ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.160
Committed: Thu Jun 2 13:16:27 2016 UTC (8 years ago) by dl
Branch: MAIN
Changes since 1.159: +23 -26 lines
Log Message:
VarHandles conversion; pass 1

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.io.Serializable;
12 import java.util.AbstractCollection;
13 import java.util.AbstractMap;
14 import java.util.AbstractSet;
15 import java.util.ArrayList;
16 import java.util.Collection;
17 import java.util.Collections;
18 import java.util.Comparator;
19 import java.util.Iterator;
20 import java.util.List;
21 import java.util.Map;
22 import java.util.NavigableMap;
23 import java.util.NavigableSet;
24 import java.util.NoSuchElementException;
25 import java.util.Set;
26 import java.util.SortedMap;
27 import java.util.Spliterator;
28 import java.util.function.BiConsumer;
29 import java.util.function.BiFunction;
30 import java.util.function.Consumer;
31 import java.util.function.Function;
32 import java.util.function.Predicate;
33
34 /**
35 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
36 * The map is sorted according to the {@linkplain Comparable natural
37 * ordering} of its keys, or by a {@link Comparator} provided at map
38 * creation time, depending on which constructor is used.
39 *
40 * <p>This class implements a concurrent variant of <a
41 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
42 * providing expected average <i>log(n)</i> time cost for the
43 * {@code containsKey}, {@code get}, {@code put} and
44 * {@code remove} operations and their variants. Insertion, removal,
45 * update, and access operations safely execute concurrently by
46 * multiple threads.
47 *
48 * <p>Iterators and spliterators are
49 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
50 *
51 * <p>Ascending key ordered views and their iterators are faster than
52 * descending ones.
53 *
54 * <p>All {@code Map.Entry} pairs returned by methods in this class
55 * and its views represent snapshots of mappings at the time they were
56 * produced. They do <em>not</em> support the {@code Entry.setValue}
57 * method. (Note however that it is possible to change mappings in the
58 * associated map using {@code put}, {@code putIfAbsent}, or
59 * {@code replace}, depending on exactly which effect you need.)
60 *
61 * <p>Beware that, unlike in most collections, the {@code size}
62 * method is <em>not</em> a constant-time operation. Because of the
63 * asynchronous nature of these maps, determining the current number
64 * of elements requires a traversal of the elements, and so may report
65 * inaccurate results if this collection is modified during traversal.
66 * Additionally, the bulk operations {@code putAll}, {@code equals},
67 * {@code toArray}, {@code containsValue}, and {@code clear} are
68 * <em>not</em> guaranteed to be performed atomically. For example, an
69 * iterator operating concurrently with a {@code putAll} operation
70 * might view only some of the added elements.
71 *
72 * <p>This class and its views and iterators implement all of the
73 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
74 * interfaces. Like most other concurrent collections, this class does
75 * <em>not</em> permit the use of {@code null} keys or values because some
76 * null return values cannot be reliably distinguished from the absence of
77 * elements.
78 *
79 * <p>This class is a member of the
80 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
81 * Java Collections Framework</a>.
82 *
83 * @author Doug Lea
84 * @param <K> the type of keys maintained by this map
85 * @param <V> the type of mapped values
86 * @since 1.6
87 */
88 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
89 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
90 /*
91 * This class implements a tree-like two-dimensionally linked skip
92 * list in which the index levels are represented in separate
93 * nodes from the base nodes holding data. There are two reasons
94 * for taking this approach instead of the usual array-based
95 * structure: 1) Array based implementations seem to encounter
96 * more complexity and overhead 2) We can use cheaper algorithms
97 * for the heavily-traversed index lists than can be used for the
98 * base lists. Here's a picture of some of the basics for a
99 * possible list with 2 levels of index:
100 *
101 * Head nodes Index nodes
102 * +-+ right +-+ +-+
103 * |2|---------------->| |--------------------->| |->null
104 * +-+ +-+ +-+
105 * | down | |
106 * v v v
107 * +-+ +-+ +-+ +-+ +-+ +-+
108 * |1|----------->| |->| |------>| |----------->| |------>| |->null
109 * +-+ +-+ +-+ +-+ +-+ +-+
110 * v | | | | |
111 * Nodes next v v v v v
112 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
113 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
114 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
115 *
116 * The base lists use a variant of the HM linked ordered set
117 * algorithm. See Tim Harris, "A pragmatic implementation of
118 * non-blocking linked lists"
119 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
120 * Michael "High Performance Dynamic Lock-Free Hash Tables and
121 * List-Based Sets"
122 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
123 * basic idea in these lists is to mark the "next" pointers of
124 * deleted nodes when deleting to avoid conflicts with concurrent
125 * insertions, and when traversing to keep track of triples
126 * (predecessor, node, successor) in order to detect when and how
127 * to unlink these deleted nodes.
128 *
129 * Rather than using mark-bits to mark list deletions (which can
130 * be slow and space-intensive using AtomicMarkedReference), nodes
131 * use direct CAS'able next pointers. On deletion, instead of
132 * marking a pointer, they splice in another node that can be
133 * thought of as standing for a marked pointer (indicating this by
134 * using otherwise impossible field values). Using plain nodes
135 * acts roughly like "boxed" implementations of marked pointers,
136 * but uses new nodes only when nodes are deleted, not for every
137 * link. This requires less space and supports faster
138 * traversal. Even if marked references were better supported by
139 * JVMs, traversal using this technique might still be faster
140 * because any search need only read ahead one more node than
141 * otherwise required (to check for trailing marker) rather than
142 * unmasking mark bits or whatever on each read.
143 *
144 * This approach maintains the essential property needed in the HM
145 * algorithm of changing the next-pointer of a deleted node so
146 * that any other CAS of it will fail, but implements the idea by
147 * changing the pointer to point to a different node, not by
148 * marking it. While it would be possible to further squeeze
149 * space by defining marker nodes not to have key/value fields, it
150 * isn't worth the extra type-testing overhead. The deletion
151 * markers are rarely encountered during traversal and are
152 * normally quickly garbage collected. (Note that this technique
153 * would not work well in systems without garbage collection.)
154 *
155 * In addition to using deletion markers, the lists also use
156 * nullness of value fields to indicate deletion, in a style
157 * similar to typical lazy-deletion schemes. If a node's value is
158 * null, then it is considered logically deleted and ignored even
159 * though it is still reachable. This maintains proper control of
160 * concurrent replace vs delete operations -- an attempted replace
161 * must fail if a delete beat it by nulling field, and a delete
162 * must return the last non-null value held in the field. (Note:
163 * Null, rather than some special marker, is used for value fields
164 * here because it just so happens to mesh with the Map API
165 * requirement that method get returns null if there is no
166 * mapping, which allows nodes to remain concurrently readable
167 * even when deleted. Using any other marker value here would be
168 * messy at best.)
169 *
170 * Here's the sequence of events for a deletion of node n with
171 * predecessor b and successor f, initially:
172 *
173 * +------+ +------+ +------+
174 * ... | b |------>| n |----->| f | ...
175 * +------+ +------+ +------+
176 *
177 * 1. CAS n's value field from non-null to null.
178 * From this point on, no public operations encountering
179 * the node consider this mapping to exist. However, other
180 * ongoing insertions and deletions might still modify
181 * n's next pointer.
182 *
183 * 2. CAS n's next pointer to point to a new marker node.
184 * From this point on, no other nodes can be appended to n.
185 * which avoids deletion errors in CAS-based linked lists.
186 *
187 * +------+ +------+ +------+ +------+
188 * ... | b |------>| n |----->|marker|------>| f | ...
189 * +------+ +------+ +------+ +------+
190 *
191 * 3. CAS b's next pointer over both n and its marker.
192 * From this point on, no new traversals will encounter n,
193 * and it can eventually be GCed.
194 * +------+ +------+
195 * ... | b |----------------------------------->| f | ...
196 * +------+ +------+
197 *
198 * A failure at step 1 leads to simple retry due to a lost race
199 * with another operation. Steps 2-3 can fail because some other
200 * thread noticed during a traversal a node with null value and
201 * helped out by marking and/or unlinking. This helping-out
202 * ensures that no thread can become stuck waiting for progress of
203 * the deleting thread. The use of marker nodes slightly
204 * complicates helping-out code because traversals must track
205 * consistent reads of up to four nodes (b, n, marker, f), not
206 * just (b, n, f), although the next field of a marker is
207 * immutable, and once a next field is CAS'ed to point to a
208 * marker, it never again changes, so this requires less care.
209 *
210 * Skip lists add indexing to this scheme, so that the base-level
211 * traversals start close to the locations being found, inserted
212 * or deleted -- usually base level traversals only traverse a few
213 * nodes. This doesn't change the basic algorithm except for the
214 * need to make sure base traversals start at predecessors (here,
215 * b) that are not (structurally) deleted, otherwise retrying
216 * after processing the deletion.
217 *
218 * Index levels are maintained as lists with volatile next fields,
219 * using CAS to link and unlink. Races are allowed in index-list
220 * operations that can (rarely) fail to link in a new index node
221 * or delete one. (We can't do this of course for data nodes.)
222 * However, even when this happens, the index lists remain sorted,
223 * so correctly serve as indices. This can impact performance,
224 * but since skip lists are probabilistic anyway, the net result
225 * is that under contention, the effective "p" value may be lower
226 * than its nominal value. And race windows are kept small enough
227 * that in practice these failures are rare, even under a lot of
228 * contention.
229 *
230 * The fact that retries (for both base and index lists) are
231 * relatively cheap due to indexing allows some minor
232 * simplifications of retry logic. Traversal restarts are
233 * performed after most "helping-out" CASes. This isn't always
234 * strictly necessary, but the implicit backoffs tend to help
235 * reduce other downstream failed CAS's enough to outweigh restart
236 * cost. This worsens the worst case, but seems to improve even
237 * highly contended cases.
238 *
239 * Unlike most skip-list implementations, index insertion and
240 * deletion here require a separate traversal pass occurring after
241 * the base-level action, to add or remove index nodes. This adds
242 * to single-threaded overhead, but improves contended
243 * multithreaded performance by narrowing interference windows,
244 * and allows deletion to ensure that all index nodes will be made
245 * unreachable upon return from a public remove operation, thus
246 * avoiding unwanted garbage retention. This is more important
247 * here than in some other data structures because we cannot null
248 * out node fields referencing user keys since they might still be
249 * read by other ongoing traversals.
250 *
251 * Indexing uses skip list parameters that maintain good search
252 * performance while using sparser-than-usual indices: The
253 * hardwired parameters k=1, p=0.5 (see method doPut) mean
254 * that about one-quarter of the nodes have indices. Of those that
255 * do, half have one level, a quarter have two, and so on (see
256 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
257 * requirement for a map is slightly less than for the current
258 * implementation of java.util.TreeMap.
259 *
260 * Changing the level of the index (i.e, the height of the
261 * tree-like structure) also uses CAS. The head index has initial
262 * level/height of one. Creation of an index with height greater
263 * than the current level adds a level to the head index by
264 * CAS'ing on a new top-most head. To maintain good performance
265 * after a lot of removals, deletion methods heuristically try to
266 * reduce the height if the topmost levels appear to be empty.
267 * This may encounter races in which it possible (but rare) to
268 * reduce and "lose" a level just as it is about to contain an
269 * index (that will then never be encountered). This does no
270 * structural harm, and in practice appears to be a better option
271 * than allowing unrestrained growth of levels.
272 *
273 * The code for all this is more verbose than you'd like. Most
274 * operations entail locating an element (or position to insert an
275 * element). The code to do this can't be nicely factored out
276 * because subsequent uses require a snapshot of predecessor
277 * and/or successor and/or value fields which can't be returned
278 * all at once, at least not without creating yet another object
279 * to hold them -- creating such little objects is an especially
280 * bad idea for basic internal search operations because it adds
281 * to GC overhead. (This is one of the few times I've wished Java
282 * had macros.) Instead, some traversal code is interleaved within
283 * insertion and removal operations. The control logic to handle
284 * all the retry conditions is sometimes twisty. Most search is
285 * broken into 2 parts. findPredecessor() searches index nodes
286 * only, returning a base-level predecessor of the key. findNode()
287 * finishes out the base-level search. Even with this factoring,
288 * there is a fair amount of near-duplication of code to handle
289 * variants.
290 *
291 * To produce random values without interference across threads,
292 * we use within-JDK thread local random support (via the
293 * "secondary seed", to avoid interference with user-level
294 * ThreadLocalRandom.)
295 *
296 * A previous version of this class wrapped non-comparable keys
297 * with their comparators to emulate Comparables when using
298 * comparators vs Comparables. However, JVMs now appear to better
299 * handle infusing comparator-vs-comparable choice into search
300 * loops. Static method cpr(comparator, x, y) is used for all
301 * comparisons, which works well as long as the comparator
302 * argument is set up outside of loops (thus sometimes passed as
303 * an argument to internal methods) to avoid field re-reads.
304 *
305 * For explanation of algorithms sharing at least a couple of
306 * features with this one, see Mikhail Fomitchev's thesis
307 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
308 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
309 * thesis (http://www.cs.chalmers.se/~phs/).
310 *
311 * Given the use of tree-like index nodes, you might wonder why
312 * this doesn't use some kind of search tree instead, which would
313 * support somewhat faster search operations. The reason is that
314 * there are no known efficient lock-free insertion and deletion
315 * algorithms for search trees. The immutability of the "down"
316 * links of index nodes (as opposed to mutable "left" fields in
317 * true trees) makes this tractable using only CAS operations.
318 *
319 * Notation guide for local variables
320 * Node: b, n, f for predecessor, node, successor
321 * Index: q, r, d for index node, right, down.
322 * t for another index node
323 * Head: h
324 * Levels: j
325 * Keys: k, key
326 * Values: v, value
327 * Comparisons: c
328 */
329
330 private static final long serialVersionUID = -8627078645895051609L;
331
332 /**
333 * Special value used to identify base-level header.
334 */
335 static final Object BASE_HEADER = new Object();
336
337 /**
338 * The topmost head index of the skiplist.
339 */
340 private transient volatile HeadIndex<K,V> head;
341
342 /**
343 * The comparator used to maintain order in this map, or null if
344 * using natural ordering. (Non-private to simplify access in
345 * nested classes.)
346 * @serial
347 */
348 final Comparator<? super K> comparator;
349
350 /** Lazily initialized key set */
351 private transient KeySet<K,V> keySet;
352 /** Lazily initialized values collection */
353 private transient Values<K,V> values;
354 /** Lazily initialized entry set */
355 private transient EntrySet<K,V> entrySet;
356 /** Lazily initialized descending key set */
357 private transient SubMap<K,V> descendingMap;
358
359 /**
360 * Initializes or resets state. Needed by constructors, clone,
361 * clear, readObject. and ConcurrentSkipListSet.clone.
