ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.23
Committed: Sun May 22 10:55:55 2005 UTC (19 years ago) by dl
Branch: MAIN
Changes since 1.22: +2 -2 lines
Log Message:
Make remove(x, null) consistent with CHM

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8     import java.util.*;
9     import java.util.concurrent.atomic.*;
10    
11     /**
12 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13     * The map is sorted according to the {@linkplain Comparable natural
14     * ordering} of its keys, or by a {@link Comparator} provided at map
15     * creation time, depending on which constructor is used.
16 dl 1.1 *
17     * <p>This class implements a concurrent variant of <a
18     * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
19     * expected average <i>log(n)</i> time cost for the
20     * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21     * <tt>remove</tt> operations and their variants. Insertion, removal,
22     * update, and access operations safely execute concurrently by
23     * multiple threads. Iterators are <i>weakly consistent</i>, returning
24     * elements reflecting the state of the map at some point at or since
25     * the creation of the iterator. They do <em>not</em> throw {@link
26     * ConcurrentModificationException}, and may proceed concurrently with
27     * other operations. Ascending key ordered views and their iterators
28     * are faster than descending ones.
29     *
30     * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31     * and its views represent snapshots of mappings at the time they were
32     * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33     * method. (Note however that it is possible to change mappings in the
34     * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35     * <tt>replace</tt>, depending on exactly which effect you need.)
36     *
37     * <p>Beware that, unlike in most collections, the <tt>size</tt>
38     * method is <em>not</em> a constant-time operation. Because of the
39     * asynchronous nature of these maps, determining the current number
40     * of elements requires a traversal of the elements. Additionally,
41     * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
42     * <tt>clear</tt> are <em>not</em> guaranteed to be performed
43     * atomically. For example, an iterator operating concurrently with a
44     * <tt>putAll</tt> operation might view only some of the added
45     * elements.
46     *
47     * <p>This class and its views and iterators implement all of the
48     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
49     * interfaces. Like most other concurrent collections, this class does
50 jsr166 1.22 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
51     * null return values cannot be reliably distinguished from the absence of
52     * elements.
53 dl 1.1 *
54 jsr166 1.21 * <p>This class is a member of the
55     * <a href="{@docRoot}/../guide/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58 dl 1.1 * @author Doug Lea
59     * @param <K> the type of keys maintained by this map
60 dl 1.9 * @param <V> the type of mapped values
61 jsr166 1.20 * @since 1.6
62 dl 1.1 */
63 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
64 dl 1.1 implements ConcurrentNavigableMap<K,V>,
65 dl 1.9 Cloneable,
66 dl 1.1 java.io.Serializable {
67     /*
68     * This class implements a tree-like two-dimensionally linked skip
69     * list in which the index levels are represented in separate
70     * nodes from the base nodes holding data. There are two reasons
71     * for taking this approach instead of the usual array-based
72     * structure: 1) Array based implementations seem to encounter
73     * more complexity and overhead 2) We can use cheaper algorithms
74     * for the heavily-traversed index lists than can be used for the
75     * base lists. Here's a picture of some of the basics for a
76     * possible list with 2 levels of index:
77     *
78     * Head nodes Index nodes
79 dl 1.9 * +-+ right +-+ +-+
80 dl 1.1 * |2|---------------->| |--------------------->| |->null
81 dl 1.9 * +-+ +-+ +-+
82 dl 1.1 * | down | |
83     * v v v
84 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
85 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
86 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
87 dl 1.1 * v | | | | |
88     * Nodes next v v v v v
89 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
90 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
91 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92 dl 1.1 *
93     * The base lists use a variant of the HM linked ordered set
94     * algorithm. See Tim Harris, "A pragmatic implementation of
95     * non-blocking linked lists"
96     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
97     * Michael "High Performance Dynamic Lock-Free Hash Tables and
98     * List-Based Sets"
99     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
100     * basic idea in these lists is to mark the "next" pointers of
101     * deleted nodes when deleting to avoid conflicts with concurrent
102     * insertions, and when traversing to keep track of triples
103     * (predecessor, node, successor) in order to detect when and how
104     * to unlink these deleted nodes.
105     *
106     * Rather than using mark-bits to mark list deletions (which can
107     * be slow and space-intensive using AtomicMarkedReference), nodes
108     * use direct CAS'able next pointers. On deletion, instead of
109     * marking a pointer, they splice in another node that can be
110     * thought of as standing for a marked pointer (indicating this by
111     * using otherwise impossible field values). Using plain nodes
112     * acts roughly like "boxed" implementations of marked pointers,
113     * but uses new nodes only when nodes are deleted, not for every
114     * link. This requires less space and supports faster
115     * traversal. Even if marked references were better supported by
116     * JVMs, traversal using this technique might still be faster
117     * because any search need only read ahead one more node than
118     * otherwise required (to check for trailing marker) rather than
119     * unmasking mark bits or whatever on each read.
120     *
121     * This approach maintains the essential property needed in the HM
122     * algorithm of changing the next-pointer of a deleted node so
123     * that any other CAS of it will fail, but implements the idea by
124     * changing the pointer to point to a different node, not by
125     * marking it. While it would be possible to further squeeze
126     * space by defining marker nodes not to have key/value fields, it
127     * isn't worth the extra type-testing overhead. The deletion
128     * markers are rarely encountered during traversal and are
129     * normally quickly garbage collected. (Note that this technique
130     * would not work well in systems without garbage collection.)
131     *
132     * In addition to using deletion markers, the lists also use
133     * nullness of value fields to indicate deletion, in a style
134     * similar to typical lazy-deletion schemes. If a node's value is
135     * null, then it is considered logically deleted and ignored even
136     * though it is still reachable. This maintains proper control of
137     * concurrent replace vs delete operations -- an attempted replace
138     * must fail if a delete beat it by nulling field, and a delete
139     * must return the last non-null value held in the field. (Note:
140     * Null, rather than some special marker, is used for value fields
141     * here because it just so happens to mesh with the Map API
142     * requirement that method get returns null if there is no
143     * mapping, which allows nodes to remain concurrently readable
144     * even when deleted. Using any other marker value here would be
145     * messy at best.)
146     *
147     * Here's the sequence of events for a deletion of node n with
148     * predecessor b and successor f, initially:
149     *
150 dl 1.9 * +------+ +------+ +------+
151 dl 1.1 * ... | b |------>| n |----->| f | ...
152 dl 1.9 * +------+ +------+ +------+
153 dl 1.1 *
154     * 1. CAS n's value field from non-null to null.
155     * From this point on, no public operations encountering
156     * the node consider this mapping to exist. However, other
157     * ongoing insertions and deletions might still modify
158     * n's next pointer.
159     *
160     * 2. CAS n's next pointer to point to a new marker node.
161     * From this point on, no other nodes can be appended to n.
162     * which avoids deletion errors in CAS-based linked lists.
163     *
164     * +------+ +------+ +------+ +------+
165     * ... | b |------>| n |----->|marker|------>| f | ...
166 dl 1.9 * +------+ +------+ +------+ +------+
167 dl 1.1 *
168     * 3. CAS b's next pointer over both n and its marker.
169     * From this point on, no new traversals will encounter n,
170     * and it can eventually be GCed.
171     * +------+ +------+
172     * ... | b |----------------------------------->| f | ...
173 dl 1.9 * +------+ +------+
174     *
175 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
176     * with another operation. Steps 2-3 can fail because some other
177     * thread noticed during a traversal a node with null value and
178     * helped out by marking and/or unlinking. This helping-out
179     * ensures that no thread can become stuck waiting for progress of
180     * the deleting thread. The use of marker nodes slightly
181     * complicates helping-out code because traversals must track
182     * consistent reads of up to four nodes (b, n, marker, f), not
183     * just (b, n, f), although the next field of a marker is
184     * immutable, and once a next field is CAS'ed to point to a
185     * marker, it never again changes, so this requires less care.
186     *
187     * Skip lists add indexing to this scheme, so that the base-level
188     * traversals start close to the locations being found, inserted
189     * or deleted -- usually base level traversals only traverse a few
190     * nodes. This doesn't change the basic algorithm except for the
191     * need to make sure base traversals start at predecessors (here,
192     * b) that are not (structurally) deleted, otherwise retrying
193 dl 1.9 * after processing the deletion.
194 dl 1.1 *
195     * Index levels are maintained as lists with volatile next fields,
196     * using CAS to link and unlink. Races are allowed in index-list
197     * operations that can (rarely) fail to link in a new index node
198     * or delete one. (We can't do this of course for data nodes.)
199     * However, even when this happens, the index lists remain sorted,
200     * so correctly serve as indices. This can impact performance,
201     * but since skip lists are probabilistic anyway, the net result
202     * is that under contention, the effective "p" value may be lower
203     * than its nominal value. And race windows are kept small enough
204     * that in practice these failures are rare, even under a lot of
205     * contention.
206     *
207     * The fact that retries (for both base and index lists) are
208     * relatively cheap due to indexing allows some minor
209     * simplifications of retry logic. Traversal restarts are
210     * performed after most "helping-out" CASes. This isn't always
211     * strictly necessary, but the implicit backoffs tend to help
212     * reduce other downstream failed CAS's enough to outweigh restart
213     * cost. This worsens the worst case, but seems to improve even
214     * highly contended cases.
215     *
216     * Unlike most skip-list implementations, index insertion and
217     * deletion here require a separate traversal pass occuring after
218     * the base-level action, to add or remove index nodes. This adds
219     * to single-threaded overhead, but improves contended
220     * multithreaded performance by narrowing interference windows,
221     * and allows deletion to ensure that all index nodes will be made
222     * unreachable upon return from a public remove operation, thus
223     * avoiding unwanted garbage retention. This is more important
224     * here than in some other data structures because we cannot null
225     * out node fields referencing user keys since they might still be
226     * read by other ongoing traversals.
227     *
228     * Indexing uses skip list parameters that maintain good search
229     * performance while using sparser-than-usual indices: The
230     * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
231     * that about one-quarter of the nodes have indices. Of those that
232     * do, half have one level, a quarter have two, and so on (see
233     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
234     * requirement for a map is slightly less than for the current
235     * implementation of java.util.TreeMap.
236     *
237     * Changing the level of the index (i.e, the height of the
238     * tree-like structure) also uses CAS. The head index has initial
239     * level/height of one. Creation of an index with height greater
240     * than the current level adds a level to the head index by
241     * CAS'ing on a new top-most head. To maintain good performance
242     * after a lot of removals, deletion methods heuristically try to
243     * reduce the height if the topmost levels appear to be empty.
244     * This may encounter races in which it possible (but rare) to
245     * reduce and "lose" a level just as it is about to contain an
246     * index (that will then never be encountered). This does no
247     * structural harm, and in practice appears to be a better option
248     * than allowing unrestrained growth of levels.
249     *
250     * The code for all this is more verbose than you'd like. Most
251     * operations entail locating an element (or position to insert an
252     * element). The code to do this can't be nicely factored out
253     * because subsequent uses require a snapshot of predecessor
254     * and/or successor and/or value fields which can't be returned
255     * all at once, at least not without creating yet another object
256     * to hold them -- creating such little objects is an especially
257     * bad idea for basic internal search operations because it adds
258     * to GC overhead. (This is one of the few times I've wished Java
259     * had macros.) Instead, some traversal code is interleaved within
260     * insertion and removal operations. The control logic to handle
261     * all the retry conditions is sometimes twisty. Most search is
262     * broken into 2 parts. findPredecessor() searches index nodes
263     * only, returning a base-level predecessor of the key. findNode()
264     * finishes out the base-level search. Even with this factoring,
265     * there is a fair amount of near-duplication of code to handle
266     * variants.
267     *
268     * For explanation of algorithms sharing at least a couple of
269     * features with this one, see Mikhail Fomitchev's thesis
270     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
271 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
272 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
273     *
274     * Given the use of tree-like index nodes, you might wonder why
275     * this doesn't use some kind of search tree instead, which would
276     * support somewhat faster search operations. The reason is that
277     * there are no known efficient lock-free insertion and deletion
278     * algorithms for search trees. The immutability of the "down"
279     * links of index nodes (as opposed to mutable "left" fields in
280     * true trees) makes this tractable using only CAS operations.
281     *
282     * Notation guide for local variables
283     * Node: b, n, f for predecessor, node, successor
284     * Index: q, r, d for index node, right, down.
285     * t for another index node
286     * Head: h
287     * Levels: j
288     * Keys: k, key
289     * Values: v, value
290     * Comparisons: c
291     */
292    
293     private static final long serialVersionUID = -8627078645895051609L;
294    
295     /**
296     * Special value used to identify base-level header
297 dl 1.9 */
298 dl 1.1 private static final Object BASE_HEADER = new Object();
299    
300     /**
301 dl 1.9 * The topmost head index of the skiplist.
302 dl 1.1 */
303     private transient volatile HeadIndex<K,V> head;
304    
305     /**
306 jsr166 1.10 * The comparator used to maintain order in this map, or null
307 jsr166 1.22 * if using natural ordering.
308 dl 1.1 * @serial
309     */
310     private final Comparator<? super K> comparator;
311    
312     /**
313     * Seed for simple random number generator. Not volatile since it
314     * doesn't matter too much if different threads don't see updates.
315     */
316     private transient int randomSeed;
317    
318     /** Lazily initialized key set */
319     private transient KeySet keySet;
320     /** Lazily initialized entry set */
321     private transient EntrySet entrySet;
322     /** Lazily initialized values collection */
323     private transient Values values;
324     /** Lazily initialized descending key set */
325     private transient DescendingKeySet descendingKeySet;
326     /** Lazily initialized descending entry set */
327     private transient DescendingEntrySet descendingEntrySet;
328    
329     /**
330 jsr166 1.13 * Initializes or resets state. Needed by constructors, clone,
331 dl 1.1 * clear, readObject. and ConcurrentSkipListSet.clone.
332     * (Note that comparator must be separately initialized.)
333     */
334     final void initialize() {
335     keySet = null;
336 dl 1.9 entrySet = null;
337 dl 1.1 values = null;
338     descendingEntrySet = null;
339     descendingKeySet = null;
340     randomSeed = (int) System.nanoTime();
341     head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
342     null, null, 1);
343     }
344    
345     /** Updater for casHead */
346 dl 1.9 private static final
347     AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
348 dl 1.1 headUpdater = AtomicReferenceFieldUpdater.newUpdater
349     (ConcurrentSkipListMap.class, HeadIndex.class, "head");
350    
351     /**
352     * compareAndSet head node
353     */
354     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
355     return headUpdater.compareAndSet(this, cmp, val);
356     }
357    
358     /* ---------------- Nodes -------------- */
359    
360     /**
361     * Nodes hold keys and values, and are singly linked in sorted
362     * order, possibly with some intervening marker nodes. The list is
363     * headed by a dummy node accessible as head.node. The value field
364     * is declared only as Object because it takes special non-V
365     * values for marker and header nodes.
