ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.148
Committed: Tue May 5 21:30:29 2015 UTC (9 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.147: +1 -1 lines
Log Message:
tidy

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.Serializable;
10 import java.util.AbstractCollection;
11 import java.util.AbstractMap;
12 import java.util.AbstractSet;
13 import java.util.ArrayList;
14 import java.util.Collection;
15 import java.util.Collections;
16 import java.util.Comparator;
17 import java.util.Iterator;
18 import java.util.List;
19 import java.util.Map;
20 import java.util.NavigableMap;
21 import java.util.NavigableSet;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.SortedMap;
25 import java.util.Spliterator;
26 import java.util.function.BiConsumer;
27 import java.util.function.BiFunction;
28 import java.util.function.Consumer;
29 import java.util.function.Function;
30 import java.util.function.Predicate;
31
32 /**
33 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
34 * The map is sorted according to the {@linkplain Comparable natural
35 * ordering} of its keys, or by a {@link Comparator} provided at map
36 * creation time, depending on which constructor is used.
37 *
38 * <p>This class implements a concurrent variant of <a
39 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
40 * providing expected average <i>log(n)</i> time cost for the
41 * {@code containsKey}, {@code get}, {@code put} and
42 * {@code remove} operations and their variants. Insertion, removal,
43 * update, and access operations safely execute concurrently by
44 * multiple threads.
45 *
46 * <p>Iterators and spliterators are
47 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
48 *
49 * <p>Ascending key ordered views and their iterators are faster than
50 * descending ones.
51 *
52 * <p>All {@code Map.Entry} pairs returned by methods in this class
53 * and its views represent snapshots of mappings at the time they were
54 * produced. They do <em>not</em> support the {@code Entry.setValue}
55 * method. (Note however that it is possible to change mappings in the
56 * associated map using {@code put}, {@code putIfAbsent}, or
57 * {@code replace}, depending on exactly which effect you need.)
58 *
59 * <p>Beware that, unlike in most collections, the {@code size}
60 * method is <em>not</em> a constant-time operation. Because of the
61 * asynchronous nature of these maps, determining the current number
62 * of elements requires a traversal of the elements, and so may report
63 * inaccurate results if this collection is modified during traversal.
64 * Additionally, the bulk operations {@code putAll}, {@code equals},
65 * {@code toArray}, {@code containsValue}, and {@code clear} are
66 * <em>not</em> guaranteed to be performed atomically. For example, an
67 * iterator operating concurrently with a {@code putAll} operation
68 * might view only some of the added elements.
69 *
70 * <p>This class and its views and iterators implement all of the
71 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
72 * interfaces. Like most other concurrent collections, this class does
73 * <em>not</em> permit the use of {@code null} keys or values because some
74 * null return values cannot be reliably distinguished from the absence of
75 * elements.
76 *
77 * <p>This class is a member of the
78 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
79 * Java Collections Framework</a>.
80 *
81 * @author Doug Lea
82 * @param <K> the type of keys maintained by this map
83 * @param <V> the type of mapped values
84 * @since 1.6
85 */
86 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
87 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
88 /*
89 * This class implements a tree-like two-dimensionally linked skip
90 * list in which the index levels are represented in separate
91 * nodes from the base nodes holding data. There are two reasons
92 * for taking this approach instead of the usual array-based
93 * structure: 1) Array based implementations seem to encounter
94 * more complexity and overhead 2) We can use cheaper algorithms
95 * for the heavily-traversed index lists than can be used for the
96 * base lists. Here's a picture of some of the basics for a
97 * possible list with 2 levels of index:
98 *
99 * Head nodes Index nodes
100 * +-+ right +-+ +-+
101 * |2|---------------->| |--------------------->| |->null
102 * +-+ +-+ +-+
103 * | down | |
104 * v v v
105 * +-+ +-+ +-+ +-+ +-+ +-+
106 * |1|----------->| |->| |------>| |----------->| |------>| |->null
107 * +-+ +-+ +-+ +-+ +-+ +-+
108 * v | | | | |
109 * Nodes next v v v v v
110 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
111 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
112 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
113 *
114 * The base lists use a variant of the HM linked ordered set
115 * algorithm. See Tim Harris, "A pragmatic implementation of
116 * non-blocking linked lists"
117 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
118 * Michael "High Performance Dynamic Lock-Free Hash Tables and
119 * List-Based Sets"
120 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
121 * basic idea in these lists is to mark the "next" pointers of
122 * deleted nodes when deleting to avoid conflicts with concurrent
123 * insertions, and when traversing to keep track of triples
124 * (predecessor, node, successor) in order to detect when and how
125 * to unlink these deleted nodes.
126 *
127 * Rather than using mark-bits to mark list deletions (which can
128 * be slow and space-intensive using AtomicMarkedReference), nodes
129 * use direct CAS'able next pointers. On deletion, instead of
130 * marking a pointer, they splice in another node that can be
131 * thought of as standing for a marked pointer (indicating this by
132 * using otherwise impossible field values). Using plain nodes
133 * acts roughly like "boxed" implementations of marked pointers,
134 * but uses new nodes only when nodes are deleted, not for every
135 * link. This requires less space and supports faster
136 * traversal. Even if marked references were better supported by
137 * JVMs, traversal using this technique might still be faster
138 * because any search need only read ahead one more node than
139 * otherwise required (to check for trailing marker) rather than
140 * unmasking mark bits or whatever on each read.
141 *
142 * This approach maintains the essential property needed in the HM
143 * algorithm of changing the next-pointer of a deleted node so
144 * that any other CAS of it will fail, but implements the idea by
145 * changing the pointer to point to a different node, not by
146 * marking it. While it would be possible to further squeeze
147 * space by defining marker nodes not to have key/value fields, it
148 * isn't worth the extra type-testing overhead. The deletion
149 * markers are rarely encountered during traversal and are
150 * normally quickly garbage collected. (Note that this technique
151 * would not work well in systems without garbage collection.)
152 *
153 * In addition to using deletion markers, the lists also use
154 * nullness of value fields to indicate deletion, in a style
155 * similar to typical lazy-deletion schemes. If a node's value is
156 * null, then it is considered logically deleted and ignored even
157 * though it is still reachable. This maintains proper control of
158 * concurrent replace vs delete operations -- an attempted replace
159 * must fail if a delete beat it by nulling field, and a delete
160 * must return the last non-null value held in the field. (Note:
161 * Null, rather than some special marker, is used for value fields
162 * here because it just so happens to mesh with the Map API
163 * requirement that method get returns null if there is no
164 * mapping, which allows nodes to remain concurrently readable
165 * even when deleted. Using any other marker value here would be
166 * messy at best.)
167 *
168 * Here's the sequence of events for a deletion of node n with
169 * predecessor b and successor f, initially:
170 *
171 * +------+ +------+ +------+
172 * ... | b |------>| n |----->| f | ...
173 * +------+ +------+ +------+
174 *
175 * 1. CAS n's value field from non-null to null.
176 * From this point on, no public operations encountering
177 * the node consider this mapping to exist. However, other
178 * ongoing insertions and deletions might still modify
179 * n's next pointer.
180 *
181 * 2. CAS n's next pointer to point to a new marker node.
182 * From this point on, no other nodes can be appended to n.
183 * which avoids deletion errors in CAS-based linked lists.
184 *
185 * +------+ +------+ +------+ +------+
186 * ... | b |------>| n |----->|marker|------>| f | ...
187 * +------+ +------+ +------+ +------+
188 *
189 * 3. CAS b's next pointer over both n and its marker.
190 * From this point on, no new traversals will encounter n,
191 * and it can eventually be GCed.
192 * +------+ +------+
193 * ... | b |----------------------------------->| f | ...
194 * +------+ +------+
195 *
196 * A failure at step 1 leads to simple retry due to a lost race
197 * with another operation. Steps 2-3 can fail because some other
198 * thread noticed during a traversal a node with null value and
199 * helped out by marking and/or unlinking. This helping-out
200 * ensures that no thread can become stuck waiting for progress of
201 * the deleting thread. The use of marker nodes slightly
202 * complicates helping-out code because traversals must track
203 * consistent reads of up to four nodes (b, n, marker, f), not
204 * just (b, n, f), although the next field of a marker is
205 * immutable, and once a next field is CAS'ed to point to a
206 * marker, it never again changes, so this requires less care.
207 *
208 * Skip lists add indexing to this scheme, so that the base-level
209 * traversals start close to the locations being found, inserted
210 * or deleted -- usually base level traversals only traverse a few
211 * nodes. This doesn't change the basic algorithm except for the
212 * need to make sure base traversals start at predecessors (here,
213 * b) that are not (structurally) deleted, otherwise retrying
214 * after processing the deletion.
215 *
216 * Index levels are maintained as lists with volatile next fields,
217 * using CAS to link and unlink. Races are allowed in index-list
218 * operations that can (rarely) fail to link in a new index node
219 * or delete one. (We can't do this of course for data nodes.)
220 * However, even when this happens, the index lists remain sorted,
221 * so correctly serve as indices. This can impact performance,
222 * but since skip lists are probabilistic anyway, the net result
223 * is that under contention, the effective "p" value may be lower
224 * than its nominal value. And race windows are kept small enough
225 * that in practice these failures are rare, even under a lot of
226 * contention.
227 *
228 * The fact that retries (for both base and index lists) are
229 * relatively cheap due to indexing allows some minor
230 * simplifications of retry logic. Traversal restarts are
231 * performed after most "helping-out" CASes. This isn't always
232 * strictly necessary, but the implicit backoffs tend to help
233 * reduce other downstream failed CAS's enough to outweigh restart
234 * cost. This worsens the worst case, but seems to improve even
235 * highly contended cases.
236 *
237 * Unlike most skip-list implementations, index insertion and
238 * deletion here require a separate traversal pass occurring after
239 * the base-level action, to add or remove index nodes. This adds
240 * to single-threaded overhead, but improves contended
241 * multithreaded performance by narrowing interference windows,
242 * and allows deletion to ensure that all index nodes will be made
243 * unreachable upon return from a public remove operation, thus
244 * avoiding unwanted garbage retention. This is more important
245 * here than in some other data structures because we cannot null
246 * out node fields referencing user keys since they might still be
247 * read by other ongoing traversals.
248 *
249 * Indexing uses skip list parameters that maintain good search
250 * performance while using sparser-than-usual indices: The
251 * hardwired parameters k=1, p=0.5 (see method doPut) mean
252 * that about one-quarter of the nodes have indices. Of those that
253 * do, half have one level, a quarter have two, and so on (see
254 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
255 * requirement for a map is slightly less than for the current
256 * implementation of java.util.TreeMap.
257 *
258 * Changing the level of the index (i.e, the height of the
259 * tree-like structure) also uses CAS. The head index has initial
260 * level/height of one. Creation of an index with height greater
261 * than the current level adds a level to the head index by
262 * CAS'ing on a new top-most head. To maintain good performance
263 * after a lot of removals, deletion methods heuristically try to
264 * reduce the height if the topmost levels appear to be empty.
265 * This may encounter races in which it possible (but rare) to
266 * reduce and "lose" a level just as it is about to contain an
267 * index (that will then never be encountered). This does no
268 * structural harm, and in practice appears to be a better option
269 * than allowing unrestrained growth of levels.
270 *
271 * The code for all this is more verbose than you'd like. Most
272 * operations entail locating an element (or position to insert an
273 * element). The code to do this can't be nicely factored out
274 * because subsequent uses require a snapshot of predecessor
275 * and/or successor and/or value fields which can't be returned
276 * all at once, at least not without creating yet another object
277 * to hold them -- creating such little objects is an especially
278 * bad idea for basic internal search operations because it adds
279 * to GC overhead. (This is one of the few times I've wished Java
280 * had macros.) Instead, some traversal code is interleaved within
281 * insertion and removal operations. The control logic to handle
282 * all the retry conditions is sometimes twisty. Most search is
283 * broken into 2 parts. findPredecessor() searches index nodes
284 * only, returning a base-level predecessor of the key. findNode()
285 * finishes out the base-level search. Even with this factoring,
286 * there is a fair amount of near-duplication of code to handle
287 * variants.
288 *
289 * To produce random values without interference across threads,
290 * we use within-JDK thread local random support (via the
291 * "secondary seed", to avoid interference with user-level
292 * ThreadLocalRandom.)
293 *
294 * A previous version of this class wrapped non-comparable keys
295 * with their comparators to emulate Comparables when using
296 * comparators vs Comparables. However, JVMs now appear to better
297 * handle infusing comparator-vs-comparable choice into search
298 * loops. Static method cpr(comparator, x, y) is used for all
299 * comparisons, which works well as long as the comparator
300 * argument is set up outside of loops (thus sometimes passed as
301 * an argument to internal methods) to avoid field re-reads.
302 *
303 * For explanation of algorithms sharing at least a couple of
304 * features with this one, see Mikhail Fomitchev's thesis
305 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
306 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
307 * thesis (http://www.cs.chalmers.se/~phs/).
308 *
309 * Given the use of tree-like index nodes, you might wonder why
310 * this doesn't use some kind of search tree instead, which would
311 * support somewhat faster search operations. The reason is that
312 * there are no known efficient lock-free insertion and deletion
313 * algorithms for search trees. The immutability of the "down"
314 * links of index nodes (as opposed to mutable "left" fields in
315 * true trees) makes this tractable using only CAS operations.
316 *
317 * Notation guide for local variables
318 * Node: b, n, f for predecessor, node, successor
319 * Index: q, r, d for index node, right, down.
320 * t for another index node
321 * Head: h
322 * Levels: j
323 * Keys: k, key
324 * Values: v, value
325 * Comparisons: c
326 */
327
328 private static final long serialVersionUID = -8627078645895051609L;
329
330 /**
331 * Special value used to identify base-level header
332 */
333 private static final Object BASE_HEADER = new Object();
334
335 /**
336 * The topmost head index of the skiplist.
337 */
338 private transient volatile HeadIndex<K,V> head;
339
340 /**
341 * The comparator used to maintain order in this map, or null if
342 * using natural ordering. (Non-private to simplify access in
343 * nested classes.)
344 * @serial
345 */
346 final Comparator<? super K> comparator;
347
348 /** Lazily initialized key set */
349 private transient KeySet<K,V> keySet;
350 /** Lazily initialized entry set */
351 private transient EntrySet<K,V> entrySet;
352 /** Lazily initialized values collection */
353 private transient Values<K,V> values;
354 /** Lazily initialized descending key set */
355 private transient ConcurrentNavigableMap<K,V> descendingMap;
356
357 /**
358 * Initializes or resets state. Needed by constructors, clone,
359 * clear, readObject. and ConcurrentSkipListSet.clone.