362 * (Note that comparator must be separately initialized.)
363 */
364 private void initialize() {
365 keySet = null;
366 entrySet = null;
367 values = null;
368 descendingMap = null;
369 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
370 null, null, 1);
371 }
372
373 /**
374 * compareAndSet head node.
375 */
376 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
377 return HEAD.compareAndSet(this, cmp, val);
378 }
379
380 /* ---------------- Nodes -------------- */
381
382 /**
383 * Nodes hold keys and values, and are singly linked in sorted
384 * order, possibly with some intervening marker nodes. The list is
385 * headed by a dummy node accessible as head.node. The value field
386 * is declared only as Object because it takes special non-V
387 * values for marker and header nodes.
388 */
389 static final class Node<K,V> {
390 final K key;
391 volatile Object value;
392 volatile Node<K,V> next;
393
394 /**
395 * Creates a new regular node.
396 */
397 Node(K key, Object value, Node<K,V> next) {
398 this.key = key;
399 this.value = value;
400 this.next = next;
401 }
402
403 /**
404 * Creates a new marker node. A marker is distinguished by
405 * having its value field point to itself. Marker nodes also
406 * have null keys, a fact that is exploited in a few places,
407 * but this doesn't distinguish markers from the base-level
408 * header node (head.node), which also has a null key.
409 */
410 Node(Node<K,V> next) {
411 this.key = null;
412 this.value = this;
413 this.next = next;
414 }
415
416 /**
417 * compareAndSet value field.
418 */
419 boolean casValue(Object cmp, Object val) {
420 return VALUE.compareAndSet(this, cmp, val);
421 }
422
423 /**
424 * compareAndSet next field.
425 */
426 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
427 return NEXT.compareAndSet(this, cmp, val);
428 }
429
430 /**
431 * Returns true if this node is a marker. This method isn't
432 * actually called in any current code checking for markers
433 * because callers will have already read value field and need
434 * to use that read (not another done here) and so directly
435 * test if value points to node.
436 *
437 * @return true if this node is a marker node
438 */
439 boolean isMarker() {
440 return value == this;
441 }
442
443 /**
444 * Returns true if this node is the header of base-level list.
445 * @return true if this node is header node
446 */
447 boolean isBaseHeader() {
448 return value == BASE_HEADER;
449 }
450
451 /**
452 * Tries to append a deletion marker to this node.
453 * @param f the assumed current successor of this node
454 * @return true if successful
455 */
456 boolean appendMarker(Node<K,V> f) {
457 return casNext(f, new Node<K,V>(f));
458 }
459
460 /**
461 * Helps out a deletion by appending marker or unlinking from
462 * predecessor. This is called during traversals when value
463 * field seen to be null.
464 * @param b predecessor
465 * @param f successor
466 */
467 void helpDelete(Node<K,V> b, Node<K,V> f) {
468 /*
469 * Rechecking links and then doing only one of the
470 * help-out stages per call tends to minimize CAS
471 * interference among helping threads.
472 */
473 if (f == next && this == b.next) {
474 if (f == null || f.value != f) // not already marked
475 casNext(f, new Node<K,V>(f));
476 else
477 b.casNext(this, f.next);
478 }
479 }
480
481 /**
482 * Returns value if this node contains a valid key-value pair,
483 * else null.
484 * @return this node's value if it isn't a marker or header or
485 * is deleted, else null
486 */
487 V getValidValue() {
488 Object v = value;
489 if (v == this || v == BASE_HEADER)
490 return null;
491 @SuppressWarnings("unchecked") V vv = (V)v;
492 return vv;
493 }
494
495 /**
496 * Creates and returns a new SimpleImmutableEntry holding current
497 * mapping if this node holds a valid value, else null.
498 * @return new entry or null
499 */
500 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
501 Object v = value;
502 if (v == null || v == this || v == BASE_HEADER)
503 return null;
504 @SuppressWarnings("unchecked") V vv = (V)v;
505 return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
506 }
507
508 // VarHandle mechanics
509 private static final VarHandle VALUE;
510 private static final VarHandle NEXT;
511 static {
512 try {
513 MethodHandles.Lookup l = MethodHandles.lookup();
514 VALUE = l.findVarHandle(Node.class, "value", Object.class);
515 NEXT = l.findVarHandle(Node.class, "next", Node.class);
516 } catch (ReflectiveOperationException e) {
517 throw new Error(e);
518 }
519 }
520 }
521
522 /* ---------------- Indexing -------------- */
523
524 /**
525 * Index nodes represent the levels of the skip list. Note that
526 * even though both Nodes and Indexes have forward-pointing
527 * fields, they have different types and are handled in different
528 * ways, that can't nicely be captured by placing field in a
529 * shared abstract class.
530 */
531 static class Index<K,V> {
532 final Node<K,V> node;
533 final Index<K,V> down;
534 volatile Index<K,V> right;
535
536 /**
537 * Creates index node with given values.
538 */
539 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
540 this.node = node;
541 this.down = down;
542 this.right = right;
543 }
544
545 /**
546 * compareAndSet right field.
547 */
548 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
549 return RIGHT.compareAndSet(this, cmp, val);
550 }
551
552 /**
553 * Returns true if the node this indexes has been deleted.
554 * @return true if indexed node is known to be deleted
555 */
556 final boolean indexesDeletedNode() {
557 return node.value == null;
558 }
559
560 /**
561 * Tries to CAS newSucc as successor. To minimize races with
562 * unlink that may lose this index node, if the node being
563 * indexed is known to be deleted, it doesn't try to link in.
564 * @param succ the expected current successor
565 * @param newSucc the new successor
566 * @return true if successful
567 */
568 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
569 Node<K,V> n = node;
570 newSucc.right = succ;
571 return n.value != null && casRight(succ, newSucc);
572 }
573
574 /**
575 * Tries to CAS right field to skip over apparent successor
576 * succ. Fails (forcing a retraversal by caller) if this node
577 * is known to be deleted.
578 * @param succ the expected current successor
579 * @return true if successful
580 */
581 final boolean unlink(Index<K,V> succ) {
582 return node.value != null && casRight(succ, succ.right);
583 }
584
585 // VarHandle mechanics
586 private static final VarHandle RIGHT;
587 static {
588 try {
589 MethodHandles.Lookup l = MethodHandles.lookup();
590 RIGHT = l.findVarHandle(Index.class, "right", Index.class);
591 } catch (ReflectiveOperationException e) {
592 throw new Error(e);
593 }
594 }
595 }
596
597 /* ---------------- Head nodes -------------- */
598
599 /**
600 * Nodes heading each level keep track of their level.
601 */
602 static final class HeadIndex<K,V> extends Index<K,V> {
603 final int level;
604 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
605 super(node, down, right);
606 this.level = level;
607 }
608 }
609
610 /* ---------------- Comparison utilities -------------- */
611
612 /**
613 * Compares using comparator or natural ordering if null.
614 * Called only by methods that have performed required type checks.
615 */
616 @SuppressWarnings({"unchecked", "rawtypes"})
617 static final int cpr(Comparator c, Object x, Object y) {
618 return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
619 }
620
621 /* ---------------- Traversal -------------- */
622
623 /**
624 * Returns a base-level node with key strictly less than given key,
625 * or the base-level header if there is no such node. Also
626 * unlinks indexes to deleted nodes found along the way. Callers
627 * rely on this side-effect of clearing indices to deleted nodes.
628 * @param key the key
629 * @return a predecessor of key
630 */
631 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
632 if (key == null)
633 throw new NullPointerException(); // don't postpone errors
634 for (;;) {
635 for (Index<K,V> q = head, r = q.right, d;;) {
636 if (r != null) {
637 Node<K,V> n = r.node;
638 K k = n.key;
639 if (n.value == null) {
640 if (!q.unlink(r))
641 break; // restart
642 r = q.right; // reread r
643 continue;
644 }
645 if (cpr(cmp, key, k) > 0) {
646 q = r;
647 r = r.right;
648 continue;
649 }
650 }
651 if ((d = q.down) == null)
652 return q.node;
653 q = d;
654 r = d.right;
655 }
656 }
657 }
658
659 /**
660 * Returns node holding key or null if no such, clearing out any
661 * deleted nodes seen along the way. Repeatedly traverses at
662 * base-level looking for key starting at predecessor returned
663 * from findPredecessor, processing base-level deletions as
664 * encountered. Some callers rely on this side-effect of clearing
665 * deleted nodes.
666 *
667 * Restarts occur, at traversal step centered on node n, if:
668 *
669 * (1) After reading n's next field, n is no longer assumed
670 * predecessor b's current successor, which means that
671 * we don't have a consistent 3-node snapshot and so cannot
672 * unlink any subsequent deleted nodes encountered.
673 *
674 * (2) n's value field is null, indicating n is deleted, in
675 * which case we help out an ongoing structural deletion
676 * before retrying. Even though there are cases where such
677 * unlinking doesn't require restart, they aren't sorted out
678 * here because doing so would not usually outweigh cost of
679 * restarting.
680 *
681 * (3) n is a marker or n's predecessor's value field is null,
682 * indicating (among other possibilities) that
683 * findPredecessor returned a deleted node. We can't unlink
684 * the node because we don't know its predecessor, so rely
685 * on another call to findPredecessor to notice and return
686 * some earlier predecessor, which it will do. This check is
687 * only strictly needed at beginning of loop, (and the
688 * b.value check isn't strictly needed at all) but is done
689 * each iteration to help avoid contention with other
690 * threads by callers that will fail to be able to change
691 * links, and so will retry anyway.
692 *
693 * The traversal loops in doPut, doRemove, and findNear all
694 * include the same three kinds of checks. And specialized
695 * versions appear in findFirst, and findLast and their variants.
696 * They can't easily share code because each uses the reads of
697 * fields held in locals occurring in the orders they were
698 * performed.
699 *
700 * @param key the key
701 * @return node holding key, or null if no such
702 */
703 private Node<K,V> findNode(Object key) {
704 if (key == null)
705 throw new NullPointerException(); // don't postpone errors
706 Comparator<? super K> cmp = comparator;
707 outer: for (;;) {
708 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
709 Object v; int c;
710 if (n == null)
711 break outer;
712 Node<K,V> f = n.next;
713 if (n != b.next) // inconsistent read
714 break;
715 if ((v = n.value) == null) { // n is deleted
716 n.helpDelete(b, f);
717 break;
718 }
719 if (b.value == null || v == n) // b is deleted
720 break;
721 if ((c = cpr(cmp, key, n.key)) == 0)
722 return n;
723 if (c < 0)
724 break outer;
725 b = n;
726 n = f;
727 }
728 }
729 return null;
730 }
731
732 /**
733 * Gets value for key. Almost the same as findNode, but returns
734 * the found value (to avoid retries during re-reads)
735 *
736 * @param key the key
737 * @return the value, or null if absent
738 */
739 private V doGet(Object key) {
740 if (key == null)
741 throw new NullPointerException();
742 Comparator<? super K> cmp = comparator;
743 outer: for (;;) {
744 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
745 Object v; int c;
746 if (n == null)
747 break outer;
748 Node<K,V> f = n.next;
749 if (n != b.next) // inconsistent read
750 break;
751 if ((v = n.value) == null) { // n is deleted
752 n.helpDelete(b, f);
753 break;
754 }
755 if (b.value == null || v == n) // b is deleted
756 break;
757 if ((c = cpr(cmp, key, n.key)) == 0) {
758 @SuppressWarnings("unchecked") V vv = (V)v;
759 return vv;
760 }
761 if (c < 0)
762 break outer;
763 b = n;
764 n = f;
765 }
766 }
767 return null;
768 }
769
770 /* ---------------- Insertion -------------- */
771
772 /**
773 * Main insertion method. Adds element if not present, or
774 * replaces value if present and onlyIfAbsent is false.
775 * @param key the key
776 * @param value the value that must be associated with key
777 * @param onlyIfAbsent if should not insert if already present
778 * @return the old value, or null if newly inserted
779 */
780 private V doPut(K key, V value, boolean onlyIfAbsent) {
781 Node<K,V> z; // added node
782 if (key == null)
783 throw new NullPointerException();
784 Comparator<? super K> cmp = comparator;
785 outer: for (;;) {
786 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
787 if (n != null) {
788 Object v; int c;
789 Node<K,V> f = n.next;
790 if (n != b.next) // inconsistent read
791 break;
792 if ((v = n.value) == null) { // n is deleted
793 n.helpDelete(b, f);
794 break;
795 }
796 if (b.value == null || v == n) // b is deleted
797 break;
798 if ((c = cpr(cmp, key, n.key)) > 0) {
799 b = n;
800 n = f;
801 continue;
802 }
803 if (c == 0) {
804 if (onlyIfAbsent || n.casValue(v, value)) {
805 @SuppressWarnings("unchecked") V vv = (V)v;
806 return vv;
807 }
808 break; // restart if lost race to replace value
809 }
810 // else c < 0; fall through
811 }
812
813 z = new Node<K,V>(key, value, n);
814 if (!b.casNext(n, z))
815 break; // restart if lost race to append to b
816 break outer;
817 }
818 }
819
820 int rnd = ThreadLocalRandom.nextSecondarySeed();
821 if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
822 int level = 1, max;
823 while (((rnd >>>= 1) & 1) != 0)
824 ++level;
825 Index<K,V> idx = null;
826 HeadIndex<K,V> h = head;
827 if (level <= (max = h.level)) {
828 for (int i = 1; i <= level; ++i)
829 idx = new Index<K,V>(z, idx, null);
830 }
831 else { // try to grow by one level
832 level = max + 1; // hold in array and later pick the one to use
833 @SuppressWarnings("unchecked")Index<K,V>[] idxs =
834 (Index<K,V>[])new Index<?,?>[level+1];
835 for (int i = 1; i <= level; ++i)
836 idxs[i] = idx = new Index<K,V>(z, idx, null);
837 for (;;) {
838 h = head;
839 int oldLevel = h.level;
840 if (level <= oldLevel) // lost race to add level
841 break;
842 HeadIndex<K,V> newh = h;
843 Node<K,V> oldbase = h.node;
844 for (int j = oldLevel+1; j <= level; ++j)
845 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
846 if (casHead(h, newh)) {
847 h = newh;
848 idx = idxs[level = oldLevel];
849 break;
850 }
851 }
852 }
853 // find insertion points and splice in
854 splice: for (int insertionLevel = level;;) {
855 int j = h.level;
856 for (Index<K,V> q = h, r = q.right, t = idx;;) {
857 if (q == null || t == null)
858 break splice;
859 if (r != null) {
860 Node<K,V> n = r.node;
861 // compare before deletion check avoids needing recheck
862 int c = cpr(cmp, key, n.key);
863 if (n.value == null) {
864 if (!q.unlink(r))
865 break;
866 r = q.right;
867 continue;
868 }
869 if (c > 0) {
870 q = r;
871 r = r.right;
872 continue;
873 }
874 }
875
876 if (j == insertionLevel) {
877 if (!q.link(r, t))
878 break; // restart
879 if (t.node.value == null) {
880 findNode(key);
881 break splice;
882 }
883 if (--insertionLevel == 0)
884 break splice;
885 }
886
887 if (--j >= insertionLevel && j < level)
888 t = t.down;
889 q = q.down;
890 r = q.right;
891 }
892 }
893 }
894 return null;
895 }
896
897 /* ---------------- Deletion -------------- */
898
899 /**
900 * Main deletion method. Locates node, nulls value, appends a
901 * deletion marker, unlinks predecessor, removes associated index
902 * nodes, and possibly reduces head index level.
