ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.184
Committed: Wed Apr 24 16:54:49 2019 UTC (5 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.183: +1 -0 lines
Log Message:
8222930: ConcurrentSkipListMap.clone() shares size variable between original and clone

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.io.Serializable;
12 import java.util.AbstractCollection;
13 import java.util.AbstractMap;
14 import java.util.AbstractSet;
15 import java.util.ArrayList;
16 import java.util.Collection;
17 import java.util.Collections;
18 import java.util.Comparator;
19 import java.util.Iterator;
20 import java.util.List;
21 import java.util.Map;
22 import java.util.NavigableSet;
23 import java.util.NoSuchElementException;
24 import java.util.Set;
25 import java.util.SortedMap;
26 import java.util.Spliterator;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.Function;
31 import java.util.function.Predicate;
32 import java.util.concurrent.atomic.LongAdder;
33
34 /**
35 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
36 * The map is sorted according to the {@linkplain Comparable natural
37 * ordering} of its keys, or by a {@link Comparator} provided at map
38 * creation time, depending on which constructor is used.
39 *
40 * <p>This class implements a concurrent variant of <a
41 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
42 * providing expected average <i>log(n)</i> time cost for the
43 * {@code containsKey}, {@code get}, {@code put} and
44 * {@code remove} operations and their variants. Insertion, removal,
45 * update, and access operations safely execute concurrently by
46 * multiple threads.
47 *
48 * <p>Iterators and spliterators are
49 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
50 *
51 * <p>Ascending key ordered views and their iterators are faster than
52 * descending ones.
53 *
54 * <p>All {@code Map.Entry} pairs returned by methods in this class
55 * and its views represent snapshots of mappings at the time they were
56 * produced. They do <em>not</em> support the {@code Entry.setValue}
57 * method. (Note however that it is possible to change mappings in the
58 * associated map using {@code put}, {@code putIfAbsent}, or
59 * {@code replace}, depending on exactly which effect you need.)
60 *
61 * <p>Beware that bulk operations {@code putAll}, {@code equals},
62 * {@code toArray}, {@code containsValue}, and {@code clear} are
63 * <em>not</em> guaranteed to be performed atomically. For example, an
64 * iterator operating concurrently with a {@code putAll} operation
65 * might view only some of the added elements.
66 *
67 * <p>This class and its views and iterators implement all of the
68 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
69 * interfaces. Like most other concurrent collections, this class does
70 * <em>not</em> permit the use of {@code null} keys or values because some
71 * null return values cannot be reliably distinguished from the absence of
72 * elements.
73 *
74 * <p>This class is a member of the
75 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
76 * Java Collections Framework</a>.
77 *
78 * @author Doug Lea
79 * @param <K> the type of keys maintained by this map
80 * @param <V> the type of mapped values
81 * @since 1.6
82 */
83 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
84 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
85 /*
86 * This class implements a tree-like two-dimensionally linked skip
87 * list in which the index levels are represented in separate
88 * nodes from the base nodes holding data. There are two reasons
89 * for taking this approach instead of the usual array-based
90 * structure: 1) Array based implementations seem to encounter
91 * more complexity and overhead 2) We can use cheaper algorithms
92 * for the heavily-traversed index lists than can be used for the
93 * base lists. Here's a picture of some of the basics for a
94 * possible list with 2 levels of index:
95 *
96 * Head nodes Index nodes
97 * +-+ right +-+ +-+
98 * |2|---------------->| |--------------------->| |->null
99 * +-+ +-+ +-+
100 * | down | |
101 * v v v
102 * +-+ +-+ +-+ +-+ +-+ +-+
103 * |1|----------->| |->| |------>| |----------->| |------>| |->null
104 * +-+ +-+ +-+ +-+ +-+ +-+
105 * v | | | | |
106 * Nodes next v v v v v
107 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
108 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
109 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
110 *
111 * The base lists use a variant of the HM linked ordered set
112 * algorithm. See Tim Harris, "A pragmatic implementation of
113 * non-blocking linked lists"
114 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
115 * Michael "High Performance Dynamic Lock-Free Hash Tables and
116 * List-Based Sets"
117 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
118 * basic idea in these lists is to mark the "next" pointers of
119 * deleted nodes when deleting to avoid conflicts with concurrent
120 * insertions, and when traversing to keep track of triples
121 * (predecessor, node, successor) in order to detect when and how
122 * to unlink these deleted nodes.
123 *
124 * Rather than using mark-bits to mark list deletions (which can
125 * be slow and space-intensive using AtomicMarkedReference), nodes
126 * use direct CAS'able next pointers. On deletion, instead of
127 * marking a pointer, they splice in another node that can be
128 * thought of as standing for a marked pointer (see method
129 * unlinkNode). Using plain nodes acts roughly like "boxed"
130 * implementations of marked pointers, but uses new nodes only
131 * when nodes are deleted, not for every link. This requires less
132 * space and supports faster traversal. Even if marked references
133 * were better supported by JVMs, traversal using this technique
134 * might still be faster because any search need only read ahead
135 * one more node than otherwise required (to check for trailing
136 * marker) rather than unmasking mark bits or whatever on each
137 * read.
138 *
139 * This approach maintains the essential property needed in the HM
140 * algorithm of changing the next-pointer of a deleted node so
141 * that any other CAS of it will fail, but implements the idea by
142 * changing the pointer to point to a different node (with
143 * otherwise illegal null fields), not by marking it. While it
144 * would be possible to further squeeze space by defining marker
145 * nodes not to have key/value fields, it isn't worth the extra
146 * type-testing overhead. The deletion markers are rarely
147 * encountered during traversal, are easily detected via null
148 * checks that are needed anyway, and are normally quickly garbage
149 * collected. (Note that this technique would not work well in
150 * systems without garbage collection.)
151 *
152 * In addition to using deletion markers, the lists also use
153 * nullness of value fields to indicate deletion, in a style
154 * similar to typical lazy-deletion schemes. If a node's value is
155 * null, then it is considered logically deleted and ignored even
156 * though it is still reachable.
157 *
158 * Here's the sequence of events for a deletion of node n with
159 * predecessor b and successor f, initially:
160 *
161 * +------+ +------+ +------+
162 * ... | b |------>| n |----->| f | ...
163 * +------+ +------+ +------+
164 *
165 * 1. CAS n's value field from non-null to null.
166 * Traversals encountering a node with null value ignore it.
167 * However, ongoing insertions and deletions might still modify
168 * n's next pointer.
169 *
170 * 2. CAS n's next pointer to point to a new marker node.
171 * From this point on, no other nodes can be appended to n.
172 * which avoids deletion errors in CAS-based linked lists.
173 *
174 * +------+ +------+ +------+ +------+
175 * ... | b |------>| n |----->|marker|------>| f | ...
176 * +------+ +------+ +------+ +------+
177 *
178 * 3. CAS b's next pointer over both n and its marker.
179 * From this point on, no new traversals will encounter n,
180 * and it can eventually be GCed.
181 * +------+ +------+
182 * ... | b |----------------------------------->| f | ...
183 * +------+ +------+
184 *
185 * A failure at step 1 leads to simple retry due to a lost race
186 * with another operation. Steps 2-3 can fail because some other
187 * thread noticed during a traversal a node with null value and
188 * helped out by marking and/or unlinking. This helping-out
189 * ensures that no thread can become stuck waiting for progress of
190 * the deleting thread.
191 *
192 * Skip lists add indexing to this scheme, so that the base-level
193 * traversals start close to the locations being found, inserted
194 * or deleted -- usually base level traversals only traverse a few
195 * nodes. This doesn't change the basic algorithm except for the
196 * need to make sure base traversals start at predecessors (here,
197 * b) that are not (structurally) deleted, otherwise retrying
198 * after processing the deletion.
199 *
200 * Index levels are maintained using CAS to link and unlink
201 * successors ("right" fields). Races are allowed in index-list
202 * operations that can (rarely) fail to link in a new index node.
203 * (We can't do this of course for data nodes.) However, even
204 * when this happens, the index lists correctly guide search.
205 * This can impact performance, but since skip lists are
206 * probabilistic anyway, the net result is that under contention,
207 * the effective "p" value may be lower than its nominal value.
208 *
209 * Index insertion and deletion sometimes require a separate
210 * traversal pass occurring after the base-level action, to add or
211 * remove index nodes. This adds to single-threaded overhead, but
212 * improves contended multithreaded performance by narrowing
213 * interference windows, and allows deletion to ensure that all
214 * index nodes will be made unreachable upon return from a public
215 * remove operation, thus avoiding unwanted garbage retention.
216 *
217 * Indexing uses skip list parameters that maintain good search
218 * performance while using sparser-than-usual indices: The
219 * hardwired parameters k=1, p=0.5 (see method doPut) mean that
220 * about one-quarter of the nodes have indices. Of those that do,
221 * half have one level, a quarter have two, and so on (see Pugh's
222 * Skip List Cookbook, sec 3.4), up to a maximum of 62 levels
223 * (appropriate for up to 2^63 elements). The expected total
224 * space requirement for a map is slightly less than for the
225 * current implementation of java.util.TreeMap.
226 *
227 * Changing the level of the index (i.e, the height of the
228 * tree-like structure) also uses CAS. Creation of an index with
229 * height greater than the current level adds a level to the head
230 * index by CAS'ing on a new top-most head. To maintain good
231 * performance after a lot of removals, deletion methods
232 * heuristically try to reduce the height if the topmost levels
233 * appear to be empty. This may encounter races in which it is
234 * possible (but rare) to reduce and "lose" a level just as it is
235 * about to contain an index (that will then never be
236 * encountered). This does no structural harm, and in practice
237 * appears to be a better option than allowing unrestrained growth
238 * of levels.
239 *
240 * This class provides concurrent-reader-style memory consistency,
241 * ensuring that read-only methods report status and/or values no
242 * staler than those holding at method entry. This is done by
243 * performing all publication and structural updates using
244 * (volatile) CAS, placing an acquireFence in a few access
245 * methods, and ensuring that linked objects are transitively
246 * acquired via dependent reads (normally once) unless performing
247 * a volatile-mode CAS operation (that also acts as an acquire and
248 * release). This form of fence-hoisting is similar to RCU and
249 * related techniques (see McKenney's online book
250 * https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)
251 * It minimizes overhead that may otherwise occur when using so
252 * many volatile-mode reads. Using explicit acquireFences is
253 * logistically easier than targeting particular fields to be read
254 * in acquire mode: fences are just hoisted up as far as possible,
255 * to the entry points or loop headers of a few methods. A
256 * potential disadvantage is that these few remaining fences are
257 * not easily optimized away by compilers under exclusively
258 * single-thread use. It requires some care to avoid volatile
259 * mode reads of other fields. (Note that the memory semantics of
260 * a reference dependently read in plain mode exactly once are
261 * equivalent to those for atomic opaque mode.) Iterators and
262 * other traversals encounter each node and value exactly once.
263 * Other operations locate an element (or position to insert an
264 * element) via a sequence of dereferences. This search is broken
265 * into two parts. Method findPredecessor (and its specialized
266 * embeddings) searches index nodes only, returning a base-level
267 * predecessor of the key. Callers carry out the base-level
268 * search, restarting if encountering a marker preventing link
269 * modification. In some cases, it is possible to encounter a
270 * node multiple times while descending levels. For mutative
271 * operations, the reported value is validated using CAS (else
272 * retrying), preserving linearizability with respect to each
273 * other. Others may return any (non-null) value holding in the
274 * course of the method call. (Search-based methods also include
275 * some useless-looking explicit null checks designed to allow
276 * more fields to be nulled out upon removal, to reduce floating
277 * garbage, but which is not currently done, pending discovery of
278 * a way to do this with less impact on other operations.)
279 *
280 * To produce random values without interference across threads,
281 * we use within-JDK thread local random support (via the
282 * "secondary seed", to avoid interference with user-level
283 * ThreadLocalRandom.)
284 *
285 * For explanation of algorithms sharing at least a couple of
286 * features with this one, see Mikhail Fomitchev's thesis
287 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
288 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
289 * thesis (http://www.cs.chalmers.se/~phs/).
290 *
291 * Notation guide for local variables
292 * Node: b, n, f, p for predecessor, node, successor, aux
293 * Index: q, r, d for index node, right, down.
294 * Head: h
295 * Keys: k, key
296 * Values: v, value
297 * Comparisons: c
298 */
299
300 private static final long serialVersionUID = -8627078645895051609L;
301
302 /**
303 * The comparator used to maintain order in this map, or null if
304 * using natural ordering. (Non-private to simplify access in
305 * nested classes.)
306 * @serial
307 */
308 final Comparator<? super K> comparator;
309
310 /** Lazily initialized topmost index of the skiplist. */
311 private transient Index<K,V> head;
312 /** Lazily initialized element count */
313 private transient LongAdder adder;
314 /** Lazily initialized key set */
315 private transient KeySet<K,V> keySet;
316 /** Lazily initialized values collection */
317 private transient Values<K,V> values;
318 /** Lazily initialized entry set */
319 private transient EntrySet<K,V> entrySet;
320 /** Lazily initialized descending map */
321 private transient SubMap<K,V> descendingMap;
322
323 /**
324 * Nodes hold keys and values, and are singly linked in sorted
325 * order, possibly with some intervening marker nodes. The list is
326 * headed by a header node accessible as head.node. Headers and
327 * marker nodes have null keys. The val field (but currently not
328 * the key field) is nulled out upon deletion.
329 */
330 static final class Node<K,V> {
331 final K key; // currently, never detached
332 V val;
333 Node<K,V> next;
334 Node(K key, V value, Node<K,V> next) {
335 this.key = key;
336 this.val = value;
337 this.next = next;
338 }
339 }
340
341 /**
342 * Index nodes represent the levels of the skip list.
