ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.33
Committed: Sun Jun 19 20:37:35 2005 UTC (18 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.32: +8 -8 lines
Log Message:
Cheaper random level generator

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8     import java.util.*;
9     import java.util.concurrent.atomic.*;
10    
11     /**
12 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13     * The map is sorted according to the {@linkplain Comparable natural
14     * ordering} of its keys, or by a {@link Comparator} provided at map
15     * creation time, depending on which constructor is used.
16 dl 1.1 *
17     * <p>This class implements a concurrent variant of <a
18     * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
19     * expected average <i>log(n)</i> time cost for the
20     * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21     * <tt>remove</tt> operations and their variants. Insertion, removal,
22     * update, and access operations safely execute concurrently by
23     * multiple threads. Iterators are <i>weakly consistent</i>, returning
24     * elements reflecting the state of the map at some point at or since
25     * the creation of the iterator. They do <em>not</em> throw {@link
26     * ConcurrentModificationException}, and may proceed concurrently with
27     * other operations. Ascending key ordered views and their iterators
28     * are faster than descending ones.
29     *
30     * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31     * and its views represent snapshots of mappings at the time they were
32     * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33     * method. (Note however that it is possible to change mappings in the
34     * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35     * <tt>replace</tt>, depending on exactly which effect you need.)
36     *
37     * <p>Beware that, unlike in most collections, the <tt>size</tt>
38     * method is <em>not</em> a constant-time operation. Because of the
39     * asynchronous nature of these maps, determining the current number
40     * of elements requires a traversal of the elements. Additionally,
41     * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
42     * <tt>clear</tt> are <em>not</em> guaranteed to be performed
43     * atomically. For example, an iterator operating concurrently with a
44     * <tt>putAll</tt> operation might view only some of the added
45     * elements.
46     *
47     * <p>This class and its views and iterators implement all of the
48     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
49     * interfaces. Like most other concurrent collections, this class does
50 jsr166 1.22 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
51     * null return values cannot be reliably distinguished from the absence of
52     * elements.
53 dl 1.1 *
54 jsr166 1.21 * <p>This class is a member of the
55     * <a href="{@docRoot}/../guide/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58 dl 1.1 * @author Doug Lea
59     * @param <K> the type of keys maintained by this map
60 dl 1.9 * @param <V> the type of mapped values
61 jsr166 1.20 * @since 1.6
62 dl 1.1 */
63 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
64 dl 1.1 implements ConcurrentNavigableMap<K,V>,
65 dl 1.9 Cloneable,
66 dl 1.1 java.io.Serializable {
67     /*
68     * This class implements a tree-like two-dimensionally linked skip
69     * list in which the index levels are represented in separate
70     * nodes from the base nodes holding data. There are two reasons
71     * for taking this approach instead of the usual array-based
72     * structure: 1) Array based implementations seem to encounter
73     * more complexity and overhead 2) We can use cheaper algorithms
74     * for the heavily-traversed index lists than can be used for the
75     * base lists. Here's a picture of some of the basics for a
76     * possible list with 2 levels of index:
77     *
78     * Head nodes Index nodes
79 dl 1.9 * +-+ right +-+ +-+
80 dl 1.1 * |2|---------------->| |--------------------->| |->null
81 dl 1.9 * +-+ +-+ +-+
82 dl 1.1 * | down | |
83     * v v v
84 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
85 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
86 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
87 dl 1.1 * v | | | | |
88     * Nodes next v v v v v
89 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
90 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
91 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92 dl 1.1 *
93     * The base lists use a variant of the HM linked ordered set
94     * algorithm. See Tim Harris, "A pragmatic implementation of
95     * non-blocking linked lists"
96     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
97     * Michael "High Performance Dynamic Lock-Free Hash Tables and
98     * List-Based Sets"
99     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
100     * basic idea in these lists is to mark the "next" pointers of
101     * deleted nodes when deleting to avoid conflicts with concurrent
102     * insertions, and when traversing to keep track of triples
103     * (predecessor, node, successor) in order to detect when and how
104     * to unlink these deleted nodes.
105     *
106     * Rather than using mark-bits to mark list deletions (which can
107     * be slow and space-intensive using AtomicMarkedReference), nodes
108     * use direct CAS'able next pointers. On deletion, instead of
109     * marking a pointer, they splice in another node that can be
110     * thought of as standing for a marked pointer (indicating this by
111     * using otherwise impossible field values). Using plain nodes
112     * acts roughly like "boxed" implementations of marked pointers,
113     * but uses new nodes only when nodes are deleted, not for every
114     * link. This requires less space and supports faster
115     * traversal. Even if marked references were better supported by
116     * JVMs, traversal using this technique might still be faster
117     * because any search need only read ahead one more node than
118     * otherwise required (to check for trailing marker) rather than
119     * unmasking mark bits or whatever on each read.
120     *
121     * This approach maintains the essential property needed in the HM
122     * algorithm of changing the next-pointer of a deleted node so
123     * that any other CAS of it will fail, but implements the idea by
124     * changing the pointer to point to a different node, not by
125     * marking it. While it would be possible to further squeeze
126     * space by defining marker nodes not to have key/value fields, it
127     * isn't worth the extra type-testing overhead. The deletion
128     * markers are rarely encountered during traversal and are
129     * normally quickly garbage collected. (Note that this technique
130     * would not work well in systems without garbage collection.)
131     *
132     * In addition to using deletion markers, the lists also use
133     * nullness of value fields to indicate deletion, in a style
134     * similar to typical lazy-deletion schemes. If a node's value is
135     * null, then it is considered logically deleted and ignored even
136     * though it is still reachable. This maintains proper control of
137     * concurrent replace vs delete operations -- an attempted replace
138     * must fail if a delete beat it by nulling field, and a delete
139     * must return the last non-null value held in the field. (Note:
140     * Null, rather than some special marker, is used for value fields
141     * here because it just so happens to mesh with the Map API
142     * requirement that method get returns null if there is no
143     * mapping, which allows nodes to remain concurrently readable
144     * even when deleted. Using any other marker value here would be
145     * messy at best.)
146     *
147     * Here's the sequence of events for a deletion of node n with
148     * predecessor b and successor f, initially:
149     *
150 dl 1.9 * +------+ +------+ +------+
151 dl 1.1 * ... | b |------>| n |----->| f | ...
152 dl 1.9 * +------+ +------+ +------+
153 dl 1.1 *
154     * 1. CAS n's value field from non-null to null.
155     * From this point on, no public operations encountering
156     * the node consider this mapping to exist. However, other
157     * ongoing insertions and deletions might still modify
158     * n's next pointer.
159     *
160     * 2. CAS n's next pointer to point to a new marker node.
161     * From this point on, no other nodes can be appended to n.
162     * which avoids deletion errors in CAS-based linked lists.
163     *
164     * +------+ +------+ +------+ +------+
165     * ... | b |------>| n |----->|marker|------>| f | ...
166 dl 1.9 * +------+ +------+ +------+ +------+
167 dl 1.1 *
168     * 3. CAS b's next pointer over both n and its marker.
169     * From this point on, no new traversals will encounter n,
170     * and it can eventually be GCed.
171     * +------+ +------+
172     * ... | b |----------------------------------->| f | ...
173 dl 1.9 * +------+ +------+
174     *
175 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
176     * with another operation. Steps 2-3 can fail because some other
177     * thread noticed during a traversal a node with null value and
178     * helped out by marking and/or unlinking. This helping-out
179     * ensures that no thread can become stuck waiting for progress of
180     * the deleting thread. The use of marker nodes slightly
181     * complicates helping-out code because traversals must track
182     * consistent reads of up to four nodes (b, n, marker, f), not
183     * just (b, n, f), although the next field of a marker is
184     * immutable, and once a next field is CAS'ed to point to a
185     * marker, it never again changes, so this requires less care.
186     *
187     * Skip lists add indexing to this scheme, so that the base-level
188     * traversals start close to the locations being found, inserted
189     * or deleted -- usually base level traversals only traverse a few
190     * nodes. This doesn't change the basic algorithm except for the
191     * need to make sure base traversals start at predecessors (here,
192     * b) that are not (structurally) deleted, otherwise retrying
193 dl 1.9 * after processing the deletion.
194 dl 1.1 *
195     * Index levels are maintained as lists with volatile next fields,
196     * using CAS to link and unlink. Races are allowed in index-list
197     * operations that can (rarely) fail to link in a new index node
198     * or delete one. (We can't do this of course for data nodes.)
199     * However, even when this happens, the index lists remain sorted,
200     * so correctly serve as indices. This can impact performance,
201     * but since skip lists are probabilistic anyway, the net result
202     * is that under contention, the effective "p" value may be lower
203     * than its nominal value. And race windows are kept small enough
204     * that in practice these failures are rare, even under a lot of
205     * contention.
206     *
207     * The fact that retries (for both base and index lists) are
208     * relatively cheap due to indexing allows some minor
209     * simplifications of retry logic. Traversal restarts are
210     * performed after most "helping-out" CASes. This isn't always
211     * strictly necessary, but the implicit backoffs tend to help
212     * reduce other downstream failed CAS's enough to outweigh restart
213     * cost. This worsens the worst case, but seems to improve even
214     * highly contended cases.
215     *
216     * Unlike most skip-list implementations, index insertion and
217     * deletion here require a separate traversal pass occuring after
218     * the base-level action, to add or remove index nodes. This adds
219     * to single-threaded overhead, but improves contended
220     * multithreaded performance by narrowing interference windows,
221     * and allows deletion to ensure that all index nodes will be made
222     * unreachable upon return from a public remove operation, thus
223     * avoiding unwanted garbage retention. This is more important
224     * here than in some other data structures because we cannot null
225     * out node fields referencing user keys since they might still be
226     * read by other ongoing traversals.
227     *
228     * Indexing uses skip list parameters that maintain good search
229     * performance while using sparser-than-usual indices: The
230     * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
231     * that about one-quarter of the nodes have indices. Of those that
232     * do, half have one level, a quarter have two, and so on (see
233     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
234     * requirement for a map is slightly less than for the current
235     * implementation of java.util.TreeMap.
236     *
237     * Changing the level of the index (i.e, the height of the
238     * tree-like structure) also uses CAS. The head index has initial
239     * level/height of one. Creation of an index with height greater
240     * than the current level adds a level to the head index by
241     * CAS'ing on a new top-most head. To maintain good performance
242     * after a lot of removals, deletion methods heuristically try to
243     * reduce the height if the topmost levels appear to be empty.
244     * This may encounter races in which it possible (but rare) to
245     * reduce and "lose" a level just as it is about to contain an
246     * index (that will then never be encountered). This does no
247     * structural harm, and in practice appears to be a better option
248     * than allowing unrestrained growth of levels.
249     *
250     * The code for all this is more verbose than you'd like. Most
251     * operations entail locating an element (or position to insert an
252     * element). The code to do this can't be nicely factored out
253     * because subsequent uses require a snapshot of predecessor
254     * and/or successor and/or value fields which can't be returned
255     * all at once, at least not without creating yet another object
256     * to hold them -- creating such little objects is an especially
257     * bad idea for basic internal search operations because it adds
258     * to GC overhead. (This is one of the few times I've wished Java
259     * had macros.) Instead, some traversal code is interleaved within
260     * insertion and removal operations. The control logic to handle
261     * all the retry conditions is sometimes twisty. Most search is
262     * broken into 2 parts. findPredecessor() searches index nodes
263     * only, returning a base-level predecessor of the key. findNode()
264     * finishes out the base-level search. Even with this factoring,
265     * there is a fair amount of near-duplication of code to handle
266     * variants.
267     *
268     * For explanation of algorithms sharing at least a couple of
269     * features with this one, see Mikhail Fomitchev's thesis
270     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
271 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
272 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
273     *
274     * Given the use of tree-like index nodes, you might wonder why
275     * this doesn't use some kind of search tree instead, which would
276     * support somewhat faster search operations. The reason is that
277     * there are no known efficient lock-free insertion and deletion
278     * algorithms for search trees. The immutability of the "down"
279     * links of index nodes (as opposed to mutable "left" fields in
280     * true trees) makes this tractable using only CAS operations.
281     *
282     * Notation guide for local variables
283     * Node: b, n, f for predecessor, node, successor
284     * Index: q, r, d for index node, right, down.
285     * t for another index node
286     * Head: h
287     * Levels: j
288     * Keys: k, key
289     * Values: v, value
290     * Comparisons: c
291     */
292    
293     private static final long serialVersionUID = -8627078645895051609L;
294    
295     /**
296     * Special value used to identify base-level header
297 dl 1.9 */
298 dl 1.1 private static final Object BASE_HEADER = new Object();
299    
300     /**
301 dl 1.9 * The topmost head index of the skiplist.
302 dl 1.1 */
303     private transient volatile HeadIndex<K,V> head;
304    
305     /**
306 jsr166 1.10 * The comparator used to maintain order in this map, or null
307 jsr166 1.22 * if using natural ordering.
308 dl 1.1 * @serial
309     */
310     private final Comparator<? super K> comparator;
311    
312     /**
313     * Seed for simple random number generator. Not volatile since it
314     * doesn't matter too much if different threads don't see updates.
315     */
316     private transient int randomSeed;
317    
318     /** Lazily initialized key set */
319     private transient KeySet keySet;
320     /** Lazily initialized entry set */
321     private transient EntrySet entrySet;
322     /** Lazily initialized values collection */
323     private transient Values values;
324     /** Lazily initialized descending key set */
325     private transient DescendingKeySet descendingKeySet;
326     /** Lazily initialized descending entry set */
327     private transient DescendingEntrySet descendingEntrySet;
328    
329     /**
330 jsr166 1.13 * Initializes or resets state. Needed by constructors, clone,
331 dl 1.1 * clear, readObject. and ConcurrentSkipListSet.clone.
332     * (Note that comparator must be separately initialized.)
333     */
334     final void initialize() {
335     keySet = null;
336 dl 1.9 entrySet = null;
337 dl 1.1 values = null;
338     descendingEntrySet = null;
339     descendingKeySet = null;
340 dl 1.33 randomSeed = ((int) System.nanoTime()) | 1; // ensure nonzero
341 dl 1.1 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
342     null, null, 1);
343     }
344    
345     /** Updater for casHead */
346 dl 1.9 private static final
347     AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
348 dl 1.1 headUpdater = AtomicReferenceFieldUpdater.newUpdater
349     (ConcurrentSkipListMap.class, HeadIndex.class, "head");
350    
351     /**
352     * compareAndSet head node
353     */
354     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
355     return headUpdater.compareAndSet(this, cmp, val);
356     }
357    
358     /* ---------------- Nodes -------------- */
359    
360     /**
361     * Nodes hold keys and values, and are singly linked in sorted
362     * order, possibly with some intervening marker nodes. The list is
363     * headed by a dummy node accessible as head.node. The value field
364     * is declared only as Object because it takes special non-V
365     * values for marker and header nodes.