360 * (Note that comparator must be separately initialized.)
361 */
362 private void initialize() {
363 keySet = null;
364 entrySet = null;
365 values = null;
366 descendingMap = null;
367 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
368 null, null, 1);
369 }
370
371 /**
372 * compareAndSet head node
373 */
374 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
375 return U.compareAndSwapObject(this, HEAD, cmp, val);
376 }
377
378 /* ---------------- Nodes -------------- */
379
380 /**
381 * Nodes hold keys and values, and are singly linked in sorted
382 * order, possibly with some intervening marker nodes. The list is
383 * headed by a dummy node accessible as head.node. The value field
384 * is declared only as Object because it takes special non-V
385 * values for marker and header nodes.
386 */
387 static final class Node<K,V> {
388 final K key;
389 volatile Object value;
390 volatile Node<K,V> next;
391
392 /**
393 * Creates a new regular node.
394 */
395 Node(K key, Object value, Node<K,V> next) {
396 this.key = key;
397 this.value = value;
398 this.next = next;
399 }
400
401 /**
402 * Creates a new marker node. A marker is distinguished by
403 * having its value field point to itself. Marker nodes also
404 * have null keys, a fact that is exploited in a few places,
405 * but this doesn't distinguish markers from the base-level
406 * header node (head.node), which also has a null key.
407 */
408 Node(Node<K,V> next) {
409 this.key = null;
410 this.value = this;
411 this.next = next;
412 }
413
414 /**
415 * compareAndSet value field
416 */
417 boolean casValue(Object cmp, Object val) {
418 return U.compareAndSwapObject(this, VALUE, cmp, val);
419 }
420
421 /**
422 * compareAndSet next field
423 */
424 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
425 return U.compareAndSwapObject(this, NEXT, cmp, val);
426 }
427
428 /**
429 * Returns true if this node is a marker. This method isn't
430 * actually called in any current code checking for markers
431 * because callers will have already read value field and need
432 * to use that read (not another done here) and so directly
433 * test if value points to node.
434 *
435 * @return true if this node is a marker node
436 */
437 boolean isMarker() {
438 return value == this;
439 }
440
441 /**
442 * Returns true if this node is the header of base-level list.
443 * @return true if this node is header node
444 */
445 boolean isBaseHeader() {
446 return value == BASE_HEADER;
447 }
448
449 /**
450 * Tries to append a deletion marker to this node.
451 * @param f the assumed current successor of this node
452 * @return true if successful
453 */
454 boolean appendMarker(Node<K,V> f) {
455 return casNext(f, new Node<K,V>(f));
456 }
457
458 /**
459 * Helps out a deletion by appending marker or unlinking from
460 * predecessor. This is called during traversals when value
461 * field seen to be null.
462 * @param b predecessor
463 * @param f successor
464 */
465 void helpDelete(Node<K,V> b, Node<K,V> f) {
466 /*
467 * Rechecking links and then doing only one of the
468 * help-out stages per call tends to minimize CAS
469 * interference among helping threads.
470 */
471 if (f == next && this == b.next) {
472 if (f == null || f.value != f) // not already marked
473 casNext(f, new Node<K,V>(f));
474 else
475 b.casNext(this, f.next);
476 }
477 }
478
479 /**
480 * Returns value if this node contains a valid key-value pair,
481 * else null.
482 * @return this node's value if it isn't a marker or header or
483 * is deleted, else null
484 */
485 V getValidValue() {
486 Object v = value;
487 if (v == this || v == BASE_HEADER)
488 return null;
489 @SuppressWarnings("unchecked") V vv = (V)v;
490 return vv;
491 }
492
493 /**
494 * Creates and returns a new SimpleImmutableEntry holding current
495 * mapping if this node holds a valid value, else null.
496 * @return new entry or null
497 */
498 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
499 Object v = value;
500 if (v == null || v == this || v == BASE_HEADER)
501 return null;
502 @SuppressWarnings("unchecked") V vv = (V)v;
503 return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
504 }
505
506 // Unsafe mechanics
507
508 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
509 private static final long VALUE;
510 private static final long NEXT;
511
512 static {
513 try {
514 VALUE = U.objectFieldOffset
515 (Node.class.getDeclaredField("value"));
516 NEXT = U.objectFieldOffset
517 (Node.class.getDeclaredField("next"));
518 } catch (ReflectiveOperationException e) {
519 throw new Error(e);
520 }
521 }
522 }
523
524 /* ---------------- Indexing -------------- */
525
526 /**
527 * Index nodes represent the levels of the skip list. Note that
528 * even though both Nodes and Indexes have forward-pointing
529 * fields, they have different types and are handled in different
530 * ways, that can't nicely be captured by placing field in a
531 * shared abstract class.
532 */
533 static class Index<K,V> {
534 final Node<K,V> node;
535 final Index<K,V> down;
536 volatile Index<K,V> right;
537
538 /**
539 * Creates index node with given values.
540 */
541 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
542 this.node = node;
543 this.down = down;
544 this.right = right;
545 }
546
547 /**
548 * compareAndSet right field
549 */
550 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
551 return U.compareAndSwapObject(this, RIGHT, cmp, val);
552 }
553
554 /**
555 * Returns true if the node this indexes has been deleted.
556 * @return true if indexed node is known to be deleted
557 */
558 final boolean indexesDeletedNode() {
559 return node.value == null;
560 }
561
562 /**
563 * Tries to CAS newSucc as successor. To minimize races with
564 * unlink that may lose this index node, if the node being
565 * indexed is known to be deleted, it doesn't try to link in.
566 * @param succ the expected current successor
567 * @param newSucc the new successor
568 * @return true if successful
569 */
570 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
571 Node<K,V> n = node;
572 newSucc.right = succ;
573 return n.value != null && casRight(succ, newSucc);
574 }
575
576 /**
577 * Tries to CAS right field to skip over apparent successor
578 * succ. Fails (forcing a retraversal by caller) if this node
579 * is known to be deleted.
580 * @param succ the expected current successor
581 * @return true if successful
582 */
583 final boolean unlink(Index<K,V> succ) {
584 return node.value != null && casRight(succ, succ.right);
585 }
586
587 // Unsafe mechanics
588 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
589 private static final long RIGHT;
590 static {
591 try {
592 RIGHT = U.objectFieldOffset
593 (Index.class.getDeclaredField("right"));
594 } catch (ReflectiveOperationException e) {
595 throw new Error(e);
596 }
597 }
598 }
599
600 /* ---------------- Head nodes -------------- */
601
602 /**
603 * Nodes heading each level keep track of their level.
604 */
605 static final class HeadIndex<K,V> extends Index<K,V> {
606 final int level;
607 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
608 super(node, down, right);
609 this.level = level;
610 }
611 }
612
613 /* ---------------- Comparison utilities -------------- */
614
615 /**
616 * Compares using comparator or natural ordering if null.
617 * Called only by methods that have performed required type checks.
618 */
619 @SuppressWarnings({"unchecked", "rawtypes"})
620 static final int cpr(Comparator c, Object x, Object y) {
621 return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
622 }
623
624 /* ---------------- Traversal -------------- */
625
626 /**
627 * Returns a base-level node with key strictly less than given key,
628 * or the base-level header if there is no such node. Also
629 * unlinks indexes to deleted nodes found along the way. Callers
630 * rely on this side-effect of clearing indices to deleted nodes.
631 * @param key the key
632 * @return a predecessor of key
633 */
634 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
635 if (key == null)
636 throw new NullPointerException(); // don't postpone errors
637 for (;;) {
638 for (Index<K,V> q = head, r = q.right, d;;) {
639 if (r != null) {
640 Node<K,V> n = r.node;
641 K k = n.key;
642 if (n.value == null) {
643 if (!q.unlink(r))
644 break; // restart
645 r = q.right; // reread r
646 continue;
647 }
648 if (cpr(cmp, key, k) > 0) {
649 q = r;
650 r = r.right;
651 continue;
652 }
653 }
654 if ((d = q.down) == null)
655 return q.node;
656 q = d;
657 r = d.right;
658 }
659 }
660 }
661
662 /**
663 * Returns node holding key or null if no such, clearing out any
664 * deleted nodes seen along the way. Repeatedly traverses at
665 * base-level looking for key starting at predecessor returned
666 * from findPredecessor, processing base-level deletions as
667 * encountered. Some callers rely on this side-effect of clearing
668 * deleted nodes.
669 *
670 * Restarts occur, at traversal step centered on node n, if:
671 *
672 * (1) After reading n's next field, n is no longer assumed
673 * predecessor b's current successor, which means that
674 * we don't have a consistent 3-node snapshot and so cannot
675 * unlink any subsequent deleted nodes encountered.
676 *
677 * (2) n's value field is null, indicating n is deleted, in
678 * which case we help out an ongoing structural deletion
679 * before retrying. Even though there are cases where such
680 * unlinking doesn't require restart, they aren't sorted out
681 * here because doing so would not usually outweigh cost of
682 * restarting.
683 *
684 * (3) n is a marker or n's predecessor's value field is null,
685 * indicating (among other possibilities) that
686 * findPredecessor returned a deleted node. We can't unlink
687 * the node because we don't know its predecessor, so rely
688 * on another call to findPredecessor to notice and return
689 * some earlier predecessor, which it will do. This check is
690 * only strictly needed at beginning of loop, (and the
691 * b.value check isn't strictly needed at all) but is done
692 * each iteration to help avoid contention with other
693 * threads by callers that will fail to be able to change
694 * links, and so will retry anyway.
695 *
696 * The traversal loops in doPut, doRemove, and findNear all
697 * include the same three kinds of checks. And specialized
698 * versions appear in findFirst, and findLast and their
699 * variants. They can't easily share code because each uses the
700 * reads of fields held in locals occurring in the orders they
701 * were performed.
702 *
703 * @param key the key
704 * @return node holding key, or null if no such
705 */
706 private Node<K,V> findNode(Object key) {
707 if (key == null)
708 throw new NullPointerException(); // don't postpone errors
709 Comparator<? super K> cmp = comparator;
710 outer: for (;;) {
711 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
712 Object v; int c;
713 if (n == null)
714 break outer;
715 Node<K,V> f = n.next;
716 if (n != b.next) // inconsistent read
717 break;
718 if ((v = n.value) == null) { // n is deleted
719 n.helpDelete(b, f);
720 break;
721 }
722 if (b.value == null || v == n) // b is deleted
723 break;
724 if ((c = cpr(cmp, key, n.key)) == 0)
725 return n;
726 if (c < 0)
727 break outer;
728 b = n;
729 n = f;
730 }
731 }
732 return null;
733 }
734
735 /**
736 * Gets value for key. Almost the same as findNode, but returns
737 * the found value (to avoid retries during re-reads)
738 *
739 * @param key the key
740 * @return the value, or null if absent
741 */
742 private V doGet(Object key) {
743 if (key == null)
744 throw new NullPointerException();
745 Comparator<? super K> cmp = comparator;
746 outer: for (;;) {
747 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
748 Object v; int c;
749 if (n == null)
750 break outer;
751 Node<K,V> f = n.next;
752 if (n != b.next) // inconsistent read
753 break;
754 if ((v = n.value) == null) { // n is deleted
755 n.helpDelete(b, f);
756 break;
757 }
758 if (b.value == null || v == n) // b is deleted
759 break;
760 if ((c = cpr(cmp, key, n.key)) == 0) {
761 @SuppressWarnings("unchecked") V vv = (V)v;
762 return vv;
763 }
764 if (c < 0)
765 break outer;
766 b = n;
767 n = f;
768 }
769 }
770 return null;
771 }
772
773 /* ---------------- Insertion -------------- */
774
775 /**
776 * Main insertion method. Adds element if not present, or
777 * replaces value if present and onlyIfAbsent is false.
778 * @param key the key
779 * @param value the value that must be associated with key
780 * @param onlyIfAbsent if should not insert if already present
781 * @return the old value, or null if newly inserted
782 */
783 private V doPut(K key, V value, boolean onlyIfAbsent) {
784 Node<K,V> z; // added node
785 if (key == null)
786 throw new NullPointerException();
787 Comparator<? super K> cmp = comparator;
788 outer: for (;;) {
789 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
790 if (n != null) {
791 Object v; int c;
792 Node<K,V> f = n.next;
793 if (n != b.next) // inconsistent read
794 break;
795 if ((v = n.value) == null) { // n is deleted
796 n.helpDelete(b, f);
797 break;
798 }
799 if (b.value == null || v == n) // b is deleted
800 break;
801 if ((c = cpr(cmp, key, n.key)) > 0) {
802 b = n;
803 n = f;
804 continue;
805 }
806 if (c == 0) {
807 if (onlyIfAbsent || n.casValue(v, value)) {
808 @SuppressWarnings("unchecked") V vv = (V)v;
809 return vv;
810 }
811 break; // restart if lost race to replace value
812 }
813 // else c < 0; fall through
814 }
815
816 z = new Node<K,V>(key, value, n);
817 if (!b.casNext(n, z))
818 break; // restart if lost race to append to b
819 break outer;
820 }
821 }
822
823 int rnd = ThreadLocalRandom.nextSecondarySeed();
824 if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
825 int level = 1, max;
826 while (((rnd >>>= 1) & 1) != 0)
827 ++level;
828 Index<K,V> idx = null;
829 HeadIndex<K,V> h = head;
830 if (level <= (max = h.level)) {
831 for (int i = 1; i <= level; ++i)
832 idx = new Index<K,V>(z, idx, null);
833 }
834 else { // try to grow by one level
835 level = max + 1; // hold in array and later pick the one to use
836 @SuppressWarnings("unchecked")Index<K,V>[] idxs =
837 (Index<K,V>[])new Index<?,?>[level+1];
838 for (int i = 1; i <= level; ++i)
839 idxs[i] = idx = new Index<K,V>(z, idx, null);
840 for (;;) {
841 h = head;
842 int oldLevel = h.level;
843 if (level <= oldLevel) // lost race to add level
844 break;
845 HeadIndex<K,V> newh = h;
846 Node<K,V> oldbase = h.node;
847 for (int j = oldLevel+1; j <= level; ++j)
848 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
849 if (casHead(h, newh)) {
850 h = newh;
851 idx = idxs[level = oldLevel];
852 break;
853 }
854 }
855 }
856 // find insertion points and splice in
857 splice: for (int insertionLevel = level;;) {
858 int j = h.level;
859 for (Index<K,V> q = h, r = q.right, t = idx;;) {
860 if (q == null || t == null)
861 break splice;
862 if (r != null) {
863 Node<K,V> n = r.node;
864 // compare before deletion check avoids needing recheck
865 int c = cpr(cmp, key, n.key);
866 if (n.value == null) {
867 if (!q.unlink(r))
868 break;
869 r = q.right;
870 continue;
871 }
872 if (c > 0) {
873 q = r;
874 r = r.right;
875 continue;
876 }
877 }
878
879 if (j == insertionLevel) {
880 if (!q.link(r, t))
881 break; // restart
882 if (t.node.value == null) {
883 findNode(key);
884 break splice;
885 }
886 if (--insertionLevel == 0)
887 break splice;
888 }
889
890 if (--j >= insertionLevel && j < level)
891 t = t.down;
892 q = q.down;
893 r = q.right;
894 }
895 }
896 }
897 return null;
898 }
899
900 /* ---------------- Deletion -------------- */
901
902 /**
903 * Main deletion method. Locates node, nulls value, appends a
904 * deletion marker, unlinks predecessor, removes associated index
905 * nodes, and possibly reduces head index level.
