ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.140
Committed: Sun Jan 4 01:06:15 2015 UTC (9 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.139: +3 -4 lines
Log Message:
use ReflectiveOperationException for Unsafe mechanics

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.Serializable;
10 import java.util.AbstractCollection;
11 import java.util.AbstractMap;
12 import java.util.AbstractSet;
13 import java.util.ArrayList;
14 import java.util.Collection;
15 import java.util.Collections;
16 import java.util.Comparator;
17 import java.util.Iterator;
18 import java.util.List;
19 import java.util.Map;
20 import java.util.NavigableMap;
21 import java.util.NavigableSet;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.SortedMap;
25 import java.util.Spliterator;
26 import java.util.function.BiConsumer;
27 import java.util.function.BiFunction;
28 import java.util.function.Consumer;
29 import java.util.function.Function;
30
31 /**
32 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
33 * The map is sorted according to the {@linkplain Comparable natural
34 * ordering} of its keys, or by a {@link Comparator} provided at map
35 * creation time, depending on which constructor is used.
36 *
37 * <p>This class implements a concurrent variant of <a
38 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
39 * providing expected average <i>log(n)</i> time cost for the
40 * {@code containsKey}, {@code get}, {@code put} and
41 * {@code remove} operations and their variants. Insertion, removal,
42 * update, and access operations safely execute concurrently by
43 * multiple threads.
44 *
45 * <p>Iterators and spliterators are
46 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
47 *
48 * <p>Ascending key ordered views and their iterators are faster than
49 * descending ones.
50 *
51 * <p>All {@code Map.Entry} pairs returned by methods in this class
52 * and its views represent snapshots of mappings at the time they were
53 * produced. They do <em>not</em> support the {@code Entry.setValue}
54 * method. (Note however that it is possible to change mappings in the
55 * associated map using {@code put}, {@code putIfAbsent}, or
56 * {@code replace}, depending on exactly which effect you need.)
57 *
58 * <p>Beware that, unlike in most collections, the {@code size}
59 * method is <em>not</em> a constant-time operation. Because of the
60 * asynchronous nature of these maps, determining the current number
61 * of elements requires a traversal of the elements, and so may report
62 * inaccurate results if this collection is modified during traversal.
63 * Additionally, the bulk operations {@code putAll}, {@code equals},
64 * {@code toArray}, {@code containsValue}, and {@code clear} are
65 * <em>not</em> guaranteed to be performed atomically. For example, an
66 * iterator operating concurrently with a {@code putAll} operation
67 * might view only some of the added elements.
68 *
69 * <p>This class and its views and iterators implement all of the
70 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
71 * interfaces. Like most other concurrent collections, this class does
72 * <em>not</em> permit the use of {@code null} keys or values because some
73 * null return values cannot be reliably distinguished from the absence of
74 * elements.
75 *
76 * <p>This class is a member of the
77 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
78 * Java Collections Framework</a>.
79 *
80 * @author Doug Lea
81 * @param <K> the type of keys maintained by this map
82 * @param <V> the type of mapped values
83 * @since 1.6
84 */
85 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
86 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
87 /*
88 * This class implements a tree-like two-dimensionally linked skip
89 * list in which the index levels are represented in separate
90 * nodes from the base nodes holding data. There are two reasons
91 * for taking this approach instead of the usual array-based
92 * structure: 1) Array based implementations seem to encounter
93 * more complexity and overhead 2) We can use cheaper algorithms
94 * for the heavily-traversed index lists than can be used for the
95 * base lists. Here's a picture of some of the basics for a
96 * possible list with 2 levels of index:
97 *
98 * Head nodes Index nodes
99 * +-+ right +-+ +-+
100 * |2|---------------->| |--------------------->| |->null
101 * +-+ +-+ +-+
102 * | down | |
103 * v v v
104 * +-+ +-+ +-+ +-+ +-+ +-+
105 * |1|----------->| |->| |------>| |----------->| |------>| |->null
106 * +-+ +-+ +-+ +-+ +-+ +-+
107 * v | | | | |
108 * Nodes next v v v v v
109 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
110 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
111 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
112 *
113 * The base lists use a variant of the HM linked ordered set
114 * algorithm. See Tim Harris, "A pragmatic implementation of
115 * non-blocking linked lists"
116 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
117 * Michael "High Performance Dynamic Lock-Free Hash Tables and
118 * List-Based Sets"
119 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
120 * basic idea in these lists is to mark the "next" pointers of
121 * deleted nodes when deleting to avoid conflicts with concurrent
122 * insertions, and when traversing to keep track of triples
123 * (predecessor, node, successor) in order to detect when and how
124 * to unlink these deleted nodes.
125 *
126 * Rather than using mark-bits to mark list deletions (which can
127 * be slow and space-intensive using AtomicMarkedReference), nodes
128 * use direct CAS'able next pointers. On deletion, instead of
129 * marking a pointer, they splice in another node that can be
130 * thought of as standing for a marked pointer (indicating this by
131 * using otherwise impossible field values). Using plain nodes
132 * acts roughly like "boxed" implementations of marked pointers,
133 * but uses new nodes only when nodes are deleted, not for every
134 * link. This requires less space and supports faster
135 * traversal. Even if marked references were better supported by
136 * JVMs, traversal using this technique might still be faster
137 * because any search need only read ahead one more node than
138 * otherwise required (to check for trailing marker) rather than
139 * unmasking mark bits or whatever on each read.
140 *
141 * This approach maintains the essential property needed in the HM
142 * algorithm of changing the next-pointer of a deleted node so
143 * that any other CAS of it will fail, but implements the idea by
144 * changing the pointer to point to a different node, not by
145 * marking it. While it would be possible to further squeeze
146 * space by defining marker nodes not to have key/value fields, it
147 * isn't worth the extra type-testing overhead. The deletion
148 * markers are rarely encountered during traversal and are
149 * normally quickly garbage collected. (Note that this technique
150 * would not work well in systems without garbage collection.)
151 *
152 * In addition to using deletion markers, the lists also use
153 * nullness of value fields to indicate deletion, in a style
154 * similar to typical lazy-deletion schemes. If a node's value is
155 * null, then it is considered logically deleted and ignored even
156 * though it is still reachable. This maintains proper control of
157 * concurrent replace vs delete operations -- an attempted replace
158 * must fail if a delete beat it by nulling field, and a delete
159 * must return the last non-null value held in the field. (Note:
160 * Null, rather than some special marker, is used for value fields
161 * here because it just so happens to mesh with the Map API
162 * requirement that method get returns null if there is no
163 * mapping, which allows nodes to remain concurrently readable
164 * even when deleted. Using any other marker value here would be
165 * messy at best.)
166 *
167 * Here's the sequence of events for a deletion of node n with
168 * predecessor b and successor f, initially:
169 *
170 * +------+ +------+ +------+
171 * ... | b |------>| n |----->| f | ...
172 * +------+ +------+ +------+
173 *
174 * 1. CAS n's value field from non-null to null.
175 * From this point on, no public operations encountering
176 * the node consider this mapping to exist. However, other
177 * ongoing insertions and deletions might still modify
178 * n's next pointer.
179 *
180 * 2. CAS n's next pointer to point to a new marker node.
181 * From this point on, no other nodes can be appended to n.
182 * which avoids deletion errors in CAS-based linked lists.
183 *
184 * +------+ +------+ +------+ +------+
185 * ... | b |------>| n |----->|marker|------>| f | ...
186 * +------+ +------+ +------+ +------+
187 *
188 * 3. CAS b's next pointer over both n and its marker.
189 * From this point on, no new traversals will encounter n,
190 * and it can eventually be GCed.
191 * +------+ +------+
192 * ... | b |----------------------------------->| f | ...
193 * +------+ +------+
194 *
195 * A failure at step 1 leads to simple retry due to a lost race
196 * with another operation. Steps 2-3 can fail because some other
197 * thread noticed during a traversal a node with null value and
198 * helped out by marking and/or unlinking. This helping-out
199 * ensures that no thread can become stuck waiting for progress of
200 * the deleting thread. The use of marker nodes slightly
201 * complicates helping-out code because traversals must track
202 * consistent reads of up to four nodes (b, n, marker, f), not
203 * just (b, n, f), although the next field of a marker is
204 * immutable, and once a next field is CAS'ed to point to a
205 * marker, it never again changes, so this requires less care.
206 *
207 * Skip lists add indexing to this scheme, so that the base-level
208 * traversals start close to the locations being found, inserted
209 * or deleted -- usually base level traversals only traverse a few
210 * nodes. This doesn't change the basic algorithm except for the
211 * need to make sure base traversals start at predecessors (here,
212 * b) that are not (structurally) deleted, otherwise retrying
213 * after processing the deletion.
214 *
215 * Index levels are maintained as lists with volatile next fields,
216 * using CAS to link and unlink. Races are allowed in index-list
217 * operations that can (rarely) fail to link in a new index node
218 * or delete one. (We can't do this of course for data nodes.)
219 * However, even when this happens, the index lists remain sorted,
220 * so correctly serve as indices. This can impact performance,
221 * but since skip lists are probabilistic anyway, the net result
222 * is that under contention, the effective "p" value may be lower
223 * than its nominal value. And race windows are kept small enough
224 * that in practice these failures are rare, even under a lot of
225 * contention.
226 *
227 * The fact that retries (for both base and index lists) are
228 * relatively cheap due to indexing allows some minor
229 * simplifications of retry logic. Traversal restarts are
230 * performed after most "helping-out" CASes. This isn't always
231 * strictly necessary, but the implicit backoffs tend to help
232 * reduce other downstream failed CAS's enough to outweigh restart
233 * cost. This worsens the worst case, but seems to improve even
234 * highly contended cases.
235 *
236 * Unlike most skip-list implementations, index insertion and
237 * deletion here require a separate traversal pass occurring after
238 * the base-level action, to add or remove index nodes. This adds
239 * to single-threaded overhead, but improves contended
240 * multithreaded performance by narrowing interference windows,
241 * and allows deletion to ensure that all index nodes will be made
242 * unreachable upon return from a public remove operation, thus
243 * avoiding unwanted garbage retention. This is more important
244 * here than in some other data structures because we cannot null
245 * out node fields referencing user keys since they might still be
246 * read by other ongoing traversals.
247 *
248 * Indexing uses skip list parameters that maintain good search
249 * performance while using sparser-than-usual indices: The
250 * hardwired parameters k=1, p=0.5 (see method doPut) mean
251 * that about one-quarter of the nodes have indices. Of those that
252 * do, half have one level, a quarter have two, and so on (see
253 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
254 * requirement for a map is slightly less than for the current
255 * implementation of java.util.TreeMap.
256 *
257 * Changing the level of the index (i.e, the height of the
258 * tree-like structure) also uses CAS. The head index has initial
259 * level/height of one. Creation of an index with height greater
260 * than the current level adds a level to the head index by
261 * CAS'ing on a new top-most head. To maintain good performance
262 * after a lot of removals, deletion methods heuristically try to
263 * reduce the height if the topmost levels appear to be empty.
264 * This may encounter races in which it possible (but rare) to
265 * reduce and "lose" a level just as it is about to contain an
266 * index (that will then never be encountered). This does no
267 * structural harm, and in practice appears to be a better option
268 * than allowing unrestrained growth of levels.
269 *
270 * The code for all this is more verbose than you'd like. Most
271 * operations entail locating an element (or position to insert an
272 * element). The code to do this can't be nicely factored out
273 * because subsequent uses require a snapshot of predecessor
274 * and/or successor and/or value fields which can't be returned
275 * all at once, at least not without creating yet another object
276 * to hold them -- creating such little objects is an especially
277 * bad idea for basic internal search operations because it adds
278 * to GC overhead. (This is one of the few times I've wished Java
279 * had macros.) Instead, some traversal code is interleaved within
280 * insertion and removal operations. The control logic to handle
281 * all the retry conditions is sometimes twisty. Most search is
282 * broken into 2 parts. findPredecessor() searches index nodes
283 * only, returning a base-level predecessor of the key. findNode()
284 * finishes out the base-level search. Even with this factoring,
285 * there is a fair amount of near-duplication of code to handle
286 * variants.
287 *
288 * To produce random values without interference across threads,
289 * we use within-JDK thread local random support (via the
290 * "secondary seed", to avoid interference with user-level
291 * ThreadLocalRandom.)
292 *
293 * A previous version of this class wrapped non-comparable keys
294 * with their comparators to emulate Comparables when using
295 * comparators vs Comparables. However, JVMs now appear to better
296 * handle infusing comparator-vs-comparable choice into search
297 * loops. Static method cpr(comparator, x, y) is used for all
298 * comparisons, which works well as long as the comparator
299 * argument is set up outside of loops (thus sometimes passed as
300 * an argument to internal methods) to avoid field re-reads.
301 *
302 * For explanation of algorithms sharing at least a couple of
303 * features with this one, see Mikhail Fomitchev's thesis
304 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
305 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
306 * thesis (http://www.cs.chalmers.se/~phs/).
307 *
308 * Given the use of tree-like index nodes, you might wonder why
309 * this doesn't use some kind of search tree instead, which would
310 * support somewhat faster search operations. The reason is that
311 * there are no known efficient lock-free insertion and deletion
312 * algorithms for search trees. The immutability of the "down"
313 * links of index nodes (as opposed to mutable "left" fields in
314 * true trees) makes this tractable using only CAS operations.
315 *
316 * Notation guide for local variables
317 * Node: b, n, f for predecessor, node, successor
318 * Index: q, r, d for index node, right, down.
319 * t for another index node
320 * Head: h
321 * Levels: j
322 * Keys: k, key
323 * Values: v, value
324 * Comparisons: c
325 */
326
327 private static final long serialVersionUID = -8627078645895051609L;
328
329 /**
330 * Special value used to identify base-level header
331 */
332 private static final Object BASE_HEADER = new Object();
333
334 /**
335 * The topmost head index of the skiplist.
336 */
337 private transient volatile HeadIndex<K,V> head;
338
339 /**
340 * The comparator used to maintain order in this map, or null if
341 * using natural ordering. (Non-private to simplify access in
342 * nested classes.)