366     */
367     static final class Node<K,V> {
368     final K key;
369     volatile Object value;
370     volatile Node<K,V> next;
371    
372     /**
373     * Creates a new regular node.
374     */
375     Node(K key, Object value, Node<K,V> next) {
376     this.key = key;
377     this.value = value;
378     this.next = next;
379     }
380    
381     /**
382     * Creates a new marker node. A marker is distinguished by
383     * having its value field point to itself. Marker nodes also
384     * have null keys, a fact that is exploited in a few places,
385     * but this doesn't distinguish markers from the base-level
386     * header node (head.node), which also has a null key.
387     */
388     Node(Node<K,V> next) {
389     this.key = null;
390     this.value = this;
391     this.next = next;
392     }
393    
394     /** Updater for casNext */
395 dl 1.9 static final AtomicReferenceFieldUpdater<Node, Node>
396 dl 1.1 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
397     (Node.class, Node.class, "next");
398    
399     /** Updater for casValue */
400 dl 1.9 static final AtomicReferenceFieldUpdater<Node, Object>
401 dl 1.1 valueUpdater = AtomicReferenceFieldUpdater.newUpdater
402     (Node.class, Object.class, "value");
403    
404     /**
405     * compareAndSet value field
406     */
407     boolean casValue(Object cmp, Object val) {
408     return valueUpdater.compareAndSet(this, cmp, val);
409     }
410    
411     /**
412     * compareAndSet next field
413     */
414     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
415     return nextUpdater.compareAndSet(this, cmp, val);
416     }
417    
418     /**
419 jsr166 1.10 * Returns true if this node is a marker. This method isn't
420     * actually called in any current code checking for markers
421 dl 1.1 * because callers will have already read value field and need
422     * to use that read (not another done here) and so directly
423     * test if value points to node.
424     * @param n a possibly null reference to a node
425     * @return true if this node is a marker node
426     */
427     boolean isMarker() {
428     return value == this;
429     }
430    
431     /**
432 jsr166 1.10 * Returns true if this node is the header of base-level list.
433 dl 1.1 * @return true if this node is header node
434     */
435     boolean isBaseHeader() {
436     return value == BASE_HEADER;
437     }
438    
439     /**
440     * Tries to append a deletion marker to this node.
441     * @param f the assumed current successor of this node
442     * @return true if successful
443     */
444     boolean appendMarker(Node<K,V> f) {
445     return casNext(f, new Node<K,V>(f));
446     }
447    
448     /**
449     * Helps out a deletion by appending marker or unlinking from
450     * predecessor. This is called during traversals when value
451     * field seen to be null.
452     * @param b predecessor
453     * @param f successor
454     */
455     void helpDelete(Node<K,V> b, Node<K,V> f) {
456     /*
457     * Rechecking links and then doing only one of the
458     * help-out stages per call tends to minimize CAS
459     * interference among helping threads.
460     */
461     if (f == next && this == b.next) {
462     if (f == null || f.value != f) // not already marked
463     appendMarker(f);
464     else
465     b.casNext(this, f.next);
466     }
467     }
468    
469     /**
470 jsr166 1.11 * Returns value if this node contains a valid key-value pair,
471 dl 1.9 * else null.
472 dl 1.1 * @return this node's value if it isn't a marker or header or
473     * is deleted, else null.
474     */
475     V getValidValue() {
476     Object v = value;
477     if (v == this || v == BASE_HEADER)
478     return null;
479     return (V)v;
480     }
481    
482     /**
483 jsr166 1.10 * Creates and returns a new SimpleImmutableEntry holding current
484     * mapping if this node holds a valid value, else null.
485 dl 1.1 * @return new entry or null
486     */
487 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
488 dl 1.1 V v = getValidValue();
489     if (v == null)
490     return null;
491 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
492 dl 1.1 }
493     }
494    
495     /* ---------------- Indexing -------------- */
496    
497     /**
498     * Index nodes represent the levels of the skip list. To improve
499     * search performance, keys of the underlying nodes are cached.
500     * Note that even though both Nodes and Indexes have
501     * forward-pointing fields, they have different types and are
502     * handled in different ways, that can't nicely be captured by
503     * placing field in a shared abstract class.
504     */
505     static class Index<K,V> {
506     final K key;
507     final Node<K,V> node;
508     final Index<K,V> down;
509     volatile Index<K,V> right;
510    
511     /**
512 jsr166 1.10 * Creates index node with given values.
513 dl 1.9 */
514 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
515     this.node = node;
516     this.key = node.key;
517     this.down = down;
518     this.right = right;
519     }
520    
521     /** Updater for casRight */
522 dl 1.9 static final AtomicReferenceFieldUpdater<Index, Index>
523 dl 1.1 rightUpdater = AtomicReferenceFieldUpdater.newUpdater
524     (Index.class, Index.class, "right");
525    
526     /**
527     * compareAndSet right field
528     */
529     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
530     return rightUpdater.compareAndSet(this, cmp, val);
531     }
532    
533     /**
534     * Returns true if the node this indexes has been deleted.
535     * @return true if indexed node is known to be deleted
536     */
537     final boolean indexesDeletedNode() {
538     return node.value == null;
539     }
540    
541     /**
542     * Tries to CAS newSucc as successor. To minimize races with
543     * unlink that may lose this index node, if the node being
544     * indexed is known to be deleted, it doesn't try to link in.
545     * @param succ the expected current successor
546     * @param newSucc the new successor
547     * @return true if successful
548     */
549     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
550     Node<K,V> n = node;
551 dl 1.9 newSucc.right = succ;
552 dl 1.1 return n.value != null && casRight(succ, newSucc);
553     }
554    
555     /**
556     * Tries to CAS right field to skip over apparent successor
557     * succ. Fails (forcing a retraversal by caller) if this node
558     * is known to be deleted.
559     * @param succ the expected current successor
560     * @return true if successful
561     */
562     final boolean unlink(Index<K,V> succ) {
563     return !indexesDeletedNode() && casRight(succ, succ.right);
564     }
565     }
566    
567     /* ---------------- Head nodes -------------- */
568    
569     /**
570     * Nodes heading each level keep track of their level.
571     */
572     static final class HeadIndex<K,V> extends Index<K,V> {
573     final int level;
574     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
575     super(node, down, right);
576     this.level = level;
577     }
578 dl 1.9 }
579 dl 1.1
580     /* ---------------- Comparison utilities -------------- */
581    
582     /**
583     * Represents a key with a comparator as a Comparable.
584     *
585 jsr166 1.22 * Because most sorted collections seem to use natural ordering on
586 dl 1.1 * Comparables (Strings, Integers, etc), most internal methods are
587     * geared to use them. This is generally faster than checking
588     * per-comparison whether to use comparator or comparable because
589     * it doesn't require a (Comparable) cast for each comparison.
590     * (Optimizers can only sometimes remove such redundant checks
591     * themselves.) When Comparators are used,
592     * ComparableUsingComparators are created so that they act in the
593     * same way as natural orderings. This penalizes use of
594     * Comparators vs Comparables, which seems like the right
595     * tradeoff.
596     */
597     static final class ComparableUsingComparator<K> implements Comparable<K> {
598     final K actualKey;
599     final Comparator<? super K> cmp;
600     ComparableUsingComparator(K key, Comparator<? super K> cmp) {
601     this.actualKey = key;
602     this.cmp = cmp;
603     }
604     public int compareTo(K k2) {
605     return cmp.compare(actualKey, k2);
606     }
607     }
608    
609     /**
610     * If using comparator, return a ComparableUsingComparator, else
611     * cast key as Comparator, which may cause ClassCastException,
612     * which is propagated back to caller.
613     */
614 dl 1.9 private Comparable<? super K> comparable(Object key) throws ClassCastException {
615     if (key == null)
616 dl 1.1 throw new NullPointerException();
617 dl 1.24 if (comparator != null)
618     return new ComparableUsingComparator<K>((K)key, comparator);
619     else
620     return (Comparable<? super K>)key;
621 dl 1.1 }
622    
623     /**
624 jsr166 1.10 * Compares using comparator or natural ordering. Used when the
625 dl 1.1 * ComparableUsingComparator approach doesn't apply.
626     */
627     int compare(K k1, K k2) throws ClassCastException {
628     Comparator<? super K> cmp = comparator;
629     if (cmp != null)
630     return cmp.compare(k1, k2);
631     else
632 jsr166 1.18 return ((Comparable<? super K>)k1).compareTo(k2);
633 dl 1.1 }
634    
635     /**
636 jsr166 1.10 * Returns true if given key greater than or equal to least and
637 dl 1.1 * strictly less than fence, bypassing either test if least or
638 dl 1.5 * fence are null. Needed mainly in submap operations.
639 dl 1.1 */
640     boolean inHalfOpenRange(K key, K least, K fence) {
641 dl 1.9 if (key == null)
642 dl 1.1 throw new NullPointerException();
643     return ((least == null || compare(key, least) >= 0) &&
644     (fence == null || compare(key, fence) < 0));
645     }
646    
647     /**
648 jsr166 1.10 * Returns true if given key greater than or equal to least and less
649 dl 1.1 * or equal to fence. Needed mainly in submap operations.
650     */
651     boolean inOpenRange(K key, K least, K fence) {
652 dl 1.9 if (key == null)
653 dl 1.1 throw new NullPointerException();
654     return ((least == null || compare(key, least) >= 0) &&
655     (fence == null || compare(key, fence) <= 0));
656     }
657    
658     /* ---------------- Traversal -------------- */
659    
660     /**
661 jsr166 1.10 * Returns a base-level node with key strictly less than given key,
662 dl 1.1 * or the base-level header if there is no such node. Also
663     * unlinks indexes to deleted nodes found along the way. Callers
664     * rely on this side-effect of clearing indices to deleted nodes.
665     * @param key the key
666 dl 1.9 * @return a predecessor of key
667 dl 1.1 */
668 dl 1.9 private Node<K,V> findPredecessor(Comparable<? super K> key) {
669 dl 1.1 for (;;) {
670     Index<K,V> q = head;
671     for (;;) {
672     Index<K,V> d, r;
673     if ((r = q.right) != null) {
674     if (r.indexesDeletedNode()) {
675     if (q.unlink(r))
676     continue; // reread r
677     else
678     break; // restart
679     }
680     if (key.compareTo(r.key) > 0) {
681     q = r;
682     continue;
683     }
684     }
685 dl 1.9 if ((d = q.down) != null)
686 dl 1.1 q = d;
687     else
688     return q.node;
689     }
690     }
691     }
692    
693     /**
694 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
695 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
696     * base-level looking for key starting at predecessor returned
697     * from findPredecessor, processing base-level deletions as
698     * encountered. Some callers rely on this side-effect of clearing
699     * deleted nodes.
700     *
701     * Restarts occur, at traversal step centered on node n, if:
702     *
703     * (1) After reading n's next field, n is no longer assumed
704     * predecessor b's current successor, which means that
705     * we don't have a consistent 3-node snapshot and so cannot
706     * unlink any subsequent deleted nodes encountered.
707     *
708     * (2) n's value field is null, indicating n is deleted, in
709     * which case we help out an ongoing structural deletion
710     * before retrying. Even though there are cases where such
711     * unlinking doesn't require restart, they aren't sorted out
712     * here because doing so would not usually outweigh cost of
713     * restarting.
714     *
715 dl 1.9 * (3) n is a marker or n's predecessor's value field is null,
716 dl 1.1 * indicating (among other possibilities) that
717     * findPredecessor returned a deleted node. We can't unlink
718     * the node because we don't know its predecessor, so rely
719     * on another call to findPredecessor to notice and return
720     * some earlier predecessor, which it will do. This check is
721     * only strictly needed at beginning of loop, (and the
722     * b.value check isn't strictly needed at all) but is done
723     * each iteration to help avoid contention with other
724     * threads by callers that will fail to be able to change
725     * links, and so will retry anyway.
726     *
727     * The traversal loops in doPut, doRemove, and findNear all
728     * include the same three kinds of checks. And specialized
729 dl 1.31 * versions appear in findFirst, and findLast and their
730     * variants. They can't easily share code because each uses the
731 dl 1.1 * reads of fields held in locals occurring in the orders they
732     * were performed.
733 dl 1.9 *
734 dl 1.1 * @param key the key
735 jsr166 1.22 * @return node holding key, or null if no such
736 dl 1.1 */
737 dl 1.9 private Node<K,V> findNode(Comparable<? super K> key) {
738 dl 1.1 for (;;) {
739     Node<K,V> b = findPredecessor(key);
740     Node<K,V> n = b.next;
741     for (;;) {
742 dl 1.9 if (n == null)
743 dl 1.1 return null;
744     Node<K,V> f = n.next;
745     if (n != b.next) // inconsistent read
746     break;
747     Object v = n.value;
748     if (v == null) { // n is deleted
749     n.helpDelete(b, f);
750     break;
751     }
752     if (v == n || b.value == null) // b is deleted
753     break;
754     int c = key.compareTo(n.key);
755     if (c < 0)
756     return null;
757 dl 1.9 if (c == 0)
758 dl 1.1 return n;
759     b = n;
760     n = f;
761     }
762     }
763     }
764    
765 dl 1.9 /**
766 dl 1.1 * Specialized variant of findNode to perform Map.get. Does a weak
767     * traversal, not bothering to fix any deleted index nodes,
768     * returning early if it happens to see key in index, and passing
769     * over any deleted base nodes, falling back to getUsingFindNode
770     * only if it would otherwise return value from an ongoing
771     * deletion. Also uses "bound" to eliminate need for some
772     * comparisons (see Pugh Cookbook). Also folds uses of null checks
773     * and node-skipping because markers have null keys.
774     * @param okey the key
775     * @return the value, or null if absent
776     */
777     private V doGet(Object okey) {
778 dl 1.9 Comparable<? super K> key = comparable(okey);
779 dl 1.1 K bound = null;
780     Index<K,V> q = head;
781     for (;;) {
782     K rk;
783     Index<K,V> d, r;
784 dl 1.9 if ((r = q.right) != null &&
785 dl 1.1 (rk = r.key) != null && rk != bound) {
786     int c = key.compareTo(rk);
787     if (c > 0) {
788     q = r;
789     continue;
790     }
791     if (c == 0) {
792     Object v = r.node.value;
793     return (v != null)? (V)v : getUsingFindNode(key);
794     }
795     bound = rk;
796     }
797 dl 1.9 if ((d = q.down) != null)
798 dl 1.1 q = d;
799     else {
800     for (Node<K,V> n = q.node.next; n != null; n = n.next) {
801     K nk = n.key;
802     if (nk != null) {
803     int c = key.compareTo(nk);
804     if (c == 0) {
805     Object v = n.value;
806     return (v != null)? (V)v : getUsingFindNode(key);
807     }
808     if (c < 0)
809     return null;
810     }
811     }
812     return null;
813     }
814     }
815     }
816    
817     /**
818 jsr166 1.10 * Performs map.get via findNode. Used as a backup if doGet
819 dl 1.1 * encounters an in-progress deletion.
