ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.175
Committed: Wed Aug 16 16:45:38 2017 UTC (6 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.174: +1 -1 lines
Log Message:
typo

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.io.Serializable;
12 import java.util.AbstractCollection;
13 import java.util.AbstractMap;
14 import java.util.AbstractSet;
15 import java.util.ArrayList;
16 import java.util.Collection;
17 import java.util.Collections;
18 import java.util.Comparator;
19 import java.util.Iterator;
20 import java.util.List;
21 import java.util.Map;
22 import java.util.NavigableSet;
23 import java.util.NoSuchElementException;
24 import java.util.Set;
25 import java.util.SortedMap;
26 import java.util.Spliterator;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.Function;
31 import java.util.function.Predicate;
32 import java.util.concurrent.atomic.LongAdder;
33
34 /**
35 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
36 * The map is sorted according to the {@linkplain Comparable natural
37 * ordering} of its keys, or by a {@link Comparator} provided at map
38 * creation time, depending on which constructor is used.
39 *
40 * <p>This class implements a concurrent variant of <a
41 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
42 * providing expected average <i>log(n)</i> time cost for the
43 * {@code containsKey}, {@code get}, {@code put} and
44 * {@code remove} operations and their variants. Insertion, removal,
45 * update, and access operations safely execute concurrently by
46 * multiple threads.
47 *
48 * <p>Iterators and spliterators are
49 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
50 *
51 * <p>Ascending key ordered views and their iterators are faster than
52 * descending ones.
53 *
54 * <p>All {@code Map.Entry} pairs returned by methods in this class
55 * and its views represent snapshots of mappings at the time they were
56 * produced. They do <em>not</em> support the {@code Entry.setValue}
57 * method. (Note however that it is possible to change mappings in the
58 * associated map using {@code put}, {@code putIfAbsent}, or
59 * {@code replace}, depending on exactly which effect you need.)
60 *
61 * <p>Beware that bulk operations {@code putAll}, {@code equals},
62 * {@code toArray}, {@code containsValue}, and {@code clear} are
63 * <em>not</em> guaranteed to be performed atomically. For example, an
64 * iterator operating concurrently with a {@code putAll} operation
65 * might view only some of the added elements.
66 *
67 * <p>This class and its views and iterators implement all of the
68 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
69 * interfaces. Like most other concurrent collections, this class does
70 * <em>not</em> permit the use of {@code null} keys or values because some
71 * null return values cannot be reliably distinguished from the absence of
72 * elements.
73 *
74 * <p>This class is a member of the
75 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
76 * Java Collections Framework</a>.
77 *
78 * @author Doug Lea
79 * @param <K> the type of keys maintained by this map
80 * @param <V> the type of mapped values
81 * @since 1.6
82 */
83 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
84 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
85 /*
86 * This class implements a tree-like two-dimensionally linked skip
87 * list in which the index levels are represented in separate
88 * nodes from the base nodes holding data. There are two reasons
89 * for taking this approach instead of the usual array-based
90 * structure: 1) Array based implementations seem to encounter
91 * more complexity and overhead 2) We can use cheaper algorithms
92 * for the heavily-traversed index lists than can be used for the
93 * base lists. Here's a picture of some of the basics for a
94 * possible list with 2 levels of index:
95 *
96 * Head nodes Index nodes
97 * +-+ right +-+ +-+
98 * |2|---------------->| |--------------------->| |->null
99 * +-+ +-+ +-+
100 * | down | |
101 * v v v
102 * +-+ +-+ +-+ +-+ +-+ +-+
103 * |1|----------->| |->| |------>| |----------->| |------>| |->null
104 * +-+ +-+ +-+ +-+ +-+ +-+
105 * v | | | | |
106 * Nodes next v v v v v
107 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
108 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
109 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
110 *
111 * The base lists use a variant of the HM linked ordered set
112 * algorithm. See Tim Harris, "A pragmatic implementation of
113 * non-blocking linked lists"
114 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
115 * Michael "High Performance Dynamic Lock-Free Hash Tables and
116 * List-Based Sets"
117 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
118 * basic idea in these lists is to mark the "next" pointers of
119 * deleted nodes when deleting to avoid conflicts with concurrent
120 * insertions, and when traversing to keep track of triples
121 * (predecessor, node, successor) in order to detect when and how
122 * to unlink these deleted nodes.
123 *
124 * Rather than using mark-bits to mark list deletions (which can
125 * be slow and space-intensive using AtomicMarkedReference), nodes
126 * use direct CAS'able next pointers. On deletion, instead of
127 * marking a pointer, they splice in another node that can be
128 * thought of as standing for a marked pointer (see method
129 * unlinkNode). Using plain nodes acts roughly like "boxed"
130 * implementations of marked pointers, but uses new nodes only
131 * when nodes are deleted, not for every link. This requires less
132 * space and supports faster traversal. Even if marked references
133 * were better supported by JVMs, traversal using this technique
134 * might still be faster because any search need only read ahead
135 * one more node than otherwise required (to check for trailing
136 * marker) rather than unmasking mark bits or whatever on each
137 * read.
138 *
139 * This approach maintains the essential property needed in the HM
140 * algorithm of changing the next-pointer of a deleted node so
141 * that any other CAS of it will fail, but implements the idea by
142 * changing the pointer to point to a different node (with
143 * otherwise illegal null fields), not by marking it. While it
144 * would be possible to further squeeze space by defining marker
145 * nodes not to have key/value fields, it isn't worth the extra
146 * type-testing overhead. The deletion markers are rarely
147 * encountered during traversal, are easily detected via null
148 * checks that are needed anyway, and are normally quickly garbage
149 * collected. (Note that this technique would not work well in
150 * systems without garbage collection.)
151 *
152 * In addition to using deletion markers, the lists also use
153 * nullness of value fields to indicate deletion, in a style
154 * similar to typical lazy-deletion schemes. If a node's value is
155 * null, then it is considered logically deleted and ignored even
156 * though it is still reachable.
157 *
158 * Here's the sequence of events for a deletion of node n with
159 * predecessor b and successor f, initially:
160 *
161 * +------+ +------+ +------+
162 * ... | b |------>| n |----->| f | ...
163 * +------+ +------+ +------+
164 *
165 * 1. CAS n's value field from non-null to null.
166 * Traversals encountering a node with null value ignore it.
167 * However, ongoing insertions and deletions might still modify
168 * n's next pointer.
169 *
170 * 2. CAS n's next pointer to point to a new marker node.
171 * From this point on, no other nodes can be appended to n.
172 * which avoids deletion errors in CAS-based linked lists.
173 *
174 * +------+ +------+ +------+ +------+
175 * ... | b |------>| n |----->|marker|------>| f | ...
176 * +------+ +------+ +------+ +------+
177 *
178 * 3. CAS b's next pointer over both n and its marker.
179 * From this point on, no new traversals will encounter n,
180 * and it can eventually be GCed.
181 * +------+ +------+
182 * ... | b |----------------------------------->| f | ...
183 * +------+ +------+
184 *
185 * A failure at step 1 leads to simple retry due to a lost race
186 * with another operation. Steps 2-3 can fail because some other
187 * thread noticed during a traversal a node with null value and
188 * helped out by marking and/or unlinking. This helping-out
189 * ensures that no thread can become stuck waiting for progress of
190 * the deleting thread.
191 *
192 * Skip lists add indexing to this scheme, so that the base-level
193 * traversals start close to the locations being found, inserted
194 * or deleted -- usually base level traversals only traverse a few
195 * nodes. This doesn't change the basic algorithm except for the
196 * need to make sure base traversals start at predecessors (here,
197 * b) that are not (structurally) deleted, otherwise retrying
198 * after processing the deletion.
199 *
200 * Index levels are maintained using CAS to link and unlink
201 * successors ("right" fields). Races are allowed in index-list
202 * operations that can (rarely) fail to link in a new index node.
203 * (We can't do this of course for data nodes.) However, even
204 * when this happens, the index lists correctly guide search.
205 * This can impact performance, but since skip lists are
206 * probabilistic anyway, the net result is that under contention,
207 * the effective "p" value may be lower than its nominal value.
208 *
209 * Index insertion and deletion sometimes require a separate
210 * traversal pass occurring after the base-level action, to add or
211 * remove index nodes. This adds to single-threaded overhead, but
212 * improves contended multithreaded performance by narrowing
213 * interference windows, and allows deletion to ensure that all
214 * index nodes will be made unreachable upon return from a public
215 * remove operation, thus avoiding unwanted garbage retention.
216 *
217 * Indexing uses skip list parameters that maintain good search
218 * performance while using sparser-than-usual indices: The
219 * hardwired parameters k=1, p=0.5 (see method doPut) mean that
220 * about one-quarter of the nodes have indices. Of those that do,
221 * half have one level, a quarter have two, and so on (see Pugh's
222 * Skip List Cookbook, sec 3.4), up to a maximum of 62 levels
223 * (appropriate for up to 2^63 elements). The expected total
224 * space requirement for a map is slightly less than for the
225 * current implementation of java.util.TreeMap.
226 *
227 * Changing the level of the index (i.e, the height of the
228 * tree-like structure) also uses CAS. Creation of an index with
229 * height greater than the current level adds a level to the head
230 * index by CAS'ing on a new top-most head. To maintain good
231 * performance after a lot of removals, deletion methods
232 * heuristically try to reduce the height if the topmost levels
233 * appear to be empty. This may encounter races in which it is
234 * possible (but rare) to reduce and "lose" a level just as it is
235 * about to contain an index (that will then never be
236 * encountered). This does no structural harm, and in practice
237 * appears to be a better option than allowing unrestrained growth
238 * of levels.
239 *
240 * This class provides concurrent-reader-style memory consistency,
241 * ensuring that read-only methods report status and/or values no
242 * staler than those holding at method entry. This is done by
243 * performing all publication and structural updates using
244 * (volatile) CAS, placing an acquireFence in a few access
245 * methods, and ensuring that linked objects are transitively
246 * acquired via dependent reads (normally once) unless performing
247 * a volatile-mode CAS operation (that also acts as an acquire and
248 * release). This form of fence-hoisting is similar to RCU and
249 * related techniques (see McKenney's online book
250 * https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)
251 * It minimizes overhead that may otherwise occur when using so
252 * many volatile-mode reads. Using explicit acquireFences is
253 * logistically easier than targeting particular fields to be read
254 * in acquire mode: fences are just hoisted up as far as possible,
255 * to the entry points or loop headers of a few methods. A
256 * potential disadvantage is that these few remaining fences are
257 * not easily optimized away by compilers under exclusively
258 * single-thread use. It requires some care to avoid volatile
259 * mode reads of other fields. (Note that the memory semantics of
260 * a reference dependently read in plain mode exactly once are
261 * equivalent to those for atomic opaque mode.) Iterators and
262 * other traversals encounter each node and value exactly once.
263 * Other operations locate an element (or position to insert an
264 * element) via a sequence of dereferences. This search is broken
265 * into two parts. Method findPredecessor (and its specialized
266 * embeddings) searches index nodes only, returning a base-level
267 * predecessor of the key. Callers carry out the base-level
268 * search, restarting if encountering a marker preventing link
269 * modification. In some cases, it is possible to encounter a
270 * node multiple times while descending levels. For mutative
271 * operations, the reported value is validated using CAS (else
272 * retrying), preserving linearizability with respect to each
273 * other. Others may return any (non-null) value holding in the
274 * course of the method call. (Search-based methods also include
275 * some useless-looking explicit null checks designed to allow
276 * more fields to be nulled out upon removal, to reduce floating
277 * garbage, but which is not currently done, pending discovery of
278 * a way to do this with less impact on other operations.)
279 *
280 * To produce random values without interference across threads,
281 * we use within-JDK thread local random support (via the
282 * "secondary seed", to avoid interference with user-level
283 * ThreadLocalRandom.)
284 *
285 * For explanation of algorithms sharing at least a couple of
286 * features with this one, see Mikhail Fomitchev's thesis
287 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
288 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
289 * thesis (http://www.cs.chalmers.se/~phs/).
290 *
291 * Notation guide for local variables
292 * Node: b, n, f, p for predecessor, node, successor, aux
293 * Index: q, r, d for index node, right, down.
294 * Head: h
295 * Keys: k, key
296 * Values: v, value
297 * Comparisons: c
298 *
299 * Note that, with VarHandles, a boolean result of
300 * compareAndSet must be declared even if not used.
301 */
302
303 private static final long serialVersionUID = -8627078645895051609L;
304
305 /**
306 * The comparator used to maintain order in this map, or null if
307 * using natural ordering. (Non-private to simplify access in
308 * nested classes.)
309 * @serial
310 */
311 final Comparator<? super K> comparator;
312
313 /** Lazily initialized topmost index of the skiplist. */
314 private transient Index<K,V> head;
315 /** Lazily initialized element count */
316 private transient LongAdder adder;
317 /** Lazily initialized key set */
318 private transient KeySet<K,V> keySet;
319 /** Lazily initialized values collection */
320 private transient Values<K,V> values;
321 /** Lazily initialized entry set */
322 private transient EntrySet<K,V> entrySet;
323 /** Lazily initialized descending map */
324 private transient SubMap<K,V> descendingMap;
325
326 /**
327 * Nodes hold keys and values, and are singly linked in sorted
328 * order, possibly with some intervening marker nodes. The list is
329 * headed by a header node accessible as head.node. Headers and
330 * marker nodes have null keys. The val field (but currently not
331 * the key field) is nulled out upon deletion.
332 */
333 static final class Node<K,V> {
334 final K key; // currently, never detached
335 V val;
336 Node<K,V> next;
337 Node(K key, V value, Node<K,V> next) {
338 this.key = key;
339 this.val = value;
340 this.next = next;
341 }
342 }
343
344 /**
345 * Index nodes represent the levels of the skip list.
