ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.31
Committed: Tue May 31 14:02:47 2005 UTC (19 years ago) by dl
Branch: MAIN
Changes since 1.30: +79 -42 lines
Log Message:
Reduce generics warnings

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8     import java.util.*;
9     import java.util.concurrent.atomic.*;
10    
11     /**
12 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13     * The map is sorted according to the {@linkplain Comparable natural
14     * ordering} of its keys, or by a {@link Comparator} provided at map
15     * creation time, depending on which constructor is used.
16 dl 1.1 *
17     * <p>This class implements a concurrent variant of <a
18     * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
19     * expected average <i>log(n)</i> time cost for the
20     * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21     * <tt>remove</tt> operations and their variants. Insertion, removal,
22     * update, and access operations safely execute concurrently by
23     * multiple threads. Iterators are <i>weakly consistent</i>, returning
24     * elements reflecting the state of the map at some point at or since
25     * the creation of the iterator. They do <em>not</em> throw {@link
26     * ConcurrentModificationException}, and may proceed concurrently with
27     * other operations. Ascending key ordered views and their iterators
28     * are faster than descending ones.
29     *
30     * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31     * and its views represent snapshots of mappings at the time they were
32     * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33     * method. (Note however that it is possible to change mappings in the
34     * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35     * <tt>replace</tt>, depending on exactly which effect you need.)
36     *
37     * <p>Beware that, unlike in most collections, the <tt>size</tt>
38     * method is <em>not</em> a constant-time operation. Because of the
39     * asynchronous nature of these maps, determining the current number
40     * of elements requires a traversal of the elements. Additionally,
41     * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
42     * <tt>clear</tt> are <em>not</em> guaranteed to be performed
43     * atomically. For example, an iterator operating concurrently with a
44     * <tt>putAll</tt> operation might view only some of the added
45     * elements.
46     *
47     * <p>This class and its views and iterators implement all of the
48     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
49     * interfaces. Like most other concurrent collections, this class does
50 jsr166 1.22 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
51     * null return values cannot be reliably distinguished from the absence of
52     * elements.
53 dl 1.1 *
54 jsr166 1.21 * <p>This class is a member of the
55     * <a href="{@docRoot}/../guide/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58 dl 1.1 * @author Doug Lea
59     * @param <K> the type of keys maintained by this map
60 dl 1.9 * @param <V> the type of mapped values
61 jsr166 1.20 * @since 1.6
62 dl 1.1 */
63 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
64 dl 1.1 implements ConcurrentNavigableMap<K,V>,
65 dl 1.9 Cloneable,
66 dl 1.1 java.io.Serializable {
67     /*
68     * This class implements a tree-like two-dimensionally linked skip
69     * list in which the index levels are represented in separate
70     * nodes from the base nodes holding data. There are two reasons
71     * for taking this approach instead of the usual array-based
72     * structure: 1) Array based implementations seem to encounter
73     * more complexity and overhead 2) We can use cheaper algorithms
74     * for the heavily-traversed index lists than can be used for the
75     * base lists. Here's a picture of some of the basics for a
76     * possible list with 2 levels of index:
77     *
78     * Head nodes Index nodes
79 dl 1.9 * +-+ right +-+ +-+
80 dl 1.1 * |2|---------------->| |--------------------->| |->null
81 dl 1.9 * +-+ +-+ +-+
82 dl 1.1 * | down | |
83     * v v v
84 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
85 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
86 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
87 dl 1.1 * v | | | | |
88     * Nodes next v v v v v
89 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
90 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
91 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92 dl 1.1 *
93     * The base lists use a variant of the HM linked ordered set
94     * algorithm. See Tim Harris, "A pragmatic implementation of
95     * non-blocking linked lists"
96     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
97     * Michael "High Performance Dynamic Lock-Free Hash Tables and
98     * List-Based Sets"
99     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
100     * basic idea in these lists is to mark the "next" pointers of
101     * deleted nodes when deleting to avoid conflicts with concurrent
102     * insertions, and when traversing to keep track of triples
103     * (predecessor, node, successor) in order to detect when and how
104     * to unlink these deleted nodes.
105     *
106     * Rather than using mark-bits to mark list deletions (which can
107     * be slow and space-intensive using AtomicMarkedReference), nodes
108     * use direct CAS'able next pointers. On deletion, instead of
109     * marking a pointer, they splice in another node that can be
110     * thought of as standing for a marked pointer (indicating this by
111     * using otherwise impossible field values). Using plain nodes
112     * acts roughly like "boxed" implementations of marked pointers,
113     * but uses new nodes only when nodes are deleted, not for every
114     * link. This requires less space and supports faster
115     * traversal. Even if marked references were better supported by
116     * JVMs, traversal using this technique might still be faster
117     * because any search need only read ahead one more node than
118     * otherwise required (to check for trailing marker) rather than
119     * unmasking mark bits or whatever on each read.
120     *
121     * This approach maintains the essential property needed in the HM
122     * algorithm of changing the next-pointer of a deleted node so
123     * that any other CAS of it will fail, but implements the idea by
124     * changing the pointer to point to a different node, not by
125     * marking it. While it would be possible to further squeeze
126     * space by defining marker nodes not to have key/value fields, it
127     * isn't worth the extra type-testing overhead. The deletion
128     * markers are rarely encountered during traversal and are
129     * normally quickly garbage collected. (Note that this technique
130     * would not work well in systems without garbage collection.)
131     *
132     * In addition to using deletion markers, the lists also use
133     * nullness of value fields to indicate deletion, in a style
134     * similar to typical lazy-deletion schemes. If a node's value is
135     * null, then it is considered logically deleted and ignored even
136     * though it is still reachable. This maintains proper control of
137     * concurrent replace vs delete operations -- an attempted replace
138     * must fail if a delete beat it by nulling field, and a delete
139     * must return the last non-null value held in the field. (Note:
140     * Null, rather than some special marker, is used for value fields
141     * here because it just so happens to mesh with the Map API
142     * requirement that method get returns null if there is no
143     * mapping, which allows nodes to remain concurrently readable
144     * even when deleted. Using any other marker value here would be
145     * messy at best.)
146     *
147     * Here's the sequence of events for a deletion of node n with
148     * predecessor b and successor f, initially:
149     *
150 dl 1.9 * +------+ +------+ +------+
151 dl 1.1 * ... | b |------>| n |----->| f | ...
152 dl 1.9 * +------+ +------+ +------+
153 dl 1.1 *
154     * 1. CAS n's value field from non-null to null.
155     * From this point on, no public operations encountering
156     * the node consider this mapping to exist. However, other
157     * ongoing insertions and deletions might still modify
158     * n's next pointer.
159     *
160     * 2. CAS n's next pointer to point to a new marker node.
161     * From this point on, no other nodes can be appended to n.
162     * which avoids deletion errors in CAS-based linked lists.
163     *
164     * +------+ +------+ +------+ +------+
165     * ... | b |------>| n |----->|marker|------>| f | ...
166 dl 1.9 * +------+ +------+ +------+ +------+
167 dl 1.1 *
168     * 3. CAS b's next pointer over both n and its marker.
169     * From this point on, no new traversals will encounter n,
170     * and it can eventually be GCed.
171     * +------+ +------+
172     * ... | b |----------------------------------->| f | ...
173 dl 1.9 * +------+ +------+
174     *
175 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
176     * with another operation. Steps 2-3 can fail because some other
177     * thread noticed during a traversal a node with null value and
178     * helped out by marking and/or unlinking. This helping-out
179     * ensures that no thread can become stuck waiting for progress of
180     * the deleting thread. The use of marker nodes slightly
181     * complicates helping-out code because traversals must track
182     * consistent reads of up to four nodes (b, n, marker, f), not
183     * just (b, n, f), although the next field of a marker is
184     * immutable, and once a next field is CAS'ed to point to a
185     * marker, it never again changes, so this requires less care.
186     *
187     * Skip lists add indexing to this scheme, so that the base-level
188     * traversals start close to the locations being found, inserted
189     * or deleted -- usually base level traversals only traverse a few
190     * nodes. This doesn't change the basic algorithm except for the
191     * need to make sure base traversals start at predecessors (here,
192     * b) that are not (structurally) deleted, otherwise retrying
193 dl 1.9 * after processing the deletion.
194 dl 1.1 *
195     * Index levels are maintained as lists with volatile next fields,
196     * using CAS to link and unlink. Races are allowed in index-list
197     * operations that can (rarely) fail to link in a new index node
198     * or delete one. (We can't do this of course for data nodes.)
199     * However, even when this happens, the index lists remain sorted,
200     * so correctly serve as indices. This can impact performance,
201     * but since skip lists are probabilistic anyway, the net result
202     * is that under contention, the effective "p" value may be lower
203     * than its nominal value. And race windows are kept small enough
204     * that in practice these failures are rare, even under a lot of
205     * contention.
206     *
207     * The fact that retries (for both base and index lists) are
208     * relatively cheap due to indexing allows some minor
209     * simplifications of retry logic. Traversal restarts are
210     * performed after most "helping-out" CASes. This isn't always
211     * strictly necessary, but the implicit backoffs tend to help
212     * reduce other downstream failed CAS's enough to outweigh restart
213     * cost. This worsens the worst case, but seems to improve even
214     * highly contended cases.
215     *
216     * Unlike most skip-list implementations, index insertion and
217     * deletion here require a separate traversal pass occuring after
218     * the base-level action, to add or remove index nodes. This adds
219     * to single-threaded overhead, but improves contended
220     * multithreaded performance by narrowing interference windows,
221     * and allows deletion to ensure that all index nodes will be made
222     * unreachable upon return from a public remove operation, thus
223     * avoiding unwanted garbage retention. This is more important
224     * here than in some other data structures because we cannot null
225     * out node fields referencing user keys since they might still be
226     * read by other ongoing traversals.
227     *
228     * Indexing uses skip list parameters that maintain good search
229     * performance while using sparser-than-usual indices: The
230     * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
231     * that about one-quarter of the nodes have indices. Of those that
232     * do, half have one level, a quarter have two, and so on (see
233     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
234     * requirement for a map is slightly less than for the current
235     * implementation of java.util.TreeMap.
236     *
237     * Changing the level of the index (i.e, the height of the
238     * tree-like structure) also uses CAS. The head index has initial
239     * level/height of one. Creation of an index with height greater
240     * than the current level adds a level to the head index by
241     * CAS'ing on a new top-most head. To maintain good performance
242     * after a lot of removals, deletion methods heuristically try to
243     * reduce the height if the topmost levels appear to be empty.
244     * This may encounter races in which it possible (but rare) to
245     * reduce and "lose" a level just as it is about to contain an
246     * index (that will then never be encountered). This does no
247     * structural harm, and in practice appears to be a better option
248     * than allowing unrestrained growth of levels.
249     *
250     * The code for all this is more verbose than you'd like. Most
251     * operations entail locating an element (or position to insert an
252     * element). The code to do this can't be nicely factored out
253     * because subsequent uses require a snapshot of predecessor
254     * and/or successor and/or value fields which can't be returned
255     * all at once, at least not without creating yet another object
256     * to hold them -- creating such little objects is an especially
257     * bad idea for basic internal search operations because it adds
258     * to GC overhead. (This is one of the few times I've wished Java
259     * had macros.) Instead, some traversal code is interleaved within
260     * insertion and removal operations. The control logic to handle
261     * all the retry conditions is sometimes twisty. Most search is
262     * broken into 2 parts. findPredecessor() searches index nodes
263     * only, returning a base-level predecessor of the key. findNode()
264     * finishes out the base-level search. Even with this factoring,
265     * there is a fair amount of near-duplication of code to handle
266     * variants.
267     *
268     * For explanation of algorithms sharing at least a couple of
269     * features with this one, see Mikhail Fomitchev's thesis
270     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
271 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
272 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
273     *
274     * Given the use of tree-like index nodes, you might wonder why
275     * this doesn't use some kind of search tree instead, which would
276     * support somewhat faster search operations. The reason is that
277     * there are no known efficient lock-free insertion and deletion
278     * algorithms for search trees. The immutability of the "down"
279     * links of index nodes (as opposed to mutable "left" fields in
280     * true trees) makes this tractable using only CAS operations.
281     *
282     * Notation guide for local variables
283     * Node: b, n, f for predecessor, node, successor
284     * Index: q, r, d for index node, right, down.
285     * t for another index node
286     * Head: h
287     * Levels: j
288     * Keys: k, key
289     * Values: v, value
290     * Comparisons: c
291     */
292    
293     private static final long serialVersionUID = -8627078645895051609L;
294    
295     /**
296     * Special value used to identify base-level header
297 dl 1.9 */
298 dl 1.1 private static final Object BASE_HEADER = new Object();
299    
300     /**
301 dl 1.9 * The topmost head index of the skiplist.
302 dl 1.1 */
303     private transient volatile HeadIndex<K,V> head;
304    
305     /**
306 jsr166 1.10 * The comparator used to maintain order in this map, or null
307 jsr166 1.22 * if using natural ordering.
308 dl 1.1 * @serial
309     */
310     private final Comparator<? super K> comparator;
311    
312     /**
313     * Seed for simple random number generator. Not volatile since it
314     * doesn't matter too much if different threads don't see updates.
315     */
316     private transient int randomSeed;
317    
318     /** Lazily initialized key set */
319     private transient KeySet keySet;
320     /** Lazily initialized entry set */
321     private transient EntrySet entrySet;
322     /** Lazily initialized values collection */
323     private transient Values values;
324     /** Lazily initialized descending key set */
325     private transient DescendingKeySet descendingKeySet;
326     /** Lazily initialized descending entry set */
327     private transient DescendingEntrySet descendingEntrySet;
328    
329     /**
330 jsr166 1.13 * Initializes or resets state. Needed by constructors, clone,
331 dl 1.1 * clear, readObject. and ConcurrentSkipListSet.clone.
332     * (Note that comparator must be separately initialized.)
333     */
334     final void initialize() {
335     keySet = null;
336 dl 1.9 entrySet = null;
337 dl 1.1 values = null;
338     descendingEntrySet = null;
339     descendingKeySet = null;
340     randomSeed = (int) System.nanoTime();
341     head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
342     null, null, 1);
343     }
344    
345     /** Updater for casHead */
346 dl 1.9 private static final
347     AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
348 dl 1.1 headUpdater = AtomicReferenceFieldUpdater.newUpdater
349     (ConcurrentSkipListMap.class, HeadIndex.class, "head");
350    
351     /**
352     * compareAndSet head node
353     */
354     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
355     return headUpdater.compareAndSet(this, cmp, val);
356     }
357    
358     /* ---------------- Nodes -------------- */
359    
360     /**
361     * Nodes hold keys and values, and are singly linked in sorted
362     * order, possibly with some intervening marker nodes. The list is
363     * headed by a dummy node accessible as head.node. The value field
364     * is declared only as Object because it takes special non-V
365     * values for marker and header nodes.