820     * @param key the key
821     * @return the value, or null if absent
822     */
823 dl 1.9 private V getUsingFindNode(Comparable<? super K> key) {
824 dl 1.1 /*
825     * Loop needed here and elsewhere in case value field goes
826     * null just as it is about to be returned, in which case we
827     * lost a race with a deletion, so must retry.
828     */
829     for (;;) {
830     Node<K,V> n = findNode(key);
831     if (n == null)
832     return null;
833     Object v = n.value;
834     if (v != null)
835     return (V)v;
836     }
837     }
838    
839     /* ---------------- Insertion -------------- */
840    
841     /**
842     * Main insertion method. Adds element if not present, or
843     * replaces value if present and onlyIfAbsent is false.
844 dl 1.9 * @param kkey the key
845 dl 1.1 * @param value the value that must be associated with key
846     * @param onlyIfAbsent if should not insert if already present
847     * @return the old value, or null if newly inserted
848     */
849     private V doPut(K kkey, V value, boolean onlyIfAbsent) {
850 dl 1.9 Comparable<? super K> key = comparable(kkey);
851 dl 1.1 for (;;) {
852     Node<K,V> b = findPredecessor(key);
853     Node<K,V> n = b.next;
854     for (;;) {
855     if (n != null) {
856     Node<K,V> f = n.next;
857     if (n != b.next) // inconsistent read
858     break;;
859     Object v = n.value;
860     if (v == null) { // n is deleted
861     n.helpDelete(b, f);
862     break;
863     }
864     if (v == n || b.value == null) // b is deleted
865     break;
866     int c = key.compareTo(n.key);
867     if (c > 0) {
868     b = n;
869     n = f;
870     continue;
871     }
872     if (c == 0) {
873     if (onlyIfAbsent || n.casValue(v, value))
874     return (V)v;
875     else
876     break; // restart if lost race to replace value
877     }
878     // else c < 0; fall through
879     }
880 dl 1.9
881 dl 1.1 Node<K,V> z = new Node<K,V>(kkey, value, n);
882 dl 1.9 if (!b.casNext(n, z))
883 dl 1.1 break; // restart if lost race to append to b
884 dl 1.9 int level = randomLevel();
885     if (level > 0)
886 dl 1.1 insertIndex(z, level);
887     return null;
888     }
889     }
890     }
891    
892     /**
893 jsr166 1.10 * Returns a random level for inserting a new node.
894 dl 1.1 * Hardwired to k=1, p=0.5, max 31.
895     *
896 dl 1.33 * This uses the simplest of the generators described in George
897     * Marsaglia's "Xorshift RNGs" paper. This is not a high-quality
898     * generator but is acceptable here. Note that bits are checked
899     * by testing sign, which is a little faster than testing low bit.
900 dl 1.1 */
901     private int randomLevel() {
902     int level = 0;
903     int r = randomSeed;
904 dl 1.33 int x = r ^ (r << 13);
905     x ^= x >>> 17;
906     randomSeed = x ^ (x << 5);
907 dl 1.9 if (r < 0) {
908     while ((r <<= 1) > 0)
909 dl 1.1 ++level;
910     }
911     return level;
912     }
913    
914     /**
915 jsr166 1.11 * Creates and adds index nodes for the given node.
916 dl 1.1 * @param z the node
917     * @param level the level of the index
918     */
919     private void insertIndex(Node<K,V> z, int level) {
920     HeadIndex<K,V> h = head;
921     int max = h.level;
922    
923     if (level <= max) {
924     Index<K,V> idx = null;
925     for (int i = 1; i <= level; ++i)
926     idx = new Index<K,V>(z, idx, null);
927     addIndex(idx, h, level);
928    
929     } else { // Add a new level
930     /*
931     * To reduce interference by other threads checking for
932     * empty levels in tryReduceLevel, new levels are added
933     * with initialized right pointers. Which in turn requires
934     * keeping levels in an array to access them while
935     * creating new head index nodes from the opposite
936     * direction.
937     */
938     level = max + 1;
939     Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
940     Index<K,V> idx = null;
941 dl 1.9 for (int i = 1; i <= level; ++i)
942 dl 1.1 idxs[i] = idx = new Index<K,V>(z, idx, null);
943    
944     HeadIndex<K,V> oldh;
945     int k;
946     for (;;) {
947     oldh = head;
948     int oldLevel = oldh.level;
949     if (level <= oldLevel) { // lost race to add level
950     k = level;
951     break;
952     }
953     HeadIndex<K,V> newh = oldh;
954     Node<K,V> oldbase = oldh.node;
955 dl 1.9 for (int j = oldLevel+1; j <= level; ++j)
956 dl 1.1 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
957     if (casHead(oldh, newh)) {
958     k = oldLevel;
959     break;
960     }
961     }
962     addIndex(idxs[k], oldh, k);
963     }
964     }
965    
966     /**
967 jsr166 1.10 * Adds given index nodes from given level down to 1.
968 dl 1.1 * @param idx the topmost index node being inserted
969     * @param h the value of head to use to insert. This must be
970     * snapshotted by callers to provide correct insertion level
971     * @param indexLevel the level of the index
972     */
973     private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
974     // Track next level to insert in case of retries
975     int insertionLevel = indexLevel;
976 dl 1.9 Comparable<? super K> key = comparable(idx.key);
977 dl 1.1
978     // Similar to findPredecessor, but adding index nodes along
979     // path to key.
980     for (;;) {
981     Index<K,V> q = h;
982     Index<K,V> t = idx;
983     int j = h.level;
984     for (;;) {
985     Index<K,V> r = q.right;
986     if (r != null) {
987     // compare before deletion check avoids needing recheck
988     int c = key.compareTo(r.key);
989     if (r.indexesDeletedNode()) {
990     if (q.unlink(r))
991     continue;
992     else
993 dl 1.9 break;
994 dl 1.1 }
995     if (c > 0) {
996     q = r;
997     continue;
998     }
999     }
1000    
1001     if (j == insertionLevel) {
1002     // Don't insert index if node already deleted
1003     if (t.indexesDeletedNode()) {
1004     findNode(key); // cleans up
1005     return;
1006     }
1007 dl 1.9 if (!q.link(r, t))
1008 dl 1.1 break; // restart
1009     if (--insertionLevel == 0) {
1010     // need final deletion check before return
1011 dl 1.9 if (t.indexesDeletedNode())
1012     findNode(key);
1013 dl 1.1 return;
1014     }
1015     }
1016    
1017 dl 1.9 if (j > insertionLevel && j <= indexLevel)
1018 dl 1.1 t = t.down;
1019     q = q.down;
1020     --j;
1021     }
1022     }
1023     }
1024    
1025     /* ---------------- Deletion -------------- */
1026    
1027     /**
1028     * Main deletion method. Locates node, nulls value, appends a
1029     * deletion marker, unlinks predecessor, removes associated index
1030     * nodes, and possibly reduces head index level.
1031     *
1032     * Index nodes are cleared out simply by calling findPredecessor.
1033     * which unlinks indexes to deleted nodes found along path to key,
1034     * which will include the indexes to this node. This is done
1035     * unconditionally. We can't check beforehand whether there are
1036     * index nodes because it might be the case that some or all
1037     * indexes hadn't been inserted yet for this node during initial
1038     * search for it, and we'd like to ensure lack of garbage
1039 dl 1.9 * retention, so must call to be sure.
1040 dl 1.1 *
1041     * @param okey the key
1042     * @param value if non-null, the value that must be
1043     * associated with key
1044     * @return the node, or null if not found
1045     */
1046     private V doRemove(Object okey, Object value) {
1047 dl 1.9 Comparable<? super K> key = comparable(okey);
1048     for (;;) {
1049 dl 1.1 Node<K,V> b = findPredecessor(key);
1050     Node<K,V> n = b.next;
1051     for (;;) {
1052 dl 1.9 if (n == null)
1053 dl 1.1 return null;
1054     Node<K,V> f = n.next;
1055     if (n != b.next) // inconsistent read
1056     break;
1057     Object v = n.value;
1058     if (v == null) { // n is deleted
1059     n.helpDelete(b, f);
1060     break;
1061     }
1062     if (v == n || b.value == null) // b is deleted
1063     break;
1064     int c = key.compareTo(n.key);
1065     if (c < 0)
1066     return null;
1067     if (c > 0) {
1068     b = n;
1069     n = f;
1070     continue;
1071     }
1072 dl 1.9 if (value != null && !value.equals(v))
1073     return null;
1074     if (!n.casValue(v, null))
1075 dl 1.1 break;
1076 dl 1.9 if (!n.appendMarker(f) || !b.casNext(n, f))
1077 dl 1.1 findNode(key); // Retry via findNode
1078     else {
1079     findPredecessor(key); // Clean index
1080 dl 1.9 if (head.right == null)
1081 dl 1.1 tryReduceLevel();
1082     }
1083     return (V)v;
1084     }
1085     }
1086     }
1087    
1088     /**
1089     * Possibly reduce head level if it has no nodes. This method can
1090     * (rarely) make mistakes, in which case levels can disappear even
1091     * though they are about to contain index nodes. This impacts
1092     * performance, not correctness. To minimize mistakes as well as
1093     * to reduce hysteresis, the level is reduced by one only if the
1094     * topmost three levels look empty. Also, if the removed level
1095     * looks non-empty after CAS, we try to change it back quick
1096     * before anyone notices our mistake! (This trick works pretty
1097     * well because this method will practically never make mistakes
1098     * unless current thread stalls immediately before first CAS, in
1099     * which case it is very unlikely to stall again immediately
1100     * afterwards, so will recover.)
1101     *
1102     * We put up with all this rather than just let levels grow
1103     * because otherwise, even a small map that has undergone a large
1104     * number of insertions and removals will have a lot of levels,
1105     * slowing down access more than would an occasional unwanted
1106     * reduction.
1107     */
1108     private void tryReduceLevel() {
1109     HeadIndex<K,V> h = head;
1110     HeadIndex<K,V> d;
1111     HeadIndex<K,V> e;
1112     if (h.level > 3 &&
1113 dl 1.9 (d = (HeadIndex<K,V>)h.down) != null &&
1114     (e = (HeadIndex<K,V>)d.down) != null &&
1115     e.right == null &&
1116     d.right == null &&
1117 dl 1.1 h.right == null &&
1118     casHead(h, d) && // try to set
1119     h.right != null) // recheck
1120     casHead(d, h); // try to backout
1121     }
1122    
1123     /**
1124     * Version of remove with boolean return. Needed by view classes
1125     */
1126     boolean removep(Object key) {
1127     return doRemove(key, null) != null;
1128     }
1129    
1130     /* ---------------- Finding and removing first element -------------- */
1131    
1132     /**
1133 jsr166 1.22 * Specialized variant of findNode to get first valid node.
1134 dl 1.1 * @return first node or null if empty
1135     */
1136     Node<K,V> findFirst() {
1137     for (;;) {
1138     Node<K,V> b = head.node;
1139     Node<K,V> n = b.next;
1140     if (n == null)
1141     return null;
1142 dl 1.9 if (n.value != null)
1143 dl 1.1 return n;
1144     n.helpDelete(b, n.next);
1145     }
1146     }
1147    
1148     /**
1149 dl 1.31 * Removes first entry; returns its key. Note: The
1150     * mostly-redundant methods for removing first and last keys vs
1151     * entries exist to avoid needless creation of Entry nodes when
1152     * only the key is needed. The minor reduction in overhead is
1153     * worth the minor code duplication.
1154 jsr166 1.28 * @return null if empty, else key of first entry
1155 dl 1.25 */
1156 dl 1.30 K pollFirstKey() {
1157 dl 1.25 for (;;) {
1158     Node<K,V> b = head.node;
1159     Node<K,V> n = b.next;
1160     if (n == null)
1161     return null;
1162     Node<K,V> f = n.next;
1163     if (n != b.next)
1164     continue;
1165     Object v = n.value;
1166     if (v == null) {
1167     n.helpDelete(b, f);
1168     continue;
1169     }
1170     if (!n.casValue(v, null))
1171     continue;
1172     if (!n.appendMarker(f) || !b.casNext(n, f))
1173     findFirst(); // retry
1174     clearIndexToFirst();
1175 dl 1.30 return n.key;
1176 dl 1.25 }
1177     }
1178    
1179     /**
1180     * Removes first entry; returns its snapshot.
1181 jsr166 1.28 * @return null if empty, else snapshot of first entry
1182 dl 1.1 */
1183 dl 1.25 Map.Entry<K,V> doRemoveFirstEntry() {
1184 dl 1.9 for (;;) {
1185 dl 1.1 Node<K,V> b = head.node;
1186     Node<K,V> n = b.next;
1187 dl 1.9 if (n == null)
1188 dl 1.1 return null;
1189     Node<K,V> f = n.next;
1190     if (n != b.next)
1191     continue;
1192     Object v = n.value;
1193     if (v == null) {
1194     n.helpDelete(b, f);
1195     continue;
1196     }
1197     if (!n.casValue(v, null))
1198     continue;
1199     if (!n.appendMarker(f) || !b.casNext(n, f))
1200     findFirst(); // retry
1201     clearIndexToFirst();
1202 dl 1.30 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1203 jsr166 1.28 }
1204 dl 1.1 }
1205    
1206     /**
1207 jsr166 1.10 * Clears out index nodes associated with deleted first entry.
1208 dl 1.1 */
1209     private void clearIndexToFirst() {
1210     for (;;) {
1211     Index<K,V> q = head;
1212     for (;;) {
1213     Index<K,V> r = q.right;
1214     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1215 dl 1.9 break;
1216 dl 1.1 if ((q = q.down) == null) {
1217 dl 1.9 if (head.right == null)
1218 dl 1.1 tryReduceLevel();
1219     return;
1220     }
1221     }
1222     }
1223     }
1224    
1225    
1226     /* ---------------- Finding and removing last element -------------- */
1227    
1228     /**
1229 jsr166 1.10 * Specialized version of find to get last valid node.