903 *
904 * Index nodes are cleared out simply by calling findPredecessor.
905 * which unlinks indexes to deleted nodes found along path to key,
906 * which will include the indexes to this node. This is done
907 * unconditionally. We can't check beforehand whether there are
908 * index nodes because it might be the case that some or all
909 * indexes hadn't been inserted yet for this node during initial
910 * search for it, and we'd like to ensure lack of garbage
911 * retention, so must call to be sure.
912 *
913 * @param key the key
914 * @param value if non-null, the value that must be
915 * associated with key
916 * @return the node, or null if not found
917 */
918 final V doRemove(Object key, Object value) {
919 if (key == null)
920 throw new NullPointerException();
921 Comparator<? super K> cmp = comparator;
922 outer: for (;;) {
923 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
924 Object v; int c;
925 if (n == null)
926 break outer;
927 Node<K,V> f = n.next;
928 if (n != b.next) // inconsistent read
929 break;
930 if ((v = n.value) == null) { // n is deleted
931 n.helpDelete(b, f);
932 break;
933 }
934 if (b.value == null || v == n) // b is deleted
935 break;
936 if ((c = cpr(cmp, key, n.key)) < 0)
937 break outer;
938 if (c > 0) {
939 b = n;
940 n = f;
941 continue;
942 }
943 if (value != null && !value.equals(v))
944 break outer;
945 if (!n.casValue(v, null))
946 break;
947 if (!n.appendMarker(f) || !b.casNext(n, f))
948 findNode(key); // retry via findNode
949 else {
950 findPredecessor(key, cmp); // clean index
951 if (head.right == null)
952 tryReduceLevel();
953 }
954 @SuppressWarnings("unchecked") V vv = (V)v;
955 return vv;
956 }
957 }
958 return null;
959 }
960
961 /**
962 * Possibly reduce head level if it has no nodes. This method can
963 * (rarely) make mistakes, in which case levels can disappear even
964 * though they are about to contain index nodes. This impacts
965 * performance, not correctness. To minimize mistakes as well as
966 * to reduce hysteresis, the level is reduced by one only if the
967 * topmost three levels look empty. Also, if the removed level
968 * looks non-empty after CAS, we try to change it back quick
969 * before anyone notices our mistake! (This trick works pretty
970 * well because this method will practically never make mistakes
971 * unless current thread stalls immediately before first CAS, in
972 * which case it is very unlikely to stall again immediately
973 * afterwards, so will recover.)
974 *
975 * We put up with all this rather than just let levels grow
976 * because otherwise, even a small map that has undergone a large
977 * number of insertions and removals will have a lot of levels,
978 * slowing down access more than would an occasional unwanted
979 * reduction.
980 */
981 private void tryReduceLevel() {
982 HeadIndex<K,V> h = head;
983 HeadIndex<K,V> d;
984 HeadIndex<K,V> e;
985 if (h.level > 3 &&
986 (d = (HeadIndex<K,V>)h.down) != null &&
987 (e = (HeadIndex<K,V>)d.down) != null &&
988 e.right == null &&
989 d.right == null &&
990 h.right == null &&
991 casHead(h, d) && // try to set
992 h.right != null) // recheck
993 casHead(d, h); // try to backout
994 }
995
996 /* ---------------- Finding and removing first element -------------- */
997
998 /**
999 * Specialized variant of findNode to get first valid node.
1000 * @return first node or null if empty
1001 */
1002 final Node<K,V> findFirst() {
1003 for (Node<K,V> b, n;;) {
1004 if ((n = (b = head.node).next) == null)
1005 return null;
1006 if (n.value != null)
1007 return n;
1008 n.helpDelete(b, n.next);
1009 }
1010 }
1011
1012 /**
1013 * Removes first entry; returns its snapshot.
1014 * @return null if empty, else snapshot of first entry
1015 */
1016 private Map.Entry<K,V> doRemoveFirstEntry() {
1017 for (Node<K,V> b, n;;) {
1018 if ((n = (b = head.node).next) == null)
1019 return null;
1020 Node<K,V> f = n.next;
1021 if (n != b.next)
1022 continue;
1023 Object v = n.value;
1024 if (v == null) {
1025 n.helpDelete(b, f);
1026 continue;
1027 }
1028 if (!n.casValue(v, null))
1029 continue;
1030 if (!n.appendMarker(f) || !b.casNext(n, f))
1031 findFirst(); // retry
1032 clearIndexToFirst();
1033 @SuppressWarnings("unchecked") V vv = (V)v;
1034 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, vv);
1035 }
1036 }
1037
1038 /**
1039 * Clears out index nodes associated with deleted first entry.
1040 */
1041 private void clearIndexToFirst() {
1042 for (;;) {
1043 for (Index<K,V> q = head;;) {
1044 Index<K,V> r = q.right;
1045 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1046 break;
1047 if ((q = q.down) == null) {
1048 if (head.right == null)
1049 tryReduceLevel();
1050 return;
1051 }
1052 }
1053 }
1054 }
1055
1056 /**
1057 * Removes last entry; returns its snapshot.
1058 * Specialized variant of doRemove.
1059 * @return null if empty, else snapshot of last entry
1060 */
1061 private Map.Entry<K,V> doRemoveLastEntry() {
1062 for (;;) {
1063 Node<K,V> b = findPredecessorOfLast();
1064 Node<K,V> n = b.next;
1065 if (n == null) {
1066 if (b.isBaseHeader()) // empty
1067 return null;
1068 else
1069 continue; // all b's successors are deleted; retry
1070 }
1071 for (;;) {
1072 Node<K,V> f = n.next;
1073 if (n != b.next) // inconsistent read
1074 break;
1075 Object v = n.value;
1076 if (v == null) { // n is deleted
1077 n.helpDelete(b, f);
1078 break;
1079 }
1080 if (b.value == null || v == n) // b is deleted
1081 break;
1082 if (f != null) {
1083 b = n;
1084 n = f;
1085 continue;
1086 }
1087 if (!n.casValue(v, null))
1088 break;
1089 K key = n.key;
1090 if (!n.appendMarker(f) || !b.casNext(n, f))
1091 findNode(key); // retry via findNode
1092 else { // clean index
1093 findPredecessor(key, comparator);
1094 if (head.right == null)
1095 tryReduceLevel();
1096 }
1097 @SuppressWarnings("unchecked") V vv = (V)v;
1098 return new AbstractMap.SimpleImmutableEntry<K,V>(key, vv);
1099 }
1100 }
1101 }
1102
1103 /* ---------------- Finding and removing last element -------------- */
1104
1105 /**
1106 * Specialized version of find to get last valid node.
1107 * @return last node or null if empty
1108 */
1109 final Node<K,V> findLast() {
1110 /*
1111 * findPredecessor can't be used to traverse index level
1112 * because this doesn't use comparisons. So traversals of
1113 * both levels are folded together.
1114 */
1115 Index<K,V> q = head;
1116 for (;;) {
1117 Index<K,V> d, r;
1118 if ((r = q.right) != null) {
1119 if (r.indexesDeletedNode()) {
1120 q.unlink(r);
1121 q = head; // restart
1122 }
1123 else
1124 q = r;
1125 } else if ((d = q.down) != null) {
1126 q = d;
1127 } else {
1128 for (Node<K,V> b = q.node, n = b.next;;) {
1129 if (n == null)
1130 return b.isBaseHeader() ? null : b;
1131 Node<K,V> f = n.next; // inconsistent read
1132 if (n != b.next)
1133 break;
1134 Object v = n.value;
1135 if (v == null) { // n is deleted
1136 n.helpDelete(b, f);
1137 break;
1138 }
1139 if (b.value == null || v == n) // b is deleted
1140 break;
1141 b = n;
1142 n = f;
1143 }
1144 q = head; // restart
1145 }
1146 }
1147 }
1148
1149 /**
1150 * Specialized variant of findPredecessor to get predecessor of last
1151 * valid node. Needed when removing the last entry. It is possible
1152 * that all successors of returned node will have been deleted upon
1153 * return, in which case this method can be retried.
1154 * @return likely predecessor of last node
1155 */
1156 private Node<K,V> findPredecessorOfLast() {
1157 for (;;) {
1158 for (Index<K,V> q = head;;) {
1159 Index<K,V> d, r;
1160 if ((r = q.right) != null) {
1161 if (r.indexesDeletedNode()) {
1162 q.unlink(r);
1163 break; // must restart
1164 }
1165 // proceed as far across as possible without overshooting
1166 if (r.node.next != null) {
1167 q = r;
1168 continue;
1169 }
1170 }
1171 if ((d = q.down) != null)
1172 q = d;
1173 else
1174 return q.node;
1175 }
1176 }
1177 }
1178
1179 /* ---------------- Relational operations -------------- */
1180
1181 // Control values OR'ed as arguments to findNear
1182
1183 private static final int EQ = 1;
1184 private static final int LT = 2;
1185 private static final int GT = 0; // Actually checked as !LT
1186
1187 /**
1188 * Utility for ceiling, floor, lower, higher methods.
1189 * @param key the key
1190 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1191 * @return nearest node fitting relation, or null if no such
1192 */
1193 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1194 if (key == null)
1195 throw new NullPointerException();
1196 for (;;) {
1197 for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
1198 Object v;
1199 if (n == null)
1200 return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1201 Node<K,V> f = n.next;
1202 if (n != b.next) // inconsistent read
1203 break;
1204 if ((v = n.value) == null) { // n is deleted
1205 n.helpDelete(b, f);
1206 break;
1207 }
1208 if (b.value == null || v == n) // b is deleted
1209 break;
1210 int c = cpr(cmp, key, n.key);
1211 if ((c == 0 && (rel & EQ) != 0) ||
1212 (c < 0 && (rel & LT) == 0))
1213 return n;
1214 if ( c <= 0 && (rel & LT) != 0)
1215 return b.isBaseHeader() ? null : b;
1216 b = n;
1217 n = f;
1218 }
1219 }
1220 }
1221
1222 /**
1223 * Returns SimpleImmutableEntry for results of findNear.
1224 * @param key the key
1225 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1226 * @return Entry fitting relation, or null if no such
1227 */
1228 final AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1229 Comparator<? super K> cmp = comparator;
1230 for (;;) {
1231 Node<K,V> n = findNear(key, rel, cmp);
1232 if (n == null)
1233 return null;
1234 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1235 if (e != null)
1236 return e;
1237 }
1238 }
1239
1240 /* ---------------- Constructors -------------- */
1241
1242 /**
1243 * Constructs a new, empty map, sorted according to the
1244 * {@linkplain Comparable natural ordering} of the keys.
1245 */
1246 public ConcurrentSkipListMap() {
1247 this.comparator = null;
1248 initialize();
1249 }
1250
1251 /**
1252 * Constructs a new, empty map, sorted according to the specified
1253 * comparator.
1254 *
1255 * @param comparator the comparator that will be used to order this map.
1256 * If {@code null}, the {@linkplain Comparable natural
1257 * ordering} of the keys will be used.
1258 */
1259 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1260 this.comparator = comparator;
1261 initialize();
1262 }
1263
1264 /**
1265 * Constructs a new map containing the same mappings as the given map,
1266 * sorted according to the {@linkplain Comparable natural ordering} of
1267 * the keys.
1268 *
1269 * @param m the map whose mappings are to be placed in this map
1270 * @throws ClassCastException if the keys in {@code m} are not
1271 * {@link Comparable}, or are not mutually comparable
1272 * @throws NullPointerException if the specified map or any of its keys
1273 * or values are null
1274 */
1275 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1276 this.comparator = null;
1277 initialize();
1278 putAll(m);
1279 }
1280
1281 /**
1282 * Constructs a new map containing the same mappings and using the
1283 * same ordering as the specified sorted map.
1284 *
1285 * @param m the sorted map whose mappings are to be placed in this
1286 * map, and whose comparator is to be used to sort this map
1287 * @throws NullPointerException if the specified sorted map or any of
1288 * its keys or values are null
1289 */
1290 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1291 this.comparator = m.comparator();
1292 initialize();
1293 buildFromSorted(m);
1294 }
1295
1296 /**
1297 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1298 * instance. (The keys and values themselves are not cloned.)
1299 *
1300 * @return a shallow copy of this map
1301 */
1302 public ConcurrentSkipListMap<K,V> clone() {
1303 try {
1304 @SuppressWarnings("unchecked")
1305 ConcurrentSkipListMap<K,V> clone =
1306 (ConcurrentSkipListMap<K,V>) super.clone();
1307 clone.initialize();
1308 clone.buildFromSorted(this);
1309 return clone;
1310 } catch (CloneNotSupportedException e) {
1311 throw new InternalError();
1312 }
1313 }
1314
1315 /**
1316 * Streamlined bulk insertion to initialize from elements of
1317 * given sorted map. Call only from constructor or clone
1318 * method.
1319 */
1320 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1321 if (map == null)
1322 throw new NullPointerException();
1323
1324 HeadIndex<K,V> h = head;
1325 Node<K,V> basepred = h.node;
1326
1327 // Track the current rightmost node at each level. Uses an
1328 // ArrayList to avoid committing to initial or maximum level.