366     */
367     static final class Node<K,V> {
368     final K key;
369     volatile Object value;
370     volatile Node<K,V> next;
371    
372     /**
373     * Creates a new regular node.
374     */
375     Node(K key, Object value, Node<K,V> next) {
376     this.key = key;
377     this.value = value;
378     this.next = next;
379     }
380    
381     /**
382     * Creates a new marker node. A marker is distinguished by
383     * having its value field point to itself. Marker nodes also
384     * have null keys, a fact that is exploited in a few places,
385     * but this doesn't distinguish markers from the base-level
386     * header node (head.node), which also has a null key.
387     */
388     Node(Node<K,V> next) {
389     this.key = null;
390     this.value = this;
391     this.next = next;
392     }
393    
394     /** Updater for casNext */
395 dl 1.9 static final AtomicReferenceFieldUpdater<Node, Node>
396 dl 1.1 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
397     (Node.class, Node.class, "next");
398    
399     /** Updater for casValue */
400 dl 1.9 static final AtomicReferenceFieldUpdater<Node, Object>
401 dl 1.1 valueUpdater = AtomicReferenceFieldUpdater.newUpdater
402     (Node.class, Object.class, "value");
403    
404     /**
405     * compareAndSet value field
406     */
407     boolean casValue(Object cmp, Object val) {
408     return valueUpdater.compareAndSet(this, cmp, val);
409     }
410    
411     /**
412     * compareAndSet next field
413     */
414     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
415     return nextUpdater.compareAndSet(this, cmp, val);
416     }
417    
418     /**
419 jsr166 1.10 * Returns true if this node is a marker. This method isn't
420     * actually called in any current code checking for markers
421 dl 1.1 * because callers will have already read value field and need
422     * to use that read (not another done here) and so directly
423     * test if value points to node.
424     * @param n a possibly null reference to a node
425     * @return true if this node is a marker node
426     */
427     boolean isMarker() {
428     return value == this;
429     }
430    
431     /**
432 jsr166 1.10 * Returns true if this node is the header of base-level list.
433 dl 1.1 * @return true if this node is header node
434     */
435     boolean isBaseHeader() {
436     return value == BASE_HEADER;
437     }
438    
439     /**
440     * Tries to append a deletion marker to this node.
441     * @param f the assumed current successor of this node
442     * @return true if successful
443     */
444     boolean appendMarker(Node<K,V> f) {
445     return casNext(f, new Node<K,V>(f));
446     }
447    
448     /**
449     * Helps out a deletion by appending marker or unlinking from
450     * predecessor. This is called during traversals when value
451     * field seen to be null.
452     * @param b predecessor
453     * @param f successor
454     */
455     void helpDelete(Node<K,V> b, Node<K,V> f) {
456     /*
457     * Rechecking links and then doing only one of the
458     * help-out stages per call tends to minimize CAS
459     * interference among helping threads.
460     */
461     if (f == next && this == b.next) {
462     if (f == null || f.value != f) // not already marked
463     appendMarker(f);
464     else
465     b.casNext(this, f.next);
466     }
467     }
468    
469     /**
470 jsr166 1.11 * Returns value if this node contains a valid key-value pair,
471 dl 1.9 * else null.
472 dl 1.1 * @return this node's value if it isn't a marker or header or
473     * is deleted, else null.
474     */
475     V getValidValue() {
476     Object v = value;
477     if (v == this || v == BASE_HEADER)
478     return null;
479     return (V)v;
480     }
481    
482     /**
483 jsr166 1.10 * Creates and returns a new SimpleImmutableEntry holding current
484     * mapping if this node holds a valid value, else null.
485 dl 1.1 * @return new entry or null
486     */
487 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
488 dl 1.1 V v = getValidValue();
489     if (v == null)
490     return null;
491 dl 1.2 return new AbstractMap.SimpleImmutableEntry(key, v);
492 dl 1.1 }
493     }
494    
495     /* ---------------- Indexing -------------- */
496    
497     /**
498     * Index nodes represent the levels of the skip list. To improve
499     * search performance, keys of the underlying nodes are cached.
500     * Note that even though both Nodes and Indexes have
501     * forward-pointing fields, they have different types and are
502     * handled in different ways, that can't nicely be captured by
503     * placing field in a shared abstract class.
504     */
505     static class Index<K,V> {
506     final K key;
507     final Node<K,V> node;
508     final Index<K,V> down;
509     volatile Index<K,V> right;
510    
511     /**
512 jsr166 1.10 * Creates index node with given values.
513 dl 1.9 */
514 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
515     this.node = node;
516     this.key = node.key;
517     this.down = down;
518     this.right = right;
519     }
520    
521     /** Updater for casRight */
522 dl 1.9 static final AtomicReferenceFieldUpdater<Index, Index>
523 dl 1.1 rightUpdater = AtomicReferenceFieldUpdater.newUpdater
524     (Index.class, Index.class, "right");
525    
526     /**
527     * compareAndSet right field
528     */
529     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
530     return rightUpdater.compareAndSet(this, cmp, val);
531     }
532    
533     /**
534     * Returns true if the node this indexes has been deleted.
535     * @return true if indexed node is known to be deleted
536     */
537     final boolean indexesDeletedNode() {
538     return node.value == null;
539     }
540    
541     /**
542     * Tries to CAS newSucc as successor. To minimize races with
543     * unlink that may lose this index node, if the node being
544     * indexed is known to be deleted, it doesn't try to link in.
545     * @param succ the expected current successor
546     * @param newSucc the new successor
547     * @return true if successful
548     */
549     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
550     Node<K,V> n = node;
551 dl 1.9 newSucc.right = succ;
552 dl 1.1 return n.value != null && casRight(succ, newSucc);
553     }
554    
555     /**
556     * Tries to CAS right field to skip over apparent successor
557     * succ. Fails (forcing a retraversal by caller) if this node
558     * is known to be deleted.
559     * @param succ the expected current successor
560     * @return true if successful
561     */
562     final boolean unlink(Index<K,V> succ) {
563     return !indexesDeletedNode() && casRight(succ, succ.right);
564     }
565     }
566    
567     /* ---------------- Head nodes -------------- */
568    
569     /**
570     * Nodes heading each level keep track of their level.
571     */
572     static final class HeadIndex<K,V> extends Index<K,V> {
573     final int level;
574     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
575     super(node, down, right);
576     this.level = level;
577     }
578 dl 1.9 }
579 dl 1.1
580     /* ---------------- Comparison utilities -------------- */
581    
582     /**
583     * Represents a key with a comparator as a Comparable.
584     *
585 jsr166 1.22 * Because most sorted collections seem to use natural ordering on
586 dl 1.1 * Comparables (Strings, Integers, etc), most internal methods are
587     * geared to use them. This is generally faster than checking
588     * per-comparison whether to use comparator or comparable because
589     * it doesn't require a (Comparable) cast for each comparison.
590     * (Optimizers can only sometimes remove such redundant checks
591     * themselves.) When Comparators are used,
592     * ComparableUsingComparators are created so that they act in the
593     * same way as natural orderings. This penalizes use of
594     * Comparators vs Comparables, which seems like the right
595     * tradeoff.
596     */
597     static final class ComparableUsingComparator<K> implements Comparable<K> {
598     final K actualKey;
599     final Comparator<? super K> cmp;
600     ComparableUsingComparator(K key, Comparator<? super K> cmp) {
601     this.actualKey = key;
602     this.cmp = cmp;
603     }
604     public int compareTo(K k2) {
605     return cmp.compare(actualKey, k2);
606     }
607     }
608    
609     /**
610     * If using comparator, return a ComparableUsingComparator, else
611     * cast key as Comparator, which may cause ClassCastException,
612     * which is propagated back to caller.
613     */
614 dl 1.9 private Comparable<? super K> comparable(Object key) throws ClassCastException {
615     if (key == null)
616 dl 1.1 throw new NullPointerException();
617 dl 1.9 return (comparator != null)
618     ? new ComparableUsingComparator(key, comparator)
619 jsr166 1.18 : (Comparable<? super K>)key;
620 dl 1.1 }
621    
622     /**
623 jsr166 1.10 * Compares using comparator or natural ordering. Used when the
624 dl 1.1 * ComparableUsingComparator approach doesn't apply.
625     */
626     int compare(K k1, K k2) throws ClassCastException {
627     Comparator<? super K> cmp = comparator;
628     if (cmp != null)
629     return cmp.compare(k1, k2);
630     else
631 jsr166 1.18 return ((Comparable<? super K>)k1).compareTo(k2);
632 dl 1.1 }
633    
634     /**
635 jsr166 1.10 * Returns true if given key greater than or equal to least and
636 dl 1.1 * strictly less than fence, bypassing either test if least or
637 dl 1.5 * fence are null. Needed mainly in submap operations.
638 dl 1.1 */
639     boolean inHalfOpenRange(K key, K least, K fence) {
640 dl 1.9 if (key == null)
641 dl 1.1 throw new NullPointerException();
642     return ((least == null || compare(key, least) >= 0) &&
643     (fence == null || compare(key, fence) < 0));
644     }
645    
646     /**
647 jsr166 1.10 * Returns true if given key greater than or equal to least and less
648 dl 1.1 * or equal to fence. Needed mainly in submap operations.
649     */
650     boolean inOpenRange(K key, K least, K fence) {
651 dl 1.9 if (key == null)
652 dl 1.1 throw new NullPointerException();
653     return ((least == null || compare(key, least) >= 0) &&
654     (fence == null || compare(key, fence) <= 0));
655     }
656    
657     /* ---------------- Traversal -------------- */
658    
659     /**
660 jsr166 1.10 * Returns a base-level node with key strictly less than given key,
661 dl 1.1 * or the base-level header if there is no such node. Also
662     * unlinks indexes to deleted nodes found along the way. Callers
663     * rely on this side-effect of clearing indices to deleted nodes.
664     * @param key the key
665 dl 1.9 * @return a predecessor of key
666 dl 1.1 */
667 dl 1.9 private Node<K,V> findPredecessor(Comparable<? super K> key) {
668 dl 1.1 for (;;) {
669     Index<K,V> q = head;
670     for (;;) {
671     Index<K,V> d, r;
672     if ((r = q.right) != null) {
673     if (r.indexesDeletedNode()) {
674     if (q.unlink(r))
675     continue; // reread r
676     else
677     break; // restart
678     }
679     if (key.compareTo(r.key) > 0) {
680     q = r;
681     continue;
682     }
683     }
684 dl 1.9 if ((d = q.down) != null)
685 dl 1.1 q = d;
686     else
687     return q.node;
688     }
689     }
690     }
691    
692     /**
693 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
694 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
695     * base-level looking for key starting at predecessor returned
696     * from findPredecessor, processing base-level deletions as
697     * encountered. Some callers rely on this side-effect of clearing
698     * deleted nodes.
699     *
700     * Restarts occur, at traversal step centered on node n, if:
701     *
702     * (1) After reading n's next field, n is no longer assumed
703     * predecessor b's current successor, which means that
704     * we don't have a consistent 3-node snapshot and so cannot
705     * unlink any subsequent deleted nodes encountered.
706     *
707     * (2) n's value field is null, indicating n is deleted, in
708     * which case we help out an ongoing structural deletion
709     * before retrying. Even though there are cases where such
710     * unlinking doesn't require restart, they aren't sorted out
711     * here because doing so would not usually outweigh cost of
712     * restarting.
713     *
714 dl 1.9 * (3) n is a marker or n's predecessor's value field is null,
715 dl 1.1 * indicating (among other possibilities) that
716     * findPredecessor returned a deleted node. We can't unlink
717     * the node because we don't know its predecessor, so rely
718     * on another call to findPredecessor to notice and return
719     * some earlier predecessor, which it will do. This check is
720     * only strictly needed at beginning of loop, (and the
721     * b.value check isn't strictly needed at all) but is done
722     * each iteration to help avoid contention with other
723     * threads by callers that will fail to be able to change
724     * links, and so will retry anyway.
725     *
726     * The traversal loops in doPut, doRemove, and findNear all
727     * include the same three kinds of checks. And specialized
728     * versions appear in doRemoveFirst, doRemoveLast, findFirst, and
729     * findLast. They can't easily share code because each uses the
730     * reads of fields held in locals occurring in the orders they
731     * were performed.
732 dl 1.9 *
733 dl 1.1 * @param key the key
734 jsr166 1.22 * @return node holding key, or null if no such
735 dl 1.1 */
736 dl 1.9 private Node<K,V> findNode(Comparable<? super K> key) {
737 dl 1.1 for (;;) {
738     Node<K,V> b = findPredecessor(key);
739     Node<K,V> n = b.next;
740     for (;;) {
741 dl 1.9 if (n == null)
742 dl 1.1 return null;
743     Node<K,V> f = n.next;
744     if (n != b.next) // inconsistent read
745     break;
746     Object v = n.value;
747     if (v == null) { // n is deleted
748     n.helpDelete(b, f);
749     break;
750     }
751     if (v == n || b.value == null) // b is deleted
752     break;
753     int c = key.compareTo(n.key);
754     if (c < 0)
755     return null;
756 dl 1.9 if (c == 0)
757 dl 1.1 return n;
758     b = n;
759     n = f;
760     }
761     }
762     }
763    
764 dl 1.9 /**
765 dl 1.1 * Specialized variant of findNode to perform Map.get. Does a weak
766     * traversal, not bothering to fix any deleted index nodes,
767     * returning early if it happens to see key in index, and passing
768     * over any deleted base nodes, falling back to getUsingFindNode
769     * only if it would otherwise return value from an ongoing
770     * deletion. Also uses "bound" to eliminate need for some
771     * comparisons (see Pugh Cookbook). Also folds uses of null checks
772     * and node-skipping because markers have null keys.