1230 dl 1.1 * @return last node or null if empty
1231     */
1232     Node<K,V> findLast() {
1233     /*
1234     * findPredecessor can't be used to traverse index level
1235     * because this doesn't use comparisons. So traversals of
1236     * both levels are folded together.
1237     */
1238     Index<K,V> q = head;
1239     for (;;) {
1240     Index<K,V> d, r;
1241     if ((r = q.right) != null) {
1242     if (r.indexesDeletedNode()) {
1243     q.unlink(r);
1244     q = head; // restart
1245 dl 1.9 }
1246 dl 1.1 else
1247     q = r;
1248     } else if ((d = q.down) != null) {
1249     q = d;
1250     } else {
1251     Node<K,V> b = q.node;
1252     Node<K,V> n = b.next;
1253     for (;;) {
1254 dl 1.9 if (n == null)
1255 dl 1.1 return (b.isBaseHeader())? null : b;
1256     Node<K,V> f = n.next; // inconsistent read
1257     if (n != b.next)
1258     break;
1259     Object v = n.value;
1260     if (v == null) { // n is deleted
1261     n.helpDelete(b, f);
1262     break;
1263     }
1264     if (v == n || b.value == null) // b is deleted
1265     break;
1266     b = n;
1267     n = f;
1268     }
1269     q = head; // restart
1270     }
1271     }
1272     }
1273    
1274 dl 1.31 /**
1275 jsr166 1.32 * Specialized variant of findPredecessor to get predecessor of last
1276     * valid node. Needed when removing the last entry. It is possible
1277     * that all successors of returned node will have been deleted upon
1278 dl 1.31 * return, in which case this method can be retried.
1279     * @return likely predecessor of last node
1280     */
1281     private Node<K,V> findPredecessorOfLast() {
1282     for (;;) {
1283     Index<K,V> q = head;
1284     for (;;) {
1285     Index<K,V> d, r;
1286     if ((r = q.right) != null) {
1287     if (r.indexesDeletedNode()) {
1288     q.unlink(r);
1289     break; // must restart
1290     }
1291     // proceed as far across as possible without overshooting
1292     if (r.node.next != null) {
1293     q = r;
1294     continue;
1295     }
1296     }
1297     if ((d = q.down) != null)
1298     q = d;
1299     else
1300     return q.node;
1301     }
1302     }
1303     }
1304 dl 1.1
1305     /**
1306 jsr166 1.32 * Removes last entry; returns key or null if empty.
1307     * @return null if empty, else key of last entry
1308 dl 1.1 */
1309 dl 1.31 K pollLastKey() {
1310 dl 1.9 for (;;) {
1311 dl 1.1 Node<K,V> b = findPredecessorOfLast();
1312     Node<K,V> n = b.next;
1313     if (n == null) {
1314     if (b.isBaseHeader()) // empty
1315     return null;
1316 dl 1.9 else
1317 dl 1.1 continue; // all b's successors are deleted; retry
1318     }
1319     for (;;) {
1320     Node<K,V> f = n.next;
1321     if (n != b.next) // inconsistent read
1322     break;
1323     Object v = n.value;
1324     if (v == null) { // n is deleted
1325     n.helpDelete(b, f);
1326     break;
1327     }
1328     if (v == n || b.value == null) // b is deleted
1329     break;
1330     if (f != null) {
1331     b = n;
1332     n = f;
1333     continue;
1334     }
1335 dl 1.9 if (!n.casValue(v, null))
1336 dl 1.1 break;
1337     K key = n.key;
1338 dl 1.9 Comparable<? super K> ck = comparable(key);
1339     if (!n.appendMarker(f) || !b.casNext(n, f))
1340 dl 1.1 findNode(ck); // Retry via findNode
1341     else {
1342     findPredecessor(ck); // Clean index
1343 dl 1.9 if (head.right == null)
1344 dl 1.1 tryReduceLevel();
1345     }
1346 dl 1.31 return key;
1347 dl 1.1 }
1348     }
1349     }
1350    
1351     /**
1352 jsr166 1.32 * Removes last entry; returns its snapshot.
1353     * Specialized variant of doRemove.
1354     * @return null if empty, else snapshot of last entry
1355 dl 1.1 */
1356 dl 1.31 Map.Entry<K,V> doRemoveLastEntry() {
1357 dl 1.1 for (;;) {
1358 dl 1.31 Node<K,V> b = findPredecessorOfLast();
1359     Node<K,V> n = b.next;
1360     if (n == null) {
1361     if (b.isBaseHeader()) // empty
1362     return null;
1363     else
1364     continue; // all b's successors are deleted; retry
1365     }
1366 dl 1.1 for (;;) {
1367 dl 1.31 Node<K,V> f = n.next;
1368     if (n != b.next) // inconsistent read
1369     break;
1370     Object v = n.value;
1371     if (v == null) { // n is deleted
1372     n.helpDelete(b, f);
1373     break;
1374     }
1375     if (v == n || b.value == null) // b is deleted
1376     break;
1377     if (f != null) {
1378     b = n;
1379     n = f;
1380     continue;
1381     }
1382     if (!n.casValue(v, null))
1383     break;
1384     K key = n.key;
1385     Comparable<? super K> ck = comparable(key);
1386     if (!n.appendMarker(f) || !b.casNext(n, f))
1387     findNode(ck); // Retry via findNode
1388     else {
1389     findPredecessor(ck); // Clean index
1390     if (head.right == null)
1391     tryReduceLevel();
1392 dl 1.1 }
1393 dl 1.31 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1394 dl 1.1 }
1395     }
1396     }
1397    
1398     /* ---------------- Relational operations -------------- */
1399    
1400     // Control values OR'ed as arguments to findNear
1401    
1402     private static final int EQ = 1;
1403     private static final int LT = 2;
1404     private static final int GT = 0; // Actually checked as !LT
1405    
1406     /**
1407     * Utility for ceiling, floor, lower, higher methods.
1408     * @param kkey the key
1409     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1410     * @return nearest node fitting relation, or null if no such
1411     */
1412     Node<K,V> findNear(K kkey, int rel) {
1413 dl 1.9 Comparable<? super K> key = comparable(kkey);
1414 dl 1.1 for (;;) {
1415     Node<K,V> b = findPredecessor(key);
1416     Node<K,V> n = b.next;
1417     for (;;) {
1418 dl 1.9 if (n == null)
1419 dl 1.1 return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1420     Node<K,V> f = n.next;
1421     if (n != b.next) // inconsistent read
1422     break;
1423     Object v = n.value;
1424     if (v == null) { // n is deleted
1425     n.helpDelete(b, f);
1426     break;
1427     }
1428     if (v == n || b.value == null) // b is deleted
1429     break;
1430     int c = key.compareTo(n.key);
1431     if ((c == 0 && (rel & EQ) != 0) ||
1432     (c < 0 && (rel & LT) == 0))
1433     return n;
1434     if ( c <= 0 && (rel & LT) != 0)
1435     return (b.isBaseHeader())? null : b;
1436     b = n;
1437     n = f;
1438     }
1439     }
1440     }
1441    
1442     /**
1443 jsr166 1.10 * Returns SimpleImmutableEntry for results of findNear.
1444 dl 1.1 * @param kkey the key
1445     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1446     * @return Entry fitting relation, or null if no such
1447     */
1448 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> getNear(K kkey, int rel) {
1449 dl 1.1 for (;;) {
1450     Node<K,V> n = findNear(kkey, rel);
1451     if (n == null)
1452     return null;
1453 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1454 dl 1.1 if (e != null)
1455     return e;
1456     }
1457     }
1458    
1459     /**
1460 jsr166 1.10 * Returns ceiling, or first node if key is <tt>null</tt>.
1461 dl 1.1 */
1462     Node<K,V> findCeiling(K key) {
1463     return (key == null)? findFirst() : findNear(key, GT|EQ);
1464     }
1465    
1466     /**
1467 jsr166 1.10 * Returns lower node, or last node if key is <tt>null</tt>.
1468 dl 1.1 */
1469     Node<K,V> findLower(K key) {
1470     return (key == null)? findLast() : findNear(key, LT);
1471     }
1472    
1473     /**
1474 dl 1.24 * Returns key for results of findNear after screening to ensure
1475     * result is in given range. Needed by submaps.
1476     * @param kkey the key
1477     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1478     * @param least minimum allowed key value
1479     * @param fence key greater than maximum allowed key value
1480     * @return Key fitting relation, or <tt>null</tt> if no such
1481     */
1482     K getNearKey(K kkey, int rel, K least, K fence) {
1483     K key = kkey;
1484     // Don't return keys less than least
1485     if ((rel & LT) == 0) {
1486     if (compare(key, least) < 0) {
1487     key = least;
1488     rel = rel | EQ;
1489     }
1490     }
1491    
1492     for (;;) {
1493     Node<K,V> n = findNear(key, rel);
1494     if (n == null || !inHalfOpenRange(n.key, least, fence))
1495     return null;
1496     K k = n.key;
1497     V v = n.getValidValue();
1498 jsr166 1.28 if (v != null)
1499 dl 1.24 return k;
1500     }
1501     }
1502    
1503    
1504     /**
1505     * Returns SimpleImmutableEntry for results of findNear after
1506     * screening to ensure result is in given range. Needed by
1507 dl 1.2 * submaps.
1508 dl 1.1 * @param kkey the key
1509     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1510     * @param least minimum allowed key value
1511     * @param fence key greater than maximum allowed key value
1512 dl 1.24 * @return Entry fitting relation, or <tt>null</tt> if no such
1513 dl 1.1 */
1514 dl 1.24 Map.Entry<K,V> getNearEntry(K kkey, int rel, K least, K fence) {
1515 dl 1.1 K key = kkey;
1516     // Don't return keys less than least
1517     if ((rel & LT) == 0) {
1518     if (compare(key, least) < 0) {
1519     key = least;
1520     rel = rel | EQ;
1521     }
1522     }
1523    
1524     for (;;) {
1525     Node<K,V> n = findNear(key, rel);
1526     if (n == null || !inHalfOpenRange(n.key, least, fence))
1527     return null;
1528     K k = n.key;
1529     V v = n.getValidValue();
1530 jsr166 1.28 if (v != null)
1531 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1532 dl 1.1 }
1533     }
1534    
1535     /**
1536 jsr166 1.10 * Finds and removes least element of subrange.
1537 dl 1.1 * @param least minimum allowed key value
1538     * @param fence key greater than maximum allowed key value
1539 dl 1.24 * @return least Entry, or <tt>null</tt> if no such
1540 dl 1.1 */
1541 dl 1.24 Map.Entry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
1542 dl 1.1 for (;;) {
1543     Node<K,V> n = findCeiling(least);
1544     if (n == null)
1545     return null;
1546     K k = n.key;
1547     if (fence != null && compare(k, fence) >= 0)
1548     return null;
1549     V v = doRemove(k, null);
1550 jsr166 1.28 if (v != null)
1551 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1552 dl 1.1 }
1553     }
1554    
1555     /**
1556 jsr166 1.10 * Finds and removes greatest element of subrange.
1557 dl 1.1 * @param least minimum allowed key value
1558     * @param fence key greater than maximum allowed key value
1559 dl 1.24 * @return least Entry, or <tt>null</tt> if no such
1560 dl 1.1 */
1561 dl 1.25 Map.Entry<K,V> removeLastEntryOfSubrange(K least, K fence) {
1562 dl 1.1 for (;;) {
1563     Node<K,V> n = findLower(fence);
1564     if (n == null)
1565     return null;
1566     K k = n.key;
1567     if (least != null && compare(k, least) < 0)
1568     return null;
1569     V v = doRemove(k, null);
1570 jsr166 1.28 if (v != null)
1571 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1572 dl 1.1 }
1573     }
1574    
1575 dl 1.24
1576    
1577 dl 1.1 /* ---------------- Constructors -------------- */
1578    
1579     /**
1580 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1581     * {@linkplain Comparable natural ordering} of the keys.
1582 dl 1.1 */
1583     public ConcurrentSkipListMap() {
1584     this.comparator = null;
1585     initialize();
1586     }
1587    
1588     /**
1589 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1590     * comparator.
1591 dl 1.1 *
1592 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1593     * If <tt>null</tt>, the {@linkplain Comparable natural
1594     * ordering} of the keys will be used.
1595 dl 1.1 */
1596 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1597     this.comparator = comparator;
1598 dl 1.1 initialize();
1599     }
1600    
1601     /**
1602     * Constructs a new map containing the same mappings as the given map,
1603 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1604     * the keys.
1605 dl 1.1 *
1606 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1607     * @throws ClassCastException if the keys in <tt>m</tt> are not
1608     * {@link Comparable}, or are not mutually comparable
1609     * @throws NullPointerException if the specified map or any of its keys
1610     * or values are null
1611 dl 1.1 */
1612     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1613     this.comparator = null;
1614     initialize();
1615     putAll(m);
1616     }
1617    
1618     /**
1619 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1620     * same ordering as the specified sorted map.
1621     *
1622 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1623 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1624     * @throws NullPointerException if the specified sorted map or any of
1625     * its keys or values are null
1626 dl 1.1 */
1627     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1628     this.comparator = m.comparator();
1629     initialize();
1630     buildFromSorted(m);
1631     }
1632    
1633     /**
1634 jsr166 1.22 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1635     * instance. (The keys and values themselves are not cloned.)
1636 dl 1.1 *
1637 jsr166 1.22 * @return a shallow copy of this map
1638 dl 1.1 */
1639 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1640 dl 1.1 ConcurrentSkipListMap<K,V> clone = null;
1641     try {
1642     clone = (ConcurrentSkipListMap<K,V>) super.clone();
1643     } catch (CloneNotSupportedException e) {
1644     throw new InternalError();
1645     }
1646    
1647     clone.initialize();
1648     clone.buildFromSorted(this);
1649     return clone;
1650     }
1651    
1652     /**
1653     * Streamlined bulk insertion to initialize from elements of
1654     * given sorted map. Call only from constructor or clone
1655     * method.
1656     */
1657     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1658     if (map == null)
1659     throw new NullPointerException();
1660    
1661     HeadIndex<K,V> h = head;
1662     Node<K,V> basepred = h.node;
1663    
1664     // Track the current rightmost node at each level. Uses an
1665     // ArrayList to avoid committing to initial or maximum level.