906 *
907 * Index nodes are cleared out simply by calling findPredecessor.
908 * which unlinks indexes to deleted nodes found along path to key,
909 * which will include the indexes to this node. This is done
910 * unconditionally. We can't check beforehand whether there are
911 * index nodes because it might be the case that some or all
912 * indexes hadn't been inserted yet for this node during initial
913 * search for it, and we'd like to ensure lack of garbage
914 * retention, so must call to be sure.
915 *
916 * @param key the key
917 * @param value if non-null, the value that must be
918 * associated with key
919 * @return the node, or null if not found
920 */
921 final V doRemove(Object key, Object value) {
922 if (key == null)
923 throw new NullPointerException();
924 Comparator<? super K> cmp = comparator;
925 outer: for (;;) {
926 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
927 Object v; int c;
928 if (n == null)
929 break outer;
930 Node<K,V> f = n.next;
931 if (n != b.next) // inconsistent read
932 break;
933 if ((v = n.value) == null) { // n is deleted
934 n.helpDelete(b, f);
935 break;
936 }
937 if (b.value == null || v == n) // b is deleted
938 break;
939 if ((c = cpr(cmp, key, n.key)) < 0)
940 break outer;
941 if (c > 0) {
942 b = n;
943 n = f;
944 continue;
945 }
946 if (value != null && !value.equals(v))
947 break outer;
948 if (!n.casValue(v, null))
949 break;
950 if (!n.appendMarker(f) || !b.casNext(n, f))
951 findNode(key); // retry via findNode
952 else {
953 findPredecessor(key, cmp); // clean index
954 if (head.right == null)
955 tryReduceLevel();
956 }
957 @SuppressWarnings("unchecked") V vv = (V)v;
958 return vv;
959 }
960 }
961 return null;
962 }
963
964 /**
965 * Possibly reduce head level if it has no nodes. This method can
966 * (rarely) make mistakes, in which case levels can disappear even
967 * though they are about to contain index nodes. This impacts
968 * performance, not correctness. To minimize mistakes as well as
969 * to reduce hysteresis, the level is reduced by one only if the
970 * topmost three levels look empty. Also, if the removed level
971 * looks non-empty after CAS, we try to change it back quick
972 * before anyone notices our mistake! (This trick works pretty
973 * well because this method will practically never make mistakes
974 * unless current thread stalls immediately before first CAS, in
975 * which case it is very unlikely to stall again immediately
976 * afterwards, so will recover.)
977 *
978 * We put up with all this rather than just let levels grow
979 * because otherwise, even a small map that has undergone a large
980 * number of insertions and removals will have a lot of levels,
981 * slowing down access more than would an occasional unwanted
982 * reduction.
983 */
984 private void tryReduceLevel() {
985 HeadIndex<K,V> h = head;
986 HeadIndex<K,V> d;
987 HeadIndex<K,V> e;
988 if (h.level > 3 &&
989 (d = (HeadIndex<K,V>)h.down) != null &&
990 (e = (HeadIndex<K,V>)d.down) != null &&
991 e.right == null &&
992 d.right == null &&
993 h.right == null &&
994 casHead(h, d) && // try to set
995 h.right != null) // recheck
996 casHead(d, h); // try to backout
997 }
998
999 /* ---------------- Finding and removing first element -------------- */
1000
1001 /**
1002 * Specialized variant of findNode to get first valid node.
1003 * @return first node or null if empty
1004 */
1005 final Node<K,V> findFirst() {
1006 for (Node<K,V> b, n;;) {
1007 if ((n = (b = head.node).next) == null)
1008 return null;
1009 if (n.value != null)
1010 return n;
1011 n.helpDelete(b, n.next);
1012 }
1013 }
1014
1015 /**
1016 * Removes first entry; returns its snapshot.
1017 * @return null if empty, else snapshot of first entry
1018 */
1019 private Map.Entry<K,V> doRemoveFirstEntry() {
1020 for (Node<K,V> b, n;;) {
1021 if ((n = (b = head.node).next) == null)
1022 return null;
1023 Node<K,V> f = n.next;
1024 if (n != b.next)
1025 continue;
1026 Object v = n.value;
1027 if (v == null) {
1028 n.helpDelete(b, f);
1029 continue;
1030 }
1031 if (!n.casValue(v, null))
1032 continue;
1033 if (!n.appendMarker(f) || !b.casNext(n, f))
1034 findFirst(); // retry
1035 clearIndexToFirst();
1036 @SuppressWarnings("unchecked") V vv = (V)v;
1037 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, vv);
1038 }
1039 }
1040
1041 /**
1042 * Clears out index nodes associated with deleted first entry.
1043 */
1044 private void clearIndexToFirst() {
1045 for (;;) {
1046 for (Index<K,V> q = head;;) {
1047 Index<K,V> r = q.right;
1048 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1049 break;
1050 if ((q = q.down) == null) {
1051 if (head.right == null)
1052 tryReduceLevel();
1053 return;
1054 }
1055 }
1056 }
1057 }
1058
1059 /**
1060 * Removes last entry; returns its snapshot.
1061 * Specialized variant of doRemove.
1062 * @return null if empty, else snapshot of last entry
1063 */
1064 private Map.Entry<K,V> doRemoveLastEntry() {
1065 for (;;) {
1066 Node<K,V> b = findPredecessorOfLast();
1067 Node<K,V> n = b.next;
1068 if (n == null) {
1069 if (b.isBaseHeader()) // empty
1070 return null;
1071 else
1072 continue; // all b's successors are deleted; retry
1073 }
1074 for (;;) {
1075 Node<K,V> f = n.next;
1076 if (n != b.next) // inconsistent read
1077 break;
1078 Object v = n.value;
1079 if (v == null) { // n is deleted
1080 n.helpDelete(b, f);
1081 break;
1082 }
1083 if (b.value == null || v == n) // b is deleted
1084 break;
1085 if (f != null) {
1086 b = n;
1087 n = f;
1088 continue;
1089 }
1090 if (!n.casValue(v, null))
1091 break;
1092 K key = n.key;
1093 if (!n.appendMarker(f) || !b.casNext(n, f))
1094 findNode(key); // retry via findNode
1095 else { // clean index
1096 findPredecessor(key, comparator);
1097 if (head.right == null)
1098 tryReduceLevel();
1099 }
1100 @SuppressWarnings("unchecked") V vv = (V)v;
1101 return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
1102 }
1103 }
1104 }
1105
1106 /* ---------------- Finding and removing last element -------------- */
1107
1108 /**
1109 * Specialized version of find to get last valid node.
1110 * @return last node or null if empty
1111 */
1112 final Node<K,V> findLast() {
1113 /*
1114 * findPredecessor can't be used to traverse index level
1115 * because this doesn't use comparisons. So traversals of
1116 * both levels are folded together.
1117 */
1118 Index<K,V> q = head;
1119 for (;;) {
1120 Index<K,V> d, r;
1121 if ((r = q.right) != null) {
1122 if (r.indexesDeletedNode()) {
1123 q.unlink(r);
1124 q = head; // restart
1125 }
1126 else
1127 q = r;
1128 } else if ((d = q.down) != null) {
1129 q = d;
1130 } else {
1131 for (Node<K,V> b = q.node, n = b.next;;) {
1132 if (n == null)
1133 return b.isBaseHeader() ? null : b;
1134 Node<K,V> f = n.next; // inconsistent read
1135 if (n != b.next)
1136 break;
1137 Object v = n.value;
1138 if (v == null) { // n is deleted
1139 n.helpDelete(b, f);
1140 break;
1141 }
1142 if (b.value == null || v == n) // b is deleted
1143 break;
1144 b = n;
1145 n = f;
1146 }
1147 q = head; // restart
1148 }
1149 }
1150 }
1151
1152 /**
1153 * Specialized variant of findPredecessor to get predecessor of last
1154 * valid node. Needed when removing the last entry. It is possible
1155 * that all successors of returned node will have been deleted upon
1156 * return, in which case this method can be retried.
1157 * @return likely predecessor of last node
1158 */
1159 private Node<K,V> findPredecessorOfLast() {
1160 for (;;) {
1161 for (Index<K,V> q = head;;) {
1162 Index<K,V> d, r;
1163 if ((r = q.right) != null) {
1164 if (r.indexesDeletedNode()) {
1165 q.unlink(r);
1166 break; // must restart
1167 }
1168 // proceed as far across as possible without overshooting
1169 if (r.node.next != null) {
1170 q = r;
1171 continue;
1172 }
1173 }
1174 if ((d = q.down) != null)
1175 q = d;
1176 else
1177 return q.node;
1178 }
1179 }
1180 }
1181
1182 /* ---------------- Relational operations -------------- */
1183
1184 // Control values OR'ed as arguments to findNear
1185
1186 private static final int EQ = 1;
1187 private static final int LT = 2;
1188 private static final int GT = 0; // Actually checked as !LT
1189
1190 /**
1191 * Utility for ceiling, floor, lower, higher methods.
1192 * @param key the key
1193 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1194 * @return nearest node fitting relation, or null if no such
1195 */
1196 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1197 if (key == null)
1198 throw new NullPointerException();
1199 for (;;) {
1200 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
1201 Object v;
1202 if (n == null)
1203 return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1204 Node<K,V> f = n.next;
1205 if (n != b.next) // inconsistent read
1206 break;
1207 if ((v = n.value) == null) { // n is deleted
1208 n.helpDelete(b, f);
1209 break;
1210 }
1211 if (b.value == null || v == n) // b is deleted
1212 break;
1213 int c = cpr(cmp, key, n.key);
1214 if ((c == 0 && (rel & EQ) != 0) ||
1215 (c < 0 && (rel & LT) == 0))
1216 return n;
1217 if ( c <= 0 && (rel & LT) != 0)
1218 return b.isBaseHeader() ? null : b;
1219 b = n;
1220 n = f;
1221 }
1222 }
1223 }
1224
1225 /**
1226 * Returns SimpleImmutableEntry for results of findNear.
1227 * @param key the key
1228 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1229 * @return Entry fitting relation, or null if no such
1230 */
1231 final AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1232 Comparator<? super K> cmp = comparator;
1233 for (;;) {
1234 Node<K,V> n = findNear(key, rel, cmp);
1235 if (n == null)
1236 return null;
1237 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1238 if (e != null)
1239 return e;
1240 }
1241 }
1242
1243 /* ---------------- Constructors -------------- */
1244
1245 /**
1246 * Constructs a new, empty map, sorted according to the
1247 * {@linkplain Comparable natural ordering} of the keys.
1248 */
1249 public ConcurrentSkipListMap() {
1250 this.comparator = null;
1251 initialize();
1252 }
1253
1254 /**
1255 * Constructs a new, empty map, sorted according to the specified
1256 * comparator.
1257 *
1258 * @param comparator the comparator that will be used to order this map.
1259 * If {@code null}, the {@linkplain Comparable natural
1260 * ordering} of the keys will be used.
1261 */
1262 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1263 this.comparator = comparator;
1264 initialize();
1265 }
1266
1267 /**
1268 * Constructs a new map containing the same mappings as the given map,
1269 * sorted according to the {@linkplain Comparable natural ordering} of
1270 * the keys.
1271 *
1272 * @param m the map whose mappings are to be placed in this map
1273 * @throws ClassCastException if the keys in {@code m} are not
1274 * {@link Comparable}, or are not mutually comparable
1275 * @throws NullPointerException if the specified map or any of its keys
1276 * or values are null
1277 */
1278 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1279 this.comparator = null;
1280 initialize();
1281 putAll(m);
1282 }
1283
1284 /**
1285 * Constructs a new map containing the same mappings and using the
1286 * same ordering as the specified sorted map.
1287 *
1288 * @param m the sorted map whose mappings are to be placed in this
1289 * map, and whose comparator is to be used to sort this map
1290 * @throws NullPointerException if the specified sorted map or any of
1291 * its keys or values are null
1292 */
1293 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1294 this.comparator = m.comparator();
1295 initialize();
1296 buildFromSorted(m);
1297 }
1298
1299 /**
1300 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1301 * instance. (The keys and values themselves are not cloned.)
1302 *
1303 * @return a shallow copy of this map
1304 */
1305 public ConcurrentSkipListMap<K,V> clone() {
1306 try {
1307 @SuppressWarnings("unchecked")
1308 ConcurrentSkipListMap<K,V> clone =
1309 (ConcurrentSkipListMap<K,V>) super.clone();
1310 clone.initialize();
1311 clone.buildFromSorted(this);
1312 return clone;
1313 } catch (CloneNotSupportedException e) {
1314 throw new InternalError();
1315 }
1316 }
1317
1318 /**
1319 * Streamlined bulk insertion to initialize from elements of
1320 * given sorted map. Call only from constructor or clone
1321 * method.
1322 */
1323 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1324 if (map == null)
1325 throw new NullPointerException();
1326
1327 HeadIndex<K,V> h = head;
1328 Node<K,V> basepred = h.node;
1329
1330 // Track the current rightmost node at each level. Uses an
1331 // ArrayList to avoid committing to initial or maximum level.