346 */
347 static final class Index<K,V> {
348 final Node<K,V> node; // currently, never detached
349 final Index<K,V> down;
350 Index<K,V> right;
351 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
352 this.node = node;
353 this.down = down;
354 this.right = right;
355 }
356 }
357
358 /* ---------------- Utilities -------------- */
359
360 /**
361 * Compares using comparator or natural ordering if null.
362 * Called only by methods that have performed required type checks.
363 */
364 @SuppressWarnings({"unchecked", "rawtypes"})
365 static int cpr(Comparator c, Object x, Object y) {
366 return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
367 }
368
369 /**
370 * Returns the header for base node list, or null if uninitialized
371 */
372 final Node<K,V> baseHead() {
373 Index<K,V> h;
374 VarHandle.acquireFence();
375 return ((h = head) == null) ? null : h.node;
376 }
377
378 /**
379 * Tries to unlink deleted node n from predecessor b (if both
380 * exist), by first splicing in a marker if not already present.
381 * Upon return, node n is sure to be unlinked from b, possibly
382 * via the actions of some other thread.
383 *
384 * @param b if nonnull, predecessor
385 * @param n if nonnull, node known to be deleted
386 */
387 static <K,V> void unlinkNode(Node<K,V> b, Node<K,V> n) {
388 if (b != null && n != null) {
389 Node<K,V> f, p;
390 for (;;) {
391 if ((f = n.next) != null && f.key == null) {
392 p = f.next; // already marked
393 break;
394 }
395 else if (NEXT.compareAndSet(n, f,
396 new Node<K,V>(null, null, f))) {
397 p = f; // add marker
398 break;
399 }
400 }
401 boolean cas = NEXT.compareAndSet(b, n, p);
402 }
403 }
404
405 /**
406 * Adds to element count, initializing adder if necessary
407 *
408 * @param c count to add
409 */
410 private void addCount(long c) {
411 LongAdder a;
412 do {} while ((a = adder) == null &&
413 !ADDER.compareAndSet(this, null, a = new LongAdder()));
414 a.add(c);
415 }
416
417 /**
418 * Returns element count, initializing adder if necessary.
419 */
420 final long getAdderCount() {
421 LongAdder a; long c;
422 do {} while ((a = adder) == null &&
423 !ADDER.compareAndSet(this, null, a = new LongAdder()));
424 return ((c = a.sum()) <= 0L) ? 0L : c; // ignore transient negatives
425 }
426
427 /* ---------------- Traversal -------------- */
428
429 /**
430 * Returns an index node with key strictly less than given key.
431 * Also unlinks indexes to deleted nodes found along the way.
432 * Callers rely on this side-effect of clearing indices to deleted
433 * nodes.
434 *
435 * @param key if nonnull the key
436 * @return a predecessor node of key, or null if uninitialized or null key
437 */
438 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
439 Index<K,V> q;
440 VarHandle.acquireFence();
441 if ((q = head) == null || key == null)
442 return null;
443 else {
444 for (Index<K,V> r, d;;) {
445 while ((r = q.right) != null) {
446 Node<K,V> p; K k;
447 if ((p = r.node) == null || (k = p.key) == null ||
448 p.val == null) { // unlink index to deleted node
449 boolean cas = RIGHT.compareAndSet(q, r, r.right);
450 }
451 else if (cpr(cmp, key, k) > 0)
452 q = r;
453 else
454 break;
455 }
456 if ((d = q.down) != null)
457 q = d;
458 else
459 return q.node;
460 }
461 }
462 }
463
464 /**
465 * Returns node holding key or null if no such, clearing out any
466 * deleted nodes seen along the way. Repeatedly traverses at
467 * base-level looking for key starting at predecessor returned
468 * from findPredecessor, processing base-level deletions as
469 * encountered. Restarts occur, at traversal step encountering
470 * node n, if n's key field is null, indicating it is a marker, so
471 * its predecessor is deleted before continuing, which we help do
472 * by re-finding a valid predecessor. The traversal loops in
473 * doPut, doRemove, and findNear all include the same checks.
474 *
475 * @param key the key
476 * @return node holding key, or null if no such
477 */
478 private Node<K,V> findNode(Object key) {
479 if (key == null)
480 throw new NullPointerException(); // don't postpone errors
481 Comparator<? super K> cmp = comparator;
482 Node<K,V> b;
483 outer: while ((b = findPredecessor(key, cmp)) != null) {
484 for (;;) {
485 Node<K,V> n; K k; V v; int c;
486 if ((n = b.next) == null)
487 break outer; // empty
488 else if ((k = n.key) == null)
489 break; // b is deleted
490 else if ((v = n.val) == null)
491 unlinkNode(b, n); // n is deleted
492 else if ((c = cpr(cmp, key, k)) > 0)
493 b = n;
494 else if (c == 0)
495 return n;
496 else
497 break outer;
498 }
499 }
500 return null;
501 }
502
503 /**
504 * Gets value for key. Same idea as findNode, except skips over
505 * deletions and markers, and returns first encountered value to
506 * avoid possibly inconsistent rereads.
507 *
508 * @param key the key
509 * @return the value, or null if absent
510 */
511 private V doGet(Object key) {
512 Index<K,V> q;
513 VarHandle.acquireFence();
514 if (key == null)
515 throw new NullPointerException();
516 Comparator<? super K> cmp = comparator;
517 V result = null;
518 if ((q = head) != null) {
519 outer: for (Index<K,V> r, d;;) {
520 while ((r = q.right) != null) {
521 Node<K,V> p; K k; V v; int c;
522 if ((p = r.node) == null || (k = p.key) == null ||
523 (v = p.val) == null) {
524 boolean cas = RIGHT.compareAndSet(q, r, r.right);
525 }
526 else if ((c = cpr(cmp, key, k)) > 0)
527 q = r;
528 else if (c == 0) {
529 result = v;
530 break outer;
531 }
532 else
533 break;
534 }
535 if ((d = q.down) != null)
536 q = d;
537 else {
538 Node<K,V> b, n;
539 if ((b = q.node) != null) {
540 while ((n = b.next) != null) {
541 V v; int c;
542 K k = n.key;
543 if ((v = n.val) == null || k == null ||
544 (c = cpr(cmp, key, k)) > 0)
545 b = n;
546 else {
547 if (c == 0)
548 result = v;
549 break;
550 }
551 }
552 }
553 break;
554 }
555 }
556 }
557 return result;
558 }
559
560 /* ---------------- Insertion -------------- */
561
562 /**
563 * Main insertion method. Adds element if not present, or
564 * replaces value if present and onlyIfAbsent is false.
565 *
566 * @param key the key
567 * @param value the value that must be associated with key
568 * @param onlyIfAbsent if should not insert if already present
569 * @return the old value, or null if newly inserted
570 */
571 private V doPut(K key, V value, boolean onlyIfAbsent) {
572 if (key == null)
573 throw new NullPointerException();
574 Comparator<? super K> cmp = comparator;
575 for (;;) {
576 Index<K,V> h; Node<K,V> b;
577 VarHandle.acquireFence();
578 int levels = 0; // number of levels descended
579 if ((h = head) == null) { // try to initialize
580 Node<K,V> base = new Node<K,V>(null, null, null);
581 h = new Index<K,V>(base, null, null);
582 b = (HEAD.compareAndSet(this, null, h)) ? base : null;
583 }
584 else {
585 for (Index<K,V> q = h, r, d;;) { // count while descending
586 while ((r = q.right) != null) {
587 Node<K,V> p; K k;
588 if ((p = r.node) == null || (k = p.key) == null ||
589 p.val == null) {
590 boolean cas = RIGHT.compareAndSet(q, r, r.right);
591 }
592 else if (cpr(cmp, key, k) > 0)
593 q = r;
594 else
595 break;
596 }
597 if ((d = q.down) != null) {
598 ++levels;
599 q = d;
600 }
601 else {
602 b = q.node;
603 break;
604 }
605 }
606 }
607 if (b != null) {
608 Node<K,V> z = null; // new node, if inserted
609 for (;;) { // find insertion point
610 Node<K,V> n, p; K k; V v; int c;
611 if ((n = b.next) == null) {
612 if (b.key == null) // if empty, type check key now
613 cpr(cmp, key, key);
614 c = -1;
615 }
616 else if ((k = n.key) == null)
617 break; // can't append; restart
618 else if ((v = n.val) == null) {
619 unlinkNode(b, n);
620 c = 1;
621 }
622 else if ((c = cpr(cmp, key, k)) > 0)
623 b = n;
624 else if (c == 0 &&
625 (onlyIfAbsent || VAL.compareAndSet(n, v, value)))
626 return v;
627
628 if (c < 0 &&
629 NEXT.compareAndSet(b, n,
630 p = new Node<K,V>(key, value, n))) {
631 z = p;
632 break;
633 }
634 }
635
636 if (z != null) {
637 int lr = ThreadLocalRandom.nextSecondarySeed();
638 if ((lr & 0x3) == 0) { // add indices with 1/4 prob
639 int hr = ThreadLocalRandom.nextSecondarySeed();
640 long rnd = ((long)hr << 32) | ((long)lr & 0xffffffffL);
641 int skips = levels; // levels to descend before add
642 Index<K,V> x = null;
643 for (;;) { // create at most 62 indices
644 x = new Index<K,V>(z, x, null);
645 if (rnd >= 0L || --skips < 0)
646 break;
647 else
648 rnd <<= 1;
649 }
650 if (addIndices(h, skips, x, cmp) && skips < 0 &&
651 head == h) { // try to add new level
652 Index<K,V> hx = new Index<K,V>(z, x, null);
653 Index<K,V> nh = new Index<K,V>(h.node, h, hx);
654 boolean cas = HEAD.compareAndSet(this, h, nh);
655 }
656 if (z.val == null) // deleted while adding indices
657 findPredecessor(key, cmp); // clean
658 }
659 addCount(1L);
660 return null;
661 }
662 }
663 }
664 }
665
666 /**
667 * Add indices after an insertion. Descends iteratively to the
668 * highest level of insertion, then recursively, to chain index
669 * nodes to lower ones. Returns null on (staleness) failure,
670 * disabling higher-level insertions. Recursion depths are
671 * exponentially less probable.
672 *
673 * @param q starting index for current level
674 * @param skips levels to skip before inserting
675 * @param x index for this insertion
676 * @param cmp comparator
677 */
678 static <K,V> boolean addIndices(Index<K,V> q, int skips, Index<K,V> x,
679 Comparator<? super K> cmp) {
680 Node<K,V> z; K key;
681 if (x != null && (z = x.node) != null && (key = z.key) != null &&
682 q != null) { // hoist checks
683 boolean retrying = false;
684 for (;;) { // find splice point
685 Index<K,V> r, d; int c;
686 if ((r = q.right) != null) {
687 Node<K,V> p; K k;
688 if ((p = r.node) == null || (k = p.key) == null ||
689 p.val == null) {
690 boolean cas = RIGHT.compareAndSet(q, r, r.right);
691 c = 0;
692 }
693 else if ((c = cpr(cmp, key, k)) > 0)
694 q = r;
695 else if (c == 0)
696 break; // stale
697 }
698 else
699 c = -1;
700
701 if (c < 0) {
702 if ((d = q.down) != null && skips > 0) {
703 --skips;
704 q = d;
705 }
706 else if (d != null && !retrying &&
707 !addIndices(d, 0, x.down, cmp))
708 break;
709 else {
710 x.right = r;
711 if (RIGHT.compareAndSet(q, r, x))
712 return true;
713 else
714 retrying = true; // re-find splice point
715 }
716 }
717 }
718 }
719 return false;
720 }
721
722 /* ---------------- Deletion -------------- */
723
724 /**
725 * Main deletion method. Locates node, nulls value, appends a
726 * deletion marker, unlinks predecessor, removes associated index
727 * nodes, and possibly reduces head index level.
728 *
729 * @param key the key
730 * @param value if non-null, the value that must be
731 * associated with key
732 * @return the node, or null if not found
733 */
734 final V doRemove(Object key, Object value) {
735 if (key == null)
736 throw new NullPointerException();
737 Comparator<? super K> cmp = comparator;
738 V result = null;
739 Node<K,V> b;
740 outer: while ((b = findPredecessor(key, cmp)) != null &&
741 result == null) {
742 for (;;) {
743 Node<K,V> n; K k; V v; int c;
744 if ((n = b.next) == null)
745 break outer;
746 else if ((k = n.key) == null)
747 break;
748 else if ((v = n.val) == null)
749 unlinkNode(b, n);
750 else if ((c = cpr(cmp, key, k)) > 0)
751 b = n;
752 else if (c < 0)
753 break outer;
754 else if (value != null && !value.equals(v))
755 break outer;
756 else if (VAL.compareAndSet(n, v, null)) {
757 result = v;
758 unlinkNode(b, n);
759 break; // loop to clean up
760 }
761 }
762 }
763 if (result != null) {
764 tryReduceLevel();
765 addCount(-1L);
766 }
767 return result;
768 }
769
770 /**
771 * Possibly reduce head level if it has no nodes. This method can
772 * (rarely) make mistakes, in which case levels can disappear even
773 * though they are about to contain index nodes. This impacts
774 * performance, not correctness. To minimize mistakes as well as
775 * to reduce hysteresis, the level is reduced by one only if the
776 * topmost three levels look empty. Also, if the removed level
777 * looks non-empty after CAS, we try to change it back quick
778 * before anyone notices our mistake! (This trick works pretty
779 * well because this method will practically never make mistakes
780 * unless current thread stalls immediately before first CAS, in
781 * which case it is very unlikely to stall again immediately
782 * afterwards, so will recover.)
783 *
784 * We put up with all this rather than just let levels grow
785 * because otherwise, even a small map that has undergone a large
786 * number of insertions and removals will have a lot of levels,
787 * slowing down access more than would an occasional unwanted
788 * reduction.