1329 ArrayList<Index<K,V>> preds = new ArrayList<>();
1330
1331 // initialize
1332 for (int i = 0; i <= h.level; ++i)
1333 preds.add(null);
1334 Index<K,V> q = h;
1335 for (int i = h.level; i > 0; --i) {
1336 preds.set(i, q);
1337 q = q.down;
1338 }
1339
1340 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1341 map.entrySet().iterator();
1342 while (it.hasNext()) {
1343 Map.Entry<? extends K, ? extends V> e = it.next();
1344 int rnd = ThreadLocalRandom.current().nextInt();
1345 int j = 0;
1346 if ((rnd & 0x80000001) == 0) {
1347 do {
1348 ++j;
1349 } while (((rnd >>>= 1) & 1) != 0);
1350 if (j > h.level) j = h.level + 1;
1351 }
1352 K k = e.getKey();
1353 V v = e.getValue();
1354 if (k == null || v == null)
1355 throw new NullPointerException();
1356 Node<K,V> z = new Node<K,V>(k, v, null);
1357 basepred.next = z;
1358 basepred = z;
1359 if (j > 0) {
1360 Index<K,V> idx = null;
1361 for (int i = 1; i <= j; ++i) {
1362 idx = new Index<K,V>(z, idx, null);
1363 if (i > h.level)
1364 h = new HeadIndex<K,V>(h.node, h, idx, i);
1365
1366 if (i < preds.size()) {
1367 preds.get(i).right = idx;
1368 preds.set(i, idx);
1369 } else
1370 preds.add(idx);
1371 }
1372 }
1373 }
1374 head = h;
1375 }
1376
1377 /* ---------------- Serialization -------------- */
1378
1379 /**
1380 * Saves this map to a stream (that is, serializes it).
1381 *
1382 * @param s the stream
1383 * @throws java.io.IOException if an I/O error occurs
1384 * @serialData The key (Object) and value (Object) for each
1385 * key-value mapping represented by the map, followed by
1386 * {@code null}. The key-value mappings are emitted in key-order
1387 * (as determined by the Comparator, or by the keys' natural
1388 * ordering if no Comparator).
1389 */
1390 private void writeObject(java.io.ObjectOutputStream s)
1391 throws java.io.IOException {
1392 // Write out the Comparator and any hidden stuff
1393 s.defaultWriteObject();
1394
1395 // Write out keys and values (alternating)
1396 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1397 V v = n.getValidValue();
1398 if (v != null) {
1399 s.writeObject(n.key);
1400 s.writeObject(v);
1401 }
1402 }
1403 s.writeObject(null);
1404 }
1405
1406 /**
1407 * Reconstitutes this map from a stream (that is, deserializes it).
1408 * @param s the stream
1409 * @throws ClassNotFoundException if the class of a serialized object
1410 * could not be found
1411 * @throws java.io.IOException if an I/O error occurs
1412 */
1413 @SuppressWarnings("unchecked")
1414 private void readObject(final java.io.ObjectInputStream s)
1415 throws java.io.IOException, ClassNotFoundException {
1416 // Read in the Comparator and any hidden stuff
1417 s.defaultReadObject();
1418 // Reset transients
1419 initialize();
1420
1421 /*
1422 * This is nearly identical to buildFromSorted, but is
1423 * distinct because readObject calls can't be nicely adapted
1424 * as the kind of iterator needed by buildFromSorted. (They
1425 * can be, but doing so requires type cheats and/or creation
1426 * of adapter classes.) It is simpler to just adapt the code.
1427 */
1428
1429 HeadIndex<K,V> h = head;
1430 Node<K,V> basepred = h.node;
1431 ArrayList<Index<K,V>> preds = new ArrayList<>();
1432 for (int i = 0; i <= h.level; ++i)
1433 preds.add(null);
1434 Index<K,V> q = h;
1435 for (int i = h.level; i > 0; --i) {
1436 preds.set(i, q);
1437 q = q.down;
1438 }
1439
1440 for (;;) {
1441 Object k = s.readObject();
1442 if (k == null)
1443 break;
1444 Object v = s.readObject();
1445 if (v == null)
1446 throw new NullPointerException();
1447 K key = (K) k;
1448 V val = (V) v;
1449 int rnd = ThreadLocalRandom.current().nextInt();
1450 int j = 0;
1451 if ((rnd & 0x80000001) == 0) {
1452 do {
1453 ++j;
1454 } while (((rnd >>>= 1) & 1) != 0);
1455 if (j > h.level) j = h.level + 1;
1456 }
1457 Node<K,V> z = new Node<K,V>(key, val, null);
1458 basepred.next = z;
1459 basepred = z;
1460 if (j > 0) {
1461 Index<K,V> idx = null;
1462 for (int i = 1; i <= j; ++i) {
1463 idx = new Index<K,V>(z, idx, null);
1464 if (i > h.level)
1465 h = new HeadIndex<K,V>(h.node, h, idx, i);
1466
1467 if (i < preds.size()) {
1468 preds.get(i).right = idx;
1469 preds.set(i, idx);
1470 } else
1471 preds.add(idx);
1472 }
1473 }
1474 }
1475 head = h;
1476 }
1477
1478 /* ------ Map API methods ------ */
1479
1480 /**
1481 * Returns {@code true} if this map contains a mapping for the specified
1482 * key.
1483 *
1484 * @param key key whose presence in this map is to be tested
1485 * @return {@code true} if this map contains a mapping for the specified key
1486 * @throws ClassCastException if the specified key cannot be compared
1487 * with the keys currently in the map
1488 * @throws NullPointerException if the specified key is null
1489 */
1490 public boolean containsKey(Object key) {
1491 return doGet(key) != null;
1492 }
1493
1494 /**
1495 * Returns the value to which the specified key is mapped,
1496 * or {@code null} if this map contains no mapping for the key.
1497 *
1498 * <p>More formally, if this map contains a mapping from a key
1499 * {@code k} to a value {@code v} such that {@code key} compares
1500 * equal to {@code k} according to the map's ordering, then this
1501 * method returns {@code v}; otherwise it returns {@code null}.
1502 * (There can be at most one such mapping.)
1503 *
1504 * @throws ClassCastException if the specified key cannot be compared
1505 * with the keys currently in the map
1506 * @throws NullPointerException if the specified key is null
1507 */
1508 public V get(Object key) {
1509 return doGet(key);
1510 }
1511
1512 /**
1513 * Returns the value to which the specified key is mapped,
1514 * or the given defaultValue if this map contains no mapping for the key.
1515 *
1516 * @param key the key
1517 * @param defaultValue the value to return if this map contains
1518 * no mapping for the given key
1519 * @return the mapping for the key, if present; else the defaultValue
1520 * @throws NullPointerException if the specified key is null
1521 * @since 1.8
1522 */
1523 public V getOrDefault(Object key, V defaultValue) {
1524 V v;
1525 return (v = doGet(key)) == null ? defaultValue : v;
1526 }
1527
1528 /**
1529 * Associates the specified value with the specified key in this map.
1530 * If the map previously contained a mapping for the key, the old
1531 * value is replaced.
1532 *
1533 * @param key key with which the specified value is to be associated
1534 * @param value value to be associated with the specified key
1535 * @return the previous value associated with the specified key, or
1536 * {@code null} if there was no mapping for the key
1537 * @throws ClassCastException if the specified key cannot be compared
1538 * with the keys currently in the map
1539 * @throws NullPointerException if the specified key or value is null
1540 */
1541 public V put(K key, V value) {
1542 if (value == null)
1543 throw new NullPointerException();
1544 return doPut(key, value, false);
1545 }
1546
1547 /**
1548 * Removes the mapping for the specified key from this map if present.
1549 *
1550 * @param key key for which mapping should be removed
1551 * @return the previous value associated with the specified key, or
1552 * {@code null} if there was no mapping for the key
1553 * @throws ClassCastException if the specified key cannot be compared
1554 * with the keys currently in the map
1555 * @throws NullPointerException if the specified key is null
1556 */
1557 public V remove(Object key) {
1558 return doRemove(key, null);
1559 }
1560
1561 /**
1562 * Returns {@code true} if this map maps one or more keys to the
1563 * specified value. This operation requires time linear in the
1564 * map size. Additionally, it is possible for the map to change
1565 * during execution of this method, in which case the returned
1566 * result may be inaccurate.
1567 *
1568 * @param value value whose presence in this map is to be tested
1569 * @return {@code true} if a mapping to {@code value} exists;
1570 * {@code false} otherwise
1571 * @throws NullPointerException if the specified value is null
1572 */
1573 public boolean containsValue(Object value) {
1574 if (value == null)
1575 throw new NullPointerException();
1576 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1577 V v = n.getValidValue();
1578 if (v != null && value.equals(v))
1579 return true;
1580 }
1581 return false;
1582 }
1583
1584 /**
1585 * Returns the number of key-value mappings in this map. If this map
1586 * contains more than {@code Integer.MAX_VALUE} elements, it
1587 * returns {@code Integer.MAX_VALUE}.
1588 *
1589 * <p>Beware that, unlike in most collections, this method is
1590 * <em>NOT</em> a constant-time operation. Because of the
1591 * asynchronous nature of these maps, determining the current
1592 * number of elements requires traversing them all to count them.
1593 * Additionally, it is possible for the size to change during
1594 * execution of this method, in which case the returned result
1595 * will be inaccurate. Thus, this method is typically not very
1596 * useful in concurrent applications.
1597 *
1598 * @return the number of elements in this map
1599 */
1600 public int size() {
1601 long count = 0;
1602 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1603 if (n.getValidValue() != null)
1604 ++count;
1605 }
1606 return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1607 }
1608
1609 /**
1610 * Returns {@code true} if this map contains no key-value mappings.
1611 * @return {@code true} if this map contains no key-value mappings
1612 */
1613 public boolean isEmpty() {
1614 return findFirst() == null;
1615 }
1616
1617 /**
1618 * Removes all of the mappings from this map.
1619 */
1620 public void clear() {
1621 initialize();
1622 }
1623
1624 /**
1625 * If the specified key is not already associated with a value,
1626 * attempts to compute its value using the given mapping function
1627 * and enters it into this map unless {@code null}. The function
1628 * is <em>NOT</em> guaranteed to be applied once atomically only
1629 * if the value is not present.
1630 *
1631 * @param key key with which the specified value is to be associated
1632 * @param mappingFunction the function to compute a value
1633 * @return the current (existing or computed) value associated with
1634 * the specified key, or null if the computed value is null
1635 * @throws NullPointerException if the specified key is null
1636 * or the mappingFunction is null
1637 * @since 1.8
1638 */
1639 public V computeIfAbsent(K key,
1640 Function<? super K, ? extends V> mappingFunction) {
1641 if (key == null || mappingFunction == null)
1642 throw new NullPointerException();
1643 V v, p, r;
1644 if ((v = doGet(key)) == null &&
1645 (r = mappingFunction.apply(key)) != null)
1646 v = (p = doPut(key, r, true)) == null ? r : p;
1647 return v;
1648 }
1649
1650 /**
1651 * If the value for the specified key is present, attempts to
1652 * compute a new mapping given the key and its current mapped
1653 * value. The function is <em>NOT</em> guaranteed to be applied
1654 * once atomically.
1655 *
1656 * @param key key with which a value may be associated
1657 * @param remappingFunction the function to compute a value
1658 * @return the new value associated with the specified key, or null if none
1659 * @throws NullPointerException if the specified key is null
1660 * or the remappingFunction is null
1661 * @since 1.8
1662 */
1663 public V computeIfPresent(K key,
1664 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1665 if (key == null || remappingFunction == null)
1666 throw new NullPointerException();
1667 Node<K,V> n; Object v;
1668 while ((n = findNode(key)) != null) {
1669 if ((v = n.value) != null) {
1670 @SuppressWarnings("unchecked") V vv = (V) v;
1671 V r = remappingFunction.apply(key, vv);
1672 if (r != null) {
1673 if (n.casValue(vv, r))
1674 return r;
1675 }
1676 else if (doRemove(key, vv) != null)
1677 break;
1678 }
1679 }
1680 return null;
1681 }
1682
1683 /**
1684 * Attempts to compute a mapping for the specified key and its
1685 * current mapped value (or {@code null} if there is no current
1686 * mapping). The function is <em>NOT</em> guaranteed to be applied
1687 * once atomically.
1688 *
1689 * @param key key with which the specified value is to be associated
1690 * @param remappingFunction the function to compute a value
1691 * @return the new value associated with the specified key, or null if none
1692 * @throws NullPointerException if the specified key is null
1693 * or the remappingFunction is null
1694 * @since 1.8
1695 */
1696 public V compute(K key,
1697 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1698 if (key == null || remappingFunction == null)
1699 throw new NullPointerException();
1700 for (;;) {
1701 Node<K,V> n; Object v; V r;
1702 if ((n = findNode(key)) == null) {
1703 if ((r = remappingFunction.apply(key, null)) == null)
1704 break;
1705 if (doPut(key, r, true) == null)
1706 return r;
1707 }
1708 else if ((v = n.value) != null) {
1709 @SuppressWarnings("unchecked") V vv = (V) v;
1710 if ((r = remappingFunction.apply(key, vv)) != null) {
1711 if (n.casValue(vv, r))
1712 return r;
1713 }
1714 else if (doRemove(key, vv) != null)
1715 break;
1716 }
1717 }
1718 return null;
1719 }
1720
1721 /**
1722 * If the specified key is not already associated with a value,
1723 * associates it with the given value. Otherwise, replaces the
1724 * value with the results of the given remapping function, or
1725 * removes if {@code null}. The function is <em>NOT</em>
1726 * guaranteed to be applied once atomically.
1727 *
1728 * @param key key with which the specified value is to be associated
1729 * @param value the value to use if absent
1730 * @param remappingFunction the function to recompute a value if present
1731 * @return the new value associated with the specified key, or null if none
1732 * @throws NullPointerException if the specified key or value is null
1733 * or the remappingFunction is null
1734 * @since 1.8
1735 */
1736 public V merge(K key, V value,
1737 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1738 if (key == null || value == null || remappingFunction == null)
1739 throw new NullPointerException();
1740 for (;;) {
1741 Node<K,V> n; Object v; V r;
1742 if ((n = findNode(key)) == null) {
1743 if (doPut(key, value, true) == null)
1744 return value;
1745 }
1746 else if ((v = n.value) != null) {
1747 @SuppressWarnings("unchecked") V vv = (V) v;
1748 if ((r = remappingFunction.apply(vv, value)) != null) {
1749 if (n.casValue(vv, r))
1750 return r;
1751 }
1752 else if (doRemove(key, vv) != null)
1753 return null;
1754 }
1755 }
1756 }
1757
1758 /* ---------------- View methods -------------- */
1759
1760 /*
1761 * Note: Lazy initialization works for views because view classes
1762 * are stateless/immutable so it doesn't matter wrt correctness if
1763 * more than one is created (which will only rarely happen). Even
1764 * so, the following idiom conservatively ensures that the method
1765 * returns the one it created if it does so, not one created by
1766 * another racing thread.