343 * @serial
344 */
345 final Comparator<? super K> comparator;
346
347 /** Lazily initialized key set */
348 private transient KeySet<K> keySet;
349 /** Lazily initialized entry set */
350 private transient EntrySet<K,V> entrySet;
351 /** Lazily initialized values collection */
352 private transient Values<V> values;
353 /** Lazily initialized descending key set */
354 private transient ConcurrentNavigableMap<K,V> descendingMap;
355
356 /**
357 * Initializes or resets state. Needed by constructors, clone,
358 * clear, readObject. and ConcurrentSkipListSet.clone.
359 * (Note that comparator must be separately initialized.)
360 */
361 private void initialize() {
362 keySet = null;
363 entrySet = null;
364 values = null;
365 descendingMap = null;
366 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
367 null, null, 1);
368 }
369
370 /**
371 * compareAndSet head node
372 */
373 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
374 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
375 }
376
377 /* ---------------- Nodes -------------- */
378
379 /**
380 * Nodes hold keys and values, and are singly linked in sorted
381 * order, possibly with some intervening marker nodes. The list is
382 * headed by a dummy node accessible as head.node. The value field
383 * is declared only as Object because it takes special non-V
384 * values for marker and header nodes.
385 */
386 static final class Node<K,V> {
387 final K key;
388 volatile Object value;
389 volatile Node<K,V> next;
390
391 /**
392 * Creates a new regular node.
393 */
394 Node(K key, Object value, Node<K,V> next) {
395 this.key = key;
396 this.value = value;
397 this.next = next;
398 }
399
400 /**
401 * Creates a new marker node. A marker is distinguished by
402 * having its value field point to itself. Marker nodes also
403 * have null keys, a fact that is exploited in a few places,
404 * but this doesn't distinguish markers from the base-level
405 * header node (head.node), which also has a null key.
406 */
407 Node(Node<K,V> next) {
408 this.key = null;
409 this.value = this;
410 this.next = next;
411 }
412
413 /**
414 * compareAndSet value field
415 */
416 boolean casValue(Object cmp, Object val) {
417 return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val);
418 }
419
420 /**
421 * compareAndSet next field
422 */
423 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
424 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
425 }
426
427 /**
428 * Returns true if this node is a marker. This method isn't
429 * actually called in any current code checking for markers
430 * because callers will have already read value field and need
431 * to use that read (not another done here) and so directly
432 * test if value points to node.
433 *
434 * @return true if this node is a marker node
435 */
436 boolean isMarker() {
437 return value == this;
438 }
439
440 /**
441 * Returns true if this node is the header of base-level list.
442 * @return true if this node is header node
443 */
444 boolean isBaseHeader() {
445 return value == BASE_HEADER;
446 }
447
448 /**
449 * Tries to append a deletion marker to this node.
450 * @param f the assumed current successor of this node
451 * @return true if successful
452 */
453 boolean appendMarker(Node<K,V> f) {
454 return casNext(f, new Node<K,V>(f));
455 }
456
457 /**
458 * Helps out a deletion by appending marker or unlinking from
459 * predecessor. This is called during traversals when value
460 * field seen to be null.
461 * @param b predecessor
462 * @param f successor
463 */
464 void helpDelete(Node<K,V> b, Node<K,V> f) {
465 /*
466 * Rechecking links and then doing only one of the
467 * help-out stages per call tends to minimize CAS
468 * interference among helping threads.
469 */
470 if (f == next && this == b.next) {
471 if (f == null || f.value != f) // not already marked
472 casNext(f, new Node<K,V>(f));
473 else
474 b.casNext(this, f.next);
475 }
476 }
477
478 /**
479 * Returns value if this node contains a valid key-value pair,
480 * else null.
481 * @return this node's value if it isn't a marker or header or
482 * is deleted, else null
483 */
484 V getValidValue() {
485 Object v = value;
486 if (v == this || v == BASE_HEADER)
487 return null;
488 @SuppressWarnings("unchecked") V vv = (V)v;
489 return vv;
490 }
491
492 /**
493 * Creates and returns a new SimpleImmutableEntry holding current
494 * mapping if this node holds a valid value, else null.
495 * @return new entry or null
496 */
497 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
498 Object v = value;
499 if (v == null || v == this || v == BASE_HEADER)
500 return null;
501 @SuppressWarnings("unchecked") V vv = (V)v;
502 return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
503 }
504
505 // UNSAFE mechanics
506
507 private static final sun.misc.Unsafe UNSAFE;
508 private static final long valueOffset;
509 private static final long nextOffset;
510
511 static {
512 try {
513 UNSAFE = sun.misc.Unsafe.getUnsafe();
514 Class<?> k = Node.class;
515 valueOffset = UNSAFE.objectFieldOffset
516 (k.getDeclaredField("value"));
517 nextOffset = UNSAFE.objectFieldOffset
518 (k.getDeclaredField("next"));
519 } catch (ReflectiveOperationException e) {
520 throw new Error(e);
521 }
522 }
523 }
524
525 /* ---------------- Indexing -------------- */
526
527 /**
528 * Index nodes represent the levels of the skip list. Note that
529 * even though both Nodes and Indexes have forward-pointing
530 * fields, they have different types and are handled in different
531 * ways, that can't nicely be captured by placing field in a
532 * shared abstract class.
533 */
534 static class Index<K,V> {
535 final Node<K,V> node;
536 final Index<K,V> down;
537 volatile Index<K,V> right;
538
539 /**
540 * Creates index node with given values.
541 */
542 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
543 this.node = node;
544 this.down = down;
545 this.right = right;
546 }
547
548 /**
549 * compareAndSet right field
550 */
551 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
552 return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val);
553 }
554
555 /**
556 * Returns true if the node this indexes has been deleted.
557 * @return true if indexed node is known to be deleted
558 */
559 final boolean indexesDeletedNode() {
560 return node.value == null;
561 }
562
563 /**
564 * Tries to CAS newSucc as successor. To minimize races with
565 * unlink that may lose this index node, if the node being
566 * indexed is known to be deleted, it doesn't try to link in.
567 * @param succ the expected current successor
568 * @param newSucc the new successor
569 * @return true if successful
570 */
571 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
572 Node<K,V> n = node;
573 newSucc.right = succ;
574 return n.value != null && casRight(succ, newSucc);
575 }
576
577 /**
578 * Tries to CAS right field to skip over apparent successor
579 * succ. Fails (forcing a retraversal by caller) if this node
580 * is known to be deleted.
581 * @param succ the expected current successor
582 * @return true if successful
583 */
584 final boolean unlink(Index<K,V> succ) {
585 return node.value != null && casRight(succ, succ.right);
586 }
587
588 // Unsafe mechanics
589 private static final sun.misc.Unsafe UNSAFE;
590 private static final long rightOffset;
591 static {
592 try {
593 UNSAFE = sun.misc.Unsafe.getUnsafe();
594 Class<?> k = Index.class;
595 rightOffset = UNSAFE.objectFieldOffset
596 (k.getDeclaredField("right"));
597 } catch (ReflectiveOperationException e) {
598 throw new Error(e);
599 }
600 }
601 }
602
603 /* ---------------- Head nodes -------------- */
604
605 /**
606 * Nodes heading each level keep track of their level.
607 */
608 static final class HeadIndex<K,V> extends Index<K,V> {
609 final int level;
610 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
611 super(node, down, right);
612 this.level = level;
613 }
614 }
615
616 /* ---------------- Comparison utilities -------------- */
617
618 /**
619 * Compares using comparator or natural ordering if null.
620 * Called only by methods that have performed required type checks.
621 */
622 @SuppressWarnings({"unchecked", "rawtypes"})
623 static final int cpr(Comparator c, Object x, Object y) {
624 return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
625 }
626
627 /* ---------------- Traversal -------------- */
628
629 /**
630 * Returns a base-level node with key strictly less than given key,
631 * or the base-level header if there is no such node. Also
632 * unlinks indexes to deleted nodes found along the way. Callers
633 * rely on this side-effect of clearing indices to deleted nodes.
634 * @param key the key
635 * @return a predecessor of key
636 */
637 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
638 if (key == null)
639 throw new NullPointerException(); // don't postpone errors
640 for (;;) {
641 for (Index<K,V> q = head, r = q.right, d;;) {
642 if (r != null) {
643 Node<K,V> n = r.node;
644 K k = n.key;
645 if (n.value == null) {
646 if (!q.unlink(r))
647 break; // restart
648 r = q.right; // reread r
649 continue;
650 }
651 if (cpr(cmp, key, k) > 0) {
652 q = r;
653 r = r.right;
654 continue;
655 }
656 }
657 if ((d = q.down) == null)
658 return q.node;
659 q = d;
660 r = d.right;
661 }
662 }
663 }
664
665 /**
666 * Returns node holding key or null if no such, clearing out any
667 * deleted nodes seen along the way. Repeatedly traverses at
668 * base-level looking for key starting at predecessor returned
669 * from findPredecessor, processing base-level deletions as
670 * encountered. Some callers rely on this side-effect of clearing
671 * deleted nodes.
672 *
673 * Restarts occur, at traversal step centered on node n, if:
674 *
675 * (1) After reading n's next field, n is no longer assumed
676 * predecessor b's current successor, which means that
677 * we don't have a consistent 3-node snapshot and so cannot
678 * unlink any subsequent deleted nodes encountered.
679 *
680 * (2) n's value field is null, indicating n is deleted, in
681 * which case we help out an ongoing structural deletion
682 * before retrying. Even though there are cases where such
683 * unlinking doesn't require restart, they aren't sorted out
684 * here because doing so would not usually outweigh cost of
685 * restarting.
686 *
687 * (3) n is a marker or n's predecessor's value field is null,
688 * indicating (among other possibilities) that
689 * findPredecessor returned a deleted node. We can't unlink
690 * the node because we don't know its predecessor, so rely
691 * on another call to findPredecessor to notice and return
692 * some earlier predecessor, which it will do. This check is
693 * only strictly needed at beginning of loop, (and the
694 * b.value check isn't strictly needed at all) but is done
695 * each iteration to help avoid contention with other
696 * threads by callers that will fail to be able to change
697 * links, and so will retry anyway.
698 *
699 * The traversal loops in doPut, doRemove, and findNear all
700 * include the same three kinds of checks. And specialized
701 * versions appear in findFirst, and findLast and their
702 * variants. They can't easily share code because each uses the
703 * reads of fields held in locals occurring in the orders they
704 * were performed.
705 *
706 * @param key the key
707 * @return node holding key, or null if no such
708 */
709 private Node<K,V> findNode(Object key) {
710 if (key == null)
711 throw new NullPointerException(); // don't postpone errors
712 Comparator<? super K> cmp = comparator;
713 outer: for (;;) {
714 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
715 Object v; int c;
716 if (n == null)
717 break outer;
718 Node<K,V> f = n.next;
719 if (n != b.next) // inconsistent read
720 break;
721 if ((v = n.value) == null) { // n is deleted
722 n.helpDelete(b, f);
723 break;
724 }
725 if (b.value == null || v == n) // b is deleted
726 break;
727 if ((c = cpr(cmp, key, n.key)) == 0)
728 return n;
729 if (c < 0)
730 break outer;
731 b = n;
732 n = f;
733 }
734 }
735 return null;
736 }
737
738 /**
739 * Gets value for key. Almost the same as findNode, but returns
740 * the found value (to avoid retries during re-reads)
741 *
742 * @param key the key
743 * @return the value, or null if absent
744 */
745 private V doGet(Object key) {
746 if (key == null)
747 throw new NullPointerException();
748 Comparator<? super K> cmp = comparator;
749 outer: for (;;) {
750 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
751 Object v; int c;
752 if (n == null)
753 break outer;
754 Node<K,V> f = n.next;
755 if (n != b.next) // inconsistent read
756 break;
757 if ((v = n.value) == null) { // n is deleted
758 n.helpDelete(b, f);
759 break;
760 }
761 if (b.value == null || v == n) // b is deleted
762 break;
763 if ((c = cpr(cmp, key, n.key)) == 0) {
764 @SuppressWarnings("unchecked") V vv = (V)v;
765 return vv;
766 }
767 if (c < 0)
768 break outer;
769 b = n;
770 n = f;
771 }
772 }
773 return null;
774 }
775
776 /* ---------------- Insertion -------------- */
777
778 /**
779 * Main insertion method. Adds element if not present, or
780 * replaces value if present and onlyIfAbsent is false.
781 * @param key the key
782 * @param value the value that must be associated with key
783 * @param onlyIfAbsent if should not insert if already present
784 * @return the old value, or null if newly inserted
785 */
786 private V doPut(K key, V value, boolean onlyIfAbsent) {
787 Node<K,V> z; // added node
788 if (key == null)
789 throw new NullPointerException();
790 Comparator<? super K> cmp = comparator;
791 outer: for (;;) {
792 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
793 if (n != null) {
794 Object v; int c;
795 Node<K,V> f = n.next;
796 if (n != b.next) // inconsistent read
797 break;
798 if ((v = n.value) == null) { // n is deleted
799 n.helpDelete(b, f);
800 break;
801 }
802 if (b.value == null || v == n) // b is deleted
803 break;
804 if ((c = cpr(cmp, key, n.key)) > 0) {
805 b = n;
806 n = f;
807 continue;
808 }
809 if (c == 0) {
810 if (onlyIfAbsent || n.casValue(v, value)) {
811 @SuppressWarnings("unchecked") V vv = (V)v;
812 return vv;
813 }
814 break; // restart if lost race to replace value
815 }
816 // else c < 0; fall through
817 }
818
819 z = new Node<K,V>(key, value, n);
820 if (!b.casNext(n, z))
821 break; // restart if lost race to append to b
822 break outer;
823 }
824 }
825
826 int rnd = ThreadLocalRandom.nextSecondarySeed();
827 if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
828 int level = 1, max;
829 while (((rnd >>>= 1) & 1) != 0)
830 ++level;
831 Index<K,V> idx = null;
832 HeadIndex<K,V> h = head;
833 if (level <= (max = h.level)) {
834 for (int i = 1; i <= level; ++i)
835 idx = new Index<K,V>(z, idx, null);
836 }
837 else { // try to grow by one level
838 level = max + 1; // hold in array and later pick the one to use
839 @SuppressWarnings("unchecked")Index<K,V>[] idxs =
840 (Index<K,V>[])new Index<?,?>[level+1];
841 for (int i = 1; i <= level; ++i)
842 idxs[i] = idx = new Index<K,V>(z, idx, null);
843 for (;;) {
844 h = head;
845 int oldLevel = h.level;
846 if (level <= oldLevel) // lost race to add level
847 break;
848 HeadIndex<K,V> newh = h;
849 Node<K,V> oldbase = h.node;
850 for (int j = oldLevel+1; j <= level; ++j)
851 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
852 if (casHead(h, newh)) {
853 h = newh;
854 idx = idxs[level = oldLevel];
855 break;
856 }
857 }
858 }
859 // find insertion points and splice in
860 splice: for (int insertionLevel = level;;) {
861 int j = h.level;
862 for (Index<K,V> q = h, r = q.right, t = idx;;) {
863 if (q == null || t == null)
864 break splice;
865 if (r != null) {
866 Node<K,V> n = r.node;
867 // compare before deletion check avoids needing recheck
868 int c = cpr(cmp, key, n.key);
869 if (n.value == null) {
870 if (!q.unlink(r))
871 break;
872 r = q.right;
873 continue;
874 }
875 if (c > 0) {
876 q = r;
877 r = r.right;
878 continue;
879 }
880 }
881
882 if (j == insertionLevel) {
883 if (!q.link(r, t))
884 break; // restart
885 if (t.node.value == null) {
886 findNode(key);
887 break splice;
888 }
889 if (--insertionLevel == 0)
890 break splice;
891 }
892
893 if (--j >= insertionLevel && j < level)
894 t = t.down;
895 q = q.down;
896 r = q.right;
897 }
898 }
899 }
900 return null;
901 }
902
903 /* ---------------- Deletion -------------- */
904
905 /**
906 * Main deletion method. Locates node, nulls value, appends a
907 * deletion marker, unlinks predecessor, removes associated index
908 * nodes, and possibly reduces head index level.
