ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.132
Committed: Thu Aug 8 18:25:06 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.131: +53 -32 lines
Log Message:
document "weakly consistent" properties of spliterators

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.io.Serializable;
9 import java.util.AbstractCollection;
10 import java.util.AbstractMap;
11 import java.util.AbstractSet;
12 import java.util.ArrayList;
13 import java.util.Collection;
14 import java.util.Collections;
15 import java.util.Comparator;
16 import java.util.Iterator;
17 import java.util.List;
18 import java.util.Map;
19 import java.util.NavigableMap;
20 import java.util.NavigableSet;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.SortedMap;
24 import java.util.SortedSet;
25 import java.util.Spliterator;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ConcurrentNavigableMap;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.BiConsumer;
31 import java.util.function.Function;
32
33 /**
34 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
35 * The map is sorted according to the {@linkplain Comparable natural
36 * ordering} of its keys, or by a {@link Comparator} provided at map
37 * creation time, depending on which constructor is used.
38 *
39 * <p>This class implements a concurrent variant of <a
40 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
41 * providing expected average <i>log(n)</i> time cost for the
42 * {@code containsKey}, {@code get}, {@code put} and
43 * {@code remove} operations and their variants. Insertion, removal,
44 * update, and access operations safely execute concurrently by
45 * multiple threads. Iterators and spliterators are <i>weakly consistent</i>,
46 * returning elements reflecting the state of the map at some point at or
47 * since the creation of the iterator. They do <em>not</em> throw
48 * {@link java.util.ConcurrentModificationException
49 * ConcurrentModificationException}, and may proceed concurrently with other
50 * operations. Ascending key ordered views and their iterators are faster
51 * than descending ones.
52 *
53 * <p>All {@code Map.Entry} pairs returned by methods in this class
54 * and its views represent snapshots of mappings at the time they were
55 * produced. They do <em>not</em> support the {@code Entry.setValue}
56 * method. (Note however that it is possible to change mappings in the
57 * associated map using {@code put}, {@code putIfAbsent}, or
58 * {@code replace}, depending on exactly which effect you need.)
59 *
60 * <p>Beware that, unlike in most collections, the {@code size}
61 * method is <em>not</em> a constant-time operation. Because of the
62 * asynchronous nature of these maps, determining the current number
63 * of elements requires a traversal of the elements, and so may report
64 * inaccurate results if this collection is modified during traversal.
65 * Additionally, the bulk operations {@code putAll}, {@code equals},
66 * {@code toArray}, {@code containsValue}, and {@code clear} are
67 * <em>not</em> guaranteed to be performed atomically. For example, an
68 * iterator operating concurrently with a {@code putAll} operation
69 * might view only some of the added elements.
70 *
71 * <p>This class and its views and iterators implement all of the
72 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
73 * interfaces. Like most other concurrent collections, this class does
74 * <em>not</em> permit the use of {@code null} keys or values because some
75 * null return values cannot be reliably distinguished from the absence of
76 * elements.
77 *
78 * <p>This class is a member of the
79 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
80 * Java Collections Framework</a>.
81 *
82 * @author Doug Lea
83 * @param <K> the type of keys maintained by this map
84 * @param <V> the type of mapped values
85 * @since 1.6
86 */
87 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
88 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
89 /*
90 * This class implements a tree-like two-dimensionally linked skip
91 * list in which the index levels are represented in separate
92 * nodes from the base nodes holding data. There are two reasons
93 * for taking this approach instead of the usual array-based
94 * structure: 1) Array based implementations seem to encounter
95 * more complexity and overhead 2) We can use cheaper algorithms
96 * for the heavily-traversed index lists than can be used for the
97 * base lists. Here's a picture of some of the basics for a
98 * possible list with 2 levels of index:
99 *
100 * Head nodes Index nodes
101 * +-+ right +-+ +-+
102 * |2|---------------->| |--------------------->| |->null
103 * +-+ +-+ +-+
104 * | down | |
105 * v v v
106 * +-+ +-+ +-+ +-+ +-+ +-+
107 * |1|----------->| |->| |------>| |----------->| |------>| |->null
108 * +-+ +-+ +-+ +-+ +-+ +-+
109 * v | | | | |
110 * Nodes next v v v v v
111 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
112 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
113 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
114 *
115 * The base lists use a variant of the HM linked ordered set
116 * algorithm. See Tim Harris, "A pragmatic implementation of
117 * non-blocking linked lists"
118 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
119 * Michael "High Performance Dynamic Lock-Free Hash Tables and
120 * List-Based Sets"
121 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
122 * basic idea in these lists is to mark the "next" pointers of
123 * deleted nodes when deleting to avoid conflicts with concurrent
124 * insertions, and when traversing to keep track of triples
125 * (predecessor, node, successor) in order to detect when and how
126 * to unlink these deleted nodes.
127 *
128 * Rather than using mark-bits to mark list deletions (which can
129 * be slow and space-intensive using AtomicMarkedReference), nodes
130 * use direct CAS'able next pointers. On deletion, instead of
131 * marking a pointer, they splice in another node that can be
132 * thought of as standing for a marked pointer (indicating this by
133 * using otherwise impossible field values). Using plain nodes
134 * acts roughly like "boxed" implementations of marked pointers,
135 * but uses new nodes only when nodes are deleted, not for every
136 * link. This requires less space and supports faster
137 * traversal. Even if marked references were better supported by
138 * JVMs, traversal using this technique might still be faster
139 * because any search need only read ahead one more node than
140 * otherwise required (to check for trailing marker) rather than
141 * unmasking mark bits or whatever on each read.
142 *
143 * This approach maintains the essential property needed in the HM
144 * algorithm of changing the next-pointer of a deleted node so
145 * that any other CAS of it will fail, but implements the idea by
146 * changing the pointer to point to a different node, not by
147 * marking it. While it would be possible to further squeeze
148 * space by defining marker nodes not to have key/value fields, it
149 * isn't worth the extra type-testing overhead. The deletion
150 * markers are rarely encountered during traversal and are
151 * normally quickly garbage collected. (Note that this technique
152 * would not work well in systems without garbage collection.)
153 *
154 * In addition to using deletion markers, the lists also use
155 * nullness of value fields to indicate deletion, in a style
156 * similar to typical lazy-deletion schemes. If a node's value is
157 * null, then it is considered logically deleted and ignored even
158 * though it is still reachable. This maintains proper control of
159 * concurrent replace vs delete operations -- an attempted replace
160 * must fail if a delete beat it by nulling field, and a delete
161 * must return the last non-null value held in the field. (Note:
162 * Null, rather than some special marker, is used for value fields
163 * here because it just so happens to mesh with the Map API
164 * requirement that method get returns null if there is no
165 * mapping, which allows nodes to remain concurrently readable
166 * even when deleted. Using any other marker value here would be
167 * messy at best.)
168 *
169 * Here's the sequence of events for a deletion of node n with
170 * predecessor b and successor f, initially:
171 *
172 * +------+ +------+ +------+
173 * ... | b |------>| n |----->| f | ...
174 * +------+ +------+ +------+
175 *
176 * 1. CAS n's value field from non-null to null.
177 * From this point on, no public operations encountering
178 * the node consider this mapping to exist. However, other
179 * ongoing insertions and deletions might still modify
180 * n's next pointer.
181 *
182 * 2. CAS n's next pointer to point to a new marker node.
183 * From this point on, no other nodes can be appended to n.
184 * which avoids deletion errors in CAS-based linked lists.
185 *
186 * +------+ +------+ +------+ +------+
187 * ... | b |------>| n |----->|marker|------>| f | ...
188 * +------+ +------+ +------+ +------+
189 *
190 * 3. CAS b's next pointer over both n and its marker.
191 * From this point on, no new traversals will encounter n,
192 * and it can eventually be GCed.
193 * +------+ +------+
194 * ... | b |----------------------------------->| f | ...
195 * +------+ +------+
196 *
197 * A failure at step 1 leads to simple retry due to a lost race
198 * with another operation. Steps 2-3 can fail because some other
199 * thread noticed during a traversal a node with null value and
200 * helped out by marking and/or unlinking. This helping-out
201 * ensures that no thread can become stuck waiting for progress of
202 * the deleting thread. The use of marker nodes slightly
203 * complicates helping-out code because traversals must track
204 * consistent reads of up to four nodes (b, n, marker, f), not
205 * just (b, n, f), although the next field of a marker is
206 * immutable, and once a next field is CAS'ed to point to a
207 * marker, it never again changes, so this requires less care.
208 *
209 * Skip lists add indexing to this scheme, so that the base-level
210 * traversals start close to the locations being found, inserted
211 * or deleted -- usually base level traversals only traverse a few
212 * nodes. This doesn't change the basic algorithm except for the
213 * need to make sure base traversals start at predecessors (here,
214 * b) that are not (structurally) deleted, otherwise retrying
215 * after processing the deletion.
216 *
217 * Index levels are maintained as lists with volatile next fields,
218 * using CAS to link and unlink. Races are allowed in index-list
219 * operations that can (rarely) fail to link in a new index node
220 * or delete one. (We can't do this of course for data nodes.)
221 * However, even when this happens, the index lists remain sorted,
222 * so correctly serve as indices. This can impact performance,
223 * but since skip lists are probabilistic anyway, the net result
224 * is that under contention, the effective "p" value may be lower
225 * than its nominal value. And race windows are kept small enough
226 * that in practice these failures are rare, even under a lot of
227 * contention.
228 *
229 * The fact that retries (for both base and index lists) are
230 * relatively cheap due to indexing allows some minor
231 * simplifications of retry logic. Traversal restarts are
232 * performed after most "helping-out" CASes. This isn't always
233 * strictly necessary, but the implicit backoffs tend to help
234 * reduce other downstream failed CAS's enough to outweigh restart
235 * cost. This worsens the worst case, but seems to improve even
236 * highly contended cases.
237 *
238 * Unlike most skip-list implementations, index insertion and
239 * deletion here require a separate traversal pass occuring after
240 * the base-level action, to add or remove index nodes. This adds
241 * to single-threaded overhead, but improves contended
242 * multithreaded performance by narrowing interference windows,
243 * and allows deletion to ensure that all index nodes will be made
244 * unreachable upon return from a public remove operation, thus
245 * avoiding unwanted garbage retention. This is more important
246 * here than in some other data structures because we cannot null
247 * out node fields referencing user keys since they might still be
248 * read by other ongoing traversals.
249 *
250 * Indexing uses skip list parameters that maintain good search
251 * performance while using sparser-than-usual indices: The
252 * hardwired parameters k=1, p=0.5 (see method doPut) mean
253 * that about one-quarter of the nodes have indices. Of those that
254 * do, half have one level, a quarter have two, and so on (see
255 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
256 * requirement for a map is slightly less than for the current
257 * implementation of java.util.TreeMap.
258 *
259 * Changing the level of the index (i.e, the height of the
260 * tree-like structure) also uses CAS. The head index has initial
261 * level/height of one. Creation of an index with height greater
262 * than the current level adds a level to the head index by
263 * CAS'ing on a new top-most head. To maintain good performance
264 * after a lot of removals, deletion methods heuristically try to
265 * reduce the height if the topmost levels appear to be empty.
266 * This may encounter races in which it possible (but rare) to
267 * reduce and "lose" a level just as it is about to contain an
268 * index (that will then never be encountered). This does no
269 * structural harm, and in practice appears to be a better option
270 * than allowing unrestrained growth of levels.
271 *
272 * The code for all this is more verbose than you'd like. Most
273 * operations entail locating an element (or position to insert an
274 * element). The code to do this can't be nicely factored out
275 * because subsequent uses require a snapshot of predecessor
276 * and/or successor and/or value fields which can't be returned
277 * all at once, at least not without creating yet another object
278 * to hold them -- creating such little objects is an especially
279 * bad idea for basic internal search operations because it adds
280 * to GC overhead. (This is one of the few times I've wished Java
281 * had macros.) Instead, some traversal code is interleaved within
282 * insertion and removal operations. The control logic to handle
283 * all the retry conditions is sometimes twisty. Most search is
284 * broken into 2 parts. findPredecessor() searches index nodes
285 * only, returning a base-level predecessor of the key. findNode()
286 * finishes out the base-level search. Even with this factoring,
287 * there is a fair amount of near-duplication of code to handle
288 * variants.
289 *
290 * To produce random values without interference across threads,
291 * we use within-JDK thread local random support (via the
292 * "secondary seed", to avoid interference with user-level
293 * ThreadLocalRandom.)
294 *
295 * A previous version of this class wrapped non-comparable keys
296 * with their comparators to emulate Comparables when using
297 * comparators vs Comparables. However, JVMs now appear to better
298 * handle infusing comparator-vs-comparable choice into search
299 * loops. Static method cpr(comparator, x, y) is used for all
300 * comparisons, which works well as long as the comparator
301 * argument is set up outside of loops (thus sometimes passed as
302 * an argument to internal methods) to avoid field re-reads.
303 *
304 * For explanation of algorithms sharing at least a couple of
305 * features with this one, see Mikhail Fomitchev's thesis
306 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
307 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
308 * thesis (http://www.cs.chalmers.se/~phs/).
309 *
310 * Given the use of tree-like index nodes, you might wonder why
311 * this doesn't use some kind of search tree instead, which would
312 * support somewhat faster search operations. The reason is that
313 * there are no known efficient lock-free insertion and deletion
314 * algorithms for search trees. The immutability of the "down"
315 * links of index nodes (as opposed to mutable "left" fields in
316 * true trees) makes this tractable using only CAS operations.
317 *
318 * Notation guide for local variables
319 * Node: b, n, f for predecessor, node, successor
320 * Index: q, r, d for index node, right, down.
321 * t for another index node
322 * Head: h
323 * Levels: j
324 * Keys: k, key
325 * Values: v, value
326 * Comparisons: c
327 */
328
329 private static final long serialVersionUID = -8627078645895051609L;
330
331 /**
332 * Special value used to identify base-level header
333 */
334 private static final Object BASE_HEADER = new Object();
335
336 /**
337 * The topmost head index of the skiplist.
338 */
339 private transient volatile HeadIndex<K,V> head;
340
341 /**
342 * The comparator used to maintain order in this map, or null if
343 * using natural ordering. (Non-private to simplify access in
344 * nested classes.)