1767 */
1768
1769 /**
1770 * Returns a {@link NavigableSet} view of the keys contained in this map.
1771 *
1772 * <p>The set's iterator returns the keys in ascending order.
1773 * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1774 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1775 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1776 * key order. The spliterator's comparator (see
1777 * {@link java.util.Spliterator#getComparator()}) is {@code null} if
1778 * the map's comparator (see {@link #comparator()}) is {@code null}.
1779 * Otherwise, the spliterator's comparator is the same as or imposes the
1780 * same total ordering as the map's comparator.
1781 *
1782 * <p>The set is backed by the map, so changes to the map are
1783 * reflected in the set, and vice-versa. The set supports element
1784 * removal, which removes the corresponding mapping from the map,
1785 * via the {@code Iterator.remove}, {@code Set.remove},
1786 * {@code removeAll}, {@code retainAll}, and {@code clear}
1787 * operations. It does not support the {@code add} or {@code addAll}
1788 * operations.
1789 *
1790 * <p>The view's iterators and spliterators are
1791 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1792 *
1793 * <p>This method is equivalent to method {@code navigableKeySet}.
1794 *
1795 * @return a navigable set view of the keys in this map
1796 */
1797 public NavigableSet<K> keySet() {
1798 KeySet<K,V> ks;
1799 if ((ks = keySet) != null) return ks;
1800 return keySet = new KeySet<>(this);
1801 }
1802
1803 public NavigableSet<K> navigableKeySet() {
1804 KeySet<K,V> ks;
1805 if ((ks = keySet) != null) return ks;
1806 return keySet = new KeySet<>(this);
1807 }
1808
1809 /**
1810 * Returns a {@link Collection} view of the values contained in this map.
1811 * <p>The collection's iterator returns the values in ascending order
1812 * of the corresponding keys. The collections's spliterator additionally
1813 * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1814 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1815 * order of the corresponding keys.
1816 *
1817 * <p>The collection is backed by the map, so changes to the map are
1818 * reflected in the collection, and vice-versa. The collection
1819 * supports element removal, which removes the corresponding
1820 * mapping from the map, via the {@code Iterator.remove},
1821 * {@code Collection.remove}, {@code removeAll},
1822 * {@code retainAll} and {@code clear} operations. It does not
1823 * support the {@code add} or {@code addAll} operations.
1824 *
1825 * <p>The view's iterators and spliterators are
1826 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1827 */
1828 public Collection<V> values() {
1829 Values<K,V> vs;
1830 if ((vs = values) != null) return vs;
1831 return values = new Values<>(this);
1832 }
1833
1834 /**
1835 * Returns a {@link Set} view of the mappings contained in this map.
1836 *
1837 * <p>The set's iterator returns the entries in ascending key order. The
1838 * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1839 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1840 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1841 * key order.
1842 *
1843 * <p>The set is backed by the map, so changes to the map are
1844 * reflected in the set, and vice-versa. The set supports element
1845 * removal, which removes the corresponding mapping from the map,
1846 * via the {@code Iterator.remove}, {@code Set.remove},
1847 * {@code removeAll}, {@code retainAll} and {@code clear}
1848 * operations. It does not support the {@code add} or
1849 * {@code addAll} operations.
1850 *
1851 * <p>The view's iterators and spliterators are
1852 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1853 *
1854 * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1855 * or {@code spliterator} do <em>not</em> support the {@code setValue}
1856 * operation.
1857 *
1858 * @return a set view of the mappings contained in this map,
1859 * sorted in ascending key order
1860 */
1861 public Set<Map.Entry<K,V>> entrySet() {
1862 EntrySet<K,V> es;
1863 if ((es = entrySet) != null) return es;
1864 return entrySet = new EntrySet<K,V>(this);
1865 }
1866
1867 public ConcurrentNavigableMap<K,V> descendingMap() {
1868 ConcurrentNavigableMap<K,V> dm;
1869 if ((dm = descendingMap) != null) return dm;
1870 return descendingMap =
1871 new SubMap<K,V>(this, null, false, null, false, true);
1872 }
1873
1874 public NavigableSet<K> descendingKeySet() {
1875 return descendingMap().navigableKeySet();
1876 }
1877
1878 /* ---------------- AbstractMap Overrides -------------- */
1879
1880 /**
1881 * Compares the specified object with this map for equality.
1882 * Returns {@code true} if the given object is also a map and the
1883 * two maps represent the same mappings. More formally, two maps
1884 * {@code m1} and {@code m2} represent the same mappings if
1885 * {@code m1.entrySet().equals(m2.entrySet())}. This
1886 * operation may return misleading results if either map is
1887 * concurrently modified during execution of this method.
1888 *
1889 * @param o object to be compared for equality with this map
1890 * @return {@code true} if the specified object is equal to this map
1891 */
1892 public boolean equals(Object o) {
1893 if (o == this)
1894 return true;
1895 if (!(o instanceof Map))
1896 return false;
1897 Map<?,?> m = (Map<?,?>) o;
1898 try {
1899 for (Map.Entry<K,V> e : this.entrySet())
1900 if (! e.getValue().equals(m.get(e.getKey())))
1901 return false;
1902 for (Map.Entry<?,?> e : m.entrySet()) {
1903 Object k = e.getKey();
1904 Object v = e.getValue();
1905 if (k == null || v == null || !v.equals(get(k)))
1906 return false;
1907 }
1908 return true;
1909 } catch (ClassCastException unused) {
1910 return false;
1911 } catch (NullPointerException unused) {
1912 return false;
1913 }
1914 }
1915
1916 /* ------ ConcurrentMap API methods ------ */
1917
1918 /**
1919 * {@inheritDoc}
1920 *
1921 * @return the previous value associated with the specified key,
1922 * or {@code null} if there was no mapping for the key
1923 * @throws ClassCastException if the specified key cannot be compared
1924 * with the keys currently in the map
1925 * @throws NullPointerException if the specified key or value is null
1926 */
1927 public V putIfAbsent(K key, V value) {
1928 if (value == null)
1929 throw new NullPointerException();
1930 return doPut(key, value, true);
1931 }
1932
1933 /**
1934 * {@inheritDoc}
1935 *
1936 * @throws ClassCastException if the specified key cannot be compared
1937 * with the keys currently in the map
1938 * @throws NullPointerException if the specified key is null
1939 */
1940 public boolean remove(Object key, Object value) {
1941 if (key == null)
1942 throw new NullPointerException();
1943 return value != null && doRemove(key, value) != null;
1944 }
1945
1946 /**
1947 * {@inheritDoc}
1948 *
1949 * @throws ClassCastException if the specified key cannot be compared
1950 * with the keys currently in the map
1951 * @throws NullPointerException if any of the arguments are null
1952 */
1953 public boolean replace(K key, V oldValue, V newValue) {
1954 if (key == null || oldValue == null || newValue == null)
1955 throw new NullPointerException();
1956 for (;;) {
1957 Node<K,V> n; Object v;
1958 if ((n = findNode(key)) == null)
1959 return false;
1960 if ((v = n.value) != null) {
1961 if (!oldValue.equals(v))
1962 return false;
1963 if (n.casValue(v, newValue))
1964 return true;
1965 }
1966 }
1967 }
1968
1969 /**
1970 * {@inheritDoc}
1971 *
1972 * @return the previous value associated with the specified key,
1973 * or {@code null} if there was no mapping for the key
1974 * @throws ClassCastException if the specified key cannot be compared
1975 * with the keys currently in the map
1976 * @throws NullPointerException if the specified key or value is null
1977 */
1978 public V replace(K key, V value) {
1979 if (key == null || value == null)
1980 throw new NullPointerException();
1981 for (;;) {
1982 Node<K,V> n; Object v;
1983 if ((n = findNode(key)) == null)
1984 return null;
1985 if ((v = n.value) != null && n.casValue(v, value)) {
1986 @SuppressWarnings("unchecked") V vv = (V)v;
1987 return vv;
1988 }
1989 }
1990 }
1991
1992 /* ------ SortedMap API methods ------ */
1993
1994 public Comparator<? super K> comparator() {
1995 return comparator;
1996 }
1997
1998 /**
1999 * @throws NoSuchElementException {@inheritDoc}
2000 */
2001 public K firstKey() {
2002 Node<K,V> n = findFirst();
2003 if (n == null)
2004 throw new NoSuchElementException();
2005 return n.key;
2006 }
2007
2008 /**
2009 * @throws NoSuchElementException {@inheritDoc}
2010 */
2011 public K lastKey() {
2012 Node<K,V> n = findLast();
2013 if (n == null)
2014 throw new NoSuchElementException();
2015 return n.key;
2016 }
2017
2018 /**
2019 * @throws ClassCastException {@inheritDoc}
2020 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2021 * @throws IllegalArgumentException {@inheritDoc}
2022 */
2023 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
2024 boolean fromInclusive,
2025 K toKey,
2026 boolean toInclusive) {
2027 if (fromKey == null || toKey == null)
2028 throw new NullPointerException();
2029 return new SubMap<K,V>
2030 (this, fromKey, fromInclusive, toKey, toInclusive, false);
2031 }
2032
2033 /**
2034 * @throws ClassCastException {@inheritDoc}
2035 * @throws NullPointerException if {@code toKey} is null
2036 * @throws IllegalArgumentException {@inheritDoc}
2037 */
2038 public ConcurrentNavigableMap<K,V> headMap(K toKey,
2039 boolean inclusive) {
2040 if (toKey == null)
2041 throw new NullPointerException();
2042 return new SubMap<K,V>
2043 (this, null, false, toKey, inclusive, false);
2044 }
2045
2046 /**
2047 * @throws ClassCastException {@inheritDoc}
2048 * @throws NullPointerException if {@code fromKey} is null
2049 * @throws IllegalArgumentException {@inheritDoc}
2050 */
2051 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
2052 boolean inclusive) {
2053 if (fromKey == null)
2054 throw new NullPointerException();
2055 return new SubMap<K,V>
2056 (this, fromKey, inclusive, null, false, false);
2057 }
2058
2059 /**
2060 * @throws ClassCastException {@inheritDoc}
2061 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
2062 * @throws IllegalArgumentException {@inheritDoc}
2063 */
2064 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2065 return subMap(fromKey, true, toKey, false);
2066 }
2067
2068 /**
2069 * @throws ClassCastException {@inheritDoc}
2070 * @throws NullPointerException if {@code toKey} is null
2071 * @throws IllegalArgumentException {@inheritDoc}
2072 */
2073 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2074 return headMap(toKey, false);
2075 }
2076
2077 /**
2078 * @throws ClassCastException {@inheritDoc}
2079 * @throws NullPointerException if {@code fromKey} is null
2080 * @throws IllegalArgumentException {@inheritDoc}
2081 */
2082 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2083 return tailMap(fromKey, true);
2084 }
2085
2086 /* ---------------- Relational operations -------------- */
2087
2088 /**
2089 * Returns a key-value mapping associated with the greatest key
2090 * strictly less than the given key, or {@code null} if there is
2091 * no such key. The returned entry does <em>not</em> support the
2092 * {@code Entry.setValue} method.
2093 *
2094 * @throws ClassCastException {@inheritDoc}
2095 * @throws NullPointerException if the specified key is null
2096 */
2097 public Map.Entry<K,V> lowerEntry(K key) {
2098 return getNear(key, LT);
2099 }
2100
2101 /**
2102 * @throws ClassCastException {@inheritDoc}
2103 * @throws NullPointerException if the specified key is null
2104 */
2105 public K lowerKey(K key) {
2106 Node<K,V> n = findNear(key, LT, comparator);
2107 return (n == null) ? null : n.key;
2108 }
2109
2110 /**
2111 * Returns a key-value mapping associated with the greatest key
2112 * less than or equal to the given key, or {@code null} if there
2113 * is no such key. The returned entry does <em>not</em> support
2114 * the {@code Entry.setValue} method.
2115 *
2116 * @param key the key
2117 * @throws ClassCastException {@inheritDoc}
2118 * @throws NullPointerException if the specified key is null
2119 */
2120 public Map.Entry<K,V> floorEntry(K key) {
2121 return getNear(key, LT|EQ);
2122 }
2123
2124 /**
2125 * @param key the key
2126 * @throws ClassCastException {@inheritDoc}
2127 * @throws NullPointerException if the specified key is null
2128 */
2129 public K floorKey(K key) {
2130 Node<K,V> n = findNear(key, LT|EQ, comparator);
2131 return (n == null) ? null : n.key;
2132 }
2133
2134 /**
2135 * Returns a key-value mapping associated with the least key
2136 * greater than or equal to the given key, or {@code null} if
2137 * there is no such entry. The returned entry does <em>not</em>
2138 * support the {@code Entry.setValue} method.
2139 *
2140 * @throws ClassCastException {@inheritDoc}
2141 * @throws NullPointerException if the specified key is null
2142 */
2143 public Map.Entry<K,V> ceilingEntry(K key) {
2144 return getNear(key, GT|EQ);
2145 }
2146
2147 /**
2148 * @throws ClassCastException {@inheritDoc}
2149 * @throws NullPointerException if the specified key is null
2150 */
2151 public K ceilingKey(K key) {
2152 Node<K,V> n = findNear(key, GT|EQ, comparator);
2153 return (n == null) ? null : n.key;
2154 }
2155
2156 /**
2157 * Returns a key-value mapping associated with the least key
2158 * strictly greater than the given key, or {@code null} if there
2159 * is no such key. The returned entry does <em>not</em> support
2160 * the {@code Entry.setValue} method.
2161 *
2162 * @param key the key
2163 * @throws ClassCastException {@inheritDoc}
2164 * @throws NullPointerException if the specified key is null
2165 */
2166 public Map.Entry<K,V> higherEntry(K key) {
2167 return getNear(key, GT);
2168 }
2169
2170 /**
2171 * @param key the key
2172 * @throws ClassCastException {@inheritDoc}
2173 * @throws NullPointerException if the specified key is null
2174 */
2175 public K higherKey(K key) {
2176 Node<K,V> n = findNear(key, GT, comparator);
2177 return (n == null) ? null : n.key;
2178 }
2179
2180 /**
2181 * Returns a key-value mapping associated with the least
2182 * key in this map, or {@code null} if the map is empty.
2183 * The returned entry does <em>not</em> support
2184 * the {@code Entry.setValue} method.
2185 */
2186 public Map.Entry<K,V> firstEntry() {
2187 for (;;) {
2188 Node<K,V> n = findFirst();
2189 if (n == null)
2190 return null;
2191 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2192 if (e != null)
2193 return e;
2194 }
2195 }
2196
2197 /**
2198 * Returns a key-value mapping associated with the greatest
2199 * key in this map, or {@code null} if the map is empty.