773     * @param okey the key
774     * @return the value, or null if absent
775     */
776     private V doGet(Object okey) {
777 dl 1.9 Comparable<? super K> key = comparable(okey);
778 dl 1.1 K bound = null;
779     Index<K,V> q = head;
780     for (;;) {
781     K rk;
782     Index<K,V> d, r;
783 dl 1.9 if ((r = q.right) != null &&
784 dl 1.1 (rk = r.key) != null && rk != bound) {
785     int c = key.compareTo(rk);
786     if (c > 0) {
787     q = r;
788     continue;
789     }
790     if (c == 0) {
791     Object v = r.node.value;
792     return (v != null)? (V)v : getUsingFindNode(key);
793     }
794     bound = rk;
795     }
796 dl 1.9 if ((d = q.down) != null)
797 dl 1.1 q = d;
798     else {
799     for (Node<K,V> n = q.node.next; n != null; n = n.next) {
800     K nk = n.key;
801     if (nk != null) {
802     int c = key.compareTo(nk);
803     if (c == 0) {
804     Object v = n.value;
805     return (v != null)? (V)v : getUsingFindNode(key);
806     }
807     if (c < 0)
808     return null;
809     }
810     }
811     return null;
812     }
813     }
814     }
815    
816     /**
817 jsr166 1.10 * Performs map.get via findNode. Used as a backup if doGet
818 dl 1.1 * encounters an in-progress deletion.
819     * @param key the key
820     * @return the value, or null if absent
821     */
822 dl 1.9 private V getUsingFindNode(Comparable<? super K> key) {
823 dl 1.1 /*
824     * Loop needed here and elsewhere in case value field goes
825     * null just as it is about to be returned, in which case we
826     * lost a race with a deletion, so must retry.
827     */
828     for (;;) {
829     Node<K,V> n = findNode(key);
830     if (n == null)
831     return null;
832     Object v = n.value;
833     if (v != null)
834     return (V)v;
835     }
836     }
837    
838     /* ---------------- Insertion -------------- */
839    
840     /**
841     * Main insertion method. Adds element if not present, or
842     * replaces value if present and onlyIfAbsent is false.
843 dl 1.9 * @param kkey the key
844 dl 1.1 * @param value the value that must be associated with key
845     * @param onlyIfAbsent if should not insert if already present
846     * @return the old value, or null if newly inserted
847     */
848     private V doPut(K kkey, V value, boolean onlyIfAbsent) {
849 dl 1.9 Comparable<? super K> key = comparable(kkey);
850 dl 1.1 for (;;) {
851     Node<K,V> b = findPredecessor(key);
852     Node<K,V> n = b.next;
853     for (;;) {
854     if (n != null) {
855     Node<K,V> f = n.next;
856     if (n != b.next) // inconsistent read
857     break;;
858     Object v = n.value;
859     if (v == null) { // n is deleted
860     n.helpDelete(b, f);
861     break;
862     }
863     if (v == n || b.value == null) // b is deleted
864     break;
865     int c = key.compareTo(n.key);
866     if (c > 0) {
867     b = n;
868     n = f;
869     continue;
870     }
871     if (c == 0) {
872     if (onlyIfAbsent || n.casValue(v, value))
873     return (V)v;
874     else
875     break; // restart if lost race to replace value
876     }
877     // else c < 0; fall through
878     }
879 dl 1.9
880 dl 1.1 Node<K,V> z = new Node<K,V>(kkey, value, n);
881 dl 1.9 if (!b.casNext(n, z))
882 dl 1.1 break; // restart if lost race to append to b
883 dl 1.9 int level = randomLevel();
884     if (level > 0)
885 dl 1.1 insertIndex(z, level);
886     return null;
887     }
888     }
889     }
890    
891     /**
892 jsr166 1.10 * Returns a random level for inserting a new node.
893 dl 1.1 * Hardwired to k=1, p=0.5, max 31.
894     *
895     * This uses a cheap pseudo-random function that according to
896     * http://home1.gte.net/deleyd/random/random4.html was used in
897     * Turbo Pascal. It seems the fastest usable one here. The low
898     * bits are apparently not very random (the original used only
899     * upper 16 bits) so we traverse from highest bit down (i.e., test
900     * sign), thus hardly ever use lower bits.
901     */
902     private int randomLevel() {
903     int level = 0;
904     int r = randomSeed;
905     randomSeed = r * 134775813 + 1;
906 dl 1.9 if (r < 0) {
907     while ((r <<= 1) > 0)
908 dl 1.1 ++level;
909     }
910     return level;
911     }
912    
913     /**
914 jsr166 1.11 * Creates and adds index nodes for the given node.
915 dl 1.1 * @param z the node
916     * @param level the level of the index
917     */
918     private void insertIndex(Node<K,V> z, int level) {
919     HeadIndex<K,V> h = head;
920     int max = h.level;
921    
922     if (level <= max) {
923     Index<K,V> idx = null;
924     for (int i = 1; i <= level; ++i)
925     idx = new Index<K,V>(z, idx, null);
926     addIndex(idx, h, level);
927    
928     } else { // Add a new level
929     /*
930     * To reduce interference by other threads checking for
931     * empty levels in tryReduceLevel, new levels are added
932     * with initialized right pointers. Which in turn requires
933     * keeping levels in an array to access them while
934     * creating new head index nodes from the opposite
935     * direction.
936     */
937     level = max + 1;
938     Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
939     Index<K,V> idx = null;
940 dl 1.9 for (int i = 1; i <= level; ++i)
941 dl 1.1 idxs[i] = idx = new Index<K,V>(z, idx, null);
942    
943     HeadIndex<K,V> oldh;
944     int k;
945     for (;;) {
946     oldh = head;
947     int oldLevel = oldh.level;
948     if (level <= oldLevel) { // lost race to add level
949     k = level;
950     break;
951     }
952     HeadIndex<K,V> newh = oldh;
953     Node<K,V> oldbase = oldh.node;
954 dl 1.9 for (int j = oldLevel+1; j <= level; ++j)
955 dl 1.1 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
956     if (casHead(oldh, newh)) {
957     k = oldLevel;
958     break;
959     }
960     }
961     addIndex(idxs[k], oldh, k);
962     }
963     }
964    
965     /**
966 jsr166 1.10 * Adds given index nodes from given level down to 1.
967 dl 1.1 * @param idx the topmost index node being inserted
968     * @param h the value of head to use to insert. This must be
969     * snapshotted by callers to provide correct insertion level
970     * @param indexLevel the level of the index
971     */
972     private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
973     // Track next level to insert in case of retries
974     int insertionLevel = indexLevel;
975 dl 1.9 Comparable<? super K> key = comparable(idx.key);
976 dl 1.1
977     // Similar to findPredecessor, but adding index nodes along
978     // path to key.
979     for (;;) {
980     Index<K,V> q = h;
981     Index<K,V> t = idx;
982     int j = h.level;
983     for (;;) {
984     Index<K,V> r = q.right;
985     if (r != null) {
986     // compare before deletion check avoids needing recheck
987     int c = key.compareTo(r.key);
988     if (r.indexesDeletedNode()) {
989     if (q.unlink(r))
990     continue;
991     else
992 dl 1.9 break;
993 dl 1.1 }
994     if (c > 0) {
995     q = r;
996     continue;
997     }
998     }
999    
1000     if (j == insertionLevel) {
1001     // Don't insert index if node already deleted
1002     if (t.indexesDeletedNode()) {
1003     findNode(key); // cleans up
1004     return;
1005     }
1006 dl 1.9 if (!q.link(r, t))
1007 dl 1.1 break; // restart
1008     if (--insertionLevel == 0) {
1009     // need final deletion check before return
1010 dl 1.9 if (t.indexesDeletedNode())
1011     findNode(key);
1012 dl 1.1 return;
1013     }
1014     }
1015    
1016 dl 1.9 if (j > insertionLevel && j <= indexLevel)
1017 dl 1.1 t = t.down;
1018     q = q.down;
1019     --j;
1020     }
1021     }
1022     }
1023    
1024     /* ---------------- Deletion -------------- */
1025    
1026     /**
1027     * Main deletion method. Locates node, nulls value, appends a
1028     * deletion marker, unlinks predecessor, removes associated index
1029     * nodes, and possibly reduces head index level.
1030     *
1031     * Index nodes are cleared out simply by calling findPredecessor.
1032     * which unlinks indexes to deleted nodes found along path to key,
1033     * which will include the indexes to this node. This is done
1034     * unconditionally. We can't check beforehand whether there are
1035     * index nodes because it might be the case that some or all
1036     * indexes hadn't been inserted yet for this node during initial
1037     * search for it, and we'd like to ensure lack of garbage
1038 dl 1.9 * retention, so must call to be sure.
1039 dl 1.1 *
1040     * @param okey the key
1041     * @param value if non-null, the value that must be
1042     * associated with key
1043     * @return the node, or null if not found
1044     */
1045     private V doRemove(Object okey, Object value) {
1046 dl 1.9 Comparable<? super K> key = comparable(okey);
1047     for (;;) {
1048 dl 1.1 Node<K,V> b = findPredecessor(key);
1049     Node<K,V> n = b.next;
1050     for (;;) {
1051 dl 1.9 if (n == null)
1052 dl 1.1 return null;
1053     Node<K,V> f = n.next;
1054     if (n != b.next) // inconsistent read
1055     break;
1056     Object v = n.value;
1057     if (v == null) { // n is deleted
1058     n.helpDelete(b, f);
1059     break;
1060     }
1061     if (v == n || b.value == null) // b is deleted
1062     break;
1063     int c = key.compareTo(n.key);
1064     if (c < 0)
1065     return null;
1066     if (c > 0) {
1067     b = n;
1068     n = f;
1069     continue;
1070     }
1071 dl 1.9 if (value != null && !value.equals(v))
1072     return null;
1073     if (!n.casValue(v, null))
1074 dl 1.1 break;
1075 dl 1.9 if (!n.appendMarker(f) || !b.casNext(n, f))
1076 dl 1.1 findNode(key); // Retry via findNode
1077     else {
1078     findPredecessor(key); // Clean index
1079 dl 1.9 if (head.right == null)
1080 dl 1.1 tryReduceLevel();
1081     }
1082     return (V)v;
1083     }
1084     }
1085     }
1086    
1087     /**
1088     * Possibly reduce head level if it has no nodes. This method can
1089     * (rarely) make mistakes, in which case levels can disappear even
1090     * though they are about to contain index nodes. This impacts
1091     * performance, not correctness. To minimize mistakes as well as
1092     * to reduce hysteresis, the level is reduced by one only if the
1093     * topmost three levels look empty. Also, if the removed level
1094     * looks non-empty after CAS, we try to change it back quick
1095     * before anyone notices our mistake! (This trick works pretty
1096     * well because this method will practically never make mistakes
1097     * unless current thread stalls immediately before first CAS, in
1098     * which case it is very unlikely to stall again immediately
1099     * afterwards, so will recover.)
1100     *
1101     * We put up with all this rather than just let levels grow
1102     * because otherwise, even a small map that has undergone a large
1103     * number of insertions and removals will have a lot of levels,
1104     * slowing down access more than would an occasional unwanted
1105     * reduction.
1106     */
1107     private void tryReduceLevel() {
1108     HeadIndex<K,V> h = head;
1109     HeadIndex<K,V> d;
1110     HeadIndex<K,V> e;
1111     if (h.level > 3 &&
1112 dl 1.9 (d = (HeadIndex<K,V>)h.down) != null &&
1113     (e = (HeadIndex<K,V>)d.down) != null &&
1114     e.right == null &&
1115     d.right == null &&
1116 dl 1.1 h.right == null &&
1117     casHead(h, d) && // try to set
1118     h.right != null) // recheck
1119     casHead(d, h); // try to backout
1120     }
1121    
1122     /**
1123     * Version of remove with boolean return. Needed by view classes
1124     */
1125     boolean removep(Object key) {
1126     return doRemove(key, null) != null;
1127     }
1128    
1129     /* ---------------- Finding and removing first element -------------- */
1130    
1131     /**
1132 jsr166 1.22 * Specialized variant of findNode to get first valid node.
1133 dl 1.1 * @return first node or null if empty
1134     */
1135     Node<K,V> findFirst() {
1136     for (;;) {
1137     Node<K,V> b = head.node;
1138     Node<K,V> n = b.next;
1139     if (n == null)
1140     return null;
1141 dl 1.9 if (n.value != null)
1142 dl 1.1 return n;
1143     n.helpDelete(b, n.next);
1144     }
1145     }
1146    
1147     /**
1148 jsr166 1.10 * Removes first entry; returns either its key or a snapshot.
1149 dl 1.2 * @param keyOnly if true return key, else return SimpleImmutableEntry
1150 dl 1.1 * (This is a little ugly, but avoids code duplication.)
1151     * @return null if empty, first key if keyOnly true, else key,value entry
1152     */
1153     Object doRemoveFirst(boolean keyOnly) {
1154 dl 1.9 for (;;) {
1155 dl 1.1 Node<K,V> b = head.node;
1156     Node<K,V> n = b.next;
1157 dl 1.9 if (n == null)
1158 dl 1.1 return null;
1159     Node<K,V> f = n.next;
1160     if (n != b.next)
1161     continue;
1162     Object v = n.value;
1163     if (v == null) {
1164     n.helpDelete(b, f);
1165     continue;
1166     }
1167     if (!n.casValue(v, null))
1168     continue;
1169     if (!n.appendMarker(f) || !b.casNext(n, f))
1170     findFirst(); // retry
1171     clearIndexToFirst();
1172     K key = n.key;
1173 dl 1.2 if (keyOnly)
1174     return key;
1175     else
1176     return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1177 dl 1.1 }
1178     }
1179    
1180     /**
1181 jsr166 1.10 * Clears out index nodes associated with deleted first entry.
1182     * Needed by doRemoveFirst.
1183 dl 1.1 */
1184     private void clearIndexToFirst() {
1185     for (;;) {
1186     Index<K,V> q = head;
1187     for (;;) {
1188     Index<K,V> r = q.right;
1189     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1190 dl 1.9 break;
1191 dl 1.1 if ((q = q.down) == null) {
1192 dl 1.9 if (head.right == null)
1193 dl 1.1 tryReduceLevel();
1194     return;
1195     }
1196     }
1197     }
1198     }
1199    
1200     /**
1201 jsr166 1.10 * Removes first entry; returns key or null if empty.
1202 dl 1.1 */
1203     K pollFirstKey() {
1204     return (K)doRemoveFirst(true);
1205     }
1206    
1207     /* ---------------- Finding and removing last element -------------- */
1208    
1209     /**
1210 jsr166 1.10 * Specialized version of find to get last valid node.
