ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.36
Committed: Tue Jun 21 07:45:08 2005 UTC (18 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.35: +1 -1 lines
Log Message:
doc fixes

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8     import java.util.*;
9     import java.util.concurrent.atomic.*;
10    
11     /**
12 jsr166 1.22 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13     * The map is sorted according to the {@linkplain Comparable natural
14     * ordering} of its keys, or by a {@link Comparator} provided at map
15     * creation time, depending on which constructor is used.
16 dl 1.1 *
17     * <p>This class implements a concurrent variant of <a
18     * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
19     * expected average <i>log(n)</i> time cost for the
20     * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21     * <tt>remove</tt> operations and their variants. Insertion, removal,
22     * update, and access operations safely execute concurrently by
23     * multiple threads. Iterators are <i>weakly consistent</i>, returning
24     * elements reflecting the state of the map at some point at or since
25     * the creation of the iterator. They do <em>not</em> throw {@link
26     * ConcurrentModificationException}, and may proceed concurrently with
27     * other operations. Ascending key ordered views and their iterators
28     * are faster than descending ones.
29     *
30     * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31     * and its views represent snapshots of mappings at the time they were
32     * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33     * method. (Note however that it is possible to change mappings in the
34     * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35     * <tt>replace</tt>, depending on exactly which effect you need.)
36     *
37     * <p>Beware that, unlike in most collections, the <tt>size</tt>
38     * method is <em>not</em> a constant-time operation. Because of the
39     * asynchronous nature of these maps, determining the current number
40     * of elements requires a traversal of the elements. Additionally,
41     * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
42     * <tt>clear</tt> are <em>not</em> guaranteed to be performed
43     * atomically. For example, an iterator operating concurrently with a
44     * <tt>putAll</tt> operation might view only some of the added
45     * elements.
46     *
47     * <p>This class and its views and iterators implement all of the
48     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
49     * interfaces. Like most other concurrent collections, this class does
50 jsr166 1.22 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
51     * null return values cannot be reliably distinguished from the absence of
52     * elements.
53 dl 1.1 *
54 jsr166 1.21 * <p>This class is a member of the
55     * <a href="{@docRoot}/../guide/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58 dl 1.1 * @author Doug Lea
59     * @param <K> the type of keys maintained by this map
60 dl 1.9 * @param <V> the type of mapped values
61 jsr166 1.20 * @since 1.6
62 dl 1.1 */
63 dl 1.9 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
64 dl 1.1 implements ConcurrentNavigableMap<K,V>,
65 dl 1.9 Cloneable,
66 dl 1.1 java.io.Serializable {
67     /*
68     * This class implements a tree-like two-dimensionally linked skip
69     * list in which the index levels are represented in separate
70     * nodes from the base nodes holding data. There are two reasons
71     * for taking this approach instead of the usual array-based
72     * structure: 1) Array based implementations seem to encounter
73     * more complexity and overhead 2) We can use cheaper algorithms
74     * for the heavily-traversed index lists than can be used for the
75     * base lists. Here's a picture of some of the basics for a
76     * possible list with 2 levels of index:
77     *
78     * Head nodes Index nodes
79 dl 1.9 * +-+ right +-+ +-+
80 dl 1.1 * |2|---------------->| |--------------------->| |->null
81 dl 1.9 * +-+ +-+ +-+
82 dl 1.1 * | down | |
83     * v v v
84 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
85 dl 1.1 * |1|----------->| |->| |------>| |----------->| |------>| |->null
86 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+
87 dl 1.1 * v | | | | |
88     * Nodes next v v v v v
89 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
90 dl 1.1 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
91 dl 1.9 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92 dl 1.1 *
93     * The base lists use a variant of the HM linked ordered set
94     * algorithm. See Tim Harris, "A pragmatic implementation of
95     * non-blocking linked lists"
96     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
97     * Michael "High Performance Dynamic Lock-Free Hash Tables and
98     * List-Based Sets"
99     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
100     * basic idea in these lists is to mark the "next" pointers of
101     * deleted nodes when deleting to avoid conflicts with concurrent
102     * insertions, and when traversing to keep track of triples
103     * (predecessor, node, successor) in order to detect when and how
104     * to unlink these deleted nodes.
105     *
106     * Rather than using mark-bits to mark list deletions (which can
107     * be slow and space-intensive using AtomicMarkedReference), nodes
108     * use direct CAS'able next pointers. On deletion, instead of
109     * marking a pointer, they splice in another node that can be
110     * thought of as standing for a marked pointer (indicating this by
111     * using otherwise impossible field values). Using plain nodes
112     * acts roughly like "boxed" implementations of marked pointers,
113     * but uses new nodes only when nodes are deleted, not for every
114     * link. This requires less space and supports faster
115     * traversal. Even if marked references were better supported by
116     * JVMs, traversal using this technique might still be faster
117     * because any search need only read ahead one more node than
118     * otherwise required (to check for trailing marker) rather than
119     * unmasking mark bits or whatever on each read.
120     *
121     * This approach maintains the essential property needed in the HM
122     * algorithm of changing the next-pointer of a deleted node so
123     * that any other CAS of it will fail, but implements the idea by
124     * changing the pointer to point to a different node, not by
125     * marking it. While it would be possible to further squeeze
126     * space by defining marker nodes not to have key/value fields, it
127     * isn't worth the extra type-testing overhead. The deletion
128     * markers are rarely encountered during traversal and are
129     * normally quickly garbage collected. (Note that this technique
130     * would not work well in systems without garbage collection.)
131     *
132     * In addition to using deletion markers, the lists also use
133     * nullness of value fields to indicate deletion, in a style
134     * similar to typical lazy-deletion schemes. If a node's value is
135     * null, then it is considered logically deleted and ignored even
136     * though it is still reachable. This maintains proper control of
137     * concurrent replace vs delete operations -- an attempted replace
138     * must fail if a delete beat it by nulling field, and a delete
139     * must return the last non-null value held in the field. (Note:
140     * Null, rather than some special marker, is used for value fields
141     * here because it just so happens to mesh with the Map API
142     * requirement that method get returns null if there is no
143     * mapping, which allows nodes to remain concurrently readable
144     * even when deleted. Using any other marker value here would be
145     * messy at best.)
146     *
147     * Here's the sequence of events for a deletion of node n with
148     * predecessor b and successor f, initially:
149     *
150 dl 1.9 * +------+ +------+ +------+
151 dl 1.1 * ... | b |------>| n |----->| f | ...
152 dl 1.9 * +------+ +------+ +------+
153 dl 1.1 *
154     * 1. CAS n's value field from non-null to null.
155     * From this point on, no public operations encountering
156     * the node consider this mapping to exist. However, other
157     * ongoing insertions and deletions might still modify
158     * n's next pointer.
159     *
160     * 2. CAS n's next pointer to point to a new marker node.
161     * From this point on, no other nodes can be appended to n.
162     * which avoids deletion errors in CAS-based linked lists.
163     *
164     * +------+ +------+ +------+ +------+
165     * ... | b |------>| n |----->|marker|------>| f | ...
166 dl 1.9 * +------+ +------+ +------+ +------+
167 dl 1.1 *
168     * 3. CAS b's next pointer over both n and its marker.
169     * From this point on, no new traversals will encounter n,
170     * and it can eventually be GCed.
171     * +------+ +------+
172     * ... | b |----------------------------------->| f | ...
173 dl 1.9 * +------+ +------+
174     *
175 dl 1.1 * A failure at step 1 leads to simple retry due to a lost race
176     * with another operation. Steps 2-3 can fail because some other
177     * thread noticed during a traversal a node with null value and
178     * helped out by marking and/or unlinking. This helping-out
179     * ensures that no thread can become stuck waiting for progress of
180     * the deleting thread. The use of marker nodes slightly
181     * complicates helping-out code because traversals must track
182     * consistent reads of up to four nodes (b, n, marker, f), not
183     * just (b, n, f), although the next field of a marker is
184     * immutable, and once a next field is CAS'ed to point to a
185     * marker, it never again changes, so this requires less care.
186     *
187     * Skip lists add indexing to this scheme, so that the base-level
188     * traversals start close to the locations being found, inserted
189     * or deleted -- usually base level traversals only traverse a few
190     * nodes. This doesn't change the basic algorithm except for the
191     * need to make sure base traversals start at predecessors (here,
192     * b) that are not (structurally) deleted, otherwise retrying
193 dl 1.9 * after processing the deletion.
194 dl 1.1 *
195     * Index levels are maintained as lists with volatile next fields,
196     * using CAS to link and unlink. Races are allowed in index-list
197     * operations that can (rarely) fail to link in a new index node
198     * or delete one. (We can't do this of course for data nodes.)
199     * However, even when this happens, the index lists remain sorted,
200     * so correctly serve as indices. This can impact performance,
201     * but since skip lists are probabilistic anyway, the net result
202     * is that under contention, the effective "p" value may be lower
203     * than its nominal value. And race windows are kept small enough
204     * that in practice these failures are rare, even under a lot of
205     * contention.
206     *
207     * The fact that retries (for both base and index lists) are
208     * relatively cheap due to indexing allows some minor
209     * simplifications of retry logic. Traversal restarts are
210     * performed after most "helping-out" CASes. This isn't always
211     * strictly necessary, but the implicit backoffs tend to help
212     * reduce other downstream failed CAS's enough to outweigh restart
213     * cost. This worsens the worst case, but seems to improve even
214     * highly contended cases.
215     *
216     * Unlike most skip-list implementations, index insertion and
217     * deletion here require a separate traversal pass occuring after
218     * the base-level action, to add or remove index nodes. This adds
219     * to single-threaded overhead, but improves contended
220     * multithreaded performance by narrowing interference windows,
221     * and allows deletion to ensure that all index nodes will be made
222     * unreachable upon return from a public remove operation, thus
223     * avoiding unwanted garbage retention. This is more important
224     * here than in some other data structures because we cannot null
225     * out node fields referencing user keys since they might still be
226     * read by other ongoing traversals.
227     *
228     * Indexing uses skip list parameters that maintain good search
229     * performance while using sparser-than-usual indices: The
230     * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
231     * that about one-quarter of the nodes have indices. Of those that
232     * do, half have one level, a quarter have two, and so on (see
233     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
234     * requirement for a map is slightly less than for the current
235     * implementation of java.util.TreeMap.
236     *
237     * Changing the level of the index (i.e, the height of the
238     * tree-like structure) also uses CAS. The head index has initial
239     * level/height of one. Creation of an index with height greater
240     * than the current level adds a level to the head index by
241     * CAS'ing on a new top-most head. To maintain good performance
242     * after a lot of removals, deletion methods heuristically try to
243     * reduce the height if the topmost levels appear to be empty.
244     * This may encounter races in which it possible (but rare) to
245     * reduce and "lose" a level just as it is about to contain an
246     * index (that will then never be encountered). This does no
247     * structural harm, and in practice appears to be a better option
248     * than allowing unrestrained growth of levels.
249     *
250     * The code for all this is more verbose than you'd like. Most
251     * operations entail locating an element (or position to insert an
252     * element). The code to do this can't be nicely factored out
253     * because subsequent uses require a snapshot of predecessor
254     * and/or successor and/or value fields which can't be returned
255     * all at once, at least not without creating yet another object
256     * to hold them -- creating such little objects is an especially
257     * bad idea for basic internal search operations because it adds
258     * to GC overhead. (This is one of the few times I've wished Java
259     * had macros.) Instead, some traversal code is interleaved within
260     * insertion and removal operations. The control logic to handle
261     * all the retry conditions is sometimes twisty. Most search is
262     * broken into 2 parts. findPredecessor() searches index nodes
263     * only, returning a base-level predecessor of the key. findNode()
264     * finishes out the base-level search. Even with this factoring,
265     * there is a fair amount of near-duplication of code to handle
266     * variants.
267     *
268     * For explanation of algorithms sharing at least a couple of
269     * features with this one, see Mikhail Fomitchev's thesis
270     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
271 dl 1.4 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
272 dl 1.1 * thesis (http://www.cs.chalmers.se/~phs/).
273     *
274     * Given the use of tree-like index nodes, you might wonder why
275     * this doesn't use some kind of search tree instead, which would
276     * support somewhat faster search operations. The reason is that
277     * there are no known efficient lock-free insertion and deletion
278     * algorithms for search trees. The immutability of the "down"
279     * links of index nodes (as opposed to mutable "left" fields in
280     * true trees) makes this tractable using only CAS operations.
281     *
282     * Notation guide for local variables
283     * Node: b, n, f for predecessor, node, successor
284     * Index: q, r, d for index node, right, down.
285     * t for another index node
286     * Head: h
287     * Levels: j
288     * Keys: k, key
289     * Values: v, value
290     * Comparisons: c
291     */
292    
293     private static final long serialVersionUID = -8627078645895051609L;
294    
295     /**
296     * Special value used to identify base-level header
297 dl 1.9 */
298 dl 1.1 private static final Object BASE_HEADER = new Object();
299    
300     /**
301 dl 1.9 * The topmost head index of the skiplist.
302 dl 1.1 */
303     private transient volatile HeadIndex<K,V> head;
304    
305     /**
306 jsr166 1.10 * The comparator used to maintain order in this map, or null
307 jsr166 1.22 * if using natural ordering.
308 dl 1.1 * @serial
309     */
310     private final Comparator<? super K> comparator;
311    
312     /**
313     * Seed for simple random number generator. Not volatile since it
314     * doesn't matter too much if different threads don't see updates.
315     */
316     private transient int randomSeed;
317    
318     /** Lazily initialized key set */
319     private transient KeySet keySet;
320     /** Lazily initialized entry set */
321     private transient EntrySet entrySet;
322     /** Lazily initialized values collection */
323     private transient Values values;
324     /** Lazily initialized descending key set */
325     private transient DescendingKeySet descendingKeySet;
326     /** Lazily initialized descending entry set */
327     private transient DescendingEntrySet descendingEntrySet;
328    
329     /**
330 jsr166 1.13 * Initializes or resets state. Needed by constructors, clone,
331 dl 1.1 * clear, readObject. and ConcurrentSkipListSet.clone.
332     * (Note that comparator must be separately initialized.)
333     */
334     final void initialize() {
335     keySet = null;
336 dl 1.9 entrySet = null;
337 dl 1.1 values = null;
338     descendingEntrySet = null;
339     descendingKeySet = null;
340 dl 1.33 randomSeed = ((int) System.nanoTime()) | 1; // ensure nonzero
341 dl 1.1 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
342     null, null, 1);
343     }
344    
345     /** Updater for casHead */
346 dl 1.9 private static final
347     AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
348 dl 1.1 headUpdater = AtomicReferenceFieldUpdater.newUpdater
349     (ConcurrentSkipListMap.class, HeadIndex.class, "head");
350    
351     /**
352     * compareAndSet head node
353     */
354     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
355     return headUpdater.compareAndSet(this, cmp, val);
356     }
357    
358     /* ---------------- Nodes -------------- */
359    
360     /**
361     * Nodes hold keys and values, and are singly linked in sorted
362     * order, possibly with some intervening marker nodes. The list is
363     * headed by a dummy node accessible as head.node. The value field
364     * is declared only as Object because it takes special non-V
365     * values for marker and header nodes.