2200 * The returned entry does <em>not</em> support
2201 * the {@code Entry.setValue} method.
2202 */
2203 public Map.Entry<K,V> lastEntry() {
2204 for (;;) {
2205 Node<K,V> n = findLast();
2206 if (n == null)
2207 return null;
2208 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2209 if (e != null)
2210 return e;
2211 }
2212 }
2213
2214 /**
2215 * Removes and returns a key-value mapping associated with
2216 * the least key in this map, or {@code null} if the map is empty.
2217 * The returned entry does <em>not</em> support
2218 * the {@code Entry.setValue} method.
2219 */
2220 public Map.Entry<K,V> pollFirstEntry() {
2221 return doRemoveFirstEntry();
2222 }
2223
2224 /**
2225 * Removes and returns a key-value mapping associated with
2226 * the greatest key in this map, or {@code null} if the map is empty.
2227 * The returned entry does <em>not</em> support
2228 * the {@code Entry.setValue} method.
2229 */
2230 public Map.Entry<K,V> pollLastEntry() {
2231 return doRemoveLastEntry();
2232 }
2233
2234
2235 /* ---------------- Iterators -------------- */
2236
2237 /**
2238 * Base of iterator classes:
2239 */
2240 abstract class Iter<T> implements Iterator<T> {
2241 /** the last node returned by next() */
2242 Node<K,V> lastReturned;
2243 /** the next node to return from next(); */
2244 Node<K,V> next;
2245 /** Cache of next value field to maintain weak consistency */
2246 V nextValue;
2247
2248 /** Initializes ascending iterator for entire range. */
2249 Iter() {
2250 while ((next = findFirst()) != null) {
2251 Object x = next.value;
2252 if (x != null && x != next) {
2253 @SuppressWarnings("unchecked") V vv = (V)x;
2254 nextValue = vv;
2255 break;
2256 }
2257 }
2258 }
2259
2260 public final boolean hasNext() {
2261 return next != null;
2262 }
2263
2264 /** Advances next to higher entry. */
2265 final void advance() {
2266 if (next == null)
2267 throw new NoSuchElementException();
2268 lastReturned = next;
2269 while ((next = next.next) != null) {
2270 Object x = next.value;
2271 if (x != null && x != next) {
2272 @SuppressWarnings("unchecked") V vv = (V)x;
2273 nextValue = vv;
2274 break;
2275 }
2276 }
2277 }
2278
2279 public void remove() {
2280 Node<K,V> l = lastReturned;
2281 if (l == null)
2282 throw new IllegalStateException();
2283 // It would not be worth all of the overhead to directly
2284 // unlink from here. Using remove is fast enough.
2285 ConcurrentSkipListMap.this.remove(l.key);
2286 lastReturned = null;
2287 }
2288
2289 }
2290
2291 final class ValueIterator extends Iter<V> {
2292 public V next() {
2293 V v = nextValue;
2294 advance();
2295 return v;
2296 }
2297 }
2298
2299 final class KeyIterator extends Iter<K> {
2300 public K next() {
2301 Node<K,V> n = next;
2302 advance();
2303 return n.key;
2304 }
2305 }
2306
2307 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2308 public Map.Entry<K,V> next() {
2309 Node<K,V> n = next;
2310 V v = nextValue;
2311 advance();
2312 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2313 }
2314 }
2315
2316 /* ---------------- View Classes -------------- */
2317
2318 /*
2319 * View classes are static, delegating to a ConcurrentNavigableMap
2320 * to allow use by SubMaps, which outweighs the ugliness of
2321 * needing type-tests for Iterator methods.
2322 */
2323
2324 static final <E> List<E> toList(Collection<E> c) {
2325 // Using size() here would be a pessimization.
2326 ArrayList<E> list = new ArrayList<E>();
2327 for (E e : c)
2328 list.add(e);
2329 return list;
2330 }
2331
2332 static final class KeySet<K,V>
2333 extends AbstractSet<K> implements NavigableSet<K> {
2334 final ConcurrentNavigableMap<K,V> m;
2335 KeySet(ConcurrentNavigableMap<K,V> map) { m = map; }
2336 public int size() { return m.size(); }
2337 public boolean isEmpty() { return m.isEmpty(); }
2338 public boolean contains(Object o) { return m.containsKey(o); }
2339 public boolean remove(Object o) { return m.remove(o) != null; }
2340 public void clear() { m.clear(); }
2341 public K lower(K e) { return m.lowerKey(e); }
2342 public K floor(K e) { return m.floorKey(e); }
2343 public K ceiling(K e) { return m.ceilingKey(e); }
2344 public K higher(K e) { return m.higherKey(e); }
2345 public Comparator<? super K> comparator() { return m.comparator(); }
2346 public K first() { return m.firstKey(); }
2347 public K last() { return m.lastKey(); }
2348 public K pollFirst() {
2349 Map.Entry<K,V> e = m.pollFirstEntry();
2350 return (e == null) ? null : e.getKey();
2351 }
2352 public K pollLast() {
2353 Map.Entry<K,V> e = m.pollLastEntry();
2354 return (e == null) ? null : e.getKey();
2355 }
2356 public Iterator<K> iterator() {
2357 return (m instanceof ConcurrentSkipListMap)
2358 ? ((ConcurrentSkipListMap<K,V>)m).new KeyIterator()
2359 : ((SubMap<K,V>)m).new SubMapKeyIterator();
2360 }
2361 public boolean equals(Object o) {
2362 if (o == this)
2363 return true;
2364 if (!(o instanceof Set))
2365 return false;
2366 Collection<?> c = (Collection<?>) o;
2367 try {
2368 return containsAll(c) && c.containsAll(this);
2369 } catch (ClassCastException unused) {
2370 return false;
2371 } catch (NullPointerException unused) {
2372 return false;
2373 }
2374 }
2375 public Object[] toArray() { return toList(this).toArray(); }
2376 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2377 public Iterator<K> descendingIterator() {
2378 return descendingSet().iterator();
2379 }
2380 public NavigableSet<K> subSet(K fromElement,
2381 boolean fromInclusive,
2382 K toElement,
2383 boolean toInclusive) {
2384 return new KeySet<>(m.subMap(fromElement, fromInclusive,
2385 toElement, toInclusive));
2386 }
2387 public NavigableSet<K> headSet(K toElement, boolean inclusive) {
2388 return new KeySet<>(m.headMap(toElement, inclusive));
2389 }
2390 public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
2391 return new KeySet<>(m.tailMap(fromElement, inclusive));
2392 }
2393 public NavigableSet<K> subSet(K fromElement, K toElement) {
2394 return subSet(fromElement, true, toElement, false);
2395 }
2396 public NavigableSet<K> headSet(K toElement) {
2397 return headSet(toElement, false);
2398 }
2399 public NavigableSet<K> tailSet(K fromElement) {
2400 return tailSet(fromElement, true);
2401 }
2402 public NavigableSet<K> descendingSet() {
2403 return new KeySet<>(m.descendingMap());
2404 }
2405
2406 public Spliterator<K> spliterator() {
2407 return (m instanceof ConcurrentSkipListMap)
2408 ? ((ConcurrentSkipListMap<K,V>)m).keySpliterator()
2409 : ((SubMap<K,V>)m).new SubMapKeyIterator();
2410 }
2411 }
2412
2413 static final class Values<K,V> extends AbstractCollection<V> {
2414 final ConcurrentNavigableMap<K,V> m;
2415 Values(ConcurrentNavigableMap<K,V> map) {
2416 m = map;
2417 }
2418 public Iterator<V> iterator() {
2419 return (m instanceof ConcurrentSkipListMap)
2420 ? ((ConcurrentSkipListMap<K,V>)m).new ValueIterator()
2421 : ((SubMap<K,V>)m).new SubMapValueIterator();
2422 }
2423 public int size() { return m.size(); }
2424 public boolean isEmpty() { return m.isEmpty(); }
2425 public boolean contains(Object o) { return m.containsValue(o); }
2426 public void clear() { m.clear(); }
2427 public Object[] toArray() { return toList(this).toArray(); }
2428 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2429
2430 public Spliterator<V> spliterator() {
2431 return (m instanceof ConcurrentSkipListMap)
2432 ? ((ConcurrentSkipListMap<K,V>)m).valueSpliterator()
2433 : ((SubMap<K,V>)m).new SubMapValueIterator();
2434 }
2435
2436 public boolean removeIf(Predicate<? super V> filter) {
2437 if (filter == null) throw new NullPointerException();
2438 if (m instanceof ConcurrentSkipListMap)
2439 return ((ConcurrentSkipListMap<K,V>)m).removeValueIf(filter);
2440 // else use iterator
2441 Iterator<Map.Entry<K,V>> it =
2442 ((SubMap<K,V>)m).new SubMapEntryIterator();
2443 boolean removed = false;
2444 while (it.hasNext()) {
2445 Map.Entry<K,V> e = it.next();
2446 V v = e.getValue();
2447 if (filter.test(v) && m.remove(e.getKey(), v))
2448 removed = true;
2449 }
2450 return removed;
2451 }
2452 }
2453
2454 static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
2455 final ConcurrentNavigableMap<K,V> m;
2456 EntrySet(ConcurrentNavigableMap<K,V> map) {
2457 m = map;
2458 }
2459 public Iterator<Map.Entry<K,V>> iterator() {
2460 return (m instanceof ConcurrentSkipListMap)
2461 ? ((ConcurrentSkipListMap<K,V>)m).new EntryIterator()
2462 : ((SubMap<K,V>)m).new SubMapEntryIterator();
2463 }
2464
2465 public boolean contains(Object o) {
2466 if (!(o instanceof Map.Entry))
2467 return false;
2468 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2469 V v = m.get(e.getKey());
2470 return v != null && v.equals(e.getValue());
2471 }
2472 public boolean remove(Object o) {
2473 if (!(o instanceof Map.Entry))
2474 return false;
2475 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2476 return m.remove(e.getKey(),
2477 e.getValue());
2478 }
2479 public boolean isEmpty() {
2480 return m.isEmpty();
2481 }
2482 public int size() {
2483 return m.size();
2484 }
2485 public void clear() {
2486 m.clear();
2487 }
2488 public boolean equals(Object o) {
2489 if (o == this)
2490 return true;
2491 if (!(o instanceof Set))
2492 return false;
2493 Collection<?> c = (Collection<?>) o;
2494 try {
2495 return containsAll(c) && c.containsAll(this);
2496 } catch (ClassCastException unused) {
2497 return false;
2498 } catch (NullPointerException unused) {
2499 return false;
2500 }
2501 }
2502 public Object[] toArray() { return toList(this).toArray(); }
2503 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2504
2505 public Spliterator<Map.Entry<K,V>> spliterator() {
2506 return (m instanceof ConcurrentSkipListMap)
2507 ? ((ConcurrentSkipListMap<K,V>)m).entrySpliterator()
2508 : ((SubMap<K,V>)m).new SubMapEntryIterator();
2509 }
2510 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
2511 if (filter == null) throw new NullPointerException();
2512 if (m instanceof ConcurrentSkipListMap)
2513 return ((ConcurrentSkipListMap<K,V>)m).removeEntryIf(filter);
2514 // else use iterator
2515 Iterator<Map.Entry<K,V>> it =
2516 ((SubMap<K,V>)m).new SubMapEntryIterator();
2517 boolean removed = false;
2518 while (it.hasNext()) {
2519 Map.Entry<K,V> e = it.next();
2520 if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
2521 removed = true;
2522 }
2523 return removed;
2524 }
2525 }
2526
2527 /**
2528 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2529 * represent a subrange of mappings of their underlying maps.
2530 * Instances of this class support all methods of their underlying
2531 * maps, differing in that mappings outside their range are ignored,
2532 * and attempts to add mappings outside their ranges result in {@link
2533 * IllegalArgumentException}. Instances of this class are constructed
2534 * only using the {@code subMap}, {@code headMap}, and {@code tailMap}
2535 * methods of their underlying maps.
2536 *
2537 * @serial include
2538 */
2539 static final class SubMap<K,V> extends AbstractMap<K,V>
2540 implements ConcurrentNavigableMap<K,V>, Serializable {
2541 private static final long serialVersionUID = -7647078645895051609L;
2542
2543 /** Underlying map */
2544 final ConcurrentSkipListMap<K,V> m;
2545 /** lower bound key, or null if from start */
2546 private final K lo;
2547 /** upper bound key, or null if to end */
2548 private final K hi;
2549 /** inclusion flag for lo */
2550 private final boolean loInclusive;
2551 /** inclusion flag for hi */
2552 private final boolean hiInclusive;
2553 /** direction */
2554 final boolean isDescending;
2555
2556 // Lazily initialized view holders
2557 private transient KeySet<K,V> keySetView;
2558 private transient Values<K,V> valuesView;
2559 private transient EntrySet<K,V> entrySetView;
2560
2561 /**
2562 * Creates a new submap, initializing all fields.
2563 */
2564 SubMap(ConcurrentSkipListMap<K,V> map,
2565 K fromKey, boolean fromInclusive,
2566 K toKey, boolean toInclusive,
2567 boolean isDescending) {
2568 Comparator<? super K> cmp = map.comparator;
2569 if (fromKey != null && toKey != null &&
2570 cpr(cmp, fromKey, toKey) > 0)
2571 throw new IllegalArgumentException("inconsistent range");
2572 this.m = map;
2573 this.lo = fromKey;
2574 this.hi = toKey;
2575 this.loInclusive = fromInclusive;
2576 this.hiInclusive = toInclusive;
2577 this.isDescending = isDescending;
2578 }
2579
2580 /* ---------------- Utilities -------------- */
2581
2582 boolean tooLow(Object key, Comparator<? super K> cmp) {
2583 int c;
2584 return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2585 (c == 0 && !loInclusive)));
2586 }
2587
2588 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2589 int c;
2590 return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2591 (c == 0 && !hiInclusive)));
2592 }
2593
2594 boolean inBounds(Object key, Comparator<? super K> cmp) {
2595 return !tooLow(key, cmp) && !tooHigh(key, cmp);
2596 }
2597
2598 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2599 if (key == null)
2600 throw new NullPointerException();
2601 if (!inBounds(key, cmp))
2602 throw new IllegalArgumentException("key out of range");
2603 }
2604
2605 /**
2606 * Returns true if node key is less than upper bound of range.
2607 */
2608 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2609 Comparator<? super K> cmp) {
2610 if (n == null)
2611 return false;
2612 if (hi == null)
2613 return true;
2614 K k = n.key;
2615 if (k == null) // pass by markers and headers
2616 return true;
2617 int c = cpr(cmp, k, hi);
2618 if (c > 0 || (c == 0 && !hiInclusive))
2619 return false;
2620 return true;
2621 }
2622
2623 /**
2624 * Returns lowest node. This node might not be in range, so
2625 * most usages need to check bounds.