909 *
910 * Index nodes are cleared out simply by calling findPredecessor.
911 * which unlinks indexes to deleted nodes found along path to key,
912 * which will include the indexes to this node. This is done
913 * unconditionally. We can't check beforehand whether there are
914 * index nodes because it might be the case that some or all
915 * indexes hadn't been inserted yet for this node during initial
916 * search for it, and we'd like to ensure lack of garbage
917 * retention, so must call to be sure.
918 *
919 * @param key the key
920 * @param value if non-null, the value that must be
921 * associated with key
922 * @return the node, or null if not found
923 */
924 final V doRemove(Object key, Object value) {
925 if (key == null)
926 throw new NullPointerException();
927 Comparator<? super K> cmp = comparator;
928 outer: for (;;) {
929 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
930 Object v; int c;
931 if (n == null)
932 break outer;
933 Node<K,V> f = n.next;
934 if (n != b.next) // inconsistent read
935 break;
936 if ((v = n.value) == null) { // n is deleted
937 n.helpDelete(b, f);
938 break;
939 }
940 if (b.value == null || v == n) // b is deleted
941 break;
942 if ((c = cpr(cmp, key, n.key)) < 0)
943 break outer;
944 if (c > 0) {
945 b = n;
946 n = f;
947 continue;
948 }
949 if (value != null && !value.equals(v))
950 break outer;
951 if (!n.casValue(v, null))
952 break;
953 if (!n.appendMarker(f) || !b.casNext(n, f))
954 findNode(key); // retry via findNode
955 else {
956 findPredecessor(key, cmp); // clean index
957 if (head.right == null)
958 tryReduceLevel();
959 }
960 @SuppressWarnings("unchecked") V vv = (V)v;
961 return vv;
962 }
963 }
964 return null;
965 }
966
967 /**
968 * Possibly reduce head level if it has no nodes. This method can
969 * (rarely) make mistakes, in which case levels can disappear even
970 * though they are about to contain index nodes. This impacts
971 * performance, not correctness. To minimize mistakes as well as
972 * to reduce hysteresis, the level is reduced by one only if the
973 * topmost three levels look empty. Also, if the removed level
974 * looks non-empty after CAS, we try to change it back quick
975 * before anyone notices our mistake! (This trick works pretty
976 * well because this method will practically never make mistakes
977 * unless current thread stalls immediately before first CAS, in
978 * which case it is very unlikely to stall again immediately
979 * afterwards, so will recover.)
980 *
981 * We put up with all this rather than just let levels grow
982 * because otherwise, even a small map that has undergone a large
983 * number of insertions and removals will have a lot of levels,
984 * slowing down access more than would an occasional unwanted
985 * reduction.
986 */
987 private void tryReduceLevel() {
988 HeadIndex<K,V> h = head;
989 HeadIndex<K,V> d;
990 HeadIndex<K,V> e;
991 if (h.level > 3 &&
992 (d = (HeadIndex<K,V>)h.down) != null &&
993 (e = (HeadIndex<K,V>)d.down) != null &&
994 e.right == null &&
995 d.right == null &&
996 h.right == null &&
997 casHead(h, d) && // try to set
998 h.right != null) // recheck
999 casHead(d, h); // try to backout
1000 }
1001
1002 /* ---------------- Finding and removing first element -------------- */
1003
1004 /**
1005 * Specialized variant of findNode to get first valid node.
1006 * @return first node or null if empty
1007 */
1008 final Node<K,V> findFirst() {
1009 for (Node<K,V> b, n;;) {
1010 if ((n = (b = head.node).next) == null)
1011 return null;
1012 if (n.value != null)
1013 return n;
1014 n.helpDelete(b, n.next);
1015 }
1016 }
1017
1018 /**
1019 * Removes first entry; returns its snapshot.
1020 * @return null if empty, else snapshot of first entry
1021 */
1022 private Map.Entry<K,V> doRemoveFirstEntry() {
1023 for (Node<K,V> b, n;;) {
1024 if ((n = (b = head.node).next) == null)
1025 return null;
1026 Node<K,V> f = n.next;
1027 if (n != b.next)
1028 continue;
1029 Object v = n.value;
1030 if (v == null) {
1031 n.helpDelete(b, f);
1032 continue;
1033 }
1034 if (!n.casValue(v, null))
1035 continue;
1036 if (!n.appendMarker(f) || !b.casNext(n, f))
1037 findFirst(); // retry
1038 clearIndexToFirst();
1039 @SuppressWarnings("unchecked") V vv = (V)v;
1040 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, vv);
1041 }
1042 }
1043
1044 /**
1045 * Clears out index nodes associated with deleted first entry.
1046 */
1047 private void clearIndexToFirst() {
1048 for (;;) {
1049 for (Index<K,V> q = head;;) {
1050 Index<K,V> r = q.right;
1051 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1052 break;
1053 if ((q = q.down) == null) {
1054 if (head.right == null)
1055 tryReduceLevel();
1056 return;
1057 }
1058 }
1059 }
1060 }
1061
1062 /**
1063 * Removes last entry; returns its snapshot.
1064 * Specialized variant of doRemove.
1065 * @return null if empty, else snapshot of last entry
1066 */
1067 private Map.Entry<K,V> doRemoveLastEntry() {
1068 for (;;) {
1069 Node<K,V> b = findPredecessorOfLast();
1070 Node<K,V> n = b.next;
1071 if (n == null) {
1072 if (b.isBaseHeader()) // empty
1073 return null;
1074 else
1075 continue; // all b's successors are deleted; retry
1076 }
1077 for (;;) {
1078 Node<K,V> f = n.next;
1079 if (n != b.next) // inconsistent read
1080 break;
1081 Object v = n.value;
1082 if (v == null) { // n is deleted
1083 n.helpDelete(b, f);
1084 break;
1085 }
1086 if (b.value == null || v == n) // b is deleted
1087 break;
1088 if (f != null) {
1089 b = n;
1090 n = f;
1091 continue;
1092 }
1093 if (!n.casValue(v, null))
1094 break;
1095 K key = n.key;
1096 if (!n.appendMarker(f) || !b.casNext(n, f))
1097 findNode(key); // retry via findNode
1098 else { // clean index
1099 findPredecessor(key, comparator);
1100 if (head.right == null)
1101 tryReduceLevel();
1102 }
1103 @SuppressWarnings("unchecked") V vv = (V)v;
1104 return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
1105 }
1106 }
1107 }
1108
1109 /* ---------------- Finding and removing last element -------------- */
1110
1111 /**
1112 * Specialized version of find to get last valid node.
1113 * @return last node or null if empty
1114 */
1115 final Node<K,V> findLast() {
1116 /*
1117 * findPredecessor can't be used to traverse index level
1118 * because this doesn't use comparisons. So traversals of
1119 * both levels are folded together.
1120 */
1121 Index<K,V> q = head;
1122 for (;;) {
1123 Index<K,V> d, r;
1124 if ((r = q.right) != null) {
1125 if (r.indexesDeletedNode()) {
1126 q.unlink(r);
1127 q = head; // restart
1128 }
1129 else
1130 q = r;
1131 } else if ((d = q.down) != null) {
1132 q = d;
1133 } else {
1134 for (Node<K,V> b = q.node, n = b.next;;) {
1135 if (n == null)
1136 return b.isBaseHeader() ? null : b;
1137 Node<K,V> f = n.next; // inconsistent read
1138 if (n != b.next)
1139 break;
1140 Object v = n.value;
1141 if (v == null) { // n is deleted
1142 n.helpDelete(b, f);
1143 break;
1144 }
1145 if (b.value == null || v == n) // b is deleted
1146 break;
1147 b = n;
1148 n = f;
1149 }
1150 q = head; // restart
1151 }
1152 }
1153 }
1154
1155 /**
1156 * Specialized variant of findPredecessor to get predecessor of last
1157 * valid node. Needed when removing the last entry. It is possible
1158 * that all successors of returned node will have been deleted upon
1159 * return, in which case this method can be retried.
1160 * @return likely predecessor of last node
1161 */
1162 private Node<K,V> findPredecessorOfLast() {
1163 for (;;) {
1164 for (Index<K,V> q = head;;) {
1165 Index<K,V> d, r;
1166 if ((r = q.right) != null) {
1167 if (r.indexesDeletedNode()) {
1168 q.unlink(r);
1169 break; // must restart
1170 }
1171 // proceed as far across as possible without overshooting
1172 if (r.node.next != null) {
1173 q = r;
1174 continue;
1175 }
1176 }
1177 if ((d = q.down) != null)
1178 q = d;
1179 else
1180 return q.node;
1181 }
1182 }
1183 }
1184
1185 /* ---------------- Relational operations -------------- */
1186
1187 // Control values OR'ed as arguments to findNear
1188
1189 private static final int EQ = 1;
1190 private static final int LT = 2;
1191 private static final int GT = 0; // Actually checked as !LT
1192
1193 /**
1194 * Utility for ceiling, floor, lower, higher methods.
1195 * @param key the key
1196 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1197 * @return nearest node fitting relation, or null if no such
1198 */
1199 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1200 if (key == null)
1201 throw new NullPointerException();
1202 for (;;) {
1203 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
1204 Object v;
1205 if (n == null)
1206 return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1207 Node<K,V> f = n.next;
1208 if (n != b.next) // inconsistent read
1209 break;
1210 if ((v = n.value) == null) { // n is deleted
1211 n.helpDelete(b, f);
1212 break;
1213 }
1214 if (b.value == null || v == n) // b is deleted
1215 break;
1216 int c = cpr(cmp, key, n.key);
1217 if ((c == 0 && (rel & EQ) != 0) ||
1218 (c < 0 && (rel & LT) == 0))
1219 return n;
1220 if ( c <= 0 && (rel & LT) != 0)
1221 return b.isBaseHeader() ? null : b;
1222 b = n;
1223 n = f;
1224 }
1225 }
1226 }
1227
1228 /**
1229 * Returns SimpleImmutableEntry for results of findNear.
1230 * @param key the key
1231 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1232 * @return Entry fitting relation, or null if no such
1233 */
1234 final AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1235 Comparator<? super K> cmp = comparator;
1236 for (;;) {
1237 Node<K,V> n = findNear(key, rel, cmp);
1238 if (n == null)
1239 return null;
1240 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1241 if (e != null)
1242 return e;
1243 }
1244 }
1245
1246 /* ---------------- Constructors -------------- */
1247
1248 /**
1249 * Constructs a new, empty map, sorted according to the
1250 * {@linkplain Comparable natural ordering} of the keys.
1251 */
1252 public ConcurrentSkipListMap() {
1253 this.comparator = null;
1254 initialize();
1255 }
1256
1257 /**
1258 * Constructs a new, empty map, sorted according to the specified
1259 * comparator.
1260 *
1261 * @param comparator the comparator that will be used to order this map.
1262 * If {@code null}, the {@linkplain Comparable natural
1263 * ordering} of the keys will be used.
1264 */
1265 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1266 this.comparator = comparator;
1267 initialize();
1268 }
1269
1270 /**
1271 * Constructs a new map containing the same mappings as the given map,
1272 * sorted according to the {@linkplain Comparable natural ordering} of
1273 * the keys.
1274 *
1275 * @param m the map whose mappings are to be placed in this map
1276 * @throws ClassCastException if the keys in {@code m} are not
1277 * {@link Comparable}, or are not mutually comparable
1278 * @throws NullPointerException if the specified map or any of its keys
1279 * or values are null
1280 */
1281 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1282 this.comparator = null;
1283 initialize();
1284 putAll(m);
1285 }
1286
1287 /**
1288 * Constructs a new map containing the same mappings and using the
1289 * same ordering as the specified sorted map.
1290 *
1291 * @param m the sorted map whose mappings are to be placed in this
1292 * map, and whose comparator is to be used to sort this map
1293 * @throws NullPointerException if the specified sorted map or any of
1294 * its keys or values are null
1295 */
1296 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1297 this.comparator = m.comparator();
1298 initialize();
1299 buildFromSorted(m);
1300 }
1301
1302 /**
1303 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1304 * instance. (The keys and values themselves are not cloned.)
1305 *
1306 * @return a shallow copy of this map
1307 */
1308 public ConcurrentSkipListMap<K,V> clone() {
1309 try {
1310 @SuppressWarnings("unchecked")
1311 ConcurrentSkipListMap<K,V> clone =
1312 (ConcurrentSkipListMap<K,V>) super.clone();
1313 clone.initialize();
1314 clone.buildFromSorted(this);
1315 return clone;
1316 } catch (CloneNotSupportedException e) {
1317 throw new InternalError();
1318 }
1319 }
1320
1321 /**
1322 * Streamlined bulk insertion to initialize from elements of
1323 * given sorted map. Call only from constructor or clone
1324 * method.