1666     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1667    
1668     // initialize
1669 dl 1.9 for (int i = 0; i <= h.level; ++i)
1670 dl 1.1 preds.add(null);
1671     Index<K,V> q = h;
1672     for (int i = h.level; i > 0; --i) {
1673     preds.set(i, q);
1674     q = q.down;
1675     }
1676    
1677 dl 1.9 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1678 dl 1.1 map.entrySet().iterator();
1679     while (it.hasNext()) {
1680     Map.Entry<? extends K, ? extends V> e = it.next();
1681     int j = randomLevel();
1682     if (j > h.level) j = h.level + 1;
1683     K k = e.getKey();
1684     V v = e.getValue();
1685     if (k == null || v == null)
1686     throw new NullPointerException();
1687     Node<K,V> z = new Node<K,V>(k, v, null);
1688     basepred.next = z;
1689     basepred = z;
1690     if (j > 0) {
1691     Index<K,V> idx = null;
1692     for (int i = 1; i <= j; ++i) {
1693     idx = new Index<K,V>(z, idx, null);
1694 dl 1.9 if (i > h.level)
1695 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1696    
1697     if (i < preds.size()) {
1698     preds.get(i).right = idx;
1699     preds.set(i, idx);
1700     } else
1701     preds.add(idx);
1702     }
1703     }
1704     }
1705     head = h;
1706     }
1707    
1708     /* ---------------- Serialization -------------- */
1709    
1710     /**
1711 jsr166 1.10 * Save the state of this map to a stream.
1712 dl 1.1 *
1713     * @serialData The key (Object) and value (Object) for each
1714 jsr166 1.10 * key-value mapping represented by the map, followed by
1715 dl 1.1 * <tt>null</tt>. The key-value mappings are emitted in key-order
1716     * (as determined by the Comparator, or by the keys' natural
1717     * ordering if no Comparator).
1718     */
1719     private void writeObject(java.io.ObjectOutputStream s)
1720     throws java.io.IOException {
1721     // Write out the Comparator and any hidden stuff
1722     s.defaultWriteObject();
1723    
1724     // Write out keys and values (alternating)
1725     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1726     V v = n.getValidValue();
1727     if (v != null) {
1728     s.writeObject(n.key);
1729     s.writeObject(v);
1730     }
1731     }
1732     s.writeObject(null);
1733     }
1734    
1735     /**
1736 jsr166 1.10 * Reconstitute the map from a stream.
1737 dl 1.1 */
1738     private void readObject(final java.io.ObjectInputStream s)
1739     throws java.io.IOException, ClassNotFoundException {
1740     // Read in the Comparator and any hidden stuff
1741     s.defaultReadObject();
1742     // Reset transients
1743     initialize();
1744    
1745 dl 1.9 /*
1746 dl 1.1 * This is nearly identical to buildFromSorted, but is
1747     * distinct because readObject calls can't be nicely adapted
1748     * as the kind of iterator needed by buildFromSorted. (They
1749     * can be, but doing so requires type cheats and/or creation
1750     * of adaptor classes.) It is simpler to just adapt the code.
1751     */
1752    
1753     HeadIndex<K,V> h = head;
1754     Node<K,V> basepred = h.node;
1755     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1756 dl 1.9 for (int i = 0; i <= h.level; ++i)
1757 dl 1.1 preds.add(null);
1758     Index<K,V> q = h;
1759     for (int i = h.level; i > 0; --i) {
1760     preds.set(i, q);
1761     q = q.down;
1762     }
1763    
1764     for (;;) {
1765     Object k = s.readObject();
1766     if (k == null)
1767     break;
1768     Object v = s.readObject();
1769 dl 1.9 if (v == null)
1770 dl 1.1 throw new NullPointerException();
1771     K key = (K) k;
1772     V val = (V) v;
1773     int j = randomLevel();
1774     if (j > h.level) j = h.level + 1;
1775     Node<K,V> z = new Node<K,V>(key, val, null);
1776     basepred.next = z;
1777     basepred = z;
1778     if (j > 0) {
1779     Index<K,V> idx = null;
1780     for (int i = 1; i <= j; ++i) {
1781     idx = new Index<K,V>(z, idx, null);
1782 dl 1.9 if (i > h.level)
1783 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1784    
1785     if (i < preds.size()) {
1786     preds.get(i).right = idx;
1787     preds.set(i, idx);
1788     } else
1789     preds.add(idx);
1790     }
1791     }
1792     }
1793     head = h;
1794     }
1795    
1796     /* ------ Map API methods ------ */
1797    
1798     /**
1799     * Returns <tt>true</tt> if this map contains a mapping for the specified
1800     * key.
1801 jsr166 1.22 *
1802     * @param key key whose presence in this map is to be tested
1803     * @return <tt>true</tt> if this map contains a mapping for the specified key
1804     * @throws ClassCastException if the specified key cannot be compared
1805     * with the keys currently in the map
1806     * @throws NullPointerException if the specified key is null
1807 dl 1.1 */
1808     public boolean containsKey(Object key) {
1809     return doGet(key) != null;
1810     }
1811    
1812     /**
1813 jsr166 1.22 * Returns the value to which this map maps the specified key, or
1814     * <tt>null</tt> if the map contains no mapping for the key.
1815 dl 1.1 *
1816 jsr166 1.22 * @param key key whose associated value is to be returned
1817 dl 1.1 * @return the value to which this map maps the specified key, or
1818 jsr166 1.22 * <tt>null</tt> if the map contains no mapping for the key
1819     * @throws ClassCastException if the specified key cannot be compared
1820     * with the keys currently in the map
1821     * @throws NullPointerException if the specified key is null
1822 dl 1.1 */
1823     public V get(Object key) {
1824     return doGet(key);
1825     }
1826    
1827     /**
1828     * Associates the specified value with the specified key in this map.
1829 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1830 dl 1.1 * value is replaced.
1831     *
1832 jsr166 1.22 * @param key key with which the specified value is to be associated
1833     * @param value value to be associated with the specified key
1834     * @return the previous value associated with the specified key, or
1835     * <tt>null</tt> if there was no mapping for the key
1836     * @throws ClassCastException if the specified key cannot be compared
1837     * with the keys currently in the map
1838     * @throws NullPointerException if the specified key or value is null
1839 dl 1.1 */
1840     public V put(K key, V value) {
1841 dl 1.9 if (value == null)
1842 dl 1.1 throw new NullPointerException();
1843     return doPut(key, value, false);
1844     }
1845    
1846     /**
1847 jsr166 1.22 * Removes the mapping for this key from this map if present.
1848 dl 1.1 *
1849     * @param key key for which mapping should be removed
1850 jsr166 1.22 * @return the previous value associated with the specified key, or
1851     * <tt>null</tt> if there was no mapping for the key
1852     * @throws ClassCastException if the specified key cannot be compared
1853     * with the keys currently in the map
1854     * @throws NullPointerException if the specified key is null
1855 dl 1.1 */
1856     public V remove(Object key) {
1857     return doRemove(key, null);
1858     }
1859    
1860     /**
1861     * Returns <tt>true</tt> if this map maps one or more keys to the
1862     * specified value. This operation requires time linear in the
1863 jsr166 1.10 * map size.
1864 dl 1.1 *
1865 jsr166 1.22 * @param value value whose presence in this map is to be tested
1866     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1867     * <tt>false</tt> otherwise
1868     * @throws NullPointerException if the specified value is null
1869 dl 1.9 */
1870 dl 1.1 public boolean containsValue(Object value) {
1871 dl 1.9 if (value == null)
1872 dl 1.1 throw new NullPointerException();
1873     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1874     V v = n.getValidValue();
1875     if (v != null && value.equals(v))
1876     return true;
1877     }
1878     return false;
1879     }
1880    
1881     /**
1882 dl 1.6 * Returns the number of key-value mappings in this map. If this map
1883 dl 1.1 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1884     * returns <tt>Integer.MAX_VALUE</tt>.
1885     *
1886     * <p>Beware that, unlike in most collections, this method is
1887     * <em>NOT</em> a constant-time operation. Because of the
1888     * asynchronous nature of these maps, determining the current
1889     * number of elements requires traversing them all to count them.
1890     * Additionally, it is possible for the size to change during
1891     * execution of this method, in which case the returned result
1892     * will be inaccurate. Thus, this method is typically not very
1893     * useful in concurrent applications.
1894     *
1895 jsr166 1.22 * @return the number of elements in this map
1896 dl 1.1 */
1897     public int size() {
1898     long count = 0;
1899     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1900     if (n.getValidValue() != null)
1901     ++count;
1902     }
1903     return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1904     }
1905    
1906     /**
1907     * Returns <tt>true</tt> if this map contains no key-value mappings.
1908 jsr166 1.22 * @return <tt>true</tt> if this map contains no key-value mappings
1909 dl 1.1 */
1910     public boolean isEmpty() {
1911     return findFirst() == null;
1912     }
1913    
1914     /**
1915 jsr166 1.22 * Removes all of the mappings from this map.
1916 dl 1.1 */
1917     public void clear() {
1918     initialize();
1919     }
1920    
1921     /**
1922 jsr166 1.22 * Returns a {@link Set} view of the keys contained in this map.
1923     * The set's iterator returns the keys in ascending order.
1924     * The set is backed by the map, so changes to the map are
1925     * reflected in the set, and vice-versa. The set supports element
1926     * removal, which removes the corresponding mapping from the map,
1927     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1928     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1929     * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1930     * operations.
1931     *
1932     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1933     * that will never throw {@link ConcurrentModificationException},
1934 dl 1.1 * and guarantees to traverse elements as they existed upon
1935     * construction of the iterator, and may (but is not guaranteed to)
1936     * reflect any modifications subsequent to construction.
1937     *
1938 jsr166 1.22 * @return a set view of the keys contained in this map, sorted in
1939     * ascending order
1940 dl 1.1 */
1941     public Set<K> keySet() {
1942     /*
1943 dl 1.5 * Note: Lazy initialization works here and for other views
1944 dl 1.1 * because view classes are stateless/immutable so it doesn't
1945     * matter wrt correctness if more than one is created (which
1946     * will only rarely happen). Even so, the following idiom
1947     * conservatively ensures that the method returns the one it
1948     * created if it does so, not one created by another racing
1949     * thread.
1950     */
1951     KeySet ks = keySet;
1952     return (ks != null) ? ks : (keySet = new KeySet());
1953     }
1954    
1955     /**
1956 jsr166 1.22 * Returns a {@link Set} view of the keys contained in this map.
1957     * The set's iterator returns the keys in descending order.
1958     * The set is backed by the map, so changes to the map are
1959     * reflected in the set, and vice-versa. The set supports element
1960     * removal, which removes the corresponding mapping from the map,
1961     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1962     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1963     * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1964     * operations.
1965     *
1966     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1967     * that will never throw {@link ConcurrentModificationException},
1968 dl 1.1 * and guarantees to traverse elements as they existed upon
1969 jsr166 1.22 * construction of the iterator, and may (but is not guaranteed to)
1970     * reflect any modifications subsequent to construction.
1971 dl 1.1 */
1972     public Set<K> descendingKeySet() {
1973     /*
1974 dl 1.5 * Note: Lazy initialization works here and for other views
1975 dl 1.1 * because view classes are stateless/immutable so it doesn't
1976     * matter wrt correctness if more than one is created (which
1977     * will only rarely happen). Even so, the following idiom
1978     * conservatively ensures that the method returns the one it
1979     * created if it does so, not one created by another racing
1980     * thread.
1981     */
1982     DescendingKeySet ks = descendingKeySet;
1983     return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1984     }
1985    
1986     /**
1987 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1988     * The collection's iterator returns the values in ascending order
1989     * of the corresponding keys.
1990 dl 1.1 * The collection is backed by the map, so changes to the map are
1991     * reflected in the collection, and vice-versa. The collection
1992     * supports element removal, which removes the corresponding
1993 jsr166 1.22 * mapping from the map, via the <tt>Iterator.remove</tt>,
1994 dl 1.1 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1995 jsr166 1.22 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
1996     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1997 dl 1.1 *
1998 jsr166 1.22 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1999     * that will never throw {@link ConcurrentModificationException},
2000     * and guarantees to traverse elements as they existed upon
2001     * construction of the iterator, and may (but is not guaranteed to)
2002     * reflect any modifications subsequent to construction.
2003 dl 1.1 */
2004     public Collection<V> values() {
2005     Values vs = values;
2006     return (vs != null) ? vs : (values = new Values());
2007     }
2008    
2009     /**
2010 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
2011     * The set's iterator returns the entries in ascending key order.
2012     * The set is backed by the map, so changes to the map are
2013     * reflected in the set, and vice-versa. The set supports element
2014     * removal, which removes the corresponding mapping from the map,
2015     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2016     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2017 dl 1.1 * operations. It does not support the <tt>add</tt> or
2018 jsr166 1.22 * <tt>addAll</tt> operations.
2019     *
2020     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2021     * that will never throw {@link ConcurrentModificationException},
2022     * and guarantees to traverse elements as they existed upon
2023     * construction of the iterator, and may (but is not guaranteed to)
2024     * reflect any modifications subsequent to construction.
2025     *
2026     * <p>The <tt>Map.Entry</tt> elements returned by
2027 dl 1.1 * <tt>iterator.next()</tt> do <em>not</em> support the
2028     * <tt>setValue</tt> operation.
2029     *
2030 jsr166 1.22 * @return a set view of the mappings contained in this map,
2031     * sorted in ascending key order
2032 dl 1.1 */
2033     public Set<Map.Entry<K,V>> entrySet() {
2034     EntrySet es = entrySet;
2035     return (es != null) ? es : (entrySet = new EntrySet());
2036     }
2037    
2038     /**
2039 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
2040     * The set's iterator returns the entries in descending key order.
2041     * The set is backed by the map, so changes to the map are
2042     * reflected in the set, and vice-versa. The set supports element
2043 dl 1.1 * removal, which removes the corresponding mapping from the map,
2044 jsr166 1.22 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2045     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2046 dl 1.1 * operations. It does not support the <tt>add</tt> or
2047 jsr166 1.22 * <tt>addAll</tt> operations.
2048     *
2049     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2050     * that will never throw {@link ConcurrentModificationException},
2051     * and guarantees to traverse elements as they existed upon
2052     * construction of the iterator, and may (but is not guaranteed to)
2053     * reflect any modifications subsequent to construction.
2054     *
2055     * <p>The <tt>Map.Entry</tt> elements returned by
2056 dl 1.1 * <tt>iterator.next()</tt> do <em>not</em> support the
2057     * <tt>setValue</tt> operation.
2058     */
2059     public Set<Map.Entry<K,V>> descendingEntrySet() {
2060     DescendingEntrySet es = descendingEntrySet;
2061     return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2062     }
2063    
2064     /* ---------------- AbstractMap Overrides -------------- */
2065    
2066     /**
2067     * Compares the specified object with this map for equality.