345 * @serial
346 */
347 final Comparator<? super K> comparator;
348
349 /** Lazily initialized key set */
350 private transient KeySet<K> keySet;
351 /** Lazily initialized entry set */
352 private transient EntrySet<K,V> entrySet;
353 /** Lazily initialized values collection */
354 private transient Values<V> values;
355 /** Lazily initialized descending key set */
356 private transient ConcurrentNavigableMap<K,V> descendingMap;
357
358 /**
359 * Initializes or resets state. Needed by constructors, clone,
360 * clear, readObject. and ConcurrentSkipListSet.clone.
361 * (Note that comparator must be separately initialized.)
362 */
363 private void initialize() {
364 keySet = null;
365 entrySet = null;
366 values = null;
367 descendingMap = null;
368 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
369 null, null, 1);
370 }
371
372 /**
373 * compareAndSet head node
374 */
375 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
376 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
377 }
378
379 /* ---------------- Nodes -------------- */
380
381 /**
382 * Nodes hold keys and values, and are singly linked in sorted
383 * order, possibly with some intervening marker nodes. The list is
384 * headed by a dummy node accessible as head.node. The value field
385 * is declared only as Object because it takes special non-V
386 * values for marker and header nodes.
387 */
388 static final class Node<K,V> {
389 final K key;
390 volatile Object value;
391 volatile Node<K,V> next;
392
393 /**
394 * Creates a new regular node.
395 */
396 Node(K key, Object value, Node<K,V> next) {
397 this.key = key;
398 this.value = value;
399 this.next = next;
400 }
401
402 /**
403 * Creates a new marker node. A marker is distinguished by
404 * having its value field point to itself. Marker nodes also
405 * have null keys, a fact that is exploited in a few places,
406 * but this doesn't distinguish markers from the base-level
407 * header node (head.node), which also has a null key.
408 */
409 Node(Node<K,V> next) {
410 this.key = null;
411 this.value = this;
412 this.next = next;
413 }
414
415 /**
416 * compareAndSet value field
417 */
418 boolean casValue(Object cmp, Object val) {
419 return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val);
420 }
421
422 /**
423 * compareAndSet next field
424 */
425 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
426 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
427 }
428
429 /**
430 * Returns true if this node is a marker. This method isn't
431 * actually called in any current code checking for markers
432 * because callers will have already read value field and need
433 * to use that read (not another done here) and so directly
434 * test if value points to node.
435 *
436 * @return true if this node is a marker node
437 */
438 boolean isMarker() {
439 return value == this;
440 }
441
442 /**
443 * Returns true if this node is the header of base-level list.
444 * @return true if this node is header node
445 */
446 boolean isBaseHeader() {
447 return value == BASE_HEADER;
448 }
449
450 /**
451 * Tries to append a deletion marker to this node.
452 * @param f the assumed current successor of this node
453 * @return true if successful
454 */
455 boolean appendMarker(Node<K,V> f) {
456 return casNext(f, new Node<K,V>(f));
457 }
458
459 /**
460 * Helps out a deletion by appending marker or unlinking from
461 * predecessor. This is called during traversals when value
462 * field seen to be null.
463 * @param b predecessor
464 * @param f successor
465 */
466 void helpDelete(Node<K,V> b, Node<K,V> f) {
467 /*
468 * Rechecking links and then doing only one of the
469 * help-out stages per call tends to minimize CAS
470 * interference among helping threads.
471 */
472 if (f == next && this == b.next) {
473 if (f == null || f.value != f) // not already marked
474 casNext(f, new Node<K,V>(f));
475 else
476 b.casNext(this, f.next);
477 }
478 }
479
480 /**
481 * Returns value if this node contains a valid key-value pair,
482 * else null.
483 * @return this node's value if it isn't a marker or header or
484 * is deleted, else null
485 */
486 V getValidValue() {
487 Object v = value;
488 if (v == this || v == BASE_HEADER)
489 return null;
490 @SuppressWarnings("unchecked") V vv = (V)v;
491 return vv;
492 }
493
494 /**
495 * Creates and returns a new SimpleImmutableEntry holding current
496 * mapping if this node holds a valid value, else null.
497 * @return new entry or null
498 */
499 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
500 Object v = value;
501 if (v == null || v == this || v == BASE_HEADER)
502 return null;
503 @SuppressWarnings("unchecked") V vv = (V)v;
504 return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
505 }
506
507 // UNSAFE mechanics
508
509 private static final sun.misc.Unsafe UNSAFE;
510 private static final long valueOffset;
511 private static final long nextOffset;
512
513 static {
514 try {
515 UNSAFE = sun.misc.Unsafe.getUnsafe();
516 Class<?> k = Node.class;
517 valueOffset = UNSAFE.objectFieldOffset
518 (k.getDeclaredField("value"));
519 nextOffset = UNSAFE.objectFieldOffset
520 (k.getDeclaredField("next"));
521 } catch (Exception e) {
522 throw new Error(e);
523 }
524 }
525 }
526
527 /* ---------------- Indexing -------------- */
528
529 /**
530 * Index nodes represent the levels of the skip list. Note that
531 * even though both Nodes and Indexes have forward-pointing
532 * fields, they have different types and are handled in different
533 * ways, that can't nicely be captured by placing field in a
534 * shared abstract class.
535 */
536 static class Index<K,V> {
537 final Node<K,V> node;
538 final Index<K,V> down;
539 volatile Index<K,V> right;
540
541 /**
542 * Creates index node with given values.
543 */
544 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
545 this.node = node;
546 this.down = down;
547 this.right = right;
548 }
549
550 /**
551 * compareAndSet right field
552 */
553 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
554 return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val);
555 }
556
557 /**
558 * Returns true if the node this indexes has been deleted.
559 * @return true if indexed node is known to be deleted
560 */
561 final boolean indexesDeletedNode() {
562 return node.value == null;
563 }
564
565 /**
566 * Tries to CAS newSucc as successor. To minimize races with
567 * unlink that may lose this index node, if the node being
568 * indexed is known to be deleted, it doesn't try to link in.
569 * @param succ the expected current successor
570 * @param newSucc the new successor
571 * @return true if successful
572 */
573 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
574 Node<K,V> n = node;
575 newSucc.right = succ;
576 return n.value != null && casRight(succ, newSucc);
577 }
578
579 /**
580 * Tries to CAS right field to skip over apparent successor
581 * succ. Fails (forcing a retraversal by caller) if this node
582 * is known to be deleted.
583 * @param succ the expected current successor
584 * @return true if successful
585 */
586 final boolean unlink(Index<K,V> succ) {
587 return node.value != null && casRight(succ, succ.right);
588 }
589
590 // Unsafe mechanics
591 private static final sun.misc.Unsafe UNSAFE;
592 private static final long rightOffset;
593 static {
594 try {
595 UNSAFE = sun.misc.Unsafe.getUnsafe();
596 Class<?> k = Index.class;
597 rightOffset = UNSAFE.objectFieldOffset
598 (k.getDeclaredField("right"));
599 } catch (Exception e) {
600 throw new Error(e);
601 }
602 }
603 }
604
605 /* ---------------- Head nodes -------------- */
606
607 /**
608 * Nodes heading each level keep track of their level.
609 */
610 static final class HeadIndex<K,V> extends Index<K,V> {
611 final int level;
612 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
613 super(node, down, right);
614 this.level = level;
615 }
616 }
617
618 /* ---------------- Comparison utilities -------------- */
619
620 /**
621 * Compares using comparator or natural ordering if null.
622 * Called only by methods that have performed required type checks.
623 */
624 @SuppressWarnings({"unchecked", "rawtypes"})
625 static final int cpr(Comparator c, Object x, Object y) {
626 return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
627 }
628
629 /* ---------------- Traversal -------------- */
630
631 /**
632 * Returns a base-level node with key strictly less than given key,
633 * or the base-level header if there is no such node. Also
634 * unlinks indexes to deleted nodes found along the way. Callers
635 * rely on this side-effect of clearing indices to deleted nodes.
636 * @param key the key
637 * @return a predecessor of key
638 */
639 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
640 if (key == null)
641 throw new NullPointerException(); // don't postpone errors
642 for (;;) {
643 for (Index<K,V> q = head, r = q.right, d;;) {
644 if (r != null) {
645 Node<K,V> n = r.node;
646 K k = n.key;
647 if (n.value == null) {
648 if (!q.unlink(r))
649 break; // restart
650 r = q.right; // reread r
651 continue;
652 }
653 if (cpr(cmp, key, k) > 0) {
654 q = r;
655 r = r.right;
656 continue;
657 }
658 }
659 if ((d = q.down) == null)
660 return q.node;
661 q = d;
662 r = d.right;
663 }
664 }
665 }
666
667 /**
668 * Returns node holding key or null if no such, clearing out any
669 * deleted nodes seen along the way. Repeatedly traverses at
670 * base-level looking for key starting at predecessor returned
671 * from findPredecessor, processing base-level deletions as
672 * encountered. Some callers rely on this side-effect of clearing
673 * deleted nodes.
674 *
675 * Restarts occur, at traversal step centered on node n, if:
676 *
677 * (1) After reading n's next field, n is no longer assumed
678 * predecessor b's current successor, which means that
679 * we don't have a consistent 3-node snapshot and so cannot
680 * unlink any subsequent deleted nodes encountered.
681 *
682 * (2) n's value field is null, indicating n is deleted, in
683 * which case we help out an ongoing structural deletion
684 * before retrying. Even though there are cases where such
685 * unlinking doesn't require restart, they aren't sorted out
686 * here because doing so would not usually outweigh cost of
687 * restarting.
688 *
689 * (3) n is a marker or n's predecessor's value field is null,
690 * indicating (among other possibilities) that
691 * findPredecessor returned a deleted node. We can't unlink
692 * the node because we don't know its predecessor, so rely
693 * on another call to findPredecessor to notice and return
694 * some earlier predecessor, which it will do. This check is
695 * only strictly needed at beginning of loop, (and the
696 * b.value check isn't strictly needed at all) but is done
697 * each iteration to help avoid contention with other
698 * threads by callers that will fail to be able to change
699 * links, and so will retry anyway.
700 *
701 * The traversal loops in doPut, doRemove, and findNear all
702 * include the same three kinds of checks. And specialized
703 * versions appear in findFirst, and findLast and their
704 * variants. They can't easily share code because each uses the
705 * reads of fields held in locals occurring in the orders they
706 * were performed.
707 *
708 * @param key the key
709 * @return node holding key, or null if no such
710 */
711 private Node<K,V> findNode(Object key) {
712 if (key == null)
713 throw new NullPointerException(); // don't postpone errors
714 Comparator<? super K> cmp = comparator;
715 outer: for (;;) {
716 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
717 Object v; int c;
718 if (n == null)
719 break outer;
720 Node<K,V> f = n.next;
721 if (n != b.next) // inconsistent read
722 break;
723 if ((v = n.value) == null) { // n is deleted
724 n.helpDelete(b, f);
725 break;
726 }
727 if (b.value == null || v == n) // b is deleted
728 break;
729 if ((c = cpr(cmp, key, n.key)) == 0)
730 return n;
731 if (c < 0)
732 break outer;
733 b = n;
734 n = f;
735 }
736 }
737 return null;
738 }
739
740 /**
741 * Gets value for key. Almost the same as findNode, but returns
742 * the found value (to avoid retries during re-reads)
743 *
744 * @param key the key
745 * @return the value, or null if absent
746 */
747 private V doGet(Object key) {
748 if (key == null)
749 throw new NullPointerException();
750 Comparator<? super K> cmp = comparator;
751 outer: for (;;) {
752 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
753 Object v; int c;
754 if (n == null)
755 break outer;
756 Node<K,V> f = n.next;
757 if (n != b.next) // inconsistent read
758 break;
759 if ((v = n.value) == null) { // n is deleted
760 n.helpDelete(b, f);
761 break;
762 }
763 if (b.value == null || v == n) // b is deleted
764 break;
765 if ((c = cpr(cmp, key, n.key)) == 0) {
766 @SuppressWarnings("unchecked") V vv = (V)v;
767 return vv;
768 }
769 if (c < 0)
770 break outer;
771 b = n;
772 n = f;
773 }
774 }
775 return null;
776 }
777
778 /* ---------------- Insertion -------------- */
779
780 /**
781 * Main insertion method. Adds element if not present, or
782 * replaces value if present and onlyIfAbsent is false.
783 * @param key the key
784 * @param value the value that must be associated with key
785 * @param onlyIfAbsent if should not insert if already present
786 * @return the old value, or null if newly inserted
787 */
788 private V doPut(K key, V value, boolean onlyIfAbsent) {
789 Node<K,V> z; // added node
790 if (key == null)
791 throw new NullPointerException();
792 Comparator<? super K> cmp = comparator;
793 outer: for (;;) {
794 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
795 if (n != null) {
796 Object v; int c;
797 Node<K,V> f = n.next;
798 if (n != b.next) // inconsistent read
799 break;
800 if ((v = n.value) == null) { // n is deleted
801 n.helpDelete(b, f);
802 break;
803 }
804 if (b.value == null || v == n) // b is deleted
805 break;
806 if ((c = cpr(cmp, key, n.key)) > 0) {
807 b = n;
808 n = f;
809 continue;
810 }
811 if (c == 0) {
812 if (onlyIfAbsent || n.casValue(v, value)) {
813 @SuppressWarnings("unchecked") V vv = (V)v;
814 return vv;
815 }
816 break; // restart if lost race to replace value
817 }
818 // else c < 0; fall through
819 }
820
821 z = new Node<K,V>(key, value, n);
822 if (!b.casNext(n, z))
823 break; // restart if lost race to append to b
824 break outer;
825 }
826 }
827
828 int rnd = ThreadLocalRandom.nextSecondarySeed();
829 if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
830 int level = 1, max;
831 while (((rnd >>>= 1) & 1) != 0)
832 ++level;
833 Index<K,V> idx = null;
834 HeadIndex<K,V> h = head;
835 if (level <= (max = h.level)) {
836 for (int i = 1; i <= level; ++i)
837 idx = new Index<K,V>(z, idx, null);
838 }
839 else { // try to grow by one level
840 level = max + 1; // hold in array and later pick the one to use
841 @SuppressWarnings("unchecked")Index<K,V>[] idxs =
842 (Index<K,V>[])new Index<?,?>[level+1];
843 for (int i = 1; i <= level; ++i)
844 idxs[i] = idx = new Index<K,V>(z, idx, null);
845 for (;;) {
846 h = head;
847 int oldLevel = h.level;
848 if (level <= oldLevel) // lost race to add level
849 break;
850 HeadIndex<K,V> newh = h;
851 Node<K,V> oldbase = h.node;
852 for (int j = oldLevel+1; j <= level; ++j)
853 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
854 if (casHead(h, newh)) {
855 h = newh;
856 idx = idxs[level = oldLevel];
857 break;
858 }
859 }
860 }
861 // find insertion points and splice in
862 splice: for (int insertionLevel = level;;) {
863 int j = h.level;
864 for (Index<K,V> q = h, r = q.right, t = idx;;) {
865 if (q == null || t == null)
866 break splice;
867 if (r != null) {
868 Node<K,V> n = r.node;
869 // compare before deletion check avoids needing recheck
870 int c = cpr(cmp, key, n.key);
871 if (n.value == null) {
872 if (!q.unlink(r))
873 break;
874 r = q.right;
875 continue;
876 }
877 if (c > 0) {
878 q = r;
879 r = r.right;
880 continue;
881 }
882 }
883
884 if (j == insertionLevel) {
885 if (!q.link(r, t))
886 break; // restart
887 if (t.node.value == null) {
888 findNode(key);
889 break splice;
890 }
891 if (--insertionLevel == 0)
892 break splice;
893 }
894
895 if (--j >= insertionLevel && j < level)
896 t = t.down;
897 q = q.down;
898 r = q.right;
899 }
900 }
901 }
902 return null;
903 }
904
905 /* ---------------- Deletion -------------- */
906
907 /**
908 * Main deletion method. Locates node, nulls value, appends a
909 * deletion marker, unlinks predecessor, removes associated index
910 * nodes, and possibly reduces head index level.