1325 */
1326 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1327 if (map == null)
1328 throw new NullPointerException();
1329
1330 HeadIndex<K,V> h = head;
1331 Node<K,V> basepred = h.node;
1332
1333 // Track the current rightmost node at each level. Uses an
1334 // ArrayList to avoid committing to initial or maximum level.
1335 ArrayList<Index<K,V>> preds = new ArrayList<>();
1336
1337 // initialize
1338 for (int i = 0; i <= h.level; ++i)
1339 preds.add(null);
1340 Index<K,V> q = h;
1341 for (int i = h.level; i > 0; --i) {
1342 preds.set(i, q);
1343 q = q.down;
1344 }
1345
1346 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1347 map.entrySet().iterator();
1348 while (it.hasNext()) {
1349 Map.Entry<? extends K, ? extends V> e = it.next();
1350 int rnd = ThreadLocalRandom.current().nextInt();
1351 int j = 0;
1352 if ((rnd & 0x80000001) == 0) {
1353 do {
1354 ++j;
1355 } while (((rnd >>>= 1) & 1) != 0);
1356 if (j > h.level) j = h.level + 1;
1357 }
1358 K k = e.getKey();
1359 V v = e.getValue();
1360 if (k == null || v == null)
1361 throw new NullPointerException();
1362 Node<K,V> z = new Node<K,V>(k, v, null);
1363 basepred.next = z;
1364 basepred = z;
1365 if (j > 0) {
1366 Index<K,V> idx = null;
1367 for (int i = 1; i <= j; ++i) {
1368 idx = new Index<K,V>(z, idx, null);
1369 if (i > h.level)
1370 h = new HeadIndex<K,V>(h.node, h, idx, i);
1371
1372 if (i < preds.size()) {
1373 preds.get(i).right = idx;
1374 preds.set(i, idx);
1375 } else
1376 preds.add(idx);
1377 }
1378 }
1379 }
1380 head = h;
1381 }
1382
1383 /* ---------------- Serialization -------------- */
1384
1385 /**
1386 * Saves this map to a stream (that is, serializes it).
1387 *
1388 * @param s the stream
1389 * @throws java.io.IOException if an I/O error occurs
1390 * @serialData The key (Object) and value (Object) for each
1391 * key-value mapping represented by the map, followed by
1392 * {@code null}. The key-value mappings are emitted in key-order
1393 * (as determined by the Comparator, or by the keys' natural
1394 * ordering if no Comparator).
1395 */
1396 private void writeObject(java.io.ObjectOutputStream s)
1397 throws java.io.IOException {
1398 // Write out the Comparator and any hidden stuff
1399 s.defaultWriteObject();
1400
1401 // Write out keys and values (alternating)
1402 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1403 V v = n.getValidValue();
1404 if (v != null) {
1405 s.writeObject(n.key);
1406 s.writeObject(v);
1407 }
1408 }
1409 s.writeObject(null);
1410 }
1411
1412 /**
1413 * Reconstitutes this map from a stream (that is, deserializes it).
1414 * @param s the stream
1415 * @throws ClassNotFoundException if the class of a serialized object
1416 * could not be found
1417 * @throws java.io.IOException if an I/O error occurs
1418 */
1419 @SuppressWarnings("unchecked")
1420 private void readObject(final java.io.ObjectInputStream s)
1421 throws java.io.IOException, ClassNotFoundException {
1422 // Read in the Comparator and any hidden stuff
1423 s.defaultReadObject();
1424 // Reset transients
1425 initialize();
1426
1427 /*
1428 * This is nearly identical to buildFromSorted, but is
1429 * distinct because readObject calls can't be nicely adapted
1430 * as the kind of iterator needed by buildFromSorted. (They
1431 * can be, but doing so requires type cheats and/or creation
1432 * of adaptor classes.) It is simpler to just adapt the code.
1433 */
1434
1435 HeadIndex<K,V> h = head;
1436 Node<K,V> basepred = h.node;
1437 ArrayList<Index<K,V>> preds = new ArrayList<>();
1438 for (int i = 0; i <= h.level; ++i)
1439 preds.add(null);
1440 Index<K,V> q = h;
1441 for (int i = h.level; i > 0; --i) {
1442 preds.set(i, q);
1443 q = q.down;
1444 }
1445
1446 for (;;) {
1447 Object k = s.readObject();
1448 if (k == null)
1449 break;
1450 Object v = s.readObject();
1451 if (v == null)
1452 throw new NullPointerException();
1453 K key = (K) k;
1454 V val = (V) v;
1455 int rnd = ThreadLocalRandom.current().nextInt();
1456 int j = 0;
1457 if ((rnd & 0x80000001) == 0) {
1458 do {
1459 ++j;
1460 } while (((rnd >>>= 1) & 1) != 0);
1461 if (j > h.level) j = h.level + 1;
1462 }
1463 Node<K,V> z = new Node<K,V>(key, val, null);
1464 basepred.next = z;
1465 basepred = z;
1466 if (j > 0) {
1467 Index<K,V> idx = null;
1468 for (int i = 1; i <= j; ++i) {
1469 idx = new Index<K,V>(z, idx, null);
1470 if (i > h.level)
1471 h = new HeadIndex<K,V>(h.node, h, idx, i);
1472
1473 if (i < preds.size()) {
1474 preds.get(i).right = idx;
1475 preds.set(i, idx);
1476 } else
1477 preds.add(idx);
1478 }
1479 }
1480 }
1481 head = h;
1482 }
1483
1484 /* ------ Map API methods ------ */
1485
1486 /**
1487 * Returns {@code true} if this map contains a mapping for the specified
1488 * key.
1489 *
1490 * @param key key whose presence in this map is to be tested
1491 * @return {@code true} if this map contains a mapping for the specified key
1492 * @throws ClassCastException if the specified key cannot be compared
1493 * with the keys currently in the map
1494 * @throws NullPointerException if the specified key is null
1495 */
1496 public boolean containsKey(Object key) {
1497 return doGet(key) != null;
1498 }
1499
1500 /**
1501 * Returns the value to which the specified key is mapped,
1502 * or {@code null} if this map contains no mapping for the key.
1503 *
1504 * <p>More formally, if this map contains a mapping from a key
1505 * {@code k} to a value {@code v} such that {@code key} compares
1506 * equal to {@code k} according to the map's ordering, then this
1507 * method returns {@code v}; otherwise it returns {@code null}.
1508 * (There can be at most one such mapping.)
1509 *
1510 * @throws ClassCastException if the specified key cannot be compared
1511 * with the keys currently in the map
1512 * @throws NullPointerException if the specified key is null
1513 */
1514 public V get(Object key) {
1515 return doGet(key);
1516 }
1517
1518 /**
1519 * Returns the value to which the specified key is mapped,
1520 * or the given defaultValue if this map contains no mapping for the key.
1521 *
1522 * @param key the key
1523 * @param defaultValue the value to return if this map contains
1524 * no mapping for the given key
1525 * @return the mapping for the key, if present; else the defaultValue
1526 * @throws NullPointerException if the specified key is null
1527 * @since 1.8
1528 */
1529 public V getOrDefault(Object key, V defaultValue) {
1530 V v;
1531 return (v = doGet(key)) == null ? defaultValue : v;
1532 }
1533
1534 /**
1535 * Associates the specified value with the specified key in this map.
1536 * If the map previously contained a mapping for the key, the old
1537 * value is replaced.
1538 *
1539 * @param key key with which the specified value is to be associated
1540 * @param value value to be associated with the specified key
1541 * @return the previous value associated with the specified key, or
1542 * {@code null} if there was no mapping for the key
1543 * @throws ClassCastException if the specified key cannot be compared
1544 * with the keys currently in the map
1545 * @throws NullPointerException if the specified key or value is null
1546 */
1547 public V put(K key, V value) {
1548 if (value == null)
1549 throw new NullPointerException();
1550 return doPut(key, value, false);
1551 }
1552
1553 /**
1554 * Removes the mapping for the specified key from this map if present.
1555 *
1556 * @param key key for which mapping should be removed
1557 * @return the previous value associated with the specified key, or
1558 * {@code null} if there was no mapping for the key
1559 * @throws ClassCastException if the specified key cannot be compared
1560 * with the keys currently in the map
1561 * @throws NullPointerException if the specified key is null
1562 */
1563 public V remove(Object key) {
1564 return doRemove(key, null);
1565 }
1566
1567 /**
1568 * Returns {@code true} if this map maps one or more keys to the
1569 * specified value. This operation requires time linear in the
1570 * map size. Additionally, it is possible for the map to change
1571 * during execution of this method, in which case the returned
1572 * result may be inaccurate.
1573 *
1574 * @param value value whose presence in this map is to be tested
1575 * @return {@code true} if a mapping to {@code value} exists;
1576 * {@code false} otherwise
1577 * @throws NullPointerException if the specified value is null
1578 */
1579 public boolean containsValue(Object value) {
1580 if (value == null)
1581 throw new NullPointerException();
1582 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1583 V v = n.getValidValue();
1584 if (v != null && value.equals(v))
1585 return true;
1586 }
1587 return false;
1588 }
1589
1590 /**
1591 * Returns the number of key-value mappings in this map. If this map
1592 * contains more than {@code Integer.MAX_VALUE} elements, it
1593 * returns {@code Integer.MAX_VALUE}.
1594 *
1595 * <p>Beware that, unlike in most collections, this method is
1596 * <em>NOT</em> a constant-time operation. Because of the
1597 * asynchronous nature of these maps, determining the current
1598 * number of elements requires traversing them all to count them.
1599 * Additionally, it is possible for the size to change during
1600 * execution of this method, in which case the returned result
1601 * will be inaccurate. Thus, this method is typically not very
1602 * useful in concurrent applications.
1603 *
1604 * @return the number of elements in this map
1605 */
1606 public int size() {
1607 long count = 0;
1608 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1609 if (n.getValidValue() != null)
1610 ++count;
1611 }
1612 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1613 }
1614
1615 /**
1616 * Returns {@code true} if this map contains no key-value mappings.
1617 * @return {@code true} if this map contains no key-value mappings
1618 */
1619 public boolean isEmpty() {
1620 return findFirst() == null;
1621 }
1622
1623 /**
1624 * Removes all of the mappings from this map.
1625 */
1626 public void clear() {
1627 initialize();
1628 }
1629
1630 /**
1631 * If the specified key is not already associated with a value,
1632 * attempts to compute its value using the given mapping function
1633 * and enters it into this map unless {@code null}. The function
1634 * is <em>NOT</em> guaranteed to be applied once atomically only
1635 * if the value is not present.
1636 *
1637 * @param key key with which the specified value is to be associated
1638 * @param mappingFunction the function to compute a value
1639 * @return the current (existing or computed) value associated with
1640 * the specified key, or null if the computed value is null
1641 * @throws NullPointerException if the specified key is null
1642 * or the mappingFunction is null
1643 * @since 1.8
1644 */
1645 public V computeIfAbsent(K key,
1646 Function<? super K, ? extends V> mappingFunction) {
1647 if (key == null || mappingFunction == null)
1648 throw new NullPointerException();
1649 V v, p, r;
1650 if ((v = doGet(key)) == null &&
1651 (r = mappingFunction.apply(key)) != null)
1652 v = (p = doPut(key, r, true)) == null ? r : p;
1653 return v;
1654 }
1655
1656 /**
1657 * If the value for the specified key is present, attempts to
1658 * compute a new mapping given the key and its current mapped
1659 * value. The function is <em>NOT</em> guaranteed to be applied
1660 * once atomically.
1661 *
1662 * @param key key with which a value may be associated
1663 * @param remappingFunction the function to compute a value
1664 * @return the new value associated with the specified key, or null if none
1665 * @throws NullPointerException if the specified key is null
1666 * or the remappingFunction is null
1667 * @since 1.8
1668 */
1669 public V computeIfPresent(K key,
1670 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1671 if (key == null || remappingFunction == null)
1672 throw new NullPointerException();
1673 Node<K,V> n; Object v;
1674 while ((n = findNode(key)) != null) {
1675 if ((v = n.value) != null) {
1676 @SuppressWarnings("unchecked") V vv = (V) v;
1677 V r = remappingFunction.apply(key, vv);
1678 if (r != null) {
1679 if (n.casValue(vv, r))
1680 return r;
1681 }
1682 else if (doRemove(key, vv) != null)
1683 break;
1684 }
1685 }
1686 return null;
1687 }
1688
1689 /**
1690 * Attempts to compute a mapping for the specified key and its
1691 * current mapped value (or {@code null} if there is no current
1692 * mapping). The function is <em>NOT</em> guaranteed to be applied
1693 * once atomically.
1694 *
1695 * @param key key with which the specified value is to be associated
1696 * @param remappingFunction the function to compute a value
1697 * @return the new value associated with the specified key, or null if none
1698 * @throws NullPointerException if the specified key is null
1699 * or the remappingFunction is null
1700 * @since 1.8
1701 */
1702 public V compute(K key,
1703 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1704 if (key == null || remappingFunction == null)
1705 throw new NullPointerException();
1706 for (;;) {
1707 Node<K,V> n; Object v; V r;
1708 if ((n = findNode(key)) == null) {
1709 if ((r = remappingFunction.apply(key, null)) == null)
1710 break;
1711 if (doPut(key, r, true) == null)
1712 return r;
1713 }
1714 else if ((v = n.value) != null) {
1715 @SuppressWarnings("unchecked") V vv = (V) v;
1716 if ((r = remappingFunction.apply(key, vv)) != null) {
1717 if (n.casValue(vv, r))
1718 return r;
1719 }
1720 else if (doRemove(key, vv) != null)
1721 break;
1722 }
1723 }
1724 return null;
1725 }
1726
1727 /**
1728 * If the specified key is not already associated with a value,
1729 * associates it with the given value. Otherwise, replaces the
1730 * value with the results of the given remapping function, or
1731 * removes if {@code null}. The function is <em>NOT</em>
1732 * guaranteed to be applied once atomically.