366     */
367     static final class Node<K,V> {
368     final K key;
369     volatile Object value;
370     volatile Node<K,V> next;
371    
372     /**
373     * Creates a new regular node.
374     */
375     Node(K key, Object value, Node<K,V> next) {
376     this.key = key;
377     this.value = value;
378     this.next = next;
379     }
380    
381     /**
382     * Creates a new marker node. A marker is distinguished by
383     * having its value field point to itself. Marker nodes also
384     * have null keys, a fact that is exploited in a few places,
385     * but this doesn't distinguish markers from the base-level
386     * header node (head.node), which also has a null key.
387     */
388     Node(Node<K,V> next) {
389     this.key = null;
390     this.value = this;
391     this.next = next;
392     }
393    
394     /** Updater for casNext */
395 dl 1.9 static final AtomicReferenceFieldUpdater<Node, Node>
396 dl 1.1 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
397     (Node.class, Node.class, "next");
398    
399     /** Updater for casValue */
400 dl 1.9 static final AtomicReferenceFieldUpdater<Node, Object>
401 dl 1.1 valueUpdater = AtomicReferenceFieldUpdater.newUpdater
402     (Node.class, Object.class, "value");
403    
404     /**
405     * compareAndSet value field
406     */
407     boolean casValue(Object cmp, Object val) {
408     return valueUpdater.compareAndSet(this, cmp, val);
409     }
410    
411     /**
412     * compareAndSet next field
413     */
414     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
415     return nextUpdater.compareAndSet(this, cmp, val);
416     }
417    
418     /**
419 jsr166 1.10 * Returns true if this node is a marker. This method isn't
420     * actually called in any current code checking for markers
421 dl 1.1 * because callers will have already read value field and need
422     * to use that read (not another done here) and so directly
423     * test if value points to node.
424     * @param n a possibly null reference to a node
425     * @return true if this node is a marker node
426     */
427     boolean isMarker() {
428     return value == this;
429     }
430    
431     /**
432 jsr166 1.10 * Returns true if this node is the header of base-level list.
433 dl 1.1 * @return true if this node is header node
434     */
435     boolean isBaseHeader() {
436     return value == BASE_HEADER;
437     }
438    
439     /**
440     * Tries to append a deletion marker to this node.
441     * @param f the assumed current successor of this node
442     * @return true if successful
443     */
444     boolean appendMarker(Node<K,V> f) {
445     return casNext(f, new Node<K,V>(f));
446     }
447    
448     /**
449     * Helps out a deletion by appending marker or unlinking from
450     * predecessor. This is called during traversals when value
451     * field seen to be null.
452     * @param b predecessor
453     * @param f successor
454     */
455     void helpDelete(Node<K,V> b, Node<K,V> f) {
456     /*
457     * Rechecking links and then doing only one of the
458     * help-out stages per call tends to minimize CAS
459     * interference among helping threads.
460     */
461     if (f == next && this == b.next) {
462     if (f == null || f.value != f) // not already marked
463     appendMarker(f);
464     else
465     b.casNext(this, f.next);
466     }
467     }
468    
469     /**
470 jsr166 1.11 * Returns value if this node contains a valid key-value pair,
471 dl 1.9 * else null.
472 dl 1.1 * @return this node's value if it isn't a marker or header or
473     * is deleted, else null.
474     */
475     V getValidValue() {
476     Object v = value;
477     if (v == this || v == BASE_HEADER)
478     return null;
479     return (V)v;
480     }
481    
482     /**
483 jsr166 1.10 * Creates and returns a new SimpleImmutableEntry holding current
484     * mapping if this node holds a valid value, else null.
485 dl 1.1 * @return new entry or null
486     */
487 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
488 dl 1.1 V v = getValidValue();
489     if (v == null)
490     return null;
491 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
492 dl 1.1 }
493     }
494    
495     /* ---------------- Indexing -------------- */
496    
497     /**
498     * Index nodes represent the levels of the skip list. To improve
499     * search performance, keys of the underlying nodes are cached.
500     * Note that even though both Nodes and Indexes have
501     * forward-pointing fields, they have different types and are
502     * handled in different ways, that can't nicely be captured by
503     * placing field in a shared abstract class.
504     */
505     static class Index<K,V> {
506     final K key;
507     final Node<K,V> node;
508     final Index<K,V> down;
509     volatile Index<K,V> right;
510    
511     /**
512 jsr166 1.10 * Creates index node with given values.
513 dl 1.9 */
514 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
515     this.node = node;
516     this.key = node.key;
517     this.down = down;
518     this.right = right;
519     }
520    
521     /** Updater for casRight */
522 dl 1.9 static final AtomicReferenceFieldUpdater<Index, Index>
523 dl 1.1 rightUpdater = AtomicReferenceFieldUpdater.newUpdater
524     (Index.class, Index.class, "right");
525    
526     /**
527     * compareAndSet right field
528     */
529     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
530     return rightUpdater.compareAndSet(this, cmp, val);
531     }
532    
533     /**
534     * Returns true if the node this indexes has been deleted.
535     * @return true if indexed node is known to be deleted
536     */
537     final boolean indexesDeletedNode() {
538     return node.value == null;
539     }
540    
541     /**
542     * Tries to CAS newSucc as successor. To minimize races with
543     * unlink that may lose this index node, if the node being
544     * indexed is known to be deleted, it doesn't try to link in.
545     * @param succ the expected current successor
546     * @param newSucc the new successor
547     * @return true if successful
548     */
549     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
550     Node<K,V> n = node;
551 dl 1.9 newSucc.right = succ;
552 dl 1.1 return n.value != null && casRight(succ, newSucc);
553     }
554    
555     /**
556     * Tries to CAS right field to skip over apparent successor
557     * succ. Fails (forcing a retraversal by caller) if this node
558     * is known to be deleted.
559     * @param succ the expected current successor
560     * @return true if successful
561     */
562     final boolean unlink(Index<K,V> succ) {
563     return !indexesDeletedNode() && casRight(succ, succ.right);
564     }
565     }
566    
567     /* ---------------- Head nodes -------------- */
568    
569     /**
570     * Nodes heading each level keep track of their level.
571     */
572     static final class HeadIndex<K,V> extends Index<K,V> {
573     final int level;
574     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
575     super(node, down, right);
576     this.level = level;
577     }
578 dl 1.9 }
579 dl 1.1
580     /* ---------------- Comparison utilities -------------- */
581    
582     /**
583     * Represents a key with a comparator as a Comparable.
584     *
585 jsr166 1.22 * Because most sorted collections seem to use natural ordering on
586 dl 1.1 * Comparables (Strings, Integers, etc), most internal methods are
587     * geared to use them. This is generally faster than checking
588     * per-comparison whether to use comparator or comparable because
589     * it doesn't require a (Comparable) cast for each comparison.
590     * (Optimizers can only sometimes remove such redundant checks
591     * themselves.) When Comparators are used,
592     * ComparableUsingComparators are created so that they act in the
593     * same way as natural orderings. This penalizes use of
594     * Comparators vs Comparables, which seems like the right
595     * tradeoff.
596     */
597     static final class ComparableUsingComparator<K> implements Comparable<K> {
598     final K actualKey;
599     final Comparator<? super K> cmp;
600     ComparableUsingComparator(K key, Comparator<? super K> cmp) {
601     this.actualKey = key;
602     this.cmp = cmp;
603     }
604     public int compareTo(K k2) {
605     return cmp.compare(actualKey, k2);
606     }
607     }
608    
609     /**
610     * If using comparator, return a ComparableUsingComparator, else
611     * cast key as Comparator, which may cause ClassCastException,
612     * which is propagated back to caller.
613     */
614 dl 1.9 private Comparable<? super K> comparable(Object key) throws ClassCastException {
615     if (key == null)
616 dl 1.1 throw new NullPointerException();
617 dl 1.24 if (comparator != null)
618     return new ComparableUsingComparator<K>((K)key, comparator);
619     else
620     return (Comparable<? super K>)key;
621 dl 1.1 }
622    
623     /**
624 jsr166 1.10 * Compares using comparator or natural ordering. Used when the
625 dl 1.1 * ComparableUsingComparator approach doesn't apply.
626     */
627     int compare(K k1, K k2) throws ClassCastException {
628     Comparator<? super K> cmp = comparator;
629     if (cmp != null)
630     return cmp.compare(k1, k2);
631     else
632 jsr166 1.18 return ((Comparable<? super K>)k1).compareTo(k2);
633 dl 1.1 }
634    
635     /**
636 jsr166 1.10 * Returns true if given key greater than or equal to least and
637 dl 1.1 * strictly less than fence, bypassing either test if least or
638 dl 1.5 * fence are null. Needed mainly in submap operations.
639 dl 1.1 */
640     boolean inHalfOpenRange(K key, K least, K fence) {
641 dl 1.9 if (key == null)
642 dl 1.1 throw new NullPointerException();
643     return ((least == null || compare(key, least) >= 0) &&
644     (fence == null || compare(key, fence) < 0));
645     }
646    
647     /**
648 jsr166 1.10 * Returns true if given key greater than or equal to least and less
649 dl 1.1 * or equal to fence. Needed mainly in submap operations.
650     */
651     boolean inOpenRange(K key, K least, K fence) {
652 dl 1.9 if (key == null)
653 dl 1.1 throw new NullPointerException();
654     return ((least == null || compare(key, least) >= 0) &&
655     (fence == null || compare(key, fence) <= 0));
656     }
657    
658     /* ---------------- Traversal -------------- */
659    
660     /**
661 jsr166 1.10 * Returns a base-level node with key strictly less than given key,
662 dl 1.1 * or the base-level header if there is no such node. Also
663     * unlinks indexes to deleted nodes found along the way. Callers
664     * rely on this side-effect of clearing indices to deleted nodes.
665     * @param key the key
666 dl 1.9 * @return a predecessor of key
667 dl 1.1 */
668 dl 1.9 private Node<K,V> findPredecessor(Comparable<? super K> key) {
669 dl 1.1 for (;;) {
670     Index<K,V> q = head;
671     for (;;) {
672     Index<K,V> d, r;
673     if ((r = q.right) != null) {
674     if (r.indexesDeletedNode()) {
675     if (q.unlink(r))
676     continue; // reread r
677     else
678     break; // restart
679     }
680     if (key.compareTo(r.key) > 0) {
681     q = r;
682     continue;
683     }
684     }
685 dl 1.9 if ((d = q.down) != null)
686 dl 1.1 q = d;
687     else
688     return q.node;
689     }
690     }
691     }
692    
693     /**
694 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
695 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
696     * base-level looking for key starting at predecessor returned
697     * from findPredecessor, processing base-level deletions as
698     * encountered. Some callers rely on this side-effect of clearing
699     * deleted nodes.
700     *
701     * Restarts occur, at traversal step centered on node n, if:
702     *
703     * (1) After reading n's next field, n is no longer assumed
704     * predecessor b's current successor, which means that
705     * we don't have a consistent 3-node snapshot and so cannot
706     * unlink any subsequent deleted nodes encountered.
707     *
708     * (2) n's value field is null, indicating n is deleted, in
709     * which case we help out an ongoing structural deletion
710     * before retrying. Even though there are cases where such
711     * unlinking doesn't require restart, they aren't sorted out
712     * here because doing so would not usually outweigh cost of
713     * restarting.
714     *
715 dl 1.9 * (3) n is a marker or n's predecessor's value field is null,
716 dl 1.1 * indicating (among other possibilities) that
717     * findPredecessor returned a deleted node. We can't unlink
718     * the node because we don't know its predecessor, so rely
719     * on another call to findPredecessor to notice and return
720     * some earlier predecessor, which it will do. This check is
721     * only strictly needed at beginning of loop, (and the
722     * b.value check isn't strictly needed at all) but is done
723     * each iteration to help avoid contention with other
724     * threads by callers that will fail to be able to change
725     * links, and so will retry anyway.
726     *
727     * The traversal loops in doPut, doRemove, and findNear all
728     * include the same three kinds of checks. And specialized
729 dl 1.31 * versions appear in findFirst, and findLast and their
730     * variants. They can't easily share code because each uses the
731 dl 1.1 * reads of fields held in locals occurring in the orders they
732     * were performed.
733 dl 1.9 *
734 dl 1.1 * @param key the key
735 jsr166 1.22 * @return node holding key, or null if no such
736 dl 1.1 */
737 dl 1.9 private Node<K,V> findNode(Comparable<? super K> key) {
738 dl 1.1 for (;;) {
739     Node<K,V> b = findPredecessor(key);
740     Node<K,V> n = b.next;
741     for (;;) {
742 dl 1.9 if (n == null)
743 dl 1.1 return null;
744     Node<K,V> f = n.next;
745     if (n != b.next) // inconsistent read
746     break;
747     Object v = n.value;
748     if (v == null) { // n is deleted
749     n.helpDelete(b, f);
750     break;
751     }
752     if (v == n || b.value == null) // b is deleted
753     break;
754     int c = key.compareTo(n.key);
755     if (c < 0)
756     return null;
757 dl 1.9 if (c == 0)
758 dl 1.1 return n;
759     b = n;
760     n = f;
761     }
762     }
763     }
764    
765 dl 1.9 /**
766 dl 1.1 * Specialized variant of findNode to perform Map.get. Does a weak
767     * traversal, not bothering to fix any deleted index nodes,
768     * returning early if it happens to see key in index, and passing
769     * over any deleted base nodes, falling back to getUsingFindNode
770     * only if it would otherwise return value from an ongoing
771     * deletion. Also uses "bound" to eliminate need for some
772     * comparisons (see Pugh Cookbook). Also folds uses of null checks
773     * and node-skipping because markers have null keys.