1332 ArrayList<Index<K,V>> preds = new ArrayList<>();
1333
1334 // initialize
1335 for (int i = 0; i <= h.level; ++i)
1336 preds.add(null);
1337 Index<K,V> q = h;
1338 for (int i = h.level; i > 0; --i) {
1339 preds.set(i, q);
1340 q = q.down;
1341 }
1342
1343 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1344 map.entrySet().iterator();
1345 while (it.hasNext()) {
1346 Map.Entry<? extends K, ? extends V> e = it.next();
1347 int rnd = ThreadLocalRandom.current().nextInt();
1348 int j = 0;
1349 if ((rnd & 0x80000001) == 0) {
1350 do {
1351 ++j;
1352 } while (((rnd >>>= 1) & 1) != 0);
1353 if (j > h.level) j = h.level + 1;
1354 }
1355 K k = e.getKey();
1356 V v = e.getValue();
1357 if (k == null || v == null)
1358 throw new NullPointerException();
1359 Node<K,V> z = new Node<K,V>(k, v, null);
1360 basepred.next = z;
1361 basepred = z;
1362 if (j > 0) {
1363 Index<K,V> idx = null;
1364 for (int i = 1; i <= j; ++i) {
1365 idx = new Index<K,V>(z, idx, null);
1366 if (i > h.level)
1367 h = new HeadIndex<K,V>(h.node, h, idx, i);
1368
1369 if (i < preds.size()) {
1370 preds.get(i).right = idx;
1371 preds.set(i, idx);
1372 } else
1373 preds.add(idx);
1374 }
1375 }
1376 }
1377 head = h;
1378 }
1379
1380 /* ---------------- Serialization -------------- */
1381
1382 /**
1383 * Saves this map to a stream (that is, serializes it).
1384 *
1385 * @param s the stream
1386 * @throws java.io.IOException if an I/O error occurs
1387 * @serialData The key (Object) and value (Object) for each
1388 * key-value mapping represented by the map, followed by
1389 * {@code null}. The key-value mappings are emitted in key-order
1390 * (as determined by the Comparator, or by the keys' natural
1391 * ordering if no Comparator).
1392 */
1393 private void writeObject(java.io.ObjectOutputStream s)
1394 throws java.io.IOException {
1395 // Write out the Comparator and any hidden stuff
1396 s.defaultWriteObject();
1397
1398 // Write out keys and values (alternating)
1399 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1400 V v = n.getValidValue();
1401 if (v != null) {
1402 s.writeObject(n.key);
1403 s.writeObject(v);
1404 }
1405 }
1406 s.writeObject(null);
1407 }
1408
1409 /**
1410 * Reconstitutes this map from a stream (that is, deserializes it).
1411 * @param s the stream
1412 * @throws ClassNotFoundException if the class of a serialized object
1413 * could not be found
1414 * @throws java.io.IOException if an I/O error occurs
1415 */
1416 @SuppressWarnings("unchecked")
1417 private void readObject(final java.io.ObjectInputStream s)
1418 throws java.io.IOException, ClassNotFoundException {
1419 // Read in the Comparator and any hidden stuff
1420 s.defaultReadObject();
1421 // Reset transients
1422 initialize();
1423
1424 /*
1425 * This is nearly identical to buildFromSorted, but is
1426 * distinct because readObject calls can't be nicely adapted
1427 * as the kind of iterator needed by buildFromSorted. (They
1428 * can be, but doing so requires type cheats and/or creation
1429 * of adaptor classes.) It is simpler to just adapt the code.
1430 */
1431
1432 HeadIndex<K,V> h = head;
1433 Node<K,V> basepred = h.node;
1434 ArrayList<Index<K,V>> preds = new ArrayList<>();
1435 for (int i = 0; i <= h.level; ++i)
1436 preds.add(null);
1437 Index<K,V> q = h;
1438 for (int i = h.level; i > 0; --i) {
1439 preds.set(i, q);
1440 q = q.down;
1441 }
1442
1443 for (;;) {
1444 Object k = s.readObject();
1445 if (k == null)
1446 break;
1447 Object v = s.readObject();
1448 if (v == null)
1449 throw new NullPointerException();
1450 K key = (K) k;
1451 V val = (V) v;
1452 int rnd = ThreadLocalRandom.current().nextInt();
1453 int j = 0;
1454 if ((rnd & 0x80000001) == 0) {
1455 do {
1456 ++j;
1457 } while (((rnd >>>= 1) & 1) != 0);
1458 if (j > h.level) j = h.level + 1;
1459 }
1460 Node<K,V> z = new Node<K,V>(key, val, null);
1461 basepred.next = z;
1462 basepred = z;
1463 if (j > 0) {
1464 Index<K,V> idx = null;
1465 for (int i = 1; i <= j; ++i) {
1466 idx = new Index<K,V>(z, idx, null);
1467 if (i > h.level)
1468 h = new HeadIndex<K,V>(h.node, h, idx, i);
1469
1470 if (i < preds.size()) {
1471 preds.get(i).right = idx;
1472 preds.set(i, idx);
1473 } else
1474 preds.add(idx);
1475 }
1476 }
1477 }
1478 head = h;
1479 }
1480
1481 /* ------ Map API methods ------ */
1482
1483 /**
1484 * Returns {@code true} if this map contains a mapping for the specified
1485 * key.
1486 *
1487 * @param key key whose presence in this map is to be tested
1488 * @return {@code true} if this map contains a mapping for the specified key
1489 * @throws ClassCastException if the specified key cannot be compared
1490 * with the keys currently in the map
1491 * @throws NullPointerException if the specified key is null
1492 */
1493 public boolean containsKey(Object key) {
1494 return doGet(key) != null;
1495 }
1496
1497 /**
1498 * Returns the value to which the specified key is mapped,
1499 * or {@code null} if this map contains no mapping for the key.
1500 *
1501 * <p>More formally, if this map contains a mapping from a key
1502 * {@code k} to a value {@code v} such that {@code key} compares
1503 * equal to {@code k} according to the map's ordering, then this
1504 * method returns {@code v}; otherwise it returns {@code null}.
1505 * (There can be at most one such mapping.)
1506 *
1507 * @throws ClassCastException if the specified key cannot be compared
1508 * with the keys currently in the map
1509 * @throws NullPointerException if the specified key is null
1510 */
1511 public V get(Object key) {
1512 return doGet(key);
1513 }
1514
1515 /**
1516 * Returns the value to which the specified key is mapped,
1517 * or the given defaultValue if this map contains no mapping for the key.
1518 *
1519 * @param key the key
1520 * @param defaultValue the value to return if this map contains
1521 * no mapping for the given key
1522 * @return the mapping for the key, if present; else the defaultValue
1523 * @throws NullPointerException if the specified key is null
1524 * @since 1.8
1525 */
1526 public V getOrDefault(Object key, V defaultValue) {
1527 V v;
1528 return (v = doGet(key)) == null ? defaultValue : v;
1529 }
1530
1531 /**
1532 * Associates the specified value with the specified key in this map.
1533 * If the map previously contained a mapping for the key, the old
1534 * value is replaced.
1535 *
1536 * @param key key with which the specified value is to be associated
1537 * @param value value to be associated with the specified key
1538 * @return the previous value associated with the specified key, or
1539 * {@code null} if there was no mapping for the key
1540 * @throws ClassCastException if the specified key cannot be compared
1541 * with the keys currently in the map
1542 * @throws NullPointerException if the specified key or value is null
1543 */
1544 public V put(K key, V value) {
1545 if (value == null)
1546 throw new NullPointerException();
1547 return doPut(key, value, false);
1548 }
1549
1550 /**
1551 * Removes the mapping for the specified key from this map if present.
1552 *
1553 * @param key key for which mapping should be removed
1554 * @return the previous value associated with the specified key, or
1555 * {@code null} if there was no mapping for the key
1556 * @throws ClassCastException if the specified key cannot be compared
1557 * with the keys currently in the map
1558 * @throws NullPointerException if the specified key is null
1559 */
1560 public V remove(Object key) {
1561 return doRemove(key, null);
1562 }
1563
1564 /**
1565 * Returns {@code true} if this map maps one or more keys to the
1566 * specified value. This operation requires time linear in the
1567 * map size. Additionally, it is possible for the map to change
1568 * during execution of this method, in which case the returned
1569 * result may be inaccurate.
1570 *
1571 * @param value value whose presence in this map is to be tested
1572 * @return {@code true} if a mapping to {@code value} exists;
1573 * {@code false} otherwise
1574 * @throws NullPointerException if the specified value is null
1575 */
1576 public boolean containsValue(Object value) {
1577 if (value == null)
1578 throw new NullPointerException();
1579 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1580 V v = n.getValidValue();
1581 if (v != null && value.equals(v))
1582 return true;
1583 }
1584 return false;
1585 }
1586
1587 /**
1588 * Returns the number of key-value mappings in this map. If this map
1589 * contains more than {@code Integer.MAX_VALUE} elements, it
1590 * returns {@code Integer.MAX_VALUE}.
1591 *
1592 * <p>Beware that, unlike in most collections, this method is
1593 * <em>NOT</em> a constant-time operation. Because of the
1594 * asynchronous nature of these maps, determining the current
1595 * number of elements requires traversing them all to count them.
1596 * Additionally, it is possible for the size to change during
1597 * execution of this method, in which case the returned result
1598 * will be inaccurate. Thus, this method is typically not very
1599 * useful in concurrent applications.
1600 *
1601 * @return the number of elements in this map
1602 */
1603 public int size() {
1604 long count = 0;
1605 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1606 if (n.getValidValue() != null)
1607 ++count;
1608 }
1609 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1610 }
1611
1612 /**
1613 * Returns {@code true} if this map contains no key-value mappings.
1614 * @return {@code true} if this map contains no key-value mappings
1615 */
1616 public boolean isEmpty() {
1617 return findFirst() == null;
1618 }
1619
1620 /**
1621 * Removes all of the mappings from this map.
1622 */
1623 public void clear() {
1624 initialize();
1625 }
1626
1627 /**
1628 * If the specified key is not already associated with a value,
1629 * attempts to compute its value using the given mapping function
1630 * and enters it into this map unless {@code null}. The function
1631 * is <em>NOT</em> guaranteed to be applied once atomically only
1632 * if the value is not present.
1633 *
1634 * @param key key with which the specified value is to be associated
1635 * @param mappingFunction the function to compute a value
1636 * @return the current (existing or computed) value associated with
1637 * the specified key, or null if the computed value is null
1638 * @throws NullPointerException if the specified key is null
1639 * or the mappingFunction is null
1640 * @since 1.8
1641 */
1642 public V computeIfAbsent(K key,
1643 Function<? super K, ? extends V> mappingFunction) {
1644 if (key == null || mappingFunction == null)
1645 throw new NullPointerException();
1646 V v, p, r;
1647 if ((v = doGet(key)) == null &&
1648 (r = mappingFunction.apply(key)) != null)
1649 v = (p = doPut(key, r, true)) == null ? r : p;
1650 return v;
1651 }
1652
1653 /**
1654 * If the value for the specified key is present, attempts to
1655 * compute a new mapping given the key and its current mapped
1656 * value. The function is <em>NOT</em> guaranteed to be applied
1657 * once atomically.
1658 *
1659 * @param key key with which a value may be associated
1660 * @param remappingFunction the function to compute a value
1661 * @return the new value associated with the specified key, or null if none
1662 * @throws NullPointerException if the specified key is null
1663 * or the remappingFunction is null
1664 * @since 1.8
1665 */
1666 public V computeIfPresent(K key,
1667 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1668 if (key == null || remappingFunction == null)
1669 throw new NullPointerException();
1670 Node<K,V> n; Object v;
1671 while ((n = findNode(key)) != null) {
1672 if ((v = n.value) != null) {
1673 @SuppressWarnings("unchecked") V vv = (V) v;
1674 V r = remappingFunction.apply(key, vv);
1675 if (r != null) {
1676 if (n.casValue(vv, r))
1677 return r;
1678 }
1679 else if (doRemove(key, vv) != null)
1680 break;
1681 }
1682 }
1683 return null;
1684 }
1685
1686 /**
1687 * Attempts to compute a mapping for the specified key and its
1688 * current mapped value (or {@code null} if there is no current
1689 * mapping). The function is <em>NOT</em> guaranteed to be applied
1690 * once atomically.
1691 *
1692 * @param key key with which the specified value is to be associated
1693 * @param remappingFunction the function to compute a value
1694 * @return the new value associated with the specified key, or null if none
1695 * @throws NullPointerException if the specified key is null
1696 * or the remappingFunction is null
1697 * @since 1.8
1698 */
1699 public V compute(K key,
1700 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1701 if (key == null || remappingFunction == null)
1702 throw new NullPointerException();
1703 for (;;) {
1704 Node<K,V> n; Object v; V r;
1705 if ((n = findNode(key)) == null) {
1706 if ((r = remappingFunction.apply(key, null)) == null)
1707 break;
1708 if (doPut(key, r, true) == null)
1709 return r;
1710 }
1711 else if ((v = n.value) != null) {
1712 @SuppressWarnings("unchecked") V vv = (V) v;
1713 if ((r = remappingFunction.apply(key, vv)) != null) {
1714 if (n.casValue(vv, r))
1715 return r;
1716 }
1717 else if (doRemove(key, vv) != null)
1718 break;
1719 }
1720 }
1721 return null;
1722 }
1723
1724 /**
1725 * If the specified key is not already associated with a value,
1726 * associates it with the given value. Otherwise, replaces the
1727 * value with the results of the given remapping function, or
1728 * removes if {@code null}. The function is <em>NOT</em>
1729 * guaranteed to be applied once atomically.
1730 *
1731 * @param key key with which the specified value is to be associated
1732 * @param value the value to use if absent
1733 * @param remappingFunction the function to recompute a value if present
1734 * @return the new value associated with the specified key, or null if none
1735 * @throws NullPointerException if the specified key or value is null
1736 * or the remappingFunction is null
1737 * @since 1.8
1738 */
1739 public V merge(K key, V value,
1740 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1741 if (key == null || value == null || remappingFunction == null)
1742 throw new NullPointerException();
1743 for (;;) {
1744 Node<K,V> n; Object v; V r;
1745 if ((n = findNode(key)) == null) {
1746 if (doPut(key, value, true) == null)
1747 return value;
1748 }
1749 else if ((v = n.value) != null) {
1750 @SuppressWarnings("unchecked") V vv = (V) v;
1751 if ((r = remappingFunction.apply(vv, value)) != null) {
1752 if (n.casValue(vv, r))
1753 return r;
1754 }
1755 else if (doRemove(key, vv) != null)
1756 return null;
1757 }
1758 }
1759 }
1760
1761 /* ---------------- View methods -------------- */
1762
1763 /*
1764 * Note: Lazy initialization works for views because view classes
1765 * are stateless/immutable so it doesn't matter wrt correctness if
1766 * more than one is created (which will only rarely happen). Even
1767 * so, the following idiom conservatively ensures that the method
1768 * returns the one it created if it does so, not one created by
1769 * another racing thread.
1770 */
1771
1772 /**
1773 * Returns a {@link NavigableSet} view of the keys contained in this map.
1774 *
1775 * <p>The set's iterator returns the keys in ascending order.