789 */
790 private void tryReduceLevel() {
791 Index<K,V> h, d, e;
792 if ((h = head) != null && h.right == null &&
793 (d = h.down) != null && d.right == null &&
794 (e = d.down) != null && e.right == null &&
795 HEAD.compareAndSet(this, h, d) &&
796 h.right != null) { // recheck
797 boolean cas = HEAD.compareAndSet(this, d, h); // try to backout
798 }
799 }
800
801 /* ---------------- Finding and removing first element -------------- */
802
803 /**
804 * Gets first valid node, unlinking deleted nodes if encountered.
805 * @return first node or null if empty
806 */
807 final Node<K,V> findFirst() {
808 Node<K,V> b, n;
809 if ((b = baseHead()) != null) {
810 while ((n = b.next) != null) {
811 if (n.val == null)
812 unlinkNode(b, n);
813 else
814 return n;
815 }
816 }
817 return null;
818 }
819
820 /**
821 * Entry snapshot version of findFirst
822 */
823 final AbstractMap.SimpleImmutableEntry<K,V> findFirstEntry() {
824 Node<K,V> b, n; V v;
825 if ((b = baseHead()) != null) {
826 while ((n = b.next) != null) {
827 if ((v = n.val) == null)
828 unlinkNode(b, n);
829 else
830 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
831 }
832 }
833 return null;
834 }
835
836 /**
837 * Removes first entry; returns its snapshot.
838 * @return null if empty, else snapshot of first entry
839 */
840 private AbstractMap.SimpleImmutableEntry<K,V> doRemoveFirstEntry() {
841 Node<K,V> b, n; V v;
842 if ((b = baseHead()) != null) {
843 while ((n = b.next) != null) {
844 if ((v = n.val) == null || VAL.compareAndSet(n, v, null)) {
845 K k = n.key;
846 unlinkNode(b, n);
847 if (v != null) {
848 tryReduceLevel();
849 findPredecessor(k, comparator); // clean index
850 addCount(-1L);
851 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
852 }
853 }
854 }
855 }
856 return null;
857 }
858
859 /* ---------------- Finding and removing last element -------------- */
860
861 /**
862 * Specialized version of find to get last valid node.
863 * @return last node or null if empty
864 */
865 final Node<K,V> findLast() {
866 outer: for (;;) {
867 Index<K,V> q; Node<K,V> b;
868 VarHandle.acquireFence();
869 if ((q = head) == null)
870 break;
871 for (Index<K,V> r, d;;) {
872 while ((r = q.right) != null) {
873 Node<K,V> p;
874 if ((p = r.node) == null || p.val == null) {
875 boolean cas = RIGHT.compareAndSet(q, r, r.right);
876 }
877 else
878 q = r;
879 }
880 if ((d = q.down) != null)
881 q = d;
882 else {
883 b = q.node;
884 break;
885 }
886 }
887 if (b != null) {
888 for (;;) {
889 Node<K,V> n;
890 if ((n = b.next) == null) {
891 if (b.key == null) // empty
892 break outer;
893 else
894 return b;
895 }
896 else if (n.key == null)
897 break;
898 else if (n.val == null)
899 unlinkNode(b, n);
900 else
901 b = n;
902 }
903 }
904 }
905 return null;
906 }
907
908 /**
909 * Entry version of findLast
910 * @return Entry for last node or null if empty
911 */
912 final AbstractMap.SimpleImmutableEntry<K,V> findLastEntry() {
913 for (;;) {
914 Node<K,V> n; V v;
915 if ((n = findLast()) == null)
916 return null;
917 if ((v = n.val) != null)
918 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
919 }
920 }
921
922 /**
923 * Removes last entry; returns its snapshot.
924 * Specialized variant of doRemove.
925 * @return null if empty, else snapshot of last entry
926 */
927 private Map.Entry<K,V> doRemoveLastEntry() {
928 outer: for (;;) {
929 Index<K,V> q; Node<K,V> b;
930 VarHandle.acquireFence();
931 if ((q = head) == null)
932 break;
933 for (;;) {
934 Index<K,V> d, r; Node<K,V> p;
935 while ((r = q.right) != null) {
936 if ((p = r.node) == null || p.val == null) {
937 boolean cas = RIGHT.compareAndSet(q, r, r.right);
938 }
939 else if (p.next != null)
940 q = r; // continue only if a successor
941 else
942 break;
943 }
944 if ((d = q.down) != null)
945 q = d;
946 else {
947 b = q.node;
948 break;
949 }
950 }
951 if (b != null) {
952 for (;;) {
953 Node<K,V> n; K k; V v;
954 if ((n = b.next) == null) {
955 if (b.key == null) // empty
956 break outer;
957 else
958 break; // retry
959 }
960 else if ((k = n.key) == null)
961 break;
962 else if ((v = n.val) == null)
963 unlinkNode(b, n);
964 else if (n.next != null)
965 b = n;
966 else if (VAL.compareAndSet(n, v, null)) {
967 unlinkNode(b, n);
968 tryReduceLevel();
969 findPredecessor(k, comparator); // clean index
970 addCount(-1L);
971 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
972 }
973 }
974 }
975 }
976 return null;
977 }
978
979 /* ---------------- Relational operations -------------- */
980
981 // Control values OR'ed as arguments to findNear
982
983 private static final int EQ = 1;
984 private static final int LT = 2;
985 private static final int GT = 0; // Actually checked as !LT
986
987 /**
988 * Utility for ceiling, floor, lower, higher methods.
989 * @param key the key
990 * @param rel the relation -- OR'ed combination of EQ, LT, GT
991 * @return nearest node fitting relation, or null if no such
992 */
993 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
994 if (key == null)
995 throw new NullPointerException();
996 Node<K,V> result;
997 outer: for (Node<K,V> b;;) {
998 if ((b = findPredecessor(key, cmp)) == null) {
999 result = null;
1000 break; // empty
1001 }
1002 for (;;) {
1003 Node<K,V> n; K k; int c;
1004 if ((n = b.next) == null) {
1005 result = ((rel & LT) != 0 && b.key != null) ? b : null;
1006 break outer;
1007 }
1008 else if ((k = n.key) == null)
1009 break;
1010 else if (n.val == null)
1011 unlinkNode(b, n);
1012 else if (((c = cpr(cmp, key, k)) == 0 && (rel & EQ) != 0) ||
1013 (c < 0 && (rel & LT) == 0)) {
1014 result = n;
1015 break outer;
1016 }
1017 else if (c <= 0 && (rel & LT) != 0) {
1018 result = (b.key != null) ? b : null;
1019 break outer;
1020 }
1021 else
1022 b = n;
1023 }
1024 }
1025 return result;
1026 }
1027
1028 /**
1029 * Variant of findNear returning SimpleImmutableEntry
1030 * @param key the key
1031 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1032 * @return Entry fitting relation, or null if no such
1033 */
1034 final AbstractMap.SimpleImmutableEntry<K,V> findNearEntry(K key, int rel,
1035 Comparator<? super K> cmp) {
1036 for (;;) {
1037 Node<K,V> n; V v;
1038 if ((n = findNear(key, rel, cmp)) == null)
1039 return null;
1040 if ((v = n.val) != null)
1041 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
1042 }
1043 }
1044
1045 /* ---------------- Constructors -------------- */
1046
1047 /**
1048 * Constructs a new, empty map, sorted according to the
1049 * {@linkplain Comparable natural ordering} of the keys.
1050 */
1051 public ConcurrentSkipListMap() {
1052 this.comparator = null;
1053 }
1054
1055 /**
1056 * Constructs a new, empty map, sorted according to the specified
1057 * comparator.
1058 *
1059 * @param comparator the comparator that will be used to order this map.
1060 * If {@code null}, the {@linkplain Comparable natural
1061 * ordering} of the keys will be used.
1062 */
1063 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1064 this.comparator = comparator;
1065 }
1066
1067 /**
1068 * Constructs a new map containing the same mappings as the given map,
1069 * sorted according to the {@linkplain Comparable natural ordering} of
1070 * the keys.
1071 *
1072 * @param m the map whose mappings are to be placed in this map
1073 * @throws ClassCastException if the keys in {@code m} are not
1074 * {@link Comparable}, or are not mutually comparable
1075 * @throws NullPointerException if the specified map or any of its keys
1076 * or values are null
1077 */
1078 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1079 this.comparator = null;
1080 putAll(m);
1081 }
1082
1083 /**
1084 * Constructs a new map containing the same mappings and using the
1085 * same ordering as the specified sorted map.
1086 *
1087 * @param m the sorted map whose mappings are to be placed in this
1088 * map, and whose comparator is to be used to sort this map
1089 * @throws NullPointerException if the specified sorted map or any of
1090 * its keys or values are null
1091 */
1092 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1093 this.comparator = m.comparator();
1094 buildFromSorted(m); // initializes transients
1095 }
1096
1097 /**
1098 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1099 * instance. (The keys and values themselves are not cloned.)
1100 *
1101 * @return a shallow copy of this map
1102 */
1103 public ConcurrentSkipListMap<K,V> clone() {
1104 try {
1105 @SuppressWarnings("unchecked")
1106 ConcurrentSkipListMap<K,V> clone =
1107 (ConcurrentSkipListMap<K,V>) super.clone();
1108 clone.keySet = null;
1109 clone.entrySet = null;
1110 clone.values = null;
1111 clone.descendingMap = null;
1112 clone.buildFromSorted(this);
1113 return clone;
1114 } catch (CloneNotSupportedException e) {
1115 throw new InternalError();
1116 }
1117 }
1118
1119 /**
1120 * Streamlined bulk insertion to initialize from elements of
1121 * given sorted map. Call only from constructor or clone
1122 * method.
1123 */
1124 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1125 if (map == null)
1126 throw new NullPointerException();
1127 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1128 map.entrySet().iterator();
1129
1130 /*
1131 * Add equally spaced indices at log intervals, using the bits
1132 * of count during insertion. The maximum possible resulting
1133 * level is less than the number of bits in a long (64). The
1134 * preds array tracks the current rightmost node at each
1135 * level.
1136 */
1137 @SuppressWarnings("unchecked")
1138 Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1139 Node<K,V> bp = new Node<K,V>(null, null, null);
1140 Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1141 long count = 0;
1142
1143 while (it.hasNext()) {
1144 Map.Entry<? extends K, ? extends V> e = it.next();
1145 K k = e.getKey();
1146 V v = e.getValue();
1147 if (k == null || v == null)
1148 throw new NullPointerException();
1149 Node<K,V> z = new Node<K,V>(k, v, null);
1150 bp = bp.next = z;
1151 if ((++count & 3L) == 0L) {
1152 long m = count >>> 2;
1153 int i = 0;
1154 Index<K,V> idx = null, q;
1155 do {
1156 idx = new Index<K,V>(z, idx, null);
1157 if ((q = preds[i]) == null)
1158 preds[i] = h = new Index<K,V>(h.node, h, idx);
1159 else
1160 preds[i] = q.right = idx;
1161 } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1162 }
1163 }
1164 if (count != 0L) {
1165 VarHandle.releaseFence(); // emulate volatile stores
1166 addCount(count);
1167 head = h;
1168 VarHandle.fullFence();
1169 }
1170 }
1171
1172 /* ---------------- Serialization -------------- */
1173
1174 /**
1175 * Saves this map to a stream (that is, serializes it).
1176 *
1177 * @param s the stream
1178 * @throws java.io.IOException if an I/O error occurs
1179 * @serialData The key (Object) and value (Object) for each
1180 * key-value mapping represented by the map, followed by
1181 * {@code null}. The key-value mappings are emitted in key-order
1182 * (as determined by the Comparator, or by the keys' natural
1183 * ordering if no Comparator).
1184 */
1185 private void writeObject(java.io.ObjectOutputStream s)
1186 throws java.io.IOException {
1187 // Write out the Comparator and any hidden stuff
1188 s.defaultWriteObject();
1189
1190 // Write out keys and values (alternating)
1191 Node<K,V> b, n; V v;
1192 if ((b = baseHead()) != null) {
1193 while ((n = b.next) != null) {
1194 if ((v = n.val) != null) {
1195 s.writeObject(n.key);
1196 s.writeObject(v);
1197 }
1198 b = n;
1199 }
1200 }
1201 s.writeObject(null);
1202 }
1203
1204 /**
1205 * Reconstitutes this map from a stream (that is, deserializes it).
1206 * @param s the stream
1207 * @throws ClassNotFoundException if the class of a serialized object
1208 * could not be found
1209 * @throws java.io.IOException if an I/O error occurs
1210 */
1211 @SuppressWarnings("unchecked")
1212 private void readObject(final java.io.ObjectInputStream s)
1213 throws java.io.IOException, ClassNotFoundException {
1214 // Read in the Comparator and any hidden stuff
1215 s.defaultReadObject();
1216
1217 // Same idea as buildFromSorted
1218 @SuppressWarnings("unchecked")
1219 Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1220 Node<K,V> bp = new Node<K,V>(null, null, null);
1221 Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1222 Comparator<? super K> cmp = comparator;
1223 K prevKey = null;
1224 long count = 0;
1225
1226 for (;;) {
1227 K k = (K)s.readObject();
1228 if (k == null)
1229 break;
1230 V v = (V)s.readObject();
1231 if (v == null)
1232 throw new NullPointerException();
1233 if (prevKey != null && cpr(cmp, prevKey, k) > 0)
1234 throw new IllegalStateException("out of order");
1235 prevKey = k;
1236 Node<K,V> z = new Node<K,V>(k, v, null);
1237 bp = bp.next = z;
1238 if ((++count & 3L) == 0L) {
1239 long m = count >>> 2;
1240 int i = 0;
1241 Index<K,V> idx = null, q;
1242 do {
1243 idx = new Index<K,V>(z, idx, null);
1244 if ((q = preds[i]) == null)
1245 preds[i] = h = new Index<K,V>(h.node, h, idx);
1246 else
1247 preds[i] = q.right = idx;
1248 } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1249 }
1250 }
1251 if (count != 0L) {
1252 VarHandle.releaseFence();
1253 addCount(count);
1254 head = h;
1255 VarHandle.fullFence();
1256 }
1257 }
1258
1259 /* ------ Map API methods ------ */
1260
1261 /**
1262 * Returns {@code true} if this map contains a mapping for the specified
1263 * key.