1211 dl 1.1 * @return last node or null if empty
1212     */
1213     Node<K,V> findLast() {
1214     /*
1215     * findPredecessor can't be used to traverse index level
1216     * because this doesn't use comparisons. So traversals of
1217     * both levels are folded together.
1218     */
1219     Index<K,V> q = head;
1220     for (;;) {
1221     Index<K,V> d, r;
1222     if ((r = q.right) != null) {
1223     if (r.indexesDeletedNode()) {
1224     q.unlink(r);
1225     q = head; // restart
1226 dl 1.9 }
1227 dl 1.1 else
1228     q = r;
1229     } else if ((d = q.down) != null) {
1230     q = d;
1231     } else {
1232     Node<K,V> b = q.node;
1233     Node<K,V> n = b.next;
1234     for (;;) {
1235 dl 1.9 if (n == null)
1236 dl 1.1 return (b.isBaseHeader())? null : b;
1237     Node<K,V> f = n.next; // inconsistent read
1238     if (n != b.next)
1239     break;
1240     Object v = n.value;
1241     if (v == null) { // n is deleted
1242     n.helpDelete(b, f);
1243     break;
1244     }
1245     if (v == n || b.value == null) // b is deleted
1246     break;
1247     b = n;
1248     n = f;
1249     }
1250     q = head; // restart
1251     }
1252     }
1253     }
1254    
1255    
1256     /**
1257     * Specialized version of doRemove for last entry.
1258 dl 1.2 * @param keyOnly if true return key, else return SimpleImmutableEntry
1259 dl 1.1 * @return null if empty, last key if keyOnly true, else key,value entry
1260     */
1261     Object doRemoveLast(boolean keyOnly) {
1262 dl 1.9 for (;;) {
1263 dl 1.1 Node<K,V> b = findPredecessorOfLast();
1264     Node<K,V> n = b.next;
1265     if (n == null) {
1266     if (b.isBaseHeader()) // empty
1267     return null;
1268 dl 1.9 else
1269 dl 1.1 continue; // all b's successors are deleted; retry
1270     }
1271     for (;;) {
1272     Node<K,V> f = n.next;
1273     if (n != b.next) // inconsistent read
1274     break;
1275     Object v = n.value;
1276     if (v == null) { // n is deleted
1277     n.helpDelete(b, f);
1278     break;
1279     }
1280     if (v == n || b.value == null) // b is deleted
1281     break;
1282     if (f != null) {
1283     b = n;
1284     n = f;
1285     continue;
1286     }
1287 dl 1.9 if (!n.casValue(v, null))
1288 dl 1.1 break;
1289     K key = n.key;
1290 dl 1.9 Comparable<? super K> ck = comparable(key);
1291     if (!n.appendMarker(f) || !b.casNext(n, f))
1292 dl 1.1 findNode(ck); // Retry via findNode
1293     else {
1294     findPredecessor(ck); // Clean index
1295 dl 1.9 if (head.right == null)
1296 dl 1.1 tryReduceLevel();
1297     }
1298 dl 1.2 if (keyOnly)
1299     return key;
1300     else
1301     return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1302 dl 1.1 }
1303     }
1304     }
1305    
1306     /**
1307     * Specialized variant of findPredecessor to get predecessor of
1308     * last valid node. Needed by doRemoveLast. It is possible that
1309     * all successors of returned node will have been deleted upon
1310     * return, in which case this method can be retried.
1311 jsr166 1.22 * @return likely predecessor of last node
1312 dl 1.1 */
1313     private Node<K,V> findPredecessorOfLast() {
1314     for (;;) {
1315     Index<K,V> q = head;
1316     for (;;) {
1317     Index<K,V> d, r;
1318     if ((r = q.right) != null) {
1319     if (r.indexesDeletedNode()) {
1320     q.unlink(r);
1321     break; // must restart
1322     }
1323     // proceed as far across as possible without overshooting
1324     if (r.node.next != null) {
1325     q = r;
1326     continue;
1327     }
1328     }
1329 dl 1.9 if ((d = q.down) != null)
1330 dl 1.1 q = d;
1331 dl 1.9 else
1332 dl 1.1 return q.node;
1333     }
1334     }
1335     }
1336    
1337     /**
1338 jsr166 1.11 * Removes last entry; returns key or null if empty.
1339 dl 1.1 */
1340     K pollLastKey() {
1341     return (K)doRemoveLast(true);
1342     }
1343    
1344     /* ---------------- Relational operations -------------- */
1345    
1346     // Control values OR'ed as arguments to findNear
1347    
1348     private static final int EQ = 1;
1349     private static final int LT = 2;
1350     private static final int GT = 0; // Actually checked as !LT
1351    
1352     /**
1353     * Utility for ceiling, floor, lower, higher methods.
1354     * @param kkey the key
1355     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1356     * @return nearest node fitting relation, or null if no such
1357     */
1358     Node<K,V> findNear(K kkey, int rel) {
1359 dl 1.9 Comparable<? super K> key = comparable(kkey);
1360 dl 1.1 for (;;) {
1361     Node<K,V> b = findPredecessor(key);
1362     Node<K,V> n = b.next;
1363     for (;;) {
1364 dl 1.9 if (n == null)
1365 dl 1.1 return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1366     Node<K,V> f = n.next;
1367     if (n != b.next) // inconsistent read
1368     break;
1369     Object v = n.value;
1370     if (v == null) { // n is deleted
1371     n.helpDelete(b, f);
1372     break;
1373     }
1374     if (v == n || b.value == null) // b is deleted
1375     break;
1376     int c = key.compareTo(n.key);
1377     if ((c == 0 && (rel & EQ) != 0) ||
1378     (c < 0 && (rel & LT) == 0))
1379     return n;
1380     if ( c <= 0 && (rel & LT) != 0)
1381     return (b.isBaseHeader())? null : b;
1382     b = n;
1383     n = f;
1384     }
1385     }
1386     }
1387    
1388     /**
1389 jsr166 1.10 * Returns SimpleImmutableEntry for results of findNear.
1390 dl 1.1 * @param kkey the key
1391     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1392     * @return Entry fitting relation, or null if no such
1393     */
1394 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> getNear(K kkey, int rel) {
1395 dl 1.1 for (;;) {
1396     Node<K,V> n = findNear(kkey, rel);
1397     if (n == null)
1398     return null;
1399 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1400 dl 1.1 if (e != null)
1401     return e;
1402     }
1403     }
1404    
1405     /**
1406 jsr166 1.10 * Returns ceiling, or first node if key is <tt>null</tt>.
1407 dl 1.1 */
1408     Node<K,V> findCeiling(K key) {
1409     return (key == null)? findFirst() : findNear(key, GT|EQ);
1410     }
1411    
1412     /**
1413 jsr166 1.10 * Returns lower node, or last node if key is <tt>null</tt>.
1414 dl 1.1 */
1415     Node<K,V> findLower(K key) {
1416     return (key == null)? findLast() : findNear(key, LT);
1417     }
1418    
1419     /**
1420 jsr166 1.10 * Returns SimpleImmutableEntry or key for results of findNear
1421 dl 1.5 * after screening to ensure result is in given range. Needed by
1422 dl 1.2 * submaps.
1423 dl 1.1 * @param kkey the key
1424     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1425     * @param least minimum allowed key value
1426     * @param fence key greater than maximum allowed key value
1427 dl 1.2 * @param keyOnly if true return key, else return SimpleImmutableEntry
1428 dl 1.1 * @return Key or Entry fitting relation, or <tt>null</tt> if no such
1429     */
1430     Object getNear(K kkey, int rel, K least, K fence, boolean keyOnly) {
1431     K key = kkey;
1432     // Don't return keys less than least
1433     if ((rel & LT) == 0) {
1434     if (compare(key, least) < 0) {
1435     key = least;
1436     rel = rel | EQ;
1437     }
1438     }
1439    
1440     for (;;) {
1441     Node<K,V> n = findNear(key, rel);
1442     if (n == null || !inHalfOpenRange(n.key, least, fence))
1443     return null;
1444     K k = n.key;
1445     V v = n.getValidValue();
1446 dl 1.2 if (v != null) {
1447     if (keyOnly)
1448     return k;
1449     else
1450     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1451     }
1452 dl 1.1 }
1453     }
1454    
1455     /**
1456 jsr166 1.10 * Finds and removes least element of subrange.
1457 dl 1.1 * @param least minimum allowed key value
1458     * @param fence key greater than maximum allowed key value
1459 dl 1.2 * @param keyOnly if true return key, else return SimpleImmutableEntry
1460 dl 1.1 * @return least Key or Entry, or <tt>null</tt> if no such
1461     */
1462     Object removeFirstEntryOfSubrange(K least, K fence, boolean keyOnly) {
1463     for (;;) {
1464     Node<K,V> n = findCeiling(least);
1465     if (n == null)
1466     return null;
1467     K k = n.key;
1468     if (fence != null && compare(k, fence) >= 0)
1469     return null;
1470     V v = doRemove(k, null);
1471 dl 1.2 if (v != null) {
1472     if (keyOnly)
1473     return k;
1474     else
1475     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1476     }
1477 dl 1.1 }
1478     }
1479    
1480     /**
1481 jsr166 1.10 * Finds and removes greatest element of subrange.
1482 dl 1.1 * @param least minimum allowed key value
1483     * @param fence key greater than maximum allowed key value
1484 dl 1.2 * @param keyOnly if true return key, else return SimpleImmutableEntry
1485 dl 1.1 * @return least Key or Entry, or <tt>null</tt> if no such
1486     */
1487     Object removeLastEntryOfSubrange(K least, K fence, boolean keyOnly) {
1488     for (;;) {
1489     Node<K,V> n = findLower(fence);
1490     if (n == null)
1491     return null;
1492     K k = n.key;
1493     if (least != null && compare(k, least) < 0)
1494     return null;
1495     V v = doRemove(k, null);
1496 dl 1.2 if (v != null) {
1497     if (keyOnly)
1498     return k;
1499     else
1500     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1501     }
1502 dl 1.1 }
1503     }
1504    
1505     /* ---------------- Constructors -------------- */
1506    
1507     /**
1508 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1509     * {@linkplain Comparable natural ordering} of the keys.
1510 dl 1.1 */
1511     public ConcurrentSkipListMap() {
1512     this.comparator = null;
1513     initialize();
1514     }
1515    
1516     /**
1517 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1518     * comparator.
1519 dl 1.1 *
1520 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1521     * If <tt>null</tt>, the {@linkplain Comparable natural
1522     * ordering} of the keys will be used.
1523 dl 1.1 */
1524 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1525     this.comparator = comparator;
1526 dl 1.1 initialize();
1527     }
1528    
1529     /**
1530     * Constructs a new map containing the same mappings as the given map,
1531 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1532     * the keys.
1533 dl 1.1 *
1534 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1535     * @throws ClassCastException if the keys in <tt>m</tt> are not
1536     * {@link Comparable}, or are not mutually comparable
1537     * @throws NullPointerException if the specified map or any of its keys
1538     * or values are null
1539 dl 1.1 */
1540     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1541     this.comparator = null;
1542     initialize();
1543     putAll(m);
1544     }
1545    
1546     /**
1547 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1548     * same ordering as the specified sorted map.
1549     *
1550 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1551 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1552     * @throws NullPointerException if the specified sorted map or any of
1553     * its keys or values are null
1554 dl 1.1 */
1555     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1556     this.comparator = m.comparator();
1557     initialize();
1558     buildFromSorted(m);
1559     }
1560    
1561     /**
1562 jsr166 1.22 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1563     * instance. (The keys and values themselves are not cloned.)
1564 dl 1.1 *
1565 jsr166 1.22 * @return a shallow copy of this map
1566 dl 1.1 */
1567 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1568 dl 1.1 ConcurrentSkipListMap<K,V> clone = null;
1569     try {
1570     clone = (ConcurrentSkipListMap<K,V>) super.clone();
1571     } catch (CloneNotSupportedException e) {
1572     throw new InternalError();
1573     }
1574    
1575     clone.initialize();
1576     clone.buildFromSorted(this);
1577     return clone;
1578     }
1579    
1580     /**
1581     * Streamlined bulk insertion to initialize from elements of
1582     * given sorted map. Call only from constructor or clone
1583     * method.
1584     */
1585     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1586     if (map == null)
1587     throw new NullPointerException();
1588    
1589     HeadIndex<K,V> h = head;
1590     Node<K,V> basepred = h.node;
1591    
1592     // Track the current rightmost node at each level. Uses an
1593     // ArrayList to avoid committing to initial or maximum level.
1594     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1595    
1596     // initialize
1597 dl 1.9 for (int i = 0; i <= h.level; ++i)
1598 dl 1.1 preds.add(null);
1599     Index<K,V> q = h;
1600     for (int i = h.level; i > 0; --i) {
1601     preds.set(i, q);
1602     q = q.down;
1603     }
1604    
1605 dl 1.9 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1606 dl 1.1 map.entrySet().iterator();
1607     while (it.hasNext()) {
1608     Map.Entry<? extends K, ? extends V> e = it.next();
1609     int j = randomLevel();
1610     if (j > h.level) j = h.level + 1;
1611     K k = e.getKey();
1612     V v = e.getValue();
1613     if (k == null || v == null)
1614     throw new NullPointerException();
1615     Node<K,V> z = new Node<K,V>(k, v, null);
1616     basepred.next = z;
1617     basepred = z;
1618     if (j > 0) {
1619     Index<K,V> idx = null;
1620     for (int i = 1; i <= j; ++i) {
1621     idx = new Index<K,V>(z, idx, null);
1622 dl 1.9 if (i > h.level)
1623 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1624    
1625     if (i < preds.size()) {
1626     preds.get(i).right = idx;
1627     preds.set(i, idx);
1628     } else
1629     preds.add(idx);
1630     }
1631     }
1632     }
1633     head = h;
1634     }
1635    
1636     /* ---------------- Serialization -------------- */
1637    
1638     /**
1639 jsr166 1.10 * Save the state of this map to a stream.
1640 dl 1.1 *
1641     * @serialData The key (Object) and value (Object) for each
1642 jsr166 1.10 * key-value mapping represented by the map, followed by
1643 dl 1.1 * <tt>null</tt>. The key-value mappings are emitted in key-order
1644     * (as determined by the Comparator, or by the keys' natural
1645     * ordering if no Comparator).