1733 *
1734 * @param key key with which the specified value is to be associated
1735 * @param value the value to use if absent
1736 * @param remappingFunction the function to recompute a value if present
1737 * @return the new value associated with the specified key, or null if none
1738 * @throws NullPointerException if the specified key or value is null
1739 * or the remappingFunction is null
1740 * @since 1.8
1741 */
1742 public V merge(K key, V value,
1743 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1744 if (key == null || value == null || remappingFunction == null)
1745 throw new NullPointerException();
1746 for (;;) {
1747 Node<K,V> n; Object v; V r;
1748 if ((n = findNode(key)) == null) {
1749 if (doPut(key, value, true) == null)
1750 return value;
1751 }
1752 else if ((v = n.value) != null) {
1753 @SuppressWarnings("unchecked") V vv = (V) v;
1754 if ((r = remappingFunction.apply(vv, value)) != null) {
1755 if (n.casValue(vv, r))
1756 return r;
1757 }
1758 else if (doRemove(key, vv) != null)
1759 return null;
1760 }
1761 }
1762 }
1763
1764 /* ---------------- View methods -------------- */
1765
1766 /*
1767 * Note: Lazy initialization works for views because view classes
1768 * are stateless/immutable so it doesn't matter wrt correctness if
1769 * more than one is created (which will only rarely happen). Even
1770 * so, the following idiom conservatively ensures that the method
1771 * returns the one it created if it does so, not one created by
1772 * another racing thread.
1773 */
1774
1775 /**
1776 * Returns a {@link NavigableSet} view of the keys contained in this map.
1777 *
1778 * <p>The set's iterator returns the keys in ascending order.
1779 * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1780 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1781 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1782 * key order. The spliterator's comparator (see
1783 * {@link java.util.Spliterator#getComparator()}) is {@code null} if
1784 * the map's comparator (see {@link #comparator()}) is {@code null}.
1785 * Otherwise, the spliterator's comparator is the same as or imposes the
1786 * same total ordering as the map's comparator.
1787 *
1788 * <p>The set is backed by the map, so changes to the map are
1789 * reflected in the set, and vice-versa. The set supports element
1790 * removal, which removes the corresponding mapping from the map,
1791 * via the {@code Iterator.remove}, {@code Set.remove},
1792 * {@code removeAll}, {@code retainAll}, and {@code clear}
1793 * operations. It does not support the {@code add} or {@code addAll}
1794 * operations.
1795 *
1796 * <p>The view's iterators and spliterators are
1797 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1798 *
1799 * <p>This method is equivalent to method {@code navigableKeySet}.
1800 *
1801 * @return a navigable set view of the keys in this map
1802 */
1803 public NavigableSet<K> keySet() {
1804 KeySet<K> ks = keySet;
1805 return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1806 }
1807
1808 public NavigableSet<K> navigableKeySet() {
1809 KeySet<K> ks = keySet;
1810 return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1811 }
1812
1813 /**
1814 * Returns a {@link Collection} view of the values contained in this map.
1815 * <p>The collection's iterator returns the values in ascending order
1816 * of the corresponding keys. The collections's spliterator additionally
1817 * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1818 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1819 * order of the corresponding keys.
1820 *
1821 * <p>The collection is backed by the map, so changes to the map are
1822 * reflected in the collection, and vice-versa. The collection
1823 * supports element removal, which removes the corresponding
1824 * mapping from the map, via the {@code Iterator.remove},
1825 * {@code Collection.remove}, {@code removeAll},
1826 * {@code retainAll} and {@code clear} operations. It does not
1827 * support the {@code add} or {@code addAll} operations.
1828 *
1829 * <p>The view's iterators and spliterators are
1830 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1831 */
1832 public Collection<V> values() {
1833 Values<V> vs = values;
1834 return (vs != null) ? vs : (values = new Values<V>(this));
1835 }
1836
1837 /**
1838 * Returns a {@link Set} view of the mappings contained in this map.
1839 *
1840 * <p>The set's iterator returns the entries in ascending key order. The
1841 * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1842 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1843 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1844 * key order.
1845 *
1846 * <p>The set is backed by the map, so changes to the map are
1847 * reflected in the set, and vice-versa. The set supports element
1848 * removal, which removes the corresponding mapping from the map,
1849 * via the {@code Iterator.remove}, {@code Set.remove},
1850 * {@code removeAll}, {@code retainAll} and {@code clear}
1851 * operations. It does not support the {@code add} or
1852 * {@code addAll} operations.
1853 *
1854 * <p>The view's iterators and spliterators are
1855 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1856 *
1857 * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1858 * or {@code spliterator} do <em>not</em> support the {@code setValue}
1859 * operation.
1860 *
1861 * @return a set view of the mappings contained in this map,
1862 * sorted in ascending key order
1863 */
1864 public Set<Map.Entry<K,V>> entrySet() {
1865 EntrySet<K,V> es = entrySet;
1866 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1867 }
1868
1869 public ConcurrentNavigableMap<K,V> descendingMap() {
1870 ConcurrentNavigableMap<K,V> dm = descendingMap;
1871 return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1872 (this, null, false, null, false, true));
1873 }
1874
1875 public NavigableSet<K> descendingKeySet() {
1876 return descendingMap().navigableKeySet();
1877 }
1878
1879 /* ---------------- AbstractMap Overrides -------------- */
1880
1881 /**
1882 * Compares the specified object with this map for equality.
1883 * Returns {@code true} if the given object is also a map and the
1884 * two maps represent the same mappings. More formally, two maps
1885 * {@code m1} and {@code m2} represent the same mappings if
1886 * {@code m1.entrySet().equals(m2.entrySet())}. This
1887 * operation may return misleading results if either map is
1888 * concurrently modified during execution of this method.
1889 *
1890 * @param o object to be compared for equality with this map
1891 * @return {@code true} if the specified object is equal to this map
1892 */
1893 public boolean equals(Object o) {
1894 if (o == this)
1895 return true;
1896 if (!(o instanceof Map))
1897 return false;
1898 Map<?,?> m = (Map<?,?>) o;
1899 try {
1900 for (Map.Entry<K,V> e : this.entrySet())
1901 if (! e.getValue().equals(m.get(e.getKey())))
1902 return false;
1903 for (Map.Entry<?,?> e : m.entrySet()) {
1904 Object k = e.getKey();
1905 Object v = e.getValue();
1906 if (k == null || v == null || !v.equals(get(k)))
1907 return false;
1908 }
1909 return true;
1910 } catch (ClassCastException unused) {
1911 return false;
1912 } catch (NullPointerException unused) {
1913 return false;
1914 }
1915 }
1916
1917 /* ------ ConcurrentMap API methods ------ */
1918
1919 /**
1920 * {@inheritDoc}
1921 *
1922 * @return the previous value associated with the specified key,
1923 * or {@code null} if there was no mapping for the key
1924 * @throws ClassCastException if the specified key cannot be compared
1925 * with the keys currently in the map
1926 * @throws NullPointerException if the specified key or value is null
1927 */
1928 public V putIfAbsent(K key, V value) {
1929 if (value == null)
1930 throw new NullPointerException();
1931 return doPut(key, value, true);
1932 }
1933
1934 /**
1935 * {@inheritDoc}
1936 *
1937 * @throws ClassCastException if the specified key cannot be compared
1938 * with the keys currently in the map
1939 * @throws NullPointerException if the specified key is null
1940 */
1941 public boolean remove(Object key, Object value) {
1942 if (key == null)
1943 throw new NullPointerException();
1944 return value != null && doRemove(key, value) != null;
1945 }
1946
1947 /**
1948 * {@inheritDoc}
1949 *
1950 * @throws ClassCastException if the specified key cannot be compared
1951 * with the keys currently in the map
1952 * @throws NullPointerException if any of the arguments are null
1953 */
1954 public boolean replace(K key, V oldValue, V newValue) {
1955 if (key == null || oldValue == null || newValue == null)
1956 throw new NullPointerException();
1957 for (;;) {
1958 Node<K,V> n; Object v;
1959 if ((n = findNode(key)) == null)
1960 return false;
1961 if ((v = n.value) != null) {
1962 if (!oldValue.equals(v))
1963 return false;
1964 if (n.casValue(v, newValue))
1965 return true;
1966 }
1967 }
1968 }
1969
1970 /**
1971 * {@inheritDoc}
1972 *
1973 * @return the previous value associated with the specified key,
1974 * or {@code null} if there was no mapping for the key
1975 * @throws ClassCastException if the specified key cannot be compared
1976 * with the keys currently in the map
1977 * @throws NullPointerException if the specified key or value is null
1978 */
1979 public V replace(K key, V value) {
1980 if (key == null || value == null)
1981 throw new NullPointerException();
1982 for (;;) {
1983 Node<K,V> n; Object v;
1984 if ((n = findNode(key)) == null)
1985 return null;
1986 if ((v = n.value) != null && n.casValue(v, value)) {
1987 @SuppressWarnings("unchecked") V vv = (V)v;
1988 return vv;
1989 }
1990 }
1991 }
1992
1993 /* ------ SortedMap API methods ------ */
1994
1995 public Comparator<? super K> comparator() {
1996 return comparator;
1997 }
1998
1999 /**
2000 * @throws NoSuchElementException {@inheritDoc}
2001 */
2002 public K firstKey() {
2003 Node<K,V> n = findFirst();
2004 if (n == null)
2005 throw new NoSuchElementException();
2006 return n.key;
2007 }
2008
2009 /**
2010 * @throws NoSuchElementException {@inheritDoc}
2011 */
2012 public K lastKey() {
2013 Node<K,V> n = findLast();
2014 if (n == null)
2015 throw new NoSuchElementException();
2016 return n.key;
2017 }
2018
2019 /**
2020 * @throws ClassCastException {@inheritDoc}
2021 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2022 * @throws IllegalArgumentException {@inheritDoc}
2023 */
2024 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
2025 boolean fromInclusive,
2026 K toKey,
2027 boolean toInclusive) {
2028 if (fromKey == null || toKey == null)
2029 throw new NullPointerException();
2030 return new SubMap<K,V>
2031 (this, fromKey, fromInclusive, toKey, toInclusive, false);
2032 }
2033
2034 /**
2035 * @throws ClassCastException {@inheritDoc}
2036 * @throws NullPointerException if {@code toKey} is null
2037 * @throws IllegalArgumentException {@inheritDoc}
2038 */
2039 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2040 boolean inclusive) {
2041 if (toKey == null)
2042 throw new NullPointerException();
2043 return new SubMap<K,V>
2044 (this, null, false, toKey, inclusive, false);
2045 }
2046
2047 /**
2048 * @throws ClassCastException {@inheritDoc}
2049 * @throws NullPointerException if {@code fromKey} is null
2050 * @throws IllegalArgumentException {@inheritDoc}
2051 */
2052 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2053 boolean inclusive) {
2054 if (fromKey == null)
2055 throw new NullPointerException();
2056 return new SubMap<K,V>
2057 (this, fromKey, inclusive, null, false, false);
2058 }
2059
2060 /**
2061 * @throws ClassCastException {@inheritDoc}
2062 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2063 * @throws IllegalArgumentException {@inheritDoc}
2064 */
2065 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2066 return subMap(fromKey, true, toKey, false);
2067 }
2068
2069 /**
2070 * @throws ClassCastException {@inheritDoc}
2071 * @throws NullPointerException if {@code toKey} is null
2072 * @throws IllegalArgumentException {@inheritDoc}
2073 */
2074 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2075 return headMap(toKey, false);
2076 }
2077
2078 /**
2079 * @throws ClassCastException {@inheritDoc}
2080 * @throws NullPointerException if {@code fromKey} is null
2081 * @throws IllegalArgumentException {@inheritDoc}
2082 */
2083 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2084 return tailMap(fromKey, true);
2085 }
2086
2087 /* ---------------- Relational operations -------------- */
2088
2089 /**
2090 * Returns a key-value mapping associated with the greatest key
2091 * strictly less than the given key, or {@code null} if there is
2092 * no such key. The returned entry does <em>not</em> support the
2093 * {@code Entry.setValue} method.
2094 *
2095 * @throws ClassCastException {@inheritDoc}
2096 * @throws NullPointerException if the specified key is null
2097 */
2098 public Map.Entry<K,V> lowerEntry(K key) {
2099 return getNear(key, LT);
2100 }
2101
2102 /**
2103 * @throws ClassCastException {@inheritDoc}
2104 * @throws NullPointerException if the specified key is null
2105 */
2106 public K lowerKey(K key) {
2107 Node<K,V> n = findNear(key, LT, comparator);
2108 return (n == null) ? null : n.key;
2109 }
2110
2111 /**
2112 * Returns a key-value mapping associated with the greatest key
2113 * less than or equal to the given key, or {@code null} if there
2114 * is no such key. The returned entry does <em>not</em> support
2115 * the {@code Entry.setValue} method.
2116 *
2117 * @param key the key
2118 * @throws ClassCastException {@inheritDoc}
2119 * @throws NullPointerException if the specified key is null
2120 */
2121 public Map.Entry<K,V> floorEntry(K key) {
2122 return getNear(key, LT|EQ);
2123 }
2124
2125 /**
2126 * @param key the key
2127 * @throws ClassCastException {@inheritDoc}
2128 * @throws NullPointerException if the specified key is null
2129 */
2130 public K floorKey(K key) {
2131 Node<K,V> n = findNear(key, LT|EQ, comparator);
2132 return (n == null) ? null : n.key;
2133 }
2134
2135 /**
2136 * Returns a key-value mapping associated with the least key
2137 * greater than or equal to the given key, or {@code null} if
2138 * there is no such entry. The returned entry does <em>not</em>
2139 * support the {@code Entry.setValue} method.
2140 *
2141 * @throws ClassCastException {@inheritDoc}
2142 * @throws NullPointerException if the specified key is null
2143 */
2144 public Map.Entry<K,V> ceilingEntry(K key) {
2145 return getNear(key, GT|EQ);
2146 }
2147
2148 /**
2149 * @throws ClassCastException {@inheritDoc}
2150 * @throws NullPointerException if the specified key is null
2151 */
2152 public K ceilingKey(K key) {
2153 Node<K,V> n = findNear(key, GT|EQ, comparator);
2154 return (n == null) ? null : n.key;
2155 }
2156
2157 /**
2158 * Returns a key-value mapping associated with the least key
2159 * strictly greater than the given key, or {@code null} if there
2160 * is no such key. The returned entry does <em>not</em> support
2161 * the {@code Entry.setValue} method.
2162 *
2163 * @param key the key
2164 * @throws ClassCastException {@inheritDoc}
2165 * @throws NullPointerException if the specified key is null
2166 */
2167 public Map.Entry<K,V> higherEntry(K key) {
2168 return getNear(key, GT);
2169 }
2170
2171 /**
2172 * @param key the key
2173 * @throws ClassCastException {@inheritDoc}
2174 * @throws NullPointerException if the specified key is null
2175 */
2176 public K higherKey(K key) {
2177 Node<K,V> n = findNear(key, GT, comparator);
2178 return (n == null) ? null : n.key;
2179 }
2180
2181 /**
2182 * Returns a key-value mapping associated with the least
2183 * key in this map, or {@code null} if the map is empty.