1264 *
1265 * @param key key whose presence in this map is to be tested
1266 * @return {@code true} if this map contains a mapping for the specified key
1267 * @throws ClassCastException if the specified key cannot be compared
1268 * with the keys currently in the map
1269 * @throws NullPointerException if the specified key is null
1270 */
1271 public boolean containsKey(Object key) {
1272 return doGet(key) != null;
1273 }
1274
1275 /**
1276 * Returns the value to which the specified key is mapped,
1277 * or {@code null} if this map contains no mapping for the key.
1278 *
1279 * <p>More formally, if this map contains a mapping from a key
1280 * {@code k} to a value {@code v} such that {@code key} compares
1281 * equal to {@code k} according to the map's ordering, then this
1282 * method returns {@code v}; otherwise it returns {@code null}.
1283 * (There can be at most one such mapping.)
1284 *
1285 * @throws ClassCastException if the specified key cannot be compared
1286 * with the keys currently in the map
1287 * @throws NullPointerException if the specified key is null
1288 */
1289 public V get(Object key) {
1290 return doGet(key);
1291 }
1292
1293 /**
1294 * Returns the value to which the specified key is mapped,
1295 * or the given defaultValue if this map contains no mapping for the key.
1296 *
1297 * @param key the key
1298 * @param defaultValue the value to return if this map contains
1299 * no mapping for the given key
1300 * @return the mapping for the key, if present; else the defaultValue
1301 * @throws NullPointerException if the specified key is null
1302 * @since 1.8
1303 */
1304 public V getOrDefault(Object key, V defaultValue) {
1305 V v;
1306 return (v = doGet(key)) == null ? defaultValue : v;
1307 }
1308
1309 /**
1310 * Associates the specified value with the specified key in this map.
1311 * If the map previously contained a mapping for the key, the old
1312 * value is replaced.
1313 *
1314 * @param key key with which the specified value is to be associated
1315 * @param value value to be associated with the specified key
1316 * @return the previous value associated with the specified key, or
1317 * {@code null} if there was no mapping for the key
1318 * @throws ClassCastException if the specified key cannot be compared
1319 * with the keys currently in the map
1320 * @throws NullPointerException if the specified key or value is null
1321 */
1322 public V put(K key, V value) {
1323 if (value == null)
1324 throw new NullPointerException();
1325 return doPut(key, value, false);
1326 }
1327
1328 /**
1329 * Removes the mapping for the specified key from this map if present.
1330 *
1331 * @param key key for which mapping should be removed
1332 * @return the previous value associated with the specified key, or
1333 * {@code null} if there was no mapping for the key
1334 * @throws ClassCastException if the specified key cannot be compared
1335 * with the keys currently in the map
1336 * @throws NullPointerException if the specified key is null
1337 */
1338 public V remove(Object key) {
1339 return doRemove(key, null);
1340 }
1341
1342 /**
1343 * Returns {@code true} if this map maps one or more keys to the
1344 * specified value. This operation requires time linear in the
1345 * map size. Additionally, it is possible for the map to change
1346 * during execution of this method, in which case the returned
1347 * result may be inaccurate.
1348 *
1349 * @param value value whose presence in this map is to be tested
1350 * @return {@code true} if a mapping to {@code value} exists;
1351 * {@code false} otherwise
1352 * @throws NullPointerException if the specified value is null
1353 */
1354 public boolean containsValue(Object value) {
1355 if (value == null)
1356 throw new NullPointerException();
1357 Node<K,V> b, n; V v;
1358 if ((b = baseHead()) != null) {
1359 while ((n = b.next) != null) {
1360 if ((v = n.val) != null && value.equals(v))
1361 return true;
1362 else
1363 b = n;
1364 }
1365 }
1366 return false;
1367 }
1368
1369 /**
1370 * {@inheritDoc}
1371 */
1372 public int size() {
1373 long c;
1374 return ((baseHead() == null) ? 0 :
1375 ((c = getAdderCount()) >= Integer.MAX_VALUE) ?
1376 Integer.MAX_VALUE : (int) c);
1377 }
1378
1379 /**
1380 * {@inheritDoc}
1381 */
1382 public boolean isEmpty() {
1383 return findFirst() == null;
1384 }
1385
1386 /**
1387 * Removes all of the mappings from this map.
1388 */
1389 public void clear() {
1390 Index<K,V> h, r, d; Node<K,V> b;
1391 VarHandle.acquireFence();
1392 while ((h = head) != null) {
1393 if ((r = h.right) != null) { // remove indices
1394 boolean cas = RIGHT.compareAndSet(h, r, null);
1395 }
1396 else if ((d = h.down) != null) { // remove levels
1397 boolean cas = HEAD.compareAndSet(this, h, d);
1398 }
1399 else {
1400 long count = 0L;
1401 if ((b = h.node) != null) { // remove nodes
1402 Node<K,V> n; V v;
1403 while ((n = b.next) != null) {
1404 if ((v = n.val) != null &&
1405 VAL.compareAndSet(n, v, null)) {
1406 --count;
1407 v = null;
1408 }
1409 if (v == null)
1410 unlinkNode(b, n);
1411 }
1412 }
1413 if (count != 0L)
1414 addCount(count);
1415 else
1416 break;
1417 }
1418 }
1419 }
1420
1421 /**
1422 * If the specified key is not already associated with a value,
1423 * attempts to compute its value using the given mapping function
1424 * and enters it into this map unless {@code null}. The function
1425 * is <em>NOT</em> guaranteed to be applied once atomically only
1426 * if the value is not present.
1427 *
1428 * @param key key with which the specified value is to be associated
1429 * @param mappingFunction the function to compute a value
1430 * @return the current (existing or computed) value associated with
1431 * the specified key, or null if the computed value is null
1432 * @throws NullPointerException if the specified key is null
1433 * or the mappingFunction is null
1434 * @since 1.8
1435 */
1436 public V computeIfAbsent(K key,
1437 Function<? super K, ? extends V> mappingFunction) {
1438 if (key == null || mappingFunction == null)
1439 throw new NullPointerException();
1440 V v, p, r;
1441 if ((v = doGet(key)) == null &&
1442 (r = mappingFunction.apply(key)) != null)
1443 v = (p = doPut(key, r, true)) == null ? r : p;
1444 return v;
1445 }
1446
1447 /**
1448 * If the value for the specified key is present, attempts to
1449 * compute a new mapping given the key and its current mapped
1450 * value. The function is <em>NOT</em> guaranteed to be applied
1451 * once atomically.
1452 *
1453 * @param key key with which a value may be associated
1454 * @param remappingFunction the function to compute a value
1455 * @return the new value associated with the specified key, or null if none
1456 * @throws NullPointerException if the specified key is null
1457 * or the remappingFunction is null
1458 * @since 1.8
1459 */
1460 public V computeIfPresent(K key,
1461 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1462 if (key == null || remappingFunction == null)
1463 throw new NullPointerException();
1464 Node<K,V> n; V v;
1465 while ((n = findNode(key)) != null) {
1466 if ((v = n.val) != null) {
1467 V r = remappingFunction.apply(key, v);
1468 if (r != null) {
1469 if (VAL.compareAndSet(n, v, r))
1470 return r;
1471 }
1472 else if (doRemove(key, v) != null)
1473 break;
1474 }
1475 }
1476 return null;
1477 }
1478
1479 /**
1480 * Attempts to compute a mapping for the specified key and its
1481 * current mapped value (or {@code null} if there is no current
1482 * mapping). The function is <em>NOT</em> guaranteed to be applied
1483 * once atomically.
1484 *
1485 * @param key key with which the specified value is to be associated
1486 * @param remappingFunction the function to compute a value
1487 * @return the new value associated with the specified key, or null if none
1488 * @throws NullPointerException if the specified key is null
1489 * or the remappingFunction is null
1490 * @since 1.8
1491 */
1492 public V compute(K key,
1493 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1494 if (key == null || remappingFunction == null)
1495 throw new NullPointerException();
1496 for (;;) {
1497 Node<K,V> n; V v; V r;
1498 if ((n = findNode(key)) == null) {
1499 if ((r = remappingFunction.apply(key, null)) == null)
1500 break;
1501 if (doPut(key, r, true) == null)
1502 return r;
1503 }
1504 else if ((v = n.val) != null) {
1505 if ((r = remappingFunction.apply(key, v)) != null) {
1506 if (VAL.compareAndSet(n, v, r))
1507 return r;
1508 }
1509 else if (doRemove(key, v) != null)
1510 break;
1511 }
1512 }
1513 return null;
1514 }
1515
1516 /**
1517 * If the specified key is not already associated with a value,
1518 * associates it with the given value. Otherwise, replaces the
1519 * value with the results of the given remapping function, or
1520 * removes if {@code null}. The function is <em>NOT</em>
1521 * guaranteed to be applied once atomically.
1522 *
1523 * @param key key with which the specified value is to be associated
1524 * @param value the value to use if absent
1525 * @param remappingFunction the function to recompute a value if present
1526 * @return the new value associated with the specified key, or null if none
1527 * @throws NullPointerException if the specified key or value is null
1528 * or the remappingFunction is null
1529 * @since 1.8
1530 */
1531 public V merge(K key, V value,
1532 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1533 if (key == null || value == null || remappingFunction == null)
1534 throw new NullPointerException();
1535 for (;;) {
1536 Node<K,V> n; V v; V r;
1537 if ((n = findNode(key)) == null) {
1538 if (doPut(key, value, true) == null)
1539 return value;
1540 }
1541 else if ((v = n.val) != null) {
1542 if ((r = remappingFunction.apply(v, value)) != null) {
1543 if (VAL.compareAndSet(n, v, r))
1544 return r;
1545 }
1546 else if (doRemove(key, v) != null)
1547 return null;
1548 }
1549 }
1550 }
1551
1552 /* ---------------- View methods -------------- */
1553
1554 /*
1555 * Note: Lazy initialization works for views because view classes
1556 * are stateless/immutable so it doesn't matter wrt correctness if
1557 * more than one is created (which will only rarely happen). Even
1558 * so, the following idiom conservatively ensures that the method
1559 * returns the one it created if it does so, not one created by
1560 * another racing thread.
1561 */
1562
1563 /**
1564 * Returns a {@link NavigableSet} view of the keys contained in this map.
1565 *
1566 * <p>The set's iterator returns the keys in ascending order.
1567 * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1568 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1569 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1570 * key order.
1571 *
1572 * <p>The {@linkplain Spliterator#getComparator() spliterator's comparator}
1573 * is {@code null} if the {@linkplain #comparator() map's comparator}
1574 * is {@code null}.
1575 * Otherwise, the spliterator's comparator is the same as or imposes the
1576 * same total ordering as the map's comparator.
1577 *
1578 * <p>The set is backed by the map, so changes to the map are
1579 * reflected in the set, and vice-versa. The set supports element
1580 * removal, which removes the corresponding mapping from the map,
1581 * via the {@code Iterator.remove}, {@code Set.remove},
1582 * {@code removeAll}, {@code retainAll}, and {@code clear}
1583 * operations. It does not support the {@code add} or {@code addAll}
1584 * operations.
1585 *
1586 * <p>The view's iterators and spliterators are
1587 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1588 *
1589 * <p>This method is equivalent to method {@code navigableKeySet}.
1590 *
1591 * @return a navigable set view of the keys in this map
1592 */
1593 public NavigableSet<K> keySet() {
1594 KeySet<K,V> ks;
1595 if ((ks = keySet) != null) return ks;
1596 return keySet = new KeySet<>(this);
1597 }
1598
1599 public NavigableSet<K> navigableKeySet() {
1600 KeySet<K,V> ks;
1601 if ((ks = keySet) != null) return ks;
1602 return keySet = new KeySet<>(this);
1603 }
1604
1605 /**
1606 * Returns a {@link Collection} view of the values contained in this map.
1607 * <p>The collection's iterator returns the values in ascending order
1608 * of the corresponding keys. The collections's spliterator additionally
1609 * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1610 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1611 * order of the corresponding keys.
1612 *
1613 * <p>The collection is backed by the map, so changes to the map are
1614 * reflected in the collection, and vice-versa. The collection
1615 * supports element removal, which removes the corresponding
1616 * mapping from the map, via the {@code Iterator.remove},
1617 * {@code Collection.remove}, {@code removeAll},
1618 * {@code retainAll} and {@code clear} operations. It does not
1619 * support the {@code add} or {@code addAll} operations.
1620 *
1621 * <p>The view's iterators and spliterators are
1622 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1623 */
1624 public Collection<V> values() {
1625 Values<K,V> vs;
1626 if ((vs = values) != null) return vs;
1627 return values = new Values<>(this);
1628 }
1629
1630 /**
1631 * Returns a {@link Set} view of the mappings contained in this map.
1632 *
1633 * <p>The set's iterator returns the entries in ascending key order. The
1634 * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1635 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1636 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1637 * key order.
1638 *
1639 * <p>The set is backed by the map, so changes to the map are
1640 * reflected in the set, and vice-versa. The set supports element
1641 * removal, which removes the corresponding mapping from the map,
1642 * via the {@code Iterator.remove}, {@code Set.remove},
1643 * {@code removeAll}, {@code retainAll} and {@code clear}
1644 * operations. It does not support the {@code add} or
1645 * {@code addAll} operations.
1646 *
1647 * <p>The view's iterators and spliterators are
1648 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1649 *
1650 * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1651 * or {@code spliterator} do <em>not</em> support the {@code setValue}
1652 * operation.