1646     */
1647     private void writeObject(java.io.ObjectOutputStream s)
1648     throws java.io.IOException {
1649     // Write out the Comparator and any hidden stuff
1650     s.defaultWriteObject();
1651    
1652     // Write out keys and values (alternating)
1653     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1654     V v = n.getValidValue();
1655     if (v != null) {
1656     s.writeObject(n.key);
1657     s.writeObject(v);
1658     }
1659     }
1660     s.writeObject(null);
1661     }
1662    
1663     /**
1664 jsr166 1.10 * Reconstitute the map from a stream.
1665 dl 1.1 */
1666     private void readObject(final java.io.ObjectInputStream s)
1667     throws java.io.IOException, ClassNotFoundException {
1668     // Read in the Comparator and any hidden stuff
1669     s.defaultReadObject();
1670     // Reset transients
1671     initialize();
1672    
1673 dl 1.9 /*
1674 dl 1.1 * This is nearly identical to buildFromSorted, but is
1675     * distinct because readObject calls can't be nicely adapted
1676     * as the kind of iterator needed by buildFromSorted. (They
1677     * can be, but doing so requires type cheats and/or creation
1678     * of adaptor classes.) It is simpler to just adapt the code.
1679     */
1680    
1681     HeadIndex<K,V> h = head;
1682     Node<K,V> basepred = h.node;
1683     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1684 dl 1.9 for (int i = 0; i <= h.level; ++i)
1685 dl 1.1 preds.add(null);
1686     Index<K,V> q = h;
1687     for (int i = h.level; i > 0; --i) {
1688     preds.set(i, q);
1689     q = q.down;
1690     }
1691    
1692     for (;;) {
1693     Object k = s.readObject();
1694     if (k == null)
1695     break;
1696     Object v = s.readObject();
1697 dl 1.9 if (v == null)
1698 dl 1.1 throw new NullPointerException();
1699     K key = (K) k;
1700     V val = (V) v;
1701     int j = randomLevel();
1702     if (j > h.level) j = h.level + 1;
1703     Node<K,V> z = new Node<K,V>(key, val, null);
1704     basepred.next = z;
1705     basepred = z;
1706     if (j > 0) {
1707     Index<K,V> idx = null;
1708     for (int i = 1; i <= j; ++i) {
1709     idx = new Index<K,V>(z, idx, null);
1710 dl 1.9 if (i > h.level)
1711 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1712    
1713     if (i < preds.size()) {
1714     preds.get(i).right = idx;
1715     preds.set(i, idx);
1716     } else
1717     preds.add(idx);
1718     }
1719     }
1720     }
1721     head = h;
1722     }
1723    
1724     /* ------ Map API methods ------ */
1725    
1726     /**
1727     * Returns <tt>true</tt> if this map contains a mapping for the specified
1728     * key.
1729 jsr166 1.22 *
1730     * @param key key whose presence in this map is to be tested
1731     * @return <tt>true</tt> if this map contains a mapping for the specified key
1732     * @throws ClassCastException if the specified key cannot be compared
1733     * with the keys currently in the map
1734     * @throws NullPointerException if the specified key is null
1735 dl 1.1 */
1736     public boolean containsKey(Object key) {
1737     return doGet(key) != null;
1738     }
1739    
1740     /**
1741 jsr166 1.22 * Returns the value to which this map maps the specified key, or
1742     * <tt>null</tt> if the map contains no mapping for the key.
1743 dl 1.1 *
1744 jsr166 1.22 * @param key key whose associated value is to be returned
1745 dl 1.1 * @return the value to which this map maps the specified key, or
1746 jsr166 1.22 * <tt>null</tt> if the map contains no mapping for the key
1747     * @throws ClassCastException if the specified key cannot be compared
1748     * with the keys currently in the map
1749     * @throws NullPointerException if the specified key is null
1750 dl 1.1 */
1751     public V get(Object key) {
1752     return doGet(key);
1753     }
1754    
1755     /**
1756     * Associates the specified value with the specified key in this map.
1757 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1758 dl 1.1 * value is replaced.
1759     *
1760 jsr166 1.22 * @param key key with which the specified value is to be associated
1761     * @param value value to be associated with the specified key
1762     * @return the previous value associated with the specified key, or
1763     * <tt>null</tt> if there was no mapping for the key
1764     * @throws ClassCastException if the specified key cannot be compared
1765     * with the keys currently in the map
1766     * @throws NullPointerException if the specified key or value is null
1767 dl 1.1 */
1768     public V put(K key, V value) {
1769 dl 1.9 if (value == null)
1770 dl 1.1 throw new NullPointerException();
1771     return doPut(key, value, false);
1772     }
1773    
1774     /**
1775 jsr166 1.22 * Removes the mapping for this key from this map if present.
1776 dl 1.1 *
1777     * @param key key for which mapping should be removed
1778 jsr166 1.22 * @return the previous value associated with the specified key, or
1779     * <tt>null</tt> if there was no mapping for the key
1780     * @throws ClassCastException if the specified key cannot be compared
1781     * with the keys currently in the map
1782     * @throws NullPointerException if the specified key is null
1783 dl 1.1 */
1784     public V remove(Object key) {
1785     return doRemove(key, null);
1786     }
1787    
1788     /**
1789     * Returns <tt>true</tt> if this map maps one or more keys to the
1790     * specified value. This operation requires time linear in the
1791 jsr166 1.10 * map size.
1792 dl 1.1 *
1793 jsr166 1.22 * @param value value whose presence in this map is to be tested
1794     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1795     * <tt>false</tt> otherwise
1796     * @throws NullPointerException if the specified value is null
1797 dl 1.9 */
1798 dl 1.1 public boolean containsValue(Object value) {
1799 dl 1.9 if (value == null)
1800 dl 1.1 throw new NullPointerException();
1801     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1802     V v = n.getValidValue();
1803     if (v != null && value.equals(v))
1804     return true;
1805     }
1806     return false;
1807     }
1808    
1809     /**
1810 dl 1.6 * Returns the number of key-value mappings in this map. If this map
1811 dl 1.1 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1812     * returns <tt>Integer.MAX_VALUE</tt>.
1813     *
1814     * <p>Beware that, unlike in most collections, this method is
1815     * <em>NOT</em> a constant-time operation. Because of the
1816     * asynchronous nature of these maps, determining the current
1817     * number of elements requires traversing them all to count them.
1818     * Additionally, it is possible for the size to change during
1819     * execution of this method, in which case the returned result
1820     * will be inaccurate. Thus, this method is typically not very
1821     * useful in concurrent applications.
1822     *
1823 jsr166 1.22 * @return the number of elements in this map
1824 dl 1.1 */
1825     public int size() {
1826     long count = 0;
1827     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1828     if (n.getValidValue() != null)
1829     ++count;
1830     }
1831     return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1832     }
1833    
1834     /**
1835     * Returns <tt>true</tt> if this map contains no key-value mappings.
1836 jsr166 1.22 * @return <tt>true</tt> if this map contains no key-value mappings
1837 dl 1.1 */
1838     public boolean isEmpty() {
1839     return findFirst() == null;
1840     }
1841    
1842     /**
1843 jsr166 1.22 * Removes all of the mappings from this map.
1844 dl 1.1 */
1845     public void clear() {
1846     initialize();
1847     }
1848    
1849     /**
1850 jsr166 1.22 * Returns a {@link Set} view of the keys contained in this map.
1851     * The set's iterator returns the keys in ascending order.
1852     * The set is backed by the map, so changes to the map are
1853     * reflected in the set, and vice-versa. The set supports element
1854     * removal, which removes the corresponding mapping from the map,
1855     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1856     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1857     * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1858     * operations.
1859     *
1860     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1861     * that will never throw {@link ConcurrentModificationException},
1862 dl 1.1 * and guarantees to traverse elements as they existed upon
1863     * construction of the iterator, and may (but is not guaranteed to)
1864     * reflect any modifications subsequent to construction.
1865     *
1866 jsr166 1.22 * @return a set view of the keys contained in this map, sorted in
1867     * ascending order
1868 dl 1.1 */
1869     public Set<K> keySet() {
1870     /*
1871 dl 1.5 * Note: Lazy initialization works here and for other views
1872 dl 1.1 * because view classes are stateless/immutable so it doesn't
1873     * matter wrt correctness if more than one is created (which
1874     * will only rarely happen). Even so, the following idiom
1875     * conservatively ensures that the method returns the one it
1876     * created if it does so, not one created by another racing
1877     * thread.
1878     */
1879     KeySet ks = keySet;
1880     return (ks != null) ? ks : (keySet = new KeySet());
1881     }
1882    
1883     /**
1884 jsr166 1.22 * Returns a {@link Set} view of the keys contained in this map.
1885     * The set's iterator returns the keys in descending order.
1886     * The set is backed by the map, so changes to the map are
1887     * reflected in the set, and vice-versa. The set supports element
1888     * removal, which removes the corresponding mapping from the map,
1889     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1890     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1891     * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1892     * operations.
1893     *
1894     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1895     * that will never throw {@link ConcurrentModificationException},
1896 dl 1.1 * and guarantees to traverse elements as they existed upon
1897 jsr166 1.22 * construction of the iterator, and may (but is not guaranteed to)
1898     * reflect any modifications subsequent to construction.
1899 dl 1.1 */
1900     public Set<K> descendingKeySet() {
1901     /*
1902 dl 1.5 * Note: Lazy initialization works here and for other views
1903 dl 1.1 * because view classes are stateless/immutable so it doesn't
1904     * matter wrt correctness if more than one is created (which
1905     * will only rarely happen). Even so, the following idiom
1906     * conservatively ensures that the method returns the one it
1907     * created if it does so, not one created by another racing
1908     * thread.
1909     */
1910     DescendingKeySet ks = descendingKeySet;
1911     return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1912     }
1913    
1914     /**
1915 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1916     * The collection's iterator returns the values in ascending order
1917     * of the corresponding keys.
1918 dl 1.1 * The collection is backed by the map, so changes to the map are
1919     * reflected in the collection, and vice-versa. The collection
1920     * supports element removal, which removes the corresponding
1921 jsr166 1.22 * mapping from the map, via the <tt>Iterator.remove</tt>,
1922 dl 1.1 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1923 jsr166 1.22 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
1924     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1925 dl 1.1 *
1926 jsr166 1.22 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1927     * that will never throw {@link ConcurrentModificationException},
1928     * and guarantees to traverse elements as they existed upon
1929     * construction of the iterator, and may (but is not guaranteed to)
1930     * reflect any modifications subsequent to construction.
1931 dl 1.1 */
1932     public Collection<V> values() {
1933     Values vs = values;
1934     return (vs != null) ? vs : (values = new Values());
1935     }
1936    
1937     /**
1938 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
1939     * The set's iterator returns the entries in ascending key order.
1940     * The set is backed by the map, so changes to the map are
1941     * reflected in the set, and vice-versa. The set supports element
1942     * removal, which removes the corresponding mapping from the map,
1943     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1944     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1945 dl 1.1 * operations. It does not support the <tt>add</tt> or
1946 jsr166 1.22 * <tt>addAll</tt> operations.
1947     *
1948     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1949     * that will never throw {@link ConcurrentModificationException},
1950     * and guarantees to traverse elements as they existed upon
1951     * construction of the iterator, and may (but is not guaranteed to)
1952     * reflect any modifications subsequent to construction.
1953     *
1954     * <p>The <tt>Map.Entry</tt> elements returned by
1955 dl 1.1 * <tt>iterator.next()</tt> do <em>not</em> support the
1956     * <tt>setValue</tt> operation.
1957     *
1958 jsr166 1.22 * @return a set view of the mappings contained in this map,
1959     * sorted in ascending key order
1960 dl 1.1 */
1961     public Set<Map.Entry<K,V>> entrySet() {
1962     EntrySet es = entrySet;
1963     return (es != null) ? es : (entrySet = new EntrySet());
1964     }
1965    
1966     /**
1967 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
1968     * The set's iterator returns the entries in descending key order.
1969     * The set is backed by the map, so changes to the map are
1970     * reflected in the set, and vice-versa. The set supports element
1971 dl 1.1 * removal, which removes the corresponding mapping from the map,
1972 jsr166 1.22 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1973     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1974 dl 1.1 * operations. It does not support the <tt>add</tt> or
1975 jsr166 1.22 * <tt>addAll</tt> operations.
1976     *
1977     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1978     * that will never throw {@link ConcurrentModificationException},
1979     * and guarantees to traverse elements as they existed upon
1980     * construction of the iterator, and may (but is not guaranteed to)
1981     * reflect any modifications subsequent to construction.
1982     *
1983     * <p>The <tt>Map.Entry</tt> elements returned by
1984 dl 1.1 * <tt>iterator.next()</tt> do <em>not</em> support the
1985     * <tt>setValue</tt> operation.
1986     */
1987     public Set<Map.Entry<K,V>> descendingEntrySet() {
1988     DescendingEntrySet es = descendingEntrySet;
1989     return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
1990     }
1991    
1992     /* ---------------- AbstractMap Overrides -------------- */
1993    
1994     /**
1995     * Compares the specified object with this map for equality.
1996     * Returns <tt>true</tt> if the given object is also a map and the
1997     * two maps represent the same mappings. More formally, two maps
1998 jsr166 1.22 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
1999     * <tt>m1.keySet().equals(m2.keySet())</tt> and for every key
2000     * <tt>k</tt> in <tt>m1.keySet()</tt>, <tt> (m1.get(k)==null ?
2001     * m2.get(k)==null : m1.get(k).equals(m2.get(k))) </tt>. This
2002 dl 1.1 * operation may return misleading results if either map is
2003     * concurrently modified during execution of this method.
2004     *
2005 jsr166 1.22 * @param o object to be compared for equality with this map
2006     * @return <tt>true</tt> if the specified object is equal to this map
2007 dl 1.1 */
2008     public boolean equals(Object o) {
2009     if (o == this)
2010     return true;
2011     if (!(o instanceof Map))
2012     return false;
2013     Map<K,V> t = (Map<K,V>) o;
2014     try {
2015 dl 1.9 return (containsAllMappings(this, t) &&
2016 dl 1.1 containsAllMappings(t, this));
2017 jsr166 1.15 } catch (ClassCastException unused) {
2018 dl 1.1 return false;
2019 jsr166 1.15 } catch (NullPointerException unused) {
2020 dl 1.1 return false;
2021     }
2022     }
2023    
2024     /**
2025     * Helper for equals -- check for containment, avoiding nulls.