911 *
912 * Index nodes are cleared out simply by calling findPredecessor.
913 * which unlinks indexes to deleted nodes found along path to key,
914 * which will include the indexes to this node. This is done
915 * unconditionally. We can't check beforehand whether there are
916 * index nodes because it might be the case that some or all
917 * indexes hadn't been inserted yet for this node during initial
918 * search for it, and we'd like to ensure lack of garbage
919 * retention, so must call to be sure.
920 *
921 * @param key the key
922 * @param value if non-null, the value that must be
923 * associated with key
924 * @return the node, or null if not found
925 */
926 final V doRemove(Object key, Object value) {
927 if (key == null)
928 throw new NullPointerException();
929 Comparator<? super K> cmp = comparator;
930 outer: for (;;) {
931 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
932 Object v; int c;
933 if (n == null)
934 break outer;
935 Node<K,V> f = n.next;
936 if (n != b.next) // inconsistent read
937 break;
938 if ((v = n.value) == null) { // n is deleted
939 n.helpDelete(b, f);
940 break;
941 }
942 if (b.value == null || v == n) // b is deleted
943 break;
944 if ((c = cpr(cmp, key, n.key)) < 0)
945 break outer;
946 if (c > 0) {
947 b = n;
948 n = f;
949 continue;
950 }
951 if (value != null && !value.equals(v))
952 break outer;
953 if (!n.casValue(v, null))
954 break;
955 if (!n.appendMarker(f) || !b.casNext(n, f))
956 findNode(key); // retry via findNode
957 else {
958 findPredecessor(key, cmp); // clean index
959 if (head.right == null)
960 tryReduceLevel();
961 }
962 @SuppressWarnings("unchecked") V vv = (V)v;
963 return vv;
964 }
965 }
966 return null;
967 }
968
969 /**
970 * Possibly reduce head level if it has no nodes. This method can
971 * (rarely) make mistakes, in which case levels can disappear even
972 * though they are about to contain index nodes. This impacts
973 * performance, not correctness. To minimize mistakes as well as
974 * to reduce hysteresis, the level is reduced by one only if the
975 * topmost three levels look empty. Also, if the removed level
976 * looks non-empty after CAS, we try to change it back quick
977 * before anyone notices our mistake! (This trick works pretty
978 * well because this method will practically never make mistakes
979 * unless current thread stalls immediately before first CAS, in
980 * which case it is very unlikely to stall again immediately
981 * afterwards, so will recover.)
982 *
983 * We put up with all this rather than just let levels grow
984 * because otherwise, even a small map that has undergone a large
985 * number of insertions and removals will have a lot of levels,
986 * slowing down access more than would an occasional unwanted
987 * reduction.
988 */
989 private void tryReduceLevel() {
990 HeadIndex<K,V> h = head;
991 HeadIndex<K,V> d;
992 HeadIndex<K,V> e;
993 if (h.level > 3 &&
994 (d = (HeadIndex<K,V>)h.down) != null &&
995 (e = (HeadIndex<K,V>)d.down) != null &&
996 e.right == null &&
997 d.right == null &&
998 h.right == null &&
999 casHead(h, d) && // try to set
1000 h.right != null) // recheck
1001 casHead(d, h); // try to backout
1002 }
1003
1004 /* ---------------- Finding and removing first element -------------- */
1005
1006 /**
1007 * Specialized variant of findNode to get first valid node.
1008 * @return first node or null if empty
1009 */
1010 final Node<K,V> findFirst() {
1011 for (Node<K,V> b, n;;) {
1012 if ((n = (b = head.node).next) == null)
1013 return null;
1014 if (n.value != null)
1015 return n;
1016 n.helpDelete(b, n.next);
1017 }
1018 }
1019
1020 /**
1021 * Removes first entry; returns its snapshot.
1022 * @return null if empty, else snapshot of first entry
1023 */
1024 private Map.Entry<K,V> doRemoveFirstEntry() {
1025 for (Node<K,V> b, n;;) {
1026 if ((n = (b = head.node).next) == null)
1027 return null;
1028 Node<K,V> f = n.next;
1029 if (n != b.next)
1030 continue;
1031 Object v = n.value;
1032 if (v == null) {
1033 n.helpDelete(b, f);
1034 continue;
1035 }
1036 if (!n.casValue(v, null))
1037 continue;
1038 if (!n.appendMarker(f) || !b.casNext(n, f))
1039 findFirst(); // retry
1040 clearIndexToFirst();
1041 @SuppressWarnings("unchecked") V vv = (V)v;
1042 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, vv);
1043 }
1044 }
1045
1046 /**
1047 * Clears out index nodes associated with deleted first entry.
1048 */
1049 private void clearIndexToFirst() {
1050 for (;;) {
1051 for (Index<K,V> q = head;;) {
1052 Index<K,V> r = q.right;
1053 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1054 break;
1055 if ((q = q.down) == null) {
1056 if (head.right == null)
1057 tryReduceLevel();
1058 return;
1059 }
1060 }
1061 }
1062 }
1063
1064 /**
1065 * Removes last entry; returns its snapshot.
1066 * Specialized variant of doRemove.
1067 * @return null if empty, else snapshot of last entry
1068 */
1069 private Map.Entry<K,V> doRemoveLastEntry() {
1070 for (;;) {
1071 Node<K,V> b = findPredecessorOfLast();
1072 Node<K,V> n = b.next;
1073 if (n == null) {
1074 if (b.isBaseHeader()) // empty
1075 return null;
1076 else
1077 continue; // all b's successors are deleted; retry
1078 }
1079 for (;;) {
1080 Node<K,V> f = n.next;
1081 if (n != b.next) // inconsistent read
1082 break;
1083 Object v = n.value;
1084 if (v == null) { // n is deleted
1085 n.helpDelete(b, f);
1086 break;
1087 }
1088 if (b.value == null || v == n) // b is deleted
1089 break;
1090 if (f != null) {
1091 b = n;
1092 n = f;
1093 continue;
1094 }
1095 if (!n.casValue(v, null))
1096 break;
1097 K key = n.key;
1098 if (!n.appendMarker(f) || !b.casNext(n, f))
1099 findNode(key); // retry via findNode
1100 else { // clean index
1101 findPredecessor(key, comparator);
1102 if (head.right == null)
1103 tryReduceLevel();
1104 }
1105 @SuppressWarnings("unchecked") V vv = (V)v;
1106 return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
1107 }
1108 }
1109 }
1110
1111 /* ---------------- Finding and removing last element -------------- */
1112
1113 /**
1114 * Specialized version of find to get last valid node.
1115 * @return last node or null if empty
1116 */
1117 final Node<K,V> findLast() {
1118 /*
1119 * findPredecessor can't be used to traverse index level
1120 * because this doesn't use comparisons. So traversals of
1121 * both levels are folded together.
1122 */
1123 Index<K,V> q = head;
1124 for (;;) {
1125 Index<K,V> d, r;
1126 if ((r = q.right) != null) {
1127 if (r.indexesDeletedNode()) {
1128 q.unlink(r);
1129 q = head; // restart
1130 }
1131 else
1132 q = r;
1133 } else if ((d = q.down) != null) {
1134 q = d;
1135 } else {
1136 for (Node<K,V> b = q.node, n = b.next;;) {
1137 if (n == null)
1138 return b.isBaseHeader() ? null : b;
1139 Node<K,V> f = n.next; // inconsistent read
1140 if (n != b.next)
1141 break;
1142 Object v = n.value;
1143 if (v == null) { // n is deleted
1144 n.helpDelete(b, f);
1145 break;
1146 }
1147 if (b.value == null || v == n) // b is deleted
1148 break;
1149 b = n;
1150 n = f;
1151 }
1152 q = head; // restart
1153 }
1154 }
1155 }
1156
1157 /**
1158 * Specialized variant of findPredecessor to get predecessor of last
1159 * valid node. Needed when removing the last entry. It is possible
1160 * that all successors of returned node will have been deleted upon
1161 * return, in which case this method can be retried.
1162 * @return likely predecessor of last node
1163 */
1164 private Node<K,V> findPredecessorOfLast() {
1165 for (;;) {
1166 for (Index<K,V> q = head;;) {
1167 Index<K,V> d, r;
1168 if ((r = q.right) != null) {
1169 if (r.indexesDeletedNode()) {
1170 q.unlink(r);
1171 break; // must restart
1172 }
1173 // proceed as far across as possible without overshooting
1174 if (r.node.next != null) {
1175 q = r;
1176 continue;
1177 }
1178 }
1179 if ((d = q.down) != null)
1180 q = d;
1181 else
1182 return q.node;
1183 }
1184 }
1185 }
1186
1187 /* ---------------- Relational operations -------------- */
1188
1189 // Control values OR'ed as arguments to findNear
1190
1191 private static final int EQ = 1;
1192 private static final int LT = 2;
1193 private static final int GT = 0; // Actually checked as !LT
1194
1195 /**
1196 * Utility for ceiling, floor, lower, higher methods.
1197 * @param key the key
1198 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1199 * @return nearest node fitting relation, or null if no such
1200 */
1201 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1202 if (key == null)
1203 throw new NullPointerException();
1204 for (;;) {
1205 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
1206 Object v;
1207 if (n == null)
1208 return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1209 Node<K,V> f = n.next;
1210 if (n != b.next) // inconsistent read
1211 break;
1212 if ((v = n.value) == null) { // n is deleted
1213 n.helpDelete(b, f);
1214 break;
1215 }
1216 if (b.value == null || v == n) // b is deleted
1217 break;
1218 int c = cpr(cmp, key, n.key);
1219 if ((c == 0 && (rel & EQ) != 0) ||
1220 (c < 0 && (rel & LT) == 0))
1221 return n;
1222 if ( c <= 0 && (rel & LT) != 0)
1223 return b.isBaseHeader() ? null : b;
1224 b = n;
1225 n = f;
1226 }
1227 }
1228 }
1229
1230 /**
1231 * Returns SimpleImmutableEntry for results of findNear.
1232 * @param key the key
1233 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1234 * @return Entry fitting relation, or null if no such
1235 */
1236 final AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1237 Comparator<? super K> cmp = comparator;
1238 for (;;) {
1239 Node<K,V> n = findNear(key, rel, cmp);
1240 if (n == null)
1241 return null;
1242 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1243 if (e != null)
1244 return e;
1245 }
1246 }
1247
1248 /* ---------------- Constructors -------------- */
1249
1250 /**
1251 * Constructs a new, empty map, sorted according to the
1252 * {@linkplain Comparable natural ordering} of the keys.
1253 */
1254 public ConcurrentSkipListMap() {
1255 this.comparator = null;
1256 initialize();
1257 }
1258
1259 /**
1260 * Constructs a new, empty map, sorted according to the specified
1261 * comparator.
1262 *
1263 * @param comparator the comparator that will be used to order this map.
1264 * If {@code null}, the {@linkplain Comparable natural
1265 * ordering} of the keys will be used.
1266 */
1267 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1268 this.comparator = comparator;
1269 initialize();
1270 }
1271
1272 /**
1273 * Constructs a new map containing the same mappings as the given map,
1274 * sorted according to the {@linkplain Comparable natural ordering} of
1275 * the keys.
1276 *
1277 * @param m the map whose mappings are to be placed in this map
1278 * @throws ClassCastException if the keys in {@code m} are not
1279 * {@link Comparable}, or are not mutually comparable
1280 * @throws NullPointerException if the specified map or any of its keys
1281 * or values are null
1282 */
1283 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1284 this.comparator = null;
1285 initialize();
1286 putAll(m);
1287 }
1288
1289 /**
1290 * Constructs a new map containing the same mappings and using the
1291 * same ordering as the specified sorted map.
1292 *
1293 * @param m the sorted map whose mappings are to be placed in this
1294 * map, and whose comparator is to be used to sort this map
1295 * @throws NullPointerException if the specified sorted map or any of
1296 * its keys or values are null
1297 */
1298 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1299 this.comparator = m.comparator();
1300 initialize();
1301 buildFromSorted(m);
1302 }
1303
1304 /**
1305 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1306 * instance. (The keys and values themselves are not cloned.)
1307 *
1308 * @return a shallow copy of this map
1309 */
1310 public ConcurrentSkipListMap<K,V> clone() {
1311 try {
1312 @SuppressWarnings("unchecked")
1313 ConcurrentSkipListMap<K,V> clone =
1314 (ConcurrentSkipListMap<K,V>) super.clone();
1315 clone.initialize();
1316 clone.buildFromSorted(this);
1317 return clone;
1318 } catch (CloneNotSupportedException e) {
1319 throw new InternalError();
1320 }
1321 }
1322
1323 /**
1324 * Streamlined bulk insertion to initialize from elements of
1325 * given sorted map. Call only from constructor or clone
1326 * method.
1327 */
1328 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1329 if (map == null)
1330 throw new NullPointerException();
1331
1332 HeadIndex<K,V> h = head;
1333 Node<K,V> basepred = h.node;
1334
1335 // Track the current rightmost node at each level. Uses an
1336 // ArrayList to avoid committing to initial or maximum level.
