d.down) != null && e.right == null &&
790     HEAD.compareAndSet(this, h, d) &&
791 dl 1.176 h.right != null) // recheck
792     HEAD.compareAndSet(this, d, h); // try to backout
793 dl 1.1 }
794    
795     /* ---------------- Finding and removing first element -------------- */
796    
797     /**
798 dl 1.169 * Gets first valid node, unlinking deleted nodes if encountered.
799 dl 1.1 * @return first node or null if empty
800     */
801 dl 1.118 final Node<K,V> findFirst() {
802 dl 1.169 Node<K,V> b, n;
803     if ((b = baseHead()) != null) {
804     while ((n = b.next) != null) {
805     if (n.val == null)
806     unlinkNode(b, n);
807     else
808     return n;
809 dl 1.1 }
810 jsr166 1.55 }
811 dl 1.169 return null;
812 dl 1.1 }
813    
814     /**
815 dl 1.169 * Entry snapshot version of findFirst
816 dl 1.1 */
817 dl 1.169 final AbstractMap.SimpleImmutableEntry<K,V> findFirstEntry() {
818     Node<K,V> b, n; V v;
819     if ((b = baseHead()) != null) {
820     while ((n = b.next) != null) {
821     if ((v = n.val) == null)
822     unlinkNode(b, n);
823     else
824     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
825 dl 1.1 }
826     }
827 dl 1.169 return null;
828 dl 1.1 }
829    
830 dl 1.88 /**
831 dl 1.169 * Removes first entry; returns its snapshot.
832     * @return null if empty, else snapshot of first entry
833 dl 1.88 */
834 dl 1.169 private AbstractMap.SimpleImmutableEntry<K,V> doRemoveFirstEntry() {
835     Node<K,V> b, n; V v;
836     if ((b = baseHead()) != null) {
837     while ((n = b.next) != null) {
838     if ((v = n.val) == null || VAL.compareAndSet(n, v, null)) {
839     K k = n.key;
840     unlinkNode(b, n);
841     if (v != null) {
842 dl 1.88 tryReduceLevel();
843 dl 1.169 findPredecessor(k, comparator); // clean index
844     addCount(-1L);
845     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
846     }
847 dl 1.88 }
848     }
849     }
850 dl 1.169 return null;
851 dl 1.88 }
852 dl 1.1
853     /* ---------------- Finding and removing last element -------------- */
854    
855     /**
856 jsr166 1.10 * Specialized version of find to get last valid node.
857 dl 1.1 * @return last node or null if empty
858     */
859 dl 1.118 final Node<K,V> findLast() {
860 dl 1.169 outer: for (;;) {
861     Index<K,V> q; Node<K,V> b;
862     VarHandle.acquireFence();
863     if ((q = head) == null)
864     break;
865     for (Index<K,V> r, d;;) {
866     while ((r = q.right) != null) {
867     Node<K,V> p;
868 dl 1.176 if ((p = r.node) == null || p.val == null)
869     RIGHT.compareAndSet(q, r, r.right);
870 dl 1.169 else
871     q = r;
872     }
873     if ((d = q.down) != null)
874     q = d;
875     else {
876     b = q.node;
877     break;
878 dl 1.9 }
879 dl 1.169 }
880     if (b != null) {
881     for (;;) {
882     Node<K,V> n;
883     if ((n = b.next) == null) {
884     if (b.key == null) // empty
885     break outer;
886     else
887     return b;
888 dl 1.1 }
889 dl 1.169 else if (n.key == null)
890 dl 1.1 break;
891 dl 1.169 else if (n.val == null)
892     unlinkNode(b, n);
893     else
894     b = n;
895 dl 1.1 }
896     }
897     }
898 dl 1.169 return null;
899 dl 1.1 }
900    
901 dl 1.31 /**
902 dl 1.169 * Entry version of findLast
903     * @return Entry for last node or null if empty
904 dl 1.31 */
905 dl 1.169 final AbstractMap.SimpleImmutableEntry<K,V> findLastEntry() {
906 dl 1.31 for (;;) {
907 dl 1.169 Node<K,V> n; V v;
908     if ((n = findLast()) == null)
909     return null;
910     if ((v = n.val) != null)
911     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
912     }
913     }
914    
915     /**
916     * Removes last entry; returns its snapshot.
917     * Specialized variant of doRemove.
918     * @return null if empty, else snapshot of last entry
919     */
920     private Map.Entry<K,V> doRemoveLastEntry() {
921     outer: for (;;) {
922     Index<K,V> q; Node<K,V> b;
923     VarHandle.acquireFence();
924     if ((q = head) == null)
925     break;
926     for (;;) {
927     Index<K,V> d, r; Node<K,V> p;
928     while ((r = q.right) != null) {
929 dl 1.176 if ((p = r.node) == null || p.val == null)
930     RIGHT.compareAndSet(q, r, r.right);
931 dl 1.169 else if (p.next != null)
932     q = r; // continue only if a successor
933     else
934     break;
935 dl 1.31 }
936     if ((d = q.down) != null)
937     q = d;
938 dl 1.169 else {
939     b = q.node;
940     break;
941     }
942     }
943     if (b != null) {
944     for (;;) {
945     Node<K,V> n; K k; V v;
946     if ((n = b.next) == null) {
947     if (b.key == null) // empty
948     break outer;
949     else
950     break; // retry
951     }
952     else if ((k = n.key) == null)
953     break;
954     else if ((v = n.val) == null)
955     unlinkNode(b, n);
956     else if (n.next != null)
957     b = n;
958     else if (VAL.compareAndSet(n, v, null)) {
959     unlinkNode(b, n);
960     tryReduceLevel();
961     findPredecessor(k, comparator); // clean index
962     addCount(-1L);
963     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
964     }
965     }
966 dl 1.31 }
967     }
968 dl 1.169 return null;
969 dl 1.31 }
970 dl 1.1
971 dl 1.88 /* ---------------- Relational operations -------------- */
972    
973     // Control values OR'ed as arguments to findNear
974    
975     private static final int EQ = 1;
976     private static final int LT = 2;
977     private static final int GT = 0; // Actually checked as !LT
978    
979 dl 1.1 /**
980 dl 1.88 * Utility for ceiling, floor, lower, higher methods.
981 dl 1.118 * @param key the key
982 dl 1.88 * @param rel the relation -- OR'ed combination of EQ, LT, GT
983     * @return nearest node fitting relation, or null if no such
984 dl 1.1 */
985 dl 1.118 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
986     if (key == null)
987     throw new NullPointerException();
988 dl 1.169 Node<K,V> result;
989     outer: for (Node<K,V> b;;) {
990     if ((b = findPredecessor(key, cmp)) == null) {
991     result = null;
992     break; // empty
993     }
994     for (;;) {
995     Node<K,V> n; K k; int c;
996     if ((n = b.next) == null) {
997     result = ((rel & LT) != 0 && b.key != null) ? b : null;
998     break outer;
999     }
1000     else if ((k = n.key) == null)
1001 dl 1.88 break;
1002 dl 1.169 else if (n.val == null)
1003     unlinkNode(b, n);
1004     else if (((c = cpr(cmp, key, k)) == 0 && (rel & EQ) != 0) ||
1005     (c < 0 && (rel & LT) == 0)) {
1006     result = n;
1007     break outer;
1008     }
1009     else if (c <= 0 && (rel & LT) != 0) {
1010     result = (b.key != null) ? b : null;
1011     break outer;
1012 dl 1.88 }
1013 dl 1.169 else
1014     b = n;
1015 dl 1.88 }
1016     }
1017 dl 1.169 return result;
1018 dl 1.88 }
1019    
1020 dl 1.1 /**
1021 dl 1.169 * Variant of findNear returning SimpleImmutableEntry
1022 dl 1.40 * @param key the key
1023 dl 1.1 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1024     * @return Entry fitting relation, or null if no such
1025     */
1026 dl 1.169 final AbstractMap.SimpleImmutableEntry<K,V> findNearEntry(K key, int rel,
1027     Comparator<? super K> cmp) {
1028 dl 1.1 for (;;) {
1029 dl 1.169 Node<K,V> n; V v;
1030     if ((n = findNear(key, rel, cmp)) == null)
1031 dl 1.1 return null;
1032 dl 1.169 if ((v = n.val) != null)
1033     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
1034 dl 1.1 }
1035     }
1036    
1037     /* ---------------- Constructors -------------- */
1038    
1039     /**
1040 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1041     * {@linkplain Comparable natural ordering} of the keys.
1042 dl 1.1 */
1043     public ConcurrentSkipListMap() {
1044     this.comparator = null;
1045     }
1046    
1047     /**
1048 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1049     * comparator.
1050 dl 1.1 *
1051 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1052 jsr166 1.82 * If {@code null}, the {@linkplain Comparable natural
1053 jsr166 1.22 * ordering} of the keys will be used.
1054 dl 1.1 */
1055 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1056     this.comparator = comparator;
1057 dl 1.1 }
1058    
1059     /**
1060     * Constructs a new map containing the same mappings as the given map,
1061 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1062     * the keys.
1063 dl 1.1 *
1064 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1065 jsr166 1.82 * @throws ClassCastException if the keys in {@code m} are not
1066 jsr166 1.22 * {@link Comparable}, or are not mutually comparable
1067     * @throws NullPointerException if the specified map or any of its keys
1068     * or values are null
1069 dl 1.1 */
1070     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1071     this.comparator = null;
1072     putAll(m);
1073     }
1074    
1075     /**
1076 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1077     * same ordering as the specified sorted map.
1078     *
1079 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1080 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1081     * @throws NullPointerException if the specified sorted map or any of
1082     * its keys or values are null
1083 dl 1.1 */
1084     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1085     this.comparator = m.comparator();
1086 dl 1.169 buildFromSorted(m); // initializes transients
1087 dl 1.1 }
1088    
1089     /**
1090 jsr166 1.82 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1091 jsr166 1.22 * instance. (The keys and values themselves are not cloned.)
1092 dl 1.1 *
1093 jsr166 1.22 * @return a shallow copy of this map
1094 dl 1.1 */
1095 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1096 dl 1.1 try {
1097 jsr166 1.76 @SuppressWarnings("unchecked")
1098     ConcurrentSkipListMap<K,V> clone =
1099     (ConcurrentSkipListMap<K,V>) super.clone();
1100 dl 1.169 clone.keySet = null;
1101     clone.entrySet = null;
1102     clone.values = null;
1103     clone.descendingMap = null;
1104 jsr166 1.184 clone.adder = null;
1105 jsr166 1.76 clone.buildFromSorted(this);
1106     return clone;
1107 dl 1.1 } catch (CloneNotSupportedException e) {
1108     throw new InternalError();
1109     }
1110     }
1111    
1112     /**
1113     * Streamlined bulk insertion to initialize from elements of
1114     * given sorted map. Call only from constructor or clone
1115     * method.
1116     */
1117     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1118     if (map == null)
1119     throw new NullPointerException();
1120 dl 1.169 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1121     map.entrySet().iterator();
1122 dl 1.1
1123 dl 1.169 /*
1124     * Add equally spaced indices at log intervals, using the bits
1125     * of count during insertion. The maximum possible resulting
1126     * level is less than the number of bits in a long (64). The
1127     * preds array tracks the current rightmost node at each
1128     * level.
1129     */
1130     @SuppressWarnings("unchecked")
1131     Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1132     Node<K,V> bp = new Node<K,V>(null, null, null);
1133     Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1134     long count = 0;
1135 dl 1.1
1136     while (it.hasNext()) {
1137     Map.Entry<? extends K, ? extends V> e = it.next();
1138     K k = e.getKey();
1139     V v = e.getValue();
1140     if (k == null || v == null)
1141     throw new NullPointerException();
1142     Node<K,V> z = new Node<K,V>(k, v, null);
1143 dl 1.169 bp = bp.next = z;
1144     if ((++count & 3L) == 0L) {
1145     long m = count >>> 2;
1146     int i = 0;
1147     Index<K,V> idx = null, q;
1148     do {
1149 dl 1.1 idx = new Index<K,V>(z, idx, null);
1150 dl 1.169 if ((q = preds[i]) == null)
1151     preds[i] = h = new Index<K,V>(h.node, h, idx);
1152     else
1153     preds[i] = q.right = idx;
1154     } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1155 dl 1.1 }
1156     }
1157 dl 1.169 if (count != 0L) {
1158     VarHandle.releaseFence(); // emulate volatile stores
1159     addCount(count);
1160     head = h;
1161     VarHandle.fullFence();
1162     }
1163 dl 1.1 }
1164    
1165     /* ---------------- Serialization -------------- */
1166    
1167     /**
1168 jsr166 1.80 * Saves this map to a stream (that is, serializes it).