2026     */
2027     static <K,V> boolean containsAllMappings(Map<K,V> a, Map<K,V> b) {
2028     Iterator<Entry<K,V>> it = b.entrySet().iterator();
2029     while (it.hasNext()) {
2030     Entry<K,V> e = it.next();
2031     Object k = e.getKey();
2032     Object v = e.getValue();
2033 dl 1.9 if (k == null || v == null || !v.equals(a.get(k)))
2034 dl 1.1 return false;
2035     }
2036     return true;
2037     }
2038    
2039     /* ------ ConcurrentMap API methods ------ */
2040    
2041     /**
2042 jsr166 1.22 * {@inheritDoc}
2043     *
2044     * @return the previous value associated with the specified key,
2045     * or <tt>null</tt> if there was no mapping for the key
2046     * @throws ClassCastException if the specified key cannot be compared
2047     * with the keys currently in the map
2048     * @throws NullPointerException if the specified key or value is null
2049 dl 1.1 */
2050     public V putIfAbsent(K key, V value) {
2051 dl 1.9 if (value == null)
2052 dl 1.1 throw new NullPointerException();
2053     return doPut(key, value, true);
2054     }
2055    
2056     /**
2057 jsr166 1.22 * {@inheritDoc}
2058     *
2059     * @throws ClassCastException if the specified key cannot be compared
2060     * with the keys currently in the map
2061 dl 1.23 * @throws NullPointerException if the specified key is null
2062 dl 1.1 */
2063     public boolean remove(Object key, Object value) {
2064 dl 1.9 if (value == null)
2065 dl 1.23 return false;
2066 dl 1.1 return doRemove(key, value) != null;
2067     }
2068    
2069     /**
2070 jsr166 1.22 * {@inheritDoc}
2071     *
2072     * @throws ClassCastException if the specified key cannot be compared
2073     * with the keys currently in the map
2074     * @throws NullPointerException if any of the arguments are null
2075 dl 1.1 */
2076     public boolean replace(K key, V oldValue, V newValue) {
2077 dl 1.9 if (oldValue == null || newValue == null)
2078 dl 1.1 throw new NullPointerException();
2079 dl 1.9 Comparable<? super K> k = comparable(key);
2080 dl 1.1 for (;;) {
2081     Node<K,V> n = findNode(k);
2082     if (n == null)
2083     return false;
2084     Object v = n.value;
2085     if (v != null) {
2086     if (!oldValue.equals(v))
2087     return false;
2088     if (n.casValue(v, newValue))
2089     return true;
2090     }
2091     }
2092     }
2093    
2094     /**
2095 jsr166 1.22 * {@inheritDoc}
2096     *
2097     * @return the previous value associated with the specified key,
2098     * or <tt>null</tt> if there was no mapping for the key
2099     * @throws ClassCastException if the specified key cannot be compared
2100     * with the keys currently in the map
2101     * @throws NullPointerException if the specified key or value is null
2102 dl 1.1 */
2103     public V replace(K key, V value) {
2104 dl 1.9 if (value == null)
2105 dl 1.1 throw new NullPointerException();
2106 dl 1.9 Comparable<? super K> k = comparable(key);
2107 dl 1.1 for (;;) {
2108     Node<K,V> n = findNode(k);
2109     if (n == null)
2110     return null;
2111     Object v = n.value;
2112     if (v != null && n.casValue(v, value))
2113     return (V)v;
2114     }
2115     }
2116    
2117     /* ------ SortedMap API methods ------ */
2118    
2119     public Comparator<? super K> comparator() {
2120     return comparator;
2121     }
2122    
2123     /**
2124 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2125 dl 1.1 */
2126 dl 1.9 public K firstKey() {
2127 dl 1.1 Node<K,V> n = findFirst();
2128     if (n == null)
2129     throw new NoSuchElementException();
2130     return n.key;
2131     }
2132    
2133     /**
2134 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2135 dl 1.1 */
2136     public K lastKey() {
2137     Node<K,V> n = findLast();
2138     if (n == null)
2139     throw new NoSuchElementException();
2140     return n.key;
2141     }
2142    
2143     /**
2144 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2145     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2146     * @throws IllegalArgumentException {@inheritDoc}
2147 dl 1.1 */
2148 dl 1.6 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
2149 dl 1.1 if (fromKey == null || toKey == null)
2150     throw new NullPointerException();
2151     return new ConcurrentSkipListSubMap(this, fromKey, toKey);
2152     }
2153    
2154     /**
2155 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2156     * @throws NullPointerException if <tt>toKey</tt> is null
2157     * @throws IllegalArgumentException {@inheritDoc}
2158 dl 1.1 */
2159 dl 1.6 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
2160 dl 1.1 if (toKey == null)
2161     throw new NullPointerException();
2162     return new ConcurrentSkipListSubMap(this, null, toKey);
2163     }
2164    
2165     /**
2166 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2167     * @throws NullPointerException if <tt>fromKey</tt> is null
2168     * @throws IllegalArgumentException {@inheritDoc}
2169 dl 1.1 */
2170 jsr166 1.22 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
2171 dl 1.6 if (fromKey == null)
2172     throw new NullPointerException();
2173     return new ConcurrentSkipListSubMap(this, fromKey, null);
2174     }
2175    
2176     /**
2177 jsr166 1.22 * Equivalent to {@link #navigableSubMap} but with a return type
2178     * conforming to the <tt>SortedMap</tt> interface.
2179     *
2180     * <p>{@inheritDoc}
2181     *
2182     * @throws ClassCastException {@inheritDoc}
2183     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2184     * @throws IllegalArgumentException {@inheritDoc}
2185 dl 1.6 */
2186     public SortedMap<K,V> subMap(K fromKey, K toKey) {
2187 dl 1.7 return navigableSubMap(fromKey, toKey);
2188 dl 1.6 }
2189    
2190     /**
2191 jsr166 1.22 * Equivalent to {@link #navigableHeadMap} but with a return type
2192     * conforming to the <tt>SortedMap</tt> interface.
2193     *
2194     * <p>{@inheritDoc}
2195     *
2196     * @throws ClassCastException {@inheritDoc}
2197     * @throws NullPointerException if <tt>toKey</tt> is null
2198     * @throws IllegalArgumentException {@inheritDoc}
2199 dl 1.6 */
2200     public SortedMap<K,V> headMap(K toKey) {
2201 dl 1.7 return navigableHeadMap(toKey);
2202 dl 1.6 }
2203    
2204     /**
2205 jsr166 1.22 * Equivalent to {@link #navigableTailMap} but with a return type
2206     * conforming to the <tt>SortedMap</tt> interface.
2207     *
2208     * <p>{@inheritDoc}
2209     *
2210     * @throws ClassCastException {@inheritDoc}
2211     * @throws NullPointerException if <tt>fromKey</tt> is null
2212     * @throws IllegalArgumentException {@inheritDoc}
2213 dl 1.6 */
2214 jsr166 1.22 public SortedMap<K,V> tailMap(K fromKey) {
2215 dl 1.7 return navigableTailMap(fromKey);
2216 dl 1.1 }
2217    
2218     /* ---------------- Relational operations -------------- */
2219    
2220     /**
2221 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2222     * strictly less than the given key, or <tt>null</tt> if there is
2223     * no such key. The returned entry does <em>not</em> support the
2224     * <tt>Entry.setValue</tt> method.
2225 dl 1.9 *
2226 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2227     * @throws NullPointerException if the specified key is null
2228 dl 1.1 */
2229 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
2230     return getNear(key, LT);
2231 dl 1.1 }
2232    
2233     /**
2234 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2235     * @throws NullPointerException if the specified key is null
2236 dl 1.1 */
2237 jsr166 1.22 public K lowerKey(K key) {
2238     Node<K,V> n = findNear(key, LT);
2239 dl 1.1 return (n == null)? null : n.key;
2240     }
2241    
2242     /**
2243 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2244     * less than or equal to the given key, or <tt>null</tt> if there
2245     * is no such key. The returned entry does <em>not</em> support
2246 dl 1.1 * the <tt>Entry.setValue</tt> method.
2247 dl 1.9 *
2248 jsr166 1.22 * @param key the key
2249     * @throws ClassCastException {@inheritDoc}
2250     * @throws NullPointerException if the specified key is null
2251 dl 1.1 */
2252 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
2253     return getNear(key, LT|EQ);
2254 dl 1.1 }
2255    
2256     /**
2257 jsr166 1.22 * @param key the key
2258     * @throws ClassCastException {@inheritDoc}
2259     * @throws NullPointerException if the specified key is null
2260 dl 1.1 */
2261 jsr166 1.22 public K floorKey(K key) {
2262     Node<K,V> n = findNear(key, LT|EQ);
2263 dl 1.1 return (n == null)? null : n.key;
2264     }
2265    
2266     /**
2267 jsr166 1.22 * Returns a key-value mapping associated with the least key
2268     * greater than or equal to the given key, or <tt>null</tt> if
2269     * there is no such entry. The returned entry does <em>not</em>
2270     * support the <tt>Entry.setValue</tt> method.
2271 dl 1.9 *
2272 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2273     * @throws NullPointerException if the specified key is null
2274 dl 1.1 */
2275 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
2276     return getNear(key, GT|EQ);
2277 dl 1.1 }
2278    
2279     /**
2280 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2281     * @throws NullPointerException if the specified key is null
2282 dl 1.1 */
2283 jsr166 1.22 public K ceilingKey(K key) {
2284     Node<K,V> n = findNear(key, GT|EQ);
2285 dl 1.1 return (n == null)? null : n.key;
2286     }
2287    
2288     /**
2289     * Returns a key-value mapping associated with the least key
2290     * strictly greater than the given key, or <tt>null</tt> if there
2291 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2292 dl 1.1 * the <tt>Entry.setValue</tt> method.
2293 dl 1.9 *
2294 jsr166 1.22 * @param key the key
2295     * @throws ClassCastException {@inheritDoc}
2296     * @throws NullPointerException if the specified key is null
2297 dl 1.1 */
2298     public Map.Entry<K,V> higherEntry(K key) {
2299     return getNear(key, GT);
2300     }
2301    
2302     /**
2303 jsr166 1.22 * @param key the key
2304     * @throws ClassCastException {@inheritDoc}
2305     * @throws NullPointerException if the specified key is null
2306 dl 1.1 */
2307     public K higherKey(K key) {
2308     Node<K,V> n = findNear(key, GT);
2309     return (n == null)? null : n.key;
2310     }
2311    
2312     /**
2313     * Returns a key-value mapping associated with the least
2314     * key in this map, or <tt>null</tt> if the map is empty.
2315     * The returned entry does <em>not</em> support
2316     * the <tt>Entry.setValue</tt> method.
2317     */
2318     public Map.Entry<K,V> firstEntry() {
2319     for (;;) {
2320     Node<K,V> n = findFirst();
2321 dl 1.9 if (n == null)
2322 dl 1.1 return null;
2323 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2324 dl 1.1 if (e != null)
2325     return e;
2326     }
2327     }
2328    
2329     /**
2330     * Returns a key-value mapping associated with the greatest
2331     * key in this map, or <tt>null</tt> if the map is empty.
2332     * The returned entry does <em>not</em> support
2333     * the <tt>Entry.setValue</tt> method.
2334     */
2335     public Map.Entry<K,V> lastEntry() {
2336     for (;;) {
2337     Node<K,V> n = findLast();
2338 dl 1.9 if (n == null)
2339 dl 1.1 return null;
2340 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2341 dl 1.1 if (e != null)
2342     return e;
2343     }
2344     }
2345    
2346     /**
2347     * Removes and returns a key-value mapping associated with
2348     * the least key in this map, or <tt>null</tt> if the map is empty.
2349     * The returned entry does <em>not</em> support
2350     * the <tt>Entry.setValue</tt> method.
2351     */
2352     public Map.Entry<K,V> pollFirstEntry() {
2353 dl 1.2 return (AbstractMap.SimpleImmutableEntry<K,V>)doRemoveFirst(false);
2354 dl 1.1 }
2355    
2356     /**
2357     * Removes and returns a key-value mapping associated with
2358     * the greatest key in this map, or <tt>null</tt> if the map is empty.
2359     * The returned entry does <em>not</em> support
2360     * the <tt>Entry.setValue</tt> method.
2361     */
2362     public Map.Entry<K,V> pollLastEntry() {
2363 dl 1.2 return (AbstractMap.SimpleImmutableEntry<K,V>)doRemoveLast(false);
2364 dl 1.1 }
2365    
2366    
2367     /* ---------------- Iterators -------------- */
2368    
2369     /**
2370     * Base of ten kinds of iterator classes:
2371 dl 1.9 * ascending: {map, submap} X {key, value, entry}
2372     * descending: {map, submap} X {key, entry}
2373 dl 1.1 */
2374     abstract class Iter {
2375     /** the last node returned by next() */
2376     Node<K,V> last;
2377     /** the next node to return from next(); */
2378     Node<K,V> next;
2379     /** Cache of next value field to maintain weak consistency */
2380     Object nextValue;
2381    
2382     Iter() {}
2383    
2384 dl 1.9 public final boolean hasNext() {
2385     return next != null;
2386 dl 1.1 }
2387    
2388 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2389 dl 1.1 final void initAscending() {
2390     for (;;) {
2391     next = findFirst();
2392     if (next == null)
2393     break;
2394     nextValue = next.value;
2395     if (nextValue != null && nextValue != next)
2396     break;
2397     }
2398     }
2399    
2400 dl 1.9 /**
2401 jsr166 1.13 * Initializes ascending iterator starting at given least key,
2402 dl 1.1 * or first node if least is <tt>null</tt>, but not greater or
2403     * equal to fence, or end if fence is <tt>null</tt>.