1337 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1338
1339 // initialize
1340 for (int i = 0; i <= h.level; ++i)
1341 preds.add(null);
1342 Index<K,V> q = h;
1343 for (int i = h.level; i > 0; --i) {
1344 preds.set(i, q);
1345 q = q.down;
1346 }
1347
1348 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1349 map.entrySet().iterator();
1350 while (it.hasNext()) {
1351 Map.Entry<? extends K, ? extends V> e = it.next();
1352 int rnd = ThreadLocalRandom.current().nextInt();
1353 int j = 0;
1354 if ((rnd & 0x80000001) == 0) {
1355 do {
1356 ++j;
1357 } while (((rnd >>>= 1) & 1) != 0);
1358 if (j > h.level) j = h.level + 1;
1359 }
1360 K k = e.getKey();
1361 V v = e.getValue();
1362 if (k == null || v == null)
1363 throw new NullPointerException();
1364 Node<K,V> z = new Node<K,V>(k, v, null);
1365 basepred.next = z;
1366 basepred = z;
1367 if (j > 0) {
1368 Index<K,V> idx = null;
1369 for (int i = 1; i <= j; ++i) {
1370 idx = new Index<K,V>(z, idx, null);
1371 if (i > h.level)
1372 h = new HeadIndex<K,V>(h.node, h, idx, i);
1373
1374 if (i < preds.size()) {
1375 preds.get(i).right = idx;
1376 preds.set(i, idx);
1377 } else
1378 preds.add(idx);
1379 }
1380 }
1381 }
1382 head = h;
1383 }
1384
1385 /* ---------------- Serialization -------------- */
1386
1387 /**
1388 * Saves this map to a stream (that is, serializes it).
1389 *
1390 * @param s the stream
1391 * @throws java.io.IOException if an I/O error occurs
1392 * @serialData The key (Object) and value (Object) for each
1393 * key-value mapping represented by the map, followed by
1394 * {@code null}. The key-value mappings are emitted in key-order
1395 * (as determined by the Comparator, or by the keys' natural
1396 * ordering if no Comparator).
1397 */
1398 private void writeObject(java.io.ObjectOutputStream s)
1399 throws java.io.IOException {
1400 // Write out the Comparator and any hidden stuff
1401 s.defaultWriteObject();
1402
1403 // Write out keys and values (alternating)
1404 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1405 V v = n.getValidValue();
1406 if (v != null) {
1407 s.writeObject(n.key);
1408 s.writeObject(v);
1409 }
1410 }
1411 s.writeObject(null);
1412 }
1413
1414 /**
1415 * Reconstitutes this map from a stream (that is, deserializes it).
1416 * @param s the stream
1417 * @throws ClassNotFoundException if the class of a serialized object
1418 * could not be found
1419 * @throws java.io.IOException if an I/O error occurs
1420 */
1421 @SuppressWarnings("unchecked")
1422 private void readObject(final java.io.ObjectInputStream s)
1423 throws java.io.IOException, ClassNotFoundException {
1424 // Read in the Comparator and any hidden stuff
1425 s.defaultReadObject();
1426 // Reset transients
1427 initialize();
1428
1429 /*
1430 * This is nearly identical to buildFromSorted, but is
1431 * distinct because readObject calls can't be nicely adapted
1432 * as the kind of iterator needed by buildFromSorted. (They
1433 * can be, but doing so requires type cheats and/or creation
1434 * of adaptor classes.) It is simpler to just adapt the code.
1435 */
1436
1437 HeadIndex<K,V> h = head;
1438 Node<K,V> basepred = h.node;
1439 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1440 for (int i = 0; i <= h.level; ++i)
1441 preds.add(null);
1442 Index<K,V> q = h;
1443 for (int i = h.level; i > 0; --i) {
1444 preds.set(i, q);
1445 q = q.down;
1446 }
1447
1448 for (;;) {
1449 Object k = s.readObject();
1450 if (k == null)
1451 break;
1452 Object v = s.readObject();
1453 if (v == null)
1454 throw new NullPointerException();
1455 K key = (K) k;
1456 V val = (V) v;
1457 int rnd = ThreadLocalRandom.current().nextInt();
1458 int j = 0;
1459 if ((rnd & 0x80000001) == 0) {
1460 do {
1461 ++j;
1462 } while (((rnd >>>= 1) & 1) != 0);
1463 if (j > h.level) j = h.level + 1;
1464 }
1465 Node<K,V> z = new Node<K,V>(key, val, null);
1466 basepred.next = z;
1467 basepred = z;
1468 if (j > 0) {
1469 Index<K,V> idx = null;
1470 for (int i = 1; i <= j; ++i) {
1471 idx = new Index<K,V>(z, idx, null);
1472 if (i > h.level)
1473 h = new HeadIndex<K,V>(h.node, h, idx, i);
1474
1475 if (i < preds.size()) {
1476 preds.get(i).right = idx;
1477 preds.set(i, idx);
1478 } else
1479 preds.add(idx);
1480 }
1481 }
1482 }
1483 head = h;
1484 }
1485
1486 /* ------ Map API methods ------ */
1487
1488 /**
1489 * Returns {@code true} if this map contains a mapping for the specified
1490 * key.
1491 *
1492 * @param key key whose presence in this map is to be tested
1493 * @return {@code true} if this map contains a mapping for the specified key
1494 * @throws ClassCastException if the specified key cannot be compared
1495 * with the keys currently in the map
1496 * @throws NullPointerException if the specified key is null
1497 */
1498 public boolean containsKey(Object key) {
1499 return doGet(key) != null;
1500 }
1501
1502 /**
1503 * Returns the value to which the specified key is mapped,
1504 * or {@code null} if this map contains no mapping for the key.
1505 *
1506 * <p>More formally, if this map contains a mapping from a key
1507 * {@code k} to a value {@code v} such that {@code key} compares
1508 * equal to {@code k} according to the map's ordering, then this
1509 * method returns {@code v}; otherwise it returns {@code null}.
1510 * (There can be at most one such mapping.)
1511 *
1512 * @throws ClassCastException if the specified key cannot be compared
1513 * with the keys currently in the map
1514 * @throws NullPointerException if the specified key is null
1515 */
1516 public V get(Object key) {
1517 return doGet(key);
1518 }
1519
1520 /**
1521 * Returns the value to which the specified key is mapped,
1522 * or the given defaultValue if this map contains no mapping for the key.
1523 *
1524 * @param key the key
1525 * @param defaultValue the value to return if this map contains
1526 * no mapping for the given key
1527 * @return the mapping for the key, if present; else the defaultValue
1528 * @throws NullPointerException if the specified key is null
1529 * @since 1.8
1530 */
1531 public V getOrDefault(Object key, V defaultValue) {
1532 V v;
1533 return (v = doGet(key)) == null ? defaultValue : v;
1534 }
1535
1536 /**
1537 * Associates the specified value with the specified key in this map.
1538 * If the map previously contained a mapping for the key, the old
1539 * value is replaced.
1540 *
1541 * @param key key with which the specified value is to be associated
1542 * @param value value to be associated with the specified key
1543 * @return the previous value associated with the specified key, or
1544 * {@code null} if there was no mapping for the key
1545 * @throws ClassCastException if the specified key cannot be compared
1546 * with the keys currently in the map
1547 * @throws NullPointerException if the specified key or value is null
1548 */
1549 public V put(K key, V value) {
1550 if (value == null)
1551 throw new NullPointerException();
1552 return doPut(key, value, false);
1553 }
1554
1555 /**
1556 * Removes the mapping for the specified key from this map if present.
1557 *
1558 * @param key key for which mapping should be removed
1559 * @return the previous value associated with the specified key, or
1560 * {@code null} if there was no mapping for the key
1561 * @throws ClassCastException if the specified key cannot be compared
1562 * with the keys currently in the map
1563 * @throws NullPointerException if the specified key is null
1564 */
1565 public V remove(Object key) {
1566 return doRemove(key, null);
1567 }
1568
1569 /**
1570 * Returns {@code true} if this map maps one or more keys to the
1571 * specified value. This operation requires time linear in the
1572 * map size. Additionally, it is possible for the map to change
1573 * during execution of this method, in which case the returned
1574 * result may be inaccurate.
1575 *
1576 * @param value value whose presence in this map is to be tested
1577 * @return {@code true} if a mapping to {@code value} exists;
1578 * {@code false} otherwise
1579 * @throws NullPointerException if the specified value is null
1580 */
1581 public boolean containsValue(Object value) {
1582 if (value == null)
1583 throw new NullPointerException();
1584 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1585 V v = n.getValidValue();
1586 if (v != null && value.equals(v))
1587 return true;
1588 }
1589 return false;
1590 }
1591
1592 /**
1593 * Returns the number of key-value mappings in this map. If this map
1594 * contains more than {@code Integer.MAX_VALUE} elements, it
1595 * returns {@code Integer.MAX_VALUE}.
1596 *
1597 * <p>Beware that, unlike in most collections, this method is
1598 * <em>NOT</em> a constant-time operation. Because of the
1599 * asynchronous nature of these maps, determining the current
1600 * number of elements requires traversing them all to count them.
1601 * Additionally, it is possible for the size to change during
1602 * execution of this method, in which case the returned result
1603 * will be inaccurate. Thus, this method is typically not very
1604 * useful in concurrent applications.
1605 *
1606 * @return the number of elements in this map
1607 */
1608 public int size() {
1609 long count = 0;
1610 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1611 if (n.getValidValue() != null)
1612 ++count;
1613 }
1614 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1615 }
1616
1617 /**
1618 * Returns {@code true} if this map contains no key-value mappings.
1619 * @return {@code true} if this map contains no key-value mappings
1620 */
1621 public boolean isEmpty() {
1622 return findFirst() == null;
1623 }
1624
1625 /**
1626 * Removes all of the mappings from this map.
1627 */
1628 public void clear() {
1629 initialize();
1630 }
1631
1632 /**
1633 * If the specified key is not already associated with a value,
1634 * attempts to compute its value using the given mapping function
1635 * and enters it into this map unless {@code null}. The function
1636 * is <em>NOT</em> guaranteed to be applied once atomically only
1637 * if the value is not present.
1638 *
1639 * @param key key with which the specified value is to be associated
1640 * @param mappingFunction the function to compute a value
1641 * @return the current (existing or computed) value associated with
1642 * the specified key, or null if the computed value is null
1643 * @throws NullPointerException if the specified key is null
1644 * or the mappingFunction is null
1645 * @since 1.8
1646 */
1647 public V computeIfAbsent(K key,
1648 Function<? super K, ? extends V> mappingFunction) {
1649 if (key == null || mappingFunction == null)
1650 throw new NullPointerException();
1651 V v, p, r;
1652 if ((v = doGet(key)) == null &&
1653 (r = mappingFunction.apply(key)) != null)
1654 v = (p = doPut(key, r, true)) == null ? r : p;
1655 return v;
1656 }
1657
1658 /**
1659 * If the value for the specified key is present, attempts to
1660 * compute a new mapping given the key and its current mapped
1661 * value. The function is <em>NOT</em> guaranteed to be applied
1662 * once atomically.
1663 *
1664 * @param key key with which a value may be associated
1665 * @param remappingFunction the function to compute a value
1666 * @return the new value associated with the specified key, or null if none
1667 * @throws NullPointerException if the specified key is null
1668 * or the remappingFunction is null
1669 * @since 1.8
1670 */
1671 public V computeIfPresent(K key,
1672 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1673 if (key == null || remappingFunction == null)
1674 throw new NullPointerException();
1675 Node<K,V> n; Object v;
1676 while ((n = findNode(key)) != null) {
1677 if ((v = n.value) != null) {
1678 @SuppressWarnings("unchecked") V vv = (V) v;
1679 V r = remappingFunction.apply(key, vv);
1680 if (r != null) {
1681 if (n.casValue(vv, r))
1682 return r;
1683 }
1684 else if (doRemove(key, vv) != null)
1685 break;
1686 }
1687 }
1688 return null;
1689 }
1690
1691 /**
1692 * Attempts to compute a mapping for the specified key and its
1693 * current mapped value (or {@code null} if there is no current
1694 * mapping). The function is <em>NOT</em> guaranteed to be applied
1695 * once atomically.
1696 *
1697 * @param key key with which the specified value is to be associated
1698 * @param remappingFunction the function to compute a value
1699 * @return the new value associated with the specified key, or null if none
1700 * @throws NullPointerException if the specified key is null
1701 * or the remappingFunction is null
1702 * @since 1.8
1703 */
1704 public V compute(K key,
1705 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1706 if (key == null || remappingFunction == null)
1707 throw new NullPointerException();
1708 for (;;) {
1709 Node<K,V> n; Object v; V r;
1710 if ((n = findNode(key)) == null) {
1711 if ((r = remappingFunction.apply(key, null)) == null)
1712 break;
1713 if (doPut(key, r, true) == null)
1714 return r;
1715 }
1716 else if ((v = n.value) != null) {
1717 @SuppressWarnings("unchecked") V vv = (V) v;
1718 if ((r = remappingFunction.apply(key, vv)) != null) {
1719 if (n.casValue(vv, r))
1720 return r;
1721 }
1722 else if (doRemove(key, vv) != null)
1723 break;
1724 }
1725 }
1726 return null;
1727 }
1728
1729 /**
1730 * If the specified key is not already associated with a value,
1731 * associates it with the given value. Otherwise, replaces the
1732 * value with the results of the given remapping function, or
1733 * removes if {@code null}. The function is <em>NOT</em>
1734 * guaranteed to be applied once atomically.
1735 *
1736 * @param key key with which the specified value is to be associated
1737 * @param value the value to use if absent
1738 * @param remappingFunction the function to recompute a value if present
1739 * @return the new value associated with the specified key, or null if none
1740 * @throws NullPointerException if the specified key or value is null
1741 * or the remappingFunction is null
1742 * @since 1.8
1743 */
1744 public V merge(K key, V value,
1745 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1746 if (key == null || value == null || remappingFunction == null)
1747 throw new NullPointerException();
1748 for (;;) {
1749 Node<K,V> n; Object v; V r;
1750 if ((n = findNode(key)) == null) {
1751 if (doPut(key, value, true) == null)
1752 return value;
1753 }
1754 else if ((v = n.value) != null) {
1755 @SuppressWarnings("unchecked") V vv = (V) v;
1756 if ((r = remappingFunction.apply(vv, value)) != null) {
1757 if (n.casValue(vv, r))
1758 return r;
1759 }
1760 else if (doRemove(key, vv) != null)
1761 return null;
1762 }
1763 }
1764 }
1765
1766 /* ---------------- View methods -------------- */
1767
1768 /*
1769 * Note: Lazy initialization works for views because view classes
1770 * are stateless/immutable so it doesn't matter wrt correctness if
1771 * more than one is created (which will only rarely happen). Even
1772 * so, the following idiom conservatively ensures that the method
1773 * returns the one it created if it does so, not one created by
1774 * another racing thread.