2184 * The returned entry does <em>not</em> support
2185 * the {@code Entry.setValue} method.
2186 */
2187 public Map.Entry<K,V> firstEntry() {
2188 for (;;) {
2189 Node<K,V> n = findFirst();
2190 if (n == null)
2191 return null;
2192 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2193 if (e != null)
2194 return e;
2195 }
2196 }
2197
2198 /**
2199 * Returns a key-value mapping associated with the greatest
2200 * key in this map, or {@code null} if the map is empty.
2201 * The returned entry does <em>not</em> support
2202 * the {@code Entry.setValue} method.
2203 */
2204 public Map.Entry<K,V> lastEntry() {
2205 for (;;) {
2206 Node<K,V> n = findLast();
2207 if (n == null)
2208 return null;
2209 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2210 if (e != null)
2211 return e;
2212 }
2213 }
2214
2215 /**
2216 * Removes and returns a key-value mapping associated with
2217 * the least key in this map, or {@code null} if the map is empty.
2218 * The returned entry does <em>not</em> support
2219 * the {@code Entry.setValue} method.
2220 */
2221 public Map.Entry<K,V> pollFirstEntry() {
2222 return doRemoveFirstEntry();
2223 }
2224
2225 /**
2226 * Removes and returns a key-value mapping associated with
2227 * the greatest key in this map, or {@code null} if the map is empty.
2228 * The returned entry does <em>not</em> support
2229 * the {@code Entry.setValue} method.
2230 */
2231 public Map.Entry<K,V> pollLastEntry() {
2232 return doRemoveLastEntry();
2233 }
2234
2235
2236 /* ---------------- Iterators -------------- */
2237
2238 /**
2239 * Base of iterator classes:
2240 */
2241 abstract class Iter<T> implements Iterator<T> {
2242 /** the last node returned by next() */
2243 Node<K,V> lastReturned;
2244 /** the next node to return from next(); */
2245 Node<K,V> next;
2246 /** Cache of next value field to maintain weak consistency */
2247 V nextValue;
2248
2249 /** Initializes ascending iterator for entire range. */
2250 Iter() {
2251 while ((next = findFirst()) != null) {
2252 Object x = next.value;
2253 if (x != null && x != next) {
2254 @SuppressWarnings("unchecked") V vv = (V)x;
2255 nextValue = vv;
2256 break;
2257 }
2258 }
2259 }
2260
2261 public final boolean hasNext() {
2262 return next != null;
2263 }
2264
2265 /** Advances next to higher entry. */
2266 final void advance() {
2267 if (next == null)
2268 throw new NoSuchElementException();
2269 lastReturned = next;
2270 while ((next = next.next) != null) {
2271 Object x = next.value;
2272 if (x != null && x != next) {
2273 @SuppressWarnings("unchecked") V vv = (V)x;
2274 nextValue = vv;
2275 break;
2276 }
2277 }
2278 }
2279
2280 public void remove() {
2281 Node<K,V> l = lastReturned;
2282 if (l == null)
2283 throw new IllegalStateException();
2284 // It would not be worth all of the overhead to directly
2285 // unlink from here. Using remove is fast enough.
2286 ConcurrentSkipListMap.this.remove(l.key);
2287 lastReturned = null;
2288 }
2289
2290 }
2291
2292 final class ValueIterator extends Iter<V> {
2293 public V next() {
2294 V v = nextValue;
2295 advance();
2296 return v;
2297 }
2298 }
2299
2300 final class KeyIterator extends Iter<K> {
2301 public K next() {
2302 Node<K,V> n = next;
2303 advance();
2304 return n.key;
2305 }
2306 }
2307
2308 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2309 public Map.Entry<K,V> next() {
2310 Node<K,V> n = next;
2311 V v = nextValue;
2312 advance();
2313 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2314 }
2315 }
2316
2317 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2318
2319 Iterator<K> keyIterator() {
2320 return new KeyIterator();
2321 }
2322
2323 Iterator<V> valueIterator() {
2324 return new ValueIterator();
2325 }
2326
2327 Iterator<Map.Entry<K,V>> entryIterator() {
2328 return new EntryIterator();
2329 }
2330
2331 /* ---------------- View Classes -------------- */
2332
2333 /*
2334 * View classes are static, delegating to a ConcurrentNavigableMap
2335 * to allow use by SubMaps, which outweighs the ugliness of
2336 * needing type-tests for Iterator methods.
2337 */
2338
2339 static final <E> List<E> toList(Collection<E> c) {
2340 // Using size() here would be a pessimization.
2341 ArrayList<E> list = new ArrayList<E>();
2342 for (E e : c)
2343 list.add(e);
2344 return list;
2345 }
2346
2347 static final class KeySet<E>
2348 extends AbstractSet<E> implements NavigableSet<E> {
2349 final ConcurrentNavigableMap<E,?> m;
2350 KeySet(ConcurrentNavigableMap<E,?> map) { m = map; }
2351 public int size() { return m.size(); }
2352 public boolean isEmpty() { return m.isEmpty(); }
2353 public boolean contains(Object o) { return m.containsKey(o); }
2354 public boolean remove(Object o) { return m.remove(o) != null; }
2355 public void clear() { m.clear(); }
2356 public E lower(E e) { return m.lowerKey(e); }
2357 public E floor(E e) { return m.floorKey(e); }
2358 public E ceiling(E e) { return m.ceilingKey(e); }
2359 public E higher(E e) { return m.higherKey(e); }
2360 public Comparator<? super E> comparator() { return m.comparator(); }
2361 public E first() { return m.firstKey(); }
2362 public E last() { return m.lastKey(); }
2363 public E pollFirst() {
2364 Map.Entry<E,?> e = m.pollFirstEntry();
2365 return (e == null) ? null : e.getKey();
2366 }
2367 public E pollLast() {
2368 Map.Entry<E,?> e = m.pollLastEntry();
2369 return (e == null) ? null : e.getKey();
2370 }
2371 @SuppressWarnings("unchecked")
2372 public Iterator<E> iterator() {
2373 if (m instanceof ConcurrentSkipListMap)
2374 return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
2375 else
2376 return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
2377 }
2378 public boolean equals(Object o) {
2379 if (o == this)
2380 return true;
2381 if (!(o instanceof Set))
2382 return false;
2383 Collection<?> c = (Collection<?>) o;
2384 try {
2385 return containsAll(c) && c.containsAll(this);
2386 } catch (ClassCastException unused) {
2387 return false;
2388 } catch (NullPointerException unused) {
2389 return false;
2390 }
2391 }
2392 public Object[] toArray() { return toList(this).toArray(); }
2393 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2394 public Iterator<E> descendingIterator() {
2395 return descendingSet().iterator();
2396 }
2397 public NavigableSet<E> subSet(E fromElement,
2398 boolean fromInclusive,
2399 E toElement,
2400 boolean toInclusive) {
2401 return new KeySet<E>(m.subMap(fromElement, fromInclusive,
2402 toElement, toInclusive));
2403 }
2404 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2405 return new KeySet<E>(m.headMap(toElement, inclusive));
2406 }
2407 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2408 return new KeySet<E>(m.tailMap(fromElement, inclusive));
2409 }
2410 public NavigableSet<E> subSet(E fromElement, E toElement) {
2411 return subSet(fromElement, true, toElement, false);
2412 }
2413 public NavigableSet<E> headSet(E toElement) {
2414 return headSet(toElement, false);
2415 }
2416 public NavigableSet<E> tailSet(E fromElement) {
2417 return tailSet(fromElement, true);
2418 }
2419 public NavigableSet<E> descendingSet() {
2420 return new KeySet<E>(m.descendingMap());
2421 }
2422 @SuppressWarnings("unchecked")
2423 public Spliterator<E> spliterator() {
2424 if (m instanceof ConcurrentSkipListMap)
2425 return ((ConcurrentSkipListMap<E,?>)m).keySpliterator();
2426 else
2427 return (Spliterator<E>)((SubMap<E,?>)m).keyIterator();
2428 }
2429 }
2430
2431 static final class Values<E> extends AbstractCollection<E> {
2432 final ConcurrentNavigableMap<?,E> m;
2433 Values(ConcurrentNavigableMap<?,E> map) {
2434 m = map;
2435 }
2436 @SuppressWarnings("unchecked")
2437 public Iterator<E> iterator() {
2438 if (m instanceof ConcurrentSkipListMap)
2439 return ((ConcurrentSkipListMap<?,E>)m).valueIterator();
2440 else
2441 return ((SubMap<?,E>)m).valueIterator();
2442 }
2443 public boolean isEmpty() {
2444 return m.isEmpty();
2445 }
2446 public int size() {
2447 return m.size();
2448 }
2449 public boolean contains(Object o) {
2450 return m.containsValue(o);
2451 }
2452 public void clear() {
2453 m.clear();
2454 }
2455 public Object[] toArray() { return toList(this).toArray(); }
2456 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2457 @SuppressWarnings("unchecked")
2458 public Spliterator<E> spliterator() {
2459 if (m instanceof ConcurrentSkipListMap)
2460 return ((ConcurrentSkipListMap<?,E>)m).valueSpliterator();
2461 else
2462 return (Spliterator<E>)((SubMap<?,E>)m).valueIterator();
2463 }
2464 }
2465
2466 static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
2467 final ConcurrentNavigableMap<K1, V1> m;
2468 EntrySet(ConcurrentNavigableMap<K1, V1> map) {
2469 m = map;
2470 }
2471 @SuppressWarnings("unchecked")
2472 public Iterator<Map.Entry<K1,V1>> iterator() {
2473 if (m instanceof ConcurrentSkipListMap)
2474 return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
2475 else
2476 return ((SubMap<K1,V1>)m).entryIterator();
2477 }
2478
2479 public boolean contains(Object o) {
2480 if (!(o instanceof Map.Entry))
2481 return false;
2482 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2483 V1 v = m.get(e.getKey());
2484 return v != null && v.equals(e.getValue());
2485 }
2486 public boolean remove(Object o) {
2487 if (!(o instanceof Map.Entry))
2488 return false;
2489 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2490 return m.remove(e.getKey(),
2491 e.getValue());
2492 }
2493 public boolean isEmpty() {
2494 return m.isEmpty();
2495 }
2496 public int size() {
2497 return m.size();
2498 }
2499 public void clear() {
2500 m.clear();
2501 }
2502 public boolean equals(Object o) {
2503 if (o == this)
2504 return true;
2505 if (!(o instanceof Set))
2506 return false;
2507 Collection<?> c = (Collection<?>) o;
2508 try {
2509 return containsAll(c) && c.containsAll(this);
2510 } catch (ClassCastException unused) {
2511 return false;
2512 } catch (NullPointerException unused) {
2513 return false;
2514 }
2515 }
2516 public Object[] toArray() { return toList(this).toArray(); }
2517 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2518 @SuppressWarnings("unchecked")
2519 public Spliterator<Map.Entry<K1,V1>> spliterator() {
2520 if (m instanceof ConcurrentSkipListMap)
2521 return ((ConcurrentSkipListMap<K1,V1>)m).entrySpliterator();
2522 else
2523 return (Spliterator<Map.Entry<K1,V1>>)
2524 ((SubMap<K1,V1>)m).entryIterator();
2525 }
2526 }
2527
2528 /**
2529 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2530 * represent a subrange of mappings of their underlying
2531 * maps. Instances of this class support all methods of their
2532 * underlying maps, differing in that mappings outside their range are
2533 * ignored, and attempts to add mappings outside their ranges result
2534 * in {@link IllegalArgumentException}. Instances of this class are
2535 * constructed only using the {@code subMap}, {@code headMap}, and
2536 * {@code tailMap} methods of their underlying maps.
2537 *
2538 * @serial include
2539 */
2540 static final class SubMap<K,V> extends AbstractMap<K,V>
2541 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
2542 private static final long serialVersionUID = -7647078645895051609L;
2543
2544 /** Underlying map */
2545 private final ConcurrentSkipListMap<K,V> m;
2546 /** lower bound key, or null if from start */
2547 private final K lo;
2548 /** upper bound key, or null if to end */
2549 private final K hi;
2550 /** inclusion flag for lo */
2551 private final boolean loInclusive;
2552 /** inclusion flag for hi */
2553 private final boolean hiInclusive;
2554 /** direction */
2555 private final boolean isDescending;
2556
2557 // Lazily initialized view holders
2558 private transient KeySet<K> keySetView;
2559 private transient Set<Map.Entry<K,V>> entrySetView;
2560 private transient Collection<V> valuesView;
2561
2562 /**
2563 * Creates a new submap, initializing all fields.
2564 */
2565 SubMap(ConcurrentSkipListMap<K,V> map,
2566 K fromKey, boolean fromInclusive,
2567 K toKey, boolean toInclusive,
2568 boolean isDescending) {
2569 Comparator<? super K> cmp = map.comparator;
2570 if (fromKey != null && toKey != null &&
2571 cpr(cmp, fromKey, toKey) > 0)
2572 throw new IllegalArgumentException("inconsistent range");
2573 this.m = map;
2574 this.lo = fromKey;
2575 this.hi = toKey;
2576 this.loInclusive = fromInclusive;
2577 this.hiInclusive = toInclusive;
2578 this.isDescending = isDescending;
2579 }
2580
2581 /* ---------------- Utilities -------------- */
2582
2583 boolean tooLow(Object key, Comparator<? super K> cmp) {
2584 int c;
2585 return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2586 (c == 0 && !loInclusive)));
2587 }
2588
2589 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2590 int c;
2591 return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2592 (c == 0 && !hiInclusive)));
2593 }
2594
2595 boolean inBounds(Object key, Comparator<? super K> cmp) {
2596 return !tooLow(key, cmp) && !tooHigh(key, cmp);
2597 }
2598
2599 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2600 if (key == null)
2601 throw new NullPointerException();
2602 if (!inBounds(key, cmp))
2603 throw new IllegalArgumentException("key out of range");
2604 }
2605
2606 /**
2607 * Returns true if node key is less than upper bound of range.