1653 *
1654 * @return a set view of the mappings contained in this map,
1655 * sorted in ascending key order
1656 */
1657 public Set<Map.Entry<K,V>> entrySet() {
1658 EntrySet<K,V> es;
1659 if ((es = entrySet) != null) return es;
1660 return entrySet = new EntrySet<K,V>(this);
1661 }
1662
1663 public ConcurrentNavigableMap<K,V> descendingMap() {
1664 ConcurrentNavigableMap<K,V> dm;
1665 if ((dm = descendingMap) != null) return dm;
1666 return descendingMap =
1667 new SubMap<K,V>(this, null, false, null, false, true);
1668 }
1669
1670 public NavigableSet<K> descendingKeySet() {
1671 return descendingMap().navigableKeySet();
1672 }
1673
1674 /* ---------------- AbstractMap Overrides -------------- */
1675
1676 /**
1677 * Compares the specified object with this map for equality.
1678 * Returns {@code true} if the given object is also a map and the
1679 * two maps represent the same mappings. More formally, two maps
1680 * {@code m1} and {@code m2} represent the same mappings if
1681 * {@code m1.entrySet().equals(m2.entrySet())}. This
1682 * operation may return misleading results if either map is
1683 * concurrently modified during execution of this method.
1684 *
1685 * @param o object to be compared for equality with this map
1686 * @return {@code true} if the specified object is equal to this map
1687 */
1688 public boolean equals(Object o) {
1689 if (o == this)
1690 return true;
1691 if (!(o instanceof Map))
1692 return false;
1693 Map<?,?> m = (Map<?,?>) o;
1694 try {
1695 @SuppressWarnings("unchecked")
1696 Iterator<Map.Entry<?,?>> it =
1697 (Iterator<Map.Entry<?,?>>)m.entrySet().iterator();
1698 if (m instanceof SortedMap &&
1699 ((SortedMap<?,?>)m).comparator() == comparator) {
1700 Node<K,V> b, n;
1701 if ((b = baseHead()) != null) {
1702 while ((n = b.next) != null) {
1703 K k; V v;
1704 if ((v = n.val) != null && (k = n.key) != null) {
1705 if (!it.hasNext())
1706 return false;
1707 Map.Entry<?,?> e = it.next();
1708 Object mk = e.getKey();
1709 Object mv = e.getValue();
1710 if (mk == null || mv == null ||
1711 !mk.equals(k) || !mv.equals(v))
1712 return false;
1713 }
1714 b = n;
1715 }
1716 }
1717 return !it.hasNext();
1718 }
1719 else {
1720 while (it.hasNext()) {
1721 V v;
1722 Map.Entry<?,?> e = it.next();
1723 Object mk = e.getKey();
1724 Object mv = e.getValue();
1725 if (mk == null || mv == null ||
1726 (v = get(mk)) == null || !v.equals(mv))
1727 return false;
1728 }
1729 Node<K,V> b, n;
1730 if ((b = baseHead()) != null) {
1731 K k; V v; Object mv;
1732 while ((n = b.next) != null) {
1733 if ((v = n.val) != null && (k = n.key) != null &&
1734 ((mv = m.get(k)) == null || !mv.equals(v)))
1735 return false;
1736 b = n;
1737 }
1738 }
1739 return true;
1740 }
1741 } catch (ClassCastException unused) {
1742 return false;
1743 } catch (NullPointerException unused) {
1744 return false;
1745 }
1746 }
1747
1748 /* ------ ConcurrentMap API methods ------ */
1749
1750 /**
1751 * {@inheritDoc}
1752 *
1753 * @return the previous value associated with the specified key,
1754 * or {@code null} if there was no mapping for the key
1755 * @throws ClassCastException if the specified key cannot be compared
1756 * with the keys currently in the map
1757 * @throws NullPointerException if the specified key or value is null
1758 */
1759 public V putIfAbsent(K key, V value) {
1760 if (value == null)
1761 throw new NullPointerException();
1762 return doPut(key, value, true);
1763 }
1764
1765 /**
1766 * {@inheritDoc}
1767 *
1768 * @throws ClassCastException if the specified key cannot be compared
1769 * with the keys currently in the map
1770 * @throws NullPointerException if the specified key is null
1771 */
1772 public boolean remove(Object key, Object value) {
1773 if (key == null)
1774 throw new NullPointerException();
1775 return value != null && doRemove(key, value) != null;
1776 }
1777
1778 /**
1779 * {@inheritDoc}
1780 *
1781 * @throws ClassCastException if the specified key cannot be compared
1782 * with the keys currently in the map
1783 * @throws NullPointerException if any of the arguments are null
1784 */
1785 public boolean replace(K key, V oldValue, V newValue) {
1786 if (key == null || oldValue == null || newValue == null)
1787 throw new NullPointerException();
1788 for (;;) {
1789 Node<K,V> n; V v;
1790 if ((n = findNode(key)) == null)
1791 return false;
1792 if ((v = n.val) != null) {
1793 if (!oldValue.equals(v))
1794 return false;
1795 if (VAL.compareAndSet(n, v, newValue))
1796 return true;
1797 }
1798 }
1799 }
1800
1801 /**
1802 * {@inheritDoc}
1803 *
1804 * @return the previous value associated with the specified key,
1805 * or {@code null} if there was no mapping for the key
1806 * @throws ClassCastException if the specified key cannot be compared
1807 * with the keys currently in the map
1808 * @throws NullPointerException if the specified key or value is null
1809 */
1810 public V replace(K key, V value) {
1811 if (key == null || value == null)
1812 throw new NullPointerException();
1813 for (;;) {
1814 Node<K,V> n; V v;
1815 if ((n = findNode(key)) == null)
1816 return null;
1817 if ((v = n.val) != null && VAL.compareAndSet(n, v, value))
1818 return v;
1819 }
1820 }
1821
1822 /* ------ SortedMap API methods ------ */
1823
1824 public Comparator<? super K> comparator() {
1825 return comparator;
1826 }
1827
1828 /**
1829 * @throws NoSuchElementException {@inheritDoc}
1830 */
1831 public K firstKey() {
1832 Node<K,V> n = findFirst();
1833 if (n == null)
1834 throw new NoSuchElementException();
1835 return n.key;
1836 }
1837
1838 /**
1839 * @throws NoSuchElementException {@inheritDoc}
1840 */
1841 public K lastKey() {
1842 Node<K,V> n = findLast();
1843 if (n == null)
1844 throw new NoSuchElementException();
1845 return n.key;
1846 }
1847
1848 /**
1849 * @throws ClassCastException {@inheritDoc}
1850 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1851 * @throws IllegalArgumentException {@inheritDoc}
1852 */
1853 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
1854 boolean fromInclusive,
1855 K toKey,
1856 boolean toInclusive) {
1857 if (fromKey == null || toKey == null)
1858 throw new NullPointerException();
1859 return new SubMap<K,V>
1860 (this, fromKey, fromInclusive, toKey, toInclusive, false);
1861 }
1862
1863 /**
1864 * @throws ClassCastException {@inheritDoc}
1865 * @throws NullPointerException if {@code toKey} is null
1866 * @throws IllegalArgumentException {@inheritDoc}
1867 */
1868 public ConcurrentNavigableMap<K,V> headMap(K toKey,
1869 boolean inclusive) {
1870 if (toKey == null)
1871 throw new NullPointerException();
1872 return new SubMap<K,V>
1873 (this, null, false, toKey, inclusive, false);
1874 }
1875
1876 /**
1877 * @throws ClassCastException {@inheritDoc}
1878 * @throws NullPointerException if {@code fromKey} is null
1879 * @throws IllegalArgumentException {@inheritDoc}
1880 */
1881 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
1882 boolean inclusive) {
1883 if (fromKey == null)
1884 throw new NullPointerException();
1885 return new SubMap<K,V>
1886 (this, fromKey, inclusive, null, false, false);
1887 }
1888
1889 /**
1890 * @throws ClassCastException {@inheritDoc}
1891 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1892 * @throws IllegalArgumentException {@inheritDoc}
1893 */
1894 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
1895 return subMap(fromKey, true, toKey, false);
1896 }
1897
1898 /**
1899 * @throws ClassCastException {@inheritDoc}
1900 * @throws NullPointerException if {@code toKey} is null
1901 * @throws IllegalArgumentException {@inheritDoc}
1902 */
1903 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
1904 return headMap(toKey, false);
1905 }
1906
1907 /**
1908 * @throws ClassCastException {@inheritDoc}
1909 * @throws NullPointerException if {@code fromKey} is null
1910 * @throws IllegalArgumentException {@inheritDoc}
1911 */
1912 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
1913 return tailMap(fromKey, true);
1914 }
1915
1916 /* ---------------- Relational operations -------------- */
1917
1918 /**
1919 * Returns a key-value mapping associated with the greatest key
1920 * strictly less than the given key, or {@code null} if there is
1921 * no such key. The returned entry does <em>not</em> support the
1922 * {@code Entry.setValue} method.
1923 *
1924 * @throws ClassCastException {@inheritDoc}
1925 * @throws NullPointerException if the specified key is null
1926 */
1927 public Map.Entry<K,V> lowerEntry(K key) {
1928 return findNearEntry(key, LT, comparator);
1929 }
1930
1931 /**
1932 * @throws ClassCastException {@inheritDoc}
1933 * @throws NullPointerException if the specified key is null
1934 */
1935 public K lowerKey(K key) {
1936 Node<K,V> n = findNear(key, LT, comparator);
1937 return (n == null) ? null : n.key;
1938 }
1939
1940 /**
1941 * Returns a key-value mapping associated with the greatest key
1942 * less than or equal to the given key, or {@code null} if there
1943 * is no such key. The returned entry does <em>not</em> support
1944 * the {@code Entry.setValue} method.
1945 *
1946 * @param key the key
1947 * @throws ClassCastException {@inheritDoc}
1948 * @throws NullPointerException if the specified key is null
1949 */
1950 public Map.Entry<K,V> floorEntry(K key) {
1951 return findNearEntry(key, LT|EQ, comparator);
1952 }
1953
1954 /**
1955 * @param key the key
1956 * @throws ClassCastException {@inheritDoc}
1957 * @throws NullPointerException if the specified key is null
1958 */
1959 public K floorKey(K key) {
1960 Node<K,V> n = findNear(key, LT|EQ, comparator);
1961 return (n == null) ? null : n.key;
1962 }
1963
1964 /**
1965 * Returns a key-value mapping associated with the least key
1966 * greater than or equal to the given key, or {@code null} if
1967 * there is no such entry. The returned entry does <em>not</em>
1968 * support the {@code Entry.setValue} method.
1969 *
1970 * @throws ClassCastException {@inheritDoc}
1971 * @throws NullPointerException if the specified key is null
1972 */
1973 public Map.Entry<K,V> ceilingEntry(K key) {
1974 return findNearEntry(key, GT|EQ, comparator);
1975 }
1976
1977 /**
1978 * @throws ClassCastException {@inheritDoc}
1979 * @throws NullPointerException if the specified key is null
1980 */
1981 public K ceilingKey(K key) {
1982 Node<K,V> n = findNear(key, GT|EQ, comparator);
1983 return (n == null) ? null : n.key;
1984 }
1985
1986 /**
1987 * Returns a key-value mapping associated with the least key
1988 * strictly greater than the given key, or {@code null} if there
1989 * is no such key. The returned entry does <em>not</em> support
1990 * the {@code Entry.setValue} method.
1991 *
1992 * @param key the key
1993 * @throws ClassCastException {@inheritDoc}
1994 * @throws NullPointerException if the specified key is null
1995 */
1996 public Map.Entry<K,V> higherEntry(K key) {
1997 return findNearEntry(key, GT, comparator);
1998 }
1999
2000 /**
2001 * @param key the key
2002 * @throws ClassCastException {@inheritDoc}
2003 * @throws NullPointerException if the specified key is null
2004 */
2005 public K higherKey(K key) {
2006 Node<K,V> n = findNear(key, GT, comparator);
2007 return (n == null) ? null : n.key;
2008 }
2009
2010 /**
2011 * Returns a key-value mapping associated with the least
2012 * key in this map, or {@code null} if the map is empty.
2013 * The returned entry does <em>not</em> support
2014 * the {@code Entry.setValue} method.
2015 */
2016 public Map.Entry<K,V> firstEntry() {
2017 return findFirstEntry();
2018 }
2019
2020 /**
2021 * Returns a key-value mapping associated with the greatest
2022 * key in this map, or {@code null} if the map is empty.
2023 * The returned entry does <em>not</em> support
2024 * the {@code Entry.setValue} method.
2025 */
2026 public Map.Entry<K,V> lastEntry() {
2027 return findLastEntry();
2028 }
2029
2030 /**
2031 * Removes and returns a key-value mapping associated with
2032 * the least key in this map, or {@code null} if the map is empty.
2033 * The returned entry does <em>not</em> support
2034 * the {@code Entry.setValue} method.
2035 */
2036 public Map.Entry<K,V> pollFirstEntry() {
2037 return doRemoveFirstEntry();
2038 }
2039
2040 /**
2041 * Removes and returns a key-value mapping associated with
2042 * the greatest key in this map, or {@code null} if the map is empty.
2043 * The returned entry does <em>not</em> support
2044 * the {@code Entry.setValue} method.
2045 */
2046 public Map.Entry<K,V> pollLastEntry() {
2047 return doRemoveLastEntry();
2048 }
2049
2050 /* ---------------- Iterators -------------- */
2051
2052 /**
2053 * Base of iterator classes
2054 */
2055 abstract class Iter<T> implements Iterator<T> {
2056 /** the last node returned by next() */
2057 Node<K,V> lastReturned;
2058 /** the next node to return from next(); */
2059 Node<K,V> next;
2060 /** Cache of next value field to maintain weak consistency */
2061 V nextValue;
2062
2063 /** Initializes ascending iterator for entire range. */
2064 Iter() {
2065 advance(baseHead());
2066 }
2067
2068 public final boolean hasNext() {
2069 return next != null;
2070 }
2071
2072 /** Advances next to higher entry. */
2073 final void advance(Node<K,V> b) {
2074 Node<K,V> n = null;
2075 V v = null;
2076 if ((lastReturned = b) != null) {
2077 while ((n = b.next) != null && (v = n.val) == null)
2078 b = n;
2079 }
2080 nextValue = v;
2081 next = n;
2082 }
2083
2084 public final void remove() {
2085 Node<K,V> n; K k;
2086 if ((n = lastReturned) == null || (k = n.key) == null)
2087 throw new IllegalStateException();
2088 // It would not be worth all of the overhead to directly
2089 // unlink from here. Using remove is fast enough.