2068     * Returns <tt>true</tt> if the given object is also a map and the
2069     * two maps represent the same mappings. More formally, two maps
2070 jsr166 1.22 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
2071     * <tt>m1.keySet().equals(m2.keySet())</tt> and for every key
2072     * <tt>k</tt> in <tt>m1.keySet()</tt>, <tt> (m1.get(k)==null ?
2073     * m2.get(k)==null : m1.get(k).equals(m2.get(k))) </tt>. This
2074 dl 1.1 * operation may return misleading results if either map is
2075     * concurrently modified during execution of this method.
2076     *
2077 jsr166 1.22 * @param o object to be compared for equality with this map
2078     * @return <tt>true</tt> if the specified object is equal to this map
2079 dl 1.1 */
2080     public boolean equals(Object o) {
2081     if (o == this)
2082     return true;
2083     if (!(o instanceof Map))
2084     return false;
2085 dl 1.25 Map<?,?> m = (Map<?,?>) o;
2086 dl 1.1 try {
2087 dl 1.25 for (Map.Entry<K,V> e : this.entrySet())
2088     if (! e.getValue().equals(m.get(e.getKey())))
2089     return false;
2090     for (Map.Entry<?,?> e : m.entrySet()) {
2091     Object k = e.getKey();
2092     Object v = e.getValue();
2093     if (k == null || v == null || !v.equals(get(k)))
2094     return false;
2095     }
2096     return true;
2097 jsr166 1.15 } catch (ClassCastException unused) {
2098 dl 1.1 return false;
2099 jsr166 1.15 } catch (NullPointerException unused) {
2100 dl 1.1 return false;
2101     }
2102     }
2103    
2104     /* ------ ConcurrentMap API methods ------ */
2105    
2106     /**
2107 jsr166 1.22 * {@inheritDoc}
2108     *
2109     * @return the previous value associated with the specified key,
2110     * or <tt>null</tt> if there was no mapping for the key
2111     * @throws ClassCastException if the specified key cannot be compared
2112     * with the keys currently in the map
2113     * @throws NullPointerException if the specified key or value is null
2114 dl 1.1 */
2115     public V putIfAbsent(K key, V value) {
2116 dl 1.9 if (value == null)
2117 dl 1.1 throw new NullPointerException();
2118     return doPut(key, value, true);
2119     }
2120    
2121     /**
2122 jsr166 1.22 * {@inheritDoc}
2123     *
2124     * @throws ClassCastException if the specified key cannot be compared
2125     * with the keys currently in the map
2126 dl 1.23 * @throws NullPointerException if the specified key is null
2127 dl 1.1 */
2128     public boolean remove(Object key, Object value) {
2129 dl 1.9 if (value == null)
2130 dl 1.23 return false;
2131 dl 1.1 return doRemove(key, value) != null;
2132     }
2133    
2134     /**
2135 jsr166 1.22 * {@inheritDoc}
2136     *
2137     * @throws ClassCastException if the specified key cannot be compared
2138     * with the keys currently in the map
2139     * @throws NullPointerException if any of the arguments are null
2140 dl 1.1 */
2141     public boolean replace(K key, V oldValue, V newValue) {
2142 dl 1.9 if (oldValue == null || newValue == null)
2143 dl 1.1 throw new NullPointerException();
2144 dl 1.9 Comparable<? super K> k = comparable(key);
2145 dl 1.1 for (;;) {
2146     Node<K,V> n = findNode(k);
2147     if (n == null)
2148     return false;
2149     Object v = n.value;
2150     if (v != null) {
2151     if (!oldValue.equals(v))
2152     return false;
2153     if (n.casValue(v, newValue))
2154     return true;
2155     }
2156     }
2157     }
2158    
2159     /**
2160 jsr166 1.22 * {@inheritDoc}
2161     *
2162     * @return the previous value associated with the specified key,
2163     * or <tt>null</tt> if there was no mapping for the key
2164     * @throws ClassCastException if the specified key cannot be compared
2165     * with the keys currently in the map
2166     * @throws NullPointerException if the specified key or value is null
2167 dl 1.1 */
2168     public V replace(K key, V value) {
2169 dl 1.9 if (value == null)
2170 dl 1.1 throw new NullPointerException();
2171 dl 1.9 Comparable<? super K> k = comparable(key);
2172 dl 1.1 for (;;) {
2173     Node<K,V> n = findNode(k);
2174     if (n == null)
2175     return null;
2176     Object v = n.value;
2177     if (v != null && n.casValue(v, value))
2178     return (V)v;
2179     }
2180     }
2181    
2182     /* ------ SortedMap API methods ------ */
2183    
2184     public Comparator<? super K> comparator() {
2185     return comparator;
2186     }
2187    
2188     /**
2189 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2190 dl 1.1 */
2191 dl 1.9 public K firstKey() {
2192 dl 1.1 Node<K,V> n = findFirst();
2193     if (n == null)
2194     throw new NoSuchElementException();
2195     return n.key;
2196     }
2197    
2198     /**
2199 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2200 dl 1.1 */
2201     public K lastKey() {
2202     Node<K,V> n = findLast();
2203     if (n == null)
2204     throw new NoSuchElementException();
2205     return n.key;
2206     }
2207    
2208     /**
2209 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2210     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2211     * @throws IllegalArgumentException {@inheritDoc}
2212 dl 1.1 */
2213 dl 1.6 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
2214 dl 1.1 if (fromKey == null || toKey == null)
2215     throw new NullPointerException();
2216 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, toKey);
2217 dl 1.1 }
2218    
2219     /**
2220 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2221     * @throws NullPointerException if <tt>toKey</tt> is null
2222     * @throws IllegalArgumentException {@inheritDoc}
2223 dl 1.1 */
2224 dl 1.6 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
2225 dl 1.1 if (toKey == null)
2226     throw new NullPointerException();
2227 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(this, null, toKey);
2228 dl 1.1 }
2229    
2230     /**
2231 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2232     * @throws NullPointerException if <tt>fromKey</tt> is null
2233     * @throws IllegalArgumentException {@inheritDoc}
2234 dl 1.1 */
2235 jsr166 1.22 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
2236 dl 1.6 if (fromKey == null)
2237     throw new NullPointerException();
2238 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, null);
2239 dl 1.6 }
2240    
2241     /**
2242 jsr166 1.22 * Equivalent to {@link #navigableSubMap} but with a return type
2243     * conforming to the <tt>SortedMap</tt> interface.
2244     *
2245     * <p>{@inheritDoc}
2246     *
2247     * @throws ClassCastException {@inheritDoc}
2248     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2249     * @throws IllegalArgumentException {@inheritDoc}
2250 dl 1.6 */
2251     public SortedMap<K,V> subMap(K fromKey, K toKey) {
2252 dl 1.7 return navigableSubMap(fromKey, toKey);
2253 dl 1.6 }
2254    
2255     /**
2256 jsr166 1.22 * Equivalent to {@link #navigableHeadMap} but with a return type
2257     * conforming to the <tt>SortedMap</tt> interface.
2258     *
2259     * <p>{@inheritDoc}
2260     *
2261     * @throws ClassCastException {@inheritDoc}
2262     * @throws NullPointerException if <tt>toKey</tt> is null
2263     * @throws IllegalArgumentException {@inheritDoc}
2264 dl 1.6 */
2265     public SortedMap<K,V> headMap(K toKey) {
2266 dl 1.7 return navigableHeadMap(toKey);
2267 dl 1.6 }
2268    
2269     /**
2270 jsr166 1.22 * Equivalent to {@link #navigableTailMap} but with a return type
2271     * conforming to the <tt>SortedMap</tt> interface.
2272     *
2273     * <p>{@inheritDoc}
2274     *
2275     * @throws ClassCastException {@inheritDoc}
2276     * @throws NullPointerException if <tt>fromKey</tt> is null
2277     * @throws IllegalArgumentException {@inheritDoc}
2278 dl 1.6 */
2279 jsr166 1.22 public SortedMap<K,V> tailMap(K fromKey) {
2280 dl 1.7 return navigableTailMap(fromKey);
2281 dl 1.1 }
2282    
2283     /* ---------------- Relational operations -------------- */
2284    
2285     /**
2286 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2287     * strictly less than the given key, or <tt>null</tt> if there is
2288     * no such key. The returned entry does <em>not</em> support the
2289     * <tt>Entry.setValue</tt> method.
2290 dl 1.9 *
2291 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2292     * @throws NullPointerException if the specified key is null
2293 dl 1.1 */
2294 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
2295     return getNear(key, LT);
2296 dl 1.1 }
2297    
2298     /**
2299 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2300     * @throws NullPointerException if the specified key is null
2301 dl 1.1 */
2302 jsr166 1.22 public K lowerKey(K key) {
2303     Node<K,V> n = findNear(key, LT);
2304 dl 1.1 return (n == null)? null : n.key;
2305     }
2306    
2307     /**
2308 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2309     * less than or equal to the given key, or <tt>null</tt> if there
2310     * is no such key. The returned entry does <em>not</em> support
2311 dl 1.1 * the <tt>Entry.setValue</tt> method.
2312 dl 1.9 *
2313 jsr166 1.22 * @param key the key
2314     * @throws ClassCastException {@inheritDoc}
2315     * @throws NullPointerException if the specified key is null
2316 dl 1.1 */
2317 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
2318     return getNear(key, LT|EQ);
2319 dl 1.1 }
2320    
2321     /**
2322 jsr166 1.22 * @param key the key
2323     * @throws ClassCastException {@inheritDoc}
2324     * @throws NullPointerException if the specified key is null
2325 dl 1.1 */
2326 jsr166 1.22 public K floorKey(K key) {
2327     Node<K,V> n = findNear(key, LT|EQ);
2328 dl 1.1 return (n == null)? null : n.key;
2329     }
2330    
2331     /**
2332 jsr166 1.22 * Returns a key-value mapping associated with the least key
2333     * greater than or equal to the given key, or <tt>null</tt> if
2334     * there is no such entry. The returned entry does <em>not</em>
2335     * support the <tt>Entry.setValue</tt> method.
2336 dl 1.9 *
2337 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2338     * @throws NullPointerException if the specified key is null
2339 dl 1.1 */
2340 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
2341     return getNear(key, GT|EQ);
2342 dl 1.1 }
2343    
2344     /**
2345 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2346     * @throws NullPointerException if the specified key is null
2347 dl 1.1 */
2348 jsr166 1.22 public K ceilingKey(K key) {
2349     Node<K,V> n = findNear(key, GT|EQ);
2350 dl 1.1 return (n == null)? null : n.key;
2351     }
2352    
2353     /**
2354     * Returns a key-value mapping associated with the least key
2355     * strictly greater than the given key, or <tt>null</tt> if there
2356 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2357 dl 1.1 * the <tt>Entry.setValue</tt> method.
2358 dl 1.9 *
2359 jsr166 1.22 * @param key the key
2360     * @throws ClassCastException {@inheritDoc}
2361     * @throws NullPointerException if the specified key is null
2362 dl 1.1 */
2363     public Map.Entry<K,V> higherEntry(K key) {
2364     return getNear(key, GT);
2365     }
2366    
2367     /**
2368 jsr166 1.22 * @param key the key
2369     * @throws ClassCastException {@inheritDoc}
2370     * @throws NullPointerException if the specified key is null
2371 dl 1.1 */
2372     public K higherKey(K key) {
2373     Node<K,V> n = findNear(key, GT);
2374     return (n == null)? null : n.key;
2375     }
2376    
2377     /**
2378     * Returns a key-value mapping associated with the least
2379     * key in this map, or <tt>null</tt> if the map is empty.
2380     * The returned entry does <em>not</em> support
2381     * the <tt>Entry.setValue</tt> method.
2382     */
2383     public Map.Entry<K,V> firstEntry() {
2384     for (;;) {
2385     Node<K,V> n = findFirst();
2386 dl 1.9 if (n == null)
2387 dl 1.1 return null;
2388 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2389 dl 1.1 if (e != null)
2390     return e;
2391     }
2392     }
2393    
2394     /**
2395     * Returns a key-value mapping associated with the greatest
2396     * key in this map, or <tt>null</tt> if the map is empty.
2397     * The returned entry does <em>not</em> support
2398     * the <tt>Entry.setValue</tt> method.
2399     */
2400     public Map.Entry<K,V> lastEntry() {
2401     for (;;) {
2402     Node<K,V> n = findLast();
2403 dl 1.9 if (n == null)
2404 dl 1.1 return null;
2405 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2406 dl 1.1 if (e != null)
2407     return e;
2408     }
2409     }
2410    
2411     /**
2412     * Removes and returns a key-value mapping associated with
2413     * the least key in this map, or <tt>null</tt> if the map is empty.
2414     * The returned entry does <em>not</em> support
2415     * the <tt>Entry.setValue</tt> method.
2416     */
2417     public Map.Entry<K,V> pollFirstEntry() {
2418 dl 1.25 return doRemoveFirstEntry();
2419 dl 1.1 }
2420    
2421     /**
2422     * Removes and returns a key-value mapping associated with
2423     * the greatest key in this map, or <tt>null</tt> if the map is empty.
2424     * The returned entry does <em>not</em> support
2425     * the <tt>Entry.setValue</tt> method.
2426     */
2427     public Map.Entry<K,V> pollLastEntry() {
2428 dl 1.31 return doRemoveLastEntry();
2429 dl 1.1 }
2430    
2431    
2432     /* ---------------- Iterators -------------- */
2433    
2434     /**
2435     * Base of ten kinds of iterator classes:
2436 dl 1.9 * ascending: {map, submap} X {key, value, entry}
2437     * descending: {map, submap} X {key, entry}
2438 dl 1.1 */
2439     abstract class Iter {
2440     /** the last node returned by next() */
2441     Node<K,V> last;
2442     /** the next node to return from next(); */
2443     Node<K,V> next;
2444     /** Cache of next value field to maintain weak consistency */
2445     Object nextValue;
2446    
2447     Iter() {}
2448    
2449 dl 1.9 public final boolean hasNext() {
2450     return next != null;
2451 dl 1.1 }
2452    
2453 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2454 dl 1.1 final void initAscending() {
2455     for (;;) {
2456     next = findFirst();
2457     if (next == null)
2458     break;
2459     nextValue = next.value;
2460     if (nextValue != null && nextValue != next)
2461     break;
2462     }
2463     }
2464    
2465 dl 1.9 /**
2466 jsr166 1.13 * Initializes ascending iterator starting at given least key,
2467 dl 1.1 * or first node if least is <tt>null</tt>, but not greater or
2468     * equal to fence, or end if fence is <tt>null</tt>.