2626 */
2627 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2628 if (lo == null)
2629 return m.findFirst();
2630 else if (loInclusive)
2631 return m.findNear(lo, GT|EQ, cmp);
2632 else
2633 return m.findNear(lo, GT, cmp);
2634 }
2635
2636 /**
2637 * Returns highest node. This node might not be in range, so
2638 * most usages need to check bounds.
2639 */
2640 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2641 if (hi == null)
2642 return m.findLast();
2643 else if (hiInclusive)
2644 return m.findNear(hi, LT|EQ, cmp);
2645 else
2646 return m.findNear(hi, LT, cmp);
2647 }
2648
2649 /**
2650 * Returns lowest absolute key (ignoring directionality).
2651 */
2652 K lowestKey() {
2653 Comparator<? super K> cmp = m.comparator;
2654 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2655 if (isBeforeEnd(n, cmp))
2656 return n.key;
2657 else
2658 throw new NoSuchElementException();
2659 }
2660
2661 /**
2662 * Returns highest absolute key (ignoring directionality).
2663 */
2664 K highestKey() {
2665 Comparator<? super K> cmp = m.comparator;
2666 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2667 if (n != null) {
2668 K last = n.key;
2669 if (inBounds(last, cmp))
2670 return last;
2671 }
2672 throw new NoSuchElementException();
2673 }
2674
2675 Map.Entry<K,V> lowestEntry() {
2676 Comparator<? super K> cmp = m.comparator;
2677 for (;;) {
2678 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2679 if (!isBeforeEnd(n, cmp))
2680 return null;
2681 Map.Entry<K,V> e = n.createSnapshot();
2682 if (e != null)
2683 return e;
2684 }
2685 }
2686
2687 Map.Entry<K,V> highestEntry() {
2688 Comparator<? super K> cmp = m.comparator;
2689 for (;;) {
2690 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2691 if (n == null || !inBounds(n.key, cmp))
2692 return null;
2693 Map.Entry<K,V> e = n.createSnapshot();
2694 if (e != null)
2695 return e;
2696 }
2697 }
2698
2699 Map.Entry<K,V> removeLowest() {
2700 Comparator<? super K> cmp = m.comparator;
2701 for (;;) {
2702 Node<K,V> n = loNode(cmp);
2703 if (n == null)
2704 return null;
2705 K k = n.key;
2706 if (!inBounds(k, cmp))
2707 return null;
2708 V v = m.doRemove(k, null);
2709 if (v != null)
2710 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2711 }
2712 }
2713
2714 Map.Entry<K,V> removeHighest() {
2715 Comparator<? super K> cmp = m.comparator;
2716 for (;;) {
2717 Node<K,V> n = hiNode(cmp);
2718 if (n == null)
2719 return null;
2720 K k = n.key;
2721 if (!inBounds(k, cmp))
2722 return null;
2723 V v = m.doRemove(k, null);
2724 if (v != null)
2725 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2726 }
2727 }
2728
2729 /**
2730 * Submap version of ConcurrentSkipListMap.getNearEntry.
2731 */
2732 Map.Entry<K,V> getNearEntry(K key, int rel) {
2733 Comparator<? super K> cmp = m.comparator;
2734 if (isDescending) { // adjust relation for direction
2735 if ((rel & LT) == 0)
2736 rel |= LT;
2737 else
2738 rel &= ~LT;
2739 }
2740 if (tooLow(key, cmp))
2741 return ((rel & LT) != 0) ? null : lowestEntry();
2742 if (tooHigh(key, cmp))
2743 return ((rel & LT) != 0) ? highestEntry() : null;
2744 for (;;) {
2745 Node<K,V> n = m.findNear(key, rel, cmp);
2746 if (n == null || !inBounds(n.key, cmp))
2747 return null;
2748 K k = n.key;
2749 V v = n.getValidValue();
2750 if (v != null)
2751 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2752 }
2753 }
2754
2755 // Almost the same as getNearEntry, except for keys
2756 K getNearKey(K key, int rel) {
2757 Comparator<? super K> cmp = m.comparator;
2758 if (isDescending) { // adjust relation for direction
2759 if ((rel & LT) == 0)
2760 rel |= LT;
2761 else
2762 rel &= ~LT;
2763 }
2764 if (tooLow(key, cmp)) {
2765 if ((rel & LT) == 0) {
2766 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2767 if (isBeforeEnd(n, cmp))
2768 return n.key;
2769 }
2770 return null;
2771 }
2772 if (tooHigh(key, cmp)) {
2773 if ((rel & LT) != 0) {
2774 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2775 if (n != null) {
2776 K last = n.key;
2777 if (inBounds(last, cmp))
2778 return last;
2779 }
2780 }
2781 return null;
2782 }
2783 for (;;) {
2784 Node<K,V> n = m.findNear(key, rel, cmp);
2785 if (n == null || !inBounds(n.key, cmp))
2786 return null;
2787 K k = n.key;
2788 V v = n.getValidValue();
2789 if (v != null)
2790 return k;
2791 }
2792 }
2793
2794 /* ---------------- Map API methods -------------- */
2795
2796 public boolean containsKey(Object key) {
2797 if (key == null) throw new NullPointerException();
2798 return inBounds(key, m.comparator) && m.containsKey(key);
2799 }
2800
2801 public V get(Object key) {
2802 if (key == null) throw new NullPointerException();
2803 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2804 }
2805
2806 public V put(K key, V value) {
2807 checkKeyBounds(key, m.comparator);
2808 return m.put(key, value);
2809 }
2810
2811 public V remove(Object key) {
2812 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2813 }
2814
2815 public int size() {
2816 Comparator<? super K> cmp = m.comparator;
2817 long count = 0;
2818 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2819 isBeforeEnd(n, cmp);
2820 n = n.next) {
2821 if (n.getValidValue() != null)
2822 ++count;
2823 }
2824 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2825 }
2826
2827 public boolean isEmpty() {
2828 Comparator<? super K> cmp = m.comparator;
2829 return !isBeforeEnd(loNode(cmp), cmp);
2830 }
2831
2832 public boolean containsValue(Object value) {
2833 if (value == null)
2834 throw new NullPointerException();
2835 Comparator<? super K> cmp = m.comparator;
2836 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2837 isBeforeEnd(n, cmp);
2838 n = n.next) {
2839 V v = n.getValidValue();
2840 if (v != null && value.equals(v))
2841 return true;
2842 }
2843 return false;
2844 }
2845
2846 public void clear() {
2847 Comparator<? super K> cmp = m.comparator;
2848 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2849 isBeforeEnd(n, cmp);
2850 n = n.next) {
2851 if (n.getValidValue() != null)
2852 m.remove(n.key);
2853 }
2854 }
2855
2856 /* ---------------- ConcurrentMap API methods -------------- */
2857
2858 public V putIfAbsent(K key, V value) {
2859 checkKeyBounds(key, m.comparator);
2860 return m.putIfAbsent(key, value);
2861 }
2862
2863 public boolean remove(Object key, Object value) {
2864 return inBounds(key, m.comparator) && m.remove(key, value);
2865 }
2866
2867 public boolean replace(K key, V oldValue, V newValue) {
2868 checkKeyBounds(key, m.comparator);
2869 return m.replace(key, oldValue, newValue);
2870 }
2871
2872 public V replace(K key, V value) {
2873 checkKeyBounds(key, m.comparator);
2874 return m.replace(key, value);
2875 }
2876
2877 /* ---------------- SortedMap API methods -------------- */
2878
2879 public Comparator<? super K> comparator() {
2880 Comparator<? super K> cmp = m.comparator();
2881 if (isDescending)
2882 return Collections.reverseOrder(cmp);
2883 else
2884 return cmp;
2885 }
2886
2887 /**
2888 * Utility to create submaps, where given bounds override
2889 * unbounded(null) ones and/or are checked against bounded ones.
2890 */
2891 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2892 K toKey, boolean toInclusive) {
2893 Comparator<? super K> cmp = m.comparator;
2894 if (isDescending) { // flip senses
2895 K tk = fromKey;
2896 fromKey = toKey;
2897 toKey = tk;
2898 boolean ti = fromInclusive;
2899 fromInclusive = toInclusive;
2900 toInclusive = ti;
2901 }
2902 if (lo != null) {
2903 if (fromKey == null) {
2904 fromKey = lo;
2905 fromInclusive = loInclusive;
2906 }
2907 else {
2908 int c = cpr(cmp, fromKey, lo);
2909 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2910 throw new IllegalArgumentException("key out of range");
2911 }
2912 }
2913 if (hi != null) {
2914 if (toKey == null) {
2915 toKey = hi;
2916 toInclusive = hiInclusive;
2917 }
2918 else {
2919 int c = cpr(cmp, toKey, hi);
2920 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2921 throw new IllegalArgumentException("key out of range");
2922 }
2923 }
2924 return new SubMap<K,V>(m, fromKey, fromInclusive,
2925 toKey, toInclusive, isDescending);
2926 }
2927
2928 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2929 K toKey, boolean toInclusive) {
2930 if (fromKey == null || toKey == null)
2931 throw new NullPointerException();
2932 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2933 }
2934
2935 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2936 if (toKey == null)
2937 throw new NullPointerException();
2938 return newSubMap(null, false, toKey, inclusive);
2939 }
2940
2941 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2942 if (fromKey == null)
2943 throw new NullPointerException();
2944 return newSubMap(fromKey, inclusive, null, false);
2945 }
2946
2947 public SubMap<K,V> subMap(K fromKey, K toKey) {
2948 return subMap(fromKey, true, toKey, false);
2949 }
2950
2951 public SubMap<K,V> headMap(K toKey) {
2952 return headMap(toKey, false);
2953 }
2954
2955 public SubMap<K,V> tailMap(K fromKey) {
2956 return tailMap(fromKey, true);
2957 }
2958
2959 public SubMap<K,V> descendingMap() {
2960 return new SubMap<K,V>(m, lo, loInclusive,
2961 hi, hiInclusive, !isDescending);
2962 }
2963
2964 /* ---------------- Relational methods -------------- */
2965
2966 public Map.Entry<K,V> ceilingEntry(K key) {
2967 return getNearEntry(key, GT|EQ);
2968 }
2969
2970 public K ceilingKey(K key) {
2971 return getNearKey(key, GT|EQ);
2972 }
2973
2974 public Map.Entry<K,V> lowerEntry(K key) {
2975 return getNearEntry(key, LT);
2976 }
2977
2978 public K lowerKey(K key) {
2979 return getNearKey(key, LT);
2980 }
2981
2982 public Map.Entry<K,V> floorEntry(K key) {
2983 return getNearEntry(key, LT|EQ);
2984 }
2985
2986 public K floorKey(K key) {
2987 return getNearKey(key, LT|EQ);
2988 }
2989
2990 public Map.Entry<K,V> higherEntry(K key) {
2991 return getNearEntry(key, GT);
2992 }
2993
2994 public K higherKey(K key) {
2995 return getNearKey(key, GT);
2996 }
2997
2998 public K firstKey() {
2999 return isDescending ? highestKey() : lowestKey();
3000 }
3001
3002 public K lastKey() {
3003 return isDescending ? lowestKey() : highestKey();
3004 }
3005
3006 public Map.Entry<K,V> firstEntry() {
3007 return isDescending ? highestEntry() : lowestEntry();
3008 }
3009
3010 public Map.Entry<K,V> lastEntry() {
3011 return isDescending ? lowestEntry() : highestEntry();
3012 }
3013
3014 public Map.Entry<K,V> pollFirstEntry() {
3015 return isDescending ? removeHighest() : removeLowest();
3016 }
3017
3018 public Map.Entry<K,V> pollLastEntry() {
3019 return isDescending ? removeLowest() : removeHighest();
3020 }
3021
3022 /* ---------------- Submap Views -------------- */
3023
3024 public NavigableSet<K> keySet() {
3025 KeySet<K,V> ks;
3026 if ((ks = keySetView) != null) return ks;
3027 return keySetView = new KeySet<>(this);
3028 }
3029
3030 public NavigableSet<K> navigableKeySet() {
3031 KeySet<K,V> ks;
3032 if ((ks = keySetView) != null) return ks;
3033 return keySetView = new KeySet<>(this);
3034 }
3035
3036 public Collection<V> values() {
3037 Values<K,V> vs;
3038 if ((vs = valuesView) != null) return vs;
3039 return valuesView = new Values<>(this);
3040 }
3041
3042 public Set<Map.Entry<K,V>> entrySet() {
3043 EntrySet<K,V> es;
3044 if ((es = entrySetView) != null) return es;
3045 return entrySetView = new EntrySet<K,V>(this);
3046 }
3047
3048 public NavigableSet<K> descendingKeySet() {
3049 return descendingMap().navigableKeySet();
3050 }
3051
3052 /**
3053 * Variant of main Iter class to traverse through submaps.
3054 * Also serves as back-up Spliterator for views.