1776 * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1777 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1778 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1779 * key order. The spliterator's comparator (see
1780 * {@link java.util.Spliterator#getComparator()}) is {@code null} if
1781 * the map's comparator (see {@link #comparator()}) is {@code null}.
1782 * Otherwise, the spliterator's comparator is the same as or imposes the
1783 * same total ordering as the map's comparator.
1784 *
1785 * <p>The set is backed by the map, so changes to the map are
1786 * reflected in the set, and vice-versa. The set supports element
1787 * removal, which removes the corresponding mapping from the map,
1788 * via the {@code Iterator.remove}, {@code Set.remove},
1789 * {@code removeAll}, {@code retainAll}, and {@code clear}
1790 * operations. It does not support the {@code add} or {@code addAll}
1791 * operations.
1792 *
1793 * <p>The view's iterators and spliterators are
1794 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1795 *
1796 * <p>This method is equivalent to method {@code navigableKeySet}.
1797 *
1798 * @return a navigable set view of the keys in this map
1799 */
1800 public NavigableSet<K> keySet() {
1801 KeySet<K,V> ks = keySet;
1802 return (ks != null) ? ks : (keySet = new KeySet<>(this));
1803 }
1804
1805 public NavigableSet<K> navigableKeySet() {
1806 KeySet<K,V> ks = keySet;
1807 return (ks != null) ? ks : (keySet = new KeySet<>(this));
1808 }
1809
1810 /**
1811 * Returns a {@link Collection} view of the values contained in this map.
1812 * <p>The collection's iterator returns the values in ascending order
1813 * of the corresponding keys. The collections's spliterator additionally
1814 * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1815 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1816 * order of the corresponding keys.
1817 *
1818 * <p>The collection is backed by the map, so changes to the map are
1819 * reflected in the collection, and vice-versa. The collection
1820 * supports element removal, which removes the corresponding
1821 * mapping from the map, via the {@code Iterator.remove},
1822 * {@code Collection.remove}, {@code removeAll},
1823 * {@code retainAll} and {@code clear} operations. It does not
1824 * support the {@code add} or {@code addAll} operations.
1825 *
1826 * <p>The view's iterators and spliterators are
1827 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1828 */
1829 public Collection<V> values() {
1830 Values<K,V> vs = values;
1831 return (vs != null) ? vs : (values = new Values<>(this));
1832 }
1833
1834 /**
1835 * Returns a {@link Set} view of the mappings contained in this map.
1836 *
1837 * <p>The set's iterator returns the entries in ascending key order. The
1838 * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1839 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1840 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1841 * key order.
1842 *
1843 * <p>The set is backed by the map, so changes to the map are
1844 * reflected in the set, and vice-versa. The set supports element
1845 * removal, which removes the corresponding mapping from the map,
1846 * via the {@code Iterator.remove}, {@code Set.remove},
1847 * {@code removeAll}, {@code retainAll} and {@code clear}
1848 * operations. It does not support the {@code add} or
1849 * {@code addAll} operations.
1850 *
1851 * <p>The view's iterators and spliterators are
1852 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1853 *
1854 * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1855 * or {@code spliterator} do <em>not</em> support the {@code setValue}
1856 * operation.
1857 *
1858 * @return a set view of the mappings contained in this map,
1859 * sorted in ascending key order
1860 */
1861 public Set<Map.Entry<K,V>> entrySet() {
1862 EntrySet<K,V> es = entrySet;
1863 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1864 }
1865
1866 public ConcurrentNavigableMap<K,V> descendingMap() {
1867 ConcurrentNavigableMap<K,V> dm = descendingMap;
1868 return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1869 (this, null, false, null, false, true));
1870 }
1871
1872 public NavigableSet<K> descendingKeySet() {
1873 return descendingMap().navigableKeySet();
1874 }
1875
1876 /* ---------------- AbstractMap Overrides -------------- */
1877
1878 /**
1879 * Compares the specified object with this map for equality.
1880 * Returns {@code true} if the given object is also a map and the
1881 * two maps represent the same mappings. More formally, two maps
1882 * {@code m1} and {@code m2} represent the same mappings if
1883 * {@code m1.entrySet().equals(m2.entrySet())}. This
1884 * operation may return misleading results if either map is
1885 * concurrently modified during execution of this method.
1886 *
1887 * @param o object to be compared for equality with this map
1888 * @return {@code true} if the specified object is equal to this map
1889 */
1890 public boolean equals(Object o) {
1891 if (o == this)
1892 return true;
1893 if (!(o instanceof Map))
1894 return false;
1895 Map<?,?> m = (Map<?,?>) o;
1896 try {
1897 for (Map.Entry<K,V> e : this.entrySet())
1898 if (! e.getValue().equals(m.get(e.getKey())))
1899 return false;
1900 for (Map.Entry<?,?> e : m.entrySet()) {
1901 Object k = e.getKey();
1902 Object v = e.getValue();
1903 if (k == null || v == null || !v.equals(get(k)))
1904 return false;
1905 }
1906 return true;
1907 } catch (ClassCastException unused) {
1908 return false;
1909 } catch (NullPointerException unused) {
1910 return false;
1911 }
1912 }
1913
1914 /* ------ ConcurrentMap API methods ------ */
1915
1916 /**
1917 * {@inheritDoc}
1918 *
1919 * @return the previous value associated with the specified key,
1920 * or {@code null} if there was no mapping for the key
1921 * @throws ClassCastException if the specified key cannot be compared
1922 * with the keys currently in the map
1923 * @throws NullPointerException if the specified key or value is null
1924 */
1925 public V putIfAbsent(K key, V value) {
1926 if (value == null)
1927 throw new NullPointerException();
1928 return doPut(key, value, true);
1929 }
1930
1931 /**
1932 * {@inheritDoc}
1933 *
1934 * @throws ClassCastException if the specified key cannot be compared
1935 * with the keys currently in the map
1936 * @throws NullPointerException if the specified key is null
1937 */
1938 public boolean remove(Object key, Object value) {
1939 if (key == null)
1940 throw new NullPointerException();
1941 return value != null && doRemove(key, value) != null;
1942 }
1943
1944 /**
1945 * {@inheritDoc}
1946 *
1947 * @throws ClassCastException if the specified key cannot be compared
1948 * with the keys currently in the map
1949 * @throws NullPointerException if any of the arguments are null
1950 */
1951 public boolean replace(K key, V oldValue, V newValue) {
1952 if (key == null || oldValue == null || newValue == null)
1953 throw new NullPointerException();
1954 for (;;) {
1955 Node<K,V> n; Object v;
1956 if ((n = findNode(key)) == null)
1957 return false;
1958 if ((v = n.value) != null) {
1959 if (!oldValue.equals(v))
1960 return false;
1961 if (n.casValue(v, newValue))
1962 return true;
1963 }
1964 }
1965 }
1966
1967 /**
1968 * {@inheritDoc}
1969 *
1970 * @return the previous value associated with the specified key,
1971 * or {@code null} if there was no mapping for the key
1972 * @throws ClassCastException if the specified key cannot be compared
1973 * with the keys currently in the map
1974 * @throws NullPointerException if the specified key or value is null
1975 */
1976 public V replace(K key, V value) {
1977 if (key == null || value == null)
1978 throw new NullPointerException();
1979 for (;;) {
1980 Node<K,V> n; Object v;
1981 if ((n = findNode(key)) == null)
1982 return null;
1983 if ((v = n.value) != null && n.casValue(v, value)) {
1984 @SuppressWarnings("unchecked") V vv = (V)v;
1985 return vv;
1986 }
1987 }
1988 }
1989
1990 /* ------ SortedMap API methods ------ */
1991
1992 public Comparator<? super K> comparator() {
1993 return comparator;
1994 }
1995
1996 /**
1997 * @throws NoSuchElementException {@inheritDoc}
1998 */
1999 public K firstKey() {
2000 Node<K,V> n = findFirst();
2001 if (n == null)
2002 throw new NoSuchElementException();
2003 return n.key;
2004 }
2005
2006 /**
2007 * @throws NoSuchElementException {@inheritDoc}
2008 */
2009 public K lastKey() {
2010 Node<K,V> n = findLast();
2011 if (n == null)
2012 throw new NoSuchElementException();
2013 return n.key;
2014 }
2015
2016 /**
2017 * @throws ClassCastException {@inheritDoc}
2018 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2019 * @throws IllegalArgumentException {@inheritDoc}
2020 */
2021 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
2022 boolean fromInclusive,
2023 K toKey,
2024 boolean toInclusive) {
2025 if (fromKey == null || toKey == null)
2026 throw new NullPointerException();
2027 return new SubMap<K,V>
2028 (this, fromKey, fromInclusive, toKey, toInclusive, false);
2029 }
2030
2031 /**
2032 * @throws ClassCastException {@inheritDoc}
2033 * @throws NullPointerException if {@code toKey} is null
2034 * @throws IllegalArgumentException {@inheritDoc}
2035 */
2036 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2037 boolean inclusive) {
2038 if (toKey == null)
2039 throw new NullPointerException();
2040 return new SubMap<K,V>
2041 (this, null, false, toKey, inclusive, false);
2042 }
2043
2044 /**
2045 * @throws ClassCastException {@inheritDoc}
2046 * @throws NullPointerException if {@code fromKey} is null
2047 * @throws IllegalArgumentException {@inheritDoc}
2048 */
2049 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2050 boolean inclusive) {
2051 if (fromKey == null)
2052 throw new NullPointerException();
2053 return new SubMap<K,V>
2054 (this, fromKey, inclusive, null, false, false);
2055 }
2056
2057 /**
2058 * @throws ClassCastException {@inheritDoc}
2059 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2060 * @throws IllegalArgumentException {@inheritDoc}
2061 */
2062 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2063 return subMap(fromKey, true, toKey, false);
2064 }
2065
2066 /**
2067 * @throws ClassCastException {@inheritDoc}
2068 * @throws NullPointerException if {@code toKey} is null
2069 * @throws IllegalArgumentException {@inheritDoc}
2070 */
2071 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2072 return headMap(toKey, false);
2073 }
2074
2075 /**
2076 * @throws ClassCastException {@inheritDoc}
2077 * @throws NullPointerException if {@code fromKey} is null
2078 * @throws IllegalArgumentException {@inheritDoc}
2079 */
2080 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2081 return tailMap(fromKey, true);
2082 }
2083
2084 /* ---------------- Relational operations -------------- */
2085
2086 /**
2087 * Returns a key-value mapping associated with the greatest key
2088 * strictly less than the given key, or {@code null} if there is
2089 * no such key. The returned entry does <em>not</em> support the
2090 * {@code Entry.setValue} method.
2091 *
2092 * @throws ClassCastException {@inheritDoc}
2093 * @throws NullPointerException if the specified key is null
2094 */
2095 public Map.Entry<K,V> lowerEntry(K key) {
2096 return getNear(key, LT);
2097 }
2098
2099 /**
2100 * @throws ClassCastException {@inheritDoc}
2101 * @throws NullPointerException if the specified key is null
2102 */
2103 public K lowerKey(K key) {
2104 Node<K,V> n = findNear(key, LT, comparator);
2105 return (n == null) ? null : n.key;
2106 }
2107
2108 /**
2109 * Returns a key-value mapping associated with the greatest key
2110 * less than or equal to the given key, or {@code null} if there
2111 * is no such key. The returned entry does <em>not</em> support
2112 * the {@code Entry.setValue} method.
2113 *
2114 * @param key the key
2115 * @throws ClassCastException {@inheritDoc}
2116 * @throws NullPointerException if the specified key is null
2117 */
2118 public Map.Entry<K,V> floorEntry(K key) {
2119 return getNear(key, LT|EQ);
2120 }
2121
2122 /**
2123 * @param key the key
2124 * @throws ClassCastException {@inheritDoc}
2125 * @throws NullPointerException if the specified key is null
2126 */
2127 public K floorKey(K key) {
2128 Node<K,V> n = findNear(key, LT|EQ, comparator);
2129 return (n == null) ? null : n.key;
2130 }
2131
2132 /**
2133 * Returns a key-value mapping associated with the least key
2134 * greater than or equal to the given key, or {@code null} if
2135 * there is no such entry. The returned entry does <em>not</em>
2136 * support the {@code Entry.setValue} method.
2137 *
2138 * @throws ClassCastException {@inheritDoc}
2139 * @throws NullPointerException if the specified key is null
2140 */
2141 public Map.Entry<K,V> ceilingEntry(K key) {
2142 return getNear(key, GT|EQ);
2143 }
2144
2145 /**
2146 * @throws ClassCastException {@inheritDoc}
2147 * @throws NullPointerException if the specified key is null
2148 */
2149 public K ceilingKey(K key) {
2150 Node<K,V> n = findNear(key, GT|EQ, comparator);
2151 return (n == null) ? null : n.key;
2152 }
2153
2154 /**
2155 * Returns a key-value mapping associated with the least key
2156 * strictly greater than the given key, or {@code null} if there
2157 * is no such key. The returned entry does <em>not</em> support
2158 * the {@code Entry.setValue} method.
2159 *
2160 * @param key the key
2161 * @throws ClassCastException {@inheritDoc}
2162 * @throws NullPointerException if the specified key is null
2163 */
2164 public Map.Entry<K,V> higherEntry(K key) {
2165 return getNear(key, GT);
2166 }
2167
2168 /**
2169 * @param key the key
2170 * @throws ClassCastException {@inheritDoc}
2171 * @throws NullPointerException if the specified key is null
2172 */
2173 public K higherKey(K key) {
2174 Node<K,V> n = findNear(key, GT, comparator);
2175 return (n == null) ? null : n.key;
2176 }
2177
2178 /**
2179 * Returns a key-value mapping associated with the least
2180 * key in this map, or {@code null} if the map is empty.
2181 * The returned entry does <em>not</em> support
2182 * the {@code Entry.setValue} method.
2183 */
2184 public Map.Entry<K,V> firstEntry() {
2185 for (;;) {
2186 Node<K,V> n = findFirst();
2187 if (n == null)
2188 return null;
2189 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2190 if (e != null)
2191 return e;
2192 }
2193 }
2194
2195 /**
2196 * Returns a key-value mapping associated with the greatest
2197 * key in this map, or {@code null} if the map is empty.
2198 * The returned entry does <em>not</em> support
2199 * the {@code Entry.setValue} method.
2200 */
2201 public Map.Entry<K,V> lastEntry() {
2202 for (;;) {
2203 Node<K,V> n = findLast();
2204 if (n == null)
2205 return null;
2206 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2207 if (e != null)
2208 return e;
2209 }
2210 }
2211
2212 /**
2213 * Removes and returns a key-value mapping associated with
2214 * the least key in this map, or {@code null} if the map is empty.