774     * @param okey the key
775     * @return the value, or null if absent
776     */
777     private V doGet(Object okey) {
778 dl 1.9 Comparable<? super K> key = comparable(okey);
779 dl 1.1 K bound = null;
780     Index<K,V> q = head;
781     for (;;) {
782     K rk;
783     Index<K,V> d, r;
784 dl 1.9 if ((r = q.right) != null &&
785 dl 1.1 (rk = r.key) != null && rk != bound) {
786     int c = key.compareTo(rk);
787     if (c > 0) {
788     q = r;
789     continue;
790     }
791     if (c == 0) {
792     Object v = r.node.value;
793     return (v != null)? (V)v : getUsingFindNode(key);
794     }
795     bound = rk;
796     }
797 dl 1.9 if ((d = q.down) != null)
798 dl 1.1 q = d;
799     else {
800     for (Node<K,V> n = q.node.next; n != null; n = n.next) {
801     K nk = n.key;
802     if (nk != null) {
803     int c = key.compareTo(nk);
804     if (c == 0) {
805     Object v = n.value;
806     return (v != null)? (V)v : getUsingFindNode(key);
807     }
808     if (c < 0)
809     return null;
810     }
811     }
812     return null;
813     }
814     }
815     }
816    
817     /**
818 jsr166 1.10 * Performs map.get via findNode. Used as a backup if doGet
819 dl 1.1 * encounters an in-progress deletion.
820     * @param key the key
821     * @return the value, or null if absent
822     */
823 dl 1.9 private V getUsingFindNode(Comparable<? super K> key) {
824 dl 1.1 /*
825     * Loop needed here and elsewhere in case value field goes
826     * null just as it is about to be returned, in which case we
827     * lost a race with a deletion, so must retry.
828     */
829     for (;;) {
830     Node<K,V> n = findNode(key);
831     if (n == null)
832     return null;
833     Object v = n.value;
834     if (v != null)
835     return (V)v;
836     }
837     }
838    
839     /* ---------------- Insertion -------------- */
840    
841     /**
842     * Main insertion method. Adds element if not present, or
843     * replaces value if present and onlyIfAbsent is false.
844 dl 1.9 * @param kkey the key
845 dl 1.1 * @param value the value that must be associated with key
846     * @param onlyIfAbsent if should not insert if already present
847     * @return the old value, or null if newly inserted
848     */
849     private V doPut(K kkey, V value, boolean onlyIfAbsent) {
850 dl 1.9 Comparable<? super K> key = comparable(kkey);
851 dl 1.1 for (;;) {
852     Node<K,V> b = findPredecessor(key);
853     Node<K,V> n = b.next;
854     for (;;) {
855     if (n != null) {
856     Node<K,V> f = n.next;
857     if (n != b.next) // inconsistent read
858     break;;
859     Object v = n.value;
860     if (v == null) { // n is deleted
861     n.helpDelete(b, f);
862     break;
863     }
864     if (v == n || b.value == null) // b is deleted
865     break;
866     int c = key.compareTo(n.key);
867     if (c > 0) {
868     b = n;
869     n = f;
870     continue;
871     }
872     if (c == 0) {
873     if (onlyIfAbsent || n.casValue(v, value))
874     return (V)v;
875     else
876     break; // restart if lost race to replace value
877     }
878     // else c < 0; fall through
879     }
880 dl 1.9
881 dl 1.1 Node<K,V> z = new Node<K,V>(kkey, value, n);
882 dl 1.9 if (!b.casNext(n, z))
883 dl 1.1 break; // restart if lost race to append to b
884 dl 1.9 int level = randomLevel();
885     if (level > 0)
886 dl 1.1 insertIndex(z, level);
887     return null;
888     }
889     }
890     }
891    
892     /**
893 jsr166 1.10 * Returns a random level for inserting a new node.
894 dl 1.1 * Hardwired to k=1, p=0.5, max 31.
895     *
896     * This uses a cheap pseudo-random function that according to
897     * http://home1.gte.net/deleyd/random/random4.html was used in
898     * Turbo Pascal. It seems the fastest usable one here. The low
899     * bits are apparently not very random (the original used only
900     * upper 16 bits) so we traverse from highest bit down (i.e., test
901     * sign), thus hardly ever use lower bits.
902     */
903     private int randomLevel() {
904     int level = 0;
905     int r = randomSeed;
906     randomSeed = r * 134775813 + 1;
907 dl 1.9 if (r < 0) {
908     while ((r <<= 1) > 0)
909 dl 1.1 ++level;
910     }
911     return level;
912     }
913    
914     /**
915 jsr166 1.11 * Creates and adds index nodes for the given node.
916 dl 1.1 * @param z the node
917     * @param level the level of the index
918     */
919     private void insertIndex(Node<K,V> z, int level) {
920     HeadIndex<K,V> h = head;
921     int max = h.level;
922    
923     if (level <= max) {
924     Index<K,V> idx = null;
925     for (int i = 1; i <= level; ++i)
926     idx = new Index<K,V>(z, idx, null);
927     addIndex(idx, h, level);
928    
929     } else { // Add a new level
930     /*
931     * To reduce interference by other threads checking for
932     * empty levels in tryReduceLevel, new levels are added
933     * with initialized right pointers. Which in turn requires
934     * keeping levels in an array to access them while
935     * creating new head index nodes from the opposite
936     * direction.
937     */
938     level = max + 1;
939     Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
940     Index<K,V> idx = null;
941 dl 1.9 for (int i = 1; i <= level; ++i)
942 dl 1.1 idxs[i] = idx = new Index<K,V>(z, idx, null);
943    
944     HeadIndex<K,V> oldh;
945     int k;
946     for (;;) {
947     oldh = head;
948     int oldLevel = oldh.level;
949     if (level <= oldLevel) { // lost race to add level
950     k = level;
951     break;
952     }
953     HeadIndex<K,V> newh = oldh;
954     Node<K,V> oldbase = oldh.node;
955 dl 1.9 for (int j = oldLevel+1; j <= level; ++j)
956 dl 1.1 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
957     if (casHead(oldh, newh)) {
958     k = oldLevel;
959     break;
960     }
961     }
962     addIndex(idxs[k], oldh, k);
963     }
964     }
965    
966     /**
967 jsr166 1.10 * Adds given index nodes from given level down to 1.
968 dl 1.1 * @param idx the topmost index node being inserted
969     * @param h the value of head to use to insert. This must be
970     * snapshotted by callers to provide correct insertion level
971     * @param indexLevel the level of the index
972     */
973     private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
974     // Track next level to insert in case of retries
975     int insertionLevel = indexLevel;
976 dl 1.9 Comparable<? super K> key = comparable(idx.key);
977 dl 1.1
978     // Similar to findPredecessor, but adding index nodes along
979     // path to key.
980     for (;;) {
981     Index<K,V> q = h;
982     Index<K,V> t = idx;
983     int j = h.level;
984     for (;;) {
985     Index<K,V> r = q.right;
986     if (r != null) {
987     // compare before deletion check avoids needing recheck
988     int c = key.compareTo(r.key);
989     if (r.indexesDeletedNode()) {
990     if (q.unlink(r))
991     continue;
992     else
993 dl 1.9 break;
994 dl 1.1 }
995     if (c > 0) {
996     q = r;
997     continue;
998     }
999     }
1000    
1001     if (j == insertionLevel) {
1002     // Don't insert index if node already deleted
1003     if (t.indexesDeletedNode()) {
1004     findNode(key); // cleans up
1005     return;
1006     }
1007 dl 1.9 if (!q.link(r, t))
1008 dl 1.1 break; // restart
1009     if (--insertionLevel == 0) {
1010     // need final deletion check before return
1011 dl 1.9 if (t.indexesDeletedNode())
1012     findNode(key);
1013 dl 1.1 return;
1014     }
1015     }
1016    
1017 dl 1.9 if (j > insertionLevel && j <= indexLevel)
1018 dl 1.1 t = t.down;
1019     q = q.down;
1020     --j;
1021     }
1022     }
1023     }
1024    
1025     /* ---------------- Deletion -------------- */
1026    
1027     /**
1028     * Main deletion method. Locates node, nulls value, appends a
1029     * deletion marker, unlinks predecessor, removes associated index
1030     * nodes, and possibly reduces head index level.
1031     *
1032     * Index nodes are cleared out simply by calling findPredecessor.
1033     * which unlinks indexes to deleted nodes found along path to key,
1034     * which will include the indexes to this node. This is done
1035     * unconditionally. We can't check beforehand whether there are
1036     * index nodes because it might be the case that some or all
1037     * indexes hadn't been inserted yet for this node during initial
1038     * search for it, and we'd like to ensure lack of garbage
1039 dl 1.9 * retention, so must call to be sure.
1040 dl 1.1 *
1041     * @param okey the key
1042     * @param value if non-null, the value that must be
1043     * associated with key
1044     * @return the node, or null if not found
1045     */
1046     private V doRemove(Object okey, Object value) {
1047 dl 1.9 Comparable<? super K> key = comparable(okey);
1048     for (;;) {
1049 dl 1.1 Node<K,V> b = findPredecessor(key);
1050     Node<K,V> n = b.next;
1051     for (;;) {
1052 dl 1.9 if (n == null)
1053 dl 1.1 return null;
1054     Node<K,V> f = n.next;
1055     if (n != b.next) // inconsistent read
1056     break;
1057     Object v = n.value;
1058     if (v == null) { // n is deleted
1059     n.helpDelete(b, f);
1060     break;
1061     }
1062     if (v == n || b.value == null) // b is deleted
1063     break;
1064     int c = key.compareTo(n.key);
1065     if (c < 0)
1066     return null;
1067     if (c > 0) {
1068     b = n;
1069     n = f;
1070     continue;
1071     }
1072 dl 1.9 if (value != null && !value.equals(v))
1073     return null;
1074     if (!n.casValue(v, null))
1075 dl 1.1 break;
1076 dl 1.9 if (!n.appendMarker(f) || !b.casNext(n, f))
1077 dl 1.1 findNode(key); // Retry via findNode
1078     else {
1079     findPredecessor(key); // Clean index
1080 dl 1.9 if (head.right == null)
1081 dl 1.1 tryReduceLevel();
1082     }
1083     return (V)v;
1084     }
1085     }
1086     }
1087    
1088     /**
1089     * Possibly reduce head level if it has no nodes. This method can
1090     * (rarely) make mistakes, in which case levels can disappear even
1091     * though they are about to contain index nodes. This impacts
1092     * performance, not correctness. To minimize mistakes as well as
1093     * to reduce hysteresis, the level is reduced by one only if the
1094     * topmost three levels look empty. Also, if the removed level
1095     * looks non-empty after CAS, we try to change it back quick
1096     * before anyone notices our mistake! (This trick works pretty
1097     * well because this method will practically never make mistakes
1098     * unless current thread stalls immediately before first CAS, in
1099     * which case it is very unlikely to stall again immediately
1100     * afterwards, so will recover.)
1101     *
1102     * We put up with all this rather than just let levels grow
1103     * because otherwise, even a small map that has undergone a large
1104     * number of insertions and removals will have a lot of levels,
1105     * slowing down access more than would an occasional unwanted
1106     * reduction.
1107     */
1108     private void tryReduceLevel() {
1109     HeadIndex<K,V> h = head;
1110     HeadIndex<K,V> d;
1111     HeadIndex<K,V> e;
1112     if (h.level > 3 &&
1113 dl 1.9 (d = (HeadIndex<K,V>)h.down) != null &&
1114     (e = (HeadIndex<K,V>)d.down) != null &&
1115     e.right == null &&
1116     d.right == null &&
1117 dl 1.1 h.right == null &&
1118     casHead(h, d) && // try to set
1119     h.right != null) // recheck
1120     casHead(d, h); // try to backout
1121     }
1122    
1123     /**
1124     * Version of remove with boolean return. Needed by view classes
1125     */
1126     boolean removep(Object key) {
1127     return doRemove(key, null) != null;
1128     }
1129    
1130     /* ---------------- Finding and removing first element -------------- */
1131    
1132     /**
1133 jsr166 1.22 * Specialized variant of findNode to get first valid node.
1134 dl 1.1 * @return first node or null if empty
1135     */
1136     Node<K,V> findFirst() {
1137     for (;;) {
1138     Node<K,V> b = head.node;
1139     Node<K,V> n = b.next;
1140     if (n == null)
1141     return null;
1142 dl 1.9 if (n.value != null)
1143 dl 1.1 return n;
1144     n.helpDelete(b, n.next);
1145     }
1146     }
1147    
1148     /**
1149 dl 1.31 * Removes first entry; returns its key. Note: The
1150     * mostly-redundant methods for removing first and last keys vs
1151     * entries exist to avoid needless creation of Entry nodes when
1152     * only the key is needed. The minor reduction in overhead is
1153     * worth the minor code duplication.
1154 jsr166 1.28 * @return null if empty, else key of first entry
1155 dl 1.25 */
1156 dl 1.30 K pollFirstKey() {
1157 dl 1.25 for (;;) {
1158     Node<K,V> b = head.node;
1159     Node<K,V> n = b.next;
1160     if (n == null)
1161     return null;
1162     Node<K,V> f = n.next;
1163     if (n != b.next)
1164     continue;
1165     Object v = n.value;
1166     if (v == null) {
1167     n.helpDelete(b, f);
1168     continue;
1169     }
1170     if (!n.casValue(v, null))
1171     continue;
1172     if (!n.appendMarker(f) || !b.casNext(n, f))
1173     findFirst(); // retry
1174     clearIndexToFirst();
1175 dl 1.30 return n.key;
1176 dl 1.25 }
1177     }
1178    
1179     /**
1180     * Removes first entry; returns its snapshot.
1181 jsr166 1.28 * @return null if empty, else snapshot of first entry
1182 dl 1.1 */
1183 dl 1.25 Map.Entry<K,V> doRemoveFirstEntry() {
1184 dl 1.9 for (;;) {
1185 dl 1.1 Node<K,V> b = head.node;
1186     Node<K,V> n = b.next;
1187 dl 1.9 if (n == null)
1188 dl 1.1 return null;
1189     Node<K,V> f = n.next;
1190     if (n != b.next)
1191     continue;
1192     Object v = n.value;
1193     if (v == null) {
1194     n.helpDelete(b, f);
1195     continue;
1196     }
1197     if (!n.casValue(v, null))
1198     continue;
1199     if (!n.appendMarker(f) || !b.casNext(n, f))
1200     findFirst(); // retry
1201     clearIndexToFirst();
1202 dl 1.30 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1203 jsr166 1.28 }
1204 dl 1.1 }
1205    
1206     /**
1207 jsr166 1.10 * Clears out index nodes associated with deleted first entry.
1208 dl 1.1 */
1209     private void clearIndexToFirst() {
1210     for (;;) {
1211     Index<K,V> q = head;
1212     for (;;) {
1213     Index<K,V> r = q.right;
1214     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1215 dl 1.9 break;
1216 dl 1.1 if ((q = q.down) == null) {
1217 dl 1.9 if (head.right == null)
1218 dl 1.1 tryReduceLevel();
1219     return;
1220     }
1221     }
1222     }
1223     }
1224    
1225    
1226     /* ---------------- Finding and removing last element -------------- */
1227    
1228     /**
1229 jsr166 1.10 * Specialized version of find to get last valid node.