1169 dl 1.1 *
1170 jsr166 1.128 * @param s the stream
1171 jsr166 1.129 * @throws java.io.IOException if an I/O error occurs
1172 dl 1.1 * @serialData The key (Object) and value (Object) for each
1173 jsr166 1.10 * key-value mapping represented by the map, followed by
1174 jsr166 1.82 * {@code null}. The key-value mappings are emitted in key-order
1175 dl 1.1 * (as determined by the Comparator, or by the keys' natural
1176     * ordering if no Comparator).
1177     */
1178     private void writeObject(java.io.ObjectOutputStream s)
1179     throws java.io.IOException {
1180     // Write out the Comparator and any hidden stuff
1181     s.defaultWriteObject();
1182    
1183     // Write out keys and values (alternating)
1184 dl 1.169 Node<K,V> b, n; V v;
1185     if ((b = baseHead()) != null) {
1186     while ((n = b.next) != null) {
1187     if ((v = n.val) != null) {
1188     s.writeObject(n.key);
1189     s.writeObject(v);
1190     }
1191     b = n;
1192 dl 1.1 }
1193     }
1194     s.writeObject(null);
1195     }
1196    
1197     /**
1198 jsr166 1.80 * Reconstitutes this map from a stream (that is, deserializes it).
1199 jsr166 1.128 * @param s the stream
1200 jsr166 1.129 * @throws ClassNotFoundException if the class of a serialized object
1201     * could not be found
1202     * @throws java.io.IOException if an I/O error occurs
1203 dl 1.1 */
1204 dl 1.100 @SuppressWarnings("unchecked")
1205 dl 1.1 private void readObject(final java.io.ObjectInputStream s)
1206     throws java.io.IOException, ClassNotFoundException {
1207     // Read in the Comparator and any hidden stuff
1208     s.defaultReadObject();
1209    
1210 dl 1.169 // Same idea as buildFromSorted
1211     @SuppressWarnings("unchecked")
1212     Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1213     Node<K,V> bp = new Node<K,V>(null, null, null);
1214     Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1215     Comparator<? super K> cmp = comparator;
1216     K prevKey = null;
1217     long count = 0;
1218 dl 1.1
1219     for (;;) {
1220 dl 1.169 K k = (K)s.readObject();
1221 dl 1.1 if (k == null)
1222     break;
1223 dl 1.169 V v = (V)s.readObject();
1224 dl 1.9 if (v == null)
1225 dl 1.1 throw new NullPointerException();
1226 dl 1.169 if (prevKey != null && cpr(cmp, prevKey, k) > 0)
1227     throw new IllegalStateException("out of order");
1228     prevKey = k;
1229     Node<K,V> z = new Node<K,V>(k, v, null);
1230     bp = bp.next = z;
1231     if ((++count & 3L) == 0L) {
1232     long m = count >>> 2;
1233     int i = 0;
1234     Index<K,V> idx = null, q;
1235 dl 1.92 do {
1236 dl 1.1 idx = new Index<K,V>(z, idx, null);
1237 dl 1.169 if ((q = preds[i]) == null)
1238     preds[i] = h = new Index<K,V>(h.node, h, idx);
1239     else
1240     preds[i] = q.right = idx;
1241     } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1242 dl 1.1 }
1243     }
1244 dl 1.169 if (count != 0L) {
1245     VarHandle.releaseFence();
1246     addCount(count);
1247     head = h;
1248     VarHandle.fullFence();
1249     }
1250 dl 1.1 }
1251    
1252     /* ------ Map API methods ------ */
1253    
1254     /**
1255 jsr166 1.82 * Returns {@code true} if this map contains a mapping for the specified
1256 dl 1.1 * key.
1257 jsr166 1.22 *
1258     * @param key key whose presence in this map is to be tested
1259 jsr166 1.82 * @return {@code true} if this map contains a mapping for the specified key
1260 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1261     * with the keys currently in the map
1262     * @throws NullPointerException if the specified key is null
1263 dl 1.1 */
1264     public boolean containsKey(Object key) {
1265 dl 1.118 return doGet(key) != null;
1266 dl 1.1 }
1267    
1268     /**
1269 jsr166 1.42 * Returns the value to which the specified key is mapped,
1270     * or {@code null} if this map contains no mapping for the key.
1271     *
1272     * <p>More formally, if this map contains a mapping from a key
1273     * {@code k} to a value {@code v} such that {@code key} compares
1274     * equal to {@code k} according to the map's ordering, then this
1275     * method returns {@code v}; otherwise it returns {@code null}.
1276     * (There can be at most one such mapping.)
1277 dl 1.1 *
1278 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1279     * with the keys currently in the map
1280     * @throws NullPointerException if the specified key is null
1281 dl 1.1 */
1282     public V get(Object key) {
1283 dl 1.118 return doGet(key);
1284 dl 1.1 }
1285    
1286     /**
1287 dl 1.109 * Returns the value to which the specified key is mapped,
1288     * or the given defaultValue if this map contains no mapping for the key.
1289     *
1290     * @param key the key
1291     * @param defaultValue the value to return if this map contains
1292     * no mapping for the given key
1293     * @return the mapping for the key, if present; else the defaultValue
1294     * @throws NullPointerException if the specified key is null
1295     * @since 1.8
1296     */
1297     public V getOrDefault(Object key, V defaultValue) {
1298     V v;
1299 dl 1.118 return (v = doGet(key)) == null ? defaultValue : v;
1300 dl 1.109 }
1301    
1302     /**
1303 dl 1.1 * Associates the specified value with the specified key in this map.
1304 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1305 dl 1.1 * value is replaced.
1306     *
1307 jsr166 1.22 * @param key key with which the specified value is to be associated
1308     * @param value value to be associated with the specified key
1309     * @return the previous value associated with the specified key, or
1310 jsr166 1.82 * {@code null} if there was no mapping for the key
1311 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1312     * with the keys currently in the map
1313     * @throws NullPointerException if the specified key or value is null
1314 dl 1.1 */
1315     public V put(K key, V value) {
1316 dl 1.9 if (value == null)
1317 dl 1.1 throw new NullPointerException();
1318 dl 1.118 return doPut(key, value, false);
1319 dl 1.1 }
1320    
1321     /**
1322 jsr166 1.36 * Removes the mapping for the specified key from this map if present.
1323 dl 1.1 *
1324     * @param key key for which mapping should be removed
1325 jsr166 1.22 * @return the previous value associated with the specified key, or
1326 jsr166 1.82 * {@code null} if there was no mapping for the key
1327 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1328     * with the keys currently in the map
1329     * @throws NullPointerException if the specified key is null
1330 dl 1.1 */
1331     public V remove(Object key) {
1332 dl 1.118 return doRemove(key, null);
1333 dl 1.1 }
1334    
1335     /**
1336 jsr166 1.82 * Returns {@code true} if this map maps one or more keys to the
1337 dl 1.1 * specified value. This operation requires time linear in the
1338 dl 1.69 * map size. Additionally, it is possible for the map to change
1339     * during execution of this method, in which case the returned
1340     * result may be inaccurate.
1341 dl 1.1 *
1342 jsr166 1.22 * @param value value whose presence in this map is to be tested
1343 jsr166 1.82 * @return {@code true} if a mapping to {@code value} exists;
1344     * {@code false} otherwise
1345 jsr166 1.22 * @throws NullPointerException if the specified value is null
1346 dl 1.9 */
1347 dl 1.1 public boolean containsValue(Object value) {
1348 dl 1.9 if (value == null)
1349 dl 1.1 throw new NullPointerException();
1350 dl 1.169 Node<K,V> b, n; V v;
1351     if ((b = baseHead()) != null) {
1352     while ((n = b.next) != null) {
1353     if ((v = n.val) != null && value.equals(v))
1354     return true;
1355     else
1356     b = n;
1357     }
1358 dl 1.1 }
1359     return false;
1360     }
1361    
1362     /**
1363 dl 1.169 * {@inheritDoc}
1364 dl 1.1 */
1365     public int size() {
1366 dl 1.169 long c;
1367     return ((baseHead() == null) ? 0 :
1368     ((c = getAdderCount()) >= Integer.MAX_VALUE) ?
1369     Integer.MAX_VALUE : (int) c);
1370 dl 1.1 }
1371    
1372     /**
1373 dl 1.169 * {@inheritDoc}
1374 dl 1.1 */
1375     public boolean isEmpty() {
1376     return findFirst() == null;
1377     }
1378    
1379     /**
1380 jsr166 1.22 * Removes all of the mappings from this map.
1381 dl 1.1 */
1382 jsr166 1.165 public void clear() {
1383 dl 1.169 Index<K,V> h, r, d; Node<K,V> b;
1384     VarHandle.acquireFence();
1385     while ((h = head) != null) {
1386 dl 1.176 if ((r = h.right) != null) // remove indices
1387     RIGHT.compareAndSet(h, r, null);
1388     else if ((d = h.down) != null) // remove levels
1389     HEAD.compareAndSet(this, h, d);
1390 dl 1.169 else {
1391     long count = 0L;
1392     if ((b = h.node) != null) { // remove nodes
1393     Node<K,V> n; V v;
1394     while ((n = b.next) != null) {
1395     if ((v = n.val) != null &&
1396     VAL.compareAndSet(n, v, null)) {
1397     --count;
1398     v = null;
1399     }
1400     if (v == null)
1401     unlinkNode(b, n);
1402     }
1403 dl 1.164 }
1404 dl 1.169 if (count != 0L)
1405     addCount(count);
1406     else
1407     break;
1408 dl 1.164 }
1409     }
1410 dl 1.1 }
1411 jsr166 1.165
1412 dl 1.109 /**
1413     * If the specified key is not already associated with a value,
1414     * attempts to compute its value using the given mapping function
1415     * and enters it into this map unless {@code null}. The function
1416     * is <em>NOT</em> guaranteed to be applied once atomically only
1417     * if the value is not present.
1418     *
1419     * @param key key with which the specified value is to be associated
1420     * @param mappingFunction the function to compute a value
1421     * @return the current (existing or computed) value associated with
1422     * the specified key, or null if the computed value is null
1423     * @throws NullPointerException if the specified key is null
1424     * or the mappingFunction is null
1425     * @since 1.8
1426     */
1427 jsr166 1.110 public V computeIfAbsent(K key,
1428 dl 1.109 Function<? super K, ? extends V> mappingFunction) {
1429 jsr166 1.110 if (key == null || mappingFunction == null)
1430     throw new NullPointerException();
1431     V v, p, r;
1432 dl 1.118 if ((v = doGet(key)) == null &&
1433     (r = mappingFunction.apply(key)) != null)
1434     v = (p = doPut(key, r, true)) == null ? r : p;
1435 dl 1.109 return v;
1436     }
1437    
1438     /**
1439     * If the value for the specified key is present, attempts to
1440     * compute a new mapping given the key and its current mapped
1441     * value. The function is <em>NOT</em> guaranteed to be applied
1442     * once atomically.
1443     *
1444 dl 1.111 * @param key key with which a value may be associated
1445 dl 1.109 * @param remappingFunction the function to compute a value
1446     * @return the new value associated with the specified key, or null if none
1447     * @throws NullPointerException if the specified key is null
1448     * or the remappingFunction is null
1449     * @since 1.8
1450     */
1451 jsr166 1.110 public V computeIfPresent(K key,
1452 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1453 jsr166 1.110 if (key == null || remappingFunction == null)
1454     throw new NullPointerException();
1455 dl 1.169 Node<K,V> n; V v;
1456 dl 1.118 while ((n = findNode(key)) != null) {
1457 dl 1.169 if ((v = n.val) != null) {
1458     V r = remappingFunction.apply(key, v);
1459 dl 1.118 if (r != null) {
1460 dl 1.169 if (VAL.compareAndSet(n, v, r))
1461 dl 1.118 return r;
1462 dl 1.109 }
1463 dl 1.169 else if (doRemove(key, v) != null)
1464 dl 1.118 break;
1465 dl 1.109 }
1466 jsr166 1.110 }
1467     return null;
1468 dl 1.109 }
1469    
1470     /**
1471     * Attempts to compute a mapping for the specified key and its
1472     * current mapped value (or {@code null} if there is no current
1473     * mapping). The function is <em>NOT</em> guaranteed to be applied
1474     * once atomically.