366     */
367     static final class Node<K,V> {
368     final K key;
369     volatile Object value;
370     volatile Node<K,V> next;
371    
372     /**
373     * Creates a new regular node.
374     */
375     Node(K key, Object value, Node<K,V> next) {
376     this.key = key;
377     this.value = value;
378     this.next = next;
379     }
380    
381     /**
382     * Creates a new marker node. A marker is distinguished by
383     * having its value field point to itself. Marker nodes also
384     * have null keys, a fact that is exploited in a few places,
385     * but this doesn't distinguish markers from the base-level
386     * header node (head.node), which also has a null key.
387     */
388     Node(Node<K,V> next) {
389     this.key = null;
390     this.value = this;
391     this.next = next;
392     }
393    
394     /** Updater for casNext */
395 dl 1.9 static final AtomicReferenceFieldUpdater<Node, Node>
396 dl 1.1 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
397     (Node.class, Node.class, "next");
398    
399     /** Updater for casValue */
400 dl 1.9 static final AtomicReferenceFieldUpdater<Node, Object>
401 dl 1.1 valueUpdater = AtomicReferenceFieldUpdater.newUpdater
402     (Node.class, Object.class, "value");
403    
404     /**
405     * compareAndSet value field
406     */
407     boolean casValue(Object cmp, Object val) {
408     return valueUpdater.compareAndSet(this, cmp, val);
409     }
410    
411     /**
412     * compareAndSet next field
413     */
414     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
415     return nextUpdater.compareAndSet(this, cmp, val);
416     }
417    
418     /**
419 jsr166 1.10 * Returns true if this node is a marker. This method isn't
420     * actually called in any current code checking for markers
421 dl 1.1 * because callers will have already read value field and need
422     * to use that read (not another done here) and so directly
423     * test if value points to node.
424     * @param n a possibly null reference to a node
425     * @return true if this node is a marker node
426     */
427     boolean isMarker() {
428     return value == this;
429     }
430    
431     /**
432 jsr166 1.10 * Returns true if this node is the header of base-level list.
433 dl 1.1 * @return true if this node is header node
434     */
435     boolean isBaseHeader() {
436     return value == BASE_HEADER;
437     }
438    
439     /**
440     * Tries to append a deletion marker to this node.
441     * @param f the assumed current successor of this node
442     * @return true if successful
443     */
444     boolean appendMarker(Node<K,V> f) {
445     return casNext(f, new Node<K,V>(f));
446     }
447    
448     /**
449     * Helps out a deletion by appending marker or unlinking from
450     * predecessor. This is called during traversals when value
451     * field seen to be null.
452     * @param b predecessor
453     * @param f successor
454     */
455     void helpDelete(Node<K,V> b, Node<K,V> f) {
456     /*
457     * Rechecking links and then doing only one of the
458     * help-out stages per call tends to minimize CAS
459     * interference among helping threads.
460     */
461     if (f == next && this == b.next) {
462     if (f == null || f.value != f) // not already marked
463     appendMarker(f);
464     else
465     b.casNext(this, f.next);
466     }
467     }
468    
469     /**
470 jsr166 1.11 * Returns value if this node contains a valid key-value pair,
471 dl 1.9 * else null.
472 dl 1.1 * @return this node's value if it isn't a marker or header or
473     * is deleted, else null.
474     */
475     V getValidValue() {
476     Object v = value;
477     if (v == this || v == BASE_HEADER)
478     return null;
479     return (V)v;
480     }
481    
482     /**
483 jsr166 1.10 * Creates and returns a new SimpleImmutableEntry holding current
484     * mapping if this node holds a valid value, else null.
485 dl 1.1 * @return new entry or null
486     */
487 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
488 dl 1.1 V v = getValidValue();
489     if (v == null)
490     return null;
491 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
492 dl 1.1 }
493     }
494    
495     /* ---------------- Indexing -------------- */
496    
497     /**
498     * Index nodes represent the levels of the skip list. To improve
499     * search performance, keys of the underlying nodes are cached.
500     * Note that even though both Nodes and Indexes have
501     * forward-pointing fields, they have different types and are
502     * handled in different ways, that can't nicely be captured by
503     * placing field in a shared abstract class.
504     */
505     static class Index<K,V> {
506     final K key;
507     final Node<K,V> node;
508     final Index<K,V> down;
509     volatile Index<K,V> right;
510    
511     /**
512 jsr166 1.10 * Creates index node with given values.
513 dl 1.9 */
514 dl 1.1 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
515     this.node = node;
516     this.key = node.key;
517     this.down = down;
518     this.right = right;
519     }
520    
521     /** Updater for casRight */
522 dl 1.9 static final AtomicReferenceFieldUpdater<Index, Index>
523 dl 1.1 rightUpdater = AtomicReferenceFieldUpdater.newUpdater
524     (Index.class, Index.class, "right");
525    
526     /**
527     * compareAndSet right field
528     */
529     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
530     return rightUpdater.compareAndSet(this, cmp, val);
531     }
532    
533     /**
534     * Returns true if the node this indexes has been deleted.
535     * @return true if indexed node is known to be deleted
536     */
537     final boolean indexesDeletedNode() {
538     return node.value == null;
539     }
540    
541     /**
542     * Tries to CAS newSucc as successor. To minimize races with
543     * unlink that may lose this index node, if the node being
544     * indexed is known to be deleted, it doesn't try to link in.
545     * @param succ the expected current successor
546     * @param newSucc the new successor
547     * @return true if successful
548     */
549     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
550     Node<K,V> n = node;
551 dl 1.9 newSucc.right = succ;
552 dl 1.1 return n.value != null && casRight(succ, newSucc);
553     }
554    
555     /**
556     * Tries to CAS right field to skip over apparent successor
557     * succ. Fails (forcing a retraversal by caller) if this node
558     * is known to be deleted.
559     * @param succ the expected current successor
560     * @return true if successful
561     */
562     final boolean unlink(Index<K,V> succ) {
563     return !indexesDeletedNode() && casRight(succ, succ.right);
564     }
565     }
566    
567     /* ---------------- Head nodes -------------- */
568    
569     /**
570     * Nodes heading each level keep track of their level.
571     */
572     static final class HeadIndex<K,V> extends Index<K,V> {
573     final int level;
574     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
575     super(node, down, right);
576     this.level = level;
577     }
578 dl 1.9 }
579 dl 1.1
580     /* ---------------- Comparison utilities -------------- */
581    
582     /**
583     * Represents a key with a comparator as a Comparable.
584     *
585 jsr166 1.22 * Because most sorted collections seem to use natural ordering on
586 dl 1.1 * Comparables (Strings, Integers, etc), most internal methods are
587     * geared to use them. This is generally faster than checking
588     * per-comparison whether to use comparator or comparable because
589     * it doesn't require a (Comparable) cast for each comparison.
590     * (Optimizers can only sometimes remove such redundant checks
591     * themselves.) When Comparators are used,
592     * ComparableUsingComparators are created so that they act in the
593     * same way as natural orderings. This penalizes use of
594     * Comparators vs Comparables, which seems like the right
595     * tradeoff.
596     */
597     static final class ComparableUsingComparator<K> implements Comparable<K> {
598     final K actualKey;
599     final Comparator<? super K> cmp;
600     ComparableUsingComparator(K key, Comparator<? super K> cmp) {
601     this.actualKey = key;
602     this.cmp = cmp;
603     }
604     public int compareTo(K k2) {
605     return cmp.compare(actualKey, k2);
606     }
607     }
608    
609     /**
610     * If using comparator, return a ComparableUsingComparator, else
611     * cast key as Comparator, which may cause ClassCastException,
612     * which is propagated back to caller.
613     */
614 dl 1.9 private Comparable<? super K> comparable(Object key) throws ClassCastException {
615     if (key == null)
616 dl 1.1 throw new NullPointerException();
617 dl 1.24 if (comparator != null)
618     return new ComparableUsingComparator<K>((K)key, comparator);
619     else
620     return (Comparable<? super K>)key;
621 dl 1.1 }
622    
623     /**
624 jsr166 1.10 * Compares using comparator or natural ordering. Used when the
625 dl 1.1 * ComparableUsingComparator approach doesn't apply.
626     */
627     int compare(K k1, K k2) throws ClassCastException {
628     Comparator<? super K> cmp = comparator;
629     if (cmp != null)
630     return cmp.compare(k1, k2);
631     else
632 jsr166 1.18 return ((Comparable<? super K>)k1).compareTo(k2);
633 dl 1.1 }
634    
635     /**
636 jsr166 1.10 * Returns true if given key greater than or equal to least and
637 dl 1.1 * strictly less than fence, bypassing either test if least or
638 dl 1.5 * fence are null. Needed mainly in submap operations.
639 dl 1.1 */
640     boolean inHalfOpenRange(K key, K least, K fence) {
641 dl 1.9 if (key == null)
642 dl 1.1 throw new NullPointerException();
643     return ((least == null || compare(key, least) >= 0) &&
644     (fence == null || compare(key, fence) < 0));
645     }
646    
647     /**
648 jsr166 1.10 * Returns true if given key greater than or equal to least and less
649 dl 1.1 * or equal to fence. Needed mainly in submap operations.
650     */
651     boolean inOpenRange(K key, K least, K fence) {
652 dl 1.9 if (key == null)
653 dl 1.1 throw new NullPointerException();
654     return ((least == null || compare(key, least) >= 0) &&
655     (fence == null || compare(key, fence) <= 0));
656     }
657    
658     /* ---------------- Traversal -------------- */
659    
660     /**
661 jsr166 1.10 * Returns a base-level node with key strictly less than given key,
662 dl 1.1 * or the base-level header if there is no such node. Also
663     * unlinks indexes to deleted nodes found along the way. Callers
664     * rely on this side-effect of clearing indices to deleted nodes.
665     * @param key the key
666 dl 1.9 * @return a predecessor of key
667 dl 1.1 */
668 dl 1.9 private Node<K,V> findPredecessor(Comparable<? super K> key) {
669 dl 1.1 for (;;) {
670     Index<K,V> q = head;
671     for (;;) {
672     Index<K,V> d, r;
673     if ((r = q.right) != null) {
674     if (r.indexesDeletedNode()) {
675     if (q.unlink(r))
676     continue; // reread r
677     else
678     break; // restart
679     }
680     if (key.compareTo(r.key) > 0) {
681     q = r;
682     continue;
683     }
684     }
685 dl 1.9 if ((d = q.down) != null)
686 dl 1.1 q = d;
687     else
688     return q.node;
689     }
690     }
691     }
692    
693     /**
694 jsr166 1.10 * Returns node holding key or null if no such, clearing out any
695 dl 1.1 * deleted nodes seen along the way. Repeatedly traverses at
696     * base-level looking for key starting at predecessor returned
697     * from findPredecessor, processing base-level deletions as
698     * encountered. Some callers rely on this side-effect of clearing
699     * deleted nodes.
700     *
701     * Restarts occur, at traversal step centered on node n, if:
702     *
703     * (1) After reading n's next field, n is no longer assumed
704     * predecessor b's current successor, which means that
705     * we don't have a consistent 3-node snapshot and so cannot
706     * unlink any subsequent deleted nodes encountered.
707     *
708     * (2) n's value field is null, indicating n is deleted, in
709     * which case we help out an ongoing structural deletion
710     * before retrying. Even though there are cases where such
711     * unlinking doesn't require restart, they aren't sorted out
712     * here because doing so would not usually outweigh cost of
713     * restarting.
714     *
715 dl 1.9 * (3) n is a marker or n's predecessor's value field is null,
716 dl 1.1 * indicating (among other possibilities) that
717     * findPredecessor returned a deleted node. We can't unlink
718     * the node because we don't know its predecessor, so rely
719     * on another call to findPredecessor to notice and return
720     * some earlier predecessor, which it will do. This check is
721     * only strictly needed at beginning of loop, (and the
722     * b.value check isn't strictly needed at all) but is done
723     * each iteration to help avoid contention with other
724     * threads by callers that will fail to be able to change
725     * links, and so will retry anyway.
726     *
727     * The traversal loops in doPut, doRemove, and findNear all
728     * include the same three kinds of checks. And specialized
729 dl 1.31 * versions appear in findFirst, and findLast and their
730     * variants. They can't easily share code because each uses the
731 dl 1.1 * reads of fields held in locals occurring in the orders they
732     * were performed.
733 dl 1.9 *
734 dl 1.1 * @param key the key
735 jsr166 1.22 * @return node holding key, or null if no such
736 dl 1.1 */
737 dl 1.9 private Node<K,V> findNode(Comparable<? super K> key) {
738 dl 1.1 for (;;) {
739     Node<K,V> b = findPredecessor(key);
740     Node<K,V> n = b.next;
741     for (;;) {
742 dl 1.9 if (n == null)
743 dl 1.1 return null;
744     Node<K,V> f = n.next;
745     if (n != b.next) // inconsistent read
746     break;
747     Object v = n.value;
748     if (v == null) { // n is deleted
749     n.helpDelete(b, f);
750     break;
751     }
752     if (v == n || b.value == null) // b is deleted
753     break;
754     int c = key.compareTo(n.key);
755     if (c < 0)
756     return null;
757 dl 1.9 if (c == 0)
758 dl 1.1 return n;
759     b = n;
760     n = f;
761     }
762     }
763     }
764    
765 dl 1.9 /**
766 dl 1.1 * Specialized variant of findNode to perform Map.get. Does a weak
767     * traversal, not bothering to fix any deleted index nodes,
768     * returning early if it happens to see key in index, and passing
769     * over any deleted base nodes, falling back to getUsingFindNode
770     * only if it would otherwise return value from an ongoing
771     * deletion. Also uses "bound" to eliminate need for some
772     * comparisons (see Pugh Cookbook). Also folds uses of null checks
773     * and node-skipping because markers have null keys.
774     * @param okey the key
775     * @return the value, or null if absent
776     */
777     private V doGet(Object okey) {
778 dl 1.9 Comparable<? super K> key = comparable(okey);
779 dl 1.1 K bound = null;
780     Index<K,V> q = head;
781     for (;;) {
782     K rk;
783     Index<K,V> d, r;
784 dl 1.9 if ((r = q.right) != null &&
785 dl 1.1 (rk = r.key) != null && rk != bound) {
786     int c = key.compareTo(rk);
787     if (c > 0) {
788     q = r;
789     continue;
790     }
791     if (c == 0) {
792     Object v = r.node.value;
793     return (v != null)? (V)v : getUsingFindNode(key);
794     }
795     bound = rk;
796     }
797 dl 1.9 if ((d = q.down) != null)
798 dl 1.1 q = d;
799     else {
800     for (Node<K,V> n = q.node.next; n != null; n = n.next) {
801     K nk = n.key;
802     if (nk != null) {
803     int c = key.compareTo(nk);
804     if (c == 0) {
805     Object v = n.value;
806     return (v != null)? (V)v : getUsingFindNode(key);
807     }
808     if (c < 0)
809     return null;
810     }
811     }
812     return null;
813     }
814     }
815     }
816    
817     /**
818 jsr166 1.10 * Performs map.get via findNode. Used as a backup if doGet
819 dl 1.1 * encounters an in-progress deletion.