1775 */
1776
1777 /**
1778 * Returns a {@link NavigableSet} view of the keys contained in this map.
1779 *
1780 * <p>The set's iterator returns the keys in ascending order.
1781 * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1782 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1783 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1784 * key order. The spliterator's comparator (see
1785 * {@link java.util.Spliterator#getComparator()}) is {@code null} if
1786 * the map's comparator (see {@link #comparator()}) is {@code null}.
1787 * Otherwise, the spliterator's comparator is the same as or imposes the
1788 * same total ordering as the map's comparator.
1789 *
1790 * <p>The set is backed by the map, so changes to the map are
1791 * reflected in the set, and vice-versa. The set supports element
1792 * removal, which removes the corresponding mapping from the map,
1793 * via the {@code Iterator.remove}, {@code Set.remove},
1794 * {@code removeAll}, {@code retainAll}, and {@code clear}
1795 * operations. It does not support the {@code add} or {@code addAll}
1796 * operations.
1797 *
1798 * <p>The view's iterators and spliterators are "weakly consistent":
1799 * they will never throw {@link java.util.ConcurrentModificationException
1800 * ConcurrentModificationException}; are guaranteed to traverse elements
1801 * as they existed upon construction; and may (but are not guaranteed to)
1802 * reflect any modifications subsequent to construction.
1803 *
1804 * <p>This method is equivalent to method {@code navigableKeySet}.
1805 *
1806 * @return a navigable set view of the keys in this map
1807 */
1808 public NavigableSet<K> keySet() {
1809 KeySet<K> ks = keySet;
1810 return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1811 }
1812
1813 public NavigableSet<K> navigableKeySet() {
1814 KeySet<K> ks = keySet;
1815 return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1816 }
1817
1818 /**
1819 * Returns a {@link Collection} view of the values contained in this map.
1820 * <p>The collection's iterator returns the values in ascending order
1821 * of the corresponding keys. The collections's spliterator additionally
1822 * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1823 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1824 * order of the corresponding keys.
1825 *
1826 * <p>The collection is backed by the map, so changes to the map are
1827 * reflected in the collection, and vice-versa. The collection
1828 * supports element removal, which removes the corresponding
1829 * mapping from the map, via the {@code Iterator.remove},
1830 * {@code Collection.remove}, {@code removeAll},
1831 * {@code retainAll} and {@code clear} operations. It does not
1832 * support the {@code add} or {@code addAll} operations.
1833 *
1834 * <p>The view's iterators and spliterators are "weakly consistent":
1835 * they will never throw {@link java.util.ConcurrentModificationException
1836 * ConcurrentModificationException}; are guaranteed to traverse elements
1837 * as they existed upon construction; and may (but are not guaranteed to)
1838 * reflect any modifications subsequent to construction.
1839 */
1840 public Collection<V> values() {
1841 Values<V> vs = values;
1842 return (vs != null) ? vs : (values = new Values<V>(this));
1843 }
1844
1845 /**
1846 * Returns a {@link Set} view of the mappings contained in this map.
1847 *
1848 * <p>The set's iterator returns the entries in ascending key order. The
1849 * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1850 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1851 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1852 * key order.
1853 *
1854 * <p>The set is backed by the map, so changes to the map are
1855 * reflected in the set, and vice-versa. The set supports element
1856 * removal, which removes the corresponding mapping from the map,
1857 * via the {@code Iterator.remove}, {@code Set.remove},
1858 * {@code removeAll}, {@code retainAll} and {@code clear}
1859 * operations. It does not support the {@code add} or
1860 * {@code addAll} operations.
1861 *
1862 * <p>The view's iterators and spliterators are "weakly consistent":
1863 * they will never throw {@link java.util.ConcurrentModificationException
1864 * ConcurrentModificationException}; are guaranteed to traverse elements
1865 * as they existed upon construction; and may (but are not guaranteed to)
1866 * reflect any modifications subsequent to construction.
1867 *
1868 * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1869 * or {@code spliterator} do <em>not</em> support the {@code setValue}
1870 * operation.
1871 *
1872 * @return a set view of the mappings contained in this map,
1873 * sorted in ascending key order
1874 */
1875 public Set<Map.Entry<K,V>> entrySet() {
1876 EntrySet<K,V> es = entrySet;
1877 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1878 }
1879
1880 public ConcurrentNavigableMap<K,V> descendingMap() {
1881 ConcurrentNavigableMap<K,V> dm = descendingMap;
1882 return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1883 (this, null, false, null, false, true));
1884 }
1885
1886 public NavigableSet<K> descendingKeySet() {
1887 return descendingMap().navigableKeySet();
1888 }
1889
1890 /* ---------------- AbstractMap Overrides -------------- */
1891
1892 /**
1893 * Compares the specified object with this map for equality.
1894 * Returns {@code true} if the given object is also a map and the
1895 * two maps represent the same mappings. More formally, two maps
1896 * {@code m1} and {@code m2} represent the same mappings if
1897 * {@code m1.entrySet().equals(m2.entrySet())}. This
1898 * operation may return misleading results if either map is
1899 * concurrently modified during execution of this method.
1900 *
1901 * @param o object to be compared for equality with this map
1902 * @return {@code true} if the specified object is equal to this map
1903 */
1904 public boolean equals(Object o) {
1905 if (o == this)
1906 return true;
1907 if (!(o instanceof Map))
1908 return false;
1909 Map<?,?> m = (Map<?,?>) o;
1910 try {
1911 for (Map.Entry<K,V> e : this.entrySet())
1912 if (! e.getValue().equals(m.get(e.getKey())))
1913 return false;
1914 for (Map.Entry<?,?> e : m.entrySet()) {
1915 Object k = e.getKey();
1916 Object v = e.getValue();
1917 if (k == null || v == null || !v.equals(get(k)))
1918 return false;
1919 }
1920 return true;
1921 } catch (ClassCastException unused) {
1922 return false;
1923 } catch (NullPointerException unused) {
1924 return false;
1925 }
1926 }
1927
1928 /* ------ ConcurrentMap API methods ------ */
1929
1930 /**
1931 * {@inheritDoc}
1932 *
1933 * @return the previous value associated with the specified key,
1934 * or {@code null} if there was no mapping for the key
1935 * @throws ClassCastException if the specified key cannot be compared
1936 * with the keys currently in the map
1937 * @throws NullPointerException if the specified key or value is null
1938 */
1939 public V putIfAbsent(K key, V value) {
1940 if (value == null)
1941 throw new NullPointerException();
1942 return doPut(key, value, true);
1943 }
1944
1945 /**
1946 * {@inheritDoc}
1947 *
1948 * @throws ClassCastException if the specified key cannot be compared
1949 * with the keys currently in the map
1950 * @throws NullPointerException if the specified key is null
1951 */
1952 public boolean remove(Object key, Object value) {
1953 if (key == null)
1954 throw new NullPointerException();
1955 return value != null && doRemove(key, value) != null;
1956 }
1957
1958 /**
1959 * {@inheritDoc}
1960 *
1961 * @throws ClassCastException if the specified key cannot be compared
1962 * with the keys currently in the map
1963 * @throws NullPointerException if any of the arguments are null
1964 */
1965 public boolean replace(K key, V oldValue, V newValue) {
1966 if (key == null || oldValue == null || newValue == null)
1967 throw new NullPointerException();
1968 for (;;) {
1969 Node<K,V> n; Object v;
1970 if ((n = findNode(key)) == null)
1971 return false;
1972 if ((v = n.value) != null) {
1973 if (!oldValue.equals(v))
1974 return false;
1975 if (n.casValue(v, newValue))
1976 return true;
1977 }
1978 }
1979 }
1980
1981 /**
1982 * {@inheritDoc}
1983 *
1984 * @return the previous value associated with the specified key,
1985 * or {@code null} if there was no mapping for the key
1986 * @throws ClassCastException if the specified key cannot be compared
1987 * with the keys currently in the map
1988 * @throws NullPointerException if the specified key or value is null
1989 */
1990 public V replace(K key, V value) {
1991 if (key == null || value == null)
1992 throw new NullPointerException();
1993 for (;;) {
1994 Node<K,V> n; Object v;
1995 if ((n = findNode(key)) == null)
1996 return null;
1997 if ((v = n.value) != null && n.casValue(v, value)) {
1998 @SuppressWarnings("unchecked") V vv = (V)v;
1999 return vv;
2000 }
2001 }
2002 }
2003
2004 /* ------ SortedMap API methods ------ */
2005
2006 public Comparator<? super K> comparator() {
2007 return comparator;
2008 }
2009
2010 /**
2011 * @throws NoSuchElementException {@inheritDoc}
2012 */
2013 public K firstKey() {
2014 Node<K,V> n = findFirst();
2015 if (n == null)
2016 throw new NoSuchElementException();
2017 return n.key;
2018 }
2019
2020 /**
2021 * @throws NoSuchElementException {@inheritDoc}
2022 */
2023 public K lastKey() {
2024 Node<K,V> n = findLast();
2025 if (n == null)
2026 throw new NoSuchElementException();
2027 return n.key;
2028 }
2029
2030 /**
2031 * @throws ClassCastException {@inheritDoc}
2032 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2033 * @throws IllegalArgumentException {@inheritDoc}
2034 */
2035 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
2036 boolean fromInclusive,
2037 K toKey,
2038 boolean toInclusive) {
2039 if (fromKey == null || toKey == null)
2040 throw new NullPointerException();
2041 return new SubMap<K,V>
2042 (this, fromKey, fromInclusive, toKey, toInclusive, false);
2043 }
2044
2045 /**
2046 * @throws ClassCastException {@inheritDoc}
2047 * @throws NullPointerException if {@code toKey} is null
2048 * @throws IllegalArgumentException {@inheritDoc}
2049 */
2050 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2051 boolean inclusive) {
2052 if (toKey == null)
2053 throw new NullPointerException();
2054 return new SubMap<K,V>
2055 (this, null, false, toKey, inclusive, false);
2056 }
2057
2058 /**
2059 * @throws ClassCastException {@inheritDoc}
2060 * @throws NullPointerException if {@code fromKey} is null
2061 * @throws IllegalArgumentException {@inheritDoc}
2062 */
2063 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2064 boolean inclusive) {
2065 if (fromKey == null)
2066 throw new NullPointerException();
2067 return new SubMap<K,V>
2068 (this, fromKey, inclusive, null, false, false);
2069 }
2070
2071 /**
2072 * @throws ClassCastException {@inheritDoc}
2073 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2074 * @throws IllegalArgumentException {@inheritDoc}
2075 */
2076 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2077 return subMap(fromKey, true, toKey, false);
2078 }
2079
2080 /**
2081 * @throws ClassCastException {@inheritDoc}
2082 * @throws NullPointerException if {@code toKey} is null
2083 * @throws IllegalArgumentException {@inheritDoc}
2084 */
2085 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2086 return headMap(toKey, false);
2087 }
2088
2089 /**
2090 * @throws ClassCastException {@inheritDoc}
2091 * @throws NullPointerException if {@code fromKey} is null
2092 * @throws IllegalArgumentException {@inheritDoc}
2093 */
2094 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2095 return tailMap(fromKey, true);
2096 }
2097
2098 /* ---------------- Relational operations -------------- */
2099
2100 /**
2101 * Returns a key-value mapping associated with the greatest key
2102 * strictly less than the given key, or {@code null} if there is
2103 * no such key. The returned entry does <em>not</em> support the
2104 * {@code Entry.setValue} method.
2105 *
2106 * @throws ClassCastException {@inheritDoc}
2107 * @throws NullPointerException if the specified key is null
2108 */
2109 public Map.Entry<K,V> lowerEntry(K key) {
2110 return getNear(key, LT);
2111 }
2112
2113 /**
2114 * @throws ClassCastException {@inheritDoc}
2115 * @throws NullPointerException if the specified key is null
2116 */
2117 public K lowerKey(K key) {
2118 Node<K,V> n = findNear(key, LT, comparator);
2119 return (n == null) ? null : n.key;
2120 }
2121
2122 /**
2123 * Returns a key-value mapping associated with the greatest key
2124 * less than or equal to the given key, or {@code null} if there
2125 * is no such key. The returned entry does <em>not</em> support
2126 * the {@code Entry.setValue} method.
2127 *
2128 * @param key the key
2129 * @throws ClassCastException {@inheritDoc}
2130 * @throws NullPointerException if the specified key is null
2131 */
2132 public Map.Entry<K,V> floorEntry(K key) {
2133 return getNear(key, LT|EQ);
2134 }
2135
2136 /**
2137 * @param key the key
2138 * @throws ClassCastException {@inheritDoc}
2139 * @throws NullPointerException if the specified key is null
2140 */
2141 public K floorKey(K key) {
2142 Node<K,V> n = findNear(key, LT|EQ, comparator);
2143 return (n == null) ? null : n.key;
2144 }
2145
2146 /**
2147 * Returns a key-value mapping associated with the least key
2148 * greater than or equal to the given key, or {@code null} if
2149 * there is no such entry. The returned entry does <em>not</em>
2150 * support the {@code Entry.setValue} method.
2151 *
2152 * @throws ClassCastException {@inheritDoc}
2153 * @throws NullPointerException if the specified key is null
2154 */
2155 public Map.Entry<K,V> ceilingEntry(K key) {
2156 return getNear(key, GT|EQ);
2157 }
2158
2159 /**
2160 * @throws ClassCastException {@inheritDoc}
2161 * @throws NullPointerException if the specified key is null
2162 */
2163 public K ceilingKey(K key) {
2164 Node<K,V> n = findNear(key, GT|EQ, comparator);
2165 return (n == null) ? null : n.key;
2166 }
2167
2168 /**
2169 * Returns a key-value mapping associated with the least key
2170 * strictly greater than the given key, or {@code null} if there
2171 * is no such key. The returned entry does <em>not</em> support
2172 * the {@code Entry.setValue} method.