1475     *
1476     * @param key key with which the specified value is to be associated
1477     * @param remappingFunction the function to compute a value
1478     * @return the new value associated with the specified key, or null if none
1479     * @throws NullPointerException if the specified key is null
1480     * or the remappingFunction is null
1481     * @since 1.8
1482     */
1483 jsr166 1.110 public V compute(K key,
1484 dl 1.109 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1485 jsr166 1.110 if (key == null || remappingFunction == null)
1486     throw new NullPointerException();
1487 dl 1.118 for (;;) {
1488 dl 1.169 Node<K,V> n; V v; V r;
1489 dl 1.118 if ((n = findNode(key)) == null) {
1490     if ((r = remappingFunction.apply(key, null)) == null)
1491     break;
1492 dl 1.124 if (doPut(key, r, true) == null)
1493 dl 1.118 return r;
1494     }
1495 dl 1.169 else if ((v = n.val) != null) {
1496     if ((r = remappingFunction.apply(key, v)) != null) {
1497     if (VAL.compareAndSet(n, v, r))
1498 dl 1.109 return r;
1499     }
1500 dl 1.169 else if (doRemove(key, v) != null)
1501 dl 1.118 break;
1502 dl 1.109 }
1503     }
1504 jsr166 1.110 return null;
1505 dl 1.109 }
1506    
1507     /**
1508     * If the specified key is not already associated with a value,
1509     * associates it with the given value. Otherwise, replaces the
1510     * value with the results of the given remapping function, or
1511     * removes if {@code null}. The function is <em>NOT</em>
1512     * guaranteed to be applied once atomically.
1513     *
1514     * @param key key with which the specified value is to be associated
1515     * @param value the value to use if absent
1516     * @param remappingFunction the function to recompute a value if present
1517     * @return the new value associated with the specified key, or null if none
1518     * @throws NullPointerException if the specified key or value is null
1519     * or the remappingFunction is null
1520     * @since 1.8
1521     */
1522     public V merge(K key, V value,
1523     BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1524 jsr166 1.110 if (key == null || value == null || remappingFunction == null)
1525     throw new NullPointerException();
1526 dl 1.118 for (;;) {
1527 dl 1.169 Node<K,V> n; V v; V r;
1528 dl 1.118 if ((n = findNode(key)) == null) {
1529 dl 1.124 if (doPut(key, value, true) == null)
1530 dl 1.118 return value;
1531     }
1532 dl 1.169 else if ((v = n.val) != null) {
1533     if ((r = remappingFunction.apply(v, value)) != null) {
1534     if (VAL.compareAndSet(n, v, r))
1535 dl 1.118 return r;
1536 dl 1.109 }
1537 dl 1.169 else if (doRemove(key, v) != null)
1538 dl 1.118 return null;
1539 dl 1.109 }
1540 jsr166 1.110 }
1541 dl 1.109 }
1542    
1543 dl 1.46 /* ---------------- View methods -------------- */
1544    
1545     /*
1546     * Note: Lazy initialization works for views because view classes
1547     * are stateless/immutable so it doesn't matter wrt correctness if
1548     * more than one is created (which will only rarely happen). Even
1549     * so, the following idiom conservatively ensures that the method
1550     * returns the one it created if it does so, not one created by
1551     * another racing thread.
1552     */
1553    
1554 dl 1.1 /**
1555 jsr166 1.51 * Returns a {@link NavigableSet} view of the keys contained in this map.
1556 jsr166 1.132 *
1557     * <p>The set's iterator returns the keys in ascending order.
1558     * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1559     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1560     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1561 jsr166 1.167 * key order.
1562     *
1563     * <p>The {@linkplain Spliterator#getComparator() spliterator's comparator}
1564     * is {@code null} if the {@linkplain #comparator() map's comparator}
1565     * is {@code null}.
1566 jsr166 1.132 * Otherwise, the spliterator's comparator is the same as or imposes the
1567     * same total ordering as the map's comparator.
1568     *
1569     * <p>The set is backed by the map, so changes to the map are
1570 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1571     * removal, which removes the corresponding mapping from the map,
1572 jsr166 1.51 * via the {@code Iterator.remove}, {@code Set.remove},
1573     * {@code removeAll}, {@code retainAll}, and {@code clear}
1574     * operations. It does not support the {@code add} or {@code addAll}
1575 jsr166 1.22 * operations.
1576     *
1577 jsr166 1.133 * <p>The view's iterators and spliterators are
1578     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1579 dl 1.1 *
1580 jsr166 1.51 * <p>This method is equivalent to method {@code navigableKeySet}.
1581     *
1582     * @return a navigable set view of the keys in this map
1583 dl 1.1 */
1584 jsr166 1.68 public NavigableSet<K> keySet() {
1585 jsr166 1.157 KeySet<K,V> ks;
1586     if ((ks = keySet) != null) return ks;
1587     return keySet = new KeySet<>(this);
1588 dl 1.1 }
1589    
1590 dl 1.46 public NavigableSet<K> navigableKeySet() {
1591 jsr166 1.157 KeySet<K,V> ks;
1592     if ((ks = keySet) != null) return ks;
1593     return keySet = new KeySet<>(this);
1594 dl 1.83 }
1595    
1596     /**
1597 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1598 jsr166 1.132 * <p>The collection's iterator returns the values in ascending order
1599     * of the corresponding keys. The collections's spliterator additionally
1600     * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1601     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1602     * order of the corresponding keys.
1603     *
1604     * <p>The collection is backed by the map, so changes to the map are
1605 dl 1.1 * reflected in the collection, and vice-versa. The collection
1606     * supports element removal, which removes the corresponding
1607 jsr166 1.82 * mapping from the map, via the {@code Iterator.remove},
1608     * {@code Collection.remove}, {@code removeAll},
1609     * {@code retainAll} and {@code clear} operations. It does not
1610     * support the {@code add} or {@code addAll} operations.
1611 dl 1.1 *
1612 jsr166 1.133 * <p>The view's iterators and spliterators are
1613     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1614 dl 1.1 */
1615     public Collection<V> values() {
1616 jsr166 1.157 Values<K,V> vs;
1617     if ((vs = values) != null) return vs;
1618     return values = new Values<>(this);
1619 dl 1.1 }
1620    
1621     /**
1622 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
1623 jsr166 1.132 *
1624     * <p>The set's iterator returns the entries in ascending key order. The
1625     * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1626     * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1627     * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1628     * key order.
1629     *
1630     * <p>The set is backed by the map, so changes to the map are
1631 jsr166 1.22 * reflected in the set, and vice-versa. The set supports element
1632     * removal, which removes the corresponding mapping from the map,
1633 jsr166 1.82 * via the {@code Iterator.remove}, {@code Set.remove},
1634     * {@code removeAll}, {@code retainAll} and {@code clear}
1635     * operations. It does not support the {@code add} or
1636     * {@code addAll} operations.
1637 jsr166 1.22 *
1638 jsr166 1.133 * <p>The view's iterators and spliterators are
1639     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1640 jsr166 1.132 *
1641     * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1642     * or {@code spliterator} do <em>not</em> support the {@code setValue}
1643     * operation.
1644 dl 1.1 *
1645 jsr166 1.22 * @return a set view of the mappings contained in this map,
1646     * sorted in ascending key order
1647 dl 1.1 */
1648     public Set<Map.Entry<K,V>> entrySet() {
1649 jsr166 1.157 EntrySet<K,V> es;
1650     if ((es = entrySet) != null) return es;
1651     return entrySet = new EntrySet<K,V>(this);
1652 dl 1.46 }
1653    
1654     public ConcurrentNavigableMap<K,V> descendingMap() {
1655 jsr166 1.157 ConcurrentNavigableMap<K,V> dm;
1656     if ((dm = descendingMap) != null) return dm;
1657     return descendingMap =
1658     new SubMap<K,V>(this, null, false, null, false, true);
1659 dl 1.1 }
1660    
1661 dl 1.46 public NavigableSet<K> descendingKeySet() {
1662     return descendingMap().navigableKeySet();
1663 dl 1.1 }
1664    
1665     /* ---------------- AbstractMap Overrides -------------- */
1666    
1667     /**
1668     * Compares the specified object with this map for equality.
1669 jsr166 1.82 * Returns {@code true} if the given object is also a map and the
1670 dl 1.1 * two maps represent the same mappings. More formally, two maps
1671 jsr166 1.82 * {@code m1} and {@code m2} represent the same mappings if
1672     * {@code m1.entrySet().equals(m2.entrySet())}. This
1673 dl 1.1 * operation may return misleading results if either map is
1674     * concurrently modified during execution of this method.
1675     *
1676 jsr166 1.22 * @param o object to be compared for equality with this map
1677 jsr166 1.82 * @return {@code true} if the specified object is equal to this map
1678 dl 1.1 */
1679     public boolean equals(Object o) {
1680 jsr166 1.55 if (o == this)
1681     return true;
1682     if (!(o instanceof Map))
1683     return false;
1684     Map<?,?> m = (Map<?,?>) o;
1685 dl 1.1 try {
1686 jsr166 1.178 Comparator<? super K> cmp = comparator;
1687 jsr166 1.185 // See JDK-8223553 for Iterator type wildcard rationale
1688     Iterator<? extends Map.Entry<?,?>> it = m.entrySet().iterator();
1689 dl 1.169 if (m instanceof SortedMap &&
1690 dl 1.177 ((SortedMap<?,?>)m).comparator() == cmp) {
1691 dl 1.169 Node<K,V> b, n;
1692     if ((b = baseHead()) != null) {
1693     while ((n = b.next) != null) {
1694     K k; V v;
1695     if ((v = n.val) != null && (k = n.key) != null) {
1696     if (!it.hasNext())
1697     return false;
1698     Map.Entry<?,?> e = it.next();
1699     Object mk = e.getKey();
1700     Object mv = e.getValue();
1701 dl 1.177 if (mk == null || mv == null)
1702     return false;
1703     try {
1704     if (cpr(cmp, k, mk) != 0)
1705     return false;
1706     } catch (ClassCastException cce) {
1707     return false;
1708     }
1709     if (!mv.equals(v))
1710 dl 1.169 return false;
1711     }
1712     b = n;
1713     }
1714     }
1715     return !it.hasNext();
1716     }
1717     else {
1718     while (it.hasNext()) {
1719     V v;
1720     Map.Entry<?,?> e = it.next();
1721     Object mk = e.getKey();
1722     Object mv = e.getValue();
1723     if (mk == null || mv == null ||
1724     (v = get(mk)) == null || !v.equals(mv))
1725     return false;
1726     }
1727     Node<K,V> b, n;
1728     if ((b = baseHead()) != null) {
1729     K k; V v; Object mv;
1730     while ((n = b.next) != null) {
1731     if ((v = n.val) != null && (k = n.key) != null &&
1732     ((mv = m.get(k)) == null || !mv.equals(v)))
1733     return false;
1734     b = n;
1735     }
1736     }
1737     return true;
1738 dl 1.25 }
1739 jsr166 1.182 } catch (ClassCastException | NullPointerException unused) {
1740 dl 1.1 return false;
1741     }
1742     }
1743    
1744     /* ------ ConcurrentMap API methods ------ */
1745    
1746     /**
1747 jsr166 1.22 * {@inheritDoc}
1748     *
1749     * @return the previous value associated with the specified key,
1750 jsr166 1.82 * or {@code null} if there was no mapping for the key
1751 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1752     * with the keys currently in the map
1753     * @throws NullPointerException if the specified key or value is null
1754 dl 1.1 */
1755     public V putIfAbsent(K key, V value) {
1756 dl 1.9 if (value == null)
1757 dl 1.1 throw new NullPointerException();
1758 dl 1.118 return doPut(key, value, true);
1759 dl 1.1 }
1760    
1761     /**
1762 jsr166 1.22 * {@inheritDoc}
1763     *
1764     * @throws ClassCastException if the specified key cannot be compared
1765     * with the keys currently in the map
1766 dl 1.23 * @throws NullPointerException if the specified key is null
1767 dl 1.1 */
1768     public boolean remove(Object key, Object value) {
1769 dl 1.45 if (key == null)
1770     throw new NullPointerException();
1771 dl 1.118 return value != null && doRemove(key, value) != null;
1772 dl 1.1 }
1773    
1774     /**
1775 jsr166 1.22 * {@inheritDoc}
1776     *
1777     * @throws ClassCastException if the specified key cannot be compared
1778     * with the keys currently in the map
1779     * @throws NullPointerException if any of the arguments are null
1780 dl 1.1 */
1781     public boolean replace(K key, V oldValue, V newValue) {