2469     */
2470 dl 1.9 final void initAscending(K least, K fence) {
2471 dl 1.1 for (;;) {
2472     next = findCeiling(least);
2473     if (next == null)
2474     break;
2475     nextValue = next.value;
2476     if (nextValue != null && nextValue != next) {
2477     if (fence != null && compare(fence, next.key) <= 0) {
2478     next = null;
2479     nextValue = null;
2480     }
2481     break;
2482     }
2483     }
2484     }
2485 jsr166 1.13 /** Advances next to higher entry. */
2486 dl 1.1 final void ascend() {
2487     if ((last = next) == null)
2488     throw new NoSuchElementException();
2489     for (;;) {
2490     next = next.next;
2491     if (next == null)
2492     break;
2493     nextValue = next.value;
2494     if (nextValue != null && nextValue != next)
2495     break;
2496     }
2497     }
2498    
2499     /**
2500     * Version of ascend for submaps to stop at fence
2501     */
2502     final void ascend(K fence) {
2503     if ((last = next) == null)
2504     throw new NoSuchElementException();
2505     for (;;) {
2506     next = next.next;
2507     if (next == null)
2508     break;
2509     nextValue = next.value;
2510     if (nextValue != null && nextValue != next) {
2511     if (fence != null && compare(fence, next.key) <= 0) {
2512     next = null;
2513     nextValue = null;
2514     }
2515     break;
2516     }
2517     }
2518     }
2519    
2520 jsr166 1.13 /** Initializes descending iterator for entire range. */
2521 dl 1.1 final void initDescending() {
2522     for (;;) {
2523     next = findLast();
2524     if (next == null)
2525     break;
2526     nextValue = next.value;
2527     if (nextValue != null && nextValue != next)
2528     break;
2529     }
2530     }
2531    
2532 dl 1.9 /**
2533 jsr166 1.13 * Initializes descending iterator starting at key less
2534 dl 1.1 * than or equal to given fence key, or
2535     * last node if fence is <tt>null</tt>, but not less than
2536 jsr166 1.14 * least, or beginning if least is <tt>null</tt>.
2537 dl 1.1 */
2538 dl 1.9 final void initDescending(K least, K fence) {
2539 dl 1.1 for (;;) {
2540     next = findLower(fence);
2541     if (next == null)
2542     break;
2543     nextValue = next.value;
2544     if (nextValue != null && nextValue != next) {
2545     if (least != null && compare(least, next.key) > 0) {
2546     next = null;
2547     nextValue = null;
2548     }
2549     break;
2550     }
2551     }
2552     }
2553    
2554 jsr166 1.13 /** Advances next to lower entry. */
2555 dl 1.1 final void descend() {
2556     if ((last = next) == null)
2557     throw new NoSuchElementException();
2558     K k = last.key;
2559     for (;;) {
2560     next = findNear(k, LT);
2561     if (next == null)
2562     break;
2563     nextValue = next.value;
2564     if (nextValue != null && nextValue != next)
2565     break;
2566     }
2567     }
2568    
2569     /**
2570     * Version of descend for submaps to stop at least
2571     */
2572     final void descend(K least) {
2573     if ((last = next) == null)
2574     throw new NoSuchElementException();
2575     K k = last.key;
2576     for (;;) {
2577     next = findNear(k, LT);
2578     if (next == null)
2579     break;
2580     nextValue = next.value;
2581     if (nextValue != null && nextValue != next) {
2582     if (least != null && compare(least, next.key) > 0) {
2583     next = null;
2584     nextValue = null;
2585     }
2586     break;
2587     }
2588     }
2589     }
2590    
2591     public void remove() {
2592     Node<K,V> l = last;
2593     if (l == null)
2594     throw new IllegalStateException();
2595     // It would not be worth all of the overhead to directly
2596     // unlink from here. Using remove is fast enough.
2597     ConcurrentSkipListMap.this.remove(l.key);
2598     }
2599    
2600     }
2601    
2602     final class ValueIterator extends Iter implements Iterator<V> {
2603     ValueIterator() {
2604     initAscending();
2605     }
2606 dl 1.9 public V next() {
2607 dl 1.1 Object v = nextValue;
2608     ascend();
2609     return (V)v;
2610     }
2611     }
2612    
2613     final class KeyIterator extends Iter implements Iterator<K> {
2614     KeyIterator() {
2615     initAscending();
2616     }
2617 dl 1.9 public K next() {
2618 dl 1.1 Node<K,V> n = next;
2619     ascend();
2620     return n.key;
2621     }
2622     }
2623    
2624     class SubMapValueIterator extends Iter implements Iterator<V> {
2625     final K fence;
2626     SubMapValueIterator(K least, K fence) {
2627     initAscending(least, fence);
2628     this.fence = fence;
2629     }
2630    
2631 dl 1.9 public V next() {
2632 dl 1.1 Object v = nextValue;
2633     ascend(fence);
2634     return (V)v;
2635     }
2636     }
2637    
2638     final class SubMapKeyIterator extends Iter implements Iterator<K> {
2639     final K fence;
2640     SubMapKeyIterator(K least, K fence) {
2641     initAscending(least, fence);
2642     this.fence = fence;
2643     }
2644    
2645 dl 1.9 public K next() {
2646 dl 1.1 Node<K,V> n = next;
2647     ascend(fence);
2648     return n.key;
2649     }
2650     }
2651    
2652     final class DescendingKeyIterator extends Iter implements Iterator<K> {
2653     DescendingKeyIterator() {
2654     initDescending();
2655     }
2656 dl 1.9 public K next() {
2657 dl 1.1 Node<K,V> n = next;
2658     descend();
2659     return n.key;
2660     }
2661     }
2662    
2663     final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2664     final K least;
2665     DescendingSubMapKeyIterator(K least, K fence) {
2666     initDescending(least, fence);
2667     this.least = least;
2668     }
2669    
2670 dl 1.9 public K next() {
2671 dl 1.1 Node<K,V> n = next;
2672     descend(least);
2673     return n.key;
2674     }
2675     }
2676    
2677     /**
2678     * Entry iterators use the same trick as in ConcurrentHashMap and
2679     * elsewhere of using the iterator itself to represent entries,
2680     * thus avoiding having to create entry objects in next().
2681     */
2682     abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2683     /** Cache of last value returned */
2684     Object lastValue;
2685    
2686 dl 1.9 EntryIter() {
2687 dl 1.1 }
2688    
2689     public K getKey() {
2690     Node<K,V> l = last;
2691     if (l == null)
2692     throw new IllegalStateException();
2693     return l.key;
2694     }
2695    
2696     public V getValue() {
2697     Object v = lastValue;
2698     if (last == null || v == null)
2699     throw new IllegalStateException();
2700     return (V)v;
2701     }
2702    
2703     public V setValue(V value) {
2704     throw new UnsupportedOperationException();
2705     }
2706    
2707     public boolean equals(Object o) {
2708     // If not acting as entry, just use default.
2709     if (last == null)
2710     return super.equals(o);
2711     if (!(o instanceof Map.Entry))
2712     return false;
2713     Map.Entry e = (Map.Entry)o;
2714     return (getKey().equals(e.getKey()) &&
2715     getValue().equals(e.getValue()));
2716     }
2717    
2718     public int hashCode() {
2719     // If not acting as entry, just use default.
2720     if (last == null)
2721     return super.hashCode();
2722     return getKey().hashCode() ^ getValue().hashCode();
2723     }
2724    
2725     public String toString() {
2726     // If not acting as entry, just use default.
2727     if (last == null)
2728     return super.toString();
2729     return getKey() + "=" + getValue();
2730     }
2731     }
2732    
2733 dl 1.9 final class EntryIterator extends EntryIter
2734 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2735 dl 1.9 EntryIterator() {
2736     initAscending();
2737 dl 1.1 }
2738 dl 1.9 public Map.Entry<K,V> next() {
2739 dl 1.1 lastValue = nextValue;
2740     ascend();
2741     return this;
2742     }
2743     }
2744    
2745 dl 1.9 final class SubMapEntryIterator extends EntryIter
2746 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2747     final K fence;
2748     SubMapEntryIterator(K least, K fence) {
2749     initAscending(least, fence);
2750     this.fence = fence;
2751     }
2752    
2753 dl 1.9 public Map.Entry<K,V> next() {
2754 dl 1.1 lastValue = nextValue;
2755     ascend(fence);
2756     return this;
2757     }
2758     }
2759    
2760 dl 1.9 final class DescendingEntryIterator extends EntryIter
2761 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2762 dl 1.9 DescendingEntryIterator() {
2763     initDescending();
2764 dl 1.1 }
2765 dl 1.9 public Map.Entry<K,V> next() {
2766 dl 1.1 lastValue = nextValue;
2767     descend();
2768     return this;
2769     }
2770     }
2771    
2772 dl 1.9 final class DescendingSubMapEntryIterator extends EntryIter
2773 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2774     final K least;
2775     DescendingSubMapEntryIterator(K least, K fence) {
2776     initDescending(least, fence);
2777     this.least = least;
2778     }
2779    
2780 dl 1.9 public Map.Entry<K,V> next() {
2781 dl 1.1 lastValue = nextValue;
2782     descend(least);
2783     return this;
2784     }
2785     }
2786    
2787     // Factory methods for iterators needed by submaps and/or
2788     // ConcurrentSkipListSet
2789    
2790     Iterator<K> keyIterator() {
2791     return new KeyIterator();
2792     }
2793    
2794     Iterator<K> descendingKeyIterator() {
2795     return new DescendingKeyIterator();
2796     }
2797    
2798     SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2799     return new SubMapEntryIterator(least, fence);
2800     }
2801    
2802     DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2803     return new DescendingSubMapEntryIterator(least, fence);
2804     }
2805    
2806     SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2807     return new SubMapKeyIterator(least, fence);
2808     }
2809    
2810     DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2811     return new DescendingSubMapKeyIterator(least, fence);
2812     }
2813    
2814     SubMapValueIterator subMapValueIterator(K least, K fence) {
2815     return new SubMapValueIterator(least, fence);
2816     }
2817    
2818     /* ---------------- Views -------------- */
2819    
2820     class KeySet extends AbstractSet<K> {
2821     public Iterator<K> iterator() {
2822     return new KeyIterator();
2823     }
2824     public boolean isEmpty() {
2825     return ConcurrentSkipListMap.this.isEmpty();
2826     }
2827     public int size() {
2828     return ConcurrentSkipListMap.this.size();
2829     }
2830     public boolean contains(Object o) {
2831     return ConcurrentSkipListMap.this.containsKey(o);
2832     }
2833     public boolean remove(Object o) {
2834     return ConcurrentSkipListMap.this.removep(o);
2835     }
2836     public void clear() {
2837     ConcurrentSkipListMap.this.clear();
2838     }
2839     public Object[] toArray() {
2840 dl 1.26 Collection<K> c = new ArrayList<K>();
2841     for (Iterator<K> i = iterator(); i.hasNext(); )
2842     c.add(i.next());
2843     return c.toArray();
2844 dl 1.1 }
2845     public <T> T[] toArray(T[] a) {
2846 dl 1.26 Collection<K> c = new ArrayList<K>();
2847     for (Iterator<K> i = iterator(); i.hasNext(); )
2848     c.add(i.next());
2849     return c.toArray(a);
2850 dl 1.1 }
2851     }
2852    
2853     class DescendingKeySet extends KeySet {
2854     public Iterator<K> iterator() {
2855     return new DescendingKeyIterator();
2856     }
2857     }
2858    
2859     final class Values extends AbstractCollection<V> {
2860     public Iterator<V> iterator() {
2861     return new ValueIterator();
2862     }
2863     public boolean isEmpty() {
2864     return ConcurrentSkipListMap.this.isEmpty();
2865     }
2866     public int size() {
2867     return ConcurrentSkipListMap.this.size();
2868     }
2869     public boolean contains(Object o) {
2870     return ConcurrentSkipListMap.this.containsValue(o);
2871     }
2872     public void clear() {
2873     ConcurrentSkipListMap.this.clear();
2874     }
2875     public Object[] toArray() {
2876     Collection<V> c = new ArrayList<V>();
2877     for (Iterator<V> i = iterator(); i.hasNext(); )
2878     c.add(i.next());
2879     return c.toArray();
2880     }
2881     public <T> T[] toArray(T[] a) {
2882     Collection<V> c = new ArrayList<V>();
2883     for (Iterator<V> i = iterator(); i.hasNext(); )
2884     c.add(i.next());
2885     return c.toArray(a);
2886     }
2887     }
2888    
2889     class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2890     public Iterator<Map.Entry<K,V>> iterator() {
2891     return new EntryIterator();
2892     }
2893     public boolean contains(Object o) {
2894     if (!(o instanceof Map.Entry))
2895     return false;
2896     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2897     V v = ConcurrentSkipListMap.this.get(e.getKey());
2898     return v != null && v.equals(e.getValue());
2899     }
2900     public boolean remove(Object o) {
2901     if (!(o instanceof Map.Entry))
2902     return false;
2903     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2904 dl 1.9 return ConcurrentSkipListMap.this.remove(e.getKey(),
2905 dl 1.1 e.getValue());
2906     }
2907     public boolean isEmpty() {
2908     return ConcurrentSkipListMap.this.isEmpty();
2909     }
2910     public int size() {
2911     return ConcurrentSkipListMap.this.size();
2912     }
2913     public void clear() {
2914     ConcurrentSkipListMap.this.clear();
2915     }
2916     public Object[] toArray() {
2917     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2918 dl 1.25 for (Map.Entry<K,V> e : this)
2919     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2920     e.getValue()));
2921 dl 1.1 return c.toArray();
2922     }
2923     public <T> T[] toArray(T[] a) {
2924     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2925 dl 1.25 for (Map.Entry<K,V> e : this)
2926     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2927     e.getValue()));
2928 dl 1.1 return c.toArray(a);
2929     }
2930     }
2931    
2932     class DescendingEntrySet extends EntrySet {
2933     public Iterator<Map.Entry<K,V>> iterator() {
2934     return new DescendingEntryIterator();
2935     }
2936     }
2937    
2938     /**
2939     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2940     * represent a subrange of mappings of their underlying
2941     * maps. Instances of this class support all methods of their
2942     * underlying maps, differing in that mappings outside their range are
2943     * ignored, and attempts to add mappings outside their ranges result
2944     * in {@link IllegalArgumentException}. Instances of this class are
2945     * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2946     * <tt>tailMap</tt> methods of their underlying maps.