3055 */
3056 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
3057 /** the last node returned by next() */
3058 Node<K,V> lastReturned;
3059 /** the next node to return from next(); */
3060 Node<K,V> next;
3061 /** Cache of next value field to maintain weak consistency */
3062 V nextValue;
3063
3064 SubMapIter() {
3065 Comparator<? super K> cmp = m.comparator;
3066 for (;;) {
3067 next = isDescending ? hiNode(cmp) : loNode(cmp);
3068 if (next == null)
3069 break;
3070 Object x = next.value;
3071 if (x != null && x != next) {
3072 if (! inBounds(next.key, cmp))
3073 next = null;
3074 else {
3075 @SuppressWarnings("unchecked") V vv = (V)x;
3076 nextValue = vv;
3077 }
3078 break;
3079 }
3080 }
3081 }
3082
3083 public final boolean hasNext() {
3084 return next != null;
3085 }
3086
3087 final void advance() {
3088 if (next == null)
3089 throw new NoSuchElementException();
3090 lastReturned = next;
3091 if (isDescending)
3092 descend();
3093 else
3094 ascend();
3095 }
3096
3097 private void ascend() {
3098 Comparator<? super K> cmp = m.comparator;
3099 for (;;) {
3100 next = next.next;
3101 if (next == null)
3102 break;
3103 Object x = next.value;
3104 if (x != null && x != next) {
3105 if (tooHigh(next.key, cmp))
3106 next = null;
3107 else {
3108 @SuppressWarnings("unchecked") V vv = (V)x;
3109 nextValue = vv;
3110 }
3111 break;
3112 }
3113 }
3114 }
3115
3116 private void descend() {
3117 Comparator<? super K> cmp = m.comparator;
3118 for (;;) {
3119 next = m.findNear(lastReturned.key, LT, cmp);
3120 if (next == null)
3121 break;
3122 Object x = next.value;
3123 if (x != null && x != next) {
3124 if (tooLow(next.key, cmp))
3125 next = null;
3126 else {
3127 @SuppressWarnings("unchecked") V vv = (V)x;
3128 nextValue = vv;
3129 }
3130 break;
3131 }
3132 }
3133 }
3134
3135 public void remove() {
3136 Node<K,V> l = lastReturned;
3137 if (l == null)
3138 throw new IllegalStateException();
3139 m.remove(l.key);
3140 lastReturned = null;
3141 }
3142
3143 public Spliterator<T> trySplit() {
3144 return null;
3145 }
3146
3147 public boolean tryAdvance(Consumer<? super T> action) {
3148 if (hasNext()) {
3149 action.accept(next());
3150 return true;
3151 }
3152 return false;
3153 }
3154
3155 public void forEachRemaining(Consumer<? super T> action) {
3156 while (hasNext())
3157 action.accept(next());
3158 }
3159
3160 public long estimateSize() {
3161 return Long.MAX_VALUE;
3162 }
3163
3164 }
3165
3166 final class SubMapValueIterator extends SubMapIter<V> {
3167 public V next() {
3168 V v = nextValue;
3169 advance();
3170 return v;
3171 }
3172 public int characteristics() {
3173 return 0;
3174 }
3175 }
3176
3177 final class SubMapKeyIterator extends SubMapIter<K> {
3178 public K next() {
3179 Node<K,V> n = next;
3180 advance();
3181 return n.key;
3182 }
3183 public int characteristics() {
3184 return Spliterator.DISTINCT | Spliterator.ORDERED |
3185 Spliterator.SORTED;
3186 }
3187 public final Comparator<? super K> getComparator() {
3188 return SubMap.this.comparator();
3189 }
3190 }
3191
3192 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3193 public Map.Entry<K,V> next() {
3194 Node<K,V> n = next;
3195 V v = nextValue;
3196 advance();
3197 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3198 }
3199 public int characteristics() {
3200 return Spliterator.DISTINCT;
3201 }
3202 }
3203 }
3204
3205 // default Map method overrides
3206
3207 public void forEach(BiConsumer<? super K, ? super V> action) {
3208 if (action == null) throw new NullPointerException();
3209 V v;
3210 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3211 if ((v = n.getValidValue()) != null)
3212 action.accept(n.key, v);
3213 }
3214 }
3215
3216 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3217 if (function == null) throw new NullPointerException();
3218 V v;
3219 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3220 while ((v = n.getValidValue()) != null) {
3221 V r = function.apply(n.key, v);
3222 if (r == null) throw new NullPointerException();
3223 if (n.casValue(v, r))
3224 break;
3225 }
3226 }
3227 }
3228
3229 /**
3230 * Helper method for EntrySet.removeIf.
3231 */
3232 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
3233 if (function == null) throw new NullPointerException();
3234 boolean removed = false;
3235 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3236 V v;
3237 if ((v = n.getValidValue()) != null) {
3238 K k = n.key;
3239 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
3240 if (function.test(e) && remove(k, v))
3241 removed = true;
3242 }
3243 }
3244 return removed;
3245 }
3246
3247 /**
3248 * Helper method for Values.removeIf.
3249 */
3250 boolean removeValueIf(Predicate<? super V> function) {
3251 if (function == null) throw new NullPointerException();
3252 boolean removed = false;
3253 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3254 V v;
3255 if ((v = n.getValidValue()) != null) {
3256 K k = n.key;
3257 if (function.test(v) && remove(k, v))
3258 removed = true;
3259 }
3260 }
3261 return removed;
3262 }
3263
3264 /**
3265 * Base class providing common structure for Spliterators.
3266 * (Although not all that much common functionality; as usual for
3267 * view classes, details annoyingly vary in key, value, and entry
3268 * subclasses in ways that are not worth abstracting out for
3269 * internal classes.)
3270 *
3271 * The basic split strategy is to recursively descend from top
3272 * level, row by row, descending to next row when either split
3273 * off, or the end of row is encountered. Control of the number of
3274 * splits relies on some statistical estimation: The expected
3275 * remaining number of elements of a skip list when advancing
3276 * either across or down decreases by about 25%. To make this
3277 * observation useful, we need to know initial size, which we
3278 * don't. But we can just use Integer.MAX_VALUE so that we
3279 * don't prematurely zero out while splitting.
3280 */
3281 abstract static class CSLMSpliterator<K,V> {
3282 final Comparator<? super K> comparator;
3283 final K fence; // exclusive upper bound for keys, or null if to end
3284 Index<K,V> row; // the level to split out
3285 Node<K,V> current; // current traversal node; initialize at origin
3286 int est; // pseudo-size estimate
3287 CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3288 Node<K,V> origin, K fence, int est) {
3289 this.comparator = comparator; this.row = row;
3290 this.current = origin; this.fence = fence; this.est = est;
3291 }
3292
3293 public final long estimateSize() { return (long)est; }
3294 }
3295
3296 static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3297 implements Spliterator<K> {
3298 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3299 Node<K,V> origin, K fence, int est) {
3300 super(comparator, row, origin, fence, est);
3301 }
3302
3303 public KeySpliterator<K,V> trySplit() {
3304 Node<K,V> e; K ek;
3305 Comparator<? super K> cmp = comparator;
3306 K f = fence;
3307 if ((e = current) != null && (ek = e.key) != null) {
3308 for (Index<K,V> q = row; q != null; q = row = q.down) {
3309 Index<K,V> s; Node<K,V> b, n; K sk;
3310 if ((s = q.right) != null && (b = s.node) != null &&
3311 (n = b.next) != null && n.value != null &&
3312 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3313 (f == null || cpr(cmp, sk, f) < 0)) {
3314 current = n;
3315 Index<K,V> r = q.down;
3316 row = (s.right != null) ? s : s.down;
3317 est -= est >>> 2;
3318 return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3319 }
3320 }
3321 }
3322 return null;
3323 }
3324
3325 public void forEachRemaining(Consumer<? super K> action) {
3326 if (action == null) throw new NullPointerException();
3327 Comparator<? super K> cmp = comparator;
3328 K f = fence;
3329 Node<K,V> e = current;
3330 current = null;
3331 for (; e != null; e = e.next) {
3332 K k; Object v;
3333 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3334 break;
3335 if ((v = e.value) != null && v != e)
3336 action.accept(k);
3337 }
3338 }
3339
3340 public boolean tryAdvance(Consumer<? super K> action) {
3341 if (action == null) throw new NullPointerException();
3342 Comparator<? super K> cmp = comparator;
3343 K f = fence;
3344 Node<K,V> e = current;
3345 for (; e != null; e = e.next) {
3346 K k; Object v;
3347 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3348 e = null;
3349 break;
3350 }
3351 if ((v = e.value) != null && v != e) {
3352 current = e.next;
3353 action.accept(k);
3354 return true;
3355 }
3356 }
3357 current = e;
3358 return false;
3359 }
3360
3361 public int characteristics() {
3362 return Spliterator.DISTINCT | Spliterator.SORTED |
3363 Spliterator.ORDERED | Spliterator.CONCURRENT |
3364 Spliterator.NONNULL;
3365 }
3366
3367 public final Comparator<? super K> getComparator() {
3368 return comparator;
3369 }
3370 }
3371 // factory method for KeySpliterator
3372 final KeySpliterator<K,V> keySpliterator() {
3373 Comparator<? super K> cmp = comparator;
3374 for (;;) { // ensure h corresponds to origin p
3375 HeadIndex<K,V> h; Node<K,V> p;
3376 Node<K,V> b = (h = head).node;
3377 if ((p = b.next) == null || p.value != null)
3378 return new KeySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3379 0 : Integer.MAX_VALUE);
3380 p.helpDelete(b, p.next);
3381 }
3382 }
3383
3384 static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3385 implements Spliterator<V> {
3386 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3387 Node<K,V> origin, K fence, int est) {
3388 super(comparator, row, origin, fence, est);
3389 }
3390
3391 public ValueSpliterator<K,V> trySplit() {
3392 Node<K,V> e; K ek;
3393 Comparator<? super K> cmp = comparator;
3394 K f = fence;
3395 if ((e = current) != null && (ek = e.key) != null) {
3396 for (Index<K,V> q = row; q != null; q = row = q.down) {
3397 Index<K,V> s; Node<K,V> b, n; K sk;
3398 if ((s = q.right) != null && (b = s.node) != null &&
3399 (n = b.next) != null && n.value != null &&
3400 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3401 (f == null || cpr(cmp, sk, f) < 0)) {
3402 current = n;
3403 Index<K,V> r = q.down;
3404 row = (s.right != null) ? s : s.down;
3405 est -= est >>> 2;
3406 return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3407 }
3408 }
3409 }
3410 return null;
3411 }
3412
3413 public void forEachRemaining(Consumer<? super V> action) {
3414 if (action == null) throw new NullPointerException();
3415 Comparator<? super K> cmp = comparator;
3416 K f = fence;
3417 Node<K,V> e = current;
3418 current = null;
3419 for (; e != null; e = e.next) {
3420 K k; Object v;
3421 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3422 break;
3423 if ((v = e.value) != null && v != e) {
3424 @SuppressWarnings("unchecked") V vv = (V)v;
3425 action.accept(vv);
3426 }
3427 }
3428 }
3429
3430 public boolean tryAdvance(Consumer<? super V> action) {
3431 if (action == null) throw new NullPointerException();
3432 Comparator<? super K> cmp = comparator;
3433 K f = fence;
3434 Node<K,V> e = current;
3435 for (; e != null; e = e.next) {
3436 K k; Object v;
3437 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3438 e = null;
3439 break;
3440 }
3441 if ((v = e.value) != null && v != e) {
3442 current = e.next;
3443 @SuppressWarnings("unchecked") V vv = (V)v;
3444 action.accept(vv);
3445 return true;
3446 }
3447 }
3448 current = e;
3449 return false;
3450 }
3451
3452 public int characteristics() {
3453 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3454 Spliterator.NONNULL;
3455 }
3456 }
3457
3458 // Almost the same as keySpliterator()
3459 final ValueSpliterator<K,V> valueSpliterator() {
3460 Comparator<? super K> cmp = comparator;
3461 for (;;) {
3462 HeadIndex<K,V> h; Node<K,V> p;
3463 Node<K,V> b = (h = head).node;
3464 if ((p = b.next) == null || p.value != null)
3465 return new ValueSpliterator<K,V>(cmp, h, p, null, (p == null) ?
3466 0 : Integer.MAX_VALUE);
3467 p.helpDelete(b, p.next);
3468 }
3469 }
3470
3471 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3472 implements Spliterator<Map.Entry<K,V>> {
3473 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3474 Node<K,V> origin, K fence, int est) {
3475 super(comparator, row, origin, fence, est);
3476 }
3477
3478 public EntrySpliterator<K,V> trySplit() {
3479 Node<K,V> e; K ek;
3480 Comparator<? super K> cmp = comparator;
3481 K f = fence;
3482 if ((e = current) != null && (ek = e.key) != null) {
3483 for (Index<K,V> q = row; q != null; q = row = q.down) {
3484 Index<K,V> s; Node<K,V> b, n; K sk;
3485 if ((s = q.right) != null && (b = s.node) != null &&
3486 (n = b.next) != null && n.value != null &&
3487 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3488 (f == null || cpr(cmp, sk, f) < 0)) {
3489 current = n;
3490 Index<K,V> r = q.down;
3491 row = (s.right != null) ? s : s.down;
3492 est -= est >>> 2;
3493 return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3494 }
3495 }
3496 }
3497 return null;
3498 }
3499
3500 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3501 if (action == null) throw new NullPointerException();
3502 Comparator<? super K> cmp = comparator;
3503 K f = fence;
3504 Node<K,V> e = current;
3505 current = null;
3506 for (; e != null; e = e.next) {
3507 K k; Object v;
3508 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3509 break;
3510 if ((v = e.value) != null && v != e) {
3511 @SuppressWarnings("unchecked") V vv = (V)v;
3512 action.accept
3513 (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3514 }
3515 }
3516 }
3517
3518 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3519 if (action == null) throw new NullPointerException();
3520 Comparator<? super K> cmp = comparator;
3521 K f = fence;
3522 Node<K,V> e = current;
3523 for (; e != null; e = e.next) {
3524 K k; Object v;
3525 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3526 e = null;
3527 break;
3528 }
3529 if ((v = e.value) != null && v != e) {
3530 current = e.next;
3531 @SuppressWarnings("unchecked") V vv = (V)v;
3532 action.accept
3533 (new AbstractMap.SimpleImmutableEntry<K,V>(k, vv));
3534 return true;
3535 }
3536 }
3537 current = e;
3538 return false;
3539 }
3540
3541 public int characteristics() {
3542 return Spliterator.DISTINCT | Spliterator.SORTED |
3543 Spliterator.ORDERED | Spliterator.CONCURRENT |
3544 Spliterator.NONNULL;
3545 }
3546
3547 public final Comparator<Map.Entry<K,V>> getComparator() {
3548 // Adapt or create a key-based comparator
3549 if (comparator != null) {
3550 return Map.Entry.comparingByKey(comparator);
3551 }
3552 else {
3553 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3554 @SuppressWarnings("unchecked")
3555 Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3556 return k1.compareTo(e2.getKey());
3557 };
3558 }
3559 }
3560 }
3561
3562 // Almost the same as keySpliterator()
3563 final EntrySpliterator<K,V> entrySpliterator() {
3564 Comparator<? super K> cmp = comparator;
3565 for (;;) { // almost same as key version
3566 HeadIndex<K,V> h; Node<K,V> p;
3567 Node<K,V> b = (h = head).node;
3568 if ((p = b.next) == null || p.value != null)
3569 return new EntrySpliterator<K,V>(cmp, h, p, null, (p == null) ?
3570 0 : Integer.MAX_VALUE);
3571 p.helpDelete(b, p.next);
3572 }
3573 }
3574
3575 // Varhandle mechanics
3576 private static final VarHandle HEAD;
3577 static {
3578 try {
3579 MethodHandles.Lookup l = MethodHandles.lookup();
3580 HEAD = l.findVarHandle(ConcurrentSkipListMap.class, "head",
3581 HeadIndex.class);
3582 } catch (ReflectiveOperationException e) {
3583 throw new Error(e);
3584 }
3585 }
3586 }