343 */
344 static final class Index<K,V> {
345 final Node<K,V> node; // currently, never detached
346 final Index<K,V> down;
347 Index<K,V> right;
348 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
349 this.node = node;
350 this.down = down;
351 this.right = right;
352 }
353 }
354
355 /* ---------------- Utilities -------------- */
356
357 /**
358 * Compares using comparator or natural ordering if null.
359 * Called only by methods that have performed required type checks.
360 */
361 @SuppressWarnings({"unchecked", "rawtypes"})
362 static int cpr(Comparator c, Object x, Object y) {
363 return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
364 }
365
366 /**
367 * Returns the header for base node list, or null if uninitialized
368 */
369 final Node<K,V> baseHead() {
370 Index<K,V> h;
371 VarHandle.acquireFence();
372 return ((h = head) == null) ? null : h.node;
373 }
374
375 /**
376 * Tries to unlink deleted node n from predecessor b (if both
377 * exist), by first splicing in a marker if not already present.
378 * Upon return, node n is sure to be unlinked from b, possibly
379 * via the actions of some other thread.
380 *
381 * @param b if nonnull, predecessor
382 * @param n if nonnull, node known to be deleted
383 */
384 static <K,V> void unlinkNode(Node<K,V> b, Node<K,V> n) {
385 if (b != null && n != null) {
386 Node<K,V> f, p;
387 for (;;) {
388 if ((f = n.next) != null && f.key == null) {
389 p = f.next; // already marked
390 break;
391 }
392 else if (NEXT.compareAndSet(n, f,
393 new Node<K,V>(null, null, f))) {
394 p = f; // add marker
395 break;
396 }
397 }
398 NEXT.compareAndSet(b, n, p);
399 }
400 }
401
402 /**
403 * Adds to element count, initializing adder if necessary
404 *
405 * @param c count to add
406 */
407 private void addCount(long c) {
408 LongAdder a;
409 do {} while ((a = adder) == null &&
410 !ADDER.compareAndSet(this, null, a = new LongAdder()));
411 a.add(c);
412 }
413
414 /**
415 * Returns element count, initializing adder if necessary.
416 */
417 final long getAdderCount() {
418 LongAdder a; long c;
419 do {} while ((a = adder) == null &&
420 !ADDER.compareAndSet(this, null, a = new LongAdder()));
421 return ((c = a.sum()) <= 0L) ? 0L : c; // ignore transient negatives
422 }
423
424 /* ---------------- Traversal -------------- */
425
426 /**
427 * Returns an index node with key strictly less than given key.
428 * Also unlinks indexes to deleted nodes found along the way.
429 * Callers rely on this side-effect of clearing indices to deleted
430 * nodes.
431 *
432 * @param key if nonnull the key
433 * @return a predecessor node of key, or null if uninitialized or null key
434 */
435 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
436 Index<K,V> q;
437 VarHandle.acquireFence();
438 if ((q = head) == null || key == null)
439 return null;
440 else {
441 for (Index<K,V> r, d;;) {
442 while ((r = q.right) != null) {
443 Node<K,V> p; K k;
444 if ((p = r.node) == null || (k = p.key) == null ||
445 p.val == null) // unlink index to deleted node
446 RIGHT.compareAndSet(q, r, r.right);
447 else if (cpr(cmp, key, k) > 0)
448 q = r;
449 else
450 break;
451 }
452 if ((d = q.down) != null)
453 q = d;
454 else
455 return q.node;
456 }
457 }
458 }
459
460 /**
461 * Returns node holding key or null if no such, clearing out any
462 * deleted nodes seen along the way. Repeatedly traverses at
463 * base-level looking for key starting at predecessor returned
464 * from findPredecessor, processing base-level deletions as
465 * encountered. Restarts occur, at traversal step encountering
466 * node n, if n's key field is null, indicating it is a marker, so
467 * its predecessor is deleted before continuing, which we help do
468 * by re-finding a valid predecessor. The traversal loops in
469 * doPut, doRemove, and findNear all include the same checks.
470 *
471 * @param key the key
472 * @return node holding key, or null if no such
473 */
474 private Node<K,V> findNode(Object key) {
475 if (key == null)
476 throw new NullPointerException(); // don't postpone errors
477 Comparator<? super K> cmp = comparator;
478 Node<K,V> b;
479 outer: while ((b = findPredecessor(key, cmp)) != null) {
480 for (;;) {
481 Node<K,V> n; K k; V v; int c;
482 if ((n = b.next) == null)
483 break outer; // empty
484 else if ((k = n.key) == null)
485 break; // b is deleted
486 else if ((v = n.val) == null)
487 unlinkNode(b, n); // n is deleted
488 else if ((c = cpr(cmp, key, k)) > 0)
489 b = n;
490 else if (c == 0)
491 return n;
492 else
493 break outer;
494 }
495 }
496 return null;
497 }
498
499 /**
500 * Gets value for key. Same idea as findNode, except skips over
501 * deletions and markers, and returns first encountered value to
502 * avoid possibly inconsistent rereads.
503 *
504 * @param key the key
505 * @return the value, or null if absent
506 */
507 private V doGet(Object key) {
508 Index<K,V> q;
509 VarHandle.acquireFence();
510 if (key == null)
511 throw new NullPointerException();
512 Comparator<? super K> cmp = comparator;
513 V result = null;
514 if ((q = head) != null) {
515 outer: for (Index<K,V> r, d;;) {
516 while ((r = q.right) != null) {
517 Node<K,V> p; K k; V v; int c;
518 if ((p = r.node) == null || (k = p.key) == null ||
519 (v = p.val) == null)
520 RIGHT.compareAndSet(q, r, r.right);
521 else if ((c = cpr(cmp, key, k)) > 0)
522 q = r;
523 else if (c == 0) {
524 result = v;
525 break outer;
526 }
527 else
528 break;
529 }
530 if ((d = q.down) != null)
531 q = d;
532 else {
533 Node<K,V> b, n;
534 if ((b = q.node) != null) {
535 while ((n = b.next) != null) {
536 V v; int c;
537 K k = n.key;
538 if ((v = n.val) == null || k == null ||
539 (c = cpr(cmp, key, k)) > 0)
540 b = n;
541 else {
542 if (c == 0)
543 result = v;
544 break;
545 }
546 }
547 }
548 break;
549 }
550 }
551 }
552 return result;
553 }
554
555 /* ---------------- Insertion -------------- */
556
557 /**
558 * Main insertion method. Adds element if not present, or
559 * replaces value if present and onlyIfAbsent is false.
560 *
561 * @param key the key
562 * @param value the value that must be associated with key
563 * @param onlyIfAbsent if should not insert if already present
564 * @return the old value, or null if newly inserted
565 */
566 private V doPut(K key, V value, boolean onlyIfAbsent) {
567 if (key == null)
568 throw new NullPointerException();
569 Comparator<? super K> cmp = comparator;
570 for (;;) {
571 Index<K,V> h; Node<K,V> b;
572 VarHandle.acquireFence();
573 int levels = 0; // number of levels descended
574 if ((h = head) == null) { // try to initialize
575 Node<K,V> base = new Node<K,V>(null, null, null);
576 h = new Index<K,V>(base, null, null);
577 b = (HEAD.compareAndSet(this, null, h)) ? base : null;
578 }
579 else {
580 for (Index<K,V> q = h, r, d;;) { // count while descending
581 while ((r = q.right) != null) {
582 Node<K,V> p; K k;
583 if ((p = r.node) == null || (k = p.key) == null ||
584 p.val == null)
585 RIGHT.compareAndSet(q, r, r.right);
586 else if (cpr(cmp, key, k) > 0)
587 q = r;
588 else
589 break;
590 }
591 if ((d = q.down) != null) {
592 ++levels;
593 q = d;
594 }
595 else {
596 b = q.node;
597 break;
598 }
599 }
600 }
601 if (b != null) {
602 Node<K,V> z = null; // new node, if inserted
603 for (;;) { // find insertion point
604 Node<K,V> n, p; K k; V v; int c;
605 if ((n = b.next) == null) {
606 if (b.key == null) // if empty, type check key now
607 cpr(cmp, key, key);
608 c = -1;
609 }
610 else if ((k = n.key) == null)
611 break; // can't append; restart
612 else if ((v = n.val) == null) {
613 unlinkNode(b, n);
614 c = 1;
615 }
616 else if ((c = cpr(cmp, key, k)) > 0)
617 b = n;
618 else if (c == 0 &&
619 (onlyIfAbsent || VAL.compareAndSet(n, v, value)))
620 return v;
621
622 if (c < 0 &&
623 NEXT.compareAndSet(b, n,
624 p = new Node<K,V>(key, value, n))) {
625 z = p;
626 break;
627 }
628 }
629
630 if (z != null) {
631 int lr = ThreadLocalRandom.nextSecondarySeed();
632 if ((lr & 0x3) == 0) { // add indices with 1/4 prob
633 int hr = ThreadLocalRandom.nextSecondarySeed();
634 long rnd = ((long)hr << 32) | ((long)lr & 0xffffffffL);
635 int skips = levels; // levels to descend before add
636 Index<K,V> x = null;
637 for (;;) { // create at most 62 indices
638 x = new Index<K,V>(z, x, null);
639 if (rnd >= 0L || --skips < 0)
640 break;
641 else
642 rnd <<= 1;
643 }
644 if (addIndices(h, skips, x, cmp) && skips < 0 &&
645 head == h) { // try to add new level
646 Index<K,V> hx = new Index<K,V>(z, x, null);
647 Index<K,V> nh = new Index<K,V>(h.node, h, hx);
648 HEAD.compareAndSet(this, h, nh);
649 }
650 if (z.val == null) // deleted while adding indices
651 findPredecessor(key, cmp); // clean
652 }
653 addCount(1L);
654 return null;
655 }
656 }
657 }
658 }
659
660 /**
661 * Add indices after an insertion. Descends iteratively to the
662 * highest level of insertion, then recursively, to chain index
663 * nodes to lower ones. Returns null on (staleness) failure,
664 * disabling higher-level insertions. Recursion depths are
665 * exponentially less probable.
666 *
667 * @param q starting index for current level
668 * @param skips levels to skip before inserting
669 * @param x index for this insertion
670 * @param cmp comparator
671 */
672 static <K,V> boolean addIndices(Index<K,V> q, int skips, Index<K,V> x,
673 Comparator<? super K> cmp) {
674 Node<K,V> z; K key;
675 if (x != null && (z = x.node) != null && (key = z.key) != null &&
676 q != null) { // hoist checks
677 boolean retrying = false;
678 for (;;) { // find splice point
679 Index<K,V> r, d; int c;
680 if ((r = q.right) != null) {
681 Node<K,V> p; K k;
682 if ((p = r.node) == null || (k = p.key) == null ||
683 p.val == null) {
684 RIGHT.compareAndSet(q, r, r.right);
685 c = 0;
686 }
687 else if ((c = cpr(cmp, key, k)) > 0)
688 q = r;
689 else if (c == 0)
690 break; // stale
691 }
692 else
693 c = -1;
694
695 if (c < 0) {
696 if ((d = q.down) != null && skips > 0) {
697 --skips;
698 q = d;
699 }
700 else if (d != null && !retrying &&
701 !addIndices(d, 0, x.down, cmp))
702 break;
703 else {
704 x.right = r;
705 if (RIGHT.compareAndSet(q, r, x))
706 return true;
707 else
708 retrying = true; // re-find splice point
709 }
710 }
711 }
712 }
713 return false;
714 }
715
716 /* ---------------- Deletion -------------- */
717
718 /**
719 * Main deletion method. Locates node, nulls value, appends a
720 * deletion marker, unlinks predecessor, removes associated index
721 * nodes, and possibly reduces head index level.
722 *
723 * @param key the key
724 * @param value if non-null, the value that must be
725 * associated with key
726 * @return the node, or null if not found
727 */
728 final V doRemove(Object key, Object value) {
729 if (key == null)
730 throw new NullPointerException();
731 Comparator<? super K> cmp = comparator;
732 V result = null;
733 Node<K,V> b;
734 outer: while ((b = findPredecessor(key, cmp)) != null &&
735 result == null) {
736 for (;;) {
737 Node<K,V> n; K k; V v; int c;
738 if ((n = b.next) == null)
739 break outer;
740 else if ((k = n.key) == null)
741 break;
742 else if ((v = n.val) == null)
743 unlinkNode(b, n);
744 else if ((c = cpr(cmp, key, k)) > 0)
745 b = n;
746 else if (c < 0)
747 break outer;
748 else if (value != null && !value.equals(v))
749 break outer;
750 else if (VAL.compareAndSet(n, v, null)) {
751 result = v;
752 unlinkNode(b, n);
753 break; // loop to clean up
754 }
755 }
756 }
757 if (result != null) {
758 tryReduceLevel();
759 addCount(-1L);
760 }
761 return result;
762 }
763
764 /**
765 * Possibly reduce head level if it has no nodes. This method can
766 * (rarely) make mistakes, in which case levels can disappear even
767 * though they are about to contain index nodes. This impacts
768 * performance, not correctness. To minimize mistakes as well as
769 * to reduce hysteresis, the level is reduced by one only if the
770 * topmost three levels look empty. Also, if the removed level
771 * looks non-empty after CAS, we try to change it back quick
772 * before anyone notices our mistake! (This trick works pretty
773 * well because this method will practically never make mistakes
774 * unless current thread stalls immediately before first CAS, in
775 * which case it is very unlikely to stall again immediately
776 * afterwards, so will recover.)
777 *
778 * We put up with all this rather than just let levels grow
779 * because otherwise, even a small map that has undergone a large
780 * number of insertions and removals will have a lot of levels,
781 * slowing down access more than would an occasional unwanted
782 * reduction.
783 */
784 private void tryReduceLevel() {
785 Index<K,V> h, d, e;
786 if ((h = head) != null && h.right == null &&
787 (d = h.down) != null && d.right == null &&
788 (e = d.down) != null && e.right == null &&
789 HEAD.compareAndSet(this, h, d) &&
790 h.right != null) // recheck
791 HEAD.compareAndSet(this, d, h); // try to backout
792 }
793
794 /* ---------------- Finding and removing first element -------------- */
795
796 /**
797 * Gets first valid node, unlinking deleted nodes if encountered.