2947     */
2948     static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
2949     implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
2950    
2951     private static final long serialVersionUID = -7647078645895051609L;
2952    
2953     /** Underlying map */
2954     private final ConcurrentSkipListMap<K,V> m;
2955     /** lower bound key, or null if from start */
2956 dl 1.9 private final K least;
2957 dl 1.1 /** upper fence key, or null if to end */
2958 dl 1.9 private final K fence;
2959 dl 1.1 // Lazily initialized view holders
2960     private transient Set<K> keySetView;
2961     private transient Set<Map.Entry<K,V>> entrySetView;
2962     private transient Collection<V> valuesView;
2963     private transient Set<K> descendingKeySetView;
2964     private transient Set<Map.Entry<K,V>> descendingEntrySetView;
2965    
2966     /**
2967 dl 1.9 * Creates a new submap.
2968 dl 1.1 * @param least inclusive least value, or <tt>null</tt> if from start
2969     * @param fence exclusive upper bound or <tt>null</tt> if to end
2970     * @throws IllegalArgumentException if least and fence nonnull
2971     * and least greater than fence
2972     */
2973 dl 1.9 ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
2974 dl 1.1 K least, K fence) {
2975 dl 1.9 if (least != null &&
2976     fence != null &&
2977 dl 1.1 map.compare(least, fence) > 0)
2978     throw new IllegalArgumentException("inconsistent range");
2979     this.m = map;
2980     this.least = least;
2981     this.fence = fence;
2982     }
2983    
2984     /* ---------------- Utilities -------------- */
2985    
2986     boolean inHalfOpenRange(K key) {
2987     return m.inHalfOpenRange(key, least, fence);
2988     }
2989    
2990     boolean inOpenRange(K key) {
2991     return m.inOpenRange(key, least, fence);
2992     }
2993    
2994     ConcurrentSkipListMap.Node<K,V> firstNode() {
2995     return m.findCeiling(least);
2996     }
2997    
2998     ConcurrentSkipListMap.Node<K,V> lastNode() {
2999     return m.findLower(fence);
3000     }
3001    
3002     boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
3003 dl 1.9 return (n != null &&
3004     (fence == null ||
3005 dl 1.1 n.key == null || // pass by markers and headers
3006     m.compare(fence, n.key) > 0));
3007     }
3008    
3009     void checkKey(K key) throws IllegalArgumentException {
3010     if (!inHalfOpenRange(key))
3011     throw new IllegalArgumentException("key out of range");
3012     }
3013    
3014     /**
3015     * Returns underlying map. Needed by ConcurrentSkipListSet
3016     * @return the backing map
3017     */
3018     ConcurrentSkipListMap<K,V> getMap() {
3019     return m;
3020     }
3021    
3022     /**
3023     * Returns least key. Needed by ConcurrentSkipListSet
3024     * @return least key or <tt>null</tt> if from start
3025     */
3026     K getLeast() {
3027     return least;
3028     }
3029    
3030     /**
3031     * Returns fence key. Needed by ConcurrentSkipListSet
3032 dl 1.8 * @return fence key or <tt>null</tt> if to end
3033 dl 1.1 */
3034     K getFence() {
3035     return fence;
3036     }
3037    
3038    
3039     /* ---------------- Map API methods -------------- */
3040    
3041     public boolean containsKey(Object key) {
3042     K k = (K)key;
3043     return inHalfOpenRange(k) && m.containsKey(k);
3044     }
3045    
3046     public V get(Object key) {
3047     K k = (K)key;
3048     return ((!inHalfOpenRange(k)) ? null : m.get(k));
3049     }
3050    
3051     public V put(K key, V value) {
3052     checkKey(key);
3053     return m.put(key, value);
3054     }
3055    
3056     public V remove(Object key) {
3057     K k = (K)key;
3058     return (!inHalfOpenRange(k))? null : m.remove(k);
3059     }
3060    
3061     public int size() {
3062     long count = 0;
3063 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3064     isBeforeEnd(n);
3065 dl 1.1 n = n.next) {
3066     if (n.getValidValue() != null)
3067     ++count;
3068     }
3069     return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3070     }
3071    
3072     public boolean isEmpty() {
3073     return !isBeforeEnd(firstNode());
3074     }
3075    
3076     public boolean containsValue(Object value) {
3077 dl 1.9 if (value == null)
3078 dl 1.1 throw new NullPointerException();
3079 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3080     isBeforeEnd(n);
3081 dl 1.1 n = n.next) {
3082     V v = n.getValidValue();
3083     if (v != null && value.equals(v))
3084     return true;
3085     }
3086     return false;
3087     }
3088    
3089     public void clear() {
3090 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3091     isBeforeEnd(n);
3092 dl 1.1 n = n.next) {
3093     if (n.getValidValue() != null)
3094     m.remove(n.key);
3095     }
3096     }
3097    
3098     /* ---------------- ConcurrentMap API methods -------------- */
3099    
3100     public V putIfAbsent(K key, V value) {
3101     checkKey(key);
3102     return m.putIfAbsent(key, value);
3103     }
3104    
3105     public boolean remove(Object key, Object value) {
3106     K k = (K)key;
3107     return inHalfOpenRange(k) && m.remove(k, value);
3108     }
3109    
3110     public boolean replace(K key, V oldValue, V newValue) {
3111     checkKey(key);
3112     return m.replace(key, oldValue, newValue);
3113     }
3114    
3115     public V replace(K key, V value) {
3116     checkKey(key);
3117     return m.replace(key, value);
3118     }
3119    
3120     /* ---------------- SortedMap API methods -------------- */
3121    
3122     public Comparator<? super K> comparator() {
3123     return m.comparator();
3124     }
3125    
3126     public K firstKey() {
3127     ConcurrentSkipListMap.Node<K,V> n = firstNode();
3128     if (isBeforeEnd(n))
3129     return n.key;
3130     else
3131     throw new NoSuchElementException();
3132     }
3133    
3134     public K lastKey() {
3135     ConcurrentSkipListMap.Node<K,V> n = lastNode();
3136     if (n != null) {
3137     K last = n.key;
3138     if (inHalfOpenRange(last))
3139     return last;
3140     }
3141     throw new NoSuchElementException();
3142     }
3143    
3144 dl 1.6 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
3145 dl 1.1 if (fromKey == null || toKey == null)
3146     throw new NullPointerException();
3147     if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3148     throw new IllegalArgumentException("key out of range");
3149 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, toKey);
3150 dl 1.1 }
3151    
3152 dl 1.6 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
3153 dl 1.1 if (toKey == null)
3154     throw new NullPointerException();
3155     if (!inOpenRange(toKey))
3156     throw new IllegalArgumentException("key out of range");
3157 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(m, least, toKey);
3158 dl 1.1 }
3159    
3160 dl 1.6 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
3161 dl 1.1 if (fromKey == null)
3162     throw new NullPointerException();
3163     if (!inOpenRange(fromKey))
3164     throw new IllegalArgumentException("key out of range");
3165 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, fence);
3166 dl 1.1 }
3167    
3168 dl 1.6 public SortedMap<K,V> subMap(K fromKey, K toKey) {
3169     return navigableSubMap(fromKey, toKey);
3170     }
3171    
3172     public SortedMap<K,V> headMap(K toKey) {
3173     return navigableHeadMap(toKey);
3174     }
3175    
3176 jsr166 1.22 public SortedMap<K,V> tailMap(K fromKey) {
3177 dl 1.6 return navigableTailMap(fromKey);
3178     }
3179    
3180 dl 1.1 /* ---------------- Relational methods -------------- */
3181    
3182     public Map.Entry<K,V> ceilingEntry(K key) {
3183 dl 1.24 return m.getNearEntry(key, m.GT|m.EQ, least, fence);
3184 dl 1.1 }
3185    
3186     public K ceilingKey(K key) {
3187 dl 1.24 return m.getNearKey(key, m.GT|m.EQ, least, fence);
3188 dl 1.1 }
3189    
3190     public Map.Entry<K,V> lowerEntry(K key) {
3191 dl 1.24 return m.getNearEntry(key, m.LT, least, fence);
3192 dl 1.1 }
3193    
3194     public K lowerKey(K key) {
3195 dl 1.24 return m.getNearKey(key, m.LT, least, fence);
3196 dl 1.1 }
3197    
3198     public Map.Entry<K,V> floorEntry(K key) {
3199 dl 1.24 return m.getNearEntry(key, m.LT|m.EQ, least, fence);
3200 dl 1.1 }
3201    
3202     public K floorKey(K key) {
3203 dl 1.24 return m.getNearKey(key, m.LT|m.EQ, least, fence);
3204 dl 1.1 }
3205    
3206     public Map.Entry<K,V> higherEntry(K key) {
3207 dl 1.24 return m.getNearEntry(key, m.GT, least, fence);
3208 dl 1.1 }
3209    
3210     public K higherKey(K key) {
3211 dl 1.24 return m.getNearKey(key, m.GT, least, fence);
3212 dl 1.1 }
3213    
3214     public Map.Entry<K,V> firstEntry() {
3215     for (;;) {
3216     ConcurrentSkipListMap.Node<K,V> n = firstNode();
3217 dl 1.9 if (!isBeforeEnd(n))
3218 dl 1.1 return null;
3219     Map.Entry<K,V> e = n.createSnapshot();
3220     if (e != null)
3221     return e;
3222     }
3223     }
3224    
3225     public Map.Entry<K,V> lastEntry() {
3226     for (;;) {
3227     ConcurrentSkipListMap.Node<K,V> n = lastNode();
3228     if (n == null || !inHalfOpenRange(n.key))
3229     return null;
3230     Map.Entry<K,V> e = n.createSnapshot();
3231     if (e != null)
3232     return e;
3233     }
3234     }
3235    
3236     public Map.Entry<K,V> pollFirstEntry() {
3237 dl 1.24 return m.removeFirstEntryOfSubrange(least, fence);
3238 dl 1.1 }
3239    
3240     public Map.Entry<K,V> pollLastEntry() {
3241 dl 1.24 return m.removeLastEntryOfSubrange(least, fence);
3242 dl 1.1 }
3243    
3244     /* ---------------- Submap Views -------------- */
3245    
3246     public Set<K> keySet() {
3247     Set<K> ks = keySetView;
3248     return (ks != null) ? ks : (keySetView = new KeySetView());
3249     }
3250    
3251     class KeySetView extends AbstractSet<K> {
3252     public Iterator<K> iterator() {
3253     return m.subMapKeyIterator(least, fence);
3254     }
3255     public int size() {
3256     return ConcurrentSkipListSubMap.this.size();
3257     }
3258     public boolean isEmpty() {
3259     return ConcurrentSkipListSubMap.this.isEmpty();
3260     }
3261     public boolean contains(Object k) {
3262     return ConcurrentSkipListSubMap.this.containsKey(k);
3263     }
3264     public Object[] toArray() {
3265 dl 1.27 Collection<K> c = new ArrayList<K>();
3266     for (Iterator<K> i = iterator(); i.hasNext(); )
3267     c.add(i.next());
3268     return c.toArray();
3269 dl 1.1 }
3270     public <T> T[] toArray(T[] a) {
3271 dl 1.27 Collection<K> c = new ArrayList<K>();
3272     for (Iterator<K> i = iterator(); i.hasNext(); )
3273     c.add(i.next());
3274     return c.toArray(a);
3275 dl 1.1 }
3276     }
3277    
3278     public Set<K> descendingKeySet() {
3279     Set<K> ks = descendingKeySetView;
3280     return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3281     }
3282    
3283     class DescendingKeySetView extends KeySetView {
3284     public Iterator<K> iterator() {
3285     return m.descendingSubMapKeyIterator(least, fence);
3286     }
3287     }
3288    
3289     public Collection<V> values() {
3290     Collection<V> vs = valuesView;
3291     return (vs != null) ? vs : (valuesView = new ValuesView());
3292     }
3293    
3294     class ValuesView extends AbstractCollection<V> {
3295     public Iterator<V> iterator() {
3296     return m.subMapValueIterator(least, fence);
3297     }
3298     public int size() {
3299     return ConcurrentSkipListSubMap.this.size();
3300     }
3301     public boolean isEmpty() {
3302     return ConcurrentSkipListSubMap.this.isEmpty();
3303     }
3304     public boolean contains(Object v) {
3305     return ConcurrentSkipListSubMap.this.containsValue(v);
3306     }
3307     public Object[] toArray() {
3308     Collection<V> c = new ArrayList<V>();
3309     for (Iterator<V> i = iterator(); i.hasNext(); )
3310     c.add(i.next());
3311     return c.toArray();
3312     }
3313     public <T> T[] toArray(T[] a) {
3314     Collection<V> c = new ArrayList<V>();
3315     for (Iterator<V> i = iterator(); i.hasNext(); )
3316     c.add(i.next());
3317     return c.toArray(a);
3318     }
3319     }
3320    
3321     public Set<Map.Entry<K,V>> entrySet() {
3322     Set<Map.Entry<K,V>> es = entrySetView;
3323     return (es != null) ? es : (entrySetView = new EntrySetView());
3324     }
3325    
3326     class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3327     public Iterator<Map.Entry<K,V>> iterator() {
3328     return m.subMapEntryIterator(least, fence);
3329     }
3330     public int size() {
3331     return ConcurrentSkipListSubMap.this.size();
3332     }
3333     public boolean isEmpty() {
3334     return ConcurrentSkipListSubMap.this.isEmpty();
3335     }
3336     public boolean contains(Object o) {
3337     if (!(o instanceof Map.Entry))
3338     return false;
3339     Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3340     K key = e.getKey();
3341     if (!inHalfOpenRange(key))
3342     return false;
3343     V v = m.get(key);
3344     return v != null && v.equals(e.getValue());
3345     }
3346     public boolean remove(Object o) {
3347     if (!(o instanceof Map.Entry))
3348     return false;
3349     Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3350     K key = e.getKey();
3351     if (!inHalfOpenRange(key))
3352     return false;
3353     return m.remove(key, e.getValue());
3354     }
3355     public Object[] toArray() {
3356     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3357 dl 1.25 for (Map.Entry<K,V> e : this)
3358     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3359     e.getValue()));
3360 dl 1.1 return c.toArray();
3361     }
3362     public <T> T[] toArray(T[] a) {
3363     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3364 dl 1.25 for (Map.Entry<K,V> e : this)
3365     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3366     e.getValue()));
3367 dl 1.1 return c.toArray(a);
3368     }
3369     }
3370    
3371     public Set<Map.Entry<K,V>> descendingEntrySet() {
3372     Set<Map.Entry<K,V>> es = descendingEntrySetView;
3373     return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3374     }
3375    
3376     class DescendingEntrySetView extends EntrySetView {
3377     public Iterator<Map.Entry<K,V>> iterator() {
3378     return m.descendingSubMapEntryIterator(least, fence);
3379     }
3380     }
3381     }
3382     }