2090 ConcurrentSkipListMap.this.remove(k);
2091 lastReturned = null;
2092 }
2093 }
2094
2095 final class ValueIterator extends Iter<V> {
2096 public V next() {
2097 V v;
2098 if ((v = nextValue) == null)
2099 throw new NoSuchElementException();
2100 advance(next);
2101 return v;
2102 }
2103 }
2104
2105 final class KeyIterator extends Iter<K> {
2106 public K next() {
2107 Node<K,V> n;
2108 if ((n = next) == null)
2109 throw new NoSuchElementException();
2110 K k = n.key;
2111 advance(n);
2112 return k;
2113 }
2114 }
2115
2116 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2117 public Map.Entry<K,V> next() {
2118 Node<K,V> n;
2119 if ((n = next) == null)
2120 throw new NoSuchElementException();
2121 K k = n.key;
2122 V v = nextValue;
2123 advance(n);
2124 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2125 }
2126 }
2127
2128 /* ---------------- View Classes -------------- */
2129
2130 /*
2131 * View classes are static, delegating to a ConcurrentNavigableMap
2132 * to allow use by SubMaps, which outweighs the ugliness of
2133 * needing type-tests for Iterator methods.
2134 */
2135
2136 static final <E> List<E> toList(Collection<E> c) {
2137 // Using size() here would be a pessimization.
2138 ArrayList<E> list = new ArrayList<E>();
2139 for (E e : c)
2140 list.add(e);
2141 return list;
2142 }
2143
2144 static final class KeySet<K,V>
2145 extends AbstractSet<K> implements NavigableSet<K> {
2146 final ConcurrentNavigableMap<K,V> m;
2147 KeySet(ConcurrentNavigableMap<K,V> map) { m = map; }
2148 public int size() { return m.size(); }
2149 public boolean isEmpty() { return m.isEmpty(); }
2150 public boolean contains(Object o) { return m.containsKey(o); }
2151 public boolean remove(Object o) { return m.remove(o) != null; }
2152 public void clear() { m.clear(); }
2153 public K lower(K e) { return m.lowerKey(e); }
2154 public K floor(K e) { return m.floorKey(e); }
2155 public K ceiling(K e) { return m.ceilingKey(e); }
2156 public K higher(K e) { return m.higherKey(e); }
2157 public Comparator<? super K> comparator() { return m.comparator(); }
2158 public K first() { return m.firstKey(); }
2159 public K last() { return m.lastKey(); }
2160 public K pollFirst() {
2161 Map.Entry<K,V> e = m.pollFirstEntry();
2162 return (e == null) ? null : e.getKey();
2163 }
2164 public K pollLast() {
2165 Map.Entry<K,V> e = m.pollLastEntry();
2166 return (e == null) ? null : e.getKey();
2167 }
2168 public Iterator<K> iterator() {
2169 return (m instanceof ConcurrentSkipListMap)
2170 ? ((ConcurrentSkipListMap<K,V>)m).new KeyIterator()
2171 : ((SubMap<K,V>)m).new SubMapKeyIterator();
2172 }
2173 public boolean equals(Object o) {
2174 if (o == this)
2175 return true;
2176 if (!(o instanceof Set))
2177 return false;
2178 Collection<?> c = (Collection<?>) o;
2179 try {
2180 return containsAll(c) && c.containsAll(this);
2181 } catch (ClassCastException unused) {
2182 return false;
2183 } catch (NullPointerException unused) {
2184 return false;
2185 }
2186 }
2187 public Object[] toArray() { return toList(this).toArray(); }
2188 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2189 public Iterator<K> descendingIterator() {
2190 return descendingSet().iterator();
2191 }
2192 public NavigableSet<K> subSet(K fromElement,
2193 boolean fromInclusive,
2194 K toElement,
2195 boolean toInclusive) {
2196 return new KeySet<>(m.subMap(fromElement, fromInclusive,
2197 toElement, toInclusive));
2198 }
2199 public NavigableSet<K> headSet(K toElement, boolean inclusive) {
2200 return new KeySet<>(m.headMap(toElement, inclusive));
2201 }
2202 public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
2203 return new KeySet<>(m.tailMap(fromElement, inclusive));
2204 }
2205 public NavigableSet<K> subSet(K fromElement, K toElement) {
2206 return subSet(fromElement, true, toElement, false);
2207 }
2208 public NavigableSet<K> headSet(K toElement) {
2209 return headSet(toElement, false);
2210 }
2211 public NavigableSet<K> tailSet(K fromElement) {
2212 return tailSet(fromElement, true);
2213 }
2214 public NavigableSet<K> descendingSet() {
2215 return new KeySet<>(m.descendingMap());
2216 }
2217
2218 public Spliterator<K> spliterator() {
2219 return (m instanceof ConcurrentSkipListMap)
2220 ? ((ConcurrentSkipListMap<K,V>)m).keySpliterator()
2221 : ((SubMap<K,V>)m).new SubMapKeyIterator();
2222 }
2223 }
2224
2225 static final class Values<K,V> extends AbstractCollection<V> {
2226 final ConcurrentNavigableMap<K,V> m;
2227 Values(ConcurrentNavigableMap<K,V> map) {
2228 m = map;
2229 }
2230 public Iterator<V> iterator() {
2231 return (m instanceof ConcurrentSkipListMap)
2232 ? ((ConcurrentSkipListMap<K,V>)m).new ValueIterator()
2233 : ((SubMap<K,V>)m).new SubMapValueIterator();
2234 }
2235 public int size() { return m.size(); }
2236 public boolean isEmpty() { return m.isEmpty(); }
2237 public boolean contains(Object o) { return m.containsValue(o); }
2238 public void clear() { m.clear(); }
2239 public Object[] toArray() { return toList(this).toArray(); }
2240 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2241
2242 public Spliterator<V> spliterator() {
2243 return (m instanceof ConcurrentSkipListMap)
2244 ? ((ConcurrentSkipListMap<K,V>)m).valueSpliterator()
2245 : ((SubMap<K,V>)m).new SubMapValueIterator();
2246 }
2247
2248 public boolean removeIf(Predicate<? super V> filter) {
2249 if (filter == null) throw new NullPointerException();
2250 if (m instanceof ConcurrentSkipListMap)
2251 return ((ConcurrentSkipListMap<K,V>)m).removeValueIf(filter);
2252 // else use iterator
2253 Iterator<Map.Entry<K,V>> it =
2254 ((SubMap<K,V>)m).new SubMapEntryIterator();
2255 boolean removed = false;
2256 while (it.hasNext()) {
2257 Map.Entry<K,V> e = it.next();
2258 V v = e.getValue();
2259 if (filter.test(v) && m.remove(e.getKey(), v))
2260 removed = true;
2261 }
2262 return removed;
2263 }
2264 }
2265
2266 static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
2267 final ConcurrentNavigableMap<K,V> m;
2268 EntrySet(ConcurrentNavigableMap<K,V> map) {
2269 m = map;
2270 }
2271 public Iterator<Map.Entry<K,V>> iterator() {
2272 return (m instanceof ConcurrentSkipListMap)
2273 ? ((ConcurrentSkipListMap<K,V>)m).new EntryIterator()
2274 : ((SubMap<K,V>)m).new SubMapEntryIterator();
2275 }
2276
2277 public boolean contains(Object o) {
2278 if (!(o instanceof Map.Entry))
2279 return false;
2280 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2281 V v = m.get(e.getKey());
2282 return v != null && v.equals(e.getValue());
2283 }
2284 public boolean remove(Object o) {
2285 if (!(o instanceof Map.Entry))
2286 return false;
2287 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2288 return m.remove(e.getKey(),
2289 e.getValue());
2290 }
2291 public boolean isEmpty() {
2292 return m.isEmpty();
2293 }
2294 public int size() {
2295 return m.size();
2296 }
2297 public void clear() {
2298 m.clear();
2299 }
2300 public boolean equals(Object o) {
2301 if (o == this)
2302 return true;
2303 if (!(o instanceof Set))
2304 return false;
2305 Collection<?> c = (Collection<?>) o;
2306 try {
2307 return containsAll(c) && c.containsAll(this);
2308 } catch (ClassCastException unused) {
2309 return false;
2310 } catch (NullPointerException unused) {
2311 return false;
2312 }
2313 }
2314 public Object[] toArray() { return toList(this).toArray(); }
2315 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2316
2317 public Spliterator<Map.Entry<K,V>> spliterator() {
2318 return (m instanceof ConcurrentSkipListMap)
2319 ? ((ConcurrentSkipListMap<K,V>)m).entrySpliterator()
2320 : ((SubMap<K,V>)m).new SubMapEntryIterator();
2321 }
2322 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
2323 if (filter == null) throw new NullPointerException();
2324 if (m instanceof ConcurrentSkipListMap)
2325 return ((ConcurrentSkipListMap<K,V>)m).removeEntryIf(filter);
2326 // else use iterator
2327 Iterator<Map.Entry<K,V>> it =
2328 ((SubMap<K,V>)m).new SubMapEntryIterator();
2329 boolean removed = false;
2330 while (it.hasNext()) {
2331 Map.Entry<K,V> e = it.next();
2332 if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
2333 removed = true;
2334 }
2335 return removed;
2336 }
2337 }
2338
2339 /**
2340 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2341 * represent a subrange of mappings of their underlying maps.
2342 * Instances of this class support all methods of their underlying
2343 * maps, differing in that mappings outside their range are ignored,
2344 * and attempts to add mappings outside their ranges result in {@link
2345 * IllegalArgumentException}. Instances of this class are constructed
2346 * only using the {@code subMap}, {@code headMap}, and {@code tailMap}
2347 * methods of their underlying maps.
2348 *
2349 * @serial include
2350 */
2351 static final class SubMap<K,V> extends AbstractMap<K,V>
2352 implements ConcurrentNavigableMap<K,V>, Serializable {
2353 private static final long serialVersionUID = -7647078645895051609L;
2354
2355 /** Underlying map */
2356 final ConcurrentSkipListMap<K,V> m;
2357 /** lower bound key, or null if from start */
2358 private final K lo;
2359 /** upper bound key, or null if to end */
2360 private final K hi;
2361 /** inclusion flag for lo */
2362 private final boolean loInclusive;
2363 /** inclusion flag for hi */
2364 private final boolean hiInclusive;
2365 /** direction */
2366 final boolean isDescending;
2367
2368 // Lazily initialized view holders
2369 private transient KeySet<K,V> keySetView;
2370 private transient Values<K,V> valuesView;
2371 private transient EntrySet<K,V> entrySetView;
2372
2373 /**
2374 * Creates a new submap, initializing all fields.
2375 */
2376 SubMap(ConcurrentSkipListMap<K,V> map,
2377 K fromKey, boolean fromInclusive,
2378 K toKey, boolean toInclusive,
2379 boolean isDescending) {
2380 Comparator<? super K> cmp = map.comparator;
2381 if (fromKey != null && toKey != null &&
2382 cpr(cmp, fromKey, toKey) > 0)
2383 throw new IllegalArgumentException("inconsistent range");
2384 this.m = map;
2385 this.lo = fromKey;
2386 this.hi = toKey;
2387 this.loInclusive = fromInclusive;
2388 this.hiInclusive = toInclusive;
2389 this.isDescending = isDescending;
2390 }
2391
2392 /* ---------------- Utilities -------------- */
2393
2394 boolean tooLow(Object key, Comparator<? super K> cmp) {
2395 int c;
2396 return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2397 (c == 0 && !loInclusive)));
2398 }
2399
2400 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2401 int c;
2402 return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2403 (c == 0 && !hiInclusive)));
2404 }
2405
2406 boolean inBounds(Object key, Comparator<? super K> cmp) {
2407 return !tooLow(key, cmp) && !tooHigh(key, cmp);
2408 }
2409
2410 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2411 if (key == null)
2412 throw new NullPointerException();
2413 if (!inBounds(key, cmp))
2414 throw new IllegalArgumentException("key out of range");
2415 }
2416
2417 /**
2418 * Returns true if node key is less than upper bound of range.
2419 */
2420 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2421 Comparator<? super K> cmp) {
2422 if (n == null)
2423 return false;
2424 if (hi == null)
2425 return true;
2426 K k = n.key;
2427 if (k == null) // pass by markers and headers
2428 return true;
2429 int c = cpr(cmp, k, hi);
2430 if (c > 0 || (c == 0 && !hiInclusive))
2431 return false;
2432 return true;
2433 }
2434
2435 /**
2436 * Returns lowest node. This node might not be in range, so
2437 * most usages need to check bounds.
2438 */
2439 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2440 if (lo == null)
2441 return m.findFirst();
2442 else if (loInclusive)
2443 return m.findNear(lo, GT|EQ, cmp);
2444 else
2445 return m.findNear(lo, GT, cmp);
2446 }
2447
2448 /**
2449 * Returns highest node. This node might not be in range, so
2450 * most usages need to check bounds.
2451 */
2452 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2453 if (hi == null)
2454 return m.findLast();
2455 else if (hiInclusive)
2456 return m.findNear(hi, LT|EQ, cmp);
2457 else
2458 return m.findNear(hi, LT, cmp);
2459 }
2460
2461 /**
2462 * Returns lowest absolute key (ignoring directionality).
2463 */
2464 K lowestKey() {
2465 Comparator<? super K> cmp = m.comparator;
2466 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2467 if (isBeforeEnd(n, cmp))
2468 return n.key;
2469 else
2470 throw new NoSuchElementException();
2471 }
2472
2473 /**
2474 * Returns highest absolute key (ignoring directionality).