820     * @param key the key
821     * @return the value, or null if absent
822     */
823 dl 1.9 private V getUsingFindNode(Comparable<? super K> key) {
824 dl 1.1 /*
825     * Loop needed here and elsewhere in case value field goes
826     * null just as it is about to be returned, in which case we
827     * lost a race with a deletion, so must retry.
828     */
829     for (;;) {
830     Node<K,V> n = findNode(key);
831     if (n == null)
832     return null;
833     Object v = n.value;
834     if (v != null)
835     return (V)v;
836     }
837     }
838    
839     /* ---------------- Insertion -------------- */
840    
841     /**
842     * Main insertion method. Adds element if not present, or
843     * replaces value if present and onlyIfAbsent is false.
844 dl 1.9 * @param kkey the key
845 dl 1.1 * @param value the value that must be associated with key
846     * @param onlyIfAbsent if should not insert if already present
847     * @return the old value, or null if newly inserted
848     */
849     private V doPut(K kkey, V value, boolean onlyIfAbsent) {
850 dl 1.9 Comparable<? super K> key = comparable(kkey);
851 dl 1.1 for (;;) {
852     Node<K,V> b = findPredecessor(key);
853     Node<K,V> n = b.next;
854     for (;;) {
855     if (n != null) {
856     Node<K,V> f = n.next;
857     if (n != b.next) // inconsistent read
858     break;;
859     Object v = n.value;
860     if (v == null) { // n is deleted
861     n.helpDelete(b, f);
862     break;
863     }
864     if (v == n || b.value == null) // b is deleted
865     break;
866     int c = key.compareTo(n.key);
867     if (c > 0) {
868     b = n;
869     n = f;
870     continue;
871     }
872     if (c == 0) {
873     if (onlyIfAbsent || n.casValue(v, value))
874     return (V)v;
875     else
876     break; // restart if lost race to replace value
877     }
878     // else c < 0; fall through
879     }
880 dl 1.9
881 dl 1.1 Node<K,V> z = new Node<K,V>(kkey, value, n);
882 dl 1.9 if (!b.casNext(n, z))
883 dl 1.1 break; // restart if lost race to append to b
884 dl 1.9 int level = randomLevel();
885     if (level > 0)
886 dl 1.1 insertIndex(z, level);
887     return null;
888     }
889     }
890     }
891    
892     /**
893 jsr166 1.10 * Returns a random level for inserting a new node.
894 dl 1.35 * Hardwired to k=1, p=0.5, max 31 (see above and
895 dl 1.34 * Pugh's "Skip List Cookbook", sec 3.4).
896 dl 1.1 *
897 dl 1.33 * This uses the simplest of the generators described in George
898     * Marsaglia's "Xorshift RNGs" paper. This is not a high-quality
899     * generator but is acceptable here. Note that bits are checked
900     * by testing sign, which is a little faster than testing low bit.
901 dl 1.1 */
902     private int randomLevel() {
903     int level = 0;
904     int r = randomSeed;
905 dl 1.33 int x = r ^ (r << 13);
906     x ^= x >>> 17;
907     randomSeed = x ^ (x << 5);
908 dl 1.9 if (r < 0) {
909     while ((r <<= 1) > 0)
910 dl 1.1 ++level;
911     }
912     return level;
913     }
914    
915     /**
916 jsr166 1.11 * Creates and adds index nodes for the given node.
917 dl 1.1 * @param z the node
918     * @param level the level of the index
919     */
920     private void insertIndex(Node<K,V> z, int level) {
921     HeadIndex<K,V> h = head;
922     int max = h.level;
923    
924     if (level <= max) {
925     Index<K,V> idx = null;
926     for (int i = 1; i <= level; ++i)
927     idx = new Index<K,V>(z, idx, null);
928     addIndex(idx, h, level);
929    
930     } else { // Add a new level
931     /*
932     * To reduce interference by other threads checking for
933     * empty levels in tryReduceLevel, new levels are added
934     * with initialized right pointers. Which in turn requires
935     * keeping levels in an array to access them while
936     * creating new head index nodes from the opposite
937     * direction.
938     */
939     level = max + 1;
940     Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
941     Index<K,V> idx = null;
942 dl 1.9 for (int i = 1; i <= level; ++i)
943 dl 1.1 idxs[i] = idx = new Index<K,V>(z, idx, null);
944    
945     HeadIndex<K,V> oldh;
946     int k;
947     for (;;) {
948     oldh = head;
949     int oldLevel = oldh.level;
950     if (level <= oldLevel) { // lost race to add level
951     k = level;
952     break;
953     }
954     HeadIndex<K,V> newh = oldh;
955     Node<K,V> oldbase = oldh.node;
956 dl 1.9 for (int j = oldLevel+1; j <= level; ++j)
957 dl 1.1 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
958     if (casHead(oldh, newh)) {
959     k = oldLevel;
960     break;
961     }
962     }
963     addIndex(idxs[k], oldh, k);
964     }
965     }
966    
967     /**
968 jsr166 1.10 * Adds given index nodes from given level down to 1.
969 dl 1.1 * @param idx the topmost index node being inserted
970     * @param h the value of head to use to insert. This must be
971     * snapshotted by callers to provide correct insertion level
972     * @param indexLevel the level of the index
973     */
974     private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
975     // Track next level to insert in case of retries
976     int insertionLevel = indexLevel;
977 dl 1.9 Comparable<? super K> key = comparable(idx.key);
978 dl 1.1
979     // Similar to findPredecessor, but adding index nodes along
980     // path to key.
981     for (;;) {
982     Index<K,V> q = h;
983     Index<K,V> t = idx;
984     int j = h.level;
985     for (;;) {
986     Index<K,V> r = q.right;
987     if (r != null) {
988     // compare before deletion check avoids needing recheck
989     int c = key.compareTo(r.key);
990     if (r.indexesDeletedNode()) {
991     if (q.unlink(r))
992     continue;
993     else
994 dl 1.9 break;
995 dl 1.1 }
996     if (c > 0) {
997     q = r;
998     continue;
999     }
1000     }
1001    
1002     if (j == insertionLevel) {
1003     // Don't insert index if node already deleted
1004     if (t.indexesDeletedNode()) {
1005     findNode(key); // cleans up
1006     return;
1007     }
1008 dl 1.9 if (!q.link(r, t))
1009 dl 1.1 break; // restart
1010     if (--insertionLevel == 0) {
1011     // need final deletion check before return
1012 dl 1.9 if (t.indexesDeletedNode())
1013     findNode(key);
1014 dl 1.1 return;
1015     }
1016     }
1017    
1018 dl 1.9 if (j > insertionLevel && j <= indexLevel)
1019 dl 1.1 t = t.down;
1020     q = q.down;
1021     --j;
1022     }
1023     }
1024     }
1025    
1026     /* ---------------- Deletion -------------- */
1027    
1028     /**
1029     * Main deletion method. Locates node, nulls value, appends a
1030     * deletion marker, unlinks predecessor, removes associated index
1031     * nodes, and possibly reduces head index level.
1032     *
1033     * Index nodes are cleared out simply by calling findPredecessor.
1034     * which unlinks indexes to deleted nodes found along path to key,
1035     * which will include the indexes to this node. This is done
1036     * unconditionally. We can't check beforehand whether there are
1037     * index nodes because it might be the case that some or all
1038     * indexes hadn't been inserted yet for this node during initial
1039     * search for it, and we'd like to ensure lack of garbage
1040 dl 1.9 * retention, so must call to be sure.
1041 dl 1.1 *
1042     * @param okey the key
1043     * @param value if non-null, the value that must be
1044     * associated with key
1045     * @return the node, or null if not found
1046     */
1047     private V doRemove(Object okey, Object value) {
1048 dl 1.9 Comparable<? super K> key = comparable(okey);
1049     for (;;) {
1050 dl 1.1 Node<K,V> b = findPredecessor(key);
1051     Node<K,V> n = b.next;
1052     for (;;) {
1053 dl 1.9 if (n == null)
1054 dl 1.1 return null;
1055     Node<K,V> f = n.next;
1056     if (n != b.next) // inconsistent read
1057     break;
1058     Object v = n.value;
1059     if (v == null) { // n is deleted
1060     n.helpDelete(b, f);
1061     break;
1062     }
1063     if (v == n || b.value == null) // b is deleted
1064     break;
1065     int c = key.compareTo(n.key);
1066     if (c < 0)
1067     return null;
1068     if (c > 0) {
1069     b = n;
1070     n = f;
1071     continue;
1072     }
1073 dl 1.9 if (value != null && !value.equals(v))
1074     return null;
1075     if (!n.casValue(v, null))
1076 dl 1.1 break;
1077 dl 1.9 if (!n.appendMarker(f) || !b.casNext(n, f))
1078 dl 1.1 findNode(key); // Retry via findNode
1079     else {
1080     findPredecessor(key); // Clean index
1081 dl 1.9 if (head.right == null)
1082 dl 1.1 tryReduceLevel();
1083     }
1084     return (V)v;
1085     }
1086     }
1087     }
1088    
1089     /**
1090     * Possibly reduce head level if it has no nodes. This method can
1091     * (rarely) make mistakes, in which case levels can disappear even
1092     * though they are about to contain index nodes. This impacts
1093     * performance, not correctness. To minimize mistakes as well as
1094     * to reduce hysteresis, the level is reduced by one only if the
1095     * topmost three levels look empty. Also, if the removed level
1096     * looks non-empty after CAS, we try to change it back quick
1097     * before anyone notices our mistake! (This trick works pretty
1098     * well because this method will practically never make mistakes
1099     * unless current thread stalls immediately before first CAS, in
1100     * which case it is very unlikely to stall again immediately
1101     * afterwards, so will recover.)
1102     *
1103     * We put up with all this rather than just let levels grow
1104     * because otherwise, even a small map that has undergone a large
1105     * number of insertions and removals will have a lot of levels,
1106     * slowing down access more than would an occasional unwanted
1107     * reduction.
1108     */
1109     private void tryReduceLevel() {
1110     HeadIndex<K,V> h = head;
1111     HeadIndex<K,V> d;
1112     HeadIndex<K,V> e;
1113     if (h.level > 3 &&
1114 dl 1.9 (d = (HeadIndex<K,V>)h.down) != null &&
1115     (e = (HeadIndex<K,V>)d.down) != null &&
1116     e.right == null &&
1117     d.right == null &&
1118 dl 1.1 h.right == null &&
1119     casHead(h, d) && // try to set
1120     h.right != null) // recheck
1121     casHead(d, h); // try to backout
1122     }
1123    
1124     /**
1125     * Version of remove with boolean return. Needed by view classes
1126     */
1127     boolean removep(Object key) {
1128     return doRemove(key, null) != null;
1129     }
1130    
1131     /* ---------------- Finding and removing first element -------------- */
1132    
1133     /**
1134 jsr166 1.22 * Specialized variant of findNode to get first valid node.
1135 dl 1.1 * @return first node or null if empty
1136     */
1137     Node<K,V> findFirst() {
1138     for (;;) {
1139     Node<K,V> b = head.node;
1140     Node<K,V> n = b.next;
1141     if (n == null)
1142     return null;
1143 dl 1.9 if (n.value != null)
1144 dl 1.1 return n;
1145     n.helpDelete(b, n.next);
1146     }
1147     }
1148    
1149     /**
1150 dl 1.31 * Removes first entry; returns its key. Note: The
1151     * mostly-redundant methods for removing first and last keys vs
1152     * entries exist to avoid needless creation of Entry nodes when
1153     * only the key is needed. The minor reduction in overhead is
1154     * worth the minor code duplication.
1155 jsr166 1.28 * @return null if empty, else key of first entry
1156 dl 1.25 */
1157 dl 1.30 K pollFirstKey() {
1158 dl 1.25 for (;;) {
1159     Node<K,V> b = head.node;
1160     Node<K,V> n = b.next;
1161     if (n == null)
1162     return null;
1163     Node<K,V> f = n.next;
1164     if (n != b.next)
1165     continue;
1166     Object v = n.value;
1167     if (v == null) {
1168     n.helpDelete(b, f);
1169     continue;
1170     }
1171     if (!n.casValue(v, null))
1172     continue;
1173     if (!n.appendMarker(f) || !b.casNext(n, f))
1174     findFirst(); // retry
1175     clearIndexToFirst();
1176 dl 1.30 return n.key;
1177 dl 1.25 }
1178     }
1179    
1180     /**
1181     * Removes first entry; returns its snapshot.
1182 jsr166 1.28 * @return null if empty, else snapshot of first entry
1183 dl 1.1 */
1184 dl 1.25 Map.Entry<K,V> doRemoveFirstEntry() {
1185 dl 1.9 for (;;) {
1186 dl 1.1 Node<K,V> b = head.node;
1187     Node<K,V> n = b.next;
1188 dl 1.9 if (n == null)
1189 dl 1.1 return null;
1190     Node<K,V> f = n.next;
1191     if (n != b.next)
1192     continue;
1193     Object v = n.value;
1194     if (v == null) {
1195     n.helpDelete(b, f);
1196     continue;
1197     }
1198     if (!n.casValue(v, null))
1199     continue;
1200     if (!n.appendMarker(f) || !b.casNext(n, f))
1201     findFirst(); // retry
1202     clearIndexToFirst();
1203 dl 1.30 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1204 jsr166 1.28 }
1205 dl 1.1 }
1206    
1207     /**
1208 jsr166 1.10 * Clears out index nodes associated with deleted first entry.
1209 dl 1.1 */
1210     private void clearIndexToFirst() {
1211     for (;;) {
1212     Index<K,V> q = head;
1213     for (;;) {
1214     Index<K,V> r = q.right;
1215     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1216 dl 1.9 break;
1217 dl 1.1 if ((q = q.down) == null) {
1218 dl 1.9 if (head.right == null)
1219 dl 1.1 tryReduceLevel();
1220     return;
1221     }
1222     }
1223     }
1224     }
1225    
1226    
1227     /* ---------------- Finding and removing last element -------------- */
1228    
1229     /**
1230 jsr166 1.10 * Specialized version of find to get last valid node.
1231 dl 1.1 * @return last node or null if empty
1232     */
1233     Node<K,V> findLast() {
1234     /*
1235     * findPredecessor can't be used to traverse index level
1236     * because this doesn't use comparisons. So traversals of
1237     * both levels are folded together.