1230 dl 1.1 * @return last node or null if empty
1231     */
1232     Node<K,V> findLast() {
1233     /*
1234     * findPredecessor can't be used to traverse index level
1235     * because this doesn't use comparisons. So traversals of
1236     * both levels are folded together.
1237     */
1238     Index<K,V> q = head;
1239     for (;;) {
1240     Index<K,V> d, r;
1241     if ((r = q.right) != null) {
1242     if (r.indexesDeletedNode()) {
1243     q.unlink(r);
1244     q = head; // restart
1245 dl 1.9 }
1246 dl 1.1 else
1247     q = r;
1248     } else if ((d = q.down) != null) {
1249     q = d;
1250     } else {
1251     Node<K,V> b = q.node;
1252     Node<K,V> n = b.next;
1253     for (;;) {
1254 dl 1.9 if (n == null)
1255 dl 1.1 return (b.isBaseHeader())? null : b;
1256     Node<K,V> f = n.next; // inconsistent read
1257     if (n != b.next)
1258     break;
1259     Object v = n.value;
1260     if (v == null) { // n is deleted
1261     n.helpDelete(b, f);
1262     break;
1263     }
1264     if (v == n || b.value == null) // b is deleted
1265     break;
1266     b = n;
1267     n = f;
1268     }
1269     q = head; // restart
1270     }
1271     }
1272     }
1273    
1274 dl 1.31 /**
1275     * Specialized variant of findPredecessor to get predecessor of
1276     * last valid node. Needed by doRemoveLast. It is possible that
1277     * all successors of returned node will have been deleted upon
1278     * return, in which case this method can be retried.
1279     * @return likely predecessor of last node
1280     */
1281     private Node<K,V> findPredecessorOfLast() {
1282     for (;;) {
1283     Index<K,V> q = head;
1284     for (;;) {
1285     Index<K,V> d, r;
1286     if ((r = q.right) != null) {
1287     if (r.indexesDeletedNode()) {
1288     q.unlink(r);
1289     break; // must restart
1290     }
1291     // proceed as far across as possible without overshooting
1292     if (r.node.next != null) {
1293     q = r;
1294     continue;
1295     }
1296     }
1297     if ((d = q.down) != null)
1298     q = d;
1299     else
1300     return q.node;
1301     }
1302     }
1303     }
1304 dl 1.1
1305     /**
1306 dl 1.31 * Specialized version of doRemove for last key.
1307     * @return null if empty, else the last key
1308 dl 1.1 */
1309 dl 1.31 K pollLastKey() {
1310 dl 1.9 for (;;) {
1311 dl 1.1 Node<K,V> b = findPredecessorOfLast();
1312     Node<K,V> n = b.next;
1313     if (n == null) {
1314     if (b.isBaseHeader()) // empty
1315     return null;
1316 dl 1.9 else
1317 dl 1.1 continue; // all b's successors are deleted; retry
1318     }
1319     for (;;) {
1320     Node<K,V> f = n.next;
1321     if (n != b.next) // inconsistent read
1322     break;
1323     Object v = n.value;
1324     if (v == null) { // n is deleted
1325     n.helpDelete(b, f);
1326     break;
1327     }
1328     if (v == n || b.value == null) // b is deleted
1329     break;
1330     if (f != null) {
1331     b = n;
1332     n = f;
1333     continue;
1334     }
1335 dl 1.9 if (!n.casValue(v, null))
1336 dl 1.1 break;
1337     K key = n.key;
1338 dl 1.9 Comparable<? super K> ck = comparable(key);
1339     if (!n.appendMarker(f) || !b.casNext(n, f))
1340 dl 1.1 findNode(ck); // Retry via findNode
1341     else {
1342     findPredecessor(ck); // Clean index
1343 dl 1.9 if (head.right == null)
1344 dl 1.1 tryReduceLevel();
1345     }
1346 dl 1.31 return key;
1347 dl 1.1 }
1348     }
1349     }
1350    
1351     /**
1352 dl 1.31 * Specialized version of doRemove for last.
1353     * @return null if empty, else snapshot of the last entry
1354 dl 1.1 */
1355 dl 1.31 Map.Entry<K,V> doRemoveLastEntry() {
1356 dl 1.1 for (;;) {
1357 dl 1.31 Node<K,V> b = findPredecessorOfLast();
1358     Node<K,V> n = b.next;
1359     if (n == null) {
1360     if (b.isBaseHeader()) // empty
1361     return null;
1362     else
1363     continue; // all b's successors are deleted; retry
1364     }
1365 dl 1.1 for (;;) {
1366 dl 1.31 Node<K,V> f = n.next;
1367     if (n != b.next) // inconsistent read
1368     break;
1369     Object v = n.value;
1370     if (v == null) { // n is deleted
1371     n.helpDelete(b, f);
1372     break;
1373     }
1374     if (v == n || b.value == null) // b is deleted
1375     break;
1376     if (f != null) {
1377     b = n;
1378     n = f;
1379     continue;
1380     }
1381     if (!n.casValue(v, null))
1382     break;
1383     K key = n.key;
1384     Comparable<? super K> ck = comparable(key);
1385     if (!n.appendMarker(f) || !b.casNext(n, f))
1386     findNode(ck); // Retry via findNode
1387     else {
1388     findPredecessor(ck); // Clean index
1389     if (head.right == null)
1390     tryReduceLevel();
1391 dl 1.1 }
1392 dl 1.31 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1393 dl 1.1 }
1394     }
1395     }
1396    
1397     /* ---------------- Relational operations -------------- */
1398    
1399     // Control values OR'ed as arguments to findNear
1400    
1401     private static final int EQ = 1;
1402     private static final int LT = 2;
1403     private static final int GT = 0; // Actually checked as !LT
1404    
1405     /**
1406     * Utility for ceiling, floor, lower, higher methods.
1407     * @param kkey the key
1408     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1409     * @return nearest node fitting relation, or null if no such
1410     */
1411     Node<K,V> findNear(K kkey, int rel) {
1412 dl 1.9 Comparable<? super K> key = comparable(kkey);
1413 dl 1.1 for (;;) {
1414     Node<K,V> b = findPredecessor(key);
1415     Node<K,V> n = b.next;
1416     for (;;) {
1417 dl 1.9 if (n == null)
1418 dl 1.1 return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1419     Node<K,V> f = n.next;
1420     if (n != b.next) // inconsistent read
1421     break;
1422     Object v = n.value;
1423     if (v == null) { // n is deleted
1424     n.helpDelete(b, f);
1425     break;
1426     }
1427     if (v == n || b.value == null) // b is deleted
1428     break;
1429     int c = key.compareTo(n.key);
1430     if ((c == 0 && (rel & EQ) != 0) ||
1431     (c < 0 && (rel & LT) == 0))
1432     return n;
1433     if ( c <= 0 && (rel & LT) != 0)
1434     return (b.isBaseHeader())? null : b;
1435     b = n;
1436     n = f;
1437     }
1438     }
1439     }
1440    
1441     /**
1442 jsr166 1.10 * Returns SimpleImmutableEntry for results of findNear.
1443 dl 1.1 * @param kkey the key
1444     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1445     * @return Entry fitting relation, or null if no such
1446     */
1447 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> getNear(K kkey, int rel) {
1448 dl 1.1 for (;;) {
1449     Node<K,V> n = findNear(kkey, rel);
1450     if (n == null)
1451     return null;
1452 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1453 dl 1.1 if (e != null)
1454     return e;
1455     }
1456     }
1457    
1458     /**
1459 jsr166 1.10 * Returns ceiling, or first node if key is <tt>null</tt>.
1460 dl 1.1 */
1461     Node<K,V> findCeiling(K key) {
1462     return (key == null)? findFirst() : findNear(key, GT|EQ);
1463     }
1464    
1465     /**
1466 jsr166 1.10 * Returns lower node, or last node if key is <tt>null</tt>.
1467 dl 1.1 */
1468     Node<K,V> findLower(K key) {
1469     return (key == null)? findLast() : findNear(key, LT);
1470     }
1471    
1472     /**
1473 dl 1.24 * Returns key for results of findNear after screening to ensure
1474     * result is in given range. Needed by submaps.
1475     * @param kkey the key
1476     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1477     * @param least minimum allowed key value
1478     * @param fence key greater than maximum allowed key value
1479     * @return Key fitting relation, or <tt>null</tt> if no such
1480     */
1481     K getNearKey(K kkey, int rel, K least, K fence) {
1482     K key = kkey;
1483     // Don't return keys less than least
1484     if ((rel & LT) == 0) {
1485     if (compare(key, least) < 0) {
1486     key = least;
1487     rel = rel | EQ;
1488     }
1489     }
1490    
1491     for (;;) {
1492     Node<K,V> n = findNear(key, rel);
1493     if (n == null || !inHalfOpenRange(n.key, least, fence))
1494     return null;
1495     K k = n.key;
1496     V v = n.getValidValue();
1497 jsr166 1.28 if (v != null)
1498 dl 1.24 return k;
1499     }
1500     }
1501    
1502    
1503     /**
1504     * Returns SimpleImmutableEntry for results of findNear after
1505     * screening to ensure result is in given range. Needed by
1506 dl 1.2 * submaps.
1507 dl 1.1 * @param kkey the key
1508     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1509     * @param least minimum allowed key value
1510     * @param fence key greater than maximum allowed key value
1511 dl 1.24 * @return Entry fitting relation, or <tt>null</tt> if no such
1512 dl 1.1 */
1513 dl 1.24 Map.Entry<K,V> getNearEntry(K kkey, int rel, K least, K fence) {
1514 dl 1.1 K key = kkey;
1515     // Don't return keys less than least
1516     if ((rel & LT) == 0) {
1517     if (compare(key, least) < 0) {
1518     key = least;
1519     rel = rel | EQ;
1520     }
1521     }
1522    
1523     for (;;) {
1524     Node<K,V> n = findNear(key, rel);
1525     if (n == null || !inHalfOpenRange(n.key, least, fence))
1526     return null;
1527     K k = n.key;
1528     V v = n.getValidValue();
1529 jsr166 1.28 if (v != null)
1530 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1531 dl 1.1 }
1532     }
1533    
1534     /**
1535 jsr166 1.10 * Finds and removes least element of subrange.
1536 dl 1.1 * @param least minimum allowed key value
1537     * @param fence key greater than maximum allowed key value
1538 dl 1.24 * @return least Entry, or <tt>null</tt> if no such
1539 dl 1.1 */
1540 dl 1.24 Map.Entry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
1541 dl 1.1 for (;;) {
1542     Node<K,V> n = findCeiling(least);
1543     if (n == null)
1544     return null;
1545     K k = n.key;
1546     if (fence != null && compare(k, fence) >= 0)
1547     return null;
1548     V v = doRemove(k, null);
1549 jsr166 1.28 if (v != null)
1550 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1551 dl 1.1 }
1552     }
1553    
1554     /**
1555 jsr166 1.10 * Finds and removes greatest element of subrange.
1556 dl 1.1 * @param least minimum allowed key value
1557     * @param fence key greater than maximum allowed key value
1558 dl 1.24 * @return least Entry, or <tt>null</tt> if no such
1559 dl 1.1 */
1560 dl 1.25 Map.Entry<K,V> removeLastEntryOfSubrange(K least, K fence) {
1561 dl 1.1 for (;;) {
1562     Node<K,V> n = findLower(fence);
1563     if (n == null)
1564     return null;
1565     K k = n.key;
1566     if (least != null && compare(k, least) < 0)
1567     return null;
1568     V v = doRemove(k, null);
1569 jsr166 1.28 if (v != null)
1570 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1571 dl 1.1 }
1572     }
1573    
1574 dl 1.24
1575    
1576 dl 1.1 /* ---------------- Constructors -------------- */
1577    
1578     /**
1579 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1580     * {@linkplain Comparable natural ordering} of the keys.
1581 dl 1.1 */
1582     public ConcurrentSkipListMap() {
1583     this.comparator = null;
1584     initialize();
1585     }
1586    
1587     /**
1588 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1589     * comparator.
1590 dl 1.1 *
1591 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1592     * If <tt>null</tt>, the {@linkplain Comparable natural
1593     * ordering} of the keys will be used.
1594 dl 1.1 */
1595 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1596     this.comparator = comparator;
1597 dl 1.1 initialize();
1598     }
1599    
1600     /**
1601     * Constructs a new map containing the same mappings as the given map,
1602 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1603     * the keys.
1604 dl 1.1 *
1605 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1606     * @throws ClassCastException if the keys in <tt>m</tt> are not
1607     * {@link Comparable}, or are not mutually comparable
1608     * @throws NullPointerException if the specified map or any of its keys
1609     * or values are null
1610 dl 1.1 */
1611     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1612     this.comparator = null;
1613     initialize();
1614     putAll(m);
1615     }
1616    
1617     /**
1618 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1619     * same ordering as the specified sorted map.
1620     *
1621 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1622 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1623     * @throws NullPointerException if the specified sorted map or any of
1624     * its keys or values are null
1625 dl 1.1 */
1626     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1627     this.comparator = m.comparator();
1628     initialize();
1629     buildFromSorted(m);
1630     }
1631    
1632     /**
1633 jsr166 1.22 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1634     * instance. (The keys and values themselves are not cloned.)
1635 dl 1.1 *
1636 jsr166 1.22 * @return a shallow copy of this map
1637 dl 1.1 */
1638 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1639 dl 1.1 ConcurrentSkipListMap<K,V> clone = null;
1640     try {
1641     clone = (ConcurrentSkipListMap<K,V>) super.clone();
1642     } catch (CloneNotSupportedException e) {
1643     throw new InternalError();
1644     }
1645    
1646     clone.initialize();
1647     clone.buildFromSorted(this);
1648     return clone;
1649     }
1650    
1651     /**
1652     * Streamlined bulk insertion to initialize from elements of
1653     * given sorted map. Call only from constructor or clone
1654     * method.
1655     */
1656     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1657     if (map == null)
1658     throw new NullPointerException();
1659    
1660     HeadIndex<K,V> h = head;
1661     Node<K,V> basepred = h.node;
1662    
1663     // Track the current rightmost node at each level. Uses an
1664     // ArrayList to avoid committing to initial or maximum level.