1782 dl 1.118 if (key == null || oldValue == null || newValue == null)
1783 dl 1.1 throw new NullPointerException();
1784     for (;;) {
1785 dl 1.169 Node<K,V> n; V v;
1786 dl 1.118 if ((n = findNode(key)) == null)
1787 dl 1.1 return false;
1788 dl 1.169 if ((v = n.val) != null) {
1789 dl 1.1 if (!oldValue.equals(v))
1790     return false;
1791 dl 1.169 if (VAL.compareAndSet(n, v, newValue))
1792 dl 1.1 return true;
1793     }
1794     }
1795     }
1796    
1797     /**
1798 jsr166 1.22 * {@inheritDoc}
1799     *
1800     * @return the previous value associated with the specified key,
1801 jsr166 1.82 * or {@code null} if there was no mapping for the key
1802 jsr166 1.22 * @throws ClassCastException if the specified key cannot be compared
1803     * with the keys currently in the map
1804     * @throws NullPointerException if the specified key or value is null
1805 dl 1.1 */
1806     public V replace(K key, V value) {
1807 dl 1.118 if (key == null || value == null)
1808 dl 1.1 throw new NullPointerException();
1809     for (;;) {
1810 dl 1.169 Node<K,V> n; V v;
1811 dl 1.118 if ((n = findNode(key)) == null)
1812 dl 1.1 return null;
1813 dl 1.169 if ((v = n.val) != null && VAL.compareAndSet(n, v, value))
1814     return v;
1815 dl 1.1 }
1816     }
1817    
1818     /* ------ SortedMap API methods ------ */
1819    
1820     public Comparator<? super K> comparator() {
1821     return comparator;
1822     }
1823    
1824     /**
1825 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
1826 dl 1.1 */
1827 dl 1.9 public K firstKey() {
1828 dl 1.1 Node<K,V> n = findFirst();
1829     if (n == null)
1830     throw new NoSuchElementException();
1831     return n.key;
1832     }
1833    
1834     /**
1835 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
1836 dl 1.1 */
1837     public K lastKey() {
1838     Node<K,V> n = findLast();
1839     if (n == null)
1840     throw new NoSuchElementException();
1841     return n.key;
1842     }
1843    
1844     /**
1845 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1846     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1847 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1848 dl 1.1 */
1849 dl 1.47 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
1850     boolean fromInclusive,
1851     K toKey,
1852     boolean toInclusive) {
1853 dl 1.1 if (fromKey == null || toKey == null)
1854     throw new NullPointerException();
1855 dl 1.46 return new SubMap<K,V>
1856     (this, fromKey, fromInclusive, toKey, toInclusive, false);
1857 dl 1.1 }
1858    
1859     /**
1860 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1861     * @throws NullPointerException if {@code toKey} is null
1862 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1863 dl 1.1 */
1864 dl 1.47 public ConcurrentNavigableMap<K,V> headMap(K toKey,
1865     boolean inclusive) {
1866 dl 1.1 if (toKey == null)
1867     throw new NullPointerException();
1868 dl 1.46 return new SubMap<K,V>
1869     (this, null, false, toKey, inclusive, false);
1870 dl 1.1 }
1871    
1872     /**
1873 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1874     * @throws NullPointerException if {@code fromKey} is null
1875 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1876 dl 1.1 */
1877 dl 1.47 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
1878     boolean inclusive) {
1879 dl 1.6 if (fromKey == null)
1880     throw new NullPointerException();
1881 dl 1.46 return new SubMap<K,V>
1882     (this, fromKey, inclusive, null, false, false);
1883 dl 1.6 }
1884    
1885     /**
1886 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1887     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1888 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1889 dl 1.6 */
1890 dl 1.37 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
1891 dl 1.47 return subMap(fromKey, true, toKey, false);
1892 dl 1.6 }
1893    
1894     /**
1895 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1896     * @throws NullPointerException if {@code toKey} is null
1897 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1898 dl 1.6 */
1899 dl 1.37 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
1900 dl 1.47 return headMap(toKey, false);
1901 dl 1.6 }
1902    
1903     /**
1904 jsr166 1.49 * @throws ClassCastException {@inheritDoc}
1905     * @throws NullPointerException if {@code fromKey} is null
1906 jsr166 1.22 * @throws IllegalArgumentException {@inheritDoc}
1907 dl 1.6 */
1908 dl 1.37 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
1909 dl 1.47 return tailMap(fromKey, true);
1910 dl 1.1 }
1911    
1912     /* ---------------- Relational operations -------------- */
1913    
1914     /**
1915 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
1916 jsr166 1.82 * strictly less than the given key, or {@code null} if there is
1917 jsr166 1.22 * no such key. The returned entry does <em>not</em> support the
1918 jsr166 1.82 * {@code Entry.setValue} method.
1919 dl 1.9 *
1920 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
1921     * @throws NullPointerException if the specified key is null
1922 dl 1.1 */
1923 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
1924 dl 1.169 return findNearEntry(key, LT, comparator);
1925 dl 1.1 }
1926    
1927     /**
1928 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
1929     * @throws NullPointerException if the specified key is null
1930 dl 1.1 */
1931 jsr166 1.22 public K lowerKey(K key) {
1932 dl 1.118 Node<K,V> n = findNear(key, LT, comparator);
1933 jsr166 1.61 return (n == null) ? null : n.key;
1934 dl 1.1 }
1935    
1936     /**
1937 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
1938 jsr166 1.82 * less than or equal to the given key, or {@code null} if there
1939 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
1940 jsr166 1.82 * the {@code Entry.setValue} method.
1941 dl 1.9 *
1942 jsr166 1.22 * @param key the key
1943     * @throws ClassCastException {@inheritDoc}
1944     * @throws NullPointerException if the specified key is null
1945 dl 1.1 */
1946 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
1947 dl 1.169 return findNearEntry(key, LT|EQ, comparator);
1948 dl 1.1 }
1949    
1950     /**
1951 jsr166 1.22 * @param key the key
1952     * @throws ClassCastException {@inheritDoc}
1953     * @throws NullPointerException if the specified key is null
1954 dl 1.1 */
1955 jsr166 1.22 public K floorKey(K key) {
1956 dl 1.118 Node<K,V> n = findNear(key, LT|EQ, comparator);
1957 jsr166 1.61 return (n == null) ? null : n.key;
1958 dl 1.1 }
1959    
1960     /**
1961 jsr166 1.22 * Returns a key-value mapping associated with the least key
1962 jsr166 1.82 * greater than or equal to the given key, or {@code null} if
1963 jsr166 1.22 * there is no such entry. The returned entry does <em>not</em>
1964 jsr166 1.82 * support the {@code Entry.setValue} method.
1965 dl 1.9 *
1966 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
1967     * @throws NullPointerException if the specified key is null
1968 dl 1.1 */
1969 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
1970 dl 1.169 return findNearEntry(key, GT|EQ, comparator);
1971 dl 1.1 }
1972    
1973     /**
1974 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
1975     * @throws NullPointerException if the specified key is null
1976 dl 1.1 */
1977 jsr166 1.22 public K ceilingKey(K key) {
1978 dl 1.118 Node<K,V> n = findNear(key, GT|EQ, comparator);
1979 jsr166 1.61 return (n == null) ? null : n.key;
1980 dl 1.1 }
1981    
1982     /**
1983     * Returns a key-value mapping associated with the least key
1984 jsr166 1.82 * strictly greater than the given key, or {@code null} if there
1985 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
1986 jsr166 1.82 * the {@code Entry.setValue} method.
1987 dl 1.9 *
1988 jsr166 1.22 * @param key the key
1989     * @throws ClassCastException {@inheritDoc}
1990     * @throws NullPointerException if the specified key is null
1991 dl 1.1 */
1992     public Map.Entry<K,V> higherEntry(K key) {
1993 dl 1.169 return findNearEntry(key, GT, comparator);
1994 dl 1.1 }
1995    
1996     /**
1997 jsr166 1.22 * @param key the key
1998     * @throws ClassCastException {@inheritDoc}
1999     * @throws NullPointerException if the specified key is null
2000 dl 1.1 */
2001     public K higherKey(K key) {
2002 dl 1.118 Node<K,V> n = findNear(key, GT, comparator);
2003 jsr166 1.61 return (n == null) ? null : n.key;
2004 dl 1.1 }
2005    
2006     /**
2007     * Returns a key-value mapping associated with the least
2008 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2009 dl 1.1 * The returned entry does <em>not</em> support
2010 jsr166 1.82 * the {@code Entry.setValue} method.
2011 dl 1.1 */
2012     public Map.Entry<K,V> firstEntry() {
2013 dl 1.169 return findFirstEntry();
2014 dl 1.1 }
2015    
2016     /**
2017     * Returns a key-value mapping associated with the greatest
2018 jsr166 1.82 * key in this map, or {@code null} if the map is empty.
2019 dl 1.1 * The returned entry does <em>not</em> support
2020 jsr166 1.82 * the {@code Entry.setValue} method.
2021 dl 1.1 */
2022     public Map.Entry<K,V> lastEntry() {
2023 dl 1.169 return findLastEntry();
2024 dl 1.1 }
2025    
2026     /**
2027     * Removes and returns a key-value mapping associated with
2028 jsr166 1.82 * the least key in this map, or {@code null} if the map is empty.
2029 dl 1.1 * The returned entry does <em>not</em> support
2030 jsr166 1.82 * the {@code Entry.setValue} method.
2031 dl 1.1 */
2032     public Map.Entry<K,V> pollFirstEntry() {
2033 dl 1.25 return doRemoveFirstEntry();
2034 dl 1.1 }
2035    
2036     /**
2037     * Removes and returns a key-value mapping associated with
2038 jsr166 1.82 * the greatest key in this map, or {@code null} if the map is empty.
2039 dl 1.1 * The returned entry does <em>not</em> support
2040 jsr166 1.82 * the {@code Entry.setValue} method.
2041 dl 1.1 */
2042     public Map.Entry<K,V> pollLastEntry() {
2043 dl 1.31 return doRemoveLastEntry();
2044 dl 1.1 }
2045    
2046     /* ---------------- Iterators -------------- */
2047    
2048     /**
2049 dl 1.169 * Base of iterator classes
2050 dl 1.1 */
2051 dl 1.46 abstract class Iter<T> implements Iterator<T> {
2052 dl 1.1 /** the last node returned by next() */
2053 jsr166 1.52 Node<K,V> lastReturned;
2054 dl 1.1 /** the next node to return from next(); */
2055     Node<K,V> next;
2056 jsr166 1.55 /** Cache of next value field to maintain weak consistency */
2057     V nextValue;
2058 dl 1.1
2059 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2060 dl 1.46 Iter() {
2061 dl 1.169 advance(baseHead());
2062 dl 1.1 }
2063    
2064 dl 1.46 public final boolean hasNext() {
2065     return next != null;
2066 dl 1.1 }
2067 dl 1.46
2068 jsr166 1.13 /** Advances next to higher entry. */
2069 dl 1.169 final void advance(Node<K,V> b) {
2070     Node<K,V> n = null;
2071     V v = null;
2072 dl 1.170 if ((lastReturned = b) != null) {
2073     while ((n = b.next) != null && (v = n.val) == null)
2074     b = n;
2075     }
2076 dl 1.169 nextValue = v;
2077     next = n;
2078 dl 1.1 }
2079    
2080 dl 1.169 public final void remove() {
2081     Node<K,V> n; K k;
2082     if ((n = lastReturned) == null || (k = n.key) == null)
2083 dl 1.1 throw new IllegalStateException();
2084     // It would not be worth all of the overhead to directly
2085     // unlink from here. Using remove is fast enough.
2086 dl 1.169 ConcurrentSkipListMap.this.remove(k);
2087 jsr166 1.55 lastReturned = null;
2088 dl 1.1 }
2089     }
2090    
2091 dl 1.46 final class ValueIterator extends Iter<V> {
2092 dl 1.9 public V next() {
2093 dl 1.169 V v;
2094     if ((v = nextValue) == null)
2095     throw new NoSuchElementException();
2096     advance(next);
2097 jsr166 1.52 return v;
2098 dl 1.1 }
2099     }
2100    
2101 dl 1.46 final class KeyIterator extends Iter<K> {
2102 dl 1.9 public K next() {
2103 dl 1.169 Node<K,V> n;
2104     if ((n = next) == null)
2105     throw new NoSuchElementException();
2106     K k = n.key;
2107     advance(n);
2108     return k;
2109 dl 1.1 }
2110     }
2111    
2112 dl 1.46 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2113     public Map.Entry<K,V> next() {
2114 dl 1.169 Node<K,V> n;
2115     if ((n = next) == null)
2116     throw new NoSuchElementException();
2117     K k = n.key;
2118 jsr166 1.52 V v = nextValue;
2119 dl 1.169 advance(n);
2120     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2121 dl 1.1 }
2122 dl 1.46 }
2123 dl 1.1
2124 dl 1.46 /* ---------------- View Classes -------------- */
2125    
2126     /*
2127     * View classes are static, delegating to a ConcurrentNavigableMap
2128     * to allow use by SubMaps, which outweighs the ugliness of
2129     * needing type-tests for Iterator methods.