2173 *
2174 * @param key the key
2175 * @throws ClassCastException {@inheritDoc}
2176 * @throws NullPointerException if the specified key is null
2177 */
2178 public Map.Entry<K,V> higherEntry(K key) {
2179 return getNear(key, GT);
2180 }
2181
2182 /**
2183 * @param key the key
2184 * @throws ClassCastException {@inheritDoc}
2185 * @throws NullPointerException if the specified key is null
2186 */
2187 public K higherKey(K key) {
2188 Node<K,V> n = findNear(key, GT, comparator);
2189 return (n == null) ? null : n.key;
2190 }
2191
2192 /**
2193 * Returns a key-value mapping associated with the least
2194 * key in this map, or {@code null} if the map is empty.
2195 * The returned entry does <em>not</em> support
2196 * the {@code Entry.setValue} method.
2197 */
2198 public Map.Entry<K,V> firstEntry() {
2199 for (;;) {
2200 Node<K,V> n = findFirst();
2201 if (n == null)
2202 return null;
2203 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2204 if (e != null)
2205 return e;
2206 }
2207 }
2208
2209 /**
2210 * Returns a key-value mapping associated with the greatest
2211 * key in this map, or {@code null} if the map is empty.
2212 * The returned entry does <em>not</em> support
2213 * the {@code Entry.setValue} method.
2214 */
2215 public Map.Entry<K,V> lastEntry() {
2216 for (;;) {
2217 Node<K,V> n = findLast();
2218 if (n == null)
2219 return null;
2220 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2221 if (e != null)
2222 return e;
2223 }
2224 }
2225
2226 /**
2227 * Removes and returns a key-value mapping associated with
2228 * the least key in this map, or {@code null} if the map is empty.
2229 * The returned entry does <em>not</em> support
2230 * the {@code Entry.setValue} method.
2231 */
2232 public Map.Entry<K,V> pollFirstEntry() {
2233 return doRemoveFirstEntry();
2234 }
2235
2236 /**
2237 * Removes and returns a key-value mapping associated with
2238 * the greatest key in this map, or {@code null} if the map is empty.
2239 * The returned entry does <em>not</em> support
2240 * the {@code Entry.setValue} method.
2241 */
2242 public Map.Entry<K,V> pollLastEntry() {
2243 return doRemoveLastEntry();
2244 }
2245
2246
2247 /* ---------------- Iterators -------------- */
2248
2249 /**
2250 * Base of iterator classes:
2251 */
2252 abstract class Iter<T> implements Iterator<T> {
2253 /** the last node returned by next() */
2254 Node<K,V> lastReturned;
2255 /** the next node to return from next(); */
2256 Node<K,V> next;
2257 /** Cache of next value field to maintain weak consistency */
2258 V nextValue;
2259
2260 /** Initializes ascending iterator for entire range. */
2261 Iter() {
2262 while ((next = findFirst()) != null) {
2263 Object x = next.value;
2264 if (x != null && x != next) {
2265 @SuppressWarnings("unchecked") V vv = (V)x;
2266 nextValue = vv;
2267 break;
2268 }
2269 }
2270 }
2271
2272 public final boolean hasNext() {
2273 return next != null;
2274 }
2275
2276 /** Advances next to higher entry. */
2277 final void advance() {
2278 if (next == null)
2279 throw new NoSuchElementException();
2280 lastReturned = next;
2281 while ((next = next.next) != null) {
2282 Object x = next.value;
2283 if (x != null && x != next) {
2284 @SuppressWarnings("unchecked") V vv = (V)x;
2285 nextValue = vv;
2286 break;
2287 }
2288 }
2289 }
2290
2291 public void remove() {
2292 Node<K,V> l = lastReturned;
2293 if (l == null)
2294 throw new IllegalStateException();
2295 // It would not be worth all of the overhead to directly
2296 // unlink from here. Using remove is fast enough.
2297 ConcurrentSkipListMap.this.remove(l.key);
2298 lastReturned = null;
2299 }
2300
2301 }
2302
2303 final class ValueIterator extends Iter<V> {
2304 public V next() {
2305 V v = nextValue;
2306 advance();
2307 return v;
2308 }
2309 }
2310
2311 final class KeyIterator extends Iter<K> {
2312 public K next() {
2313 Node<K,V> n = next;
2314 advance();
2315 return n.key;
2316 }
2317 }
2318
2319 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2320 public Map.Entry<K,V> next() {
2321 Node<K,V> n = next;
2322 V v = nextValue;
2323 advance();
2324 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2325 }
2326 }
2327
2328 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2329
2330 Iterator<K> keyIterator() {
2331 return new KeyIterator();
2332 }
2333
2334 Iterator<V> valueIterator() {
2335 return new ValueIterator();
2336 }
2337
2338 Iterator<Map.Entry<K,V>> entryIterator() {
2339 return new EntryIterator();
2340 }
2341
2342 /* ---------------- View Classes -------------- */
2343
2344 /*
2345 * View classes are static, delegating to a ConcurrentNavigableMap
2346 * to allow use by SubMaps, which outweighs the ugliness of
2347 * needing type-tests for Iterator methods.
2348 */
2349
2350 static final <E> List<E> toList(Collection<E> c) {
2351 // Using size() here would be a pessimization.
2352 ArrayList<E> list = new ArrayList<E>();
2353 for (E e : c)
2354 list.add(e);
2355 return list;
2356 }
2357
2358 static final class KeySet<E>
2359 extends AbstractSet<E> implements NavigableSet<E> {
2360 final ConcurrentNavigableMap<E,?> m;
2361 KeySet(ConcurrentNavigableMap<E,?> map) { m = map; }
2362 public int size() { return m.size(); }
2363 public boolean isEmpty() { return m.isEmpty(); }
2364 public boolean contains(Object o) { return m.containsKey(o); }
2365 public boolean remove(Object o) { return m.remove(o) != null; }
2366 public void clear() { m.clear(); }
2367 public E lower(E e) { return m.lowerKey(e); }
2368 public E floor(E e) { return m.floorKey(e); }
2369 public E ceiling(E e) { return m.ceilingKey(e); }
2370 public E higher(E e) { return m.higherKey(e); }
2371 public Comparator<? super E> comparator() { return m.comparator(); }
2372 public E first() { return m.firstKey(); }
2373 public E last() { return m.lastKey(); }
2374 public E pollFirst() {
2375 Map.Entry<E,?> e = m.pollFirstEntry();
2376 return (e == null) ? null : e.getKey();
2377 }
2378 public E pollLast() {
2379 Map.Entry<E,?> e = m.pollLastEntry();
2380 return (e == null) ? null : e.getKey();
2381 }
2382 @SuppressWarnings("unchecked")
2383 public Iterator<E> iterator() {
2384 if (m instanceof ConcurrentSkipListMap)
2385 return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
2386 else
2387 return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
2388 }
2389 public boolean equals(Object o) {
2390 if (o == this)
2391 return true;
2392 if (!(o instanceof Set))
2393 return false;
2394 Collection<?> c = (Collection<?>) o;
2395 try {
2396 return containsAll(c) && c.containsAll(this);
2397 } catch (ClassCastException unused) {
2398 return false;
2399 } catch (NullPointerException unused) {
2400 return false;
2401 }
2402 }
2403 public Object[] toArray() { return toList(this).toArray(); }
2404 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2405 public Iterator<E> descendingIterator() {
2406 return descendingSet().iterator();
2407 }
2408 public NavigableSet<E> subSet(E fromElement,
2409 boolean fromInclusive,
2410 E toElement,
2411 boolean toInclusive) {
2412 return new KeySet<E>(m.subMap(fromElement, fromInclusive,
2413 toElement, toInclusive));
2414 }
2415 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2416 return new KeySet<E>(m.headMap(toElement, inclusive));
2417 }
2418 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2419 return new KeySet<E>(m.tailMap(fromElement, inclusive));
2420 }
2421 public NavigableSet<E> subSet(E fromElement, E toElement) {
2422 return subSet(fromElement, true, toElement, false);
2423 }
2424 public NavigableSet<E> headSet(E toElement) {
2425 return headSet(toElement, false);
2426 }
2427 public NavigableSet<E> tailSet(E fromElement) {
2428 return tailSet(fromElement, true);
2429 }
2430 public NavigableSet<E> descendingSet() {
2431 return new KeySet<E>(m.descendingMap());
2432 }
2433 @SuppressWarnings("unchecked")
2434 public Spliterator<E> spliterator() {
2435 if (m instanceof ConcurrentSkipListMap)
2436 return ((ConcurrentSkipListMap<E,?>)m).keySpliterator();
2437 else
2438 return (Spliterator<E>)((SubMap<E,?>)m).keyIterator();
2439 }
2440 }
2441
2442 static final class Values<E> extends AbstractCollection<E> {
2443 final ConcurrentNavigableMap<?, E> m;
2444 Values(ConcurrentNavigableMap<?, E> map) {
2445 m = map;
2446 }
2447 @SuppressWarnings("unchecked")
2448 public Iterator<E> iterator() {
2449 if (m instanceof ConcurrentSkipListMap)
2450 return ((ConcurrentSkipListMap<?,E>)m).valueIterator();
2451 else
2452 return ((SubMap<?,E>)m).valueIterator();
2453 }
2454 public boolean isEmpty() {
2455 return m.isEmpty();
2456 }
2457 public int size() {
2458 return m.size();
2459 }
2460 public boolean contains(Object o) {
2461 return m.containsValue(o);
2462 }
2463 public void clear() {
2464 m.clear();
2465 }
2466 public Object[] toArray() { return toList(this).toArray(); }
2467 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2468 @SuppressWarnings("unchecked")
2469 public Spliterator<E> spliterator() {
2470 if (m instanceof ConcurrentSkipListMap)
2471 return ((ConcurrentSkipListMap<?,E>)m).valueSpliterator();
2472 else
2473 return (Spliterator<E>)((SubMap<?,E>)m).valueIterator();
2474 }
2475 }
2476
2477 static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
2478 final ConcurrentNavigableMap<K1, V1> m;
2479 EntrySet(ConcurrentNavigableMap<K1, V1> map) {
2480 m = map;
2481 }
2482 @SuppressWarnings("unchecked")
2483 public Iterator<Map.Entry<K1,V1>> iterator() {
2484 if (m instanceof ConcurrentSkipListMap)
2485 return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
2486 else
2487 return ((SubMap<K1,V1>)m).entryIterator();
2488 }
2489
2490 public boolean contains(Object o) {
2491 if (!(o instanceof Map.Entry))
2492 return false;
2493 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2494 V1 v = m.get(e.getKey());
2495 return v != null && v.equals(e.getValue());
2496 }
2497 public boolean remove(Object o) {
2498 if (!(o instanceof Map.Entry))
2499 return false;
2500 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2501 return m.remove(e.getKey(),
2502 e.getValue());
2503 }
2504 public boolean isEmpty() {
2505 return m.isEmpty();
2506 }
2507 public int size() {
2508 return m.size();
2509 }
2510 public void clear() {
2511 m.clear();
2512 }
2513 public boolean equals(Object o) {
2514 if (o == this)
2515 return true;
2516 if (!(o instanceof Set))
2517 return false;
2518 Collection<?> c = (Collection<?>) o;
2519 try {
2520 return containsAll(c) && c.containsAll(this);
2521 } catch (ClassCastException unused) {
2522 return false;
2523 } catch (NullPointerException unused) {
2524 return false;
2525 }
2526 }
2527 public Object[] toArray() { return toList(this).toArray(); }
2528 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2529 @SuppressWarnings("unchecked")
2530 public Spliterator<Map.Entry<K1,V1>> spliterator() {
2531 if (m instanceof ConcurrentSkipListMap)
2532 return ((ConcurrentSkipListMap<K1,V1>)m).entrySpliterator();
2533 else
2534 return (Spliterator<Map.Entry<K1,V1>>)
2535 ((SubMap<K1,V1>)m).entryIterator();
2536 }
2537 }
2538
2539 /**
2540 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2541 * represent a subrange of mappings of their underlying
2542 * maps. Instances of this class support all methods of their
2543 * underlying maps, differing in that mappings outside their range are
2544 * ignored, and attempts to add mappings outside their ranges result
2545 * in {@link IllegalArgumentException}. Instances of this class are
2546 * constructed only using the {@code subMap}, {@code headMap}, and
2547 * {@code tailMap} methods of their underlying maps.
2548 *
2549 * @serial include
2550 */
2551 static final class SubMap<K,V> extends AbstractMap<K,V>
2552 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
2553 private static final long serialVersionUID = -7647078645895051609L;
2554
2555 /** Underlying map */
2556 private final ConcurrentSkipListMap<K,V> m;
2557 /** lower bound key, or null if from start */
2558 private final K lo;
2559 /** upper bound key, or null if to end */
2560 private final K hi;
2561 /** inclusion flag for lo */
2562 private final boolean loInclusive;
2563 /** inclusion flag for hi */
2564 private final boolean hiInclusive;
2565 /** direction */
2566 private final boolean isDescending;
2567
2568 // Lazily initialized view holders
2569 private transient KeySet<K> keySetView;
2570 private transient Set<Map.Entry<K,V>> entrySetView;
2571 private transient Collection<V> valuesView;
2572
2573 /**
2574 * Creates a new submap, initializing all fields.
2575 */
2576 SubMap(ConcurrentSkipListMap<K,V> map,
2577 K fromKey, boolean fromInclusive,
2578 K toKey, boolean toInclusive,
2579 boolean isDescending) {
2580 Comparator<? super K> cmp = map.comparator;
2581 if (fromKey != null && toKey != null &&
2582 cpr(cmp, fromKey, toKey) > 0)
2583 throw new IllegalArgumentException("inconsistent range");
2584 this.m = map;
2585 this.lo = fromKey;
2586 this.hi = toKey;
2587 this.loInclusive = fromInclusive;
2588 this.hiInclusive = toInclusive;
2589 this.isDescending = isDescending;
2590 }
2591
2592 /* ---------------- Utilities -------------- */
2593
2594 boolean tooLow(Object key, Comparator<? super K> cmp) {
2595 int c;
2596 return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2597 (c == 0 && !loInclusive)));
2598 }
2599
2600 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2601 int c;
2602 return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2603 (c == 0 && !hiInclusive)));
2604 }
2605
2606 boolean inBounds(Object key, Comparator<? super K> cmp) {
2607 return !tooLow(key, cmp) && !tooHigh(key, cmp);
2608 }
2609
2610 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2611 if (key == null)
2612 throw new NullPointerException();
2613 if (!inBounds(key, cmp))
2614 throw new IllegalArgumentException("key out of range");
2615 }
2616
2617 /**
2618 * Returns true if node key is less than upper bound of range.