2404     */
2405 dl 1.9 final void initAscending(K least, K fence) {
2406 dl 1.1 for (;;) {
2407     next = findCeiling(least);
2408     if (next == null)
2409     break;
2410     nextValue = next.value;
2411     if (nextValue != null && nextValue != next) {
2412     if (fence != null && compare(fence, next.key) <= 0) {
2413     next = null;
2414     nextValue = null;
2415     }
2416     break;
2417     }
2418     }
2419     }
2420 jsr166 1.13 /** Advances next to higher entry. */
2421 dl 1.1 final void ascend() {
2422     if ((last = next) == null)
2423     throw new NoSuchElementException();
2424     for (;;) {
2425     next = next.next;
2426     if (next == null)
2427     break;
2428     nextValue = next.value;
2429     if (nextValue != null && nextValue != next)
2430     break;
2431     }
2432     }
2433    
2434     /**
2435     * Version of ascend for submaps to stop at fence
2436     */
2437     final void ascend(K fence) {
2438     if ((last = next) == null)
2439     throw new NoSuchElementException();
2440     for (;;) {
2441     next = next.next;
2442     if (next == null)
2443     break;
2444     nextValue = next.value;
2445     if (nextValue != null && nextValue != next) {
2446     if (fence != null && compare(fence, next.key) <= 0) {
2447     next = null;
2448     nextValue = null;
2449     }
2450     break;
2451     }
2452     }
2453     }
2454    
2455 jsr166 1.13 /** Initializes descending iterator for entire range. */
2456 dl 1.1 final void initDescending() {
2457     for (;;) {
2458     next = findLast();
2459     if (next == null)
2460     break;
2461     nextValue = next.value;
2462     if (nextValue != null && nextValue != next)
2463     break;
2464     }
2465     }
2466    
2467 dl 1.9 /**
2468 jsr166 1.13 * Initializes descending iterator starting at key less
2469 dl 1.1 * than or equal to given fence key, or
2470     * last node if fence is <tt>null</tt>, but not less than
2471 jsr166 1.14 * least, or beginning if least is <tt>null</tt>.
2472 dl 1.1 */
2473 dl 1.9 final void initDescending(K least, K fence) {
2474 dl 1.1 for (;;) {
2475     next = findLower(fence);
2476     if (next == null)
2477     break;
2478     nextValue = next.value;
2479     if (nextValue != null && nextValue != next) {
2480     if (least != null && compare(least, next.key) > 0) {
2481     next = null;
2482     nextValue = null;
2483     }
2484     break;
2485     }
2486     }
2487     }
2488    
2489 jsr166 1.13 /** Advances next to lower entry. */
2490 dl 1.1 final void descend() {
2491     if ((last = next) == null)
2492     throw new NoSuchElementException();
2493     K k = last.key;
2494     for (;;) {
2495     next = findNear(k, LT);
2496     if (next == null)
2497     break;
2498     nextValue = next.value;
2499     if (nextValue != null && nextValue != next)
2500     break;
2501     }
2502     }
2503    
2504     /**
2505     * Version of descend for submaps to stop at least
2506     */
2507     final void descend(K least) {
2508     if ((last = next) == null)
2509     throw new NoSuchElementException();
2510     K k = last.key;
2511     for (;;) {
2512     next = findNear(k, LT);
2513     if (next == null)
2514     break;
2515     nextValue = next.value;
2516     if (nextValue != null && nextValue != next) {
2517     if (least != null && compare(least, next.key) > 0) {
2518     next = null;
2519     nextValue = null;
2520     }
2521     break;
2522     }
2523     }
2524     }
2525    
2526     public void remove() {
2527     Node<K,V> l = last;
2528     if (l == null)
2529     throw new IllegalStateException();
2530     // It would not be worth all of the overhead to directly
2531     // unlink from here. Using remove is fast enough.
2532     ConcurrentSkipListMap.this.remove(l.key);
2533     }
2534    
2535     }
2536    
2537     final class ValueIterator extends Iter implements Iterator<V> {
2538     ValueIterator() {
2539     initAscending();
2540     }
2541 dl 1.9 public V next() {
2542 dl 1.1 Object v = nextValue;
2543     ascend();
2544     return (V)v;
2545     }
2546     }
2547    
2548     final class KeyIterator extends Iter implements Iterator<K> {
2549     KeyIterator() {
2550     initAscending();
2551     }
2552 dl 1.9 public K next() {
2553 dl 1.1 Node<K,V> n = next;
2554     ascend();
2555     return n.key;
2556     }
2557     }
2558    
2559     class SubMapValueIterator extends Iter implements Iterator<V> {
2560     final K fence;
2561     SubMapValueIterator(K least, K fence) {
2562     initAscending(least, fence);
2563     this.fence = fence;
2564     }
2565    
2566 dl 1.9 public V next() {
2567 dl 1.1 Object v = nextValue;
2568     ascend(fence);
2569     return (V)v;
2570     }
2571     }
2572    
2573     final class SubMapKeyIterator extends Iter implements Iterator<K> {
2574     final K fence;
2575     SubMapKeyIterator(K least, K fence) {
2576     initAscending(least, fence);
2577     this.fence = fence;
2578     }
2579    
2580 dl 1.9 public K next() {
2581 dl 1.1 Node<K,V> n = next;
2582     ascend(fence);
2583     return n.key;
2584     }
2585     }
2586    
2587     final class DescendingKeyIterator extends Iter implements Iterator<K> {
2588     DescendingKeyIterator() {
2589     initDescending();
2590     }
2591 dl 1.9 public K next() {
2592 dl 1.1 Node<K,V> n = next;
2593     descend();
2594     return n.key;
2595     }
2596     }
2597    
2598     final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2599     final K least;
2600     DescendingSubMapKeyIterator(K least, K fence) {
2601     initDescending(least, fence);
2602     this.least = least;
2603     }
2604    
2605 dl 1.9 public K next() {
2606 dl 1.1 Node<K,V> n = next;
2607     descend(least);
2608     return n.key;
2609     }
2610     }
2611    
2612     /**
2613     * Entry iterators use the same trick as in ConcurrentHashMap and
2614     * elsewhere of using the iterator itself to represent entries,
2615     * thus avoiding having to create entry objects in next().
2616     */
2617     abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2618     /** Cache of last value returned */
2619     Object lastValue;
2620    
2621 dl 1.9 EntryIter() {
2622 dl 1.1 }
2623    
2624     public K getKey() {
2625     Node<K,V> l = last;
2626     if (l == null)
2627     throw new IllegalStateException();
2628     return l.key;
2629     }
2630    
2631     public V getValue() {
2632     Object v = lastValue;
2633     if (last == null || v == null)
2634     throw new IllegalStateException();
2635     return (V)v;
2636     }
2637    
2638     public V setValue(V value) {
2639     throw new UnsupportedOperationException();
2640     }
2641    
2642     public boolean equals(Object o) {
2643     // If not acting as entry, just use default.
2644     if (last == null)
2645     return super.equals(o);
2646     if (!(o instanceof Map.Entry))
2647     return false;
2648     Map.Entry e = (Map.Entry)o;
2649     return (getKey().equals(e.getKey()) &&
2650     getValue().equals(e.getValue()));
2651     }
2652    
2653     public int hashCode() {
2654     // If not acting as entry, just use default.
2655     if (last == null)
2656     return super.hashCode();
2657     return getKey().hashCode() ^ getValue().hashCode();
2658     }
2659    
2660     public String toString() {
2661     // If not acting as entry, just use default.
2662     if (last == null)
2663     return super.toString();
2664     return getKey() + "=" + getValue();
2665     }
2666     }
2667    
2668 dl 1.9 final class EntryIterator extends EntryIter
2669 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2670 dl 1.9 EntryIterator() {
2671     initAscending();
2672 dl 1.1 }
2673 dl 1.9 public Map.Entry<K,V> next() {
2674 dl 1.1 lastValue = nextValue;
2675     ascend();
2676     return this;
2677     }
2678     }
2679    
2680 dl 1.9 final class SubMapEntryIterator extends EntryIter
2681 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2682     final K fence;
2683     SubMapEntryIterator(K least, K fence) {
2684     initAscending(least, fence);
2685     this.fence = fence;
2686     }
2687    
2688 dl 1.9 public Map.Entry<K,V> next() {
2689 dl 1.1 lastValue = nextValue;
2690     ascend(fence);
2691     return this;
2692     }
2693     }
2694    
2695 dl 1.9 final class DescendingEntryIterator extends EntryIter
2696 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2697 dl 1.9 DescendingEntryIterator() {
2698     initDescending();
2699 dl 1.1 }
2700 dl 1.9 public Map.Entry<K,V> next() {
2701 dl 1.1 lastValue = nextValue;
2702     descend();
2703     return this;
2704     }
2705     }
2706    
2707 dl 1.9 final class DescendingSubMapEntryIterator extends EntryIter
2708 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2709     final K least;
2710     DescendingSubMapEntryIterator(K least, K fence) {
2711     initDescending(least, fence);
2712     this.least = least;
2713     }
2714    
2715 dl 1.9 public Map.Entry<K,V> next() {
2716 dl 1.1 lastValue = nextValue;
2717     descend(least);
2718     return this;
2719     }
2720     }
2721    
2722     // Factory methods for iterators needed by submaps and/or
2723     // ConcurrentSkipListSet
2724    
2725     Iterator<K> keyIterator() {
2726     return new KeyIterator();
2727     }
2728    
2729     Iterator<K> descendingKeyIterator() {
2730     return new DescendingKeyIterator();
2731     }
2732    
2733     SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2734     return new SubMapEntryIterator(least, fence);
2735     }
2736    
2737     DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2738     return new DescendingSubMapEntryIterator(least, fence);
2739     }
2740    
2741     SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2742     return new SubMapKeyIterator(least, fence);
2743     }
2744    
2745     DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2746     return new DescendingSubMapKeyIterator(least, fence);
2747     }
2748    
2749     SubMapValueIterator subMapValueIterator(K least, K fence) {
2750     return new SubMapValueIterator(least, fence);
2751     }
2752    
2753     /* ---------------- Views -------------- */
2754    
2755     class KeySet extends AbstractSet<K> {
2756     public Iterator<K> iterator() {
2757     return new KeyIterator();
2758     }
2759     public boolean isEmpty() {
2760     return ConcurrentSkipListMap.this.isEmpty();
2761     }
2762     public int size() {
2763     return ConcurrentSkipListMap.this.size();
2764     }
2765     public boolean contains(Object o) {
2766     return ConcurrentSkipListMap.this.containsKey(o);
2767     }
2768     public boolean remove(Object o) {
2769     return ConcurrentSkipListMap.this.removep(o);
2770     }
2771     public void clear() {
2772     ConcurrentSkipListMap.this.clear();
2773     }
2774     public Object[] toArray() {
2775     Collection<K> c = new ArrayList<K>();
2776     for (Iterator<K> i = iterator(); i.hasNext(); )
2777     c.add(i.next());
2778     return c.toArray();
2779     }
2780     public <T> T[] toArray(T[] a) {
2781     Collection<K> c = new ArrayList<K>();
2782     for (Iterator<K> i = iterator(); i.hasNext(); )
2783     c.add(i.next());
2784     return c.toArray(a);
2785     }
2786     }
2787    
2788     class DescendingKeySet extends KeySet {
2789     public Iterator<K> iterator() {
2790     return new DescendingKeyIterator();
2791     }
2792     }
2793    
2794     final class Values extends AbstractCollection<V> {
2795     public Iterator<V> iterator() {
2796     return new ValueIterator();
2797     }
2798     public boolean isEmpty() {
2799     return ConcurrentSkipListMap.this.isEmpty();
2800     }
2801     public int size() {
2802     return ConcurrentSkipListMap.this.size();
2803     }
2804     public boolean contains(Object o) {
2805     return ConcurrentSkipListMap.this.containsValue(o);
2806     }
2807     public void clear() {
2808     ConcurrentSkipListMap.this.clear();
2809     }
2810     public Object[] toArray() {
2811     Collection<V> c = new ArrayList<V>();
2812     for (Iterator<V> i = iterator(); i.hasNext(); )
2813     c.add(i.next());
2814     return c.toArray();
2815     }
2816     public <T> T[] toArray(T[] a) {
2817     Collection<V> c = new ArrayList<V>();
2818     for (Iterator<V> i = iterator(); i.hasNext(); )
2819     c.add(i.next());
2820     return c.toArray(a);
2821     }
2822     }
2823    
2824     class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2825     public Iterator<Map.Entry<K,V>> iterator() {
2826     return new EntryIterator();
2827     }
2828     public boolean contains(Object o) {
2829     if (!(o instanceof Map.Entry))
2830     return false;
2831     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2832     V v = ConcurrentSkipListMap.this.get(e.getKey());
2833     return v != null && v.equals(e.getValue());
2834     }
2835     public boolean remove(Object o) {
2836     if (!(o instanceof Map.Entry))
2837     return false;
2838     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2839 dl 1.9 return ConcurrentSkipListMap.this.remove(e.getKey(),
2840 dl 1.1 e.getValue());
2841     }
2842     public boolean isEmpty() {
2843     return ConcurrentSkipListMap.this.isEmpty();
2844     }
2845     public int size() {
2846     return ConcurrentSkipListMap.this.size();
2847     }
2848     public void clear() {
2849     ConcurrentSkipListMap.this.clear();
2850     }
2851    
2852     public Object[] toArray() {
2853     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2854 dl 1.9 for (Map.Entry e : this)
2855 dl 1.2 c.add(new AbstractMap.SimpleEntry(e.getKey(), e.getValue()));
2856 dl 1.1 return c.toArray();
2857     }
2858     public <T> T[] toArray(T[] a) {
2859     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2860 dl 1.9 for (Map.Entry e : this)
2861 dl 1.2 c.add(new AbstractMap.SimpleEntry(e.getKey(), e.getValue()));
2862 dl 1.1 return c.toArray(a);
2863     }
2864     }
2865    
2866     class DescendingEntrySet extends EntrySet {
2867     public Iterator<Map.Entry<K,V>> iterator() {
2868     return new DescendingEntryIterator();
2869     }
2870     }
2871    
2872     /**
2873     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2874     * represent a subrange of mappings of their underlying
2875     * maps. Instances of this class support all methods of their
2876     * underlying maps, differing in that mappings outside their range are
2877     * ignored, and attempts to add mappings outside their ranges result
2878     * in {@link IllegalArgumentException}. Instances of this class are
2879     * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2880     * <tt>tailMap</tt> methods of their underlying maps.
2881     */
2882     static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
2883     implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
2884    
2885     private static final long serialVersionUID = -7647078645895051609L;
2886    
2887     /** Underlying map */
2888     private final ConcurrentSkipListMap<K,V> m;
2889     /** lower bound key, or null if from start */
2890 dl 1.9 private final K least;
2891 dl 1.1 /** upper fence key, or null if to end */
2892 dl 1.9 private final K fence;
2893 dl 1.1 // Lazily initialized view holders
2894     private transient Set<K> keySetView;
2895     private transient Set<Map.Entry<K,V>> entrySetView;
2896     private transient Collection<V> valuesView;
2897     private transient Set<K> descendingKeySetView;
2898     private transient Set<Map.Entry<K,V>> descendingEntrySetView;
2899    
2900     /**
2901 dl 1.9 * Creates a new submap.