1238     */
1239     Index<K,V> q = head;
1240     for (;;) {
1241     Index<K,V> d, r;
1242     if ((r = q.right) != null) {
1243     if (r.indexesDeletedNode()) {
1244     q.unlink(r);
1245     q = head; // restart
1246 dl 1.9 }
1247 dl 1.1 else
1248     q = r;
1249     } else if ((d = q.down) != null) {
1250     q = d;
1251     } else {
1252     Node<K,V> b = q.node;
1253     Node<K,V> n = b.next;
1254     for (;;) {
1255 dl 1.9 if (n == null)
1256 dl 1.1 return (b.isBaseHeader())? null : b;
1257     Node<K,V> f = n.next; // inconsistent read
1258     if (n != b.next)
1259     break;
1260     Object v = n.value;
1261     if (v == null) { // n is deleted
1262     n.helpDelete(b, f);
1263     break;
1264     }
1265     if (v == n || b.value == null) // b is deleted
1266     break;
1267     b = n;
1268     n = f;
1269     }
1270     q = head; // restart
1271     }
1272     }
1273     }
1274    
1275 dl 1.31 /**
1276 jsr166 1.32 * Specialized variant of findPredecessor to get predecessor of last
1277     * valid node. Needed when removing the last entry. It is possible
1278     * that all successors of returned node will have been deleted upon
1279 dl 1.31 * return, in which case this method can be retried.
1280     * @return likely predecessor of last node
1281     */
1282     private Node<K,V> findPredecessorOfLast() {
1283     for (;;) {
1284     Index<K,V> q = head;
1285     for (;;) {
1286     Index<K,V> d, r;
1287     if ((r = q.right) != null) {
1288     if (r.indexesDeletedNode()) {
1289     q.unlink(r);
1290     break; // must restart
1291     }
1292     // proceed as far across as possible without overshooting
1293     if (r.node.next != null) {
1294     q = r;
1295     continue;
1296     }
1297     }
1298     if ((d = q.down) != null)
1299     q = d;
1300     else
1301     return q.node;
1302     }
1303     }
1304     }
1305 dl 1.1
1306     /**
1307 jsr166 1.32 * Removes last entry; returns key or null if empty.
1308     * @return null if empty, else key of last entry
1309 dl 1.1 */
1310 dl 1.31 K pollLastKey() {
1311 dl 1.9 for (;;) {
1312 dl 1.1 Node<K,V> b = findPredecessorOfLast();
1313     Node<K,V> n = b.next;
1314     if (n == null) {
1315     if (b.isBaseHeader()) // empty
1316     return null;
1317 dl 1.9 else
1318 dl 1.1 continue; // all b's successors are deleted; retry
1319     }
1320     for (;;) {
1321     Node<K,V> f = n.next;
1322     if (n != b.next) // inconsistent read
1323     break;
1324     Object v = n.value;
1325     if (v == null) { // n is deleted
1326     n.helpDelete(b, f);
1327     break;
1328     }
1329     if (v == n || b.value == null) // b is deleted
1330     break;
1331     if (f != null) {
1332     b = n;
1333     n = f;
1334     continue;
1335     }
1336 dl 1.9 if (!n.casValue(v, null))
1337 dl 1.1 break;
1338     K key = n.key;
1339 dl 1.9 Comparable<? super K> ck = comparable(key);
1340     if (!n.appendMarker(f) || !b.casNext(n, f))
1341 dl 1.1 findNode(ck); // Retry via findNode
1342     else {
1343     findPredecessor(ck); // Clean index
1344 dl 1.9 if (head.right == null)
1345 dl 1.1 tryReduceLevel();
1346     }
1347 dl 1.31 return key;
1348 dl 1.1 }
1349     }
1350     }
1351    
1352     /**
1353 jsr166 1.32 * Removes last entry; returns its snapshot.
1354     * Specialized variant of doRemove.
1355     * @return null if empty, else snapshot of last entry
1356 dl 1.1 */
1357 dl 1.31 Map.Entry<K,V> doRemoveLastEntry() {
1358 dl 1.1 for (;;) {
1359 dl 1.31 Node<K,V> b = findPredecessorOfLast();
1360     Node<K,V> n = b.next;
1361     if (n == null) {
1362     if (b.isBaseHeader()) // empty
1363     return null;
1364     else
1365     continue; // all b's successors are deleted; retry
1366     }
1367 dl 1.1 for (;;) {
1368 dl 1.31 Node<K,V> f = n.next;
1369     if (n != b.next) // inconsistent read
1370     break;
1371     Object v = n.value;
1372     if (v == null) { // n is deleted
1373     n.helpDelete(b, f);
1374     break;
1375     }
1376     if (v == n || b.value == null) // b is deleted
1377     break;
1378     if (f != null) {
1379     b = n;
1380     n = f;
1381     continue;
1382     }
1383     if (!n.casValue(v, null))
1384     break;
1385     K key = n.key;
1386     Comparable<? super K> ck = comparable(key);
1387     if (!n.appendMarker(f) || !b.casNext(n, f))
1388     findNode(ck); // Retry via findNode
1389     else {
1390     findPredecessor(ck); // Clean index
1391     if (head.right == null)
1392     tryReduceLevel();
1393 dl 1.1 }
1394 dl 1.31 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1395 dl 1.1 }
1396     }
1397     }
1398    
1399     /* ---------------- Relational operations -------------- */
1400    
1401     // Control values OR'ed as arguments to findNear
1402    
1403     private static final int EQ = 1;
1404     private static final int LT = 2;
1405     private static final int GT = 0; // Actually checked as !LT
1406    
1407     /**
1408     * Utility for ceiling, floor, lower, higher methods.
1409     * @param kkey the key
1410     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1411     * @return nearest node fitting relation, or null if no such
1412     */
1413     Node<K,V> findNear(K kkey, int rel) {
1414 dl 1.9 Comparable<? super K> key = comparable(kkey);
1415 dl 1.1 for (;;) {
1416     Node<K,V> b = findPredecessor(key);
1417     Node<K,V> n = b.next;
1418     for (;;) {
1419 dl 1.9 if (n == null)
1420 dl 1.1 return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1421     Node<K,V> f = n.next;
1422     if (n != b.next) // inconsistent read
1423     break;
1424     Object v = n.value;
1425     if (v == null) { // n is deleted
1426     n.helpDelete(b, f);
1427     break;
1428     }
1429     if (v == n || b.value == null) // b is deleted
1430     break;
1431     int c = key.compareTo(n.key);
1432     if ((c == 0 && (rel & EQ) != 0) ||
1433     (c < 0 && (rel & LT) == 0))
1434     return n;
1435     if ( c <= 0 && (rel & LT) != 0)
1436     return (b.isBaseHeader())? null : b;
1437     b = n;
1438     n = f;
1439     }
1440     }
1441     }
1442    
1443     /**
1444 jsr166 1.10 * Returns SimpleImmutableEntry for results of findNear.
1445 dl 1.1 * @param kkey the key
1446     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1447     * @return Entry fitting relation, or null if no such
1448     */
1449 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> getNear(K kkey, int rel) {
1450 dl 1.1 for (;;) {
1451     Node<K,V> n = findNear(kkey, rel);
1452     if (n == null)
1453     return null;
1454 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1455 dl 1.1 if (e != null)
1456     return e;
1457     }
1458     }
1459    
1460     /**
1461 jsr166 1.10 * Returns ceiling, or first node if key is <tt>null</tt>.
1462 dl 1.1 */
1463     Node<K,V> findCeiling(K key) {
1464     return (key == null)? findFirst() : findNear(key, GT|EQ);
1465     }
1466    
1467     /**
1468 jsr166 1.10 * Returns lower node, or last node if key is <tt>null</tt>.
1469 dl 1.1 */
1470     Node<K,V> findLower(K key) {
1471     return (key == null)? findLast() : findNear(key, LT);
1472     }
1473    
1474     /**
1475 dl 1.24 * Returns key for results of findNear after screening to ensure
1476     * result is in given range. Needed by submaps.
1477     * @param kkey the key
1478     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1479     * @param least minimum allowed key value
1480     * @param fence key greater than maximum allowed key value
1481     * @return Key fitting relation, or <tt>null</tt> if no such
1482     */
1483     K getNearKey(K kkey, int rel, K least, K fence) {
1484     K key = kkey;
1485     // Don't return keys less than least
1486     if ((rel & LT) == 0) {
1487     if (compare(key, least) < 0) {
1488     key = least;
1489     rel = rel | EQ;
1490     }
1491     }
1492    
1493     for (;;) {
1494     Node<K,V> n = findNear(key, rel);
1495     if (n == null || !inHalfOpenRange(n.key, least, fence))
1496     return null;
1497     K k = n.key;
1498     V v = n.getValidValue();
1499 jsr166 1.28 if (v != null)
1500 dl 1.24 return k;
1501     }
1502     }
1503    
1504    
1505     /**
1506     * Returns SimpleImmutableEntry for results of findNear after
1507     * screening to ensure result is in given range. Needed by
1508 dl 1.2 * submaps.
1509 dl 1.1 * @param kkey the key
1510     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1511     * @param least minimum allowed key value
1512     * @param fence key greater than maximum allowed key value
1513 dl 1.24 * @return Entry fitting relation, or <tt>null</tt> if no such
1514 dl 1.1 */
1515 dl 1.24 Map.Entry<K,V> getNearEntry(K kkey, int rel, K least, K fence) {
1516 dl 1.1 K key = kkey;
1517     // Don't return keys less than least
1518     if ((rel & LT) == 0) {
1519     if (compare(key, least) < 0) {
1520     key = least;
1521     rel = rel | EQ;
1522     }
1523     }
1524    
1525     for (;;) {
1526     Node<K,V> n = findNear(key, rel);
1527     if (n == null || !inHalfOpenRange(n.key, least, fence))
1528     return null;
1529     K k = n.key;
1530     V v = n.getValidValue();
1531 jsr166 1.28 if (v != null)
1532 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1533 dl 1.1 }
1534     }
1535    
1536     /**
1537 jsr166 1.10 * Finds and removes least element of subrange.
1538 dl 1.1 * @param least minimum allowed key value
1539     * @param fence key greater than maximum allowed key value
1540 dl 1.24 * @return least Entry, or <tt>null</tt> if no such
1541 dl 1.1 */
1542 dl 1.24 Map.Entry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
1543 dl 1.1 for (;;) {
1544     Node<K,V> n = findCeiling(least);
1545     if (n == null)
1546     return null;
1547     K k = n.key;
1548     if (fence != null && compare(k, fence) >= 0)
1549     return null;
1550     V v = doRemove(k, null);
1551 jsr166 1.28 if (v != null)
1552 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1553 dl 1.1 }
1554     }
1555    
1556     /**
1557 jsr166 1.10 * Finds and removes greatest element of subrange.
1558 dl 1.1 * @param least minimum allowed key value
1559     * @param fence key greater than maximum allowed key value
1560 dl 1.24 * @return least Entry, or <tt>null</tt> if no such
1561 dl 1.1 */
1562 dl 1.25 Map.Entry<K,V> removeLastEntryOfSubrange(K least, K fence) {
1563 dl 1.1 for (;;) {
1564     Node<K,V> n = findLower(fence);
1565     if (n == null)
1566     return null;
1567     K k = n.key;
1568     if (least != null && compare(k, least) < 0)
1569     return null;
1570     V v = doRemove(k, null);
1571 jsr166 1.28 if (v != null)
1572 dl 1.24 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1573 dl 1.1 }
1574     }
1575    
1576 dl 1.24
1577    
1578 dl 1.1 /* ---------------- Constructors -------------- */
1579    
1580     /**
1581 jsr166 1.22 * Constructs a new, empty map, sorted according to the
1582     * {@linkplain Comparable natural ordering} of the keys.
1583 dl 1.1 */
1584     public ConcurrentSkipListMap() {
1585     this.comparator = null;
1586     initialize();
1587     }
1588    
1589     /**
1590 jsr166 1.22 * Constructs a new, empty map, sorted according to the specified
1591     * comparator.
1592 dl 1.1 *
1593 jsr166 1.22 * @param comparator the comparator that will be used to order this map.
1594     * If <tt>null</tt>, the {@linkplain Comparable natural
1595     * ordering} of the keys will be used.
1596 dl 1.1 */
1597 jsr166 1.22 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1598     this.comparator = comparator;
1599 dl 1.1 initialize();
1600     }
1601    
1602     /**
1603     * Constructs a new map containing the same mappings as the given map,
1604 jsr166 1.22 * sorted according to the {@linkplain Comparable natural ordering} of
1605     * the keys.
1606 dl 1.1 *
1607 jsr166 1.22 * @param m the map whose mappings are to be placed in this map
1608     * @throws ClassCastException if the keys in <tt>m</tt> are not
1609     * {@link Comparable}, or are not mutually comparable
1610     * @throws NullPointerException if the specified map or any of its keys
1611     * or values are null
1612 dl 1.1 */
1613     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1614     this.comparator = null;
1615     initialize();
1616     putAll(m);
1617     }
1618    
1619     /**
1620 jsr166 1.22 * Constructs a new map containing the same mappings and using the
1621     * same ordering as the specified sorted map.
1622     *
1623 dl 1.1 * @param m the sorted map whose mappings are to be placed in this
1624 jsr166 1.22 * map, and whose comparator is to be used to sort this map
1625     * @throws NullPointerException if the specified sorted map or any of
1626     * its keys or values are null
1627 dl 1.1 */
1628     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1629     this.comparator = m.comparator();
1630     initialize();
1631     buildFromSorted(m);
1632     }
1633    
1634     /**
1635 jsr166 1.22 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1636     * instance. (The keys and values themselves are not cloned.)
1637 dl 1.1 *
1638 jsr166 1.22 * @return a shallow copy of this map
1639 dl 1.1 */
1640 jsr166 1.16 public ConcurrentSkipListMap<K,V> clone() {
1641 dl 1.1 ConcurrentSkipListMap<K,V> clone = null;
1642     try {
1643     clone = (ConcurrentSkipListMap<K,V>) super.clone();
1644     } catch (CloneNotSupportedException e) {
1645     throw new InternalError();
1646     }
1647    
1648     clone.initialize();
1649     clone.buildFromSorted(this);
1650     return clone;
1651     }
1652    
1653     /**
1654     * Streamlined bulk insertion to initialize from elements of
1655     * given sorted map. Call only from constructor or clone
1656     * method.
1657     */
1658     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1659     if (map == null)
1660     throw new NullPointerException();
1661    
1662     HeadIndex<K,V> h = head;
1663     Node<K,V> basepred = h.node;
1664    
1665     // Track the current rightmost node at each level. Uses an
1666     // ArrayList to avoid committing to initial or maximum level.