2619 */
2620 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2621 Comparator<? super K> cmp) {
2622 if (n == null)
2623 return false;
2624 if (hi == null)
2625 return true;
2626 K k = n.key;
2627 if (k == null) // pass by markers and headers
2628 return true;
2629 int c = cpr(cmp, k, hi);
2630 if (c > 0 || (c == 0 && !hiInclusive))
2631 return false;
2632 return true;
2633 }
2634
2635 /**
2636 * Returns lowest node. This node might not be in range, so
2637 * most usages need to check bounds.
2638 */
2639 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2640 if (lo == null)
2641 return m.findFirst();
2642 else if (loInclusive)
2643 return m.findNear(lo, GT|EQ, cmp);
2644 else
2645 return m.findNear(lo, GT, cmp);
2646 }
2647
2648 /**
2649 * Returns highest node. This node might not be in range, so
2650 * most usages need to check bounds.
2651 */
2652 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2653 if (hi == null)
2654 return m.findLast();
2655 else if (hiInclusive)
2656 return m.findNear(hi, LT|EQ, cmp);
2657 else
2658 return m.findNear(hi, LT, cmp);
2659 }
2660
2661 /**
2662 * Returns lowest absolute key (ignoring directonality).
2663 */
2664 K lowestKey() {
2665 Comparator<? super K> cmp = m.comparator;
2666 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2667 if (isBeforeEnd(n, cmp))
2668 return n.key;
2669 else
2670 throw new NoSuchElementException();
2671 }
2672
2673 /**
2674 * Returns highest absolute key (ignoring directonality).
2675 */
2676 K highestKey() {
2677 Comparator<? super K> cmp = m.comparator;
2678 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2679 if (n != null) {
2680 K last = n.key;
2681 if (inBounds(last, cmp))
2682 return last;
2683 }
2684 throw new NoSuchElementException();
2685 }
2686
2687 Map.Entry<K,V> lowestEntry() {
2688 Comparator<? super K> cmp = m.comparator;
2689 for (;;) {
2690 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2691 if (!isBeforeEnd(n, cmp))
2692 return null;
2693 Map.Entry<K,V> e = n.createSnapshot();
2694 if (e != null)
2695 return e;
2696 }
2697 }
2698
2699 Map.Entry<K,V> highestEntry() {
2700 Comparator<? super K> cmp = m.comparator;
2701 for (;;) {
2702 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2703 if (n == null || !inBounds(n.key, cmp))
2704 return null;
2705 Map.Entry<K,V> e = n.createSnapshot();
2706 if (e != null)
2707 return e;
2708 }
2709 }
2710
2711 Map.Entry<K,V> removeLowest() {
2712 Comparator<? super K> cmp = m.comparator;
2713 for (;;) {
2714 Node<K,V> n = loNode(cmp);
2715 if (n == null)
2716 return null;
2717 K k = n.key;
2718 if (!inBounds(k, cmp))
2719 return null;
2720 V v = m.doRemove(k, null);
2721 if (v != null)
2722 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2723 }
2724 }
2725
2726 Map.Entry<K,V> removeHighest() {
2727 Comparator<? super K> cmp = m.comparator;
2728 for (;;) {
2729 Node<K,V> n = hiNode(cmp);
2730 if (n == null)
2731 return null;
2732 K k = n.key;
2733 if (!inBounds(k, cmp))
2734 return null;
2735 V v = m.doRemove(k, null);
2736 if (v != null)
2737 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2738 }
2739 }
2740
2741 /**
2742 * Submap version of ConcurrentSkipListMap.getNearEntry
2743 */
2744 Map.Entry<K,V> getNearEntry(K key, int rel) {
2745 Comparator<? super K> cmp = m.comparator;
2746 if (isDescending) { // adjust relation for direction
2747 if ((rel & LT) == 0)
2748 rel |= LT;
2749 else
2750 rel &= ~LT;
2751 }
2752 if (tooLow(key, cmp))
2753 return ((rel & LT) != 0) ? null : lowestEntry();
2754 if (tooHigh(key, cmp))
2755 return ((rel & LT) != 0) ? highestEntry() : null;
2756 for (;;) {
2757 Node<K,V> n = m.findNear(key, rel, cmp);
2758 if (n == null || !inBounds(n.key, cmp))
2759 return null;
2760 K k = n.key;
2761 V v = n.getValidValue();
2762 if (v != null)
2763 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2764 }
2765 }
2766
2767 // Almost the same as getNearEntry, except for keys
2768 K getNearKey(K key, int rel) {
2769 Comparator<? super K> cmp = m.comparator;
2770 if (isDescending) { // adjust relation for direction
2771 if ((rel & LT) == 0)
2772 rel |= LT;
2773 else
2774 rel &= ~LT;
2775 }
2776 if (tooLow(key, cmp)) {
2777 if ((rel & LT) == 0) {
2778 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2779 if (isBeforeEnd(n, cmp))
2780 return n.key;
2781 }
2782 return null;
2783 }
2784 if (tooHigh(key, cmp)) {
2785 if ((rel & LT) != 0) {
2786 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2787 if (n != null) {
2788 K last = n.key;
2789 if (inBounds(last, cmp))
2790 return last;
2791 }
2792 }
2793 return null;
2794 }
2795 for (;;) {
2796 Node<K,V> n = m.findNear(key, rel, cmp);
2797 if (n == null || !inBounds(n.key, cmp))
2798 return null;
2799 K k = n.key;
2800 V v = n.getValidValue();
2801 if (v != null)
2802 return k;
2803 }
2804 }
2805
2806 /* ---------------- Map API methods -------------- */
2807
2808 public boolean containsKey(Object key) {
2809 if (key == null) throw new NullPointerException();
2810 return inBounds(key, m.comparator) && m.containsKey(key);
2811 }
2812
2813 public V get(Object key) {
2814 if (key == null) throw new NullPointerException();
2815 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2816 }
2817
2818 public V put(K key, V value) {
2819 checkKeyBounds(key, m.comparator);
2820 return m.put(key, value);
2821 }
2822
2823 public V remove(Object key) {
2824 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2825 }
2826
2827 public int size() {
2828 Comparator<? super K> cmp = m.comparator;
2829 long count = 0;
2830 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2831 isBeforeEnd(n, cmp);
2832 n = n.next) {
2833 if (n.getValidValue() != null)
2834 ++count;
2835 }
2836 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2837 }
2838
2839 public boolean isEmpty() {
2840 Comparator<? super K> cmp = m.comparator;
2841 return !isBeforeEnd(loNode(cmp), cmp);
2842 }
2843
2844 public boolean containsValue(Object value) {
2845 if (value == null)
2846 throw new NullPointerException();
2847 Comparator<? super K> cmp = m.comparator;
2848 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2849 isBeforeEnd(n, cmp);
2850 n = n.next) {
2851 V v = n.getValidValue();
2852 if (v != null && value.equals(v))
2853 return true;
2854 }
2855 return false;
2856 }
2857
2858 public void clear() {
2859 Comparator<? super K> cmp = m.comparator;
2860 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2861 isBeforeEnd(n, cmp);
2862 n = n.next) {
2863 if (n.getValidValue() != null)
2864 m.remove(n.key);
2865 }
2866 }
2867
2868 /* ---------------- ConcurrentMap API methods -------------- */
2869
2870 public V putIfAbsent(K key, V value) {
2871 checkKeyBounds(key, m.comparator);
2872 return m.putIfAbsent(key, value);
2873 }
2874
2875 public boolean remove(Object key, Object value) {
2876 return inBounds(key, m.comparator) && m.remove(key, value);
2877 }
2878
2879 public boolean replace(K key, V oldValue, V newValue) {
2880 checkKeyBounds(key, m.comparator);
2881 return m.replace(key, oldValue, newValue);
2882 }
2883
2884 public V replace(K key, V value) {
2885 checkKeyBounds(key, m.comparator);
2886 return m.replace(key, value);
2887 }
2888
2889 /* ---------------- SortedMap API methods -------------- */
2890
2891 public Comparator<? super K> comparator() {
2892 Comparator<? super K> cmp = m.comparator();
2893 if (isDescending)
2894 return Collections.reverseOrder(cmp);
2895 else
2896 return cmp;
2897 }
2898
2899 /**
2900 * Utility to create submaps, where given bounds override
2901 * unbounded(null) ones and/or are checked against bounded ones.
2902 */
2903 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2904 K toKey, boolean toInclusive) {
2905 Comparator<? super K> cmp = m.comparator;
2906 if (isDescending) { // flip senses
2907 K tk = fromKey;
2908 fromKey = toKey;
2909 toKey = tk;
2910 boolean ti = fromInclusive;
2911 fromInclusive = toInclusive;
2912 toInclusive = ti;
2913 }
2914 if (lo != null) {
2915 if (fromKey == null) {
2916 fromKey = lo;
2917 fromInclusive = loInclusive;
2918 }
2919 else {
2920 int c = cpr(cmp, fromKey, lo);
2921 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2922 throw new IllegalArgumentException("key out of range");
2923 }
2924 }
2925 if (hi != null) {
2926 if (toKey == null) {
2927 toKey = hi;
2928 toInclusive = hiInclusive;
2929 }
2930 else {
2931 int c = cpr(cmp, toKey, hi);
2932 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2933 throw new IllegalArgumentException("key out of range");
2934 }
2935 }
2936 return new SubMap<K,V>(m, fromKey, fromInclusive,
2937 toKey, toInclusive, isDescending);
2938 }
2939
2940 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2941 K toKey, boolean toInclusive) {
2942 if (fromKey == null || toKey == null)
2943 throw new NullPointerException();
2944 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2945 }
2946
2947 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2948 if (toKey == null)
2949 throw new NullPointerException();
2950 return newSubMap(null, false, toKey, inclusive);
2951 }
2952
2953 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2954 if (fromKey == null)
2955 throw new NullPointerException();
2956 return newSubMap(fromKey, inclusive, null, false);
2957 }
2958
2959 public SubMap<K,V> subMap(K fromKey, K toKey) {
2960 return subMap(fromKey, true, toKey, false);
2961 }
2962
2963 public SubMap<K,V> headMap(K toKey) {
2964 return headMap(toKey, false);
2965 }
2966
2967 public SubMap<K,V> tailMap(K fromKey) {
2968 return tailMap(fromKey, true);
2969 }
2970
2971 public SubMap<K,V> descendingMap() {
2972 return new SubMap<K,V>(m, lo, loInclusive,
2973 hi, hiInclusive, !isDescending);
2974 }
2975
2976 /* ---------------- Relational methods -------------- */
2977
2978 public Map.Entry<K,V> ceilingEntry(K key) {
2979 return getNearEntry(key, GT|EQ);
2980 }
2981
2982 public K ceilingKey(K key) {
2983 return getNearKey(key, GT|EQ);
2984 }
2985
2986 public Map.Entry<K,V> lowerEntry(K key) {
2987 return getNearEntry(key, LT);
2988 }
2989
2990 public K lowerKey(K key) {
2991 return getNearKey(key, LT);
2992 }
2993
2994 public Map.Entry<K,V> floorEntry(K key) {
2995 return getNearEntry(key, LT|EQ);
2996 }
2997
2998 public K floorKey(K key) {
2999 return getNearKey(key, LT|EQ);
3000 }
3001
3002 public Map.Entry<K,V> higherEntry(K key) {
3003 return getNearEntry(key, GT);
3004 }
3005
3006 public K higherKey(K key) {
3007 return getNearKey(key, GT);
3008 }
3009
3010 public K firstKey() {
3011 return isDescending ? highestKey() : lowestKey();
3012 }
3013
3014 public K lastKey() {
3015 return isDescending ? lowestKey() : highestKey();
3016 }
3017
3018 public Map.Entry<K,V> firstEntry() {
3019 return isDescending ? highestEntry() : lowestEntry();
3020 }
3021
3022 public Map.Entry<K,V> lastEntry() {
3023 return isDescending ? lowestEntry() : highestEntry();
3024 }
3025
3026 public Map.Entry<K,V> pollFirstEntry() {
3027 return isDescending ? removeHighest() : removeLowest();
3028 }
3029
3030 public Map.Entry<K,V> pollLastEntry() {
3031 return isDescending ? removeLowest() : removeHighest();
3032 }
3033
3034 /* ---------------- Submap Views -------------- */
3035
3036 public NavigableSet<K> keySet() {
3037 KeySet<K> ks = keySetView;
3038 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3039 }
3040
3041 public NavigableSet<K> navigableKeySet() {
3042 KeySet<K> ks = keySetView;
3043 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3044 }
3045
3046 public Collection<V> values() {
3047 Collection<V> vs = valuesView;
3048 return (vs != null) ? vs : (valuesView = new Values<V>(this));
3049 }
3050
3051 public Set<Map.Entry<K,V>> entrySet() {
3052 Set<Map.Entry<K,V>> es = entrySetView;
3053 return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
3054 }
3055
3056 public NavigableSet<K> descendingKeySet() {
3057 return descendingMap().navigableKeySet();
3058 }
3059
3060 Iterator<K> keyIterator() {
3061 return new SubMapKeyIterator();
3062 }
3063
3064 Iterator<V> valueIterator() {
3065 return new SubMapValueIterator();
3066 }
3067
3068 Iterator<Map.Entry<K,V>> entryIterator() {
3069 return new SubMapEntryIterator();
3070 }
3071
3072 /**
3073 * Variant of main Iter class to traverse through submaps.