2902 dl 1.1 * @param least inclusive least value, or <tt>null</tt> if from start
2903     * @param fence exclusive upper bound or <tt>null</tt> if to end
2904     * @throws IllegalArgumentException if least and fence nonnull
2905     * and least greater than fence
2906     */
2907 dl 1.9 ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
2908 dl 1.1 K least, K fence) {
2909 dl 1.9 if (least != null &&
2910     fence != null &&
2911 dl 1.1 map.compare(least, fence) > 0)
2912     throw new IllegalArgumentException("inconsistent range");
2913     this.m = map;
2914     this.least = least;
2915     this.fence = fence;
2916     }
2917    
2918     /* ---------------- Utilities -------------- */
2919    
2920     boolean inHalfOpenRange(K key) {
2921     return m.inHalfOpenRange(key, least, fence);
2922     }
2923    
2924     boolean inOpenRange(K key) {
2925     return m.inOpenRange(key, least, fence);
2926     }
2927    
2928     ConcurrentSkipListMap.Node<K,V> firstNode() {
2929     return m.findCeiling(least);
2930     }
2931    
2932     ConcurrentSkipListMap.Node<K,V> lastNode() {
2933     return m.findLower(fence);
2934     }
2935    
2936     boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
2937 dl 1.9 return (n != null &&
2938     (fence == null ||
2939 dl 1.1 n.key == null || // pass by markers and headers
2940     m.compare(fence, n.key) > 0));
2941     }
2942    
2943     void checkKey(K key) throws IllegalArgumentException {
2944     if (!inHalfOpenRange(key))
2945     throw new IllegalArgumentException("key out of range");
2946     }
2947    
2948     /**
2949     * Returns underlying map. Needed by ConcurrentSkipListSet
2950     * @return the backing map
2951     */
2952     ConcurrentSkipListMap<K,V> getMap() {
2953     return m;
2954     }
2955    
2956     /**
2957     * Returns least key. Needed by ConcurrentSkipListSet
2958     * @return least key or <tt>null</tt> if from start
2959     */
2960     K getLeast() {
2961     return least;
2962     }
2963    
2964     /**
2965     * Returns fence key. Needed by ConcurrentSkipListSet
2966 dl 1.8 * @return fence key or <tt>null</tt> if to end
2967 dl 1.1 */
2968     K getFence() {
2969     return fence;
2970     }
2971    
2972    
2973     /* ---------------- Map API methods -------------- */
2974    
2975     public boolean containsKey(Object key) {
2976     K k = (K)key;
2977     return inHalfOpenRange(k) && m.containsKey(k);
2978     }
2979    
2980     public V get(Object key) {
2981     K k = (K)key;
2982     return ((!inHalfOpenRange(k)) ? null : m.get(k));
2983     }
2984    
2985     public V put(K key, V value) {
2986     checkKey(key);
2987     return m.put(key, value);
2988     }
2989    
2990     public V remove(Object key) {
2991     K k = (K)key;
2992     return (!inHalfOpenRange(k))? null : m.remove(k);
2993     }
2994    
2995     public int size() {
2996     long count = 0;
2997 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
2998     isBeforeEnd(n);
2999 dl 1.1 n = n.next) {
3000     if (n.getValidValue() != null)
3001     ++count;
3002     }
3003     return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3004     }
3005    
3006     public boolean isEmpty() {
3007     return !isBeforeEnd(firstNode());
3008     }
3009    
3010     public boolean containsValue(Object value) {
3011 dl 1.9 if (value == null)
3012 dl 1.1 throw new NullPointerException();
3013 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3014     isBeforeEnd(n);
3015 dl 1.1 n = n.next) {
3016     V v = n.getValidValue();
3017     if (v != null && value.equals(v))
3018     return true;
3019     }
3020     return false;
3021     }
3022    
3023     public void clear() {
3024 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3025     isBeforeEnd(n);
3026 dl 1.1 n = n.next) {
3027     if (n.getValidValue() != null)
3028     m.remove(n.key);
3029     }
3030     }
3031    
3032     /* ---------------- ConcurrentMap API methods -------------- */
3033    
3034     public V putIfAbsent(K key, V value) {
3035     checkKey(key);
3036     return m.putIfAbsent(key, value);
3037     }
3038    
3039     public boolean remove(Object key, Object value) {
3040     K k = (K)key;
3041     return inHalfOpenRange(k) && m.remove(k, value);
3042     }
3043    
3044     public boolean replace(K key, V oldValue, V newValue) {
3045     checkKey(key);
3046     return m.replace(key, oldValue, newValue);
3047     }
3048    
3049     public V replace(K key, V value) {
3050     checkKey(key);
3051     return m.replace(key, value);
3052     }
3053    
3054     /* ---------------- SortedMap API methods -------------- */
3055    
3056     public Comparator<? super K> comparator() {
3057     return m.comparator();
3058     }
3059    
3060     public K firstKey() {
3061     ConcurrentSkipListMap.Node<K,V> n = firstNode();
3062     if (isBeforeEnd(n))
3063     return n.key;
3064     else
3065     throw new NoSuchElementException();
3066     }
3067    
3068     public K lastKey() {
3069     ConcurrentSkipListMap.Node<K,V> n = lastNode();
3070     if (n != null) {
3071     K last = n.key;
3072     if (inHalfOpenRange(last))
3073     return last;
3074     }
3075     throw new NoSuchElementException();
3076     }
3077    
3078 dl 1.6 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
3079 dl 1.1 if (fromKey == null || toKey == null)
3080     throw new NullPointerException();
3081     if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3082     throw new IllegalArgumentException("key out of range");
3083     return new ConcurrentSkipListSubMap(m, fromKey, toKey);
3084     }
3085    
3086 dl 1.6 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
3087 dl 1.1 if (toKey == null)
3088     throw new NullPointerException();
3089     if (!inOpenRange(toKey))
3090     throw new IllegalArgumentException("key out of range");
3091     return new ConcurrentSkipListSubMap(m, least, toKey);
3092     }
3093    
3094 dl 1.6 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
3095 dl 1.1 if (fromKey == null)
3096     throw new NullPointerException();
3097     if (!inOpenRange(fromKey))
3098     throw new IllegalArgumentException("key out of range");
3099     return new ConcurrentSkipListSubMap(m, fromKey, fence);
3100     }
3101    
3102 dl 1.6 public SortedMap<K,V> subMap(K fromKey, K toKey) {
3103     return navigableSubMap(fromKey, toKey);
3104     }
3105    
3106     public SortedMap<K,V> headMap(K toKey) {
3107     return navigableHeadMap(toKey);
3108     }
3109    
3110 jsr166 1.22 public SortedMap<K,V> tailMap(K fromKey) {
3111 dl 1.6 return navigableTailMap(fromKey);
3112     }
3113    
3114 dl 1.1 /* ---------------- Relational methods -------------- */
3115    
3116     public Map.Entry<K,V> ceilingEntry(K key) {
3117 dl 1.2 return (Map.Entry<K,V>)
3118 dl 1.1 m.getNear(key, m.GT|m.EQ, least, fence, false);
3119     }
3120    
3121     public K ceilingKey(K key) {
3122     return (K)
3123     m.getNear(key, m.GT|m.EQ, least, fence, true);
3124     }
3125    
3126     public Map.Entry<K,V> lowerEntry(K key) {
3127 dl 1.2 return (Map.Entry<K,V>)
3128 dl 1.1 m.getNear(key, m.LT, least, fence, false);
3129     }
3130    
3131     public K lowerKey(K key) {
3132     return (K)
3133     m.getNear(key, m.LT, least, fence, true);
3134     }
3135    
3136     public Map.Entry<K,V> floorEntry(K key) {
3137 dl 1.2 return (Map.Entry<K,V>)
3138 dl 1.1 m.getNear(key, m.LT|m.EQ, least, fence, false);
3139     }
3140    
3141     public K floorKey(K key) {
3142     return (K)
3143     m.getNear(key, m.LT|m.EQ, least, fence, true);
3144     }
3145    
3146 dl 1.9
3147 dl 1.1 public Map.Entry<K,V> higherEntry(K key) {
3148 dl 1.2 return (Map.Entry<K,V>)
3149 dl 1.1 m.getNear(key, m.GT, least, fence, false);
3150     }
3151    
3152     public K higherKey(K key) {
3153     return (K)
3154     m.getNear(key, m.GT, least, fence, true);
3155     }
3156    
3157     public Map.Entry<K,V> firstEntry() {
3158     for (;;) {
3159     ConcurrentSkipListMap.Node<K,V> n = firstNode();
3160 dl 1.9 if (!isBeforeEnd(n))
3161 dl 1.1 return null;
3162     Map.Entry<K,V> e = n.createSnapshot();
3163     if (e != null)
3164     return e;
3165     }
3166     }
3167    
3168     public Map.Entry<K,V> lastEntry() {
3169     for (;;) {
3170     ConcurrentSkipListMap.Node<K,V> n = lastNode();
3171     if (n == null || !inHalfOpenRange(n.key))
3172     return null;
3173     Map.Entry<K,V> e = n.createSnapshot();
3174     if (e != null)
3175     return e;
3176     }
3177     }
3178    
3179     public Map.Entry<K,V> pollFirstEntry() {
3180 dl 1.2 return (Map.Entry<K,V>)
3181 dl 1.1 m.removeFirstEntryOfSubrange(least, fence, false);
3182     }
3183    
3184     public Map.Entry<K,V> pollLastEntry() {
3185 dl 1.2 return (Map.Entry<K,V>)
3186 dl 1.1 m.removeLastEntryOfSubrange(least, fence, false);
3187     }
3188    
3189     /* ---------------- Submap Views -------------- */
3190    
3191     public Set<K> keySet() {
3192     Set<K> ks = keySetView;
3193     return (ks != null) ? ks : (keySetView = new KeySetView());
3194     }
3195    
3196     class KeySetView extends AbstractSet<K> {
3197     public Iterator<K> iterator() {
3198     return m.subMapKeyIterator(least, fence);
3199     }
3200     public int size() {
3201     return ConcurrentSkipListSubMap.this.size();
3202     }
3203     public boolean isEmpty() {
3204     return ConcurrentSkipListSubMap.this.isEmpty();
3205     }
3206     public boolean contains(Object k) {
3207     return ConcurrentSkipListSubMap.this.containsKey(k);
3208     }
3209     public Object[] toArray() {
3210     Collection<K> c = new ArrayList<K>();
3211     for (Iterator<K> i = iterator(); i.hasNext(); )
3212     c.add(i.next());
3213     return c.toArray();
3214     }
3215     public <T> T[] toArray(T[] a) {
3216     Collection<K> c = new ArrayList<K>();
3217     for (Iterator<K> i = iterator(); i.hasNext(); )
3218     c.add(i.next());
3219     return c.toArray(a);
3220     }
3221     }
3222    
3223     public Set<K> descendingKeySet() {
3224     Set<K> ks = descendingKeySetView;
3225     return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3226     }
3227    
3228     class DescendingKeySetView extends KeySetView {
3229     public Iterator<K> iterator() {
3230     return m.descendingSubMapKeyIterator(least, fence);
3231     }
3232     }
3233    
3234     public Collection<V> values() {
3235     Collection<V> vs = valuesView;
3236     return (vs != null) ? vs : (valuesView = new ValuesView());
3237     }
3238    
3239     class ValuesView extends AbstractCollection<V> {
3240     public Iterator<V> iterator() {
3241     return m.subMapValueIterator(least, fence);
3242     }
3243     public int size() {
3244     return ConcurrentSkipListSubMap.this.size();
3245     }
3246     public boolean isEmpty() {
3247     return ConcurrentSkipListSubMap.this.isEmpty();
3248     }
3249     public boolean contains(Object v) {
3250     return ConcurrentSkipListSubMap.this.containsValue(v);
3251     }
3252     public Object[] toArray() {
3253     Collection<V> c = new ArrayList<V>();
3254     for (Iterator<V> i = iterator(); i.hasNext(); )
3255     c.add(i.next());
3256     return c.toArray();
3257     }
3258     public <T> T[] toArray(T[] a) {
3259     Collection<V> c = new ArrayList<V>();
3260     for (Iterator<V> i = iterator(); i.hasNext(); )
3261     c.add(i.next());
3262     return c.toArray(a);
3263     }
3264     }
3265    
3266     public Set<Map.Entry<K,V>> entrySet() {
3267     Set<Map.Entry<K,V>> es = entrySetView;
3268     return (es != null) ? es : (entrySetView = new EntrySetView());
3269     }
3270    
3271     class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3272     public Iterator<Map.Entry<K,V>> iterator() {
3273     return m.subMapEntryIterator(least, fence);
3274     }
3275     public int size() {
3276     return ConcurrentSkipListSubMap.this.size();
3277     }
3278     public boolean isEmpty() {
3279     return ConcurrentSkipListSubMap.this.isEmpty();
3280     }
3281     public boolean contains(Object o) {
3282     if (!(o instanceof Map.Entry))
3283     return false;
3284     Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3285     K key = e.getKey();
3286     if (!inHalfOpenRange(key))
3287     return false;
3288     V v = m.get(key);
3289     return v != null && v.equals(e.getValue());
3290     }
3291     public boolean remove(Object o) {
3292     if (!(o instanceof Map.Entry))
3293     return false;
3294     Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3295     K key = e.getKey();
3296     if (!inHalfOpenRange(key))
3297     return false;
3298     return m.remove(key, e.getValue());
3299     }
3300     public Object[] toArray() {
3301     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3302 dl 1.9 for (Map.Entry e : this)
3303 dl 1.2 c.add(new AbstractMap.SimpleEntry(e.getKey(), e.getValue()));
3304 dl 1.1 return c.toArray();
3305     }
3306     public <T> T[] toArray(T[] a) {
3307     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3308 dl 1.9 for (Map.Entry e : this)
3309 dl 1.2 c.add(new AbstractMap.SimpleEntry(e.getKey(), e.getValue()));
3310 dl 1.1 return c.toArray(a);
3311     }
3312     }
3313    
3314     public Set<Map.Entry<K,V>> descendingEntrySet() {
3315     Set<Map.Entry<K,V>> es = descendingEntrySetView;
3316     return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3317     }
3318    
3319     class DescendingEntrySetView extends EntrySetView {
3320     public Iterator<Map.Entry<K,V>> iterator() {
3321     return m.descendingSubMapEntryIterator(least, fence);
3322     }
3323     }
3324     }
3325     }