1667     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1668    
1669     // initialize
1670 dl 1.9 for (int i = 0; i <= h.level; ++i)
1671 dl 1.1 preds.add(null);
1672     Index<K,V> q = h;
1673     for (int i = h.level; i > 0; --i) {
1674     preds.set(i, q);
1675     q = q.down;
1676     }
1677    
1678 dl 1.9 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1679 dl 1.1 map.entrySet().iterator();
1680     while (it.hasNext()) {
1681     Map.Entry<? extends K, ? extends V> e = it.next();
1682     int j = randomLevel();
1683     if (j > h.level) j = h.level + 1;
1684     K k = e.getKey();
1685     V v = e.getValue();
1686     if (k == null || v == null)
1687     throw new NullPointerException();
1688     Node<K,V> z = new Node<K,V>(k, v, null);
1689     basepred.next = z;
1690     basepred = z;
1691     if (j > 0) {
1692     Index<K,V> idx = null;
1693     for (int i = 1; i <= j; ++i) {
1694     idx = new Index<K,V>(z, idx, null);
1695 dl 1.9 if (i > h.level)
1696 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1697    
1698     if (i < preds.size()) {
1699     preds.get(i).right = idx;
1700     preds.set(i, idx);
1701     } else
1702     preds.add(idx);
1703     }
1704     }
1705     }
1706     head = h;
1707     }
1708    
1709     /* ---------------- Serialization -------------- */
1710    
1711     /**
1712 jsr166 1.10 * Save the state of this map to a stream.
1713 dl 1.1 *
1714     * @serialData The key (Object) and value (Object) for each
1715 jsr166 1.10 * key-value mapping represented by the map, followed by
1716 dl 1.1 * <tt>null</tt>. The key-value mappings are emitted in key-order
1717     * (as determined by the Comparator, or by the keys' natural
1718     * ordering if no Comparator).
1719     */
1720     private void writeObject(java.io.ObjectOutputStream s)
1721     throws java.io.IOException {
1722     // Write out the Comparator and any hidden stuff
1723     s.defaultWriteObject();
1724    
1725     // Write out keys and values (alternating)
1726     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1727     V v = n.getValidValue();
1728     if (v != null) {
1729     s.writeObject(n.key);
1730     s.writeObject(v);
1731     }
1732     }
1733     s.writeObject(null);
1734     }
1735    
1736     /**
1737 jsr166 1.10 * Reconstitute the map from a stream.
1738 dl 1.1 */
1739     private void readObject(final java.io.ObjectInputStream s)
1740     throws java.io.IOException, ClassNotFoundException {
1741     // Read in the Comparator and any hidden stuff
1742     s.defaultReadObject();
1743     // Reset transients
1744     initialize();
1745    
1746 dl 1.9 /*
1747 dl 1.1 * This is nearly identical to buildFromSorted, but is
1748     * distinct because readObject calls can't be nicely adapted
1749     * as the kind of iterator needed by buildFromSorted. (They
1750     * can be, but doing so requires type cheats and/or creation
1751     * of adaptor classes.) It is simpler to just adapt the code.
1752     */
1753    
1754     HeadIndex<K,V> h = head;
1755     Node<K,V> basepred = h.node;
1756     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1757 dl 1.9 for (int i = 0; i <= h.level; ++i)
1758 dl 1.1 preds.add(null);
1759     Index<K,V> q = h;
1760     for (int i = h.level; i > 0; --i) {
1761     preds.set(i, q);
1762     q = q.down;
1763     }
1764    
1765     for (;;) {
1766     Object k = s.readObject();
1767     if (k == null)
1768     break;
1769     Object v = s.readObject();
1770 dl 1.9 if (v == null)
1771 dl 1.1 throw new NullPointerException();
1772     K key = (K) k;
1773     V val = (V) v;
1774     int j = randomLevel();
1775     if (j > h.level) j = h.level + 1;
1776     Node<K,V> z = new Node<K,V>(key, val, null);
1777     basepred.next = z;
1778     basepred = z;
1779     if (j > 0) {
1780     Index<K,V> idx = null;
1781     for (int i = 1; i <= j; ++i) {
1782     idx = new Index<K,V>(z, idx, null);
1783 dl 1.9 if (i > h.level)
1784 dl 1.1 h = new HeadIndex<K,V>(h.node, h, idx, i);
1785    
1786     if (i < preds.size()) {
1787     preds.get(i).right = idx;
1788     preds.set(i, idx);
1789     } else
1790     preds.add(idx);
1791     }
1792     }
1793     }
1794     head = h;
1795     }
1796    
1797     /* ------ Map API methods ------ */
1798    
1799     /**
1800     * Returns <tt>true</tt> if this map contains a mapping for the specified
1801     * key.
1802 jsr166 1.22 *
1803     * @param key key whose presence in this map is to be tested
1804     * @return <tt>true</tt> if this map contains a mapping for the specified key
1805     * @throws ClassCastException if the specified key cannot be compared
1806     * with the keys currently in the map
1807     * @throws NullPointerException if the specified key is null
1808 dl 1.1 */
1809     public boolean containsKey(Object key) {
1810     return doGet(key) != null;
1811     }
1812    
1813     /**
1814 jsr166 1.22 * Returns the value to which this map maps the specified key, or
1815     * <tt>null</tt> if the map contains no mapping for the key.
1816 dl 1.1 *
1817 jsr166 1.22 * @param key key whose associated value is to be returned
1818 dl 1.1 * @return the value to which this map maps the specified key, or
1819 jsr166 1.22 * <tt>null</tt> if the map contains no mapping for the key
1820     * @throws ClassCastException if the specified key cannot be compared
1821     * with the keys currently in the map
1822     * @throws NullPointerException if the specified key is null
1823 dl 1.1 */
1824     public V get(Object key) {
1825     return doGet(key);
1826     }
1827    
1828     /**
1829     * Associates the specified value with the specified key in this map.
1830 jsr166 1.22 * If the map previously contained a mapping for the key, the old
1831 dl 1.1 * value is replaced.
1832     *
1833 jsr166 1.22 * @param key key with which the specified value is to be associated
1834     * @param value value to be associated with the specified key
1835     * @return the previous value associated with the specified key, or
1836     * <tt>null</tt> if there was no mapping for the key
1837     * @throws ClassCastException if the specified key cannot be compared
1838     * with the keys currently in the map
1839     * @throws NullPointerException if the specified key or value is null
1840 dl 1.1 */
1841     public V put(K key, V value) {
1842 dl 1.9 if (value == null)
1843 dl 1.1 throw new NullPointerException();
1844     return doPut(key, value, false);
1845     }
1846    
1847     /**
1848 jsr166 1.36 * Removes the mapping for the specified key from this map if present.
1849 dl 1.1 *
1850     * @param key key for which mapping should be removed
1851 jsr166 1.22 * @return the previous value associated with the specified key, or
1852     * <tt>null</tt> if there was no mapping for the key
1853     * @throws ClassCastException if the specified key cannot be compared
1854     * with the keys currently in the map
1855     * @throws NullPointerException if the specified key is null
1856 dl 1.1 */
1857     public V remove(Object key) {
1858     return doRemove(key, null);
1859     }
1860    
1861     /**
1862     * Returns <tt>true</tt> if this map maps one or more keys to the
1863     * specified value. This operation requires time linear in the
1864 jsr166 1.10 * map size.
1865 dl 1.1 *
1866 jsr166 1.22 * @param value value whose presence in this map is to be tested
1867     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1868     * <tt>false</tt> otherwise
1869     * @throws NullPointerException if the specified value is null
1870 dl 1.9 */
1871 dl 1.1 public boolean containsValue(Object value) {
1872 dl 1.9 if (value == null)
1873 dl 1.1 throw new NullPointerException();
1874     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1875     V v = n.getValidValue();
1876     if (v != null && value.equals(v))
1877     return true;
1878     }
1879     return false;
1880     }
1881    
1882     /**
1883 dl 1.6 * Returns the number of key-value mappings in this map. If this map
1884 dl 1.1 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1885     * returns <tt>Integer.MAX_VALUE</tt>.
1886     *
1887     * <p>Beware that, unlike in most collections, this method is
1888     * <em>NOT</em> a constant-time operation. Because of the
1889     * asynchronous nature of these maps, determining the current
1890     * number of elements requires traversing them all to count them.
1891     * Additionally, it is possible for the size to change during
1892     * execution of this method, in which case the returned result
1893     * will be inaccurate. Thus, this method is typically not very
1894     * useful in concurrent applications.
1895     *
1896 jsr166 1.22 * @return the number of elements in this map
1897 dl 1.1 */
1898     public int size() {
1899     long count = 0;
1900     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1901     if (n.getValidValue() != null)
1902     ++count;
1903     }
1904     return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1905     }
1906    
1907     /**
1908     * Returns <tt>true</tt> if this map contains no key-value mappings.
1909 jsr166 1.22 * @return <tt>true</tt> if this map contains no key-value mappings
1910 dl 1.1 */
1911     public boolean isEmpty() {
1912     return findFirst() == null;
1913     }
1914    
1915     /**
1916 jsr166 1.22 * Removes all of the mappings from this map.
1917 dl 1.1 */
1918     public void clear() {
1919     initialize();
1920     }
1921    
1922     /**
1923 jsr166 1.22 * Returns a {@link Set} view of the keys contained in this map.
1924     * The set's iterator returns the keys in ascending order.
1925     * The set is backed by the map, so changes to the map are
1926     * reflected in the set, and vice-versa. The set supports element
1927     * removal, which removes the corresponding mapping from the map,
1928     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1929     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1930     * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1931     * operations.
1932     *
1933     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1934     * that will never throw {@link ConcurrentModificationException},
1935 dl 1.1 * and guarantees to traverse elements as they existed upon
1936     * construction of the iterator, and may (but is not guaranteed to)
1937     * reflect any modifications subsequent to construction.
1938     *
1939 jsr166 1.22 * @return a set view of the keys contained in this map, sorted in
1940     * ascending order
1941 dl 1.1 */
1942     public Set<K> keySet() {
1943     /*
1944 dl 1.5 * Note: Lazy initialization works here and for other views
1945 dl 1.1 * because view classes are stateless/immutable so it doesn't
1946     * matter wrt correctness if more than one is created (which
1947     * will only rarely happen). Even so, the following idiom
1948     * conservatively ensures that the method returns the one it
1949     * created if it does so, not one created by another racing
1950     * thread.
1951     */
1952     KeySet ks = keySet;
1953     return (ks != null) ? ks : (keySet = new KeySet());
1954     }
1955    
1956     /**
1957 jsr166 1.22 * Returns a {@link Set} view of the keys contained in this map.
1958     * The set's iterator returns the keys in descending order.
1959     * The set is backed by the map, so changes to the map are
1960     * reflected in the set, and vice-versa. The set supports element
1961     * removal, which removes the corresponding mapping from the map,
1962     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1963     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1964     * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1965     * operations.
1966     *
1967     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1968     * that will never throw {@link ConcurrentModificationException},
1969 dl 1.1 * and guarantees to traverse elements as they existed upon
1970 jsr166 1.22 * construction of the iterator, and may (but is not guaranteed to)
1971     * reflect any modifications subsequent to construction.
1972 dl 1.1 */
1973     public Set<K> descendingKeySet() {
1974     /*
1975 dl 1.5 * Note: Lazy initialization works here and for other views
1976 dl 1.1 * because view classes are stateless/immutable so it doesn't
1977     * matter wrt correctness if more than one is created (which
1978     * will only rarely happen). Even so, the following idiom
1979     * conservatively ensures that the method returns the one it
1980     * created if it does so, not one created by another racing
1981     * thread.
1982     */
1983     DescendingKeySet ks = descendingKeySet;
1984     return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1985     }
1986    
1987     /**
1988 jsr166 1.22 * Returns a {@link Collection} view of the values contained in this map.
1989     * The collection's iterator returns the values in ascending order
1990     * of the corresponding keys.
1991 dl 1.1 * The collection is backed by the map, so changes to the map are
1992     * reflected in the collection, and vice-versa. The collection
1993     * supports element removal, which removes the corresponding
1994 jsr166 1.22 * mapping from the map, via the <tt>Iterator.remove</tt>,
1995 dl 1.1 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1996 jsr166 1.22 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
1997     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1998 dl 1.1 *
1999 jsr166 1.22 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2000     * that will never throw {@link ConcurrentModificationException},
2001     * and guarantees to traverse elements as they existed upon
2002     * construction of the iterator, and may (but is not guaranteed to)
2003     * reflect any modifications subsequent to construction.
2004 dl 1.1 */
2005     public Collection<V> values() {
2006     Values vs = values;
2007     return (vs != null) ? vs : (values = new Values());
2008     }
2009    
2010     /**
2011 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
2012     * The set's iterator returns the entries in ascending key order.
2013     * The set is backed by the map, so changes to the map are
2014     * reflected in the set, and vice-versa. The set supports element
2015     * removal, which removes the corresponding mapping from the map,
2016     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2017     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2018 dl 1.1 * operations. It does not support the <tt>add</tt> or
2019 jsr166 1.22 * <tt>addAll</tt> operations.
2020     *
2021     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2022     * that will never throw {@link ConcurrentModificationException},
2023     * and guarantees to traverse elements as they existed upon
2024     * construction of the iterator, and may (but is not guaranteed to)
2025     * reflect any modifications subsequent to construction.
2026     *
2027     * <p>The <tt>Map.Entry</tt> elements returned by
2028 dl 1.1 * <tt>iterator.next()</tt> do <em>not</em> support the
2029     * <tt>setValue</tt> operation.
2030     *
2031 jsr166 1.22 * @return a set view of the mappings contained in this map,
2032     * sorted in ascending key order
2033 dl 1.1 */
2034     public Set<Map.Entry<K,V>> entrySet() {
2035     EntrySet es = entrySet;
2036     return (es != null) ? es : (entrySet = new EntrySet());
2037     }
2038    
2039     /**
2040 jsr166 1.22 * Returns a {@link Set} view of the mappings contained in this map.
2041     * The set's iterator returns the entries in descending key order.
2042     * The set is backed by the map, so changes to the map are
2043     * reflected in the set, and vice-versa. The set supports element
2044 dl 1.1 * removal, which removes the corresponding mapping from the map,
2045 jsr166 1.22 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2046     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
2047 dl 1.1 * operations. It does not support the <tt>add</tt> or
2048 jsr166 1.22 * <tt>addAll</tt> operations.
2049     *
2050     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2051     * that will never throw {@link ConcurrentModificationException},
2052     * and guarantees to traverse elements as they existed upon
2053     * construction of the iterator, and may (but is not guaranteed to)
2054     * reflect any modifications subsequent to construction.
2055     *
2056     * <p>The <tt>Map.Entry</tt> elements returned by
2057 dl 1.1 * <tt>iterator.next()</tt> do <em>not</em> support the
2058     * <tt>setValue</tt> operation.
2059     */
2060     public Set<Map.Entry<K,V>> descendingEntrySet() {
2061     DescendingEntrySet es = descendingEntrySet;
2062     return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2063     }
2064    
2065     /* ---------------- AbstractMap Overrides -------------- */
2066    
2067     /**
2068     * Compares the specified object with this map for equality.