2608 */
2609 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2610 Comparator<? super K> cmp) {
2611 if (n == null)
2612 return false;
2613 if (hi == null)
2614 return true;
2615 K k = n.key;
2616 if (k == null) // pass by markers and headers
2617 return true;
2618 int c = cpr(cmp, k, hi);
2619 if (c > 0 || (c == 0 && !hiInclusive))
2620 return false;
2621 return true;
2622 }
2623
2624 /**
2625 * Returns lowest node. This node might not be in range, so
2626 * most usages need to check bounds.
2627 */
2628 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2629 if (lo == null)
2630 return m.findFirst();
2631 else if (loInclusive)
2632 return m.findNear(lo, GT|EQ, cmp);
2633 else
2634 return m.findNear(lo, GT, cmp);
2635 }
2636
2637 /**
2638 * Returns highest node. This node might not be in range, so
2639 * most usages need to check bounds.
2640 */
2641 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2642 if (hi == null)
2643 return m.findLast();
2644 else if (hiInclusive)
2645 return m.findNear(hi, LT|EQ, cmp);
2646 else
2647 return m.findNear(hi, LT, cmp);
2648 }
2649
2650 /**
2651 * Returns lowest absolute key (ignoring directionality).
2652 */
2653 K lowestKey() {
2654 Comparator<? super K> cmp = m.comparator;
2655 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2656 if (isBeforeEnd(n, cmp))
2657 return n.key;
2658 else
2659 throw new NoSuchElementException();
2660 }
2661
2662 /**
2663 * Returns highest absolute key (ignoring directionality).
2664 */
2665 K highestKey() {
2666 Comparator<? super K> cmp = m.comparator;
2667 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2668 if (n != null) {
2669 K last = n.key;
2670 if (inBounds(last, cmp))
2671 return last;
2672 }
2673 throw new NoSuchElementException();
2674 }
2675
2676 Map.Entry<K,V> lowestEntry() {
2677 Comparator<? super K> cmp = m.comparator;
2678 for (;;) {
2679 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2680 if (!isBeforeEnd(n, cmp))
2681 return null;
2682 Map.Entry<K,V> e = n.createSnapshot();
2683 if (e != null)
2684 return e;
2685 }
2686 }
2687
2688 Map.Entry<K,V> highestEntry() {
2689 Comparator<? super K> cmp = m.comparator;
2690 for (;;) {
2691 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2692 if (n == null || !inBounds(n.key, cmp))
2693 return null;
2694 Map.Entry<K,V> e = n.createSnapshot();
2695 if (e != null)
2696 return e;
2697 }
2698 }
2699
2700 Map.Entry<K,V> removeLowest() {
2701 Comparator<? super K> cmp = m.comparator;
2702 for (;;) {
2703 Node<K,V> n = loNode(cmp);
2704 if (n == null)
2705 return null;
2706 K k = n.key;
2707 if (!inBounds(k, cmp))
2708 return null;
2709 V v = m.doRemove(k, null);
2710 if (v != null)
2711 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2712 }
2713 }
2714
2715 Map.Entry<K,V> removeHighest() {
2716 Comparator<? super K> cmp = m.comparator;
2717 for (;;) {
2718 Node<K,V> n = hiNode(cmp);
2719 if (n == null)
2720 return null;
2721 K k = n.key;
2722 if (!inBounds(k, cmp))
2723 return null;
2724 V v = m.doRemove(k, null);
2725 if (v != null)
2726 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2727 }
2728 }
2729
2730 /**
2731 * Submap version of ConcurrentSkipListMap.getNearEntry
2732 */
2733 Map.Entry<K,V> getNearEntry(K key, int rel) {
2734 Comparator<? super K> cmp = m.comparator;
2735 if (isDescending) { // adjust relation for direction
2736 if ((rel & LT) == 0)
2737 rel |= LT;
2738 else
2739 rel &= ~LT;
2740 }
2741 if (tooLow(key, cmp))
2742 return ((rel & LT) != 0) ? null : lowestEntry();
2743 if (tooHigh(key, cmp))
2744 return ((rel & LT) != 0) ? highestEntry() : null;
2745 for (;;) {
2746 Node<K,V> n = m.findNear(key, rel, cmp);
2747 if (n == null || !inBounds(n.key, cmp))
2748 return null;
2749 K k = n.key;
2750 V v = n.getValidValue();
2751 if (v != null)
2752 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2753 }
2754 }
2755
2756 // Almost the same as getNearEntry, except for keys
2757 K getNearKey(K key, int rel) {
2758 Comparator<? super K> cmp = m.comparator;
2759 if (isDescending) { // adjust relation for direction
2760 if ((rel & LT) == 0)
2761 rel |= LT;
2762 else
2763 rel &= ~LT;
2764 }
2765 if (tooLow(key, cmp)) {
2766 if ((rel & LT) == 0) {
2767 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2768 if (isBeforeEnd(n, cmp))
2769 return n.key;
2770 }
2771 return null;
2772 }
2773 if (tooHigh(key, cmp)) {
2774 if ((rel & LT) != 0) {
2775 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2776 if (n != null) {
2777 K last = n.key;
2778 if (inBounds(last, cmp))
2779 return last;
2780 }
2781 }
2782 return null;
2783 }
2784 for (;;) {
2785 Node<K,V> n = m.findNear(key, rel, cmp);
2786 if (n == null || !inBounds(n.key, cmp))
2787 return null;
2788 K k = n.key;
2789 V v = n.getValidValue();
2790 if (v != null)
2791 return k;
2792 }
2793 }
2794
2795 /* ---------------- Map API methods -------------- */
2796
2797 public boolean containsKey(Object key) {
2798 if (key == null) throw new NullPointerException();
2799 return inBounds(key, m.comparator) && m.containsKey(key);
2800 }
2801
2802 public V get(Object key) {
2803 if (key == null) throw new NullPointerException();
2804 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2805 }
2806
2807 public V put(K key, V value) {
2808 checkKeyBounds(key, m.comparator);
2809 return m.put(key, value);
2810 }
2811
2812 public V remove(Object key) {
2813 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2814 }
2815
2816 public int size() {
2817 Comparator<? super K> cmp = m.comparator;
2818 long count = 0;
2819 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2820 isBeforeEnd(n, cmp);
2821 n = n.next) {
2822 if (n.getValidValue() != null)
2823 ++count;
2824 }
2825 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2826 }
2827
2828 public boolean isEmpty() {
2829 Comparator<? super K> cmp = m.comparator;
2830 return !isBeforeEnd(loNode(cmp), cmp);
2831 }
2832
2833 public boolean containsValue(Object value) {
2834 if (value == null)
2835 throw new NullPointerException();
2836 Comparator<? super K> cmp = m.comparator;
2837 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2838 isBeforeEnd(n, cmp);
2839 n = n.next) {
2840 V v = n.getValidValue();
2841 if (v != null && value.equals(v))
2842 return true;
2843 }
2844 return false;
2845 }
2846
2847 public void clear() {
2848 Comparator<? super K> cmp = m.comparator;
2849 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2850 isBeforeEnd(n, cmp);
2851 n = n.next) {
2852 if (n.getValidValue() != null)
2853 m.remove(n.key);
2854 }
2855 }
2856
2857 /* ---------------- ConcurrentMap API methods -------------- */
2858
2859 public V putIfAbsent(K key, V value) {
2860 checkKeyBounds(key, m.comparator);
2861 return m.putIfAbsent(key, value);
2862 }
2863
2864 public boolean remove(Object key, Object value) {
2865 return inBounds(key, m.comparator) && m.remove(key, value);
2866 }
2867
2868 public boolean replace(K key, V oldValue, V newValue) {
2869 checkKeyBounds(key, m.comparator);
2870 return m.replace(key, oldValue, newValue);
2871 }
2872
2873 public V replace(K key, V value) {
2874 checkKeyBounds(key, m.comparator);
2875 return m.replace(key, value);
2876 }
2877
2878 /* ---------------- SortedMap API methods -------------- */
2879
2880 public Comparator<? super K> comparator() {
2881 Comparator<? super K> cmp = m.comparator();
2882 if (isDescending)
2883 return Collections.reverseOrder(cmp);
2884 else
2885 return cmp;
2886 }
2887
2888 /**
2889 * Utility to create submaps, where given bounds override
2890 * unbounded(null) ones and/or are checked against bounded ones.
2891 */
2892 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2893 K toKey, boolean toInclusive) {
2894 Comparator<? super K> cmp = m.comparator;
2895 if (isDescending) { // flip senses
2896 K tk = fromKey;
2897 fromKey = toKey;
2898 toKey = tk;
2899 boolean ti = fromInclusive;
2900 fromInclusive = toInclusive;
2901 toInclusive = ti;
2902 }
2903 if (lo != null) {
2904 if (fromKey == null) {
2905 fromKey = lo;
2906 fromInclusive = loInclusive;
2907 }
2908 else {
2909 int c = cpr(cmp, fromKey, lo);
2910 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2911 throw new IllegalArgumentException("key out of range");
2912 }
2913 }
2914 if (hi != null) {
2915 if (toKey == null) {
2916 toKey = hi;
2917 toInclusive = hiInclusive;
2918 }
2919 else {
2920 int c = cpr(cmp, toKey, hi);
2921 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2922 throw new IllegalArgumentException("key out of range");
2923 }
2924 }
2925 return new SubMap<K,V>(m, fromKey, fromInclusive,
2926 toKey, toInclusive, isDescending);
2927 }
2928
2929 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2930 K toKey, boolean toInclusive) {
2931 if (fromKey == null || toKey == null)
2932 throw new NullPointerException();
2933 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2934 }
2935
2936 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2937 if (toKey == null)
2938 throw new NullPointerException();
2939 return newSubMap(null, false, toKey, inclusive);
2940 }
2941
2942 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2943 if (fromKey == null)
2944 throw new NullPointerException();
2945 return newSubMap(fromKey, inclusive, null, false);
2946 }
2947
2948 public SubMap<K,V> subMap(K fromKey, K toKey) {
2949 return subMap(fromKey, true, toKey, false);
2950 }
2951
2952 public SubMap<K,V> headMap(K toKey) {
2953 return headMap(toKey, false);
2954 }
2955
2956 public SubMap<K,V> tailMap(K fromKey) {
2957 return tailMap(fromKey, true);
2958 }
2959
2960 public SubMap<K,V> descendingMap() {
2961 return new SubMap<K,V>(m, lo, loInclusive,
2962 hi, hiInclusive, !isDescending);
2963 }
2964
2965 /* ---------------- Relational methods -------------- */
2966
2967 public Map.Entry<K,V> ceilingEntry(K key) {
2968 return getNearEntry(key, GT|EQ);
2969 }
2970
2971 public K ceilingKey(K key) {
2972 return getNearKey(key, GT|EQ);
2973 }
2974
2975 public Map.Entry<K,V> lowerEntry(K key) {
2976 return getNearEntry(key, LT);
2977 }
2978
2979 public K lowerKey(K key) {
2980 return getNearKey(key, LT);
2981 }
2982
2983 public Map.Entry<K,V> floorEntry(K key) {
2984 return getNearEntry(key, LT|EQ);
2985 }
2986
2987 public K floorKey(K key) {
2988 return getNearKey(key, LT|EQ);
2989 }
2990
2991 public Map.Entry<K,V> higherEntry(K key) {
2992 return getNearEntry(key, GT);
2993 }
2994
2995 public K higherKey(K key) {
2996 return getNearKey(key, GT);
2997 }
2998
2999 public K firstKey() {
3000 return isDescending ? highestKey() : lowestKey();
3001 }
3002
3003 public K lastKey() {
3004 return isDescending ? lowestKey() : highestKey();
3005 }
3006
3007 public Map.Entry<K,V> firstEntry() {
3008 return isDescending ? highestEntry() : lowestEntry();
3009 }
3010
3011 public Map.Entry<K,V> lastEntry() {
3012 return isDescending ? lowestEntry() : highestEntry();
3013 }
3014
3015 public Map.Entry<K,V> pollFirstEntry() {
3016 return isDescending ? removeHighest() : removeLowest();
3017 }
3018
3019 public Map.Entry<K,V> pollLastEntry() {
3020 return isDescending ? removeLowest() : removeHighest();
3021 }
3022
3023 /* ---------------- Submap Views -------------- */
3024
3025 public NavigableSet<K> keySet() {
3026 KeySet<K> ks = keySetView;
3027 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3028 }
3029
3030 public NavigableSet<K> navigableKeySet() {
3031 KeySet<K> ks = keySetView;
3032 return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
3033 }
3034
3035 public Collection<V> values() {
3036 Collection<V> vs = valuesView;
3037 return (vs != null) ? vs : (valuesView = new Values<V>(this));
3038 }
3039
3040 public Set<Map.Entry<K,V>> entrySet() {
3041 Set<Map.Entry<K,V>> es = entrySetView;
3042 return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
3043 }
3044
3045 public NavigableSet<K> descendingKeySet() {
3046 return descendingMap().navigableKeySet();
3047 }
3048
3049 Iterator<K> keyIterator() {
3050 return new SubMapKeyIterator();
3051 }
3052
3053 Iterator<V> valueIterator() {
3054 return new SubMapValueIterator();
3055 }
3056
3057 Iterator<Map.Entry<K,V>> entryIterator() {
3058 return new SubMapEntryIterator();
3059 }
3060
3061 /**
3062 * Variant of main Iter class to traverse through submaps.