798 * @return first node or null if empty
799 */
800 final Node<K,V> findFirst() {
801 Node<K,V> b, n;
802 if ((b = baseHead()) != null) {
803 while ((n = b.next) != null) {
804 if (n.val == null)
805 unlinkNode(b, n);
806 else
807 return n;
808 }
809 }
810 return null;
811 }
812
813 /**
814 * Entry snapshot version of findFirst
815 */
816 final AbstractMap.SimpleImmutableEntry<K,V> findFirstEntry() {
817 Node<K,V> b, n; V v;
818 if ((b = baseHead()) != null) {
819 while ((n = b.next) != null) {
820 if ((v = n.val) == null)
821 unlinkNode(b, n);
822 else
823 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
824 }
825 }
826 return null;
827 }
828
829 /**
830 * Removes first entry; returns its snapshot.
831 * @return null if empty, else snapshot of first entry
832 */
833 private AbstractMap.SimpleImmutableEntry<K,V> doRemoveFirstEntry() {
834 Node<K,V> b, n; V v;
835 if ((b = baseHead()) != null) {
836 while ((n = b.next) != null) {
837 if ((v = n.val) == null || VAL.compareAndSet(n, v, null)) {
838 K k = n.key;
839 unlinkNode(b, n);
840 if (v != null) {
841 tryReduceLevel();
842 findPredecessor(k, comparator); // clean index
843 addCount(-1L);
844 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
845 }
846 }
847 }
848 }
849 return null;
850 }
851
852 /* ---------------- Finding and removing last element -------------- */
853
854 /**
855 * Specialized version of find to get last valid node.
856 * @return last node or null if empty
857 */
858 final Node<K,V> findLast() {
859 outer: for (;;) {
860 Index<K,V> q; Node<K,V> b;
861 VarHandle.acquireFence();
862 if ((q = head) == null)
863 break;
864 for (Index<K,V> r, d;;) {
865 while ((r = q.right) != null) {
866 Node<K,V> p;
867 if ((p = r.node) == null || p.val == null)
868 RIGHT.compareAndSet(q, r, r.right);
869 else
870 q = r;
871 }
872 if ((d = q.down) != null)
873 q = d;
874 else {
875 b = q.node;
876 break;
877 }
878 }
879 if (b != null) {
880 for (;;) {
881 Node<K,V> n;
882 if ((n = b.next) == null) {
883 if (b.key == null) // empty
884 break outer;
885 else
886 return b;
887 }
888 else if (n.key == null)
889 break;
890 else if (n.val == null)
891 unlinkNode(b, n);
892 else
893 b = n;
894 }
895 }
896 }
897 return null;
898 }
899
900 /**
901 * Entry version of findLast
902 * @return Entry for last node or null if empty
903 */
904 final AbstractMap.SimpleImmutableEntry<K,V> findLastEntry() {
905 for (;;) {
906 Node<K,V> n; V v;
907 if ((n = findLast()) == null)
908 return null;
909 if ((v = n.val) != null)
910 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
911 }
912 }
913
914 /**
915 * Removes last entry; returns its snapshot.
916 * Specialized variant of doRemove.
917 * @return null if empty, else snapshot of last entry
918 */
919 private Map.Entry<K,V> doRemoveLastEntry() {
920 outer: for (;;) {
921 Index<K,V> q; Node<K,V> b;
922 VarHandle.acquireFence();
923 if ((q = head) == null)
924 break;
925 for (;;) {
926 Index<K,V> d, r; Node<K,V> p;
927 while ((r = q.right) != null) {
928 if ((p = r.node) == null || p.val == null)
929 RIGHT.compareAndSet(q, r, r.right);
930 else if (p.next != null)
931 q = r; // continue only if a successor
932 else
933 break;
934 }
935 if ((d = q.down) != null)
936 q = d;
937 else {
938 b = q.node;
939 break;
940 }
941 }
942 if (b != null) {
943 for (;;) {
944 Node<K,V> n; K k; V v;
945 if ((n = b.next) == null) {
946 if (b.key == null) // empty
947 break outer;
948 else
949 break; // retry
950 }
951 else if ((k = n.key) == null)
952 break;
953 else if ((v = n.val) == null)
954 unlinkNode(b, n);
955 else if (n.next != null)
956 b = n;
957 else if (VAL.compareAndSet(n, v, null)) {
958 unlinkNode(b, n);
959 tryReduceLevel();
960 findPredecessor(k, comparator); // clean index
961 addCount(-1L);
962 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
963 }
964 }
965 }
966 }
967 return null;
968 }
969
970 /* ---------------- Relational operations -------------- */
971
972 // Control values OR'ed as arguments to findNear
973
974 private static final int EQ = 1;
975 private static final int LT = 2;
976 private static final int GT = 0; // Actually checked as !LT
977
978 /**
979 * Utility for ceiling, floor, lower, higher methods.
980 * @param key the key
981 * @param rel the relation -- OR'ed combination of EQ, LT, GT
982 * @return nearest node fitting relation, or null if no such
983 */
984 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
985 if (key == null)
986 throw new NullPointerException();
987 Node<K,V> result;
988 outer: for (Node<K,V> b;;) {
989 if ((b = findPredecessor(key, cmp)) == null) {
990 result = null;
991 break; // empty
992 }
993 for (;;) {
994 Node<K,V> n; K k; int c;
995 if ((n = b.next) == null) {
996 result = ((rel & LT) != 0 && b.key != null) ? b : null;
997 break outer;
998 }
999 else if ((k = n.key) == null)
1000 break;
1001 else if (n.val == null)
1002 unlinkNode(b, n);
1003 else if (((c = cpr(cmp, key, k)) == 0 && (rel & EQ) != 0) ||
1004 (c < 0 && (rel & LT) == 0)) {
1005 result = n;
1006 break outer;
1007 }
1008 else if (c <= 0 && (rel & LT) != 0) {
1009 result = (b.key != null) ? b : null;
1010 break outer;
1011 }
1012 else
1013 b = n;
1014 }
1015 }
1016 return result;
1017 }
1018
1019 /**
1020 * Variant of findNear returning SimpleImmutableEntry
1021 * @param key the key
1022 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1023 * @return Entry fitting relation, or null if no such
1024 */
1025 final AbstractMap.SimpleImmutableEntry<K,V> findNearEntry(K key, int rel,
1026 Comparator<? super K> cmp) {
1027 for (;;) {
1028 Node<K,V> n; V v;
1029 if ((n = findNear(key, rel, cmp)) == null)
1030 return null;
1031 if ((v = n.val) != null)
1032 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
1033 }
1034 }
1035
1036 /* ---------------- Constructors -------------- */
1037
1038 /**
1039 * Constructs a new, empty map, sorted according to the
1040 * {@linkplain Comparable natural ordering} of the keys.
1041 */
1042 public ConcurrentSkipListMap() {
1043 this.comparator = null;
1044 }
1045
1046 /**
1047 * Constructs a new, empty map, sorted according to the specified
1048 * comparator.
1049 *
1050 * @param comparator the comparator that will be used to order this map.
1051 * If {@code null}, the {@linkplain Comparable natural
1052 * ordering} of the keys will be used.
1053 */
1054 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1055 this.comparator = comparator;
1056 }
1057
1058 /**
1059 * Constructs a new map containing the same mappings as the given map,
1060 * sorted according to the {@linkplain Comparable natural ordering} of
1061 * the keys.
1062 *
1063 * @param m the map whose mappings are to be placed in this map
1064 * @throws ClassCastException if the keys in {@code m} are not
1065 * {@link Comparable}, or are not mutually comparable
1066 * @throws NullPointerException if the specified map or any of its keys
1067 * or values are null
1068 */
1069 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1070 this.comparator = null;
1071 putAll(m);
1072 }
1073
1074 /**
1075 * Constructs a new map containing the same mappings and using the
1076 * same ordering as the specified sorted map.
1077 *
1078 * @param m the sorted map whose mappings are to be placed in this
1079 * map, and whose comparator is to be used to sort this map
1080 * @throws NullPointerException if the specified sorted map or any of
1081 * its keys or values are null
1082 */
1083 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1084 this.comparator = m.comparator();
1085 buildFromSorted(m); // initializes transients
1086 }
1087
1088 /**
1089 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1090 * instance. (The keys and values themselves are not cloned.)
1091 *
1092 * @return a shallow copy of this map
1093 */
1094 public ConcurrentSkipListMap<K,V> clone() {
1095 try {
1096 @SuppressWarnings("unchecked")
1097 ConcurrentSkipListMap<K,V> clone =
1098 (ConcurrentSkipListMap<K,V>) super.clone();
1099 clone.keySet = null;
1100 clone.entrySet = null;
1101 clone.values = null;
1102 clone.descendingMap = null;
1103 clone.adder = null;
1104 clone.buildFromSorted(this);
1105 return clone;
1106 } catch (CloneNotSupportedException e) {
1107 throw new InternalError();
1108 }
1109 }
1110
1111 /**
1112 * Streamlined bulk insertion to initialize from elements of
1113 * given sorted map. Call only from constructor or clone
1114 * method.
1115 */
1116 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1117 if (map == null)
1118 throw new NullPointerException();
1119 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1120 map.entrySet().iterator();
1121
1122 /*
1123 * Add equally spaced indices at log intervals, using the bits
1124 * of count during insertion. The maximum possible resulting
1125 * level is less than the number of bits in a long (64). The
1126 * preds array tracks the current rightmost node at each
1127 * level.
1128 */
1129 @SuppressWarnings("unchecked")
1130 Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1131 Node<K,V> bp = new Node<K,V>(null, null, null);
1132 Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1133 long count = 0;
1134
1135 while (it.hasNext()) {
1136 Map.Entry<? extends K, ? extends V> e = it.next();
1137 K k = e.getKey();
1138 V v = e.getValue();
1139 if (k == null || v == null)
1140 throw new NullPointerException();
1141 Node<K,V> z = new Node<K,V>(k, v, null);
1142 bp = bp.next = z;
1143 if ((++count & 3L) == 0L) {
1144 long m = count >>> 2;
1145 int i = 0;
1146 Index<K,V> idx = null, q;
1147 do {
1148 idx = new Index<K,V>(z, idx, null);
1149 if ((q = preds[i]) == null)
1150 preds[i] = h = new Index<K,V>(h.node, h, idx);
1151 else
1152 preds[i] = q.right = idx;
1153 } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1154 }
1155 }
1156 if (count != 0L) {
1157 VarHandle.releaseFence(); // emulate volatile stores
1158 addCount(count);
1159 head = h;
1160 VarHandle.fullFence();
1161 }
1162 }
1163
1164 /* ---------------- Serialization -------------- */
1165
1166 /**
1167 * Saves this map to a stream (that is, serializes it).
1168 *
1169 * @param s the stream
1170 * @throws java.io.IOException if an I/O error occurs
1171 * @serialData The key (Object) and value (Object) for each
1172 * key-value mapping represented by the map, followed by
1173 * {@code null}. The key-value mappings are emitted in key-order
1174 * (as determined by the Comparator, or by the keys' natural
1175 * ordering if no Comparator).
1176 */
1177 private void writeObject(java.io.ObjectOutputStream s)
1178 throws java.io.IOException {
1179 // Write out the Comparator and any hidden stuff
1180 s.defaultWriteObject();
1181
1182 // Write out keys and values (alternating)
1183 Node<K,V> b, n; V v;
1184 if ((b = baseHead()) != null) {
1185 while ((n = b.next) != null) {
1186 if ((v = n.val) != null) {
1187 s.writeObject(n.key);
1188 s.writeObject(v);
1189 }
1190 b = n;
1191 }
1192 }
1193 s.writeObject(null);
1194 }
1195
1196 /**
1197 * Reconstitutes this map from a stream (that is, deserializes it).
1198 * @param s the stream
1199 * @throws ClassNotFoundException if the class of a serialized object
1200 * could not be found
1201 * @throws java.io.IOException if an I/O error occurs
1202 */
1203 @SuppressWarnings("unchecked")
1204 private void readObject(final java.io.ObjectInputStream s)
1205 throws java.io.IOException, ClassNotFoundException {
1206 // Read in the Comparator and any hidden stuff
1207 s.defaultReadObject();
1208
1209 // Same idea as buildFromSorted
1210 @SuppressWarnings("unchecked")
1211 Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1212 Node<K,V> bp = new Node<K,V>(null, null, null);
1213 Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1214 Comparator<? super K> cmp = comparator;
1215 K prevKey = null;
1216 long count = 0;
1217
1218 for (;;) {
1219 K k = (K)s.readObject();
1220 if (k == null)
1221 break;
1222 V v = (V)s.readObject();
1223 if (v == null)
1224 throw new NullPointerException();
1225 if (prevKey != null && cpr(cmp, prevKey, k) > 0)
1226 throw new IllegalStateException("out of order");
1227 prevKey = k;
1228 Node<K,V> z = new Node<K,V>(k, v, null);
1229 bp = bp.next = z;
1230 if ((++count & 3L) == 0L) {
1231 long m = count >>> 2;
1232 int i = 0;
1233 Index<K,V> idx = null, q;
1234 do {
1235 idx = new Index<K,V>(z, idx, null);
1236 if ((q = preds[i]) == null)
1237 preds[i] = h = new Index<K,V>(h.node, h, idx);
1238 else
1239 preds[i] = q.right = idx;
1240 } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1241 }
1242 }
1243 if (count != 0L) {
1244 VarHandle.releaseFence();
1245 addCount(count);
1246 head = h;
1247 VarHandle.fullFence();
1248 }
1249 }
1250
1251 /* ------ Map API methods ------ */
1252
1253 /**
1254 * Returns {@code true} if this map contains a mapping for the specified
1255 * key.