1665     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1666    
1667     // initialize
1668 dl 1.9 for (int i = 0; i <= h.level; ++i)
1669 dl 1.1 preds.add(null);
1670     Index<K,V> q = h;
1671     for (int i = h.level; i > 0; --i) {
1672     preds.set(i, q);
1673     q = q.down;
1674     }
1675    
1676 dl 1.9 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1677 dl 1.1 map.entrySet().iterator();
1678     while (it.hasNext()) {
1679     Map.Entry<? extends K, ? extends V> e = it.next();
1680     int j = randomLevel();
1681     if (j > h.level) j = h.level + 1;
1682     K k = e.getKey();
1683     V v = e.getValue();
1684     if (k == null || v == null)
1685     throw new NullPointerException();
1686     Node<K,V> z = new Node<K,V>(k, v, null);
1687     basepred.next = z;
1688     basepred = z;
1689     if (j > 0) {
1690     Index<K,V> idx = null;
1691     for (int i = 1; i <= j; ++i) {
1692     idx = new Index<K,V>(z, idx, null);
1693 dl 1.9 if (i > h.level)
1694 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1695    
1696     if (i < preds.size()) {
1697     preds.get(i).right = idx;
1698     preds.set(i, idx);
1699     } else
1700     preds.add(idx);
1701     }
1702     }
1703     }
1704     head = h;
1705     }
1706    
1707     /* ---------------- Serialization -------------- */
1708    
1709     /**
1710 jsr166 1.10 * Save the state of this map to a stream.
1711 dl 1.1 *
1712     * @serialData The key (Object) and value (Object) for each
1713 jsr166 1.10 * key-value mapping represented by the map, followed by
1714 dl 1.1 * <tt>null</tt>. The key-value mappings are emitted in key-order
1715     * (as determined by the Comparator, or by the keys' natural
1716     * ordering if no Comparator).
1717     */
1718     private void writeObject(java.io.ObjectOutputStream s)
1719     throws java.io.IOException {
1720     // Write out the Comparator and any hidden stuff
1721     s.defaultWriteObject();
1722    
1723     // Write out keys and values (alternating)
1724     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1725     V v = n.getValidValue();
1726     if (v != null) {
1727     s.writeObject(n.key);
1728     s.writeObject(v);
1729     }
1730     }
1731     s.writeObject(null);
1732     }
1733    
1734     /**
1735 jsr166 1.10 * Reconstitute the map from a stream.
1736 dl 1.1 */
1737     private void readObject(final java.io.ObjectInputStream s)
1738     throws java.io.IOException, ClassNotFoundException {
1739     // Read in the Comparator and any hidden stuff
1740     s.defaultReadObject();
1741     // Reset transients
1742     initialize();
1743    
1744 dl 1.9 /*
1745 dl 1.1 * This is nearly identical to buildFromSorted, but is
1746     * distinct because readObject calls can't be nicely adapted
1747     * as the kind of iterator needed by buildFromSorted. (They
1748     * can be, but doing so requires type cheats and/or creation
1749     * of adaptor classes.) It is simpler to just adapt the code.
1750     */
1751    
1752     HeadIndex<K,V> h = head;
1753     Node<K,V> basepred = h.node;
1754     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1755 dl 1.9 for (int i = 0; i <= h.level; ++i)
1756 dl 1.1 preds.add(null);
1757     Index<K,V> q = h;
1758     for (int i = h.level; i > 0; --i) {
1759     preds.set(i, q);
1760     q = q.down;
1761     }
1762    
1763     for (;;) {
1764     Object k = s.readObject();
1765     if (k == null)
1766     break;
1767     Object v = s.readObject();
1768 dl 1.9 if (v == null)
1769 dl 1.1 throw new NullPointerException();
1770     K key = (K) k;
1771     V val = (V) v;
1772     int j = randomLevel();
1773     if (j > h.level) j = h.level + 1;
1774     Node<K,V> z = new Node<K,V>(key, val, null);
1775     basepred.next = z;
1776     basepred = z;
1777     if (j > 0) {
1778     Index<K,V> idx = null;
1779     for (int i = 1; i <= j; ++i) {
1780     idx = new Index<K,V>(z, idx, null);
1781 dl 1.9 if (i > h.level)
1782 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1783    
1784     if (i < preds.size()) {
1785     preds.get(i).right = idx;
1786     preds.set(i, idx);
1787     } else
1788     preds.add(idx);
1789     }
1790     }
1791     }
1792     head = h;
1793     }
1794    
1795     /* ------ Map API methods ------ */
1796    
1797     /**
1798     * Returns <tt>true</tt> if this map contains a mapping for the specified
1799     * key.
1800 jsr166 1.22 *
1801     * @param key key whose presence in this map is to be tested
1802     * @return <tt>true</tt> if this map contains a mapping for the specified key
1803     * @throws ClassCastException if the specified key cannot be compared
1804     * with the keys currently in the map
1805     * @throws NullPointerException if the specified key is null
1806 dl 1.1 */
1807     public boolean containsKey(Object key) {
1808     return doGet(key) != null;
1809     }
1810    
1811     /**
1812 jsr166 1.22 * Returns the value to which this map maps the specified key, or
1813     * <tt>null</tt> if the map contains no mapping for the key.
1814 dl 1.1 *
1815 jsr166 1.22 * @param key key whose associated value is to be returned
1816 dl 1.1 * @return the value to which this map maps the specified key, or
1817 jsr166 1.22 * <tt>null</tt> if the map contains no mapping for the key
1818     * @throws ClassCastException if the specified key cannot be compared
1819     * with the keys currently in the map
1820     * @throws NullPointerException if the specified key is null
1821 dl 1.1 */
1822     public V get(Object key) {
1823     return doGet(key);
1824     }
1825    
1826     /**
1827     * Associates the specified value with the specified key in this map.
1828 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1829 dl 1.1 * value is replaced.
1830     *
1831 jsr166 1.22 * @param key key with which the specified value is to be associated
1832     * @param value value to be associated with the specified key
1833     * @return the previous value associated with the specified key, or
1834     * <tt>null</tt> if there was no mapping for the key
1835     * @throws ClassCastException if the specified key cannot be compared
1836     * with the keys currently in the map
1837     * @throws NullPointerException if the specified key or value is null
1838 dl 1.1 */
1839     public V put(K key, V value) {
1840 dl 1.9 if (value == null)
1841 dl 1.1 throw new NullPointerException();
1842     return doPut(key, value, false);
1843     }
1844    
1845     /**
1846 jsr166 1.22 * Removes the mapping for this key from this map if present.
1847 dl 1.1 *
1848     * @param key key for which mapping should be removed
1849 jsr166 1.22 * @return the previous value associated with the specified key, or
1850     * <tt>null</tt> if there was no mapping for the key
1851     * @throws ClassCastException if the specified key cannot be compared
1852     * with the keys currently in the map
1853     * @throws NullPointerException if the specified key is null
1854 dl 1.1 */
1855     public V remove(Object key) {
1856     return doRemove(key, null);
1857     }
1858    
1859     /**
1860     * Returns <tt>true</tt> if this map maps one or more keys to the
1861     * specified value. This operation requires time linear in the
1862 jsr166 1.10 * map size.
1863 dl 1.1 *
1864 jsr166 1.22 * @param value value whose presence in this map is to be tested
1865     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1866     * <tt>false</tt> otherwise
1867     * @throws NullPointerException if the specified value is null
1868 dl 1.9 */
1869 dl 1.1 public boolean containsValue(Object value) {
1870 dl 1.9 if (value == null)
1871 dl 1.1 throw new NullPointerException();
1872     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1873     V v = n.getValidValue();
1874     if (v != null && value.equals(v))
1875     return true;
1876     }
1877     return false;
1878     }
1879    
1880     /**
1881 dl 1.6 * Returns the number of key-value mappings in this map. If this map
1882 dl 1.1 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1883     * returns <tt>Integer.MAX_VALUE</tt>.
1884     *
1885     * <p>Beware that, unlike in most collections, this method is
1886     * <em>NOT</em> a constant-time operation. Because of the
1887     * asynchronous nature of these maps, determining the current
1888     * number of elements requires traversing them all to count them.
1889     * Additionally, it is possible for the size to change during
1890     * execution of this method, in which case the returned result
1891     * will be inaccurate. Thus, this method is typically not very
1892     * useful in concurrent applications.
1893     *
1894 jsr166 1.22 * @return the number of elements in this map
1895 dl 1.1 */
1896     public int size() {
1897     long count = 0;
1898     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1899     if (n.getValidValue() != null)
1900     ++count;
1901     }
1902     return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1903     }
1904    
1905     /**
1906     * Returns <tt>true</tt> if this map contains no key-value mappings.
1907 jsr166 1.22 * @return <tt>true</tt> if this map contains no key-value mappings
1908 dl 1.1 */
1909     public boolean isEmpty() {
1910     return findFirst() == null;
1911     }
1912    
1913     /**
1914 jsr166 1.22 * Removes all of the mappings from this map.
1915 dl 1.1 */
1916     public void clear() {
1917     initialize();
1918     }
1919    
1920     /**
1921 jsr166 1.22 * Returns a {@link Set} view of the keys contained in this map.
1922     * The set's iterator returns the keys in ascending order.
1923     * The set is backed by the map, so changes to the map are
1924     * reflected in the set, and vice-versa. The set supports element
1925     * removal, which removes the corresponding mapping from the map,
1926     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1927     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1928     * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1929     * operations.
1930     *
1931     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1932     * that will never throw {@link ConcurrentModificationException},
1933 dl 1.1 * and guarantees to traverse elements as they existed upon
1934     * construction of the iterator, and may (but is not guaranteed to)
1935     * reflect any modifications subsequent to construction.
1936     *
1937 jsr166 1.22 * @return a set view of the keys contained in this map, sorted in
1938     * ascending order
1939 dl 1.1 */
1940     public Set<K> keySet() {
1941     /*
1942 dl 1.5 * Note: Lazy initialization works here and for other views
1943 dl 1.1 * because view classes are stateless/immutable so it doesn't
1944     * matter wrt correctness if more than one is created (which
1945     * will only rarely happen). Even so, the following idiom
1946     * conservatively ensures that the method returns the one it
1947     * created if it does so, not one created by another racing
1948     * thread.
1949     */
1950     KeySet ks = keySet;
1951     return (ks != null) ? ks : (keySet = new KeySet());
1952     }
1953    
1954     /**
1955 jsr166 1.22 * Returns a {@link Set} view of the keys contained in this map.
1956     * The set's iterator returns the keys in descending order.
1957     * The set is backed by the map, so changes to the map are
1958     * reflected in the set, and vice-versa. The set supports element
1959     * removal, which removes the corresponding mapping from the map,
1960     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1961     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1962     * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1963     * operations.
1964     *
1965     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1966     * that will never throw {@link ConcurrentModificationException},
1967 dl 1.1 * and guarantees to traverse elements as they existed upon
1968 jsr166 1.22 * construction of the iterator, and may (but is not guaranteed to)
1969     * reflect any modifications subsequent to construction.
1970 dl 1.1 */
1971     public Set<K> descendingKeySet() {
1972     /*
1973 dl 1.5 * Note: Lazy initialization works here and for other views
1974 dl 1.1 * because view classes are stateless/immutable so it doesn't
1975     * matter wrt correctness if more than one is created (which
1976     * will only rarely happen). Even so, the following idiom
1977     * conservatively ensures that the method returns the one it
1978     * created if it does so, not one created by another racing
1979     * thread.
1980     */
1981     DescendingKeySet ks = descendingKeySet;
1982     return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1983     }
1984    
1985     /**
1986 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1987     * The collection's iterator returns the values in ascending order
1988     * of the corresponding keys.
1989 dl 1.1 * The collection is backed by the map, so changes to the map are
1990     * reflected in the collection, and vice-versa. The collection
1991     * supports element removal, which removes the corresponding
1992 jsr166 1.22 * mapping from the map, via the <tt>Iterator.remove</tt>,
1993 dl 1.1 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1994 jsr166 1.22 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
1995     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1996 dl 1.1 *
1997 jsr166 1.22 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1998     * that will never throw {@link ConcurrentModificationException},
1999     * and guarantees to traverse elements as they existed upon
2000     * construction of the iterator, and may (but is not guaranteed to)
2001     * reflect any modifications subsequent to construction.
2002 dl 1.1 */
2003     public Collection<V> values() {
2004     Values vs = values;
2005     return (vs != null) ? vs : (values = new Values());
2006     }
2007    
2008     /**
2009 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
2010     * The set's iterator returns the entries in ascending key order.
2011     * The set is backed by the map, so changes to the map are
2012     * reflected in the set, and vice-versa. The set supports element
2013     * removal, which removes the corresponding mapping from the map,
2014     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2015     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2016 dl 1.1 * operations. It does not support the <tt>add</tt> or
2017 jsr166 1.22 * <tt>addAll</tt> operations.
2018     *
2019     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2020     * that will never throw {@link ConcurrentModificationException},
2021     * and guarantees to traverse elements as they existed upon
2022     * construction of the iterator, and may (but is not guaranteed to)
2023     * reflect any modifications subsequent to construction.
2024     *
2025     * <p>The <tt>Map.Entry</tt> elements returned by
2026 dl 1.1 * <tt>iterator.next()</tt> do <em>not</em> support the
2027     * <tt>setValue</tt> operation.
2028     *
2029 jsr166 1.22 * @return a set view of the mappings contained in this map,
2030     * sorted in ascending key order
2031 dl 1.1 */
2032     public Set<Map.Entry<K,V>> entrySet() {
2033     EntrySet es = entrySet;
2034     return (es != null) ? es : (entrySet = new EntrySet());
2035     }
2036    
2037     /**
2038 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
2039     * The set's iterator returns the entries in descending key order.
2040     * The set is backed by the map, so changes to the map are
2041     * reflected in the set, and vice-versa. The set supports element
2042 dl 1.1 * removal, which removes the corresponding mapping from the map,
2043 jsr166 1.22 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2044     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2045 dl 1.1 * operations. It does not support the <tt>add</tt> or
2046 jsr166 1.22 * <tt>addAll</tt> operations.
2047     *
2048     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2049     * that will never throw {@link ConcurrentModificationException},
2050     * and guarantees to traverse elements as they existed upon
2051     * construction of the iterator, and may (but is not guaranteed to)
2052     * reflect any modifications subsequent to construction.
2053     *
2054     * <p>The <tt>Map.Entry</tt> elements returned by
2055 dl 1.1 * <tt>iterator.next()</tt> do <em>not</em> support the
2056     * <tt>setValue</tt> operation.
2057     */
2058     public Set<Map.Entry<K,V>> descendingEntrySet() {
2059     DescendingEntrySet es = descendingEntrySet;
2060     return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2061     }
2062    
2063     /* ---------------- AbstractMap Overrides -------------- */
2064    
2065     /**
2066     * Compares the specified object with this map for equality.