2215 * The returned entry does <em>not</em> support
2216 * the {@code Entry.setValue} method.
2217 */
2218 public Map.Entry<K,V> pollFirstEntry() {
2219 return doRemoveFirstEntry();
2220 }
2221
2222 /**
2223 * Removes and returns a key-value mapping associated with
2224 * the greatest key in this map, or {@code null} if the map is empty.
2225 * The returned entry does <em>not</em> support
2226 * the {@code Entry.setValue} method.
2227 */
2228 public Map.Entry<K,V> pollLastEntry() {
2229 return doRemoveLastEntry();
2230 }
2231
2232
2233 /* ---------------- Iterators -------------- */
2234
2235 /**
2236 * Base of iterator classes:
2237 */
2238 abstract class Iter<T> implements Iterator<T> {
2239 /** the last node returned by next() */
2240 Node<K,V> lastReturned;
2241 /** the next node to return from next(); */
2242 Node<K,V> next;
2243 /** Cache of next value field to maintain weak consistency */
2244 V nextValue;
2245
2246 /** Initializes ascending iterator for entire range. */
2247 Iter() {
2248 while ((next = findFirst()) != null) {
2249 Object x = next.value;
2250 if (x != null && x != next) {
2251 @SuppressWarnings("unchecked") V vv = (V)x;
2252 nextValue = vv;
2253 break;
2254 }
2255 }
2256 }
2257
2258 public final boolean hasNext() {
2259 return next != null;
2260 }
2261
2262 /** Advances next to higher entry. */
2263 final void advance() {
2264 if (next == null)
2265 throw new NoSuchElementException();
2266 lastReturned = next;
2267 while ((next = next.next) != null) {
2268 Object x = next.value;
2269 if (x != null && x != next) {
2270 @SuppressWarnings("unchecked") V vv = (V)x;
2271 nextValue = vv;
2272 break;
2273 }
2274 }
2275 }
2276
2277 public void remove() {
2278 Node<K,V> l = lastReturned;
2279 if (l == null)
2280 throw new IllegalStateException();
2281 // It would not be worth all of the overhead to directly
2282 // unlink from here. Using remove is fast enough.
2283 ConcurrentSkipListMap.this.remove(l.key);
2284 lastReturned = null;
2285 }
2286
2287 }
2288
2289 final class ValueIterator extends Iter<V> {
2290 public V next() {
2291 V v = nextValue;
2292 advance();
2293 return v;
2294 }
2295 }
2296
2297 final class KeyIterator extends Iter<K> {
2298 public K next() {
2299 Node<K,V> n = next;
2300 advance();
2301 return n.key;
2302 }
2303 }
2304
2305 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2306 public Map.Entry<K,V> next() {
2307 Node<K,V> n = next;
2308 V v = nextValue;
2309 advance();
2310 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2311 }
2312 }
2313
2314 // Factory methods for iterators needed by ConcurrentSkipListSet etc
2315
2316 Iterator<K> keyIterator() {
2317 return new KeyIterator();
2318 }
2319
2320 Iterator<V> valueIterator() {
2321 return new ValueIterator();
2322 }
2323
2324 Iterator<Map.Entry<K,V>> entryIterator() {
2325 return new EntryIterator();
2326 }
2327
2328 /* ---------------- View Classes -------------- */
2329
2330 /*
2331 * View classes are static, delegating to a ConcurrentNavigableMap
2332 * to allow use by SubMaps, which outweighs the ugliness of
2333 * needing type-tests for Iterator methods.
2334 */
2335
2336 static final <E> List<E> toList(Collection<E> c) {
2337 // Using size() here would be a pessimization.
2338 ArrayList<E> list = new ArrayList<E>();
2339 for (E e : c)
2340 list.add(e);
2341 return list;
2342 }
2343
2344 static final class KeySet<K,V>
2345 extends AbstractSet<K> implements NavigableSet<K> {
2346 final ConcurrentNavigableMap<K,V> m;
2347 KeySet(ConcurrentNavigableMap<K,V> map) { m = map; }
2348 public int size() { return m.size(); }
2349 public boolean isEmpty() { return m.isEmpty(); }
2350 public boolean contains(Object o) { return m.containsKey(o); }
2351 public boolean remove(Object o) { return m.remove(o) != null; }
2352 public void clear() { m.clear(); }
2353 public K lower(K e) { return m.lowerKey(e); }
2354 public K floor(K e) { return m.floorKey(e); }
2355 public K ceiling(K e) { return m.ceilingKey(e); }
2356 public K higher(K e) { return m.higherKey(e); }
2357 public Comparator<? super K> comparator() { return m.comparator(); }
2358 public K first() { return m.firstKey(); }
2359 public K last() { return m.lastKey(); }
2360 public K pollFirst() {
2361 Map.Entry<K,V> e = m.pollFirstEntry();
2362 return (e == null) ? null : e.getKey();
2363 }
2364 public K pollLast() {
2365 Map.Entry<K,V> e = m.pollLastEntry();
2366 return (e == null) ? null : e.getKey();
2367 }
2368 public Iterator<K> iterator() {
2369 if (m instanceof ConcurrentSkipListMap)
2370 return ((ConcurrentSkipListMap<K,V>)m).keyIterator();
2371 else
2372 return ((ConcurrentSkipListMap.SubMap<K,V>)m).keyIterator();
2373 }
2374 public boolean equals(Object o) {
2375 if (o == this)
2376 return true;
2377 if (!(o instanceof Set))
2378 return false;
2379 Collection<?> c = (Collection<?>) o;
2380 try {
2381 return containsAll(c) && c.containsAll(this);
2382 } catch (ClassCastException unused) {
2383 return false;
2384 } catch (NullPointerException unused) {
2385 return false;
2386 }
2387 }
2388 public Object[] toArray() { return toList(this).toArray(); }
2389 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2390 public Iterator<K> descendingIterator() {
2391 return descendingSet().iterator();
2392 }
2393 public NavigableSet<K> subSet(K fromElement,
2394 boolean fromInclusive,
2395 K toElement,
2396 boolean toInclusive) {
2397 return new KeySet<>(m.subMap(fromElement, fromInclusive,
2398 toElement, toInclusive));
2399 }
2400 public NavigableSet<K> headSet(K toElement, boolean inclusive) {
2401 return new KeySet<>(m.headMap(toElement, inclusive));
2402 }
2403 public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
2404 return new KeySet<>(m.tailMap(fromElement, inclusive));
2405 }
2406 public NavigableSet<K> subSet(K fromElement, K toElement) {
2407 return subSet(fromElement, true, toElement, false);
2408 }
2409 public NavigableSet<K> headSet(K toElement) {
2410 return headSet(toElement, false);
2411 }
2412 public NavigableSet<K> tailSet(K fromElement) {
2413 return tailSet(fromElement, true);
2414 }
2415 public NavigableSet<K> descendingSet() {
2416 return new KeySet<>(m.descendingMap());
2417 }
2418 @SuppressWarnings("unchecked")
2419 public Spliterator<K> spliterator() {
2420 if (m instanceof ConcurrentSkipListMap)
2421 return ((ConcurrentSkipListMap<K,V>)m).keySpliterator();
2422 else
2423 return (Spliterator<K>)((SubMap<K,V>)m).keyIterator();
2424 }
2425 }
2426
2427 static final class Values<K,V> extends AbstractCollection<V> {
2428 final ConcurrentNavigableMap<K,V> m;
2429 Values(ConcurrentNavigableMap<K,V> map) {
2430 m = map;
2431 }
2432 public Iterator<V> iterator() {
2433 if (m instanceof ConcurrentSkipListMap)
2434 return ((ConcurrentSkipListMap<K,V>)m).valueIterator();
2435 else
2436 return ((SubMap<K,V>)m).valueIterator();
2437 }
2438 public int size() { return m.size(); }
2439 public boolean isEmpty() { return m.isEmpty(); }
2440 public boolean contains(Object o) { return m.containsValue(o); }
2441 public void clear() { m.clear(); }
2442 public Object[] toArray() { return toList(this).toArray(); }
2443 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2444 @SuppressWarnings("unchecked")
2445 public Spliterator<V> spliterator() {
2446 if (m instanceof ConcurrentSkipListMap)
2447 return ((ConcurrentSkipListMap<K,V>)m).valueSpliterator();
2448 else
2449 return (Spliterator<V>)((SubMap<K,V>)m).valueIterator();
2450 }
2451
2452 public boolean removeIf(Predicate<? super V> filter) {
2453 if (filter == null) throw new NullPointerException();
2454 if (m instanceof ConcurrentSkipListMap)
2455 return ((ConcurrentSkipListMap<K,V>)m).removeValueIf(filter);
2456 // else use iterator
2457 Iterator<Map.Entry<K,V>> it = ((SubMap<K,V>)m).entryIterator();
2458 boolean removed = false;
2459 while (it.hasNext()) {
2460 Map.Entry<K,V> e = it.next();
2461 V v = e.getValue();
2462 if (filter.test(v) && m.remove(e.getKey(), v))
2463 removed = true;
2464 }
2465 return removed;
2466 }
2467 }
2468
2469 static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
2470 final ConcurrentNavigableMap<K,V> m;
2471 EntrySet(ConcurrentNavigableMap<K,V> map) {
2472 m = map;
2473 }
2474 public Iterator<Map.Entry<K,V>> iterator() {
2475 if (m instanceof ConcurrentSkipListMap)
2476 return ((ConcurrentSkipListMap<K,V>)m).entryIterator();
2477 else
2478 return ((SubMap<K,V>)m).entryIterator();
2479 }
2480
2481 public boolean contains(Object o) {
2482 if (!(o instanceof Map.Entry))
2483 return false;
2484 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2485 V v = m.get(e.getKey());
2486 return v != null && v.equals(e.getValue());
2487 }
2488 public boolean remove(Object o) {
2489 if (!(o instanceof Map.Entry))
2490 return false;
2491 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2492 return m.remove(e.getKey(),
2493 e.getValue());
2494 }
2495 public boolean isEmpty() {
2496 return m.isEmpty();
2497 }
2498 public int size() {
2499 return m.size();
2500 }
2501 public void clear() {
2502 m.clear();
2503 }
2504 public boolean equals(Object o) {
2505 if (o == this)
2506 return true;
2507 if (!(o instanceof Set))
2508 return false;
2509 Collection<?> c = (Collection<?>) o;
2510 try {
2511 return containsAll(c) && c.containsAll(this);
2512 } catch (ClassCastException unused) {
2513 return false;
2514 } catch (NullPointerException unused) {
2515 return false;
2516 }
2517 }
2518 public Object[] toArray() { return toList(this).toArray(); }
2519 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2520 @SuppressWarnings("unchecked")
2521 public Spliterator<Map.Entry<K,V>> spliterator() {
2522 if (m instanceof ConcurrentSkipListMap)
2523 return ((ConcurrentSkipListMap<K,V>)m).entrySpliterator();
2524 else
2525 return (Spliterator<Map.Entry<K,V>>)
2526 ((SubMap<K,V>)m).entryIterator();
2527 }
2528 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
2529 if (filter == null) throw new NullPointerException();
2530 if (m instanceof ConcurrentSkipListMap)
2531 return ((ConcurrentSkipListMap<K,V>)m).removeEntryIf(filter);
2532 // else use iterator
2533 Iterator<Map.Entry<K,V>> it = ((SubMap<K,V>)m).entryIterator();
2534 boolean removed = false;
2535 while (it.hasNext()) {
2536 Map.Entry<K,V> e = it.next();
2537 if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
2538 removed = true;
2539 }
2540 return removed;
2541 }
2542 }
2543
2544 /**
2545 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2546 * represent a subrange of mappings of their underlying
2547 * maps. Instances of this class support all methods of their
2548 * underlying maps, differing in that mappings outside their range are
2549 * ignored, and attempts to add mappings outside their ranges result
2550 * in {@link IllegalArgumentException}. Instances of this class are
2551 * constructed only using the {@code subMap}, {@code headMap}, and
2552 * {@code tailMap} methods of their underlying maps.
2553 *
2554 * @serial include
2555 */
2556 static final class SubMap<K,V> extends AbstractMap<K,V>
2557 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
2558 private static final long serialVersionUID = -7647078645895051609L;
2559
2560 /** Underlying map */
2561 private final ConcurrentSkipListMap<K,V> m;
2562 /** lower bound key, or null if from start */
2563 private final K lo;
2564 /** upper bound key, or null if to end */
2565 private final K hi;
2566 /** inclusion flag for lo */
2567 private final boolean loInclusive;
2568 /** inclusion flag for hi */
2569 private final boolean hiInclusive;
2570 /** direction */
2571 private final boolean isDescending;
2572
2573 // Lazily initialized view holders
2574 private transient KeySet<K,V> keySetView;
2575 private transient Set<Map.Entry<K,V>> entrySetView;
2576 private transient Collection<V> valuesView;
2577
2578 /**
2579 * Creates a new submap, initializing all fields.
2580 */
2581 SubMap(ConcurrentSkipListMap<K,V> map,
2582 K fromKey, boolean fromInclusive,
2583 K toKey, boolean toInclusive,
2584 boolean isDescending) {
2585 Comparator<? super K> cmp = map.comparator;
2586 if (fromKey != null && toKey != null &&
2587 cpr(cmp, fromKey, toKey) > 0)
2588 throw new IllegalArgumentException("inconsistent range");
2589 this.m = map;
2590 this.lo = fromKey;
2591 this.hi = toKey;
2592 this.loInclusive = fromInclusive;
2593 this.hiInclusive = toInclusive;
2594 this.isDescending = isDescending;
2595 }
2596
2597 /* ---------------- Utilities -------------- */
2598
2599 boolean tooLow(Object key, Comparator<? super K> cmp) {
2600 int c;
2601 return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2602 (c == 0 && !loInclusive)));
2603 }
2604
2605 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2606 int c;
2607 return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2608 (c == 0 && !hiInclusive)));
2609 }
2610
2611 boolean inBounds(Object key, Comparator<? super K> cmp) {
2612 return !tooLow(key, cmp) && !tooHigh(key, cmp);
2613 }
2614
2615 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2616 if (key == null)
2617 throw new NullPointerException();
2618 if (!inBounds(key, cmp))
2619 throw new IllegalArgumentException("key out of range");
2620 }
2621
2622 /**
2623 * Returns true if node key is less than upper bound of range.
2624 */
2625 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2626 Comparator<? super K> cmp) {
2627 if (n == null)
2628 return false;
2629 if (hi == null)
2630 return true;
2631 K k = n.key;
2632 if (k == null) // pass by markers and headers
2633 return true;
2634 int c = cpr(cmp, k, hi);
2635 if (c > 0 || (c == 0 && !hiInclusive))
2636 return false;
2637 return true;
2638 }
2639
2640 /**
2641 * Returns lowest node. This node might not be in range, so
2642 * most usages need to check bounds.