2475 */
2476 K highestKey() {
2477 Comparator<? super K> cmp = m.comparator;
2478 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2479 if (n != null) {
2480 K last = n.key;
2481 if (inBounds(last, cmp))
2482 return last;
2483 }
2484 throw new NoSuchElementException();
2485 }
2486
2487 Map.Entry<K,V> lowestEntry() {
2488 Comparator<? super K> cmp = m.comparator;
2489 for (;;) {
2490 ConcurrentSkipListMap.Node<K,V> n; V v;
2491 if ((n = loNode(cmp)) == null || !isBeforeEnd(n, cmp))
2492 return null;
2493 else if ((v = n.val) != null)
2494 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2495 }
2496 }
2497
2498 Map.Entry<K,V> highestEntry() {
2499 Comparator<? super K> cmp = m.comparator;
2500 for (;;) {
2501 ConcurrentSkipListMap.Node<K,V> n; V v;
2502 if ((n = hiNode(cmp)) == null || !inBounds(n.key, cmp))
2503 return null;
2504 else if ((v = n.val) != null)
2505 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2506 }
2507 }
2508
2509 Map.Entry<K,V> removeLowest() {
2510 Comparator<? super K> cmp = m.comparator;
2511 for (;;) {
2512 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2513 if ((n = loNode(cmp)) == null)
2514 return null;
2515 else if (!inBounds((k = n.key), cmp))
2516 return null;
2517 else if ((v = m.doRemove(k, null)) != null)
2518 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2519 }
2520 }
2521
2522 Map.Entry<K,V> removeHighest() {
2523 Comparator<? super K> cmp = m.comparator;
2524 for (;;) {
2525 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2526 if ((n = hiNode(cmp)) == null)
2527 return null;
2528 else if (!inBounds((k = n.key), cmp))
2529 return null;
2530 else if ((v = m.doRemove(k, null)) != null)
2531 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2532 }
2533 }
2534
2535 /**
2536 * Submap version of ConcurrentSkipListMap.findNearEntry.
2537 */
2538 Map.Entry<K,V> getNearEntry(K key, int rel) {
2539 Comparator<? super K> cmp = m.comparator;
2540 if (isDescending) { // adjust relation for direction
2541 if ((rel & LT) == 0)
2542 rel |= LT;
2543 else
2544 rel &= ~LT;
2545 }
2546 if (tooLow(key, cmp))
2547 return ((rel & LT) != 0) ? null : lowestEntry();
2548 if (tooHigh(key, cmp))
2549 return ((rel & LT) != 0) ? highestEntry() : null;
2550 AbstractMap.SimpleImmutableEntry<K,V> e =
2551 m.findNearEntry(key, rel, cmp);
2552 if (e == null || !inBounds(e.getKey(), cmp))
2553 return null;
2554 else
2555 return e;
2556 }
2557
2558 // Almost the same as getNearEntry, except for keys
2559 K getNearKey(K key, int rel) {
2560 Comparator<? super K> cmp = m.comparator;
2561 if (isDescending) { // adjust relation for direction
2562 if ((rel & LT) == 0)
2563 rel |= LT;
2564 else
2565 rel &= ~LT;
2566 }
2567 if (tooLow(key, cmp)) {
2568 if ((rel & LT) == 0) {
2569 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2570 if (isBeforeEnd(n, cmp))
2571 return n.key;
2572 }
2573 return null;
2574 }
2575 if (tooHigh(key, cmp)) {
2576 if ((rel & LT) != 0) {
2577 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2578 if (n != null) {
2579 K last = n.key;
2580 if (inBounds(last, cmp))
2581 return last;
2582 }
2583 }
2584 return null;
2585 }
2586 for (;;) {
2587 Node<K,V> n = m.findNear(key, rel, cmp);
2588 if (n == null || !inBounds(n.key, cmp))
2589 return null;
2590 if (n.val != null)
2591 return n.key;
2592 }
2593 }
2594
2595 /* ---------------- Map API methods -------------- */
2596
2597 public boolean containsKey(Object key) {
2598 if (key == null) throw new NullPointerException();
2599 return inBounds(key, m.comparator) && m.containsKey(key);
2600 }
2601
2602 public V get(Object key) {
2603 if (key == null) throw new NullPointerException();
2604 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2605 }
2606
2607 public V put(K key, V value) {
2608 checkKeyBounds(key, m.comparator);
2609 return m.put(key, value);
2610 }
2611
2612 public V remove(Object key) {
2613 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2614 }
2615
2616 public int size() {
2617 Comparator<? super K> cmp = m.comparator;
2618 long count = 0;
2619 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2620 isBeforeEnd(n, cmp);
2621 n = n.next) {
2622 if (n.val != null)
2623 ++count;
2624 }
2625 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2626 }
2627
2628 public boolean isEmpty() {
2629 Comparator<? super K> cmp = m.comparator;
2630 return !isBeforeEnd(loNode(cmp), cmp);
2631 }
2632
2633 public boolean containsValue(Object value) {
2634 if (value == null)
2635 throw new NullPointerException();
2636 Comparator<? super K> cmp = m.comparator;
2637 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2638 isBeforeEnd(n, cmp);
2639 n = n.next) {
2640 V v = n.val;
2641 if (v != null && value.equals(v))
2642 return true;
2643 }
2644 return false;
2645 }
2646
2647 public void clear() {
2648 Comparator<? super K> cmp = m.comparator;
2649 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2650 isBeforeEnd(n, cmp);
2651 n = n.next) {
2652 if (n.val != null)
2653 m.remove(n.key);
2654 }
2655 }
2656
2657 /* ---------------- ConcurrentMap API methods -------------- */
2658
2659 public V putIfAbsent(K key, V value) {
2660 checkKeyBounds(key, m.comparator);
2661 return m.putIfAbsent(key, value);
2662 }
2663
2664 public boolean remove(Object key, Object value) {
2665 return inBounds(key, m.comparator) && m.remove(key, value);
2666 }
2667
2668 public boolean replace(K key, V oldValue, V newValue) {
2669 checkKeyBounds(key, m.comparator);
2670 return m.replace(key, oldValue, newValue);
2671 }
2672
2673 public V replace(K key, V value) {
2674 checkKeyBounds(key, m.comparator);
2675 return m.replace(key, value);
2676 }
2677
2678 /* ---------------- SortedMap API methods -------------- */
2679
2680 public Comparator<? super K> comparator() {
2681 Comparator<? super K> cmp = m.comparator();
2682 if (isDescending)
2683 return Collections.reverseOrder(cmp);
2684 else
2685 return cmp;
2686 }
2687
2688 /**
2689 * Utility to create submaps, where given bounds override
2690 * unbounded(null) ones and/or are checked against bounded ones.
2691 */
2692 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2693 K toKey, boolean toInclusive) {
2694 Comparator<? super K> cmp = m.comparator;
2695 if (isDescending) { // flip senses
2696 K tk = fromKey;
2697 fromKey = toKey;
2698 toKey = tk;
2699 boolean ti = fromInclusive;
2700 fromInclusive = toInclusive;
2701 toInclusive = ti;
2702 }
2703 if (lo != null) {
2704 if (fromKey == null) {
2705 fromKey = lo;
2706 fromInclusive = loInclusive;
2707 }
2708 else {
2709 int c = cpr(cmp, fromKey, lo);
2710 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2711 throw new IllegalArgumentException("key out of range");
2712 }
2713 }
2714 if (hi != null) {
2715 if (toKey == null) {
2716 toKey = hi;
2717 toInclusive = hiInclusive;
2718 }
2719 else {
2720 int c = cpr(cmp, toKey, hi);
2721 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2722 throw new IllegalArgumentException("key out of range");
2723 }
2724 }
2725 return new SubMap<K,V>(m, fromKey, fromInclusive,
2726 toKey, toInclusive, isDescending);
2727 }
2728
2729 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2730 K toKey, boolean toInclusive) {
2731 if (fromKey == null || toKey == null)
2732 throw new NullPointerException();
2733 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2734 }
2735
2736 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2737 if (toKey == null)
2738 throw new NullPointerException();
2739 return newSubMap(null, false, toKey, inclusive);
2740 }
2741
2742 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2743 if (fromKey == null)
2744 throw new NullPointerException();
2745 return newSubMap(fromKey, inclusive, null, false);
2746 }
2747
2748 public SubMap<K,V> subMap(K fromKey, K toKey) {
2749 return subMap(fromKey, true, toKey, false);
2750 }
2751
2752 public SubMap<K,V> headMap(K toKey) {
2753 return headMap(toKey, false);
2754 }
2755
2756 public SubMap<K,V> tailMap(K fromKey) {
2757 return tailMap(fromKey, true);
2758 }
2759
2760 public SubMap<K,V> descendingMap() {
2761 return new SubMap<K,V>(m, lo, loInclusive,
2762 hi, hiInclusive, !isDescending);
2763 }
2764
2765 /* ---------------- Relational methods -------------- */
2766
2767 public Map.Entry<K,V> ceilingEntry(K key) {
2768 return getNearEntry(key, GT|EQ);
2769 }
2770
2771 public K ceilingKey(K key) {
2772 return getNearKey(key, GT|EQ);
2773 }
2774
2775 public Map.Entry<K,V> lowerEntry(K key) {
2776 return getNearEntry(key, LT);
2777 }
2778
2779 public K lowerKey(K key) {
2780 return getNearKey(key, LT);
2781 }
2782
2783 public Map.Entry<K,V> floorEntry(K key) {
2784 return getNearEntry(key, LT|EQ);
2785 }
2786
2787 public K floorKey(K key) {
2788 return getNearKey(key, LT|EQ);
2789 }
2790
2791 public Map.Entry<K,V> higherEntry(K key) {
2792 return getNearEntry(key, GT);
2793 }
2794
2795 public K higherKey(K key) {
2796 return getNearKey(key, GT);
2797 }
2798
2799 public K firstKey() {
2800 return isDescending ? highestKey() : lowestKey();
2801 }
2802
2803 public K lastKey() {
2804 return isDescending ? lowestKey() : highestKey();
2805 }
2806
2807 public Map.Entry<K,V> firstEntry() {
2808 return isDescending ? highestEntry() : lowestEntry();
2809 }
2810
2811 public Map.Entry<K,V> lastEntry() {
2812 return isDescending ? lowestEntry() : highestEntry();
2813 }
2814
2815 public Map.Entry<K,V> pollFirstEntry() {
2816 return isDescending ? removeHighest() : removeLowest();
2817 }
2818
2819 public Map.Entry<K,V> pollLastEntry() {
2820 return isDescending ? removeLowest() : removeHighest();
2821 }
2822
2823 /* ---------------- Submap Views -------------- */
2824
2825 public NavigableSet<K> keySet() {
2826 KeySet<K,V> ks;
2827 if ((ks = keySetView) != null) return ks;
2828 return keySetView = new KeySet<>(this);
2829 }
2830
2831 public NavigableSet<K> navigableKeySet() {
2832 KeySet<K,V> ks;
2833 if ((ks = keySetView) != null) return ks;
2834 return keySetView = new KeySet<>(this);
2835 }
2836
2837 public Collection<V> values() {
2838 Values<K,V> vs;
2839 if ((vs = valuesView) != null) return vs;
2840 return valuesView = new Values<>(this);
2841 }
2842
2843 public Set<Map.Entry<K,V>> entrySet() {
2844 EntrySet<K,V> es;
2845 if ((es = entrySetView) != null) return es;
2846 return entrySetView = new EntrySet<K,V>(this);
2847 }
2848
2849 public NavigableSet<K> descendingKeySet() {
2850 return descendingMap().navigableKeySet();
2851 }
2852
2853 /**
2854 * Variant of main Iter class to traverse through submaps.
2855 * Also serves as back-up Spliterator for views.