3074 * Also serves as back-up Spliterator for views
3075 */
3076 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
3077 /** the last node returned by next() */
3078 Node<K,V> lastReturned;
3079 /** the next node to return from next(); */
3080 Node<K,V> next;
3081 /** Cache of next value field to maintain weak consistency */
3082 V nextValue;
3083
3084 SubMapIter() {
3085 Comparator<? super K> cmp = m.comparator;
3086 for (;;) {
3087 next = isDescending ? hiNode(cmp) : loNode(cmp);
3088 if (next == null)
3089 break;
3090 Object x = next.value;
3091 if (x != null && x != next) {
3092 if (! inBounds(next.key, cmp))
3093 next = null;
3094 else {
3095 @SuppressWarnings("unchecked") V vv = (V)x;
3096 nextValue = vv;
3097 }
3098 break;
3099 }
3100 }
3101 }
3102
3103 public final boolean hasNext() {
3104 return next != null;
3105 }
3106
3107 final void advance() {
3108 if (next == null)
3109 throw new NoSuchElementException();
3110 lastReturned = next;
3111 if (isDescending)
3112 descend();
3113 else
3114 ascend();
3115 }
3116
3117 private void ascend() {
3118 Comparator<? super K> cmp = m.comparator;
3119 for (;;) {
3120 next = next.next;
3121 if (next == null)
3122 break;
3123 Object x = next.value;
3124 if (x != null && x != next) {
3125 if (tooHigh(next.key, cmp))
3126 next = null;
3127 else {
3128 @SuppressWarnings("unchecked") V vv = (V)x;
3129 nextValue = vv;
3130 }
3131 break;
3132 }
3133 }
3134 }
3135
3136 private void descend() {
3137 Comparator<? super K> cmp = m.comparator;
3138 for (;;) {
3139 next = m.findNear(lastReturned.key, LT, cmp);
3140 if (next == null)
3141 break;
3142 Object x = next.value;
3143 if (x != null && x != next) {
3144 if (tooLow(next.key, cmp))
3145 next = null;
3146 else {
3147 @SuppressWarnings("unchecked") V vv = (V)x;
3148 nextValue = vv;
3149 }
3150 break;
3151 }
3152 }
3153 }
3154
3155 public void remove() {
3156 Node<K,V> l = lastReturned;
3157 if (l == null)
3158 throw new IllegalStateException();
3159 m.remove(l.key);
3160 lastReturned = null;
3161 }
3162
3163 public Spliterator<T> trySplit() {
3164 return null;
3165 }
3166
3167 public boolean tryAdvance(Consumer<? super T> action) {
3168 if (hasNext()) {
3169 action.accept(next());
3170 return true;
3171 }
3172 return false;
3173 }
3174
3175 public void forEachRemaining(Consumer<? super T> action) {
3176 while (hasNext())
3177 action.accept(next());
3178 }
3179
3180 public long estimateSize() {
3181 return Long.MAX_VALUE;
3182 }
3183
3184 }
3185
3186 final class SubMapValueIterator extends SubMapIter<V> {
3187 public V next() {
3188 V v = nextValue;
3189 advance();
3190 return v;
3191 }
3192 public int characteristics() {
3193 return 0;
3194 }
3195 }
3196
3197 final class SubMapKeyIterator extends SubMapIter<K> {
3198 public K next() {
3199 Node<K,V> n = next;
3200 advance();
3201 return n.key;
3202 }
3203 public int characteristics() {
3204 return Spliterator.DISTINCT | Spliterator.ORDERED |
3205 Spliterator.SORTED;
3206 }
3207 public final Comparator<? super K> getComparator() {
3208 return SubMap.this.comparator();
3209 }
3210 }
3211
3212 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3213 public Map.Entry<K,V> next() {
3214 Node<K,V> n = next;
3215 V v = nextValue;
3216 advance();
3217 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3218 }
3219 public int characteristics() {
3220 return Spliterator.DISTINCT;
3221 }
3222 }
3223 }
3224
3225 // default Map method overrides
3226
3227 public void forEach(BiConsumer<? super K, ? super V> action) {
3228 if (action == null) throw new NullPointerException();
3229 V v;
3230 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3231 if ((v = n.getValidValue()) != null)
3232 action.accept(n.key, v);
3233 }
3234 }
3235
3236 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3237 if (function == null) throw new NullPointerException();
3238 V v;
3239 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3240 while ((v = n.getValidValue()) != null) {
3241 V r = function.apply(n.key, v);
3242 if (r == null) throw new NullPointerException();
3243 if (n.casValue(v, r))
3244 break;
3245 }
3246 }
3247 }
3248
3249 /**
3250 * Base class providing common structure for Spliterators.
3251 * (Although not all that much common functionality; as usual for
3252 * view classes, details annoyingly vary in key, value, and entry
3253 * subclasses in ways that are not worth abstracting out for
3254 * internal classes.)
3255 *
3256 * The basic split strategy is to recursively descend from top
3257 * level, row by row, descending to next row when either split
3258 * off, or the end of row is encountered. Control of the number of
3259 * splits relies on some statistical estimation: The expected
3260 * remaining number of elements of a skip list when advancing
3261 * either across or down decreases by about 25%. To make this
3262 * observation useful, we need to know initial size, which we
3263 * don't. But we can just use Integer.MAX_VALUE so that we
3264 * don't prematurely zero out while splitting.
3265 */
3266 abstract static class CSLMSpliterator<K,V> {
3267 final Comparator<? super K> comparator;
3268 final K fence; // exclusive upper bound for keys, or null if to end
3269 Index<K,V> row; // the level to split out
3270 Node<K,V> current; // current traversal node; initialize at origin
3271 int est; // pseudo-size estimate
3272 CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3273 Node<K,V> origin, K fence, int est) {
3274 this.comparator = comparator; this.row = row;
3275 this.current = origin; this.fence = fence; this.est = est;
3276 }
3277
3278 public final long estimateSize() { return (long)est; }
3279 }
3280
3281 static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3282 implements Spliterator<K> {
3283 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3284 Node<K,V> origin, K fence, int est) {
3285 super(comparator, row, origin, fence, est);
3286 }
3287
3288 public Spliterator<K> trySplit() {
3289 Node<K,V> e; K ek;
3290 Comparator<? super K> cmp = comparator;
3291 K f = fence;
3292 if ((e = current) != null && (ek = e.key) != null) {
3293 for (Index<K,V> q = row; q != null; q = row = q.down) {
3294 Index<K,V> s; Node<K,V> b, n; K sk;
3295 if ((s = q.right) != null && (b = s.node) != null &&
3296 (n = b.next) != null && n.value != null &&
3297 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3298 (f == null || cpr(cmp, sk, f) < 0)) {
3299 current = n;
3300 Index<K,V> r = q.down;
3301 row = (s.right != null) ? s : s.down;
3302 est -= est >>> 2;
3303 return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3304 }
3305 }
3306 }
3307 return null;
3308 }
3309
3310 public void forEachRemaining(Consumer<? super K> action) {
3311 if (action == null) throw new NullPointerException();
3312 Comparator<? super K> cmp = comparator;
3313 K f = fence;
3314 Node<K,V> e = current;
3315 current = null;
3316 for (; e != null; e = e.next) {
3317 K k; Object v;
3318 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3319 break;
3320 if ((v = e.value) != null && v != e)
3321 action.accept(k);
3322 }
3323 }
3324
3325 public boolean tryAdvance(Consumer<? super K> action) {
3326 if (action == null) throw new NullPointerException();
3327 Comparator<? super K> cmp = comparator;
3328 K f = fence;
3329 Node<K,V> e = current;
3330 for (; e != null; e = e.next) {
3331 K k; Object v;
3332 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3333 e = null;
3334 break;
3335 }
3336 if ((v = e.value) != null && v != e) {
3337 current = e.next;
3338 action.accept(k);
3339 return true;
3340 }
3341 }
3342 current = e;
3343 return false;
3344 }
3345
3346 public int characteristics() {
3347 return Spliterator.DISTINCT | Spliterator.SORTED |
3348 Spliterator.ORDERED | Spliterator.CONCURRENT |
3349 Spliterator.NONNULL;
3350 }
3351
3352 public final Comparator<? super K> getComparator() {
3353 return comparator;
3354 }
3355 }
3356 // factory method for KeySpliterator
3357 final KeySpliterator<K,V> keySpliterator() {
3358 Comparator<? super K> cmp = comparator;
3359 for (;;) { // ensure h corresponds to origin p
3360 HeadIndex<K,V> h; Node<K,V> p;
3361 Node<K,V> b = (h = head).node;
3362 if ((p = b.next) == null || p.value != null)
3363 return new KeySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3364 0 : Integer.MAX_VALUE);
3365 p.helpDelete(b, p.next);
3366 }
3367 }
3368
3369 static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3370 implements Spliterator<V> {
3371 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3372 Node<K,V> origin, K fence, int est) {
3373 super(comparator, row, origin, fence, est);
3374 }
3375
3376 public Spliterator<V> trySplit() {
3377 Node<K,V> e; K ek;
3378 Comparator<? super K> cmp = comparator;
3379 K f = fence;
3380 if ((e = current) != null && (ek = e.key) != null) {
3381 for (Index<K,V> q = row; q != null; q = row = q.down) {
3382 Index<K,V> s; Node<K,V> b, n; K sk;
3383 if ((s = q.right) != null && (b = s.node) != null &&
3384 (n = b.next) != null && n.value != null &&
3385 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3386 (f == null || cpr(cmp, sk, f) < 0)) {
3387 current = n;
3388 Index<K,V> r = q.down;
3389 row = (s.right != null) ? s : s.down;
3390 est -= est >>> 2;
3391 return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3392 }
3393 }
3394 }
3395 return null;
3396 }
3397
3398 public void forEachRemaining(Consumer<? super V> action) {
3399 if (action == null) throw new NullPointerException();
3400 Comparator<? super K> cmp = comparator;
3401 K f = fence;
3402 Node<K,V> e = current;
3403 current = null;
3404 for (; e != null; e = e.next) {
3405 K k; Object v;
3406 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3407 break;
3408 if ((v = e.value) != null && v != e) {
3409 @SuppressWarnings("unchecked") V vv = (V)v;
3410 action.accept(vv);
3411 }
3412 }
3413 }
3414
3415 public boolean tryAdvance(Consumer<? super V> action) {
3416 if (action == null) throw new NullPointerException();
3417 Comparator<? super K> cmp = comparator;
3418 K f = fence;
3419 Node<K,V> e = current;
3420 for (; e != null; e = e.next) {
3421 K k; Object v;
3422 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3423 e = null;
3424 break;
3425 }
3426 if ((v = e.value) != null && v != e) {
3427 current = e.next;
3428 @SuppressWarnings("unchecked") V vv = (V)v;
3429 action.accept(vv);
3430 return true;
3431 }
3432 }
3433 current = e;
3434 return false;
3435 }
3436
3437 public int characteristics() {
3438 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3439 Spliterator.NONNULL;
3440 }
3441 }
3442
3443 // Almost the same as keySpliterator()
3444 final ValueSpliterator<K,V> valueSpliterator() {
3445 Comparator<? super K> cmp = comparator;
3446 for (;;) {
3447 HeadIndex<K,V> h; Node<K,V> p;
3448 Node<K,V> b = (h = head).node;
3449 if ((p = b.next) == null || p.value != null)
3450 return new ValueSpliterator<K,V>(cmp, h, p, null, (p == null) ?
3451 0 : Integer.MAX_VALUE);
3452 p.helpDelete(b, p.next);
3453 }
3454 }
3455
3456 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3457 implements Spliterator<Map.Entry<K,V>> {
3458 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3459 Node<K,V> origin, K fence, int est) {
3460 super(comparator, row, origin, fence, est);
3461 }
3462
3463 public Spliterator<Map.Entry<K,V>> trySplit() {
3464 Node<K,V> e; K ek;
3465 Comparator<? super K> cmp = comparator;
3466 K f = fence;
3467 if ((e = current) != null && (ek = e.key) != null) {
3468 for (Index<K,V> q = row; q != null; q = row = q.down) {
3469 Index<K,V> s; Node<K,V> b, n; K sk;
3470 if ((s = q.right) != null && (b = s.node) != null &&
3471 (n = b.next) != null && n.value != null &&
3472 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3473 (f == null || cpr(cmp, sk, f) < 0)) {
3474 current = n;
3475 Index<K,V> r = q.down;
3476 row = (s.right != null) ? s : s.down;
3477 est -= est >>> 2;
3478 return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3479 }
3480 }
3481 }
3482 return null;
3483 }
3484
3485 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3486 if (action == null) throw new NullPointerException();
3487 Comparator<? super K> cmp = comparator;
3488 K f = fence;
3489 Node<K,V> e = current;
3490 current = null;
3491 for (; e != null; e = e.next) {
3492 K k; Object v;
3493 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3494 break;
3495 if ((v = e.value) != null && v != e) {
3496 @SuppressWarnings("unchecked") V vv = (V)v;
3497 action.accept
3498 (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3499 }
3500 }
3501 }
3502
3503 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3504 if (action == null) throw new NullPointerException();
3505 Comparator<? super K> cmp = comparator;
3506 K f = fence;
3507 Node<K,V> e = current;
3508 for (; e != null; e = e.next) {
3509 K k; Object v;
3510 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3511 e = null;
3512 break;
3513 }
3514 if ((v = e.value) != null && v != e) {
3515 current = e.next;
3516 @SuppressWarnings("unchecked") V vv = (V)v;
3517 action.accept
3518 (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3519 return true;
3520 }
3521 }
3522 current = e;
3523 return false;
3524 }
3525
3526 public int characteristics() {
3527 return Spliterator.DISTINCT | Spliterator.SORTED |
3528 Spliterator.ORDERED | Spliterator.CONCURRENT |
3529 Spliterator.NONNULL;
3530 }
3531
3532 public final Comparator<Map.Entry<K,V>> getComparator() {
3533 // Adapt or create a key-based comparator
3534 if (comparator != null) {
3535 return Map.Entry.comparingByKey(comparator);
3536 }
3537 else {
3538 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3539 @SuppressWarnings("unchecked")
3540 Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3541 return k1.compareTo(e2.getKey());
3542 };
3543 }
3544 }
3545 }
3546
3547 // Almost the same as keySpliterator()
3548 final EntrySpliterator<K,V> entrySpliterator() {
3549 Comparator<? super K> cmp = comparator;
3550 for (;;) { // almost same as key version
3551 HeadIndex<K,V> h; Node<K,V> p;
3552 Node<K,V> b = (h = head).node;
3553 if ((p = b.next) == null || p.value != null)
3554 return new EntrySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3555 0 : Integer.MAX_VALUE);
3556 p.helpDelete(b, p.next);
3557 }
3558 }
3559
3560 // Unsafe mechanics
3561 private static final sun.misc.Unsafe UNSAFE;
3562 private static final long headOffset;
3563 private static final long SECONDARY;
3564 static {
3565 try {
3566 UNSAFE = sun.misc.Unsafe.getUnsafe();
3567 Class<?> k = ConcurrentSkipListMap.class;
3568 headOffset = UNSAFE.objectFieldOffset
3569 (k.getDeclaredField("head"));
3570 Class<?> tk = Thread.class;
3571 SECONDARY = UNSAFE.objectFieldOffset
3572 (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
3573
3574 } catch (Exception e) {
3575 throw new Error(e);
3576 }
3577 }
3578 }