2069     * Returns <tt>true</tt> if the given object is also a map and the
2070     * two maps represent the same mappings. More formally, two maps
2071 jsr166 1.22 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
2072     * <tt>m1.keySet().equals(m2.keySet())</tt> and for every key
2073     * <tt>k</tt> in <tt>m1.keySet()</tt>, <tt> (m1.get(k)==null ?
2074     * m2.get(k)==null : m1.get(k).equals(m2.get(k))) </tt>. This
2075 dl 1.1 * operation may return misleading results if either map is
2076     * concurrently modified during execution of this method.
2077     *
2078 jsr166 1.22 * @param o object to be compared for equality with this map
2079     * @return <tt>true</tt> if the specified object is equal to this map
2080 dl 1.1 */
2081     public boolean equals(Object o) {
2082     if (o == this)
2083     return true;
2084     if (!(o instanceof Map))
2085     return false;
2086 dl 1.25 Map<?,?> m = (Map<?,?>) o;
2087 dl 1.1 try {
2088 dl 1.25 for (Map.Entry<K,V> e : this.entrySet())
2089     if (! e.getValue().equals(m.get(e.getKey())))
2090     return false;
2091     for (Map.Entry<?,?> e : m.entrySet()) {
2092     Object k = e.getKey();
2093     Object v = e.getValue();
2094     if (k == null || v == null || !v.equals(get(k)))
2095     return false;
2096     }
2097     return true;
2098 jsr166 1.15 } catch (ClassCastException unused) {
2099 dl 1.1 return false;
2100 jsr166 1.15 } catch (NullPointerException unused) {
2101 dl 1.1 return false;
2102     }
2103     }
2104    
2105     /* ------ ConcurrentMap API methods ------ */
2106    
2107     /**
2108 jsr166 1.22 * {@inheritDoc}
2109     *
2110     * @return the previous value associated with the specified key,
2111     * or <tt>null</tt> if there was no mapping for the key
2112     * @throws ClassCastException if the specified key cannot be compared
2113     * with the keys currently in the map
2114     * @throws NullPointerException if the specified key or value is null
2115 dl 1.1 */
2116     public V putIfAbsent(K key, V value) {
2117 dl 1.9 if (value == null)
2118 dl 1.1 throw new NullPointerException();
2119     return doPut(key, value, true);
2120     }
2121    
2122     /**
2123 jsr166 1.22 * {@inheritDoc}
2124     *
2125     * @throws ClassCastException if the specified key cannot be compared
2126     * with the keys currently in the map
2127 dl 1.23 * @throws NullPointerException if the specified key is null
2128 dl 1.1 */
2129     public boolean remove(Object key, Object value) {
2130 dl 1.9 if (value == null)
2131 dl 1.23 return false;
2132 dl 1.1 return doRemove(key, value) != null;
2133     }
2134    
2135     /**
2136 jsr166 1.22 * {@inheritDoc}
2137     *
2138     * @throws ClassCastException if the specified key cannot be compared
2139     * with the keys currently in the map
2140     * @throws NullPointerException if any of the arguments are null
2141 dl 1.1 */
2142     public boolean replace(K key, V oldValue, V newValue) {
2143 dl 1.9 if (oldValue == null || newValue == null)
2144 dl 1.1 throw new NullPointerException();
2145 dl 1.9 Comparable<? super K> k = comparable(key);
2146 dl 1.1 for (;;) {
2147     Node<K,V> n = findNode(k);
2148     if (n == null)
2149     return false;
2150     Object v = n.value;
2151     if (v != null) {
2152     if (!oldValue.equals(v))
2153     return false;
2154     if (n.casValue(v, newValue))
2155     return true;
2156     }
2157     }
2158     }
2159    
2160     /**
2161 jsr166 1.22 * {@inheritDoc}
2162     *
2163     * @return the previous value associated with the specified key,
2164     * or <tt>null</tt> if there was no mapping for the key
2165     * @throws ClassCastException if the specified key cannot be compared
2166     * with the keys currently in the map
2167     * @throws NullPointerException if the specified key or value is null
2168 dl 1.1 */
2169     public V replace(K key, V value) {
2170 dl 1.9 if (value == null)
2171 dl 1.1 throw new NullPointerException();
2172 dl 1.9 Comparable<? super K> k = comparable(key);
2173 dl 1.1 for (;;) {
2174     Node<K,V> n = findNode(k);
2175     if (n == null)
2176     return null;
2177     Object v = n.value;
2178     if (v != null && n.casValue(v, value))
2179     return (V)v;
2180     }
2181     }
2182    
2183     /* ------ SortedMap API methods ------ */
2184    
2185     public Comparator<? super K> comparator() {
2186     return comparator;
2187     }
2188    
2189     /**
2190 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2191 dl 1.1 */
2192 dl 1.9 public K firstKey() {
2193 dl 1.1 Node<K,V> n = findFirst();
2194     if (n == null)
2195     throw new NoSuchElementException();
2196     return n.key;
2197     }
2198    
2199     /**
2200 jsr166 1.22 * @throws NoSuchElementException {@inheritDoc}
2201 dl 1.1 */
2202     public K lastKey() {
2203     Node<K,V> n = findLast();
2204     if (n == null)
2205     throw new NoSuchElementException();
2206     return n.key;
2207     }
2208    
2209     /**
2210 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2211     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2212     * @throws IllegalArgumentException {@inheritDoc}
2213 dl 1.1 */
2214 dl 1.6 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
2215 dl 1.1 if (fromKey == null || toKey == null)
2216     throw new NullPointerException();
2217 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, toKey);
2218 dl 1.1 }
2219    
2220     /**
2221 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2222     * @throws NullPointerException if <tt>toKey</tt> is null
2223     * @throws IllegalArgumentException {@inheritDoc}
2224 dl 1.1 */
2225 dl 1.6 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
2226 dl 1.1 if (toKey == null)
2227     throw new NullPointerException();
2228 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(this, null, toKey);
2229 dl 1.1 }
2230    
2231     /**
2232 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2233     * @throws NullPointerException if <tt>fromKey</tt> is null
2234     * @throws IllegalArgumentException {@inheritDoc}
2235 dl 1.1 */
2236 jsr166 1.22 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
2237 dl 1.6 if (fromKey == null)
2238     throw new NullPointerException();
2239 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, null);
2240 dl 1.6 }
2241    
2242     /**
2243 jsr166 1.22 * Equivalent to {@link #navigableSubMap} but with a return type
2244     * conforming to the <tt>SortedMap</tt> interface.
2245     *
2246     * <p>{@inheritDoc}
2247     *
2248     * @throws ClassCastException {@inheritDoc}
2249     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2250     * @throws IllegalArgumentException {@inheritDoc}
2251 dl 1.6 */
2252     public SortedMap<K,V> subMap(K fromKey, K toKey) {
2253 dl 1.7 return navigableSubMap(fromKey, toKey);
2254 dl 1.6 }
2255    
2256     /**
2257 jsr166 1.22 * Equivalent to {@link #navigableHeadMap} but with a return type
2258     * conforming to the <tt>SortedMap</tt> interface.
2259     *
2260     * <p>{@inheritDoc}
2261     *
2262     * @throws ClassCastException {@inheritDoc}
2263     * @throws NullPointerException if <tt>toKey</tt> is null
2264     * @throws IllegalArgumentException {@inheritDoc}
2265 dl 1.6 */
2266     public SortedMap<K,V> headMap(K toKey) {
2267 dl 1.7 return navigableHeadMap(toKey);
2268 dl 1.6 }
2269    
2270     /**
2271 jsr166 1.22 * Equivalent to {@link #navigableTailMap} but with a return type
2272     * conforming to the <tt>SortedMap</tt> interface.
2273     *
2274     * <p>{@inheritDoc}
2275     *
2276     * @throws ClassCastException {@inheritDoc}
2277     * @throws NullPointerException if <tt>fromKey</tt> is null
2278     * @throws IllegalArgumentException {@inheritDoc}
2279 dl 1.6 */
2280 jsr166 1.22 public SortedMap<K,V> tailMap(K fromKey) {
2281 dl 1.7 return navigableTailMap(fromKey);
2282 dl 1.1 }
2283    
2284     /* ---------------- Relational operations -------------- */
2285    
2286     /**
2287 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2288     * strictly less than the given key, or <tt>null</tt> if there is
2289     * no such key. The returned entry does <em>not</em> support the
2290     * <tt>Entry.setValue</tt> method.
2291 dl 1.9 *
2292 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2293     * @throws NullPointerException if the specified key is null
2294 dl 1.1 */
2295 jsr166 1.22 public Map.Entry<K,V> lowerEntry(K key) {
2296     return getNear(key, LT);
2297 dl 1.1 }
2298    
2299     /**
2300 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2301     * @throws NullPointerException if the specified key is null
2302 dl 1.1 */
2303 jsr166 1.22 public K lowerKey(K key) {
2304     Node<K,V> n = findNear(key, LT);
2305 dl 1.1 return (n == null)? null : n.key;
2306     }
2307    
2308     /**
2309 jsr166 1.22 * Returns a key-value mapping associated with the greatest key
2310     * less than or equal to the given key, or <tt>null</tt> if there
2311     * is no such key. The returned entry does <em>not</em> support
2312 dl 1.1 * the <tt>Entry.setValue</tt> method.
2313 dl 1.9 *
2314 jsr166 1.22 * @param key the key
2315     * @throws ClassCastException {@inheritDoc}
2316     * @throws NullPointerException if the specified key is null
2317 dl 1.1 */
2318 jsr166 1.22 public Map.Entry<K,V> floorEntry(K key) {
2319     return getNear(key, LT|EQ);
2320 dl 1.1 }
2321    
2322     /**
2323 jsr166 1.22 * @param key the key
2324     * @throws ClassCastException {@inheritDoc}
2325     * @throws NullPointerException if the specified key is null
2326 dl 1.1 */
2327 jsr166 1.22 public K floorKey(K key) {
2328     Node<K,V> n = findNear(key, LT|EQ);
2329 dl 1.1 return (n == null)? null : n.key;
2330     }
2331    
2332     /**
2333 jsr166 1.22 * Returns a key-value mapping associated with the least key
2334     * greater than or equal to the given key, or <tt>null</tt> if
2335     * there is no such entry. The returned entry does <em>not</em>
2336     * support the <tt>Entry.setValue</tt> method.
2337 dl 1.9 *
2338 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2339     * @throws NullPointerException if the specified key is null
2340 dl 1.1 */
2341 jsr166 1.22 public Map.Entry<K,V> ceilingEntry(K key) {
2342     return getNear(key, GT|EQ);
2343 dl 1.1 }
2344    
2345     /**
2346 jsr166 1.22 * @throws ClassCastException {@inheritDoc}
2347     * @throws NullPointerException if the specified key is null
2348 dl 1.1 */
2349 jsr166 1.22 public K ceilingKey(K key) {
2350     Node<K,V> n = findNear(key, GT|EQ);
2351 dl 1.1 return (n == null)? null : n.key;
2352     }
2353    
2354     /**
2355     * Returns a key-value mapping associated with the least key
2356     * strictly greater than the given key, or <tt>null</tt> if there
2357 jsr166 1.22 * is no such key. The returned entry does <em>not</em> support
2358 dl 1.1 * the <tt>Entry.setValue</tt> method.
2359 dl 1.9 *
2360 jsr166 1.22 * @param key the key
2361     * @throws ClassCastException {@inheritDoc}
2362     * @throws NullPointerException if the specified key is null
2363 dl 1.1 */
2364     public Map.Entry<K,V> higherEntry(K key) {
2365     return getNear(key, GT);
2366     }
2367    
2368     /**
2369 jsr166 1.22 * @param key the key
2370     * @throws ClassCastException {@inheritDoc}
2371     * @throws NullPointerException if the specified key is null
2372 dl 1.1 */
2373     public K higherKey(K key) {
2374     Node<K,V> n = findNear(key, GT);
2375     return (n == null)? null : n.key;
2376     }
2377    
2378     /**
2379     * Returns a key-value mapping associated with the least
2380     * key in this map, or <tt>null</tt> if the map is empty.
2381     * The returned entry does <em>not</em> support
2382     * the <tt>Entry.setValue</tt> method.
2383     */
2384     public Map.Entry<K,V> firstEntry() {
2385     for (;;) {
2386     Node<K,V> n = findFirst();
2387 dl 1.9 if (n == null)
2388 dl 1.1 return null;
2389 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2390 dl 1.1 if (e != null)
2391     return e;
2392     }
2393     }
2394    
2395     /**
2396     * Returns a key-value mapping associated with the greatest
2397     * key in this map, or <tt>null</tt> if the map is empty.
2398     * The returned entry does <em>not</em> support
2399     * the <tt>Entry.setValue</tt> method.
2400     */
2401     public Map.Entry<K,V> lastEntry() {
2402     for (;;) {
2403     Node<K,V> n = findLast();
2404 dl 1.9 if (n == null)
2405 dl 1.1 return null;
2406 dl 1.2 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2407 dl 1.1 if (e != null)
2408     return e;
2409     }
2410     }
2411    
2412     /**
2413     * Removes and returns a key-value mapping associated with
2414     * the least key in this map, or <tt>null</tt> if the map is empty.
2415     * The returned entry does <em>not</em> support
2416     * the <tt>Entry.setValue</tt> method.
2417     */
2418     public Map.Entry<K,V> pollFirstEntry() {
2419 dl 1.25 return doRemoveFirstEntry();
2420 dl 1.1 }
2421    
2422     /**
2423     * Removes and returns a key-value mapping associated with
2424     * the greatest key in this map, or <tt>null</tt> if the map is empty.
2425     * The returned entry does <em>not</em> support
2426     * the <tt>Entry.setValue</tt> method.
2427     */
2428     public Map.Entry<K,V> pollLastEntry() {
2429 dl 1.31 return doRemoveLastEntry();
2430 dl 1.1 }
2431    
2432    
2433     /* ---------------- Iterators -------------- */
2434    
2435     /**
2436     * Base of ten kinds of iterator classes:
2437 dl 1.9 * ascending: {map, submap} X {key, value, entry}
2438     * descending: {map, submap} X {key, entry}
2439 dl 1.1 */
2440     abstract class Iter {
2441     /** the last node returned by next() */
2442     Node<K,V> last;
2443     /** the next node to return from next(); */
2444     Node<K,V> next;
2445     /** Cache of next value field to maintain weak consistency */
2446     Object nextValue;
2447    
2448     Iter() {}
2449    
2450 dl 1.9 public final boolean hasNext() {
2451     return next != null;
2452 dl 1.1 }
2453    
2454 jsr166 1.13 /** Initializes ascending iterator for entire range. */
2455 dl 1.1 final void initAscending() {
2456     for (;;) {
2457     next = findFirst();
2458     if (next == null)
2459     break;
2460     nextValue = next.value;
2461     if (nextValue != null && nextValue != next)
2462     break;
2463     }
2464     }
2465    
2466 dl 1.9 /**
2467 jsr166 1.13 * Initializes ascending iterator starting at given least key,
2468 dl 1.1 * or first node if least is <tt>null</tt>, but not greater or
2469     * equal to fence, or end if fence is <tt>null</tt>.