1256 *
1257 * @param key key whose presence in this map is to be tested
1258 * @return {@code true} if this map contains a mapping for the specified key
1259 * @throws ClassCastException if the specified key cannot be compared
1260 * with the keys currently in the map
1261 * @throws NullPointerException if the specified key is null
1262 */
1263 public boolean containsKey(Object key) {
1264 return doGet(key) != null;
1265 }
1266
1267 /**
1268 * Returns the value to which the specified key is mapped,
1269 * or {@code null} if this map contains no mapping for the key.
1270 *
1271 * <p>More formally, if this map contains a mapping from a key
1272 * {@code k} to a value {@code v} such that {@code key} compares
1273 * equal to {@code k} according to the map's ordering, then this
1274 * method returns {@code v}; otherwise it returns {@code null}.
1275 * (There can be at most one such mapping.)
1276 *
1277 * @throws ClassCastException if the specified key cannot be compared
1278 * with the keys currently in the map
1279 * @throws NullPointerException if the specified key is null
1280 */
1281 public V get(Object key) {
1282 return doGet(key);
1283 }
1284
1285 /**
1286 * Returns the value to which the specified key is mapped,
1287 * or the given defaultValue if this map contains no mapping for the key.
1288 *
1289 * @param key the key
1290 * @param defaultValue the value to return if this map contains
1291 * no mapping for the given key
1292 * @return the mapping for the key, if present; else the defaultValue
1293 * @throws NullPointerException if the specified key is null
1294 * @since 1.8
1295 */
1296 public V getOrDefault(Object key, V defaultValue) {
1297 V v;
1298 return (v = doGet(key)) == null ? defaultValue : v;
1299 }
1300
1301 /**
1302 * Associates the specified value with the specified key in this map.
1303 * If the map previously contained a mapping for the key, the old
1304 * value is replaced.
1305 *
1306 * @param key key with which the specified value is to be associated
1307 * @param value value to be associated with the specified key
1308 * @return the previous value associated with the specified key, or
1309 * {@code null} if there was no mapping for the key
1310 * @throws ClassCastException if the specified key cannot be compared
1311 * with the keys currently in the map
1312 * @throws NullPointerException if the specified key or value is null
1313 */
1314 public V put(K key, V value) {
1315 if (value == null)
1316 throw new NullPointerException();
1317 return doPut(key, value, false);
1318 }
1319
1320 /**
1321 * Removes the mapping for the specified key from this map if present.
1322 *
1323 * @param key key for which mapping should be removed
1324 * @return the previous value associated with the specified key, or
1325 * {@code null} if there was no mapping for the key
1326 * @throws ClassCastException if the specified key cannot be compared
1327 * with the keys currently in the map
1328 * @throws NullPointerException if the specified key is null
1329 */
1330 public V remove(Object key) {
1331 return doRemove(key, null);
1332 }
1333
1334 /**
1335 * Returns {@code true} if this map maps one or more keys to the
1336 * specified value. This operation requires time linear in the
1337 * map size. Additionally, it is possible for the map to change
1338 * during execution of this method, in which case the returned
1339 * result may be inaccurate.
1340 *
1341 * @param value value whose presence in this map is to be tested
1342 * @return {@code true} if a mapping to {@code value} exists;
1343 * {@code false} otherwise
1344 * @throws NullPointerException if the specified value is null
1345 */
1346 public boolean containsValue(Object value) {
1347 if (value == null)
1348 throw new NullPointerException();
1349 Node<K,V> b, n; V v;
1350 if ((b = baseHead()) != null) {
1351 while ((n = b.next) != null) {
1352 if ((v = n.val) != null && value.equals(v))
1353 return true;
1354 else
1355 b = n;
1356 }
1357 }
1358 return false;
1359 }
1360
1361 /**
1362 * {@inheritDoc}
1363 */
1364 public int size() {
1365 long c;
1366 return ((baseHead() == null) ? 0 :
1367 ((c = getAdderCount()) >= Integer.MAX_VALUE) ?
1368 Integer.MAX_VALUE : (int) c);
1369 }
1370
1371 /**
1372 * {@inheritDoc}
1373 */
1374 public boolean isEmpty() {
1375 return findFirst() == null;
1376 }
1377
1378 /**
1379 * Removes all of the mappings from this map.
1380 */
1381 public void clear() {
1382 Index<K,V> h, r, d; Node<K,V> b;
1383 VarHandle.acquireFence();
1384 while ((h = head) != null) {
1385 if ((r = h.right) != null) // remove indices
1386 RIGHT.compareAndSet(h, r, null);
1387 else if ((d = h.down) != null) // remove levels
1388 HEAD.compareAndSet(this, h, d);
1389 else {
1390 long count = 0L;
1391 if ((b = h.node) != null) { // remove nodes
1392 Node<K,V> n; V v;
1393 while ((n = b.next) != null) {
1394 if ((v = n.val) != null &&
1395 VAL.compareAndSet(n, v, null)) {
1396 --count;
1397 v = null;
1398 }
1399 if (v == null)
1400 unlinkNode(b, n);
1401 }
1402 }
1403 if (count != 0L)
1404 addCount(count);
1405 else
1406 break;
1407 }
1408 }
1409 }
1410
1411 /**
1412 * If the specified key is not already associated with a value,
1413 * attempts to compute its value using the given mapping function
1414 * and enters it into this map unless {@code null}. The function
1415 * is <em>NOT</em> guaranteed to be applied once atomically only
1416 * if the value is not present.
1417 *
1418 * @param key key with which the specified value is to be associated
1419 * @param mappingFunction the function to compute a value
1420 * @return the current (existing or computed) value associated with
1421 * the specified key, or null if the computed value is null
1422 * @throws NullPointerException if the specified key is null
1423 * or the mappingFunction is null
1424 * @since 1.8
1425 */
1426 public V computeIfAbsent(K key,
1427 Function<? super K, ? extends V> mappingFunction) {
1428 if (key == null || mappingFunction == null)
1429 throw new NullPointerException();
1430 V v, p, r;
1431 if ((v = doGet(key)) == null &&
1432 (r = mappingFunction.apply(key)) != null)
1433 v = (p = doPut(key, r, true)) == null ? r : p;
1434 return v;
1435 }
1436
1437 /**
1438 * If the value for the specified key is present, attempts to
1439 * compute a new mapping given the key and its current mapped
1440 * value. The function is <em>NOT</em> guaranteed to be applied
1441 * once atomically.
1442 *
1443 * @param key key with which a value may be associated
1444 * @param remappingFunction the function to compute a value
1445 * @return the new value associated with the specified key, or null if none
1446 * @throws NullPointerException if the specified key is null
1447 * or the remappingFunction is null
1448 * @since 1.8
1449 */
1450 public V computeIfPresent(K key,
1451 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1452 if (key == null || remappingFunction == null)
1453 throw new NullPointerException();
1454 Node<K,V> n; V v;
1455 while ((n = findNode(key)) != null) {
1456 if ((v = n.val) != null) {
1457 V r = remappingFunction.apply(key, v);
1458 if (r != null) {
1459 if (VAL.compareAndSet(n, v, r))
1460 return r;
1461 }
1462 else if (doRemove(key, v) != null)
1463 break;
1464 }
1465 }
1466 return null;
1467 }
1468
1469 /**
1470 * Attempts to compute a mapping for the specified key and its
1471 * current mapped value (or {@code null} if there is no current
1472 * mapping). The function is <em>NOT</em> guaranteed to be applied
1473 * once atomically.
1474 *
1475 * @param key key with which the specified value is to be associated
1476 * @param remappingFunction the function to compute a value
1477 * @return the new value associated with the specified key, or null if none
1478 * @throws NullPointerException if the specified key is null
1479 * or the remappingFunction is null
1480 * @since 1.8
1481 */
1482 public V compute(K key,
1483 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1484 if (key == null || remappingFunction == null)
1485 throw new NullPointerException();
1486 for (;;) {
1487 Node<K,V> n; V v; V r;
1488 if ((n = findNode(key)) == null) {
1489 if ((r = remappingFunction.apply(key, null)) == null)
1490 break;
1491 if (doPut(key, r, true) == null)
1492 return r;
1493 }
1494 else if ((v = n.val) != null) {
1495 if ((r = remappingFunction.apply(key, v)) != null) {
1496 if (VAL.compareAndSet(n, v, r))
1497 return r;
1498 }
1499 else if (doRemove(key, v) != null)
1500 break;
1501 }
1502 }
1503 return null;
1504 }
1505
1506 /**
1507 * If the specified key is not already associated with a value,
1508 * associates it with the given value. Otherwise, replaces the
1509 * value with the results of the given remapping function, or
1510 * removes if {@code null}. The function is <em>NOT</em>
1511 * guaranteed to be applied once atomically.
1512 *
1513 * @param key key with which the specified value is to be associated
1514 * @param value the value to use if absent
1515 * @param remappingFunction the function to recompute a value if present
1516 * @return the new value associated with the specified key, or null if none
1517 * @throws NullPointerException if the specified key or value is null
1518 * or the remappingFunction is null
1519 * @since 1.8
1520 */
1521 public V merge(K key, V value,
1522 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1523 if (key == null || value == null || remappingFunction == null)
1524 throw new NullPointerException();
1525 for (;;) {
1526 Node<K,V> n; V v; V r;
1527 if ((n = findNode(key)) == null) {
1528 if (doPut(key, value, true) == null)
1529 return value;
1530 }
1531 else if ((v = n.val) != null) {
1532 if ((r = remappingFunction.apply(v, value)) != null) {
1533 if (VAL.compareAndSet(n, v, r))
1534 return r;
1535 }
1536 else if (doRemove(key, v) != null)
1537 return null;
1538 }
1539 }
1540 }
1541
1542 /* ---------------- View methods -------------- */
1543
1544 /*
1545 * Note: Lazy initialization works for views because view classes
1546 * are stateless/immutable so it doesn't matter wrt correctness if
1547 * more than one is created (which will only rarely happen). Even
1548 * so, the following idiom conservatively ensures that the method
1549 * returns the one it created if it does so, not one created by
1550 * another racing thread.
1551 */
1552
1553 /**
1554 * Returns a {@link NavigableSet} view of the keys contained in this map.
1555 *
1556 * <p>The set's iterator returns the keys in ascending order.
1557 * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1558 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1559 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1560 * key order.
1561 *
1562 * <p>The {@linkplain Spliterator#getComparator() spliterator's comparator}
1563 * is {@code null} if the {@linkplain #comparator() map's comparator}
1564 * is {@code null}.
1565 * Otherwise, the spliterator's comparator is the same as or imposes the
1566 * same total ordering as the map's comparator.
1567 *
1568 * <p>The set is backed by the map, so changes to the map are
1569 * reflected in the set, and vice-versa. The set supports element
1570 * removal, which removes the corresponding mapping from the map,
1571 * via the {@code Iterator.remove}, {@code Set.remove},
1572 * {@code removeAll}, {@code retainAll}, and {@code clear}
1573 * operations. It does not support the {@code add} or {@code addAll}
1574 * operations.
1575 *
1576 * <p>The view's iterators and spliterators are
1577 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1578 *
1579 * <p>This method is equivalent to method {@code navigableKeySet}.
1580 *
1581 * @return a navigable set view of the keys in this map
1582 */
1583 public NavigableSet<K> keySet() {
1584 KeySet<K,V> ks;
1585 if ((ks = keySet) != null) return ks;
1586 return keySet = new KeySet<>(this);
1587 }
1588
1589 public NavigableSet<K> navigableKeySet() {
1590 KeySet<K,V> ks;
1591 if ((ks = keySet) != null) return ks;
1592 return keySet = new KeySet<>(this);
1593 }
1594
1595 /**
1596 * Returns a {@link Collection} view of the values contained in this map.
1597 * <p>The collection's iterator returns the values in ascending order
1598 * of the corresponding keys. The collections's spliterator additionally
1599 * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1600 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1601 * order of the corresponding keys.
1602 *
1603 * <p>The collection is backed by the map, so changes to the map are
1604 * reflected in the collection, and vice-versa. The collection
1605 * supports element removal, which removes the corresponding
1606 * mapping from the map, via the {@code Iterator.remove},
1607 * {@code Collection.remove}, {@code removeAll},
1608 * {@code retainAll} and {@code clear} operations. It does not
1609 * support the {@code add} or {@code addAll} operations.
1610 *
1611 * <p>The view's iterators and spliterators are
1612 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1613 */
1614 public Collection<V> values() {
1615 Values<K,V> vs;
1616 if ((vs = values) != null) return vs;
1617 return values = new Values<>(this);
1618 }
1619
1620 /**
1621 * Returns a {@link Set} view of the mappings contained in this map.
1622 *
1623 * <p>The set's iterator returns the entries in ascending key order. The
1624 * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1625 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1626 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1627 * key order.
1628 *
1629 * <p>The set is backed by the map, so changes to the map are
1630 * reflected in the set, and vice-versa. The set supports element
1631 * removal, which removes the corresponding mapping from the map,
1632 * via the {@code Iterator.remove}, {@code Set.remove},
1633 * {@code removeAll}, {@code retainAll} and {@code clear}
1634 * operations. It does not support the {@code add} or
1635 * {@code addAll} operations.
1636 *
1637 * <p>The view's iterators and spliterators are
1638 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1639 *
1640 * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1641 * or {@code spliterator} do <em>not</em> support the {@code setValue}
1642 * operation.