2643 */
2644 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2645 if (lo == null)
2646 return m.findFirst();
2647 else if (loInclusive)
2648 return m.findNear(lo, GT|EQ, cmp);
2649 else
2650 return m.findNear(lo, GT, cmp);
2651 }
2652
2653 /**
2654 * Returns highest node. This node might not be in range, so
2655 * most usages need to check bounds.
2656 */
2657 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2658 if (hi == null)
2659 return m.findLast();
2660 else if (hiInclusive)
2661 return m.findNear(hi, LT|EQ, cmp);
2662 else
2663 return m.findNear(hi, LT, cmp);
2664 }
2665
2666 /**
2667 * Returns lowest absolute key (ignoring directionality).
2668 */
2669 K lowestKey() {
2670 Comparator<? super K> cmp = m.comparator;
2671 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2672 if (isBeforeEnd(n, cmp))
2673 return n.key;
2674 else
2675 throw new NoSuchElementException();
2676 }
2677
2678 /**
2679 * Returns highest absolute key (ignoring directionality).
2680 */
2681 K highestKey() {
2682 Comparator<? super K> cmp = m.comparator;
2683 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2684 if (n != null) {
2685 K last = n.key;
2686 if (inBounds(last, cmp))
2687 return last;
2688 }
2689 throw new NoSuchElementException();
2690 }
2691
2692 Map.Entry<K,V> lowestEntry() {
2693 Comparator<? super K> cmp = m.comparator;
2694 for (;;) {
2695 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2696 if (!isBeforeEnd(n, cmp))
2697 return null;
2698 Map.Entry<K,V> e = n.createSnapshot();
2699 if (e != null)
2700 return e;
2701 }
2702 }
2703
2704 Map.Entry<K,V> highestEntry() {
2705 Comparator<? super K> cmp = m.comparator;
2706 for (;;) {
2707 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2708 if (n == null || !inBounds(n.key, cmp))
2709 return null;
2710 Map.Entry<K,V> e = n.createSnapshot();
2711 if (e != null)
2712 return e;
2713 }
2714 }
2715
2716 Map.Entry<K,V> removeLowest() {
2717 Comparator<? super K> cmp = m.comparator;
2718 for (;;) {
2719 Node<K,V> n = loNode(cmp);
2720 if (n == null)
2721 return null;
2722 K k = n.key;
2723 if (!inBounds(k, cmp))
2724 return null;
2725 V v = m.doRemove(k, null);
2726 if (v != null)
2727 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2728 }
2729 }
2730
2731 Map.Entry<K,V> removeHighest() {
2732 Comparator<? super K> cmp = m.comparator;
2733 for (;;) {
2734 Node<K,V> n = hiNode(cmp);
2735 if (n == null)
2736 return null;
2737 K k = n.key;
2738 if (!inBounds(k, cmp))
2739 return null;
2740 V v = m.doRemove(k, null);
2741 if (v != null)
2742 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2743 }
2744 }
2745
2746 /**
2747 * Submap version of ConcurrentSkipListMap.getNearEntry
2748 */
2749 Map.Entry<K,V> getNearEntry(K key, int rel) {
2750 Comparator<? super K> cmp = m.comparator;
2751 if (isDescending) { // adjust relation for direction
2752 if ((rel & LT) == 0)
2753 rel |= LT;
2754 else
2755 rel &= ~LT;
2756 }
2757 if (tooLow(key, cmp))
2758 return ((rel & LT) != 0) ? null : lowestEntry();
2759 if (tooHigh(key, cmp))
2760 return ((rel & LT) != 0) ? highestEntry() : null;
2761 for (;;) {
2762 Node<K,V> n = m.findNear(key, rel, cmp);
2763 if (n == null || !inBounds(n.key, cmp))
2764 return null;
2765 K k = n.key;
2766 V v = n.getValidValue();
2767 if (v != null)
2768 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2769 }
2770 }
2771
2772 // Almost the same as getNearEntry, except for keys
2773 K getNearKey(K key, int rel) {
2774 Comparator<? super K> cmp = m.comparator;
2775 if (isDescending) { // adjust relation for direction
2776 if ((rel & LT) == 0)
2777 rel |= LT;
2778 else
2779 rel &= ~LT;
2780 }
2781 if (tooLow(key, cmp)) {
2782 if ((rel & LT) == 0) {
2783 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2784 if (isBeforeEnd(n, cmp))
2785 return n.key;
2786 }
2787 return null;
2788 }
2789 if (tooHigh(key, cmp)) {
2790 if ((rel & LT) != 0) {
2791 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2792 if (n != null) {
2793 K last = n.key;
2794 if (inBounds(last, cmp))
2795 return last;
2796 }
2797 }
2798 return null;
2799 }
2800 for (;;) {
2801 Node<K,V> n = m.findNear(key, rel, cmp);
2802 if (n == null || !inBounds(n.key, cmp))
2803 return null;
2804 K k = n.key;
2805 V v = n.getValidValue();
2806 if (v != null)
2807 return k;
2808 }
2809 }
2810
2811 /* ---------------- Map API methods -------------- */
2812
2813 public boolean containsKey(Object key) {
2814 if (key == null) throw new NullPointerException();
2815 return inBounds(key, m.comparator) && m.containsKey(key);
2816 }
2817
2818 public V get(Object key) {
2819 if (key == null) throw new NullPointerException();
2820 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2821 }
2822
2823 public V put(K key, V value) {
2824 checkKeyBounds(key, m.comparator);
2825 return m.put(key, value);
2826 }
2827
2828 public V remove(Object key) {
2829 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2830 }
2831
2832 public int size() {
2833 Comparator<? super K> cmp = m.comparator;
2834 long count = 0;
2835 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2836 isBeforeEnd(n, cmp);
2837 n = n.next) {
2838 if (n.getValidValue() != null)
2839 ++count;
2840 }
2841 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2842 }
2843
2844 public boolean isEmpty() {
2845 Comparator<? super K> cmp = m.comparator;
2846 return !isBeforeEnd(loNode(cmp), cmp);
2847 }
2848
2849 public boolean containsValue(Object value) {
2850 if (value == null)
2851 throw new NullPointerException();
2852 Comparator<? super K> cmp = m.comparator;
2853 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2854 isBeforeEnd(n, cmp);
2855 n = n.next) {
2856 V v = n.getValidValue();
2857 if (v != null && value.equals(v))
2858 return true;
2859 }
2860 return false;
2861 }
2862
2863 public void clear() {
2864 Comparator<? super K> cmp = m.comparator;
2865 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2866 isBeforeEnd(n, cmp);
2867 n = n.next) {
2868 if (n.getValidValue() != null)
2869 m.remove(n.key);
2870 }
2871 }
2872
2873 /* ---------------- ConcurrentMap API methods -------------- */
2874
2875 public V putIfAbsent(K key, V value) {
2876 checkKeyBounds(key, m.comparator);
2877 return m.putIfAbsent(key, value);
2878 }
2879
2880 public boolean remove(Object key, Object value) {
2881 return inBounds(key, m.comparator) && m.remove(key, value);
2882 }
2883
2884 public boolean replace(K key, V oldValue, V newValue) {
2885 checkKeyBounds(key, m.comparator);
2886 return m.replace(key, oldValue, newValue);
2887 }
2888
2889 public V replace(K key, V value) {
2890 checkKeyBounds(key, m.comparator);
2891 return m.replace(key, value);
2892 }
2893
2894 /* ---------------- SortedMap API methods -------------- */
2895
2896 public Comparator<? super K> comparator() {
2897 Comparator<? super K> cmp = m.comparator();
2898 if (isDescending)
2899 return Collections.reverseOrder(cmp);
2900 else
2901 return cmp;
2902 }
2903
2904 /**
2905 * Utility to create submaps, where given bounds override
2906 * unbounded(null) ones and/or are checked against bounded ones.
2907 */
2908 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2909 K toKey, boolean toInclusive) {
2910 Comparator<? super K> cmp = m.comparator;
2911 if (isDescending) { // flip senses
2912 K tk = fromKey;
2913 fromKey = toKey;
2914 toKey = tk;
2915 boolean ti = fromInclusive;
2916 fromInclusive = toInclusive;
2917 toInclusive = ti;
2918 }
2919 if (lo != null) {
2920 if (fromKey == null) {
2921 fromKey = lo;
2922 fromInclusive = loInclusive;
2923 }
2924 else {
2925 int c = cpr(cmp, fromKey, lo);
2926 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2927 throw new IllegalArgumentException("key out of range");
2928 }
2929 }
2930 if (hi != null) {
2931 if (toKey == null) {
2932 toKey = hi;
2933 toInclusive = hiInclusive;
2934 }
2935 else {
2936 int c = cpr(cmp, toKey, hi);
2937 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2938 throw new IllegalArgumentException("key out of range");
2939 }
2940 }
2941 return new SubMap<K,V>(m, fromKey, fromInclusive,
2942 toKey, toInclusive, isDescending);
2943 }
2944
2945 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2946 K toKey, boolean toInclusive) {
2947 if (fromKey == null || toKey == null)
2948 throw new NullPointerException();
2949 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2950 }
2951
2952 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2953 if (toKey == null)
2954 throw new NullPointerException();
2955 return newSubMap(null, false, toKey, inclusive);
2956 }
2957
2958 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2959 if (fromKey == null)
2960 throw new NullPointerException();
2961 return newSubMap(fromKey, inclusive, null, false);
2962 }
2963
2964 public SubMap<K,V> subMap(K fromKey, K toKey) {
2965 return subMap(fromKey, true, toKey, false);
2966 }
2967
2968 public SubMap<K,V> headMap(K toKey) {
2969 return headMap(toKey, false);
2970 }
2971
2972 public SubMap<K,V> tailMap(K fromKey) {
2973 return tailMap(fromKey, true);
2974 }
2975
2976 public SubMap<K,V> descendingMap() {
2977 return new SubMap<K,V>(m, lo, loInclusive,
2978 hi, hiInclusive, !isDescending);
2979 }
2980
2981 /* ---------------- Relational methods -------------- */
2982
2983 public Map.Entry<K,V> ceilingEntry(K key) {
2984 return getNearEntry(key, GT|EQ);
2985 }
2986
2987 public K ceilingKey(K key) {
2988 return getNearKey(key, GT|EQ);
2989 }
2990
2991 public Map.Entry<K,V> lowerEntry(K key) {
2992 return getNearEntry(key, LT);
2993 }
2994
2995 public K lowerKey(K key) {
2996 return getNearKey(key, LT);
2997 }
2998
2999 public Map.Entry<K,V> floorEntry(K key) {
3000 return getNearEntry(key, LT|EQ);
3001 }
3002
3003 public K floorKey(K key) {
3004 return getNearKey(key, LT|EQ);
3005 }
3006
3007 public Map.Entry<K,V> higherEntry(K key) {
3008 return getNearEntry(key, GT);
3009 }
3010
3011 public K higherKey(K key) {
3012 return getNearKey(key, GT);
3013 }
3014
3015 public K firstKey() {
3016 return isDescending ? highestKey() : lowestKey();
3017 }
3018
3019 public K lastKey() {
3020 return isDescending ? lowestKey() : highestKey();
3021 }
3022
3023 public Map.Entry<K,V> firstEntry() {
3024 return isDescending ? highestEntry() : lowestEntry();
3025 }
3026
3027 public Map.Entry<K,V> lastEntry() {
3028 return isDescending ? lowestEntry() : highestEntry();
3029 }
3030
3031 public Map.Entry<K,V> pollFirstEntry() {
3032 return isDescending ? removeHighest() : removeLowest();
3033 }
3034
3035 public Map.Entry<K,V> pollLastEntry() {
3036 return isDescending ? removeLowest() : removeHighest();
3037 }
3038
3039 /* ---------------- Submap Views -------------- */
3040
3041 public NavigableSet<K> keySet() {
3042 KeySet<K,V> ks = keySetView;
3043 return (ks != null) ? ks : (keySetView = new KeySet<>(this));
3044 }
3045
3046 public NavigableSet<K> navigableKeySet() {
3047 KeySet<K,V> ks = keySetView;
3048 return (ks != null) ? ks : (keySetView = new KeySet<>(this));
3049 }
3050
3051 public Collection<V> values() {
3052 Collection<V> vs = valuesView;
3053 return (vs != null) ? vs : (valuesView = new Values<>(this));
3054 }
3055
3056 public Set<Map.Entry<K,V>> entrySet() {
3057 Set<Map.Entry<K,V>> es = entrySetView;
3058 return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
3059 }
3060
3061 public NavigableSet<K> descendingKeySet() {
3062 return descendingMap().navigableKeySet();
3063 }
3064
3065 Iterator<K> keyIterator() {
3066 return new SubMapKeyIterator();
3067 }
3068
3069 Iterator<V> valueIterator() {
3070 return new SubMapValueIterator();
3071 }
3072
3073 Iterator<Map.Entry<K,V>> entryIterator() {
3074 return new SubMapEntryIterator();
3075 }
3076
3077 /**
3078 * Variant of main Iter class to traverse through submaps.
3079 * Also serves as back-up Spliterator for views.