2470     */
2471 dl 1.9 final void initAscending(K least, K fence) {
2472 dl 1.1 for (;;) {
2473     next = findCeiling(least);
2474     if (next == null)
2475     break;
2476     nextValue = next.value;
2477     if (nextValue != null && nextValue != next) {
2478     if (fence != null && compare(fence, next.key) <= 0) {
2479     next = null;
2480     nextValue = null;
2481     }
2482     break;
2483     }
2484     }
2485     }
2486 jsr166 1.13 /** Advances next to higher entry. */
2487 dl 1.1 final void ascend() {
2488     if ((last = next) == null)
2489     throw new NoSuchElementException();
2490     for (;;) {
2491     next = next.next;
2492     if (next == null)
2493     break;
2494     nextValue = next.value;
2495     if (nextValue != null && nextValue != next)
2496     break;
2497     }
2498     }
2499    
2500     /**
2501     * Version of ascend for submaps to stop at fence
2502     */
2503     final void ascend(K fence) {
2504     if ((last = next) == null)
2505     throw new NoSuchElementException();
2506     for (;;) {
2507     next = next.next;
2508     if (next == null)
2509     break;
2510     nextValue = next.value;
2511     if (nextValue != null && nextValue != next) {
2512     if (fence != null && compare(fence, next.key) <= 0) {
2513     next = null;
2514     nextValue = null;
2515     }
2516     break;
2517     }
2518     }
2519     }
2520    
2521 jsr166 1.13 /** Initializes descending iterator for entire range. */
2522 dl 1.1 final void initDescending() {
2523     for (;;) {
2524     next = findLast();
2525     if (next == null)
2526     break;
2527     nextValue = next.value;
2528     if (nextValue != null && nextValue != next)
2529     break;
2530     }
2531     }
2532    
2533 dl 1.9 /**
2534 jsr166 1.13 * Initializes descending iterator starting at key less
2535 dl 1.1 * than or equal to given fence key, or
2536     * last node if fence is <tt>null</tt>, but not less than
2537 jsr166 1.14 * least, or beginning if least is <tt>null</tt>.
2538 dl 1.1 */
2539 dl 1.9 final void initDescending(K least, K fence) {
2540 dl 1.1 for (;;) {
2541     next = findLower(fence);
2542     if (next == null)
2543     break;
2544     nextValue = next.value;
2545     if (nextValue != null && nextValue != next) {
2546     if (least != null && compare(least, next.key) > 0) {
2547     next = null;
2548     nextValue = null;
2549     }
2550     break;
2551     }
2552     }
2553     }
2554    
2555 jsr166 1.13 /** Advances next to lower entry. */
2556 dl 1.1 final void descend() {
2557     if ((last = next) == null)
2558     throw new NoSuchElementException();
2559     K k = last.key;
2560     for (;;) {
2561     next = findNear(k, LT);
2562     if (next == null)
2563     break;
2564     nextValue = next.value;
2565     if (nextValue != null && nextValue != next)
2566     break;
2567     }
2568     }
2569    
2570     /**
2571     * Version of descend for submaps to stop at least
2572     */
2573     final void descend(K least) {
2574     if ((last = next) == null)
2575     throw new NoSuchElementException();
2576     K k = last.key;
2577     for (;;) {
2578     next = findNear(k, LT);
2579     if (next == null)
2580     break;
2581     nextValue = next.value;
2582     if (nextValue != null && nextValue != next) {
2583     if (least != null && compare(least, next.key) > 0) {
2584     next = null;
2585     nextValue = null;
2586     }
2587     break;
2588     }
2589     }
2590     }
2591    
2592     public void remove() {
2593     Node<K,V> l = last;
2594     if (l == null)
2595     throw new IllegalStateException();
2596     // It would not be worth all of the overhead to directly
2597     // unlink from here. Using remove is fast enough.
2598     ConcurrentSkipListMap.this.remove(l.key);
2599     }
2600    
2601     }
2602    
2603     final class ValueIterator extends Iter implements Iterator<V> {
2604     ValueIterator() {
2605     initAscending();
2606     }
2607 dl 1.9 public V next() {
2608 dl 1.1 Object v = nextValue;
2609     ascend();
2610     return (V)v;
2611     }
2612     }
2613    
2614     final class KeyIterator extends Iter implements Iterator<K> {
2615     KeyIterator() {
2616     initAscending();
2617     }
2618 dl 1.9 public K next() {
2619 dl 1.1 Node<K,V> n = next;
2620     ascend();
2621     return n.key;
2622     }
2623     }
2624    
2625     class SubMapValueIterator extends Iter implements Iterator<V> {
2626     final K fence;
2627     SubMapValueIterator(K least, K fence) {
2628     initAscending(least, fence);
2629     this.fence = fence;
2630     }
2631    
2632 dl 1.9 public V next() {
2633 dl 1.1 Object v = nextValue;
2634     ascend(fence);
2635     return (V)v;
2636     }
2637     }
2638    
2639     final class SubMapKeyIterator extends Iter implements Iterator<K> {
2640     final K fence;
2641     SubMapKeyIterator(K least, K fence) {
2642     initAscending(least, fence);
2643     this.fence = fence;
2644     }
2645    
2646 dl 1.9 public K next() {
2647 dl 1.1 Node<K,V> n = next;
2648     ascend(fence);
2649     return n.key;
2650     }
2651     }
2652    
2653     final class DescendingKeyIterator extends Iter implements Iterator<K> {
2654     DescendingKeyIterator() {
2655     initDescending();
2656     }
2657 dl 1.9 public K next() {
2658 dl 1.1 Node<K,V> n = next;
2659     descend();
2660     return n.key;
2661     }
2662     }
2663    
2664     final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2665     final K least;
2666     DescendingSubMapKeyIterator(K least, K fence) {
2667     initDescending(least, fence);
2668     this.least = least;
2669     }
2670    
2671 dl 1.9 public K next() {
2672 dl 1.1 Node<K,V> n = next;
2673     descend(least);
2674     return n.key;
2675     }
2676     }
2677    
2678     /**
2679     * Entry iterators use the same trick as in ConcurrentHashMap and
2680     * elsewhere of using the iterator itself to represent entries,
2681     * thus avoiding having to create entry objects in next().
2682     */
2683     abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2684     /** Cache of last value returned */
2685     Object lastValue;
2686    
2687 dl 1.9 EntryIter() {
2688 dl 1.1 }
2689    
2690     public K getKey() {
2691     Node<K,V> l = last;
2692     if (l == null)
2693     throw new IllegalStateException();
2694     return l.key;
2695     }
2696    
2697     public V getValue() {
2698     Object v = lastValue;
2699     if (last == null || v == null)
2700     throw new IllegalStateException();
2701     return (V)v;
2702     }
2703    
2704     public V setValue(V value) {
2705     throw new UnsupportedOperationException();
2706     }
2707    
2708     public boolean equals(Object o) {
2709     // If not acting as entry, just use default.
2710     if (last == null)
2711     return super.equals(o);
2712     if (!(o instanceof Map.Entry))
2713     return false;
2714     Map.Entry e = (Map.Entry)o;
2715     return (getKey().equals(e.getKey()) &&
2716     getValue().equals(e.getValue()));
2717     }
2718    
2719     public int hashCode() {
2720     // If not acting as entry, just use default.
2721     if (last == null)
2722     return super.hashCode();
2723     return getKey().hashCode() ^ getValue().hashCode();
2724     }
2725    
2726     public String toString() {
2727     // If not acting as entry, just use default.
2728     if (last == null)
2729     return super.toString();
2730     return getKey() + "=" + getValue();
2731     }
2732     }
2733    
2734 dl 1.9 final class EntryIterator extends EntryIter
2735 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2736 dl 1.9 EntryIterator() {
2737     initAscending();
2738 dl 1.1 }
2739 dl 1.9 public Map.Entry<K,V> next() {
2740 dl 1.1 lastValue = nextValue;
2741     ascend();
2742     return this;
2743     }
2744     }
2745    
2746 dl 1.9 final class SubMapEntryIterator extends EntryIter
2747 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2748     final K fence;
2749     SubMapEntryIterator(K least, K fence) {
2750     initAscending(least, fence);
2751     this.fence = fence;
2752     }
2753    
2754 dl 1.9 public Map.Entry<K,V> next() {
2755 dl 1.1 lastValue = nextValue;
2756     ascend(fence);
2757     return this;
2758     }
2759     }
2760    
2761 dl 1.9 final class DescendingEntryIterator extends EntryIter
2762 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2763 dl 1.9 DescendingEntryIterator() {
2764     initDescending();
2765 dl 1.1 }
2766 dl 1.9 public Map.Entry<K,V> next() {
2767 dl 1.1 lastValue = nextValue;
2768     descend();
2769     return this;
2770     }
2771     }
2772    
2773 dl 1.9 final class DescendingSubMapEntryIterator extends EntryIter
2774 dl 1.1 implements Iterator<Map.Entry<K,V>> {
2775     final K least;
2776     DescendingSubMapEntryIterator(K least, K fence) {
2777     initDescending(least, fence);
2778     this.least = least;
2779     }
2780    
2781 dl 1.9 public Map.Entry<K,V> next() {
2782 dl 1.1 lastValue = nextValue;
2783     descend(least);
2784     return this;
2785     }
2786     }
2787    
2788     // Factory methods for iterators needed by submaps and/or
2789     // ConcurrentSkipListSet
2790    
2791     Iterator<K> keyIterator() {
2792     return new KeyIterator();
2793     }
2794    
2795     Iterator<K> descendingKeyIterator() {
2796     return new DescendingKeyIterator();
2797     }
2798    
2799     SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2800     return new SubMapEntryIterator(least, fence);
2801     }
2802    
2803     DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2804     return new DescendingSubMapEntryIterator(least, fence);
2805     }
2806    
2807     SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2808     return new SubMapKeyIterator(least, fence);
2809     }
2810    
2811     DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2812     return new DescendingSubMapKeyIterator(least, fence);
2813     }
2814    
2815     SubMapValueIterator subMapValueIterator(K least, K fence) {
2816     return new SubMapValueIterator(least, fence);
2817     }
2818    
2819     /* ---------------- Views -------------- */
2820    
2821     class KeySet extends AbstractSet<K> {
2822     public Iterator<K> iterator() {
2823     return new KeyIterator();
2824     }
2825     public boolean isEmpty() {
2826     return ConcurrentSkipListMap.this.isEmpty();
2827     }
2828     public int size() {
2829     return ConcurrentSkipListMap.this.size();
2830     }
2831     public boolean contains(Object o) {
2832     return ConcurrentSkipListMap.this.containsKey(o);
2833     }
2834     public boolean remove(Object o) {
2835     return ConcurrentSkipListMap.this.removep(o);
2836     }
2837     public void clear() {
2838     ConcurrentSkipListMap.this.clear();
2839     }
2840     public Object[] toArray() {
2841 dl 1.26 Collection<K> c = new ArrayList<K>();
2842     for (Iterator<K> i = iterator(); i.hasNext(); )
2843     c.add(i.next());
2844     return c.toArray();
2845 dl 1.1 }
2846     public <T> T[] toArray(T[] a) {
2847 dl 1.26 Collection<K> c = new ArrayList<K>();
2848     for (Iterator<K> i = iterator(); i.hasNext(); )
2849     c.add(i.next());
2850     return c.toArray(a);
2851 dl 1.1 }
2852     }
2853    
2854     class DescendingKeySet extends KeySet {
2855     public Iterator<K> iterator() {
2856     return new DescendingKeyIterator();
2857     }
2858     }
2859    
2860     final class Values extends AbstractCollection<V> {
2861     public Iterator<V> iterator() {
2862     return new ValueIterator();
2863     }
2864     public boolean isEmpty() {
2865     return ConcurrentSkipListMap.this.isEmpty();
2866     }
2867     public int size() {
2868     return ConcurrentSkipListMap.this.size();
2869     }
2870     public boolean contains(Object o) {
2871     return ConcurrentSkipListMap.this.containsValue(o);
2872     }
2873     public void clear() {
2874     ConcurrentSkipListMap.this.clear();
2875     }
2876     public Object[] toArray() {
2877     Collection<V> c = new ArrayList<V>();
2878     for (Iterator<V> i = iterator(); i.hasNext(); )
2879     c.add(i.next());
2880     return c.toArray();
2881     }
2882     public <T> T[] toArray(T[] a) {
2883     Collection<V> c = new ArrayList<V>();
2884     for (Iterator<V> i = iterator(); i.hasNext(); )
2885     c.add(i.next());
2886     return c.toArray(a);
2887     }
2888     }
2889    
2890     class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2891     public Iterator<Map.Entry<K,V>> iterator() {
2892     return new EntryIterator();
2893     }
2894     public boolean contains(Object o) {
2895     if (!(o instanceof Map.Entry))
2896     return false;
2897     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2898     V v = ConcurrentSkipListMap.this.get(e.getKey());
2899     return v != null && v.equals(e.getValue());
2900     }
2901     public boolean remove(Object o) {
2902     if (!(o instanceof Map.Entry))
2903     return false;
2904     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2905 dl 1.9 return ConcurrentSkipListMap.this.remove(e.getKey(),
2906 dl 1.1 e.getValue());
2907     }
2908     public boolean isEmpty() {
2909     return ConcurrentSkipListMap.this.isEmpty();
2910     }
2911     public int size() {
2912     return ConcurrentSkipListMap.this.size();
2913     }
2914     public void clear() {
2915     ConcurrentSkipListMap.this.clear();
2916     }
2917     public Object[] toArray() {
2918     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2919 dl 1.25 for (Map.Entry<K,V> e : this)
2920     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2921     e.getValue()));
2922 dl 1.1 return c.toArray();
2923     }
2924     public <T> T[] toArray(T[] a) {
2925     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2926 dl 1.25 for (Map.Entry<K,V> e : this)
2927     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
2928     e.getValue()));
2929 dl 1.1 return c.toArray(a);
2930     }
2931     }
2932    
2933     class DescendingEntrySet extends EntrySet {
2934     public Iterator<Map.Entry<K,V>> iterator() {
2935     return new DescendingEntryIterator();
2936     }
2937     }
2938    
2939     /**
2940     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2941     * represent a subrange of mappings of their underlying
2942     * maps. Instances of this class support all methods of their
2943     * underlying maps, differing in that mappings outside their range are
2944     * ignored, and attempts to add mappings outside their ranges result
2945     * in {@link IllegalArgumentException}. Instances of this class are
2946     * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2947     * <tt>tailMap</tt> methods of their underlying maps.