1643 *
1644 * @return a set view of the mappings contained in this map,
1645 * sorted in ascending key order
1646 */
1647 public Set<Map.Entry<K,V>> entrySet() {
1648 EntrySet<K,V> es;
1649 if ((es = entrySet) != null) return es;
1650 return entrySet = new EntrySet<K,V>(this);
1651 }
1652
1653 public ConcurrentNavigableMap<K,V> descendingMap() {
1654 ConcurrentNavigableMap<K,V> dm;
1655 if ((dm = descendingMap) != null) return dm;
1656 return descendingMap =
1657 new SubMap<K,V>(this, null, false, null, false, true);
1658 }
1659
1660 public NavigableSet<K> descendingKeySet() {
1661 return descendingMap().navigableKeySet();
1662 }
1663
1664 /* ---------------- AbstractMap Overrides -------------- */
1665
1666 /**
1667 * Compares the specified object with this map for equality.
1668 * Returns {@code true} if the given object is also a map and the
1669 * two maps represent the same mappings. More formally, two maps
1670 * {@code m1} and {@code m2} represent the same mappings if
1671 * {@code m1.entrySet().equals(m2.entrySet())}. This
1672 * operation may return misleading results if either map is
1673 * concurrently modified during execution of this method.
1674 *
1675 * @param o object to be compared for equality with this map
1676 * @return {@code true} if the specified object is equal to this map
1677 */
1678 public boolean equals(Object o) {
1679 if (o == this)
1680 return true;
1681 if (!(o instanceof Map))
1682 return false;
1683 Map<?,?> m = (Map<?,?>) o;
1684 try {
1685 Comparator<? super K> cmp = comparator;
1686 @SuppressWarnings("unchecked")
1687 Iterator<Map.Entry<?,?>> it =
1688 (Iterator<Map.Entry<?,?>>)m.entrySet().iterator();
1689 if (m instanceof SortedMap &&
1690 ((SortedMap<?,?>)m).comparator() == cmp) {
1691 Node<K,V> b, n;
1692 if ((b = baseHead()) != null) {
1693 while ((n = b.next) != null) {
1694 K k; V v;
1695 if ((v = n.val) != null && (k = n.key) != null) {
1696 if (!it.hasNext())
1697 return false;
1698 Map.Entry<?,?> e = it.next();
1699 Object mk = e.getKey();
1700 Object mv = e.getValue();
1701 if (mk == null || mv == null)
1702 return false;
1703 try {
1704 if (cpr(cmp, k, mk) != 0)
1705 return false;
1706 } catch (ClassCastException cce) {
1707 return false;
1708 }
1709 if (!mv.equals(v))
1710 return false;
1711 }
1712 b = n;
1713 }
1714 }
1715 return !it.hasNext();
1716 }
1717 else {
1718 while (it.hasNext()) {
1719 V v;
1720 Map.Entry<?,?> e = it.next();
1721 Object mk = e.getKey();
1722 Object mv = e.getValue();
1723 if (mk == null || mv == null ||
1724 (v = get(mk)) == null || !v.equals(mv))
1725 return false;
1726 }
1727 Node<K,V> b, n;
1728 if ((b = baseHead()) != null) {
1729 K k; V v; Object mv;
1730 while ((n = b.next) != null) {
1731 if ((v = n.val) != null && (k = n.key) != null &&
1732 ((mv = m.get(k)) == null || !mv.equals(v)))
1733 return false;
1734 b = n;
1735 }
1736 }
1737 return true;
1738 }
1739 } catch (ClassCastException | NullPointerException unused) {
1740 return false;
1741 }
1742 }
1743
1744 /* ------ ConcurrentMap API methods ------ */
1745
1746 /**
1747 * {@inheritDoc}
1748 *
1749 * @return the previous value associated with the specified key,
1750 * or {@code null} if there was no mapping for the key
1751 * @throws ClassCastException if the specified key cannot be compared
1752 * with the keys currently in the map
1753 * @throws NullPointerException if the specified key or value is null
1754 */
1755 public V putIfAbsent(K key, V value) {
1756 if (value == null)
1757 throw new NullPointerException();
1758 return doPut(key, value, true);
1759 }
1760
1761 /**
1762 * {@inheritDoc}
1763 *
1764 * @throws ClassCastException if the specified key cannot be compared
1765 * with the keys currently in the map
1766 * @throws NullPointerException if the specified key is null
1767 */
1768 public boolean remove(Object key, Object value) {
1769 if (key == null)
1770 throw new NullPointerException();
1771 return value != null && doRemove(key, value) != null;
1772 }
1773
1774 /**
1775 * {@inheritDoc}
1776 *
1777 * @throws ClassCastException if the specified key cannot be compared
1778 * with the keys currently in the map
1779 * @throws NullPointerException if any of the arguments are null
1780 */
1781 public boolean replace(K key, V oldValue, V newValue) {
1782 if (key == null || oldValue == null || newValue == null)
1783 throw new NullPointerException();
1784 for (;;) {
1785 Node<K,V> n; V v;
1786 if ((n = findNode(key)) == null)
1787 return false;
1788 if ((v = n.val) != null) {
1789 if (!oldValue.equals(v))
1790 return false;
1791 if (VAL.compareAndSet(n, v, newValue))
1792 return true;
1793 }
1794 }
1795 }
1796
1797 /**
1798 * {@inheritDoc}
1799 *
1800 * @return the previous value associated with the specified key,
1801 * or {@code null} if there was no mapping for the key
1802 * @throws ClassCastException if the specified key cannot be compared
1803 * with the keys currently in the map
1804 * @throws NullPointerException if the specified key or value is null
1805 */
1806 public V replace(K key, V value) {
1807 if (key == null || value == null)
1808 throw new NullPointerException();
1809 for (;;) {
1810 Node<K,V> n; V v;
1811 if ((n = findNode(key)) == null)
1812 return null;
1813 if ((v = n.val) != null && VAL.compareAndSet(n, v, value))
1814 return v;
1815 }
1816 }
1817
1818 /* ------ SortedMap API methods ------ */
1819
1820 public Comparator<? super K> comparator() {
1821 return comparator;
1822 }
1823
1824 /**
1825 * @throws NoSuchElementException {@inheritDoc}
1826 */
1827 public K firstKey() {
1828 Node<K,V> n = findFirst();
1829 if (n == null)
1830 throw new NoSuchElementException();
1831 return n.key;
1832 }
1833
1834 /**
1835 * @throws NoSuchElementException {@inheritDoc}
1836 */
1837 public K lastKey() {
1838 Node<K,V> n = findLast();
1839 if (n == null)
1840 throw new NoSuchElementException();
1841 return n.key;
1842 }
1843
1844 /**
1845 * @throws ClassCastException {@inheritDoc}
1846 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1847 * @throws IllegalArgumentException {@inheritDoc}
1848 */
1849 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
1850 boolean fromInclusive,
1851 K toKey,
1852 boolean toInclusive) {
1853 if (fromKey == null || toKey == null)
1854 throw new NullPointerException();
1855 return new SubMap<K,V>
1856 (this, fromKey, fromInclusive, toKey, toInclusive, false);
1857 }
1858
1859 /**
1860 * @throws ClassCastException {@inheritDoc}
1861 * @throws NullPointerException if {@code toKey} is null
1862 * @throws IllegalArgumentException {@inheritDoc}
1863 */
1864 public ConcurrentNavigableMap<K,V> headMap(K toKey,
1865 boolean inclusive) {
1866 if (toKey == null)
1867 throw new NullPointerException();
1868 return new SubMap<K,V>
1869 (this, null, false, toKey, inclusive, false);
1870 }
1871
1872 /**
1873 * @throws ClassCastException {@inheritDoc}
1874 * @throws NullPointerException if {@code fromKey} is null
1875 * @throws IllegalArgumentException {@inheritDoc}
1876 */
1877 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
1878 boolean inclusive) {
1879 if (fromKey == null)
1880 throw new NullPointerException();
1881 return new SubMap<K,V>
1882 (this, fromKey, inclusive, null, false, false);
1883 }
1884
1885 /**
1886 * @throws ClassCastException {@inheritDoc}
1887 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1888 * @throws IllegalArgumentException {@inheritDoc}
1889 */
1890 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
1891 return subMap(fromKey, true, toKey, false);
1892 }
1893
1894 /**
1895 * @throws ClassCastException {@inheritDoc}
1896 * @throws NullPointerException if {@code toKey} is null
1897 * @throws IllegalArgumentException {@inheritDoc}
1898 */
1899 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
1900 return headMap(toKey, false);
1901 }
1902
1903 /**
1904 * @throws ClassCastException {@inheritDoc}
1905 * @throws NullPointerException if {@code fromKey} is null
1906 * @throws IllegalArgumentException {@inheritDoc}
1907 */
1908 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
1909 return tailMap(fromKey, true);
1910 }
1911
1912 /* ---------------- Relational operations -------------- */
1913
1914 /**
1915 * Returns a key-value mapping associated with the greatest key
1916 * strictly less than the given key, or {@code null} if there is
1917 * no such key. The returned entry does <em>not</em> support the
1918 * {@code Entry.setValue} method.
1919 *
1920 * @throws ClassCastException {@inheritDoc}
1921 * @throws NullPointerException if the specified key is null
1922 */
1923 public Map.Entry<K,V> lowerEntry(K key) {
1924 return findNearEntry(key, LT, comparator);
1925 }
1926
1927 /**
1928 * @throws ClassCastException {@inheritDoc}
1929 * @throws NullPointerException if the specified key is null
1930 */
1931 public K lowerKey(K key) {
1932 Node<K,V> n = findNear(key, LT, comparator);
1933 return (n == null) ? null : n.key;
1934 }
1935
1936 /**
1937 * Returns a key-value mapping associated with the greatest key
1938 * less than or equal to the given key, or {@code null} if there
1939 * is no such key. The returned entry does <em>not</em> support
1940 * the {@code Entry.setValue} method.
1941 *
1942 * @param key the key
1943 * @throws ClassCastException {@inheritDoc}
1944 * @throws NullPointerException if the specified key is null
1945 */
1946 public Map.Entry<K,V> floorEntry(K key) {
1947 return findNearEntry(key, LT|EQ, comparator);
1948 }
1949
1950 /**
1951 * @param key the key
1952 * @throws ClassCastException {@inheritDoc}
1953 * @throws NullPointerException if the specified key is null
1954 */
1955 public K floorKey(K key) {
1956 Node<K,V> n = findNear(key, LT|EQ, comparator);
1957 return (n == null) ? null : n.key;
1958 }
1959
1960 /**
1961 * Returns a key-value mapping associated with the least key
1962 * greater than or equal to the given key, or {@code null} if
1963 * there is no such entry. The returned entry does <em>not</em>
1964 * support the {@code Entry.setValue} method.
1965 *
1966 * @throws ClassCastException {@inheritDoc}
1967 * @throws NullPointerException if the specified key is null
1968 */
1969 public Map.Entry<K,V> ceilingEntry(K key) {
1970 return findNearEntry(key, GT|EQ, comparator);
1971 }
1972
1973 /**
1974 * @throws ClassCastException {@inheritDoc}
1975 * @throws NullPointerException if the specified key is null
1976 */
1977 public K ceilingKey(K key) {
1978 Node<K,V> n = findNear(key, GT|EQ, comparator);
1979 return (n == null) ? null : n.key;
1980 }
1981
1982 /**
1983 * Returns a key-value mapping associated with the least key
1984 * strictly greater than the given key, or {@code null} if there
1985 * is no such key. The returned entry does <em>not</em> support
1986 * the {@code Entry.setValue} method.
1987 *
1988 * @param key the key
1989 * @throws ClassCastException {@inheritDoc}
1990 * @throws NullPointerException if the specified key is null
1991 */
1992 public Map.Entry<K,V> higherEntry(K key) {
1993 return findNearEntry(key, GT, comparator);
1994 }
1995
1996 /**
1997 * @param key the key
1998 * @throws ClassCastException {@inheritDoc}
1999 * @throws NullPointerException if the specified key is null
2000 */
2001 public K higherKey(K key) {
2002 Node<K,V> n = findNear(key, GT, comparator);
2003 return (n == null) ? null : n.key;
2004 }
2005
2006 /**
2007 * Returns a key-value mapping associated with the least
2008 * key in this map, or {@code null} if the map is empty.
2009 * The returned entry does <em>not</em> support
2010 * the {@code Entry.setValue} method.
2011 */
2012 public Map.Entry<K,V> firstEntry() {
2013 return findFirstEntry();
2014 }
2015
2016 /**
2017 * Returns a key-value mapping associated with the greatest
2018 * key in this map, or {@code null} if the map is empty.
2019 * The returned entry does <em>not</em> support
2020 * the {@code Entry.setValue} method.
2021 */
2022 public Map.Entry<K,V> lastEntry() {
2023 return findLastEntry();
2024 }
2025
2026 /**
2027 * Removes and returns a key-value mapping associated with
2028 * the least key in this map, or {@code null} if the map is empty.
2029 * The returned entry does <em>not</em> support
2030 * the {@code Entry.setValue} method.
2031 */
2032 public Map.Entry<K,V> pollFirstEntry() {
2033 return doRemoveFirstEntry();
2034 }
2035
2036 /**
2037 * Removes and returns a key-value mapping associated with
2038 * the greatest key in this map, or {@code null} if the map is empty.
2039 * The returned entry does <em>not</em> support
2040 * the {@code Entry.setValue} method.
2041 */
2042 public Map.Entry<K,V> pollLastEntry() {
2043 return doRemoveLastEntry();
2044 }
2045
2046 /* ---------------- Iterators -------------- */
2047
2048 /**
2049 * Base of iterator classes
2050 */
2051 abstract class Iter<T> implements Iterator<T> {
2052 /** the last node returned by next() */
2053 Node<K,V> lastReturned;
2054 /** the next node to return from next(); */
2055 Node<K,V> next;
2056 /** Cache of next value field to maintain weak consistency */
2057 V nextValue;
2058
2059 /** Initializes ascending iterator for entire range. */
2060 Iter() {
2061 advance(baseHead());
2062 }
2063
2064 public final boolean hasNext() {
2065 return next != null;
2066 }
2067
2068 /** Advances next to higher entry. */
2069 final void advance(Node<K,V> b) {
2070 Node<K,V> n = null;
2071 V v = null;
2072 if ((lastReturned = b) != null) {
2073 while ((n = b.next) != null && (v = n.val) == null)
2074 b = n;
2075 }
2076 nextValue = v;
2077 next = n;
2078 }
2079
2080 public final void remove() {
2081 Node<K,V> n; K k;
2082 if ((n = lastReturned) == null || (k = n.key) == null)
2083 throw new IllegalStateException();
2084 // It would not be worth all of the overhead to directly
2085 // unlink from here. Using remove is fast enough.