3080 */
3081 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
3082 /** the last node returned by next() */
3083 Node<K,V> lastReturned;
3084 /** the next node to return from next(); */
3085 Node<K,V> next;
3086 /** Cache of next value field to maintain weak consistency */
3087 V nextValue;
3088
3089 SubMapIter() {
3090 Comparator<? super K> cmp = m.comparator;
3091 for (;;) {
3092 next = isDescending ? hiNode(cmp) : loNode(cmp);
3093 if (next == null)
3094 break;
3095 Object x = next.value;
3096 if (x != null && x != next) {
3097 if (! inBounds(next.key, cmp))
3098 next = null;
3099 else {
3100 @SuppressWarnings("unchecked") V vv = (V)x;
3101 nextValue = vv;
3102 }
3103 break;
3104 }
3105 }
3106 }
3107
3108 public final boolean hasNext() {
3109 return next != null;
3110 }
3111
3112 final void advance() {
3113 if (next == null)
3114 throw new NoSuchElementException();
3115 lastReturned = next;
3116 if (isDescending)
3117 descend();
3118 else
3119 ascend();
3120 }
3121
3122 private void ascend() {
3123 Comparator<? super K> cmp = m.comparator;
3124 for (;;) {
3125 next = next.next;
3126 if (next == null)
3127 break;
3128 Object x = next.value;
3129 if (x != null && x != next) {
3130 if (tooHigh(next.key, cmp))
3131 next = null;
3132 else {
3133 @SuppressWarnings("unchecked") V vv = (V)x;
3134 nextValue = vv;
3135 }
3136 break;
3137 }
3138 }
3139 }
3140
3141 private void descend() {
3142 Comparator<? super K> cmp = m.comparator;
3143 for (;;) {
3144 next = m.findNear(lastReturned.key, LT, cmp);
3145 if (next == null)
3146 break;
3147 Object x = next.value;
3148 if (x != null && x != next) {
3149 if (tooLow(next.key, cmp))
3150 next = null;
3151 else {
3152 @SuppressWarnings("unchecked") V vv = (V)x;
3153 nextValue = vv;
3154 }
3155 break;
3156 }
3157 }
3158 }
3159
3160 public void remove() {
3161 Node<K,V> l = lastReturned;
3162 if (l == null)
3163 throw new IllegalStateException();
3164 m.remove(l.key);
3165 lastReturned = null;
3166 }
3167
3168 public Spliterator<T> trySplit() {
3169 return null;
3170 }
3171
3172 public boolean tryAdvance(Consumer<? super T> action) {
3173 if (hasNext()) {
3174 action.accept(next());
3175 return true;
3176 }
3177 return false;
3178 }
3179
3180 public void forEachRemaining(Consumer<? super T> action) {
3181 while (hasNext())
3182 action.accept(next());
3183 }
3184
3185 public long estimateSize() {
3186 return Long.MAX_VALUE;
3187 }
3188
3189 }
3190
3191 final class SubMapValueIterator extends SubMapIter<V> {
3192 public V next() {
3193 V v = nextValue;
3194 advance();
3195 return v;
3196 }
3197 public int characteristics() {
3198 return 0;
3199 }
3200 }
3201
3202 final class SubMapKeyIterator extends SubMapIter<K> {
3203 public K next() {
3204 Node<K,V> n = next;
3205 advance();
3206 return n.key;
3207 }
3208 public int characteristics() {
3209 return Spliterator.DISTINCT | Spliterator.ORDERED |
3210 Spliterator.SORTED;
3211 }
3212 public final Comparator<? super K> getComparator() {
3213 return SubMap.this.comparator();
3214 }
3215 }
3216
3217 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3218 public Map.Entry<K,V> next() {
3219 Node<K,V> n = next;
3220 V v = nextValue;
3221 advance();
3222 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3223 }
3224 public int characteristics() {
3225 return Spliterator.DISTINCT;
3226 }
3227 }
3228 }
3229
3230 // default Map method overrides
3231
3232 public void forEach(BiConsumer<? super K, ? super V> action) {
3233 if (action == null) throw new NullPointerException();
3234 V v;
3235 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3236 if ((v = n.getValidValue()) != null)
3237 action.accept(n.key, v);
3238 }
3239 }
3240
3241 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3242 if (function == null) throw new NullPointerException();
3243 V v;
3244 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3245 while ((v = n.getValidValue()) != null) {
3246 V r = function.apply(n.key, v);
3247 if (r == null) throw new NullPointerException();
3248 if (n.casValue(v, r))
3249 break;
3250 }
3251 }
3252 }
3253
3254 /**
3255 * Helper method for EntrySet.removeIf
3256 */
3257 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
3258 if (function == null) throw new NullPointerException();
3259 boolean removed = false;
3260 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3261 V v;
3262 if ((v = n.getValidValue()) != null) {
3263 K k = n.key;
3264 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
3265 if (function.test(e) && remove(k, v))
3266 removed = true;
3267 }
3268 }
3269 return removed;
3270 }
3271
3272 /**
3273 * Helper method for Values.removeIf
3274 */
3275 boolean removeValueIf(Predicate<? super V> function) {
3276 if (function == null) throw new NullPointerException();
3277 boolean removed = false;
3278 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3279 V v;
3280 if ((v = n.getValidValue()) != null) {
3281 K k = n.key;
3282 if (function.test(v) && remove(k, v))
3283 removed = true;
3284 }
3285 }
3286 return removed;
3287 }
3288
3289 /**
3290 * Base class providing common structure for Spliterators.
3291 * (Although not all that much common functionality; as usual for
3292 * view classes, details annoyingly vary in key, value, and entry
3293 * subclasses in ways that are not worth abstracting out for
3294 * internal classes.)
3295 *
3296 * The basic split strategy is to recursively descend from top
3297 * level, row by row, descending to next row when either split
3298 * off, or the end of row is encountered. Control of the number of
3299 * splits relies on some statistical estimation: The expected
3300 * remaining number of elements of a skip list when advancing
3301 * either across or down decreases by about 25%. To make this
3302 * observation useful, we need to know initial size, which we
3303 * don't. But we can just use Integer.MAX_VALUE so that we
3304 * don't prematurely zero out while splitting.
3305 */
3306 abstract static class CSLMSpliterator<K,V> {
3307 final Comparator<? super K> comparator;
3308 final K fence; // exclusive upper bound for keys, or null if to end
3309 Index<K,V> row; // the level to split out
3310 Node<K,V> current; // current traversal node; initialize at origin
3311 int est; // pseudo-size estimate
3312 CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3313 Node<K,V> origin, K fence, int est) {
3314 this.comparator = comparator; this.row = row;
3315 this.current = origin; this.fence = fence; this.est = est;
3316 }
3317
3318 public final long estimateSize() { return (long)est; }
3319 }
3320
3321 static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3322 implements Spliterator<K> {
3323 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3324 Node<K,V> origin, K fence, int est) {
3325 super(comparator, row, origin, fence, est);
3326 }
3327
3328 public Spliterator<K> trySplit() {
3329 Node<K,V> e; K ek;
3330 Comparator<? super K> cmp = comparator;
3331 K f = fence;
3332 if ((e = current) != null && (ek = e.key) != null) {
3333 for (Index<K,V> q = row; q != null; q = row = q.down) {
3334 Index<K,V> s; Node<K,V> b, n; K sk;
3335 if ((s = q.right) != null && (b = s.node) != null &&
3336 (n = b.next) != null && n.value != null &&
3337 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3338 (f == null || cpr(cmp, sk, f) < 0)) {
3339 current = n;
3340 Index<K,V> r = q.down;
3341 row = (s.right != null) ? s : s.down;
3342 est -= est >>> 2;
3343 return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3344 }
3345 }
3346 }
3347 return null;
3348 }
3349
3350 public void forEachRemaining(Consumer<? super K> action) {
3351 if (action == null) throw new NullPointerException();
3352 Comparator<? super K> cmp = comparator;
3353 K f = fence;
3354 Node<K,V> e = current;
3355 current = null;
3356 for (; e != null; e = e.next) {
3357 K k; Object v;
3358 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3359 break;
3360 if ((v = e.value) != null && v != e)
3361 action.accept(k);
3362 }
3363 }
3364
3365 public boolean tryAdvance(Consumer<? super K> action) {
3366 if (action == null) throw new NullPointerException();
3367 Comparator<? super K> cmp = comparator;
3368 K f = fence;
3369 Node<K,V> e = current;
3370 for (; e != null; e = e.next) {
3371 K k; Object v;
3372 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3373 e = null;
3374 break;
3375 }
3376 if ((v = e.value) != null && v != e) {
3377 current = e.next;
3378 action.accept(k);
3379 return true;
3380 }
3381 }
3382 current = e;
3383 return false;
3384 }
3385
3386 public int characteristics() {
3387 return Spliterator.DISTINCT | Spliterator.SORTED |
3388 Spliterator.ORDERED | Spliterator.CONCURRENT |
3389 Spliterator.NONNULL;
3390 }
3391
3392 public final Comparator<? super K> getComparator() {
3393 return comparator;
3394 }
3395 }
3396 // factory method for KeySpliterator
3397 final KeySpliterator<K,V> keySpliterator() {
3398 Comparator<? super K> cmp = comparator;
3399 for (;;) { // ensure h corresponds to origin p
3400 HeadIndex<K,V> h; Node<K,V> p;
3401 Node<K,V> b = (h = head).node;
3402 if ((p = b.next) == null || p.value != null)
3403 return new KeySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3404 0 : Integer.MAX_VALUE);
3405 p.helpDelete(b, p.next);
3406 }
3407 }
3408
3409 static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3410 implements Spliterator<V> {
3411 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3412 Node<K,V> origin, K fence, int est) {
3413 super(comparator, row, origin, fence, est);
3414 }
3415
3416 public Spliterator<V> trySplit() {
3417 Node<K,V> e; K ek;
3418 Comparator<? super K> cmp = comparator;
3419 K f = fence;
3420 if ((e = current) != null && (ek = e.key) != null) {
3421 for (Index<K,V> q = row; q != null; q = row = q.down) {
3422 Index<K,V> s; Node<K,V> b, n; K sk;
3423 if ((s = q.right) != null && (b = s.node) != null &&
3424 (n = b.next) != null && n.value != null &&
3425 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3426 (f == null || cpr(cmp, sk, f) < 0)) {
3427 current = n;
3428 Index<K,V> r = q.down;
3429 row = (s.right != null) ? s : s.down;
3430 est -= est >>> 2;
3431 return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3432 }
3433 }
3434 }
3435 return null;
3436 }
3437
3438 public void forEachRemaining(Consumer<? super V> action) {
3439 if (action == null) throw new NullPointerException();
3440 Comparator<? super K> cmp = comparator;
3441 K f = fence;
3442 Node<K,V> e = current;
3443 current = null;
3444 for (; e != null; e = e.next) {
3445 K k; Object v;
3446 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3447 break;
3448 if ((v = e.value) != null && v != e) {
3449 @SuppressWarnings("unchecked") V vv = (V)v;
3450 action.accept(vv);
3451 }
3452 }
3453 }
3454
3455 public boolean tryAdvance(Consumer<? super V> action) {
3456 if (action == null) throw new NullPointerException();
3457 Comparator<? super K> cmp = comparator;
3458 K f = fence;
3459 Node<K,V> e = current;
3460 for (; e != null; e = e.next) {
3461 K k; Object v;
3462 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3463 e = null;
3464 break;
3465 }
3466 if ((v = e.value) != null && v != e) {
3467 current = e.next;
3468 @SuppressWarnings("unchecked") V vv = (V)v;
3469 action.accept(vv);
3470 return true;
3471 }
3472 }
3473 current = e;
3474 return false;
3475 }
3476
3477 public int characteristics() {
3478 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3479 Spliterator.NONNULL;
3480 }
3481 }
3482
3483 // Almost the same as keySpliterator()
3484 final ValueSpliterator<K,V> valueSpliterator() {
3485 Comparator<? super K> cmp = comparator;
3486 for (;;) {
3487 HeadIndex<K,V> h; Node<K,V> p;
3488 Node<K,V> b = (h = head).node;
3489 if ((p = b.next) == null || p.value != null)
3490 return new ValueSpliterator<K,V>(cmp, h, p, null, (p == null) ?
3491 0 : Integer.MAX_VALUE);
3492 p.helpDelete(b, p.next);
3493 }
3494 }
3495
3496 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3497 implements Spliterator<Map.Entry<K,V>> {
3498 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3499 Node<K,V> origin, K fence, int est) {
3500 super(comparator, row, origin, fence, est);
3501 }
3502
3503 public Spliterator<Map.Entry<K,V>> trySplit() {
3504 Node<K,V> e; K ek;
3505 Comparator<? super K> cmp = comparator;
3506 K f = fence;
3507 if ((e = current) != null && (ek = e.key) != null) {
3508 for (Index<K,V> q = row; q != null; q = row = q.down) {
3509 Index<K,V> s; Node<K,V> b, n; K sk;
3510 if ((s = q.right) != null && (b = s.node) != null &&
3511 (n = b.next) != null && n.value != null &&
3512 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3513 (f == null || cpr(cmp, sk, f) < 0)) {
3514 current = n;
3515 Index<K,V> r = q.down;
3516 row = (s.right != null) ? s : s.down;
3517 est -= est >>> 2;
3518 return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3519 }
3520 }
3521 }
3522 return null;
3523 }
3524
3525 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3526 if (action == null) throw new NullPointerException();
3527 Comparator<? super K> cmp = comparator;
3528 K f = fence;
3529 Node<K,V> e = current;
3530 current = null;
3531 for (; e != null; e = e.next) {
3532 K k; Object v;
3533 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3534 break;
3535 if ((v = e.value) != null && v != e) {
3536 @SuppressWarnings("unchecked") V vv = (V)v;
3537 action.accept
3538 (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3539 }
3540 }
3541 }
3542
3543 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3544 if (action == null) throw new NullPointerException();
3545 Comparator<? super K> cmp = comparator;
3546 K f = fence;
3547 Node<K,V> e = current;
3548 for (; e != null; e = e.next) {
3549 K k; Object v;
3550 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3551 e = null;
3552 break;
3553 }
3554 if ((v = e.value) != null && v != e) {
3555 current = e.next;
3556 @SuppressWarnings("unchecked") V vv = (V)v;
3557 action.accept
3558 (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3559 return true;
3560 }
3561 }
3562 current = e;
3563 return false;
3564 }
3565
3566 public int characteristics() {
3567 return Spliterator.DISTINCT | Spliterator.SORTED |
3568 Spliterator.ORDERED | Spliterator.CONCURRENT |
3569 Spliterator.NONNULL;
3570 }
3571
3572 public final Comparator<Map.Entry<K,V>> getComparator() {
3573 // Adapt or create a key-based comparator
3574 if (comparator != null) {
3575 return Map.Entry.comparingByKey(comparator);
3576 }
3577 else {
3578 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3579 @SuppressWarnings("unchecked")
3580 Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3581 return k1.compareTo(e2.getKey());
3582 };
3583 }
3584 }
3585 }
3586
3587 // Almost the same as keySpliterator()
3588 final EntrySpliterator<K,V> entrySpliterator() {
3589 Comparator<? super K> cmp = comparator;
3590 for (;;) { // almost same as key version
3591 HeadIndex<K,V> h; Node<K,V> p;
3592 Node<K,V> b = (h = head).node;
3593 if ((p = b.next) == null || p.value != null)
3594 return new EntrySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3595 0 : Integer.MAX_VALUE);
3596 p.helpDelete(b, p.next);
3597 }
3598 }
3599
3600 // Unsafe mechanics
3601 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3602 private static final long HEAD;
3603 static {
3604 try {
3605 HEAD = U.objectFieldOffset
3606 (ConcurrentSkipListMap.class.getDeclaredField("head"));
3607 } catch (ReflectiveOperationException e) {
3608 throw new Error(e);
3609 }
3610 }
3611 }