3063 * Also serves as back-up Spliterator for views
3064 */
3065 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
3066 /** the last node returned by next() */
3067 Node<K,V> lastReturned;
3068 /** the next node to return from next(); */
3069 Node<K,V> next;
3070 /** Cache of next value field to maintain weak consistency */
3071 V nextValue;
3072
3073 SubMapIter() {
3074 Comparator<? super K> cmp = m.comparator;
3075 for (;;) {
3076 next = isDescending ? hiNode(cmp) : loNode(cmp);
3077 if (next == null)
3078 break;
3079 Object x = next.value;
3080 if (x != null && x != next) {
3081 if (! inBounds(next.key, cmp))
3082 next = null;
3083 else {
3084 @SuppressWarnings("unchecked") V vv = (V)x;
3085 nextValue = vv;
3086 }
3087 break;
3088 }
3089 }
3090 }
3091
3092 public final boolean hasNext() {
3093 return next != null;
3094 }
3095
3096 final void advance() {
3097 if (next == null)
3098 throw new NoSuchElementException();
3099 lastReturned = next;
3100 if (isDescending)
3101 descend();
3102 else
3103 ascend();
3104 }
3105
3106 private void ascend() {
3107 Comparator<? super K> cmp = m.comparator;
3108 for (;;) {
3109 next = next.next;
3110 if (next == null)
3111 break;
3112 Object x = next.value;
3113 if (x != null && x != next) {
3114 if (tooHigh(next.key, cmp))
3115 next = null;
3116 else {
3117 @SuppressWarnings("unchecked") V vv = (V)x;
3118 nextValue = vv;
3119 }
3120 break;
3121 }
3122 }
3123 }
3124
3125 private void descend() {
3126 Comparator<? super K> cmp = m.comparator;
3127 for (;;) {
3128 next = m.findNear(lastReturned.key, LT, cmp);
3129 if (next == null)
3130 break;
3131 Object x = next.value;
3132 if (x != null && x != next) {
3133 if (tooLow(next.key, cmp))
3134 next = null;
3135 else {
3136 @SuppressWarnings("unchecked") V vv = (V)x;
3137 nextValue = vv;
3138 }
3139 break;
3140 }
3141 }
3142 }
3143
3144 public void remove() {
3145 Node<K,V> l = lastReturned;
3146 if (l == null)
3147 throw new IllegalStateException();
3148 m.remove(l.key);
3149 lastReturned = null;
3150 }
3151
3152 public Spliterator<T> trySplit() {
3153 return null;
3154 }
3155
3156 public boolean tryAdvance(Consumer<? super T> action) {
3157 if (hasNext()) {
3158 action.accept(next());
3159 return true;
3160 }
3161 return false;
3162 }
3163
3164 public void forEachRemaining(Consumer<? super T> action) {
3165 while (hasNext())
3166 action.accept(next());
3167 }
3168
3169 public long estimateSize() {
3170 return Long.MAX_VALUE;
3171 }
3172
3173 }
3174
3175 final class SubMapValueIterator extends SubMapIter<V> {
3176 public V next() {
3177 V v = nextValue;
3178 advance();
3179 return v;
3180 }
3181 public int characteristics() {
3182 return 0;
3183 }
3184 }
3185
3186 final class SubMapKeyIterator extends SubMapIter<K> {
3187 public K next() {
3188 Node<K,V> n = next;
3189 advance();
3190 return n.key;
3191 }
3192 public int characteristics() {
3193 return Spliterator.DISTINCT | Spliterator.ORDERED |
3194 Spliterator.SORTED;
3195 }
3196 public final Comparator<? super K> getComparator() {
3197 return SubMap.this.comparator();
3198 }
3199 }
3200
3201 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3202 public Map.Entry<K,V> next() {
3203 Node<K,V> n = next;
3204 V v = nextValue;
3205 advance();
3206 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3207 }
3208 public int characteristics() {
3209 return Spliterator.DISTINCT;
3210 }
3211 }
3212 }
3213
3214 // default Map method overrides
3215
3216 public void forEach(BiConsumer<? super K, ? super V> action) {
3217 if (action == null) throw new NullPointerException();
3218 V v;
3219 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3220 if ((v = n.getValidValue()) != null)
3221 action.accept(n.key, v);
3222 }
3223 }
3224
3225 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3226 if (function == null) throw new NullPointerException();
3227 V v;
3228 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3229 while ((v = n.getValidValue()) != null) {
3230 V r = function.apply(n.key, v);
3231 if (r == null) throw new NullPointerException();
3232 if (n.casValue(v, r))
3233 break;
3234 }
3235 }
3236 }
3237
3238 /**
3239 * Base class providing common structure for Spliterators.
3240 * (Although not all that much common functionality; as usual for
3241 * view classes, details annoyingly vary in key, value, and entry
3242 * subclasses in ways that are not worth abstracting out for
3243 * internal classes.)
3244 *
3245 * The basic split strategy is to recursively descend from top
3246 * level, row by row, descending to next row when either split
3247 * off, or the end of row is encountered. Control of the number of
3248 * splits relies on some statistical estimation: The expected
3249 * remaining number of elements of a skip list when advancing
3250 * either across or down decreases by about 25%. To make this
3251 * observation useful, we need to know initial size, which we
3252 * don't. But we can just use Integer.MAX_VALUE so that we
3253 * don't prematurely zero out while splitting.
3254 */
3255 abstract static class CSLMSpliterator<K,V> {
3256 final Comparator<? super K> comparator;
3257 final K fence; // exclusive upper bound for keys, or null if to end
3258 Index<K,V> row; // the level to split out
3259 Node<K,V> current; // current traversal node; initialize at origin
3260 int est; // pseudo-size estimate
3261 CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3262 Node<K,V> origin, K fence, int est) {
3263 this.comparator = comparator; this.row = row;
3264 this.current = origin; this.fence = fence; this.est = est;
3265 }
3266
3267 public final long estimateSize() { return (long)est; }
3268 }
3269
3270 static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3271 implements Spliterator<K> {
3272 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3273 Node<K,V> origin, K fence, int est) {
3274 super(comparator, row, origin, fence, est);
3275 }
3276
3277 public Spliterator<K> trySplit() {
3278 Node<K,V> e; K ek;
3279 Comparator<? super K> cmp = comparator;
3280 K f = fence;
3281 if ((e = current) != null && (ek = e.key) != null) {
3282 for (Index<K,V> q = row; q != null; q = row = q.down) {
3283 Index<K,V> s; Node<K,V> b, n; K sk;
3284 if ((s = q.right) != null && (b = s.node) != null &&
3285 (n = b.next) != null && n.value != null &&
3286 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3287 (f == null || cpr(cmp, sk, f) < 0)) {
3288 current = n;
3289 Index<K,V> r = q.down;
3290 row = (s.right != null) ? s : s.down;
3291 est -= est >>> 2;
3292 return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3293 }
3294 }
3295 }
3296 return null;
3297 }
3298
3299 public void forEachRemaining(Consumer<? super K> action) {
3300 if (action == null) throw new NullPointerException();
3301 Comparator<? super K> cmp = comparator;
3302 K f = fence;
3303 Node<K,V> e = current;
3304 current = null;
3305 for (; e != null; e = e.next) {
3306 K k; Object v;
3307 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3308 break;
3309 if ((v = e.value) != null && v != e)
3310 action.accept(k);
3311 }
3312 }
3313
3314 public boolean tryAdvance(Consumer<? super K> action) {
3315 if (action == null) throw new NullPointerException();
3316 Comparator<? super K> cmp = comparator;
3317 K f = fence;
3318 Node<K,V> e = current;
3319 for (; e != null; e = e.next) {
3320 K k; Object v;
3321 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3322 e = null;
3323 break;
3324 }
3325 if ((v = e.value) != null && v != e) {
3326 current = e.next;
3327 action.accept(k);
3328 return true;
3329 }
3330 }
3331 current = e;
3332 return false;
3333 }
3334
3335 public int characteristics() {
3336 return Spliterator.DISTINCT | Spliterator.SORTED |
3337 Spliterator.ORDERED | Spliterator.CONCURRENT |
3338 Spliterator.NONNULL;
3339 }
3340
3341 public final Comparator<? super K> getComparator() {
3342 return comparator;
3343 }
3344 }
3345 // factory method for KeySpliterator
3346 final KeySpliterator<K,V> keySpliterator() {
3347 Comparator<? super K> cmp = comparator;
3348 for (;;) { // ensure h corresponds to origin p
3349 HeadIndex<K,V> h; Node<K,V> p;
3350 Node<K,V> b = (h = head).node;
3351 if ((p = b.next) == null || p.value != null)
3352 return new KeySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3353 0 : Integer.MAX_VALUE);
3354 p.helpDelete(b, p.next);
3355 }
3356 }
3357
3358 static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3359 implements Spliterator<V> {
3360 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3361 Node<K,V> origin, K fence, int est) {
3362 super(comparator, row, origin, fence, est);
3363 }
3364
3365 public Spliterator<V> trySplit() {
3366 Node<K,V> e; K ek;
3367 Comparator<? super K> cmp = comparator;
3368 K f = fence;
3369 if ((e = current) != null && (ek = e.key) != null) {
3370 for (Index<K,V> q = row; q != null; q = row = q.down) {
3371 Index<K,V> s; Node<K,V> b, n; K sk;
3372 if ((s = q.right) != null && (b = s.node) != null &&
3373 (n = b.next) != null && n.value != null &&
3374 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3375 (f == null || cpr(cmp, sk, f) < 0)) {
3376 current = n;
3377 Index<K,V> r = q.down;
3378 row = (s.right != null) ? s : s.down;
3379 est -= est >>> 2;
3380 return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3381 }
3382 }
3383 }
3384 return null;
3385 }
3386
3387 public void forEachRemaining(Consumer<? super V> action) {
3388 if (action == null) throw new NullPointerException();
3389 Comparator<? super K> cmp = comparator;
3390 K f = fence;
3391 Node<K,V> e = current;
3392 current = null;
3393 for (; e != null; e = e.next) {
3394 K k; Object v;
3395 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3396 break;
3397 if ((v = e.value) != null && v != e) {
3398 @SuppressWarnings("unchecked") V vv = (V)v;
3399 action.accept(vv);
3400 }
3401 }
3402 }
3403
3404 public boolean tryAdvance(Consumer<? super V> action) {
3405 if (action == null) throw new NullPointerException();
3406 Comparator<? super K> cmp = comparator;
3407 K f = fence;
3408 Node<K,V> e = current;
3409 for (; e != null; e = e.next) {
3410 K k; Object v;
3411 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3412 e = null;
3413 break;
3414 }
3415 if ((v = e.value) != null && v != e) {
3416 current = e.next;
3417 @SuppressWarnings("unchecked") V vv = (V)v;
3418 action.accept(vv);
3419 return true;
3420 }
3421 }
3422 current = e;
3423 return false;
3424 }
3425
3426 public int characteristics() {
3427 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3428 Spliterator.NONNULL;
3429 }
3430 }
3431
3432 // Almost the same as keySpliterator()
3433 final ValueSpliterator<K,V> valueSpliterator() {
3434 Comparator<? super K> cmp = comparator;
3435 for (;;) {
3436 HeadIndex<K,V> h; Node<K,V> p;
3437 Node<K,V> b = (h = head).node;
3438 if ((p = b.next) == null || p.value != null)
3439 return new ValueSpliterator<K,V>(cmp, h, p, null, (p == null) ?
3440 0 : Integer.MAX_VALUE);
3441 p.helpDelete(b, p.next);
3442 }
3443 }
3444
3445 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3446 implements Spliterator<Map.Entry<K,V>> {
3447 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3448 Node<K,V> origin, K fence, int est) {
3449 super(comparator, row, origin, fence, est);
3450 }
3451
3452 public Spliterator<Map.Entry<K,V>> trySplit() {
3453 Node<K,V> e; K ek;
3454 Comparator<? super K> cmp = comparator;
3455 K f = fence;
3456 if ((e = current) != null && (ek = e.key) != null) {
3457 for (Index<K,V> q = row; q != null; q = row = q.down) {
3458 Index<K,V> s; Node<K,V> b, n; K sk;
3459 if ((s = q.right) != null && (b = s.node) != null &&
3460 (n = b.next) != null && n.value != null &&
3461 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3462 (f == null || cpr(cmp, sk, f) < 0)) {
3463 current = n;
3464 Index<K,V> r = q.down;
3465 row = (s.right != null) ? s : s.down;
3466 est -= est >>> 2;
3467 return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3468 }
3469 }
3470 }
3471 return null;
3472 }
3473
3474 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3475 if (action == null) throw new NullPointerException();
3476 Comparator<? super K> cmp = comparator;
3477 K f = fence;
3478 Node<K,V> e = current;
3479 current = null;
3480 for (; e != null; e = e.next) {
3481 K k; Object v;
3482 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3483 break;
3484 if ((v = e.value) != null && v != e) {
3485 @SuppressWarnings("unchecked") V vv = (V)v;
3486 action.accept
3487 (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3488 }
3489 }
3490 }
3491
3492 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3493 if (action == null) throw new NullPointerException();
3494 Comparator<? super K> cmp = comparator;
3495 K f = fence;
3496 Node<K,V> e = current;
3497 for (; e != null; e = e.next) {
3498 K k; Object v;
3499 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3500 e = null;
3501 break;
3502 }
3503 if ((v = e.value) != null && v != e) {
3504 current = e.next;
3505 @SuppressWarnings("unchecked") V vv = (V)v;
3506 action.accept
3507 (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3508 return true;
3509 }
3510 }
3511 current = e;
3512 return false;
3513 }
3514
3515 public int characteristics() {
3516 return Spliterator.DISTINCT | Spliterator.SORTED |
3517 Spliterator.ORDERED | Spliterator.CONCURRENT |
3518 Spliterator.NONNULL;
3519 }
3520
3521 public final Comparator<Map.Entry<K,V>> getComparator() {
3522 // Adapt or create a key-based comparator
3523 if (comparator != null) {
3524 return Map.Entry.comparingByKey(comparator);
3525 }
3526 else {
3527 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3528 @SuppressWarnings("unchecked")
3529 Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3530 return k1.compareTo(e2.getKey());
3531 };
3532 }
3533 }
3534 }
3535
3536 // Almost the same as keySpliterator()
3537 final EntrySpliterator<K,V> entrySpliterator() {
3538 Comparator<? super K> cmp = comparator;
3539 for (;;) { // almost same as key version
3540 HeadIndex<K,V> h; Node<K,V> p;
3541 Node<K,V> b = (h = head).node;
3542 if ((p = b.next) == null || p.value != null)
3543 return new EntrySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3544 0 : Integer.MAX_VALUE);
3545 p.helpDelete(b, p.next);
3546 }
3547 }
3548
3549 // Unsafe mechanics
3550 private static final sun.misc.Unsafe UNSAFE;
3551 private static final long headOffset;
3552 private static final long SECONDARY;
3553 static {
3554 try {
3555 UNSAFE = sun.misc.Unsafe.getUnsafe();
3556 Class<?> k = ConcurrentSkipListMap.class;
3557 headOffset = UNSAFE.objectFieldOffset
3558 (k.getDeclaredField("head"));
3559 Class<?> tk = Thread.class;
3560 SECONDARY = UNSAFE.objectFieldOffset
3561 (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
3562 } catch (ReflectiveOperationException e) {
3563 throw new Error(e);
3564 }
3565 }
3566 }