2067     * Returns <tt>true</tt> if the given object is also a map and the
2068     * two maps represent the same mappings. More formally, two maps
2069 jsr166 1.22 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
2070     * <tt>m1.keySet().equals(m2.keySet())</tt> and for every key
2071     * <tt>k</tt> in <tt>m1.keySet()</tt>, <tt> (m1.get(k)==null ?
2072     * m2.get(k)==null : m1.get(k).equals(m2.get(k))) </tt>. This
2073 dl 1.1 * operation may return misleading results if either map is
2074     * concurrently modified during execution of this method.
2075     *
2076 jsr166 1.22 * @param o object to be compared for equality with this map
2077     * @return <tt>true</tt> if the specified object is equal to this map
2078 dl 1.1 */
2079     public boolean equals(Object o) {
2080     if (o == this)
2081     return true;
2082     if (!(o instanceof Map))
2083     return false;
2084 dl 1.25 Map<?,?> m = (Map<?,?>) o;
2085 dl 1.1 try {
2086 dl 1.25 for (Map.Entry<K,V> e : this.entrySet())
2087     if (! e.getValue().equals(m.get(e.getKey())))
2088     return false;
2089     for (Map.Entry<?,?> e : m.entrySet()) {
2090     Object k = e.getKey();
2091     Object v = e.getValue();
2092     if (k == null || v == null || !v.equals(get(k)))
2093     return false;
2094     }
2095     return true;
2096 jsr166 1.15 } catch (ClassCastException unused) {
2097 dl 1.1 return false;
2098 jsr166 1.15 } catch (NullPointerException unused) {
2099 dl 1.1 return false;
2100     }
2101     }
2102    
2103     /* ------ ConcurrentMap API methods ------ */
2104    
2105     /**
2106 jsr166 1.22 * {@inheritDoc}
2107     *
2108     * @return the previous value associated with the specified key,
2109     * or <tt>null</tt> if there was no mapping for the key
2110     * @throws ClassCastException if the specified key cannot be compared
2111     * with the keys currently in the map
2112     * @throws NullPointerException if the specified key or value is null
2113 dl 1.1 */
2114     public V putIfAbsent(K key, V value) {
2115 dl 1.9 if (value == null)
2116 dl 1.1 throw new NullPointerException();
2117     return doPut(key, value, true);
2118     }
2119    
2120     /**
2121 jsr166 1.22 * {@inheritDoc}
2122     *
2123     * @throws ClassCastException if the specified key cannot be compared
2124     * with the keys currently in the map
2125 dl 1.23 * @throws NullPointerException if the specified key is null
2126 dl 1.1 */
2127     public boolean remove(Object key, Object value) {
2128 dl 1.9 if (value == null)
2129 dl 1.23 return false;
2130 dl 1.1 return doRemove(key, value) != null;
2131     }
2132    
2133     /**
2134 jsr166 1.22 * {@inheritDoc}
2135     *
2136     * @throws ClassCastException if the specified key cannot be compared
2137     * with the keys currently in the map
2138     * @throws NullPointerException if any of the arguments are null
2139 dl 1.1 */
2140     public boolean replace(K key, V oldValue, V newValue) {
2141 dl 1.9 if (oldValue == null || newValue == null)
2142 dl 1.1 throw new NullPointerException();
2143 dl 1.9 Comparable<? super K> k = comparable(key);
2144 dl 1.1 for (;;) {
2145     Node<K,V> n = findNode(k);
2146     if (n == null)
2147     return false;
2148     Object v = n.value;
2149     if (v != null) {
2150     if (!oldValue.equals(v))
2151     return false;
2152     if (n.casValue(v, newValue))
2153     return true;
2154     }
2155     }
2156     }
2157    
2158     /**
2159 jsr166 1.22 * {@inheritDoc}
2160     *
2161     * @return the previous value associated with the specified key,
2162     * or <tt>null</tt> if there was no mapping for the key
2163     * @throws ClassCastException if the specified key cannot be compared
2164     * with the keys currently in the map
2165     * @throws NullPointerException if the specified key or value is null
2166 dl 1.1 */
2167     public V replace(K key, V value) {
2168 dl 1.9 if (value == null)
2169 dl 1.1 throw new NullPointerException();
2170 dl 1.9 Comparable<? super K> k = comparable(key);
2171 dl 1.1 for (;;) {
2172     Node<K,V> n = findNode(k);
2173     if (n == null)
2174     return null;
2175     Object v = n.value;
2176     if (v != null && n.casValue(v, value))
2177     return (V)v;
2178     }
2179     }
2180    
2181     /* ------ SortedMap API methods ------ */
2182    
2183     public Comparator<? super K> comparator() {
2184     return comparator;
2185     }
2186    
2187     /**
2188 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2189 dl 1.1 */
2190 dl 1.9 public K firstKey() {
2191 dl 1.1 Node<K,V> n = findFirst();
2192     if (n == null)
2193     throw new NoSuchElementException();
2194     return n.key;
2195     }
2196    
2197     /**
2198 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2199 dl 1.1 */
2200     public K lastKey() {
2201     Node<K,V> n = findLast();
2202     if (n == null)
2203     throw new NoSuchElementException();
2204     return n.key;
2205     }
2206    
2207     /**
2208 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2209     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2210     * @throws IllegalArgumentException {@inheritDoc}
2211 dl 1.1 */
2212 dl 1.6 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
2213 dl 1.1 if (fromKey == null || toKey == null)
2214     throw new NullPointerException();
2215 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, toKey);
2216 dl 1.1 }
2217    
2218     /**
2219 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2220     * @throws NullPointerException if <tt>toKey</tt> is null
2221     * @throws IllegalArgumentException {@inheritDoc}
2222 dl 1.1 */
2223 dl 1.6 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
2224 dl 1.1 if (toKey == null)
2225     throw new NullPointerException();
2226 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(this, null, toKey);
2227 dl 1.1 }
2228    
2229     /**
2230 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2231     * @throws NullPointerException if <tt>fromKey</tt> is null
2232     * @throws IllegalArgumentException {@inheritDoc}
2233 dl 1.1 */
2234 jsr166 1.22 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
2235 dl 1.6 if (fromKey == null)
2236     throw new NullPointerException();
2237 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, null);
2238 dl 1.6 }
2239    
2240     /**
2241 jsr166 1.22 * Equivalent to {@link #navigableSubMap} but with a return type
2242     * conforming to the <tt>SortedMap</tt> interface.
2243     *
2244     * <p>{@inheritDoc}
2245     *
2246     * @throws ClassCastException {@inheritDoc}
2247     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2248     * @throws IllegalArgumentException {@inheritDoc}
2249 dl 1.6 */
2250     public SortedMap<K,V> subMap(K fromKey, K toKey) {
2251 dl 1.7 return navigableSubMap(fromKey, toKey);
2252 dl 1.6 }
2253    
2254     /**
2255 jsr166 1.22 * Equivalent to {@link #navigableHeadMap} but with a return type
2256     * conforming to the <tt>SortedMap</tt> interface.
2257     *
2258     * <p>{@inheritDoc}
2259     *
2260     * @throws ClassCastException {@inheritDoc}
2261     * @throws NullPointerException if <tt>toKey</tt> is null
2262     * @throws IllegalArgumentException {@inheritDoc}
2263 dl 1.6 */
2264     public SortedMap<K,V> headMap(K toKey) {
2265 dl 1.7 return navigableHeadMap(toKey);
2266 dl 1.6 }
2267    
2268     /**
2269 jsr166 1.22 * Equivalent to {@link #navigableTailMap} but with a return type
2270     * conforming to the <tt>SortedMap</tt> interface.
2271     *
2272     * <p>{@inheritDoc}
2273     *
2274     * @throws ClassCastException {@inheritDoc}
2275     * @throws NullPointerException if <tt>fromKey</tt> is null
2276     * @throws IllegalArgumentException {@inheritDoc}
2277 dl 1.6 */
2278 jsr166 1.22 public SortedMap<K,V> tailMap(K fromKey) {
2279 dl 1.7 return navigableTailMap(fromKey);
2280 dl 1.1 }
2281    
2282     /* ---------------- Relational operations -------------- */
2283    
2284     /**
2285 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2286     * strictly less than the given key, or <tt>null</tt> if there is
2287     * no such key. The returned entry does <em>not</em> support the
2288     * <tt>Entry.setValue</tt> method.
2289 dl 1.9 *
2290 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2291     * @throws NullPointerException if the specified key is null
2292 dl 1.1 */
2293 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
2294     return getNear(key, LT);
2295 dl 1.1 }
2296    
2297     /**
2298 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2299     * @throws NullPointerException if the specified key is null
2300 dl 1.1 */
2301 jsr166 1.22 public K lowerKey(K key) {
2302     Node<K,V> n = findNear(key, LT);
2303 dl 1.1 return (n == null)? null : n.key;
2304     }
2305    
2306     /**
2307 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2308     * less than or equal to the given key, or <tt>null</tt> if there
2309     * is no such key. The returned entry does <em>not</em> support
2310 dl 1.1 * the <tt>Entry.setValue</tt> method.
2311 dl 1.9 *
2312 jsr166 1.22 * @param key the key
2313     * @throws ClassCastException {@inheritDoc}
2314     * @throws NullPointerException if the specified key is null
2315 dl 1.1 */
2316 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
2317     return getNear(key, LT|EQ);
2318 dl 1.1 }
2319    
2320     /**
2321 jsr166 1.22 * @param key the key
2322     * @throws ClassCastException {@inheritDoc}
2323     * @throws NullPointerException if the specified key is null
2324 dl 1.1 */
2325 jsr166 1.22 public K floorKey(K key) {
2326     Node<K,V> n = findNear(key, LT|EQ);
2327 dl 1.1 return (n == null)? null : n.key;
2328     }
2329    
2330     /**
2331 jsr166 1.22 * Returns a key-value mapping associated with the least key
2332     * greater than or equal to the given key, or <tt>null</tt> if
2333     * there is no such entry. The returned entry does <em>not</em>
2334     * support the <tt>Entry.setValue</tt> method.
2335 dl 1.9 *
2336 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2337     * @throws NullPointerException if the specified key is null
2338 dl 1.1 */
2339 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
2340     return getNear(key, GT|EQ);
2341 dl 1.1 }
2342    
2343     /**
2344 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2345     * @throws NullPointerException if the specified key is null
2346 dl 1.1 */
2347 jsr166 1.22 public K ceilingKey(K key) {
2348     Node<K,V> n = findNear(key, GT|EQ);
2349 dl 1.1 return (n == null)? null : n.key;
2350     }
2351    
2352     /**
2353     * Returns a key-value mapping associated with the least key
2354     * strictly greater than the given key, or <tt>null</tt> if there
2355 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2356 dl 1.1 * the <tt>Entry.setValue</tt> method.
2357 dl 1.9 *
2358 jsr166 1.22 * @param key the key
2359     * @throws ClassCastException {@inheritDoc}
2360     * @throws NullPointerException if the specified key is null
2361 dl 1.1 */
2362     public Map.Entry<K,V> higherEntry(K key) {
2363     return getNear(key, GT);
2364     }
2365    
2366     /**
2367 jsr166 1.22 * @param key the key
2368     * @throws ClassCastException {@inheritDoc}
2369     * @throws NullPointerException if the specified key is null
2370 dl 1.1 */
2371     public K higherKey(K key) {
2372     Node<K,V> n = findNear(key, GT);
2373     return (n == null)? null : n.key;
2374     }
2375    
2376     /**
2377     * Returns a key-value mapping associated with the least
2378     * key in this map, or <tt>null</tt> if the map is empty.
2379     * The returned entry does <em>not</em> support
2380     * the <tt>Entry.setValue</tt> method.
2381     */
2382     public Map.Entry<K,V> firstEntry() {
2383     for (;;) {
2384     Node<K,V> n = findFirst();
2385 dl 1.9 if (n == null)
2386 dl 1.1 return null;
2387 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2388 dl 1.1 if (e != null)
2389     return e;
2390     }
2391     }
2392    
2393     /**
2394     * Returns a key-value mapping associated with the greatest
2395     * key in this map, or <tt>null</tt> if the map is empty.
2396     * The returned entry does <em>not</em> support
2397     * the <tt>Entry.setValue</tt> method.
2398     */
2399     public Map.Entry<K,V> lastEntry() {
2400     for (;;) {
2401     Node<K,V> n = findLast();
2402 dl 1.9 if (n == null)
2403 dl 1.1 return null;
2404 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2405 dl 1.1 if (e != null)
2406     return e;
2407     }
2408     }
2409    
2410     /**
2411     * Removes and returns a key-value mapping associated with
2412     * the least key in this map, or <tt>null</tt> if the map is empty.
2413     * The returned entry does <em>not</em> support
2414     * the <tt>Entry.setValue</tt> method.
2415     */
2416     public Map.Entry<K,V> pollFirstEntry() {
2417 dl 1.25 return doRemoveFirstEntry();
2418 dl 1.1 }
2419    
2420     /**
2421     * Removes and returns a key-value mapping associated with
2422     * the greatest key in this map, or <tt>null</tt> if the map is empty.
2423     * The returned entry does <em>not</em> support
2424     * the <tt>Entry.setValue</tt> method.
2425     */
2426     public Map.Entry<K,V> pollLastEntry() {
2427 dl 1.31 return doRemoveLastEntry();
2428 dl 1.1 }
2429    
2430    
2431     /* ---------------- Iterators -------------- */
2432    
2433     /**
2434     * Base of ten kinds of iterator classes:
2435 dl 1.9 * ascending: {map, submap} X {key, value, entry}
2436     * descending: {map, submap} X {key, entry}
2437 dl 1.1 */
2438     abstract class Iter {
2439     /** the last node returned by next() */
2440     Node<K,V> last;
2441     /** the next node to return from next(); */
2442     Node<K,V> next;
2443     /** Cache of next value field to maintain weak consistency */
2444     Object nextValue;
2445    
2446     Iter() {}
2447    
2448 dl 1.9 public final boolean hasNext() {
2449     return next != null;
2450 dl 1.1 }
2451    
2452 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2453 dl 1.1 final void initAscending() {
2454     for (;;) {
2455     next = findFirst();
2456     if (next == null)
2457     break;
2458     nextValue = next.value;
2459     if (nextValue != null && nextValue != next)
2460     break;
2461     }
2462     }
2463    
2464 dl 1.9 /**
2465 jsr166 1.13 * Initializes ascending iterator starting at given least key,
2466 dl 1.1 * or first node if least is <tt>null</tt>, but not greater or
2467     * equal to fence, or end if fence is <tt>null</tt>.