2086 ConcurrentSkipListMap.this.remove(k);
2087 lastReturned = null;
2088 }
2089 }
2090
2091 final class ValueIterator extends Iter<V> {
2092 public V next() {
2093 V v;
2094 if ((v = nextValue) == null)
2095 throw new NoSuchElementException();
2096 advance(next);
2097 return v;
2098 }
2099 }
2100
2101 final class KeyIterator extends Iter<K> {
2102 public K next() {
2103 Node<K,V> n;
2104 if ((n = next) == null)
2105 throw new NoSuchElementException();
2106 K k = n.key;
2107 advance(n);
2108 return k;
2109 }
2110 }
2111
2112 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2113 public Map.Entry<K,V> next() {
2114 Node<K,V> n;
2115 if ((n = next) == null)
2116 throw new NoSuchElementException();
2117 K k = n.key;
2118 V v = nextValue;
2119 advance(n);
2120 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2121 }
2122 }
2123
2124 /* ---------------- View Classes -------------- */
2125
2126 /*
2127 * View classes are static, delegating to a ConcurrentNavigableMap
2128 * to allow use by SubMaps, which outweighs the ugliness of
2129 * needing type-tests for Iterator methods.
2130 */
2131
2132 static final <E> List<E> toList(Collection<E> c) {
2133 // Using size() here would be a pessimization.
2134 ArrayList<E> list = new ArrayList<E>();
2135 for (E e : c)
2136 list.add(e);
2137 return list;
2138 }
2139
2140 static final class KeySet<K,V>
2141 extends AbstractSet<K> implements NavigableSet<K> {
2142 final ConcurrentNavigableMap<K,V> m;
2143 KeySet(ConcurrentNavigableMap<K,V> map) { m = map; }
2144 public int size() { return m.size(); }
2145 public boolean isEmpty() { return m.isEmpty(); }
2146 public boolean contains(Object o) { return m.containsKey(o); }
2147 public boolean remove(Object o) { return m.remove(o) != null; }
2148 public void clear() { m.clear(); }
2149 public K lower(K e) { return m.lowerKey(e); }
2150 public K floor(K e) { return m.floorKey(e); }
2151 public K ceiling(K e) { return m.ceilingKey(e); }
2152 public K higher(K e) { return m.higherKey(e); }
2153 public Comparator<? super K> comparator() { return m.comparator(); }
2154 public K first() { return m.firstKey(); }
2155 public K last() { return m.lastKey(); }
2156 public K pollFirst() {
2157 Map.Entry<K,V> e = m.pollFirstEntry();
2158 return (e == null) ? null : e.getKey();
2159 }
2160 public K pollLast() {
2161 Map.Entry<K,V> e = m.pollLastEntry();
2162 return (e == null) ? null : e.getKey();
2163 }
2164 public Iterator<K> iterator() {
2165 return (m instanceof ConcurrentSkipListMap)
2166 ? ((ConcurrentSkipListMap<K,V>)m).new KeyIterator()
2167 : ((SubMap<K,V>)m).new SubMapKeyIterator();
2168 }
2169 public boolean equals(Object o) {
2170 if (o == this)
2171 return true;
2172 if (!(o instanceof Set))
2173 return false;
2174 Collection<?> c = (Collection<?>) o;
2175 try {
2176 return containsAll(c) && c.containsAll(this);
2177 } catch (ClassCastException | NullPointerException unused) {
2178 return false;
2179 }
2180 }
2181 public Object[] toArray() { return toList(this).toArray(); }
2182 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2183 public Iterator<K> descendingIterator() {
2184 return descendingSet().iterator();
2185 }
2186 public NavigableSet<K> subSet(K fromElement,
2187 boolean fromInclusive,
2188 K toElement,
2189 boolean toInclusive) {
2190 return new KeySet<>(m.subMap(fromElement, fromInclusive,
2191 toElement, toInclusive));
2192 }
2193 public NavigableSet<K> headSet(K toElement, boolean inclusive) {
2194 return new KeySet<>(m.headMap(toElement, inclusive));
2195 }
2196 public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
2197 return new KeySet<>(m.tailMap(fromElement, inclusive));
2198 }
2199 public NavigableSet<K> subSet(K fromElement, K toElement) {
2200 return subSet(fromElement, true, toElement, false);
2201 }
2202 public NavigableSet<K> headSet(K toElement) {
2203 return headSet(toElement, false);
2204 }
2205 public NavigableSet<K> tailSet(K fromElement) {
2206 return tailSet(fromElement, true);
2207 }
2208 public NavigableSet<K> descendingSet() {
2209 return new KeySet<>(m.descendingMap());
2210 }
2211
2212 public Spliterator<K> spliterator() {
2213 return (m instanceof ConcurrentSkipListMap)
2214 ? ((ConcurrentSkipListMap<K,V>)m).keySpliterator()
2215 : ((SubMap<K,V>)m).new SubMapKeyIterator();
2216 }
2217 }
2218
2219 static final class Values<K,V> extends AbstractCollection<V> {
2220 final ConcurrentNavigableMap<K,V> m;
2221 Values(ConcurrentNavigableMap<K,V> map) {
2222 m = map;
2223 }
2224 public Iterator<V> iterator() {
2225 return (m instanceof ConcurrentSkipListMap)
2226 ? ((ConcurrentSkipListMap<K,V>)m).new ValueIterator()
2227 : ((SubMap<K,V>)m).new SubMapValueIterator();
2228 }
2229 public int size() { return m.size(); }
2230 public boolean isEmpty() { return m.isEmpty(); }
2231 public boolean contains(Object o) { return m.containsValue(o); }
2232 public void clear() { m.clear(); }
2233 public Object[] toArray() { return toList(this).toArray(); }
2234 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2235
2236 public Spliterator<V> spliterator() {
2237 return (m instanceof ConcurrentSkipListMap)
2238 ? ((ConcurrentSkipListMap<K,V>)m).valueSpliterator()
2239 : ((SubMap<K,V>)m).new SubMapValueIterator();
2240 }
2241
2242 public boolean removeIf(Predicate<? super V> filter) {
2243 if (filter == null) throw new NullPointerException();
2244 if (m instanceof ConcurrentSkipListMap)
2245 return ((ConcurrentSkipListMap<K,V>)m).removeValueIf(filter);
2246 // else use iterator
2247 Iterator<Map.Entry<K,V>> it =
2248 ((SubMap<K,V>)m).new SubMapEntryIterator();
2249 boolean removed = false;
2250 while (it.hasNext()) {
2251 Map.Entry<K,V> e = it.next();
2252 V v = e.getValue();
2253 if (filter.test(v) && m.remove(e.getKey(), v))
2254 removed = true;
2255 }
2256 return removed;
2257 }
2258 }
2259
2260 static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
2261 final ConcurrentNavigableMap<K,V> m;
2262 EntrySet(ConcurrentNavigableMap<K,V> map) {
2263 m = map;
2264 }
2265 public Iterator<Map.Entry<K,V>> iterator() {
2266 return (m instanceof ConcurrentSkipListMap)
2267 ? ((ConcurrentSkipListMap<K,V>)m).new EntryIterator()
2268 : ((SubMap<K,V>)m).new SubMapEntryIterator();
2269 }
2270
2271 public boolean contains(Object o) {
2272 if (!(o instanceof Map.Entry))
2273 return false;
2274 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2275 V v = m.get(e.getKey());
2276 return v != null && v.equals(e.getValue());
2277 }
2278 public boolean remove(Object o) {
2279 if (!(o instanceof Map.Entry))
2280 return false;
2281 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2282 return m.remove(e.getKey(),
2283 e.getValue());
2284 }
2285 public boolean isEmpty() {
2286 return m.isEmpty();
2287 }
2288 public int size() {
2289 return m.size();
2290 }
2291 public void clear() {
2292 m.clear();
2293 }
2294 public boolean equals(Object o) {
2295 if (o == this)
2296 return true;
2297 if (!(o instanceof Set))
2298 return false;
2299 Collection<?> c = (Collection<?>) o;
2300 try {
2301 return containsAll(c) && c.containsAll(this);
2302 } catch (ClassCastException | NullPointerException unused) {
2303 return false;
2304 }
2305 }
2306 public Object[] toArray() { return toList(this).toArray(); }
2307 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2308
2309 public Spliterator<Map.Entry<K,V>> spliterator() {
2310 return (m instanceof ConcurrentSkipListMap)
2311 ? ((ConcurrentSkipListMap<K,V>)m).entrySpliterator()
2312 : ((SubMap<K,V>)m).new SubMapEntryIterator();
2313 }
2314 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
2315 if (filter == null) throw new NullPointerException();
2316 if (m instanceof ConcurrentSkipListMap)
2317 return ((ConcurrentSkipListMap<K,V>)m).removeEntryIf(filter);
2318 // else use iterator
2319 Iterator<Map.Entry<K,V>> it =
2320 ((SubMap<K,V>)m).new SubMapEntryIterator();
2321 boolean removed = false;
2322 while (it.hasNext()) {
2323 Map.Entry<K,V> e = it.next();
2324 if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
2325 removed = true;
2326 }
2327 return removed;
2328 }
2329 }
2330
2331 /**
2332 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2333 * represent a subrange of mappings of their underlying maps.
2334 * Instances of this class support all methods of their underlying
2335 * maps, differing in that mappings outside their range are ignored,
2336 * and attempts to add mappings outside their ranges result in {@link
2337 * IllegalArgumentException}. Instances of this class are constructed
2338 * only using the {@code subMap}, {@code headMap}, and {@code tailMap}
2339 * methods of their underlying maps.
2340 *
2341 * @serial include
2342 */
2343 static final class SubMap<K,V> extends AbstractMap<K,V>
2344 implements ConcurrentNavigableMap<K,V>, Serializable {
2345 private static final long serialVersionUID = -7647078645895051609L;
2346
2347 /** Underlying map */
2348 final ConcurrentSkipListMap<K,V> m;
2349 /** lower bound key, or null if from start */
2350 private final K lo;
2351 /** upper bound key, or null if to end */
2352 private final K hi;
2353 /** inclusion flag for lo */
2354 private final boolean loInclusive;
2355 /** inclusion flag for hi */
2356 private final boolean hiInclusive;
2357 /** direction */
2358 final boolean isDescending;
2359
2360 // Lazily initialized view holders
2361 private transient KeySet<K,V> keySetView;
2362 private transient Values<K,V> valuesView;
2363 private transient EntrySet<K,V> entrySetView;
2364
2365 /**
2366 * Creates a new submap, initializing all fields.
2367 */
2368 SubMap(ConcurrentSkipListMap<K,V> map,
2369 K fromKey, boolean fromInclusive,
2370 K toKey, boolean toInclusive,
2371 boolean isDescending) {
2372 Comparator<? super K> cmp = map.comparator;
2373 if (fromKey != null && toKey != null &&
2374 cpr(cmp, fromKey, toKey) > 0)
2375 throw new IllegalArgumentException("inconsistent range");
2376 this.m = map;
2377 this.lo = fromKey;
2378 this.hi = toKey;
2379 this.loInclusive = fromInclusive;
2380 this.hiInclusive = toInclusive;
2381 this.isDescending = isDescending;
2382 }
2383
2384 /* ---------------- Utilities -------------- */
2385
2386 boolean tooLow(Object key, Comparator<? super K> cmp) {
2387 int c;
2388 return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2389 (c == 0 && !loInclusive)));
2390 }
2391
2392 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2393 int c;
2394 return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2395 (c == 0 && !hiInclusive)));
2396 }
2397
2398 boolean inBounds(Object key, Comparator<? super K> cmp) {
2399 return !tooLow(key, cmp) && !tooHigh(key, cmp);
2400 }
2401
2402 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2403 if (key == null)
2404 throw new NullPointerException();
2405 if (!inBounds(key, cmp))
2406 throw new IllegalArgumentException("key out of range");
2407 }
2408
2409 /**
2410 * Returns true if node key is less than upper bound of range.
2411 */
2412 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2413 Comparator<? super K> cmp) {
2414 if (n == null)
2415 return false;
2416 if (hi == null)
2417 return true;
2418 K k = n.key;
2419 if (k == null) // pass by markers and headers
2420 return true;
2421 int c = cpr(cmp, k, hi);
2422 return c < 0 || (c == 0 && hiInclusive);
2423 }
2424
2425 /**
2426 * Returns lowest node. This node might not be in range, so
2427 * most usages need to check bounds.
2428 */
2429 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2430 if (lo == null)
2431 return m.findFirst();
2432 else if (loInclusive)
2433 return m.findNear(lo, GT|EQ, cmp);
2434 else
2435 return m.findNear(lo, GT, cmp);
2436 }
2437
2438 /**
2439 * Returns highest node. This node might not be in range, so
2440 * most usages need to check bounds.
2441 */
2442 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2443 if (hi == null)
2444 return m.findLast();
2445 else if (hiInclusive)
2446 return m.findNear(hi, LT|EQ, cmp);
2447 else
2448 return m.findNear(hi, LT, cmp);
2449 }
2450
2451 /**
2452 * Returns lowest absolute key (ignoring directionality).
2453 */
2454 K lowestKey() {
2455 Comparator<? super K> cmp = m.comparator;
2456 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2457 if (isBeforeEnd(n, cmp))
2458 return n.key;
2459 else
2460 throw new NoSuchElementException();
2461 }
2462
2463 /**
2464 * Returns highest absolute key (ignoring directionality).