2130     */
2131    
2132 jsr166 1.53 static final <E> List<E> toList(Collection<E> c) {
2133 jsr166 1.55 // Using size() here would be a pessimization.
2134 jsr166 1.90 ArrayList<E> list = new ArrayList<E>();
2135 jsr166 1.55 for (E e : c)
2136     list.add(e);
2137     return list;
2138 jsr166 1.53 }
2139    
2140 jsr166 1.147 static final class KeySet<K,V>
2141     extends AbstractSet<K> implements NavigableSet<K> {
2142     final ConcurrentNavigableMap<K,V> m;
2143     KeySet(ConcurrentNavigableMap<K,V> map) { m = map; }
2144 dl 1.46 public int size() { return m.size(); }
2145     public boolean isEmpty() { return m.isEmpty(); }
2146     public boolean contains(Object o) { return m.containsKey(o); }
2147     public boolean remove(Object o) { return m.remove(o) != null; }
2148     public void clear() { m.clear(); }
2149 jsr166 1.147 public K lower(K e) { return m.lowerKey(e); }
2150     public K floor(K e) { return m.floorKey(e); }
2151     public K ceiling(K e) { return m.ceilingKey(e); }
2152     public K higher(K e) { return m.higherKey(e); }
2153     public Comparator<? super K> comparator() { return m.comparator(); }
2154     public K first() { return m.firstKey(); }
2155     public K last() { return m.lastKey(); }
2156     public K pollFirst() {
2157     Map.Entry<K,V> e = m.pollFirstEntry();
2158 jsr166 1.61 return (e == null) ? null : e.getKey();
2159 dl 1.46 }
2160 jsr166 1.147 public K pollLast() {
2161     Map.Entry<K,V> e = m.pollLastEntry();
2162 jsr166 1.61 return (e == null) ? null : e.getKey();
2163 dl 1.46 }
2164 jsr166 1.147 public Iterator<K> iterator() {
2165 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2166     ? ((ConcurrentSkipListMap<K,V>)m).new KeyIterator()
2167     : ((SubMap<K,V>)m).new SubMapKeyIterator();
2168 dl 1.1 }
2169 dl 1.45 public boolean equals(Object o) {
2170     if (o == this)
2171     return true;
2172     if (!(o instanceof Set))
2173     return false;
2174     Collection<?> c = (Collection<?>) o;
2175     try {
2176     return containsAll(c) && c.containsAll(this);
2177 jsr166 1.180 } catch (ClassCastException | NullPointerException unused) {
2178 dl 1.45 return false;
2179     }
2180     }
2181 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2182     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2183 jsr166 1.147 public Iterator<K> descendingIterator() {
2184 dl 1.46 return descendingSet().iterator();
2185     }
2186 jsr166 1.147 public NavigableSet<K> subSet(K fromElement,
2187 dl 1.47 boolean fromInclusive,
2188 jsr166 1.147 K toElement,
2189 dl 1.47 boolean toInclusive) {
2190 jsr166 1.147 return new KeySet<>(m.subMap(fromElement, fromInclusive,
2191     toElement, toInclusive));
2192 dl 1.46 }
2193 jsr166 1.147 public NavigableSet<K> headSet(K toElement, boolean inclusive) {
2194     return new KeySet<>(m.headMap(toElement, inclusive));
2195 dl 1.46 }
2196 jsr166 1.147 public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
2197     return new KeySet<>(m.tailMap(fromElement, inclusive));
2198 dl 1.46 }
2199 jsr166 1.147 public NavigableSet<K> subSet(K fromElement, K toElement) {
2200 dl 1.47 return subSet(fromElement, true, toElement, false);
2201 dl 1.46 }
2202 jsr166 1.147 public NavigableSet<K> headSet(K toElement) {
2203 dl 1.47 return headSet(toElement, false);
2204 dl 1.46 }
2205 jsr166 1.147 public NavigableSet<K> tailSet(K fromElement) {
2206 dl 1.47 return tailSet(fromElement, true);
2207 dl 1.46 }
2208 jsr166 1.147 public NavigableSet<K> descendingSet() {
2209     return new KeySet<>(m.descendingMap());
2210 dl 1.46 }
2211 jsr166 1.150
2212 jsr166 1.147 public Spliterator<K> spliterator() {
2213 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2214     ? ((ConcurrentSkipListMap<K,V>)m).keySpliterator()
2215     : ((SubMap<K,V>)m).new SubMapKeyIterator();
2216 dl 1.100 }
2217 dl 1.1 }
2218    
2219 jsr166 1.147 static final class Values<K,V> extends AbstractCollection<V> {
2220     final ConcurrentNavigableMap<K,V> m;
2221     Values(ConcurrentNavigableMap<K,V> map) {
2222 dl 1.46 m = map;
2223 dl 1.1 }
2224 jsr166 1.147 public Iterator<V> iterator() {
2225 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2226     ? ((ConcurrentSkipListMap<K,V>)m).new ValueIterator()
2227     : ((SubMap<K,V>)m).new SubMapValueIterator();
2228 dl 1.1 }
2229 jsr166 1.147 public int size() { return m.size(); }
2230     public boolean isEmpty() { return m.isEmpty(); }
2231     public boolean contains(Object o) { return m.containsValue(o); }
2232     public void clear() { m.clear(); }
2233 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2234     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2235 jsr166 1.150
2236 jsr166 1.147 public Spliterator<V> spliterator() {
2237 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2238     ? ((ConcurrentSkipListMap<K,V>)m).valueSpliterator()
2239     : ((SubMap<K,V>)m).new SubMapValueIterator();
2240 dl 1.100 }
2241 dl 1.146
2242 jsr166 1.147 public boolean removeIf(Predicate<? super V> filter) {
2243 dl 1.146 if (filter == null) throw new NullPointerException();
2244     if (m instanceof ConcurrentSkipListMap)
2245 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).removeValueIf(filter);
2246 dl 1.146 // else use iterator
2247 jsr166 1.150 Iterator<Map.Entry<K,V>> it =
2248     ((SubMap<K,V>)m).new SubMapEntryIterator();
2249 dl 1.146 boolean removed = false;
2250     while (it.hasNext()) {
2251 jsr166 1.147 Map.Entry<K,V> e = it.next();
2252     V v = e.getValue();
2253 dl 1.146 if (filter.test(v) && m.remove(e.getKey(), v))
2254     removed = true;
2255     }
2256     return removed;
2257 dl 1.144 }
2258 dl 1.1 }
2259    
2260 jsr166 1.147 static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
2261     final ConcurrentNavigableMap<K,V> m;
2262     EntrySet(ConcurrentNavigableMap<K,V> map) {
2263 dl 1.46 m = map;
2264 dl 1.1 }
2265 jsr166 1.147 public Iterator<Map.Entry<K,V>> iterator() {
2266 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2267     ? ((ConcurrentSkipListMap<K,V>)m).new EntryIterator()
2268     : ((SubMap<K,V>)m).new SubMapEntryIterator();
2269 dl 1.46 }
2270 dl 1.47
2271 dl 1.1 public boolean contains(Object o) {
2272     if (!(o instanceof Map.Entry))
2273     return false;
2274 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2275 jsr166 1.147 V v = m.get(e.getKey());
2276 dl 1.1 return v != null && v.equals(e.getValue());
2277     }
2278     public boolean remove(Object o) {
2279     if (!(o instanceof Map.Entry))
2280     return false;
2281 jsr166 1.73 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2282 dl 1.46 return m.remove(e.getKey(),
2283 dl 1.47 e.getValue());
2284 dl 1.1 }
2285     public boolean isEmpty() {
2286 dl 1.46 return m.isEmpty();
2287 dl 1.1 }
2288     public int size() {
2289 dl 1.46 return m.size();
2290 dl 1.1 }
2291     public void clear() {
2292 dl 1.46 m.clear();
2293 dl 1.1 }
2294 dl 1.45 public boolean equals(Object o) {
2295     if (o == this)
2296     return true;
2297     if (!(o instanceof Set))
2298     return false;
2299     Collection<?> c = (Collection<?>) o;
2300     try {
2301     return containsAll(c) && c.containsAll(this);
2302 jsr166 1.180 } catch (ClassCastException | NullPointerException unused) {
2303 dl 1.45 return false;
2304     }
2305     }
2306 jsr166 1.55 public Object[] toArray() { return toList(this).toArray(); }
2307     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2308 jsr166 1.150
2309 jsr166 1.147 public Spliterator<Map.Entry<K,V>> spliterator() {
2310 jsr166 1.151 return (m instanceof ConcurrentSkipListMap)
2311     ? ((ConcurrentSkipListMap<K,V>)m).entrySpliterator()
2312     : ((SubMap<K,V>)m).new SubMapEntryIterator();
2313 dl 1.100 }
2314 jsr166 1.147 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
2315 dl 1.146 if (filter == null) throw new NullPointerException();
2316     if (m instanceof ConcurrentSkipListMap)
2317 jsr166 1.147 return ((ConcurrentSkipListMap<K,V>)m).removeEntryIf(filter);
2318 dl 1.146 // else use iterator
2319 jsr166 1.150 Iterator<Map.Entry<K,V>> it =
2320     ((SubMap<K,V>)m).new SubMapEntryIterator();
2321 dl 1.146 boolean removed = false;
2322     while (it.hasNext()) {
2323 jsr166 1.147 Map.Entry<K,V> e = it.next();
2324 dl 1.146 if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
2325     removed = true;
2326     }
2327     return removed;
2328 dl 1.143 }
2329 dl 1.1 }
2330    
2331     /**
2332     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2333 jsr166 1.149 * represent a subrange of mappings of their underlying maps.
2334     * Instances of this class support all methods of their underlying
2335     * maps, differing in that mappings outside their range are ignored,
2336     * and attempts to add mappings outside their ranges result in {@link
2337     * IllegalArgumentException}. Instances of this class are constructed
2338     * only using the {@code subMap}, {@code headMap}, and {@code tailMap}
2339     * methods of their underlying maps.
2340 jsr166 1.52 *
2341     * @serial include
2342 dl 1.1 */
2343 dl 1.46 static final class SubMap<K,V> extends AbstractMap<K,V>
2344 jsr166 1.159 implements ConcurrentNavigableMap<K,V>, Serializable {
2345 dl 1.1 private static final long serialVersionUID = -7647078645895051609L;
2346    
2347     /** Underlying map */
2348 jsr166 1.153 final ConcurrentSkipListMap<K,V> m;
2349 dl 1.1 /** lower bound key, or null if from start */
2350 jsr166 1.186 @SuppressWarnings("serial") // Conditionally serializable
2351 dl 1.46 private final K lo;
2352     /** upper bound key, or null if to end */
2353 jsr166 1.186 @SuppressWarnings("serial") // Conditionally serializable
2354 dl 1.46 private final K hi;
2355     /** inclusion flag for lo */
2356     private final boolean loInclusive;
2357     /** inclusion flag for hi */
2358     private final boolean hiInclusive;
2359     /** direction */
2360 jsr166 1.153 final boolean isDescending;
2361 dl 1.46
2362 dl 1.1 // Lazily initialized view holders
2363 jsr166 1.147 private transient KeySet<K,V> keySetView;
2364 jsr166 1.158 private transient Values<K,V> valuesView;
2365     private transient EntrySet<K,V> entrySetView;
2366 dl 1.1
2367     /**
2368 jsr166 1.87 * Creates a new submap, initializing all fields.
2369 dl 1.46 */
2370     SubMap(ConcurrentSkipListMap<K,V> map,
2371     K fromKey, boolean fromInclusive,
2372     K toKey, boolean toInclusive,
2373     boolean isDescending) {
2374 dl 1.118 Comparator<? super K> cmp = map.comparator;
2375 dl 1.47 if (fromKey != null && toKey != null &&
2376 dl 1.118 cpr(cmp, fromKey, toKey) > 0)
2377 dl 1.1 throw new IllegalArgumentException("inconsistent range");
2378     this.m = map;
2379 dl 1.46 this.lo = fromKey;
2380     this.hi = toKey;
2381     this.loInclusive = fromInclusive;
2382     this.hiInclusive = toInclusive;
2383     this.isDescending = isDescending;
2384 dl 1.1 }
2385    
2386     /* ---------------- Utilities -------------- */
2387    
2388 dl 1.118 boolean tooLow(Object key, Comparator<? super K> cmp) {
2389     int c;
2390     return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2391     (c == 0 && !loInclusive)));
2392 dl 1.1 }
2393    
2394 dl 1.118 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2395     int c;
2396     return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2397     (c == 0 && !hiInclusive)));
2398 dl 1.1 }
2399    
2400 dl 1.118 boolean inBounds(Object key, Comparator<? super K> cmp) {
2401     return !tooLow(key, cmp) && !tooHigh(key, cmp);
2402 dl 1.1 }
2403    
2404 dl 1.118 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2405 dl 1.46 if (key == null)
2406     throw new NullPointerException();
2407 dl 1.118 if (!inBounds(key, cmp))
2408 dl 1.46 throw new IllegalArgumentException("key out of range");
2409 dl 1.1 }
2410    
2411 dl 1.46 /**
2412 jsr166 1.87 * Returns true if node key is less than upper bound of range.