2468     */
2469 dl 1.9 final void initAscending(K least, K fence) {
2470 dl 1.1 for (;;) {
2471     next = findCeiling(least);
2472     if (next == null)
2473     break;
2474     nextValue = next.value;
2475     if (nextValue != null && nextValue != next) {
2476     if (fence != null && compare(fence, next.key) <= 0) {
2477     next = null;
2478     nextValue = null;
2479     }
2480     break;
2481     }
2482     }
2483     }
2484 jsr166 1.13 /** Advances next to higher entry. */
2485 dl 1.1 final void ascend() {
2486     if ((last = next) == null)
2487     throw new NoSuchElementException();
2488     for (;;) {
2489     next = next.next;
2490     if (next == null)
2491     break;
2492     nextValue = next.value;
2493     if (nextValue != null && nextValue != next)
2494     break;
2495     }
2496     }
2497    
2498     /**
2499     * Version of ascend for submaps to stop at fence
2500     */
2501     final void ascend(K fence) {
2502     if ((last = next) == null)
2503     throw new NoSuchElementException();
2504     for (;;) {
2505     next = next.next;
2506     if (next == null)
2507     break;
2508     nextValue = next.value;
2509     if (nextValue != null && nextValue != next) {
2510     if (fence != null && compare(fence, next.key) <= 0) {
2511     next = null;
2512     nextValue = null;
2513     }
2514     break;
2515     }
2516     }
2517     }
2518    
2519 jsr166 1.13 /** Initializes descending iterator for entire range. */
2520 dl 1.1 final void initDescending() {
2521     for (;;) {
2522     next = findLast();
2523     if (next == null)
2524     break;
2525     nextValue = next.value;
2526     if (nextValue != null && nextValue != next)
2527     break;
2528     }
2529     }
2530    
2531 dl 1.9 /**
2532 jsr166 1.13 * Initializes descending iterator starting at key less
2533 dl 1.1 * than or equal to given fence key, or
2534     * last node if fence is <tt>null</tt>, but not less than
2535 jsr166 1.14 * least, or beginning if least is <tt>null</tt>.
2536 dl 1.1 */
2537 dl 1.9 final void initDescending(K least, K fence) {
2538 dl 1.1 for (;;) {
2539     next = findLower(fence);
2540     if (next == null)
2541     break;
2542     nextValue = next.value;
2543     if (nextValue != null && nextValue != next) {
2544     if (least != null && compare(least, next.key) > 0) {
2545     next = null;
2546     nextValue = null;
2547     }
2548     break;
2549     }
2550     }
2551     }
2552    
2553 jsr166 1.13 /** Advances next to lower entry. */
2554 dl 1.1 final void descend() {
2555     if ((last = next) == null)
2556     throw new NoSuchElementException();
2557     K k = last.key;
2558     for (;;) {
2559     next = findNear(k, LT);
2560     if (next == null)
2561     break;
2562     nextValue = next.value;
2563     if (nextValue != null && nextValue != next)
2564     break;
2565     }
2566     }
2567    
2568     /**
2569     * Version of descend for submaps to stop at least
2570     */
2571     final void descend(K least) {
2572     if ((last = next) == null)
2573     throw new NoSuchElementException();
2574     K k = last.key;
2575     for (;;) {
2576     next = findNear(k, LT);
2577     if (next == null)
2578     break;
2579     nextValue = next.value;
2580     if (nextValue != null && nextValue != next) {
2581     if (least != null && compare(least, next.key) > 0) {
2582     next = null;
2583     nextValue = null;
2584     }
2585     break;
2586     }
2587     }
2588     }
2589    
2590     public void remove() {
2591     Node<K,V> l = last;
2592     if (l == null)
2593     throw new IllegalStateException();
2594     // It would not be worth all of the overhead to directly
2595     // unlink from here. Using remove is fast enough.
2596     ConcurrentSkipListMap.this.remove(l.key);
2597     }
2598    
2599     }
2600    
2601     final class ValueIterator extends Iter implements Iterator<V> {
2602     ValueIterator() {
2603     initAscending();
2604     }
2605 dl 1.9 public V next() {
2606 dl 1.1 Object v = nextValue;
2607     ascend();
2608     return (V)v;
2609     }
2610     }
2611    
2612     final class KeyIterator extends Iter implements Iterator<K> {
2613     KeyIterator() {
2614     initAscending();
2615     }
2616 dl 1.9 public K next() {
2617 dl 1.1 Node<K,V> n = next;
2618     ascend();
2619     return n.key;
2620     }
2621     }
2622    
2623     class SubMapValueIterator extends Iter implements Iterator<V> {
2624     final K fence;
2625     SubMapValueIterator(K least, K fence) {
2626     initAscending(least, fence);
2627     this.fence = fence;
2628     }
2629    
2630 dl 1.9 public V next() {
2631 dl 1.1 Object v = nextValue;
2632     ascend(fence);
2633     return (V)v;
2634     }
2635     }
2636    
2637     final class SubMapKeyIterator extends Iter implements Iterator<K> {
2638     final K fence;
2639     SubMapKeyIterator(K least, K fence) {
2640     initAscending(least, fence);
2641     this.fence = fence;
2642     }
2643    
2644 dl 1.9 public K next() {
2645 dl 1.1 Node<K,V> n = next;
2646     ascend(fence);
2647     return n.key;
2648     }
2649     }
2650    
2651     final class DescendingKeyIterator extends Iter implements Iterator<K> {
2652     DescendingKeyIterator() {
2653     initDescending();
2654     }
2655 dl 1.9 public K next() {
2656 dl 1.1 Node<K,V> n = next;
2657     descend();
2658     return n.key;
2659     }
2660     }
2661    
2662     final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2663     final K least;
2664     DescendingSubMapKeyIterator(K least, K fence) {
2665     initDescending(least, fence);
2666     this.least = least;
2667     }
2668    
2669 dl 1.9 public K next() {
2670 dl 1.1 Node<K,V> n = next;
2671     descend(least);
2672     return n.key;
2673     }
2674     }
2675    
2676     /**
2677     * Entry iterators use the same trick as in ConcurrentHashMap and
2678     * elsewhere of using the iterator itself to represent entries,
2679     * thus avoiding having to create entry objects in next().
2680     */
2681     abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2682     /** Cache of last value returned */
2683     Object lastValue;
2684    
2685 dl 1.9 EntryIter() {
2686 dl 1.1 }
2687    
2688     public K getKey() {
2689     Node<K,V> l = last;
2690     if (l == null)
2691     throw new IllegalStateException();
2692     return l.key;
2693     }
2694    
2695     public V getValue() {
2696     Object v = lastValue;
2697     if (last == null || v == null)
2698     throw new IllegalStateException();
2699     return (V)v;
2700     }
2701    
2702     public V setValue(V value) {
2703     throw new UnsupportedOperationException();
2704     }
2705    
2706     public boolean equals(Object o) {
2707     // If not acting as entry, just use default.
2708     if (last == null)
2709     return super.equals(o);
2710     if (!(o instanceof Map.Entry))
2711     return false;
2712     Map.Entry e = (Map.Entry)o;
2713     return (getKey().equals(e.getKey()) &&
2714     getValue().equals(e.getValue()));
2715     }
2716    
2717     public int hashCode() {
2718     // If not acting as entry, just use default.
2719     if (last == null)
2720     return super.hashCode();
2721     return getKey().hashCode() ^ getValue().hashCode();
2722     }
2723    
2724     public String toString() {
2725     // If not acting as entry, just use default.
2726     if (last == null)
2727     return super.toString();
2728     return getKey() + "=" + getValue();
2729     }
2730     }
2731    
2732 dl 1.9 final class EntryIterator extends EntryIter
2733 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2734 dl 1.9 EntryIterator() {
2735     initAscending();
2736 dl 1.1 }
2737 dl 1.9 public Map.Entry<K,V> next() {
2738 dl 1.1 lastValue = nextValue;
2739     ascend();
2740     return this;
2741     }
2742     }
2743    
2744 dl 1.9 final class SubMapEntryIterator extends EntryIter
2745 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2746     final K fence;
2747     SubMapEntryIterator(K least, K fence) {
2748     initAscending(least, fence);
2749     this.fence = fence;
2750     }
2751    
2752 dl 1.9 public Map.Entry<K,V> next() {
2753 dl 1.1 lastValue = nextValue;
2754     ascend(fence);
2755     return this;
2756     }
2757     }
2758    
2759 dl 1.9 final class DescendingEntryIterator extends EntryIter
2760 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2761 dl 1.9 DescendingEntryIterator() {
2762     initDescending();
2763 dl 1.1 }
2764 dl 1.9 public Map.Entry<K,V> next() {
2765 dl 1.1 lastValue = nextValue;
2766     descend();
2767     return this;
2768     }
2769     }
2770    
2771 dl 1.9 final class DescendingSubMapEntryIterator extends EntryIter
2772 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2773     final K least;
2774     DescendingSubMapEntryIterator(K least, K fence) {
2775     initDescending(least, fence);
2776     this.least = least;
2777     }
2778    
2779 dl 1.9 public Map.Entry<K,V> next() {
2780 dl 1.1 lastValue = nextValue;
2781     descend(least);
2782     return this;
2783     }
2784     }
2785    
2786     // Factory methods for iterators needed by submaps and/or
2787     // ConcurrentSkipListSet
2788    
2789     Iterator<K> keyIterator() {
2790     return new KeyIterator();
2791     }
2792    
2793     Iterator<K> descendingKeyIterator() {
2794     return new DescendingKeyIterator();
2795     }
2796    
2797     SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2798     return new SubMapEntryIterator(least, fence);
2799     }
2800    
2801     DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2802     return new DescendingSubMapEntryIterator(least, fence);
2803     }
2804    
2805     SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2806     return new SubMapKeyIterator(least, fence);
2807     }
2808    
2809     DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2810     return new DescendingSubMapKeyIterator(least, fence);
2811     }
2812    
2813     SubMapValueIterator subMapValueIterator(K least, K fence) {
2814     return new SubMapValueIterator(least, fence);
2815     }
2816    
2817     /* ---------------- Views -------------- */
2818    
2819     class KeySet extends AbstractSet<K> {
2820     public Iterator<K> iterator() {
2821     return new KeyIterator();
2822     }
2823     public boolean isEmpty() {
2824     return ConcurrentSkipListMap.this.isEmpty();
2825     }
2826     public int size() {
2827     return ConcurrentSkipListMap.this.size();
2828     }
2829     public boolean contains(Object o) {
2830     return ConcurrentSkipListMap.this.containsKey(o);
2831     }
2832     public boolean remove(Object o) {
2833     return ConcurrentSkipListMap.this.removep(o);
2834     }
2835     public void clear() {
2836     ConcurrentSkipListMap.this.clear();
2837     }
2838     public Object[] toArray() {
2839 dl 1.26 Collection<K> c = new ArrayList<K>();
2840     for (Iterator<K> i = iterator(); i.hasNext(); )
2841     c.add(i.next());
2842     return c.toArray();
2843 dl 1.1 }
2844     public <T> T[] toArray(T[] a) {
2845 dl 1.26 Collection<K> c = new ArrayList<K>();
2846     for (Iterator<K> i = iterator(); i.hasNext(); )
2847     c.add(i.next());
2848     return c.toArray(a);
2849 dl 1.1 }
2850     }
2851    
2852     class DescendingKeySet extends KeySet {
2853     public Iterator<K> iterator() {
2854     return new DescendingKeyIterator();
2855     }
2856     }
2857    
2858     final class Values extends AbstractCollection<V> {
2859     public Iterator<V> iterator() {
2860     return new ValueIterator();
2861     }
2862     public boolean isEmpty() {
2863     return ConcurrentSkipListMap.this.isEmpty();
2864     }
2865     public int size() {
2866     return ConcurrentSkipListMap.this.size();
2867     }
2868     public boolean contains(Object o) {
2869     return ConcurrentSkipListMap.this.containsValue(o);
2870     }
2871     public void clear() {
2872     ConcurrentSkipListMap.this.clear();
2873     }
2874     public Object[] toArray() {
2875     Collection<V> c = new ArrayList<V>();
2876     for (Iterator<V> i = iterator(); i.hasNext(); )
2877     c.add(i.next());
2878     return c.toArray();
2879     }
2880     public <T> T[] toArray(T[] a) {
2881     Collection<V> c = new ArrayList<V>();
2882     for (Iterator<V> i = iterator(); i.hasNext(); )
2883     c.add(i.next());
2884     return c.toArray(a);
2885     }
2886     }
2887    
2888     class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2889     public Iterator<Map.Entry<K,V>> iterator() {
2890     return new EntryIterator();
2891     }
2892     public boolean contains(Object o) {
2893     if (!(o instanceof Map.Entry))
2894     return false;
2895     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2896     V v = ConcurrentSkipListMap.this.get(e.getKey());
2897     return v != null && v.equals(e.getValue());
2898     }
2899     public boolean remove(Object o) {
2900     if (!(o instanceof Map.Entry))
2901     return false;
2902     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2903 dl 1.9 return ConcurrentSkipListMap.this.remove(e.getKey(),
2904 dl 1.1 e.getValue());
2905     }
2906     public boolean isEmpty() {
2907     return ConcurrentSkipListMap.this.isEmpty();
2908     }
2909     public int size() {
2910     return ConcurrentSkipListMap.this.size();
2911     }
2912     public void clear() {
2913     ConcurrentSkipListMap.this.clear();
2914     }
2915     public Object[] toArray() {
2916     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2917 dl 1.25 for (Map.Entry<K,V> e : this)
2918     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2919     e.getValue()));
2920 dl 1.1 return c.toArray();
2921     }
2922     public <T> T[] toArray(T[] a) {
2923     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2924 dl 1.25 for (Map.Entry<K,V> e : this)
2925     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2926     e.getValue()));
2927 dl 1.1 return c.toArray(a);
2928     }
2929     }
2930    
2931     class DescendingEntrySet extends EntrySet {
2932     public Iterator<Map.Entry<K,V>> iterator() {
2933     return new DescendingEntryIterator();
2934     }
2935     }
2936    
2937     /**
2938     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2939     * represent a subrange of mappings of their underlying
2940     * maps. Instances of this class support all methods of their
2941     * underlying maps, differing in that mappings outside their range are
2942     * ignored, and attempts to add mappings outside their ranges result
2943     * in {@link IllegalArgumentException}. Instances of this class are
2944     * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2945     * <tt>tailMap</tt> methods of their underlying maps.