2948     */
2949     static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
2950     implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
2951    
2952     private static final long serialVersionUID = -7647078645895051609L;
2953    
2954     /** Underlying map */
2955     private final ConcurrentSkipListMap<K,V> m;
2956     /** lower bound key, or null if from start */
2957 dl 1.9 private final K least;
2958 dl 1.1 /** upper fence key, or null if to end */
2959 dl 1.9 private final K fence;
2960 dl 1.1 // Lazily initialized view holders
2961     private transient Set<K> keySetView;
2962     private transient Set<Map.Entry<K,V>> entrySetView;
2963     private transient Collection<V> valuesView;
2964     private transient Set<K> descendingKeySetView;
2965     private transient Set<Map.Entry<K,V>> descendingEntrySetView;
2966    
2967     /**
2968 dl 1.9 * Creates a new submap.
2969 dl 1.1 * @param least inclusive least value, or <tt>null</tt> if from start
2970     * @param fence exclusive upper bound or <tt>null</tt> if to end
2971     * @throws IllegalArgumentException if least and fence nonnull
2972     * and least greater than fence
2973     */
2974 dl 1.9 ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
2975 dl 1.1 K least, K fence) {
2976 dl 1.9 if (least != null &&
2977     fence != null &&
2978 dl 1.1 map.compare(least, fence) > 0)
2979     throw new IllegalArgumentException("inconsistent range");
2980     this.m = map;
2981     this.least = least;
2982     this.fence = fence;
2983     }
2984    
2985     /* ---------------- Utilities -------------- */
2986    
2987     boolean inHalfOpenRange(K key) {
2988     return m.inHalfOpenRange(key, least, fence);
2989     }
2990    
2991     boolean inOpenRange(K key) {
2992     return m.inOpenRange(key, least, fence);
2993     }
2994    
2995     ConcurrentSkipListMap.Node<K,V> firstNode() {
2996     return m.findCeiling(least);
2997     }
2998    
2999     ConcurrentSkipListMap.Node<K,V> lastNode() {
3000     return m.findLower(fence);
3001     }
3002    
3003     boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
3004 dl 1.9 return (n != null &&
3005     (fence == null ||
3006 dl 1.1 n.key == null || // pass by markers and headers
3007     m.compare(fence, n.key) > 0));
3008     }
3009    
3010     void checkKey(K key) throws IllegalArgumentException {
3011     if (!inHalfOpenRange(key))
3012     throw new IllegalArgumentException("key out of range");
3013     }
3014    
3015     /**
3016     * Returns underlying map. Needed by ConcurrentSkipListSet
3017     * @return the backing map
3018     */
3019     ConcurrentSkipListMap<K,V> getMap() {
3020     return m;
3021     }
3022    
3023     /**
3024     * Returns least key. Needed by ConcurrentSkipListSet
3025     * @return least key or <tt>null</tt> if from start
3026     */
3027     K getLeast() {
3028     return least;
3029     }
3030    
3031     /**
3032     * Returns fence key. Needed by ConcurrentSkipListSet
3033 dl 1.8 * @return fence key or <tt>null</tt> if to end
3034 dl 1.1 */
3035     K getFence() {
3036     return fence;
3037     }
3038    
3039    
3040     /* ---------------- Map API methods -------------- */
3041    
3042     public boolean containsKey(Object key) {
3043     K k = (K)key;
3044     return inHalfOpenRange(k) && m.containsKey(k);
3045     }
3046    
3047     public V get(Object key) {
3048     K k = (K)key;
3049     return ((!inHalfOpenRange(k)) ? null : m.get(k));
3050     }
3051    
3052     public V put(K key, V value) {
3053     checkKey(key);
3054     return m.put(key, value);
3055     }
3056    
3057     public V remove(Object key) {
3058     K k = (K)key;
3059     return (!inHalfOpenRange(k))? null : m.remove(k);
3060     }
3061    
3062     public int size() {
3063     long count = 0;
3064 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3065     isBeforeEnd(n);
3066 dl 1.1 n = n.next) {
3067     if (n.getValidValue() != null)
3068     ++count;
3069     }
3070     return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3071     }
3072    
3073     public boolean isEmpty() {
3074     return !isBeforeEnd(firstNode());
3075     }
3076    
3077     public boolean containsValue(Object value) {
3078 dl 1.9 if (value == null)
3079 dl 1.1 throw new NullPointerException();
3080 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3081     isBeforeEnd(n);
3082 dl 1.1 n = n.next) {
3083     V v = n.getValidValue();
3084     if (v != null && value.equals(v))
3085     return true;
3086     }
3087     return false;
3088     }
3089    
3090     public void clear() {
3091 dl 1.9 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3092     isBeforeEnd(n);
3093 dl 1.1 n = n.next) {
3094     if (n.getValidValue() != null)
3095     m.remove(n.key);
3096     }
3097     }
3098    
3099     /* ---------------- ConcurrentMap API methods -------------- */
3100    
3101     public V putIfAbsent(K key, V value) {
3102     checkKey(key);
3103     return m.putIfAbsent(key, value);
3104     }
3105    
3106     public boolean remove(Object key, Object value) {
3107     K k = (K)key;
3108     return inHalfOpenRange(k) && m.remove(k, value);
3109     }
3110    
3111     public boolean replace(K key, V oldValue, V newValue) {
3112     checkKey(key);
3113     return m.replace(key, oldValue, newValue);
3114     }
3115    
3116     public V replace(K key, V value) {
3117     checkKey(key);
3118     return m.replace(key, value);
3119     }
3120    
3121     /* ---------------- SortedMap API methods -------------- */
3122    
3123     public Comparator<? super K> comparator() {
3124     return m.comparator();
3125     }
3126    
3127     public K firstKey() {
3128     ConcurrentSkipListMap.Node<K,V> n = firstNode();
3129     if (isBeforeEnd(n))
3130     return n.key;
3131     else
3132     throw new NoSuchElementException();
3133     }
3134    
3135     public K lastKey() {
3136     ConcurrentSkipListMap.Node<K,V> n = lastNode();
3137     if (n != null) {
3138     K last = n.key;
3139     if (inHalfOpenRange(last))
3140     return last;
3141     }
3142     throw new NoSuchElementException();
3143     }
3144    
3145 dl 1.6 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
3146 dl 1.1 if (fromKey == null || toKey == null)
3147     throw new NullPointerException();
3148     if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3149     throw new IllegalArgumentException("key out of range");
3150 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, toKey);
3151 dl 1.1 }
3152    
3153 dl 1.6 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
3154 dl 1.1 if (toKey == null)
3155     throw new NullPointerException();
3156     if (!inOpenRange(toKey))
3157     throw new IllegalArgumentException("key out of range");
3158 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(m, least, toKey);
3159 dl 1.1 }
3160    
3161 dl 1.6 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
3162 dl 1.1 if (fromKey == null)
3163     throw new NullPointerException();
3164     if (!inOpenRange(fromKey))
3165     throw new IllegalArgumentException("key out of range");
3166 dl 1.24 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, fence);
3167 dl 1.1 }
3168    
3169 dl 1.6 public SortedMap<K,V> subMap(K fromKey, K toKey) {
3170     return navigableSubMap(fromKey, toKey);
3171     }
3172    
3173     public SortedMap<K,V> headMap(K toKey) {
3174     return navigableHeadMap(toKey);
3175     }
3176    
3177 jsr166 1.22 public SortedMap<K,V> tailMap(K fromKey) {
3178 dl 1.6 return navigableTailMap(fromKey);
3179     }
3180    
3181 dl 1.1 /* ---------------- Relational methods -------------- */
3182    
3183     public Map.Entry<K,V> ceilingEntry(K key) {
3184 dl 1.24 return m.getNearEntry(key, m.GT|m.EQ, least, fence);
3185 dl 1.1 }
3186    
3187     public K ceilingKey(K key) {
3188 dl 1.24 return m.getNearKey(key, m.GT|m.EQ, least, fence);
3189 dl 1.1 }
3190    
3191     public Map.Entry<K,V> lowerEntry(K key) {
3192 dl 1.24 return m.getNearEntry(key, m.LT, least, fence);
3193 dl 1.1 }
3194    
3195     public K lowerKey(K key) {
3196 dl 1.24 return m.getNearKey(key, m.LT, least, fence);
3197 dl 1.1 }
3198    
3199     public Map.Entry<K,V> floorEntry(K key) {
3200 dl 1.24 return m.getNearEntry(key, m.LT|m.EQ, least, fence);
3201 dl 1.1 }
3202    
3203     public K floorKey(K key) {
3204 dl 1.24 return m.getNearKey(key, m.LT|m.EQ, least, fence);
3205 dl 1.1 }
3206    
3207     public Map.Entry<K,V> higherEntry(K key) {
3208 dl 1.24 return m.getNearEntry(key, m.GT, least, fence);
3209 dl 1.1 }
3210    
3211     public K higherKey(K key) {
3212 dl 1.24 return m.getNearKey(key, m.GT, least, fence);
3213 dl 1.1 }
3214    
3215     public Map.Entry<K,V> firstEntry() {
3216     for (;;) {
3217     ConcurrentSkipListMap.Node<K,V> n = firstNode();
3218 dl 1.9 if (!isBeforeEnd(n))
3219 dl 1.1 return null;
3220     Map.Entry<K,V> e = n.createSnapshot();
3221     if (e != null)
3222     return e;
3223     }
3224     }
3225    
3226     public Map.Entry<K,V> lastEntry() {
3227     for (;;) {
3228     ConcurrentSkipListMap.Node<K,V> n = lastNode();
3229     if (n == null || !inHalfOpenRange(n.key))
3230     return null;
3231     Map.Entry<K,V> e = n.createSnapshot();
3232     if (e != null)
3233     return e;
3234     }
3235     }
3236    
3237     public Map.Entry<K,V> pollFirstEntry() {
3238 dl 1.24 return m.removeFirstEntryOfSubrange(least, fence);
3239 dl 1.1 }
3240    
3241     public Map.Entry<K,V> pollLastEntry() {
3242 dl 1.24 return m.removeLastEntryOfSubrange(least, fence);
3243 dl 1.1 }
3244    
3245     /* ---------------- Submap Views -------------- */
3246    
3247     public Set<K> keySet() {
3248     Set<K> ks = keySetView;
3249     return (ks != null) ? ks : (keySetView = new KeySetView());
3250     }
3251    
3252     class KeySetView extends AbstractSet<K> {
3253     public Iterator<K> iterator() {
3254     return m.subMapKeyIterator(least, fence);
3255     }
3256     public int size() {
3257     return ConcurrentSkipListSubMap.this.size();
3258     }
3259     public boolean isEmpty() {
3260     return ConcurrentSkipListSubMap.this.isEmpty();
3261     }
3262     public boolean contains(Object k) {
3263     return ConcurrentSkipListSubMap.this.containsKey(k);
3264     }
3265     public Object[] toArray() {
3266 dl 1.27 Collection<K> c = new ArrayList<K>();
3267     for (Iterator<K> i = iterator(); i.hasNext(); )
3268     c.add(i.next());
3269     return c.toArray();
3270 dl 1.1 }
3271     public <T> T[] toArray(T[] a) {
3272 dl 1.27 Collection<K> c = new ArrayList<K>();
3273     for (Iterator<K> i = iterator(); i.hasNext(); )
3274     c.add(i.next());
3275     return c.toArray(a);
3276 dl 1.1 }
3277     }
3278    
3279     public Set<K> descendingKeySet() {
3280     Set<K> ks = descendingKeySetView;
3281     return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3282     }
3283    
3284     class DescendingKeySetView extends KeySetView {
3285     public Iterator<K> iterator() {
3286     return m.descendingSubMapKeyIterator(least, fence);
3287     }
3288     }
3289    
3290     public Collection<V> values() {
3291     Collection<V> vs = valuesView;
3292     return (vs != null) ? vs : (valuesView = new ValuesView());
3293     }
3294    
3295     class ValuesView extends AbstractCollection<V> {
3296     public Iterator<V> iterator() {
3297     return m.subMapValueIterator(least, fence);
3298     }
3299     public int size() {
3300     return ConcurrentSkipListSubMap.this.size();
3301     }
3302     public boolean isEmpty() {
3303     return ConcurrentSkipListSubMap.this.isEmpty();
3304     }
3305     public boolean contains(Object v) {
3306     return ConcurrentSkipListSubMap.this.containsValue(v);
3307     }
3308     public Object[] toArray() {
3309     Collection<V> c = new ArrayList<V>();
3310     for (Iterator<V> i = iterator(); i.hasNext(); )
3311     c.add(i.next());
3312     return c.toArray();
3313     }
3314     public <T> T[] toArray(T[] a) {
3315     Collection<V> c = new ArrayList<V>();
3316     for (Iterator<V> i = iterator(); i.hasNext(); )
3317     c.add(i.next());
3318     return c.toArray(a);
3319     }
3320     }
3321    
3322     public Set<Map.Entry<K,V>> entrySet() {
3323     Set<Map.Entry<K,V>> es = entrySetView;
3324     return (es != null) ? es : (entrySetView = new EntrySetView());
3325     }
3326    
3327     class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3328     public Iterator<Map.Entry<K,V>> iterator() {
3329     return m.subMapEntryIterator(least, fence);
3330     }
3331     public int size() {
3332     return ConcurrentSkipListSubMap.this.size();
3333     }
3334     public boolean isEmpty() {
3335     return ConcurrentSkipListSubMap.this.isEmpty();
3336     }
3337     public boolean contains(Object o) {
3338     if (!(o instanceof Map.Entry))
3339     return false;
3340     Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3341     K key = e.getKey();
3342     if (!inHalfOpenRange(key))
3343     return false;
3344     V v = m.get(key);
3345     return v != null && v.equals(e.getValue());
3346     }
3347     public boolean remove(Object o) {
3348     if (!(o instanceof Map.Entry))
3349     return false;
3350     Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3351     K key = e.getKey();
3352     if (!inHalfOpenRange(key))
3353     return false;
3354     return m.remove(key, e.getValue());
3355     }
3356     public Object[] toArray() {
3357     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3358 dl 1.25 for (Map.Entry<K,V> e : this)
3359     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3360     e.getValue()));
3361 dl 1.1 return c.toArray();
3362     }
3363     public <T> T[] toArray(T[] a) {
3364     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3365 dl 1.25 for (Map.Entry<K,V> e : this)
3366     c.add(new AbstractMap.SimpleEntry<K,V>(e.getKey(),
3367     e.getValue()));
3368 dl 1.1 return c.toArray(a);
3369     }
3370     }
3371    
3372     public Set<Map.Entry<K,V>> descendingEntrySet() {
3373     Set<Map.Entry<K,V>> es = descendingEntrySetView;
3374     return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3375     }
3376    
3377     class DescendingEntrySetView extends EntrySetView {
3378     public Iterator<Map.Entry<K,V>> iterator() {
3379     return m.descendingSubMapEntryIterator(least, fence);
3380     }
3381     }
3382     }
3383     }