2856 */
2857 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
2858 /** the last node returned by next() */
2859 Node<K,V> lastReturned;
2860 /** the next node to return from next(); */
2861 Node<K,V> next;
2862 /** Cache of next value field to maintain weak consistency */
2863 V nextValue;
2864
2865 SubMapIter() {
2866 VarHandle.acquireFence();
2867 Comparator<? super K> cmp = m.comparator;
2868 for (;;) {
2869 next = isDescending ? hiNode(cmp) : loNode(cmp);
2870 if (next == null)
2871 break;
2872 V x = next.val;
2873 if (x != null) {
2874 if (! inBounds(next.key, cmp))
2875 next = null;
2876 else
2877 nextValue = x;
2878 break;
2879 }
2880 }
2881 }
2882
2883 public final boolean hasNext() {
2884 return next != null;
2885 }
2886
2887 final void advance() {
2888 if (next == null)
2889 throw new NoSuchElementException();
2890 lastReturned = next;
2891 if (isDescending)
2892 descend();
2893 else
2894 ascend();
2895 }
2896
2897 private void ascend() {
2898 Comparator<? super K> cmp = m.comparator;
2899 for (;;) {
2900 next = next.next;
2901 if (next == null)
2902 break;
2903 V x = next.val;
2904 if (x != null) {
2905 if (tooHigh(next.key, cmp))
2906 next = null;
2907 else
2908 nextValue = x;
2909 break;
2910 }
2911 }
2912 }
2913
2914 private void descend() {
2915 Comparator<? super K> cmp = m.comparator;
2916 for (;;) {
2917 next = m.findNear(lastReturned.key, LT, cmp);
2918 if (next == null)
2919 break;
2920 V x = next.val;
2921 if (x != null) {
2922 if (tooLow(next.key, cmp))
2923 next = null;
2924 else
2925 nextValue = x;
2926 break;
2927 }
2928 }
2929 }
2930
2931 public void remove() {
2932 Node<K,V> l = lastReturned;
2933 if (l == null)
2934 throw new IllegalStateException();
2935 m.remove(l.key);
2936 lastReturned = null;
2937 }
2938
2939 public Spliterator<T> trySplit() {
2940 return null;
2941 }
2942
2943 public boolean tryAdvance(Consumer<? super T> action) {
2944 if (hasNext()) {
2945 action.accept(next());
2946 return true;
2947 }
2948 return false;
2949 }
2950
2951 public void forEachRemaining(Consumer<? super T> action) {
2952 while (hasNext())
2953 action.accept(next());
2954 }
2955
2956 public long estimateSize() {
2957 return Long.MAX_VALUE;
2958 }
2959
2960 }
2961
2962 final class SubMapValueIterator extends SubMapIter<V> {
2963 public V next() {
2964 V v = nextValue;
2965 advance();
2966 return v;
2967 }
2968 public int characteristics() {
2969 return 0;
2970 }
2971 }
2972
2973 final class SubMapKeyIterator extends SubMapIter<K> {
2974 public K next() {
2975 Node<K,V> n = next;
2976 advance();
2977 return n.key;
2978 }
2979 public int characteristics() {
2980 return Spliterator.DISTINCT | Spliterator.ORDERED |
2981 Spliterator.SORTED;
2982 }
2983 public final Comparator<? super K> getComparator() {
2984 return SubMap.this.comparator();
2985 }
2986 }
2987
2988 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
2989 public Map.Entry<K,V> next() {
2990 Node<K,V> n = next;
2991 V v = nextValue;
2992 advance();
2993 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2994 }
2995 public int characteristics() {
2996 return Spliterator.DISTINCT;
2997 }
2998 }
2999 }
3000
3001 // default Map method overrides
3002
3003 public void forEach(BiConsumer<? super K, ? super V> action) {
3004 if (action == null) throw new NullPointerException();
3005 Node<K,V> b, n; V v;
3006 if ((b = baseHead()) != null) {
3007 while ((n = b.next) != null) {
3008 if ((v = n.val) != null)
3009 action.accept(n.key, v);
3010 b = n;
3011 }
3012 }
3013 }
3014
3015 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3016 if (function == null) throw new NullPointerException();
3017 Node<K,V> b, n; V v;
3018 if ((b = baseHead()) != null) {
3019 while ((n = b.next) != null) {
3020 while ((v = n.val) != null) {
3021 V r = function.apply(n.key, v);
3022 if (r == null) throw new NullPointerException();
3023 if (VAL.compareAndSet(n, v, r))
3024 break;
3025 }
3026 b = n;
3027 }
3028 }
3029 }
3030
3031 /**
3032 * Helper method for EntrySet.removeIf.
3033 */
3034 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
3035 if (function == null) throw new NullPointerException();
3036 boolean removed = false;
3037 Node<K,V> b, n; V v;
3038 if ((b = baseHead()) != null) {
3039 while ((n = b.next) != null) {
3040 if ((v = n.val) != null) {
3041 K k = n.key;
3042 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
3043 if (function.test(e) && remove(k, v))
3044 removed = true;
3045 }
3046 b = n;
3047 }
3048 }
3049 return removed;
3050 }
3051
3052 /**
3053 * Helper method for Values.removeIf.
3054 */
3055 boolean removeValueIf(Predicate<? super V> function) {
3056 if (function == null) throw new NullPointerException();
3057 boolean removed = false;
3058 Node<K,V> b, n; V v;
3059 if ((b = baseHead()) != null) {
3060 while ((n = b.next) != null) {
3061 if ((v = n.val) != null && function.test(v) && remove(n.key, v))
3062 removed = true;
3063 b = n;
3064 }
3065 }
3066 return removed;
3067 }
3068
3069 /**
3070 * Base class providing common structure for Spliterators.
3071 * (Although not all that much common functionality; as usual for
3072 * view classes, details annoyingly vary in key, value, and entry
3073 * subclasses in ways that are not worth abstracting out for
3074 * internal classes.)
3075 *
3076 * The basic split strategy is to recursively descend from top
3077 * level, row by row, descending to next row when either split
3078 * off, or the end of row is encountered. Control of the number of
3079 * splits relies on some statistical estimation: The expected
3080 * remaining number of elements of a skip list when advancing
3081 * either across or down decreases by about 25%.
3082 */
3083 abstract static class CSLMSpliterator<K,V> {
3084 final Comparator<? super K> comparator;
3085 final K fence; // exclusive upper bound for keys, or null if to end
3086 Index<K,V> row; // the level to split out
3087 Node<K,V> current; // current traversal node; initialize at origin
3088 long est; // size estimate
3089 CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3090 Node<K,V> origin, K fence, long est) {
3091 this.comparator = comparator; this.row = row;
3092 this.current = origin; this.fence = fence; this.est = est;
3093 }
3094
3095 public final long estimateSize() { return est; }
3096 }
3097
3098 static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3099 implements Spliterator<K> {
3100 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3101 Node<K,V> origin, K fence, long est) {
3102 super(comparator, row, origin, fence, est);
3103 }
3104
3105 public KeySpliterator<K,V> trySplit() {
3106 Node<K,V> e; K ek;
3107 Comparator<? super K> cmp = comparator;
3108 K f = fence;
3109 if ((e = current) != null && (ek = e.key) != null) {
3110 for (Index<K,V> q = row; q != null; q = row = q.down) {
3111 Index<K,V> s; Node<K,V> b, n; K sk;
3112 if ((s = q.right) != null && (b = s.node) != null &&
3113 (n = b.next) != null && n.val != null &&
3114 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3115 (f == null || cpr(cmp, sk, f) < 0)) {
3116 current = n;
3117 Index<K,V> r = q.down;
3118 row = (s.right != null) ? s : s.down;
3119 est -= est >>> 2;
3120 return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3121 }
3122 }
3123 }
3124 return null;
3125 }
3126
3127 public void forEachRemaining(Consumer<? super K> action) {
3128 if (action == null) throw new NullPointerException();
3129 Comparator<? super K> cmp = comparator;
3130 K f = fence;
3131 Node<K,V> e = current;
3132 current = null;
3133 for (; e != null; e = e.next) {
3134 K k;
3135 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3136 break;
3137 if (e.val != null)
3138 action.accept(k);
3139 }
3140 }
3141
3142 public boolean tryAdvance(Consumer<? super K> action) {
3143 if (action == null) throw new NullPointerException();
3144 Comparator<? super K> cmp = comparator;
3145 K f = fence;
3146 Node<K,V> e = current;
3147 for (; e != null; e = e.next) {
3148 K k;
3149 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3150 e = null;
3151 break;
3152 }
3153 if (e.val != null) {
3154 current = e.next;
3155 action.accept(k);
3156 return true;
3157 }
3158 }
3159 current = e;
3160 return false;
3161 }
3162
3163 public int characteristics() {
3164 return Spliterator.DISTINCT | Spliterator.SORTED |
3165 Spliterator.ORDERED | Spliterator.CONCURRENT |
3166 Spliterator.NONNULL;
3167 }
3168
3169 public final Comparator<? super K> getComparator() {
3170 return comparator;
3171 }
3172 }
3173 // factory method for KeySpliterator
3174 final KeySpliterator<K,V> keySpliterator() {
3175 Index<K,V> h; Node<K,V> n; long est;
3176 VarHandle.acquireFence();
3177 if ((h = head) == null) {
3178 n = null;
3179 est = 0L;
3180 }
3181 else {
3182 n = h.node;
3183 est = getAdderCount();
3184 }
3185 return new KeySpliterator<K,V>(comparator, h, n, null, est);
3186 }
3187
3188 static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3189 implements Spliterator<V> {
3190 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3191 Node<K,V> origin, K fence, long est) {
3192 super(comparator, row, origin, fence, est);
3193 }
3194
3195 public ValueSpliterator<K,V> trySplit() {
3196 Node<K,V> e; K ek;
3197 Comparator<? super K> cmp = comparator;
3198 K f = fence;
3199 if ((e = current) != null && (ek = e.key) != null) {
3200 for (Index<K,V> q = row; q != null; q = row = q.down) {
3201 Index<K,V> s; Node<K,V> b, n; K sk;
3202 if ((s = q.right) != null && (b = s.node) != null &&
3203 (n = b.next) != null && n.val != null &&
3204 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3205 (f == null || cpr(cmp, sk, f) < 0)) {
3206 current = n;
3207 Index<K,V> r = q.down;
3208 row = (s.right != null) ? s : s.down;
3209 est -= est >>> 2;
3210 return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3211 }
3212 }
3213 }
3214 return null;
3215 }
3216
3217 public void forEachRemaining(Consumer<? super V> action) {
3218 if (action == null) throw new NullPointerException();
3219 Comparator<? super K> cmp = comparator;
3220 K f = fence;
3221 Node<K,V> e = current;
3222 current = null;
3223 for (; e != null; e = e.next) {
3224 K k; V v;
3225 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3226 break;
3227 if ((v = e.val) != null)
3228 action.accept(v);
3229 }
3230 }
3231
3232 public boolean tryAdvance(Consumer<? super V> action) {
3233 if (action == null) throw new NullPointerException();
3234 Comparator<? super K> cmp = comparator;
3235 K f = fence;
3236 Node<K,V> e = current;
3237 for (; e != null; e = e.next) {
3238 K k; V v;
3239 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3240 e = null;
3241 break;
3242 }
3243 if ((v = e.val) != null) {
3244 current = e.next;
3245 action.accept(v);
3246 return true;
3247 }
3248 }
3249 current = e;
3250 return false;
3251 }
3252
3253 public int characteristics() {
3254 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3255 Spliterator.NONNULL;
3256 }
3257 }
3258
3259 // Almost the same as keySpliterator()
3260 final ValueSpliterator<K,V> valueSpliterator() {
3261 Index<K,V> h; Node<K,V> n; long est;
3262 VarHandle.acquireFence();
3263 if ((h = head) == null) {
3264 n = null;
3265 est = 0L;
3266 }
3267 else {
3268 n = h.node;
3269 est = getAdderCount();
3270 }
3271 return new ValueSpliterator<K,V>(comparator, h, n, null, est);
3272 }
3273
3274 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3275 implements Spliterator<Map.Entry<K,V>> {
3276 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3277 Node<K,V> origin, K fence, long est) {
3278 super(comparator, row, origin, fence, est);
3279 }
3280
3281 public EntrySpliterator<K,V> trySplit() {
3282 Node<K,V> e; K ek;
3283 Comparator<? super K> cmp = comparator;
3284 K f = fence;
3285 if ((e = current) != null && (ek = e.key) != null) {
3286 for (Index<K,V> q = row; q != null; q = row = q.down) {
3287 Index<K,V> s; Node<K,V> b, n; K sk;
3288 if ((s = q.right) != null && (b = s.node) != null &&
3289 (n = b.next) != null && n.val != null &&
3290 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3291 (f == null || cpr(cmp, sk, f) < 0)) {
3292 current = n;
3293 Index<K,V> r = q.down;
3294 row = (s.right != null) ? s : s.down;
3295 est -= est >>> 2;
3296 return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3297 }
3298 }
3299 }
3300 return null;
3301 }
3302
3303 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3304 if (action == null) throw new NullPointerException();
3305 Comparator<? super K> cmp = comparator;
3306 K f = fence;
3307 Node<K,V> e = current;
3308 current = null;
3309 for (; e != null; e = e.next) {
3310 K k; V v;
3311 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3312 break;
3313 if ((v = e.val) != null) {
3314 action.accept
3315 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3316 }
3317 }
3318 }
3319
3320 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3321 if (action == null) throw new NullPointerException();
3322 Comparator<? super K> cmp = comparator;
3323 K f = fence;
3324 Node<K,V> e = current;
3325 for (; e != null; e = e.next) {
3326 K k; V v;
3327 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3328 e = null;
3329 break;
3330 }
3331 if ((v = e.val) != null) {
3332 current = e.next;
3333 action.accept
3334 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3335 return true;
3336 }
3337 }
3338 current = e;
3339 return false;
3340 }
3341
3342 public int characteristics() {
3343 return Spliterator.DISTINCT | Spliterator.SORTED |
3344 Spliterator.ORDERED | Spliterator.CONCURRENT |
3345 Spliterator.NONNULL;
3346 }
3347
3348 public final Comparator<Map.Entry<K,V>> getComparator() {
3349 // Adapt or create a key-based comparator
3350 if (comparator != null) {
3351 return Map.Entry.comparingByKey(comparator);
3352 }
3353 else {
3354 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3355 @SuppressWarnings("unchecked")
3356 Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3357 return k1.compareTo(e2.getKey());
3358 };
3359 }
3360 }
3361 }
3362
3363 // Almost the same as keySpliterator()
3364 final EntrySpliterator<K,V> entrySpliterator() {
3365 Index<K,V> h; Node<K,V> n; long est;
3366 VarHandle.acquireFence();
3367 if ((h = head) == null) {
3368 n = null;
3369 est = 0L;
3370 }
3371 else {
3372 n = h.node;
3373 est = getAdderCount();
3374 }
3375 return new EntrySpliterator<K,V>(comparator, h, n, null, est);
3376 }
3377
3378 // VarHandle mechanics
3379 private static final VarHandle HEAD;
3380 private static final VarHandle ADDER;
3381 private static final VarHandle NEXT;
3382 private static final VarHandle VAL;
3383 private static final VarHandle RIGHT;
3384 static {
3385 try {
3386 MethodHandles.Lookup l = MethodHandles.lookup();
3387 HEAD = l.findVarHandle(ConcurrentSkipListMap.class, "head",
3388 Index.class);
3389 ADDER = l.findVarHandle(ConcurrentSkipListMap.class, "adder",
3390 LongAdder.class);
3391 NEXT = l.findVarHandle(Node.class, "next", Node.class);
3392 VAL = l.findVarHandle(Node.class, "val", Object.class);
3393 RIGHT = l.findVarHandle(Index.class, "right", Index.class);
3394 } catch (ReflectiveOperationException e) {
3395 throw new Error(e);
3396 }
3397 }
3398 }