2465 */
2466 K highestKey() {
2467 Comparator<? super K> cmp = m.comparator;
2468 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2469 if (n != null) {
2470 K last = n.key;
2471 if (inBounds(last, cmp))
2472 return last;
2473 }
2474 throw new NoSuchElementException();
2475 }
2476
2477 Map.Entry<K,V> lowestEntry() {
2478 Comparator<? super K> cmp = m.comparator;
2479 for (;;) {
2480 ConcurrentSkipListMap.Node<K,V> n; V v;
2481 if ((n = loNode(cmp)) == null || !isBeforeEnd(n, cmp))
2482 return null;
2483 else if ((v = n.val) != null)
2484 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2485 }
2486 }
2487
2488 Map.Entry<K,V> highestEntry() {
2489 Comparator<? super K> cmp = m.comparator;
2490 for (;;) {
2491 ConcurrentSkipListMap.Node<K,V> n; V v;
2492 if ((n = hiNode(cmp)) == null || !inBounds(n.key, cmp))
2493 return null;
2494 else if ((v = n.val) != null)
2495 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2496 }
2497 }
2498
2499 Map.Entry<K,V> removeLowest() {
2500 Comparator<? super K> cmp = m.comparator;
2501 for (;;) {
2502 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2503 if ((n = loNode(cmp)) == null)
2504 return null;
2505 else if (!inBounds((k = n.key), cmp))
2506 return null;
2507 else if ((v = m.doRemove(k, null)) != null)
2508 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2509 }
2510 }
2511
2512 Map.Entry<K,V> removeHighest() {
2513 Comparator<? super K> cmp = m.comparator;
2514 for (;;) {
2515 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2516 if ((n = hiNode(cmp)) == null)
2517 return null;
2518 else if (!inBounds((k = n.key), cmp))
2519 return null;
2520 else if ((v = m.doRemove(k, null)) != null)
2521 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2522 }
2523 }
2524
2525 /**
2526 * Submap version of ConcurrentSkipListMap.findNearEntry.
2527 */
2528 Map.Entry<K,V> getNearEntry(K key, int rel) {
2529 Comparator<? super K> cmp = m.comparator;
2530 if (isDescending) { // adjust relation for direction
2531 if ((rel & LT) == 0)
2532 rel |= LT;
2533 else
2534 rel &= ~LT;
2535 }
2536 if (tooLow(key, cmp))
2537 return ((rel & LT) != 0) ? null : lowestEntry();
2538 if (tooHigh(key, cmp))
2539 return ((rel & LT) != 0) ? highestEntry() : null;
2540 AbstractMap.SimpleImmutableEntry<K,V> e =
2541 m.findNearEntry(key, rel, cmp);
2542 if (e == null || !inBounds(e.getKey(), cmp))
2543 return null;
2544 else
2545 return e;
2546 }
2547
2548 // Almost the same as getNearEntry, except for keys
2549 K getNearKey(K key, int rel) {
2550 Comparator<? super K> cmp = m.comparator;
2551 if (isDescending) { // adjust relation for direction
2552 if ((rel & LT) == 0)
2553 rel |= LT;
2554 else
2555 rel &= ~LT;
2556 }
2557 if (tooLow(key, cmp)) {
2558 if ((rel & LT) == 0) {
2559 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2560 if (isBeforeEnd(n, cmp))
2561 return n.key;
2562 }
2563 return null;
2564 }
2565 if (tooHigh(key, cmp)) {
2566 if ((rel & LT) != 0) {
2567 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2568 if (n != null) {
2569 K last = n.key;
2570 if (inBounds(last, cmp))
2571 return last;
2572 }
2573 }
2574 return null;
2575 }
2576 for (;;) {
2577 Node<K,V> n = m.findNear(key, rel, cmp);
2578 if (n == null || !inBounds(n.key, cmp))
2579 return null;
2580 if (n.val != null)
2581 return n.key;
2582 }
2583 }
2584
2585 /* ---------------- Map API methods -------------- */
2586
2587 public boolean containsKey(Object key) {
2588 if (key == null) throw new NullPointerException();
2589 return inBounds(key, m.comparator) && m.containsKey(key);
2590 }
2591
2592 public V get(Object key) {
2593 if (key == null) throw new NullPointerException();
2594 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2595 }
2596
2597 public V put(K key, V value) {
2598 checkKeyBounds(key, m.comparator);
2599 return m.put(key, value);
2600 }
2601
2602 public V remove(Object key) {
2603 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2604 }
2605
2606 public int size() {
2607 Comparator<? super K> cmp = m.comparator;
2608 long count = 0;
2609 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2610 isBeforeEnd(n, cmp);
2611 n = n.next) {
2612 if (n.val != null)
2613 ++count;
2614 }
2615 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2616 }
2617
2618 public boolean isEmpty() {
2619 Comparator<? super K> cmp = m.comparator;
2620 return !isBeforeEnd(loNode(cmp), cmp);
2621 }
2622
2623 public boolean containsValue(Object value) {
2624 if (value == null)
2625 throw new NullPointerException();
2626 Comparator<? super K> cmp = m.comparator;
2627 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2628 isBeforeEnd(n, cmp);
2629 n = n.next) {
2630 V v = n.val;
2631 if (v != null && value.equals(v))
2632 return true;
2633 }
2634 return false;
2635 }
2636
2637 public void clear() {
2638 Comparator<? super K> cmp = m.comparator;
2639 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2640 isBeforeEnd(n, cmp);
2641 n = n.next) {
2642 if (n.val != null)
2643 m.remove(n.key);
2644 }
2645 }
2646
2647 /* ---------------- ConcurrentMap API methods -------------- */
2648
2649 public V putIfAbsent(K key, V value) {
2650 checkKeyBounds(key, m.comparator);
2651 return m.putIfAbsent(key, value);
2652 }
2653
2654 public boolean remove(Object key, Object value) {
2655 return inBounds(key, m.comparator) && m.remove(key, value);
2656 }
2657
2658 public boolean replace(K key, V oldValue, V newValue) {
2659 checkKeyBounds(key, m.comparator);
2660 return m.replace(key, oldValue, newValue);
2661 }
2662
2663 public V replace(K key, V value) {
2664 checkKeyBounds(key, m.comparator);
2665 return m.replace(key, value);
2666 }
2667
2668 /* ---------------- SortedMap API methods -------------- */
2669
2670 public Comparator<? super K> comparator() {
2671 Comparator<? super K> cmp = m.comparator();
2672 if (isDescending)
2673 return Collections.reverseOrder(cmp);
2674 else
2675 return cmp;
2676 }
2677
2678 /**
2679 * Utility to create submaps, where given bounds override
2680 * unbounded(null) ones and/or are checked against bounded ones.
2681 */
2682 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2683 K toKey, boolean toInclusive) {
2684 Comparator<? super K> cmp = m.comparator;
2685 if (isDescending) { // flip senses
2686 K tk = fromKey;
2687 fromKey = toKey;
2688 toKey = tk;
2689 boolean ti = fromInclusive;
2690 fromInclusive = toInclusive;
2691 toInclusive = ti;
2692 }
2693 if (lo != null) {
2694 if (fromKey == null) {
2695 fromKey = lo;
2696 fromInclusive = loInclusive;
2697 }
2698 else {
2699 int c = cpr(cmp, fromKey, lo);
2700 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2701 throw new IllegalArgumentException("key out of range");
2702 }
2703 }
2704 if (hi != null) {
2705 if (toKey == null) {
2706 toKey = hi;
2707 toInclusive = hiInclusive;
2708 }
2709 else {
2710 int c = cpr(cmp, toKey, hi);
2711 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2712 throw new IllegalArgumentException("key out of range");
2713 }
2714 }
2715 return new SubMap<K,V>(m, fromKey, fromInclusive,
2716 toKey, toInclusive, isDescending);
2717 }
2718
2719 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2720 K toKey, boolean toInclusive) {
2721 if (fromKey == null || toKey == null)
2722 throw new NullPointerException();
2723 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2724 }
2725
2726 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2727 if (toKey == null)
2728 throw new NullPointerException();
2729 return newSubMap(null, false, toKey, inclusive);
2730 }
2731
2732 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2733 if (fromKey == null)
2734 throw new NullPointerException();
2735 return newSubMap(fromKey, inclusive, null, false);
2736 }
2737
2738 public SubMap<K,V> subMap(K fromKey, K toKey) {
2739 return subMap(fromKey, true, toKey, false);
2740 }
2741
2742 public SubMap<K,V> headMap(K toKey) {
2743 return headMap(toKey, false);
2744 }
2745
2746 public SubMap<K,V> tailMap(K fromKey) {
2747 return tailMap(fromKey, true);
2748 }
2749
2750 public SubMap<K,V> descendingMap() {
2751 return new SubMap<K,V>(m, lo, loInclusive,
2752 hi, hiInclusive, !isDescending);
2753 }
2754
2755 /* ---------------- Relational methods -------------- */
2756
2757 public Map.Entry<K,V> ceilingEntry(K key) {
2758 return getNearEntry(key, GT|EQ);
2759 }
2760
2761 public K ceilingKey(K key) {
2762 return getNearKey(key, GT|EQ);
2763 }
2764
2765 public Map.Entry<K,V> lowerEntry(K key) {
2766 return getNearEntry(key, LT);
2767 }
2768
2769 public K lowerKey(K key) {
2770 return getNearKey(key, LT);
2771 }
2772
2773 public Map.Entry<K,V> floorEntry(K key) {
2774 return getNearEntry(key, LT|EQ);
2775 }
2776
2777 public K floorKey(K key) {
2778 return getNearKey(key, LT|EQ);
2779 }
2780
2781 public Map.Entry<K,V> higherEntry(K key) {
2782 return getNearEntry(key, GT);
2783 }
2784
2785 public K higherKey(K key) {
2786 return getNearKey(key, GT);
2787 }
2788
2789 public K firstKey() {
2790 return isDescending ? highestKey() : lowestKey();
2791 }
2792
2793 public K lastKey() {
2794 return isDescending ? lowestKey() : highestKey();
2795 }
2796
2797 public Map.Entry<K,V> firstEntry() {
2798 return isDescending ? highestEntry() : lowestEntry();
2799 }
2800
2801 public Map.Entry<K,V> lastEntry() {
2802 return isDescending ? lowestEntry() : highestEntry();
2803 }
2804
2805 public Map.Entry<K,V> pollFirstEntry() {
2806 return isDescending ? removeHighest() : removeLowest();
2807 }
2808
2809 public Map.Entry<K,V> pollLastEntry() {
2810 return isDescending ? removeLowest() : removeHighest();
2811 }
2812
2813 /* ---------------- Submap Views -------------- */
2814
2815 public NavigableSet<K> keySet() {
2816 KeySet<K,V> ks;
2817 if ((ks = keySetView) != null) return ks;
2818 return keySetView = new KeySet<>(this);
2819 }
2820
2821 public NavigableSet<K> navigableKeySet() {
2822 KeySet<K,V> ks;
2823 if ((ks = keySetView) != null) return ks;
2824 return keySetView = new KeySet<>(this);
2825 }
2826
2827 public Collection<V> values() {
2828 Values<K,V> vs;
2829 if ((vs = valuesView) != null) return vs;
2830 return valuesView = new Values<>(this);
2831 }
2832
2833 public Set<Map.Entry<K,V>> entrySet() {
2834 EntrySet<K,V> es;
2835 if ((es = entrySetView) != null) return es;
2836 return entrySetView = new EntrySet<K,V>(this);
2837 }
2838
2839 public NavigableSet<K> descendingKeySet() {
2840 return descendingMap().navigableKeySet();
2841 }
2842
2843 /**
2844 * Variant of main Iter class to traverse through submaps.
2845 * Also serves as back-up Spliterator for views.