2413 dl 1.46 */
2414 dl 1.118 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2415     Comparator<? super K> cmp) {
2416 dl 1.46 if (n == null)
2417     return false;
2418     if (hi == null)
2419     return true;
2420     K k = n.key;
2421     if (k == null) // pass by markers and headers
2422     return true;
2423 dl 1.118 int c = cpr(cmp, k, hi);
2424 jsr166 1.179 return c < 0 || (c == 0 && hiInclusive);
2425 dl 1.1 }
2426    
2427 dl 1.46 /**
2428     * Returns lowest node. This node might not be in range, so
2429 jsr166 1.87 * most usages need to check bounds.
2430 dl 1.46 */
2431 dl 1.118 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2432 dl 1.46 if (lo == null)
2433     return m.findFirst();
2434     else if (loInclusive)
2435 dl 1.118 return m.findNear(lo, GT|EQ, cmp);
2436 dl 1.46 else
2437 dl 1.118 return m.findNear(lo, GT, cmp);
2438 dl 1.1 }
2439    
2440     /**
2441 dl 1.46 * Returns highest node. This node might not be in range, so
2442 jsr166 1.87 * most usages need to check bounds.
2443 dl 1.1 */
2444 dl 1.118 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2445 dl 1.46 if (hi == null)
2446     return m.findLast();
2447     else if (hiInclusive)
2448 dl 1.118 return m.findNear(hi, LT|EQ, cmp);
2449 dl 1.46 else
2450 dl 1.118 return m.findNear(hi, LT, cmp);
2451 dl 1.1 }
2452    
2453     /**
2454 jsr166 1.136 * Returns lowest absolute key (ignoring directionality).
2455 dl 1.1 */
2456 dl 1.118 K lowestKey() {
2457     Comparator<? super K> cmp = m.comparator;
2458     ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2459     if (isBeforeEnd(n, cmp))
2460 dl 1.46 return n.key;
2461     else
2462     throw new NoSuchElementException();
2463 dl 1.47 }
2464 dl 1.46
2465     /**
2466 jsr166 1.136 * Returns highest absolute key (ignoring directionality).
2467 dl 1.46 */
2468 dl 1.118 K highestKey() {
2469     Comparator<? super K> cmp = m.comparator;
2470     ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2471 dl 1.46 if (n != null) {
2472     K last = n.key;
2473 dl 1.118 if (inBounds(last, cmp))
2474 dl 1.46 return last;
2475     }
2476     throw new NoSuchElementException();
2477     }
2478    
2479 dl 1.118 Map.Entry<K,V> lowestEntry() {
2480     Comparator<? super K> cmp = m.comparator;
2481 dl 1.46 for (;;) {
2482 dl 1.169 ConcurrentSkipListMap.Node<K,V> n; V v;
2483     if ((n = loNode(cmp)) == null || !isBeforeEnd(n, cmp))
2484 dl 1.46 return null;
2485 dl 1.169 else if ((v = n.val) != null)
2486     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2487 dl 1.46 }
2488     }
2489    
2490 dl 1.118 Map.Entry<K,V> highestEntry() {
2491     Comparator<? super K> cmp = m.comparator;
2492 dl 1.46 for (;;) {
2493 dl 1.169 ConcurrentSkipListMap.Node<K,V> n; V v;
2494     if ((n = hiNode(cmp)) == null || !inBounds(n.key, cmp))
2495 dl 1.46 return null;
2496 dl 1.169 else if ((v = n.val) != null)
2497     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2498 dl 1.46 }
2499     }
2500    
2501 dl 1.118 Map.Entry<K,V> removeLowest() {
2502     Comparator<? super K> cmp = m.comparator;
2503 dl 1.46 for (;;) {
2504 dl 1.169 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2505     if ((n = loNode(cmp)) == null)
2506 dl 1.46 return null;
2507 dl 1.169 else if (!inBounds((k = n.key), cmp))
2508 dl 1.46 return null;
2509 dl 1.169 else if ((v = m.doRemove(k, null)) != null)
2510 dl 1.46 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2511     }
2512     }
2513    
2514 dl 1.118 Map.Entry<K,V> removeHighest() {
2515     Comparator<? super K> cmp = m.comparator;
2516 dl 1.46 for (;;) {
2517 dl 1.169 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2518     if ((n = hiNode(cmp)) == null)
2519 dl 1.46 return null;
2520 dl 1.169 else if (!inBounds((k = n.key), cmp))
2521 dl 1.46 return null;
2522 dl 1.169 else if ((v = m.doRemove(k, null)) != null)
2523 dl 1.46 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2524     }
2525 dl 1.1 }
2526    
2527     /**
2528 dl 1.169 * Submap version of ConcurrentSkipListMap.findNearEntry.
2529 dl 1.1 */
2530 dl 1.118 Map.Entry<K,V> getNearEntry(K key, int rel) {
2531     Comparator<? super K> cmp = m.comparator;
2532 dl 1.46 if (isDescending) { // adjust relation for direction
2533 jsr166 1.70 if ((rel & LT) == 0)
2534     rel |= LT;
2535 dl 1.46 else
2536 jsr166 1.70 rel &= ~LT;
2537 dl 1.46 }
2538 dl 1.118 if (tooLow(key, cmp))
2539 jsr166 1.70 return ((rel & LT) != 0) ? null : lowestEntry();
2540 dl 1.118 if (tooHigh(key, cmp))
2541 jsr166 1.70 return ((rel & LT) != 0) ? highestEntry() : null;
2542 dl 1.169 AbstractMap.SimpleImmutableEntry<K,V> e =
2543     m.findNearEntry(key, rel, cmp);
2544     if (e == null || !inBounds(e.getKey(), cmp))
2545     return null;
2546     else
2547     return e;
2548 dl 1.1 }
2549    
2550 jsr166 1.48 // Almost the same as getNearEntry, except for keys
2551 dl 1.118 K getNearKey(K key, int rel) {
2552     Comparator<? super K> cmp = m.comparator;
2553 dl 1.46 if (isDescending) { // adjust relation for direction
2554 jsr166 1.70 if ((rel & LT) == 0)
2555     rel |= LT;
2556 dl 1.46 else
2557 jsr166 1.70 rel &= ~LT;
2558 dl 1.46 }
2559 dl 1.118 if (tooLow(key, cmp)) {
2560 jsr166 1.70 if ((rel & LT) == 0) {
2561 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2562     if (isBeforeEnd(n, cmp))
2563 dl 1.46 return n.key;
2564     }
2565     return null;
2566     }
2567 dl 1.118 if (tooHigh(key, cmp)) {
2568 jsr166 1.70 if ((rel & LT) != 0) {
2569 dl 1.118 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2570 dl 1.46 if (n != null) {
2571     K last = n.key;
2572 dl 1.118 if (inBounds(last, cmp))
2573 dl 1.46 return last;
2574     }
2575     }
2576     return null;
2577     }
2578     for (;;) {
2579 dl 1.118 Node<K,V> n = m.findNear(key, rel, cmp);
2580     if (n == null || !inBounds(n.key, cmp))
2581 dl 1.46 return null;
2582 dl 1.169 if (n.val != null)
2583     return n.key;
2584 dl 1.46 }
2585     }
2586 dl 1.1
2587     /* ---------------- Map API methods -------------- */
2588    
2589     public boolean containsKey(Object key) {
2590 dl 1.46 if (key == null) throw new NullPointerException();
2591 dl 1.118 return inBounds(key, m.comparator) && m.containsKey(key);
2592 dl 1.1 }
2593    
2594     public V get(Object key) {
2595 dl 1.46 if (key == null) throw new NullPointerException();
2596 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2597 dl 1.1 }
2598    
2599     public V put(K key, V value) {
2600 dl 1.118 checkKeyBounds(key, m.comparator);
2601 dl 1.1 return m.put(key, value);
2602     }
2603    
2604     public V remove(Object key) {
2605 dl 1.118 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2606 dl 1.1 }
2607    
2608     public int size() {
2609 dl 1.118 Comparator<? super K> cmp = m.comparator;
2610 dl 1.1 long count = 0;
2611 dl 1.118 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2612     isBeforeEnd(n, cmp);
2613 dl 1.1 n = n.next) {
2614 dl 1.169 if (n.val != null)
2615 dl 1.1 ++count;
2616     }
2617 jsr166 1.61 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2618 dl 1.1 }
2619    
2620     public boolean isEmpty() {
2621 dl 1.118 Comparator<? super K> cmp = m.comparator;
2622     return !isBeforeEnd(loNode(cmp), cmp);
2623 dl 1.1 }
2624    
2625     public boolean containsValue(Object value) {
2626 dl 1.9 if (value == null)
2627 dl 1.1 throw new NullPointerException();
2628 dl 1.118 Comparator<? super K> cmp = m.comparator;
2629     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2630     isBeforeEnd(n, cmp);
2631 dl 1.1 n = n.next) {
2632 dl 1.169 V v = n.val;
2633 dl 1.1 if (v != null && value.equals(v))
2634     return true;
2635     }
2636     return false;
2637     }
2638    
2639     public void clear() {
2640 dl 1.118 Comparator<? super K> cmp = m.comparator;
2641     for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2642     isBeforeEnd(n, cmp);
2643 dl 1.1 n = n.next) {
2644 dl 1.169 if (n.val != null)
2645 dl 1.1 m.remove(n.key);
2646     }
2647     }
2648    
2649     /* ---------------- ConcurrentMap API methods -------------- */
2650    
2651     public V putIfAbsent(K key, V value) {
2652 dl 1.118 checkKeyBounds(key, m.comparator);
2653 dl 1.1 return m.putIfAbsent(key, value);
2654     }
2655    
2656     public boolean remove(Object key, Object value) {
2657 dl 1.118 return inBounds(key, m.comparator) && m.remove(key, value);
2658 dl 1.1 }
2659    
2660     public boolean replace(K key, V oldValue, V newValue) {
2661 dl 1.118 checkKeyBounds(key, m.comparator);
2662 dl 1.1 return m.replace(key, oldValue, newValue);
2663     }
2664    
2665     public V replace(K key, V value) {
2666 dl 1.118 checkKeyBounds(key, m.comparator);
2667 dl 1.1 return m.replace(key, value);
2668     }
2669    
2670     /* ---------------- SortedMap API methods -------------- */
2671    
2672     public Comparator<? super K> comparator() {
2673 dl 1.46 Comparator<? super K> cmp = m.comparator();
2674 jsr166 1.55 if (isDescending)
2675     return Collections.reverseOrder(cmp);
2676     else
2677     return cmp;
2678 dl 1.1 }
2679 dl 1.47
2680 dl 1.46 /**
2681     * Utility to create submaps, where given bounds override
2682     * unbounded(null) ones and/or are checked against bounded ones.