2946     */
2947     static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
2948     implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
2949    
2950     private static final long serialVersionUID = -7647078645895051609L;
2951    
2952     /** Underlying map */
2953     private final ConcurrentSkipListMap<K,V> m;
2954     /** lower bound key, or null if from start */
2955 dl 1.9 private final K least;
2956 dl 1.1 /** upper fence key, or null if to end */
2957 dl 1.9 private final K fence;
2958 dl 1.1 // Lazily initialized view holders
2959     private transient Set<K> keySetView;
2960     private transient Set<Map.Entry<K,V>> entrySetView;
2961     private transient Collection<V> valuesView;
2962     private transient Set<K> descendingKeySetView;
2963     private transient Set<Map.Entry<K,V>> descendingEntrySetView;
2964    
2965     /**
2966 dl 1.9 * Creates a new submap.
2967 dl 1.1 * @param least inclusive least value, or <tt>null</tt> if from start
2968     * @param fence exclusive upper bound or <tt>null</tt> if to end
2969     * @throws IllegalArgumentException if least and fence nonnull
2970     * and least greater than fence
2971     */
2972 dl 1.9 ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
2973 dl 1.1 K least, K fence) {
2974 dl 1.9 if (least != null &&
2975     fence != null &&
2976 dl 1.1 map.compare(least, fence) > 0)
2977     throw new IllegalArgumentException("inconsistent range");
2978     this.m = map;
2979     this.least = least;
2980     this.fence = fence;
2981     }
2982    
2983     /* ---------------- Utilities -------------- */
2984    
2985     boolean inHalfOpenRange(K key) {
2986     return m.inHalfOpenRange(key, least, fence);
2987     }
2988    
2989     boolean inOpenRange(K key) {
2990     return m.inOpenRange(key, least, fence);
2991     }
2992    
2993     ConcurrentSkipListMap.Node<K,V> firstNode() {
2994     return m.findCeiling(least);
2995     }
2996    
2997     ConcurrentSkipListMap.Node<K,V> lastNode() {
2998     return m.findLower(fence);
2999     }
3000    
3001     boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
3002 dl 1.9 return (n != null &&
3003     (fence == null ||
3004 dl 1.1 n.key == null || // pass by markers and headers
3005     m.compare(fence, n.key) > 0));
3006     }
3007    
3008     void checkKey(K key) throws IllegalArgumentException {
3009     if (!inHalfOpenRange(key))
3010     throw new IllegalArgumentException("key out of range");
3011     }
3012    
3013     /**
3014     * Returns underlying map. Needed by ConcurrentSkipListSet
3015     * @return the backing map
3016     */
3017     ConcurrentSkipListMap<K,V> getMap() {
3018     return m;
3019     }
3020    
3021     /**
3022     * Returns least key. Needed by ConcurrentSkipListSet
3023     * @return least key or <tt>null</tt> if from start
3024     */
3025     K getLeast() {
3026     return least;
3027     }
3028    
3029     /**
3030     * Returns fence key. Needed by ConcurrentSkipListSet
3031 dl 1.8 * @return fence key or <tt>null</tt> if to end
3032 dl 1.1 */
3033     K getFence() {
3034     return fence;
3035     }
3036    
3037    
3038     /* ---------------- Map API methods -------------- */
3039    
3040     public boolean containsKey(Object key) {
3041     K k = (K)key;
3042     return inHalfOpenRange(k) && m.containsKey(k);
3043     }
3044    
3045     public V get(Object key) {
3046     K k = (K)key;
3047     return ((!inHalfOpenRange(k)) ? null : m.get(k));
3048     }
3049    
3050     public V put(K key, V value) {
3051     checkKey(key);
3052     return m.put(key, value);
3053     }
3054    
3055     public V remove(Object key) {
3056     K k = (K)key;
3057     return (!inHalfOpenRange(k))? null : m.remove(k);
3058     }
3059    
3060     public int size() {
3061     long count = 0;
3062 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3063     isBeforeEnd(n);
3064 dl 1.1 n = n.next) {
3065     if (n.getValidValue() != null)
3066     ++count;
3067     }
3068     return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3069     }
3070    
3071     public boolean isEmpty() {
3072     return !isBeforeEnd(firstNode());
3073     }
3074    
3075     public boolean containsValue(Object value) {
3076 dl 1.9 if (value == null)
3077 dl 1.1 throw new NullPointerException();
3078 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3079     isBeforeEnd(n);
3080 dl 1.1 n = n.next) {
3081     V v = n.getValidValue();
3082     if (v != null && value.equals(v))
3083     return true;
3084     }
3085     return false;
3086     }
3087    
3088     public void clear() {
3089 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3090     isBeforeEnd(n);
3091 dl 1.1 n = n.next) {
3092     if (n.getValidValue() != null)
3093     m.remove(n.key);
3094     }
3095     }
3096    
3097     /* ---------------- ConcurrentMap API methods -------------- */
3098    
3099     public V putIfAbsent(K key, V value) {
3100     checkKey(key);
3101     return m.putIfAbsent(key, value);
3102     }
3103    
3104     public boolean remove(Object key, Object value) {
3105     K k = (K)key;
3106     return inHalfOpenRange(k) && m.remove(k, value);
3107     }
3108    
3109     public boolean replace(K key, V oldValue, V newValue) {
3110     checkKey(key);
3111     return m.replace(key, oldValue, newValue);
3112     }
3113    
3114     public V replace(K key, V value) {
3115     checkKey(key);
3116     return m.replace(key, value);
3117     }
3118    
3119     /* ---------------- SortedMap API methods -------------- */
3120    
3121     public Comparator<? super K> comparator() {
3122     return m.comparator();
3123     }
3124    
3125     public K firstKey() {
3126     ConcurrentSkipListMap.Node<K,V> n = firstNode();
3127     if (isBeforeEnd(n))
3128     return n.key;
3129     else
3130     throw new NoSuchElementException();
3131     }
3132    
3133     public K lastKey() {
3134     ConcurrentSkipListMap.Node<K,V> n = lastNode();
3135     if (n != null) {
3136     K last = n.key;
3137     if (inHalfOpenRange(last))
3138     return last;
3139     }
3140     throw new NoSuchElementException();
3141     }
3142    
3143 dl 1.6 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
3144 dl 1.1 if (fromKey == null || toKey == null)
3145     throw new NullPointerException();
3146     if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3147     throw new IllegalArgumentException("key out of range");
3148 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, toKey);
3149 dl 1.1 }
3150    
3151 dl 1.6 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
3152 dl 1.1 if (toKey == null)
3153     throw new NullPointerException();
3154     if (!inOpenRange(toKey))
3155     throw new IllegalArgumentException("key out of range");
3156 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(m, least, toKey);
3157 dl 1.1 }
3158    
3159 dl 1.6 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
3160 dl 1.1 if (fromKey == null)
3161     throw new NullPointerException();
3162     if (!inOpenRange(fromKey))
3163     throw new IllegalArgumentException("key out of range");
3164 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, fence);
3165 dl 1.1 }
3166    
3167 dl 1.6 public SortedMap<K,V> subMap(K fromKey, K toKey) {
3168     return navigableSubMap(fromKey, toKey);
3169     }
3170    
3171     public SortedMap<K,V> headMap(K toKey) {
3172     return navigableHeadMap(toKey);
3173     }
3174    
3175 jsr166 1.22 public SortedMap<K,V> tailMap(K fromKey) {
3176 dl 1.6 return navigableTailMap(fromKey);
3177     }
3178    
3179 dl 1.1 /* ---------------- Relational methods -------------- */
3180    
3181     public Map.Entry<K,V> ceilingEntry(K key) {
3182 dl 1.24 return m.getNearEntry(key, m.GT|m.EQ, least, fence);
3183 dl 1.1 }
3184    
3185     public K ceilingKey(K key) {
3186 dl 1.24 return m.getNearKey(key, m.GT|m.EQ, least, fence);
3187 dl 1.1 }
3188    
3189     public Map.Entry<K,V> lowerEntry(K key) {
3190 dl 1.24 return m.getNearEntry(key, m.LT, least, fence);
3191 dl 1.1 }
3192    
3193     public K lowerKey(K key) {
3194 dl 1.24 return m.getNearKey(key, m.LT, least, fence);
3195 dl 1.1 }
3196    
3197     public Map.Entry<K,V> floorEntry(K key) {
3198 dl 1.24 return m.getNearEntry(key, m.LT|m.EQ, least, fence);
3199 dl 1.1 }
3200    
3201     public K floorKey(K key) {
3202 dl 1.24 return m.getNearKey(key, m.LT|m.EQ, least, fence);
3203 dl 1.1 }
3204    
3205     public Map.Entry<K,V> higherEntry(K key) {
3206 dl 1.24 return m.getNearEntry(key, m.GT, least, fence);
3207 dl 1.1 }
3208    
3209     public K higherKey(K key) {
3210 dl 1.24 return m.getNearKey(key, m.GT, least, fence);
3211 dl 1.1 }
3212    
3213     public Map.Entry<K,V> firstEntry() {
3214     for (;;) {
3215     ConcurrentSkipListMap.Node<K,V> n = firstNode();
3216 dl 1.9 if (!isBeforeEnd(n))
3217 dl 1.1 return null;
3218     Map.Entry<K,V> e = n.createSnapshot();
3219     if (e != null)
3220     return e;
3221     }
3222     }
3223    
3224     public Map.Entry<K,V> lastEntry() {
3225     for (;;) {
3226     ConcurrentSkipListMap.Node<K,V> n = lastNode();
3227     if (n == null || !inHalfOpenRange(n.key))
3228     return null;
3229     Map.Entry<K,V> e = n.createSnapshot();
3230     if (e != null)
3231     return e;
3232     }
3233     }
3234    
3235     public Map.Entry<K,V> pollFirstEntry() {
3236 dl 1.24 return m.removeFirstEntryOfSubrange(least, fence);
3237 dl 1.1 }
3238    
3239     public Map.Entry<K,V> pollLastEntry() {
3240 dl 1.24 return m.removeLastEntryOfSubrange(least, fence);
3241 dl 1.1 }
3242    
3243     /* ---------------- Submap Views -------------- */
3244    
3245     public Set<K> keySet() {
3246     Set<K> ks = keySetView;
3247     return (ks != null) ? ks : (keySetView = new KeySetView());
3248     }
3249    
3250     class KeySetView extends AbstractSet<K> {
3251     public Iterator<K> iterator() {
3252     return m.subMapKeyIterator(least, fence);
3253     }
3254     public int size() {
3255     return ConcurrentSkipListSubMap.this.size();
3256     }
3257     public boolean isEmpty() {
3258     return ConcurrentSkipListSubMap.this.isEmpty();
3259     }
3260     public boolean contains(Object k) {
3261     return ConcurrentSkipListSubMap.this.containsKey(k);
3262     }
3263     public Object[] toArray() {
3264 dl 1.27 Collection<K> c = new ArrayList<K>();
3265     for (Iterator<K> i = iterator(); i.hasNext(); )
3266     c.add(i.next());
3267     return c.toArray();
3268 dl 1.1 }
3269     public <T> T[] toArray(T[] a) {
3270 dl 1.27 Collection<K> c = new ArrayList<K>();
3271     for (Iterator<K> i = iterator(); i.hasNext(); )
3272     c.add(i.next());
3273     return c.toArray(a);
3274 dl 1.1 }
3275     }
3276    
3277     public Set<K> descendingKeySet() {
3278     Set<K> ks = descendingKeySetView;
3279     return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3280     }
3281    
3282     class DescendingKeySetView extends KeySetView {
3283     public Iterator<K> iterator() {
3284     return m.descendingSubMapKeyIterator(least, fence);
3285     }
3286     }
3287    
3288     public Collection<V> values() {
3289     Collection<V> vs = valuesView;
3290     return (vs != null) ? vs : (valuesView = new ValuesView());
3291     }
3292    
3293     class ValuesView extends AbstractCollection<V> {
3294     public Iterator<V> iterator() {
3295     return m.subMapValueIterator(least, fence);
3296     }
3297     public int size() {
3298     return ConcurrentSkipListSubMap.this.size();
3299     }
3300     public boolean isEmpty() {
3301     return ConcurrentSkipListSubMap.this.isEmpty();
3302     }
3303     public boolean contains(Object v) {
3304     return ConcurrentSkipListSubMap.this.containsValue(v);
3305     }
3306     public Object[] toArray() {
3307     Collection<V> c = new ArrayList<V>();
3308     for (Iterator<V> i = iterator(); i.hasNext(); )
3309     c.add(i.next());
3310     return c.toArray();
3311     }
3312     public <T> T[] toArray(T[] a) {
3313     Collection<V> c = new ArrayList<V>();
3314     for (Iterator<V> i = iterator(); i.hasNext(); )
3315     c.add(i.next());
3316     return c.toArray(a);
3317     }
3318     }
3319    
3320     public Set<Map.Entry<K,V>> entrySet() {
3321     Set<Map.Entry<K,V>> es = entrySetView;
3322     return (es != null) ? es : (entrySetView = new EntrySetView());
3323     }
3324    
3325     class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3326     public Iterator<Map.Entry<K,V>> iterator() {
3327     return m.subMapEntryIterator(least, fence);
3328     }
3329     public int size() {
3330     return ConcurrentSkipListSubMap.this.size();
3331     }
3332     public boolean isEmpty() {
3333     return ConcurrentSkipListSubMap.this.isEmpty();
3334     }
3335     public boolean contains(Object o) {
3336     if (!(o instanceof Map.Entry))
3337     return false;
3338     Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3339     K key = e.getKey();
3340     if (!inHalfOpenRange(key))
3341     return false;
3342     V v = m.get(key);
3343     return v != null && v.equals(e.getValue());
3344     }
3345     public boolean remove(Object o) {
3346     if (!(o instanceof Map.Entry))
3347     return false;
3348     Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3349     K key = e.getKey();
3350     if (!inHalfOpenRange(key))
3351     return false;
3352     return m.remove(key, e.getValue());
3353     }
3354     public Object[] toArray() {
3355     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3356 dl 1.25 for (Map.Entry<K,V> e : this)
3357     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3358     e.getValue()));
3359 dl 1.1 return c.toArray();
3360     }
3361     public <T> T[] toArray(T[] a) {
3362     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3363 dl 1.25 for (Map.Entry<K,V> e : this)
3364     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3365     e.getValue()));
3366 dl 1.1 return c.toArray(a);
3367     }
3368     }
3369    
3370     public Set<Map.Entry<K,V>> descendingEntrySet() {
3371     Set<Map.Entry<K,V>> es = descendingEntrySetView;
3372     return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3373     }
3374    
3375     class DescendingEntrySetView extends EntrySetView {
3376     public Iterator<Map.Entry<K,V>> iterator() {
3377     return m.descendingSubMapEntryIterator(least, fence);
3378     }
3379     }
3380     }
3381     }