2846 */
2847 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
2848 /** the last node returned by next() */
2849 Node<K,V> lastReturned;
2850 /** the next node to return from next(); */
2851 Node<K,V> next;
2852 /** Cache of next value field to maintain weak consistency */
2853 V nextValue;
2854
2855 SubMapIter() {
2856 VarHandle.acquireFence();
2857 Comparator<? super K> cmp = m.comparator;
2858 for (;;) {
2859 next = isDescending ? hiNode(cmp) : loNode(cmp);
2860 if (next == null)
2861 break;
2862 V x = next.val;
2863 if (x != null) {
2864 if (! inBounds(next.key, cmp))
2865 next = null;
2866 else
2867 nextValue = x;
2868 break;
2869 }
2870 }
2871 }
2872
2873 public final boolean hasNext() {
2874 return next != null;
2875 }
2876
2877 final void advance() {
2878 if (next == null)
2879 throw new NoSuchElementException();
2880 lastReturned = next;
2881 if (isDescending)
2882 descend();
2883 else
2884 ascend();
2885 }
2886
2887 private void ascend() {
2888 Comparator<? super K> cmp = m.comparator;
2889 for (;;) {
2890 next = next.next;
2891 if (next == null)
2892 break;
2893 V x = next.val;
2894 if (x != null) {
2895 if (tooHigh(next.key, cmp))
2896 next = null;
2897 else
2898 nextValue = x;
2899 break;
2900 }
2901 }
2902 }
2903
2904 private void descend() {
2905 Comparator<? super K> cmp = m.comparator;
2906 for (;;) {
2907 next = m.findNear(lastReturned.key, LT, cmp);
2908 if (next == null)
2909 break;
2910 V x = next.val;
2911 if (x != null) {
2912 if (tooLow(next.key, cmp))
2913 next = null;
2914 else
2915 nextValue = x;
2916 break;
2917 }
2918 }
2919 }
2920
2921 public void remove() {
2922 Node<K,V> l = lastReturned;
2923 if (l == null)
2924 throw new IllegalStateException();
2925 m.remove(l.key);
2926 lastReturned = null;
2927 }
2928
2929 public Spliterator<T> trySplit() {
2930 return null;
2931 }
2932
2933 public boolean tryAdvance(Consumer<? super T> action) {
2934 if (hasNext()) {
2935 action.accept(next());
2936 return true;
2937 }
2938 return false;
2939 }
2940
2941 public void forEachRemaining(Consumer<? super T> action) {
2942 while (hasNext())
2943 action.accept(next());
2944 }
2945
2946 public long estimateSize() {
2947 return Long.MAX_VALUE;
2948 }
2949
2950 }
2951
2952 final class SubMapValueIterator extends SubMapIter<V> {
2953 public V next() {
2954 V v = nextValue;
2955 advance();
2956 return v;
2957 }
2958 public int characteristics() {
2959 return 0;
2960 }
2961 }
2962
2963 final class SubMapKeyIterator extends SubMapIter<K> {
2964 public K next() {
2965 Node<K,V> n = next;
2966 advance();
2967 return n.key;
2968 }
2969 public int characteristics() {
2970 return Spliterator.DISTINCT | Spliterator.ORDERED |
2971 Spliterator.SORTED;
2972 }
2973 public final Comparator<? super K> getComparator() {
2974 return SubMap.this.comparator();
2975 }
2976 }
2977
2978 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
2979 public Map.Entry<K,V> next() {
2980 Node<K,V> n = next;
2981 V v = nextValue;
2982 advance();
2983 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2984 }
2985 public int characteristics() {
2986 return Spliterator.DISTINCT;
2987 }
2988 }
2989 }
2990
2991 // default Map method overrides
2992
2993 public void forEach(BiConsumer<? super K, ? super V> action) {
2994 if (action == null) throw new NullPointerException();
2995 Node<K,V> b, n; V v;
2996 if ((b = baseHead()) != null) {
2997 while ((n = b.next) != null) {
2998 if ((v = n.val) != null)
2999 action.accept(n.key, v);
3000 b = n;
3001 }
3002 }
3003 }
3004
3005 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3006 if (function == null) throw new NullPointerException();
3007 Node<K,V> b, n; V v;
3008 if ((b = baseHead()) != null) {
3009 while ((n = b.next) != null) {
3010 while ((v = n.val) != null) {
3011 V r = function.apply(n.key, v);
3012 if (r == null) throw new NullPointerException();
3013 if (VAL.compareAndSet(n, v, r))
3014 break;
3015 }
3016 b = n;
3017 }
3018 }
3019 }
3020
3021 /**
3022 * Helper method for EntrySet.removeIf.
3023 */
3024 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
3025 if (function == null) throw new NullPointerException();
3026 boolean removed = false;
3027 Node<K,V> b, n; V v;
3028 if ((b = baseHead()) != null) {
3029 while ((n = b.next) != null) {
3030 if ((v = n.val) != null) {
3031 K k = n.key;
3032 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
3033 if (function.test(e) && remove(k, v))
3034 removed = true;
3035 }
3036 b = n;
3037 }
3038 }
3039 return removed;
3040 }
3041
3042 /**
3043 * Helper method for Values.removeIf.
3044 */
3045 boolean removeValueIf(Predicate<? super V> function) {
3046 if (function == null) throw new NullPointerException();
3047 boolean removed = false;
3048 Node<K,V> b, n; V v;
3049 if ((b = baseHead()) != null) {
3050 while ((n = b.next) != null) {
3051 if ((v = n.val) != null && function.test(v) && remove(n.key, v))
3052 removed = true;
3053 b = n;
3054 }
3055 }
3056 return removed;
3057 }
3058
3059 /**
3060 * Base class providing common structure for Spliterators.
3061 * (Although not all that much common functionality; as usual for
3062 * view classes, details annoyingly vary in key, value, and entry
3063 * subclasses in ways that are not worth abstracting out for
3064 * internal classes.)
3065 *
3066 * The basic split strategy is to recursively descend from top
3067 * level, row by row, descending to next row when either split
3068 * off, or the end of row is encountered. Control of the number of
3069 * splits relies on some statistical estimation: The expected
3070 * remaining number of elements of a skip list when advancing
3071 * either across or down decreases by about 25%.
3072 */
3073 abstract static class CSLMSpliterator<K,V> {
3074 final Comparator<? super K> comparator;
3075 final K fence; // exclusive upper bound for keys, or null if to end
3076 Index<K,V> row; // the level to split out
3077 Node<K,V> current; // current traversal node; initialize at origin
3078 long est; // size estimate
3079 CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3080 Node<K,V> origin, K fence, long est) {
3081 this.comparator = comparator; this.row = row;
3082 this.current = origin; this.fence = fence; this.est = est;
3083 }
3084
3085 public final long estimateSize() { return est; }
3086 }
3087
3088 static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3089 implements Spliterator<K> {
3090 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3091 Node<K,V> origin, K fence, long est) {
3092 super(comparator, row, origin, fence, est);
3093 }
3094
3095 public KeySpliterator<K,V> trySplit() {
3096 Node<K,V> e; K ek;
3097 Comparator<? super K> cmp = comparator;
3098 K f = fence;
3099 if ((e = current) != null && (ek = e.key) != null) {
3100 for (Index<K,V> q = row; q != null; q = row = q.down) {
3101 Index<K,V> s; Node<K,V> b, n; K sk;
3102 if ((s = q.right) != null && (b = s.node) != null &&
3103 (n = b.next) != null && n.val != null &&
3104 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3105 (f == null || cpr(cmp, sk, f) < 0)) {
3106 current = n;
3107 Index<K,V> r = q.down;
3108 row = (s.right != null) ? s : s.down;
3109 est -= est >>> 2;
3110 return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3111 }
3112 }
3113 }
3114 return null;
3115 }
3116
3117 public void forEachRemaining(Consumer<? super K> action) {
3118 if (action == null) throw new NullPointerException();
3119 Comparator<? super K> cmp = comparator;
3120 K f = fence;
3121 Node<K,V> e = current;
3122 current = null;
3123 for (; e != null; e = e.next) {
3124 K k;
3125 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3126 break;
3127 if (e.val != null)
3128 action.accept(k);
3129 }
3130 }
3131
3132 public boolean tryAdvance(Consumer<? super K> action) {
3133 if (action == null) throw new NullPointerException();
3134 Comparator<? super K> cmp = comparator;
3135 K f = fence;
3136 Node<K,V> e = current;
3137 for (; e != null; e = e.next) {
3138 K k;
3139 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3140 e = null;
3141 break;
3142 }
3143 if (e.val != null) {
3144 current = e.next;
3145 action.accept(k);
3146 return true;
3147 }
3148 }
3149 current = e;
3150 return false;
3151 }
3152
3153 public int characteristics() {
3154 return Spliterator.DISTINCT | Spliterator.SORTED |
3155 Spliterator.ORDERED | Spliterator.CONCURRENT |
3156 Spliterator.NONNULL;
3157 }
3158
3159 public final Comparator<? super K> getComparator() {
3160 return comparator;
3161 }
3162 }
3163 // factory method for KeySpliterator
3164 final KeySpliterator<K,V> keySpliterator() {
3165 Index<K,V> h; Node<K,V> n; long est;
3166 VarHandle.acquireFence();
3167 if ((h = head) == null) {
3168 n = null;
3169 est = 0L;
3170 }
3171 else {
3172 n = h.node;
3173 est = getAdderCount();
3174 }
3175 return new KeySpliterator<K,V>(comparator, h, n, null, est);
3176 }
3177
3178 static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3179 implements Spliterator<V> {
3180 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3181 Node<K,V> origin, K fence, long est) {
3182 super(comparator, row, origin, fence, est);
3183 }
3184
3185 public ValueSpliterator<K,V> trySplit() {
3186 Node<K,V> e; K ek;
3187 Comparator<? super K> cmp = comparator;
3188 K f = fence;
3189 if ((e = current) != null && (ek = e.key) != null) {
3190 for (Index<K,V> q = row; q != null; q = row = q.down) {
3191 Index<K,V> s; Node<K,V> b, n; K sk;
3192 if ((s = q.right) != null && (b = s.node) != null &&
3193 (n = b.next) != null && n.val != null &&
3194 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3195 (f == null || cpr(cmp, sk, f) < 0)) {
3196 current = n;
3197 Index<K,V> r = q.down;
3198 row = (s.right != null) ? s : s.down;
3199 est -= est >>> 2;
3200 return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3201 }
3202 }
3203 }
3204 return null;
3205 }
3206
3207 public void forEachRemaining(Consumer<? super V> action) {
3208 if (action == null) throw new NullPointerException();
3209 Comparator<? super K> cmp = comparator;
3210 K f = fence;
3211 Node<K,V> e = current;
3212 current = null;
3213 for (; e != null; e = e.next) {
3214 K k; V v;
3215 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3216 break;
3217 if ((v = e.val) != null)
3218 action.accept(v);
3219 }
3220 }
3221
3222 public boolean tryAdvance(Consumer<? super V> action) {
3223 if (action == null) throw new NullPointerException();
3224 Comparator<? super K> cmp = comparator;
3225 K f = fence;
3226 Node<K,V> e = current;
3227 for (; e != null; e = e.next) {
3228 K k; V v;
3229 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3230 e = null;
3231 break;
3232 }
3233 if ((v = e.val) != null) {
3234 current = e.next;
3235 action.accept(v);
3236 return true;
3237 }
3238 }
3239 current = e;
3240 return false;
3241 }
3242
3243 public int characteristics() {
3244 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3245 Spliterator.NONNULL;
3246 }
3247 }
3248
3249 // Almost the same as keySpliterator()
3250 final ValueSpliterator<K,V> valueSpliterator() {
3251 Index<K,V> h; Node<K,V> n; long est;
3252 VarHandle.acquireFence();
3253 if ((h = head) == null) {
3254 n = null;
3255 est = 0L;
3256 }
3257 else {
3258 n = h.node;
3259 est = getAdderCount();
3260 }
3261 return new ValueSpliterator<K,V>(comparator, h, n, null, est);
3262 }
3263
3264 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3265 implements Spliterator<Map.Entry<K,V>> {
3266 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3267 Node<K,V> origin, K fence, long est) {
3268 super(comparator, row, origin, fence, est);
3269 }
3270
3271 public EntrySpliterator<K,V> trySplit() {
3272 Node<K,V> e; K ek;
3273 Comparator<? super K> cmp = comparator;
3274 K f = fence;
3275 if ((e = current) != null && (ek = e.key) != null) {
3276 for (Index<K,V> q = row; q != null; q = row = q.down) {
3277 Index<K,V> s; Node<K,V> b, n; K sk;
3278 if ((s = q.right) != null && (b = s.node) != null &&
3279 (n = b.next) != null && n.val != null &&
3280 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3281 (f == null || cpr(cmp, sk, f) < 0)) {
3282 current = n;
3283 Index<K,V> r = q.down;
3284 row = (s.right != null) ? s : s.down;
3285 est -= est >>> 2;
3286 return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3287 }
3288 }
3289 }
3290 return null;
3291 }
3292
3293 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3294 if (action == null) throw new NullPointerException();
3295 Comparator<? super K> cmp = comparator;
3296 K f = fence;
3297 Node<K,V> e = current;
3298 current = null;
3299 for (; e != null; e = e.next) {
3300 K k; V v;
3301 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3302 break;
3303 if ((v = e.val) != null) {
3304 action.accept
3305 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3306 }
3307 }
3308 }
3309
3310 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3311 if (action == null) throw new NullPointerException();
3312 Comparator<? super K> cmp = comparator;
3313 K f = fence;
3314 Node<K,V> e = current;
3315 for (; e != null; e = e.next) {
3316 K k; V v;
3317 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3318 e = null;
3319 break;
3320 }
3321 if ((v = e.val) != null) {
3322 current = e.next;
3323 action.accept
3324 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3325 return true;
3326 }
3327 }
3328 current = e;
3329 return false;
3330 }
3331
3332 public int characteristics() {
3333 return Spliterator.DISTINCT | Spliterator.SORTED |
3334 Spliterator.ORDERED | Spliterator.CONCURRENT |
3335 Spliterator.NONNULL;
3336 }
3337
3338 public final Comparator<Map.Entry<K,V>> getComparator() {
3339 // Adapt or create a key-based comparator
3340 if (comparator != null) {
3341 return Map.Entry.comparingByKey(comparator);
3342 }
3343 else {
3344 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3345 @SuppressWarnings("unchecked")
3346 Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3347 return k1.compareTo(e2.getKey());
3348 };
3349 }
3350 }
3351 }
3352
3353 // Almost the same as keySpliterator()
3354 final EntrySpliterator<K,V> entrySpliterator() {
3355 Index<K,V> h; Node<K,V> n; long est;
3356 VarHandle.acquireFence();
3357 if ((h = head) == null) {
3358 n = null;
3359 est = 0L;
3360 }
3361 else {
3362 n = h.node;
3363 est = getAdderCount();
3364 }
3365 return new EntrySpliterator<K,V>(comparator, h, n, null, est);
3366 }
3367
3368 // VarHandle mechanics
3369 private static final VarHandle HEAD;
3370 private static final VarHandle ADDER;
3371 private static final VarHandle NEXT;
3372 private static final VarHandle VAL;
3373 private static final VarHandle RIGHT;
3374 static {
3375 try {
3376 MethodHandles.Lookup l = MethodHandles.lookup();
3377 HEAD = l.findVarHandle(ConcurrentSkipListMap.class, "head",
3378 Index.class);
3379 ADDER = l.findVarHandle(ConcurrentSkipListMap.class, "adder",
3380 LongAdder.class);
3381 NEXT = l.findVarHandle(Node.class, "next", Node.class);
3382 VAL = l.findVarHandle(Node.class, "val", Object.class);
3383 RIGHT = l.findVarHandle(Index.class, "right", Index.class);
3384 } catch (ReflectiveOperationException e) {
3385 throw new ExceptionInInitializerError(e);
3386 }
3387 }
3388 }