2683     */
2684 dl 1.118 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2685     K toKey, boolean toInclusive) {
2686     Comparator<? super K> cmp = m.comparator;
2687 dl 1.46 if (isDescending) { // flip senses
2688 dl 1.47 K tk = fromKey;
2689     fromKey = toKey;
2690 dl 1.46 toKey = tk;
2691 dl 1.47 boolean ti = fromInclusive;
2692     fromInclusive = toInclusive;
2693 dl 1.46 toInclusive = ti;
2694     }
2695     if (lo != null) {
2696     if (fromKey == null) {
2697     fromKey = lo;
2698     fromInclusive = loInclusive;
2699     }
2700     else {
2701 dl 1.118 int c = cpr(cmp, fromKey, lo);
2702 dl 1.46 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2703     throw new IllegalArgumentException("key out of range");
2704     }
2705     }
2706     if (hi != null) {
2707     if (toKey == null) {
2708     toKey = hi;
2709     toInclusive = hiInclusive;
2710     }
2711     else {
2712 dl 1.118 int c = cpr(cmp, toKey, hi);
2713 dl 1.46 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2714     throw new IllegalArgumentException("key out of range");
2715     }
2716 dl 1.1 }
2717 dl 1.47 return new SubMap<K,V>(m, fromKey, fromInclusive,
2718 dl 1.46 toKey, toInclusive, isDescending);
2719 dl 1.1 }
2720    
2721 dl 1.118 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2722     K toKey, boolean toInclusive) {
2723 dl 1.1 if (fromKey == null || toKey == null)
2724     throw new NullPointerException();
2725 dl 1.46 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2726 dl 1.1 }
2727 dl 1.47
2728 dl 1.118 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2729 dl 1.1 if (toKey == null)
2730     throw new NullPointerException();
2731 dl 1.46 return newSubMap(null, false, toKey, inclusive);
2732 dl 1.1 }
2733 dl 1.47
2734 dl 1.118 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2735 dl 1.1 if (fromKey == null)
2736     throw new NullPointerException();
2737 dl 1.46 return newSubMap(fromKey, inclusive, null, false);
2738     }
2739    
2740     public SubMap<K,V> subMap(K fromKey, K toKey) {
2741 dl 1.47 return subMap(fromKey, true, toKey, false);
2742 dl 1.1 }
2743    
2744 dl 1.46 public SubMap<K,V> headMap(K toKey) {
2745 dl 1.47 return headMap(toKey, false);
2746 dl 1.6 }
2747    
2748 dl 1.46 public SubMap<K,V> tailMap(K fromKey) {
2749 dl 1.47 return tailMap(fromKey, true);
2750 dl 1.6 }
2751    
2752 dl 1.46 public SubMap<K,V> descendingMap() {
2753 dl 1.47 return new SubMap<K,V>(m, lo, loInclusive,
2754 dl 1.46 hi, hiInclusive, !isDescending);
2755 dl 1.6 }
2756    
2757 dl 1.1 /* ---------------- Relational methods -------------- */
2758    
2759     public Map.Entry<K,V> ceilingEntry(K key) {
2760 jsr166 1.70 return getNearEntry(key, GT|EQ);
2761 dl 1.1 }
2762    
2763     public K ceilingKey(K key) {
2764 jsr166 1.70 return getNearKey(key, GT|EQ);
2765 dl 1.1 }
2766    
2767     public Map.Entry<K,V> lowerEntry(K key) {
2768 jsr166 1.70 return getNearEntry(key, LT);
2769 dl 1.1 }
2770    
2771     public K lowerKey(K key) {
2772 jsr166 1.70 return getNearKey(key, LT);
2773 dl 1.1 }
2774    
2775     public Map.Entry<K,V> floorEntry(K key) {
2776 jsr166 1.70 return getNearEntry(key, LT|EQ);
2777 dl 1.1 }
2778    
2779     public K floorKey(K key) {
2780 jsr166 1.70 return getNearKey(key, LT|EQ);
2781 dl 1.1 }
2782    
2783     public Map.Entry<K,V> higherEntry(K key) {
2784 jsr166 1.70 return getNearEntry(key, GT);
2785 dl 1.1 }
2786    
2787     public K higherKey(K key) {
2788 jsr166 1.70 return getNearKey(key, GT);
2789 dl 1.46 }
2790    
2791     public K firstKey() {
2792 jsr166 1.61 return isDescending ? highestKey() : lowestKey();
2793 dl 1.46 }
2794    
2795     public K lastKey() {
2796 jsr166 1.61 return isDescending ? lowestKey() : highestKey();
2797 dl 1.1 }
2798    
2799     public Map.Entry<K,V> firstEntry() {
2800 jsr166 1.61 return isDescending ? highestEntry() : lowestEntry();
2801 dl 1.1 }
2802    
2803     public Map.Entry<K,V> lastEntry() {
2804 jsr166 1.61 return isDescending ? lowestEntry() : highestEntry();
2805 dl 1.1 }
2806    
2807     public Map.Entry<K,V> pollFirstEntry() {
2808 jsr166 1.61 return isDescending ? removeHighest() : removeLowest();
2809 dl 1.1 }
2810    
2811     public Map.Entry<K,V> pollLastEntry() {
2812 jsr166 1.61 return isDescending ? removeLowest() : removeHighest();
2813 dl 1.1 }
2814    
2815     /* ---------------- Submap Views -------------- */
2816    
2817 jsr166 1.51 public NavigableSet<K> keySet() {
2818 jsr166 1.157 KeySet<K,V> ks;
2819     if ((ks = keySetView) != null) return ks;
2820     return keySetView = new KeySet<>(this);
2821 dl 1.1 }
2822    
2823 dl 1.46 public NavigableSet<K> navigableKeySet() {
2824 jsr166 1.157 KeySet<K,V> ks;
2825     if ((ks = keySetView) != null) return ks;
2826     return keySetView = new KeySet<>(this);
2827 dl 1.46 }
2828 dl 1.45
2829 dl 1.46 public Collection<V> values() {
2830 jsr166 1.158 Values<K,V> vs;
2831 jsr166 1.157 if ((vs = valuesView) != null) return vs;
2832     return valuesView = new Values<>(this);
2833 dl 1.1 }
2834    
2835 dl 1.46 public Set<Map.Entry<K,V>> entrySet() {
2836 jsr166 1.158 EntrySet<K,V> es;
2837 jsr166 1.157 if ((es = entrySetView) != null) return es;
2838     return entrySetView = new EntrySet<K,V>(this);
2839 dl 1.1 }
2840    
2841 dl 1.46 public NavigableSet<K> descendingKeySet() {
2842     return descendingMap().navigableKeySet();
2843 dl 1.1 }
2844    
2845 dl 1.46 /**
2846     * Variant of main Iter class to traverse through submaps.
2847 jsr166 1.148 * Also serves as back-up Spliterator for views.
2848 dl 1.46 */
2849 dl 1.100 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
2850 dl 1.46 /** the last node returned by next() */
2851 jsr166 1.52 Node<K,V> lastReturned;
2852 dl 1.46 /** the next node to return from next(); */
2853     Node<K,V> next;
2854     /** Cache of next value field to maintain weak consistency */
2855 jsr166 1.52 V nextValue;
2856 dl 1.46
2857 dl 1.47 SubMapIter() {
2858 dl 1.173 VarHandle.acquireFence();
2859 dl 1.118 Comparator<? super K> cmp = m.comparator;
2860 dl 1.46 for (;;) {
2861 dl 1.118 next = isDescending ? hiNode(cmp) : loNode(cmp);
2862 dl 1.46 if (next == null)
2863     break;
2864 dl 1.169 V x = next.val;
2865     if (x != null) {
2866 dl 1.118 if (! inBounds(next.key, cmp))
2867 dl 1.46 next = null;
2868 dl 1.169 else
2869     nextValue = x;
2870 dl 1.46 break;
2871     }
2872     }
2873 dl 1.1 }
2874 dl 1.46
2875     public final boolean hasNext() {
2876     return next != null;
2877 dl 1.1 }
2878 dl 1.46
2879     final void advance() {
2880 jsr166 1.54 if (next == null)
2881 dl 1.46 throw new NoSuchElementException();
2882 jsr166 1.55 lastReturned = next;
2883 dl 1.46 if (isDescending)
2884     descend();
2885     else
2886     ascend();
2887 dl 1.1 }
2888 dl 1.46
2889     private void ascend() {
2890 dl 1.118 Comparator<? super K> cmp = m.comparator;
2891 dl 1.46 for (;;) {
2892     next = next.next;
2893     if (next == null)
2894     break;
2895 dl 1.169 V x = next.val;
2896     if (x != null) {
2897 dl 1.118 if (tooHigh(next.key, cmp))
2898 dl 1.46 next = null;
2899 dl 1.169 else
2900     nextValue = x;
2901 dl 1.46 break;
2902     }
2903     }
2904     }
2905    
2906     private void descend() {
2907 dl 1.88 Comparator<? super K> cmp = m.comparator;
2908 dl 1.46 for (;;) {
2909 jsr166 1.125 next = m.findNear(lastReturned.key, LT, cmp);
2910 dl 1.46 if (next == null)
2911     break;
2912 dl 1.169 V x = next.val;
2913     if (x != null) {
2914 dl 1.118 if (tooLow(next.key, cmp))
2915 dl 1.46 next = null;
2916 dl 1.169 else
2917     nextValue = x;
2918 dl 1.46 break;
2919     }
2920     }
2921 dl 1.1 }
2922 dl 1.46
2923     public void remove() {
2924 jsr166 1.52 Node<K,V> l = lastReturned;
2925 dl 1.46 if (l == null)
2926     throw new IllegalStateException();
2927     m.remove(l.key);
2928 jsr166 1.55 lastReturned = null;
2929 dl 1.1 }
2930 dl 1.46
2931 dl 1.107 public Spliterator<T> trySplit() {
2932     return null;
2933 jsr166 1.108 }
2934 dl 1.107
2935 dl 1.100 public boolean tryAdvance(Consumer<? super T> action) {
2936     if (hasNext()) {
2937     action.accept(next());
2938     return true;
2939     }
2940     return false;
2941     }
2942    
2943 dl 1.113 public void forEachRemaining(Consumer<? super T> action) {
2944 dl 1.100 while (hasNext())
2945     action.accept(next());
2946     }
2947 dl 1.113
2948 jsr166 1.114 public long estimateSize() {
2949     return Long.MAX_VALUE;
2950 dl 1.113 }
2951    
2952 dl 1.46 }
2953    
2954     final class SubMapValueIterator extends SubMapIter<V> {
2955     public V next() {
2956 jsr166 1.52 V v = nextValue;
2957 dl 1.46 advance();
2958 jsr166 1.52 return v;
2959 dl 1.45 }
2960 dl 1.100 public int characteristics() {
2961     return 0;
2962     }
2963 dl 1.1 }
2964    
2965 dl 1.46 final class SubMapKeyIterator extends SubMapIter<K> {
2966     public K next() {
2967     Node<K,V> n = next;
2968     advance();
2969     return n.key;
2970     }
2971 dl 1.100 public int characteristics() {
2972     return Spliterator.DISTINCT | Spliterator.ORDERED |
2973     Spliterator.SORTED;
2974     }
2975 jsr166 1.115 public final Comparator<? super K> getComparator() {
2976 dl 1.100 return SubMap.this.comparator();
2977     }
2978 dl 1.1 }
2979    
2980 dl 1.46 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
2981     public Map.Entry<K,V> next() {
2982     Node<K,V> n = next;
2983 jsr166 1.52 V v = nextValue;
2984 dl 1.46 advance();
2985     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2986 dl 1.1 }
2987 dl 1.100 public int characteristics() {
2988     return Spliterator.DISTINCT;
2989     }
2990 dl 1.1 }
2991     }
2992 dl 1.59
2993 dl 1.123 // default Map method overrides
2994    
2995     public void forEach(BiConsumer<? super K, ? super V> action) {
2996     if (action == null) throw new NullPointerException();
2997 dl 1.169 Node<K,V> b, n; V v;
2998     if ((b = baseHead()) != null) {
2999     while ((n = b.next) != null) {
3000     if ((v = n.val) != null)
3001     action.accept(n.key, v);
3002     b = n;
3003     }
3004 dl 1.123 }
3005     }
3006    
3007     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3008     if (function == null) throw new NullPointerException();
3009 dl 1.169 Node<K,V> b, n; V v;
3010     if ((b = baseHead()) != null) {
3011     while ((n = b.next) != null) {
3012     while ((v = n.val) != null) {
3013     V r = function.apply(n.key, v);
3014     if (r == null) throw new NullPointerException();
3015     if (VAL.compareAndSet(n, v, r))
3016     break;
3017     }
3018     b = n;
3019 dl 1.123 }
3020     }
3021     }
3022    
3023 dl 1.83 /**
3024 jsr166 1.154 * Helper method for EntrySet.removeIf.
3025 dl 1.143 */
3026 jsr166 1.145 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
3027 dl 1.143 if (function == null) throw new NullPointerException();
3028     boolean removed = false;
3029 dl 1.169 Node<K,V> b, n; V v;
3030     if ((b = baseHead()) != null) {
3031     while ((n = b.next) != null) {
3032     if ((v = n.val) != null) {
3033     K k = n.key;
3034     Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
3035     if (function.test(e) && remove(k, v))
3036     removed = true;
3037     }
3038     b = n;
3039 dl 1.143 }
3040     }
3041     return removed;
3042     }
3043    
3044     /**
3045 jsr166 1.154 * Helper method for Values.removeIf.
3046 dl 1.144 */
3047     boolean removeValueIf(Predicate<? super V> function) {
3048     if (function == null) throw new NullPointerException();
3049     boolean removed = false;
3050 dl 1.169 Node<K,V> b, n; V v;
3051     if ((b = baseHead()) != null) {
3052     while ((n = b.next) != null) {
3053     if ((v = n.val) != null && function.test(v) && remove(n.key, v))
3054 dl 1.144 removed = true;
3055 dl 1.169 b = n;
3056 dl 1.144 }
3057     }
3058     return removed;
3059     }
3060    
3061     /**
3062 dl 1.83 * Base class providing common structure for Spliterators.
3063     * (Although not all that much common functionality; as usual for
3064     * view classes, details annoyingly vary in key, value, and entry
3065     * subclasses in ways that are not worth abstracting out for
3066     * internal classes.)
3067     *
3068     * The basic split strategy is to recursively descend from top
3069     * level, row by row, descending to next row when either split
3070     * off, or the end of row is encountered. Control of the number of
3071     * splits relies on some statistical estimation: The expected
3072     * remaining number of elements of a skip list when advancing
3073 dl 1.169 * either across or down decreases by about 25%.
3074 dl 1.83 */
3075 jsr166 1.119 abstract static class CSLMSpliterator<K,V> {
3076 dl 1.83 final Comparator<? super K> comparator;
3077     final K fence; // exclusive upper bound for keys, or null if to end
3078     Index<K,V> row; // the level to split out
3079     Node<K,V> current; // current traversal node; initialize at origin
3080 dl 1.169 long est; // size estimate
3081 dl 1.83 CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3082 dl 1.169 Node<K,V> origin, K fence, long est) {
3083 dl 1.83 this.comparator = comparator; this.row = row;
3084     this.current = origin; this.fence = fence; this.est = est;
3085     }
3086    
3087 dl 1.169 public final long estimateSize() { return est; }
3088 dl 1.83 }
3089    
3090     static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3091 dl 1.88 implements Spliterator<K> {
3092 dl 1.83 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3093 dl 1.169 Node<K,V> origin, K fence, long est) {
3094 dl 1.83 super(comparator, row, origin, fence, est);
3095     }
3096    
3097 jsr166 1.155 public KeySpliterator<K,V> trySplit() {
3098 dl 1.116 Node<K,V> e; K ek;
3099 dl 1.83 Comparator<? super K> cmp = comparator;
3100     K f = fence;
3101 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3102 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3103 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3104     if ((s = q.right) != null && (b = s.node) != null &&
3105 dl 1.169 (n = b.next) != null && n.val != null &&
3106 dl 1.118 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3107     (f == null || cpr(cmp, sk, f) < 0)) {
3108     current = n;
3109     Index<K,V> r = q.down;
3110     row = (s.right != null) ? s : s.down;
3111     est -= est >>> 2;
3112     return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3113 dl 1.83 }
3114     }
3115     }
3116     return null;
3117     }
3118    
3119 dl 1.113 public void forEachRemaining(Consumer<? super K> action) {
3120 dl 1.100 if (action == null) throw new NullPointerException();
3121 dl 1.118 Comparator<? super K> cmp = comparator;
3122 dl 1.83 K f = fence;
3123     Node<K,V> e = current;
3124     current = null;
3125 jsr166 1.84 for (; e != null; e = e.next) {
3126 dl 1.169 K k;
3127 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3128 dl 1.83 break;
3129 dl 1.169 if (e.val != null)
3130 dl 1.100 action.accept(k);
3131 dl 1.83 }
3132     }
3133    
3134 dl 1.100 public boolean tryAdvance(Consumer<? super K> action) {
3135     if (action == null) throw new NullPointerException();
3136 dl 1.118 Comparator<? super K> cmp = comparator;
3137     K f = fence;
3138     Node<K,V> e = current;
3139     for (; e != null; e = e.next) {
3140 dl 1.169 K k;
3141 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3142 dl 1.83 e = null;
3143     break;
3144     }
3145 dl 1.169 if (e.val != null) {
3146 dl 1.83 current = e.next;
3147 dl 1.100 action.accept(k);
3148 dl 1.83 return true;
3149     }
3150     }
3151     current = e;
3152     return false;
3153     }
3154 dl 1.100
3155     public int characteristics() {
3156 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3157 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3158 dl 1.100 Spliterator.NONNULL;
3159     }
3160    
3161 jsr166 1.115 public final Comparator<? super K> getComparator() {
3162 dl 1.100 return comparator;
3163     }
3164 dl 1.83 }
3165 jsr166 1.120 // factory method for KeySpliterator
3166 dl 1.118 final KeySpliterator<K,V> keySpliterator() {
3167 dl 1.169 Index<K,V> h; Node<K,V> n; long est;
3168     VarHandle.acquireFence();
3169     if ((h = head) == null) {
3170     n = null;
3171     est = 0L;
3172     }
3173     else {
3174     n = h.node;
3175     est = getAdderCount();
3176 dl 1.118 }
3177 dl 1.169 return new KeySpliterator<K,V>(comparator, h, n, null, est);
3178 dl 1.118 }
3179 dl 1.83
3180     static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3181 dl 1.88 implements Spliterator<V> {
3182 dl 1.83 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3183 dl 1.169 Node<K,V> origin, K fence, long est) {
3184 dl 1.83 super(comparator, row, origin, fence, est);
3185     }
3186    
3187 jsr166 1.155 public ValueSpliterator<K,V> trySplit() {
3188 dl 1.116 Node<K,V> e; K ek;
3189 dl 1.83 Comparator<? super K> cmp = comparator;
3190     K f = fence;
3191 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3192 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3193 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3194     if ((s = q.right) != null && (b = s.node) != null &&
3195 dl 1.169 (n = b.next) != null && n.val != null &&
3196 dl 1.118 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3197     (f == null || cpr(cmp, sk, f) < 0)) {
3198     current = n;
3199     Index<K,V> r = q.down;
3200     row = (s.right != null) ? s : s.down;
3201     est -= est >>> 2;
3202     return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3203 dl 1.83 }
3204     }
3205     }
3206     return null;
3207     }
3208    
3209 dl 1.113 public void forEachRemaining(Consumer<? super V> action) {
3210 dl 1.100 if (action == null) throw new NullPointerException();
3211 dl 1.118 Comparator<? super K> cmp = comparator;
3212 dl 1.83 K f = fence;
3213     Node<K,V> e = current;
3214     current = null;
3215 jsr166 1.84 for (; e != null; e = e.next) {
3216 dl 1.169 K k; V v;
3217 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3218 dl 1.83 break;
3219 dl 1.169 if ((v = e.val) != null)
3220     action.accept(v);
3221 dl 1.83 }
3222     }
3223    
3224 dl 1.100 public boolean tryAdvance(Consumer<? super V> action) {
3225     if (action == null) throw new NullPointerException();
3226 dl 1.118 Comparator<? super K> cmp = comparator;
3227     K f = fence;
3228     Node<K,V> e = current;
3229     for (; e != null; e = e.next) {
3230 dl 1.169 K k; V v;
3231 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3232 dl 1.83 e = null;
3233     break;
3234     }
3235 dl 1.169 if ((v = e.val) != null) {
3236 dl 1.83 current = e.next;
3237 dl 1.169 action.accept(v);
3238 dl 1.83 return true;
3239     }
3240     }
3241     current = e;
3242     return false;
3243     }
3244 dl 1.100
3245     public int characteristics() {
3246 jsr166 1.130 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3247     Spliterator.NONNULL;
3248 dl 1.100 }
3249 dl 1.83 }
3250    
3251 dl 1.118 // Almost the same as keySpliterator()
3252     final ValueSpliterator<K,V> valueSpliterator() {
3253 dl 1.169 Index<K,V> h; Node<K,V> n; long est;
3254     VarHandle.acquireFence();
3255     if ((h = head) == null) {
3256     n = null;
3257     est = 0L;
3258     }
3259     else {
3260     n = h.node;
3261     est = getAdderCount();
3262 dl 1.118 }
3263 dl 1.169 return new ValueSpliterator<K,V>(comparator, h, n, null, est);
3264 dl 1.118 }
3265    
3266 dl 1.83 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3267 dl 1.88 implements Spliterator<Map.Entry<K,V>> {
3268 dl 1.83 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3269 dl 1.169 Node<K,V> origin, K fence, long est) {
3270 dl 1.83 super(comparator, row, origin, fence, est);
3271     }
3272    
3273 jsr166 1.155 public EntrySpliterator<K,V> trySplit() {
3274 dl 1.116 Node<K,V> e; K ek;
3275 dl 1.83 Comparator<? super K> cmp = comparator;
3276     K f = fence;
3277 dl 1.116 if ((e = current) != null && (ek = e.key) != null) {
3278 dl 1.83 for (Index<K,V> q = row; q != null; q = row = q.down) {
3279 dl 1.118 Index<K,V> s; Node<K,V> b, n; K sk;
3280     if ((s = q.right) != null && (b = s.node) != null &&
3281 dl 1.169 (n = b.next) != null && n.val != null &&
3282 dl 1.118 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3283     (f == null || cpr(cmp, sk, f) < 0)) {
3284     current = n;
3285     Index<K,V> r = q.down;
3286     row = (s.right != null) ? s : s.down;
3287     est -= est >>> 2;
3288     return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3289 dl 1.83 }
3290     }
3291     }
3292     return null;
3293     }
3294    
3295 dl 1.113 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3296 dl 1.100 if (action == null) throw new NullPointerException();
3297 dl 1.118 Comparator<? super K> cmp = comparator;
3298 dl 1.83 K f = fence;
3299     Node<K,V> e = current;
3300     current = null;
3301 jsr166 1.84 for (; e != null; e = e.next) {
3302 dl 1.169 K k; V v;
3303 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3304 dl 1.83 break;
3305 dl 1.169 if ((v = e.val) != null) {
3306 dl 1.100 action.accept
3307 dl 1.169 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3308 dl 1.100 }
3309 dl 1.83 }
3310     }
3311    
3312 dl 1.100 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3313     if (action == null) throw new NullPointerException();
3314 dl 1.118 Comparator<? super K> cmp = comparator;
3315     K f = fence;
3316     Node<K,V> e = current;
3317     for (; e != null; e = e.next) {
3318 dl 1.169 K k; V v;
3319 dl 1.118 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3320 dl 1.83 e = null;
3321     break;
3322     }
3323 dl 1.169 if ((v = e.val) != null) {
3324 dl 1.83 current = e.next;
3325 dl 1.100 action.accept
3326 dl 1.169 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3327 dl 1.83 return true;
3328     }
3329     }
3330     current = e;
3331     return false;
3332     }
3333 dl 1.100
3334     public int characteristics() {
3335 jsr166 1.102 return Spliterator.DISTINCT | Spliterator.SORTED |
3336 jsr166 1.101 Spliterator.ORDERED | Spliterator.CONCURRENT |
3337 dl 1.100 Spliterator.NONNULL;
3338     }
3339 dl 1.113
3340     public final Comparator<Map.Entry<K,V>> getComparator() {
3341 jsr166 1.130 // Adapt or create a key-based comparator
3342     if (comparator != null) {
3343     return Map.Entry.comparingByKey(comparator);
3344     }
3345     else {
3346 jsr166 1.131 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3347 jsr166 1.130 @SuppressWarnings("unchecked")
3348     Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3349     return k1.compareTo(e2.getKey());
3350     };
3351     }
3352 dl 1.113 }
3353 dl 1.118 }
3354 dl 1.113
3355 dl 1.118 // Almost the same as keySpliterator()
3356     final EntrySpliterator<K,V> entrySpliterator() {
3357 dl 1.169 Index<K,V> h; Node<K,V> n; long est;
3358     VarHandle.acquireFence();
3359     if ((h = head) == null) {
3360     n = null;
3361     est = 0L;
3362     }
3363     else {
3364     n = h.node;
3365     est = getAdderCount();
3366 dl 1.118 }
3367 dl 1.169 return new EntrySpliterator<K,V>(comparator, h, n, null, est);
3368 dl 1.83 }
3369    
3370 jsr166 1.162 // VarHandle mechanics
3371 dl 1.160 private static final VarHandle HEAD;
3372 dl 1.169 private static final VarHandle ADDER;
3373     private static final VarHandle NEXT;
3374     private static final VarHandle VAL;
3375     private static final VarHandle RIGHT;
3376 dl 1.65 static {
3377 dl 1.59 try {
3378 dl 1.160 MethodHandles.Lookup l = MethodHandles.lookup();
3379     HEAD = l.findVarHandle(ConcurrentSkipListMap.class, "head",
3380 dl 1.169 Index.class);
3381     ADDER = l.findVarHandle(ConcurrentSkipListMap.class, "adder",
3382     LongAdder.class);
3383     NEXT = l.findVarHandle(Node.class, "next", Node.class);
3384     VAL = l.findVarHandle(Node.class, "val", Object.class);
3385     RIGHT = l.findVarHandle(Index.class, "right", Index.class);
3386 jsr166 1.140 } catch (ReflectiveOperationException e) {
3387 jsr166 1.181 throw new ExceptionInInitializerError(e);
3388 dl 1.59 }
3389     }
3390 dl 1.1 }