ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.186
Committed: Thu Oct 17 01:51:37 2019 UTC (4 years, 7 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.185: +3 -0 lines
Log Message:
8232230: Suppress warnings on non-serializable non-transient instance fields in java.util.concurrent

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.io.Serializable;
12 import java.util.AbstractCollection;
13 import java.util.AbstractMap;
14 import java.util.AbstractSet;
15 import java.util.ArrayList;
16 import java.util.Collection;
17 import java.util.Collections;
18 import java.util.Comparator;
19 import java.util.Iterator;
20 import java.util.List;
21 import java.util.Map;
22 import java.util.NavigableSet;
23 import java.util.NoSuchElementException;
24 import java.util.Set;
25 import java.util.SortedMap;
26 import java.util.Spliterator;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.Function;
31 import java.util.function.Predicate;
32 import java.util.concurrent.atomic.LongAdder;
33
34 /**
35 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
36 * The map is sorted according to the {@linkplain Comparable natural
37 * ordering} of its keys, or by a {@link Comparator} provided at map
38 * creation time, depending on which constructor is used.
39 *
40 * <p>This class implements a concurrent variant of <a
41 * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
42 * providing expected average <i>log(n)</i> time cost for the
43 * {@code containsKey}, {@code get}, {@code put} and
44 * {@code remove} operations and their variants. Insertion, removal,
45 * update, and access operations safely execute concurrently by
46 * multiple threads.
47 *
48 * <p>Iterators and spliterators are
49 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
50 *
51 * <p>Ascending key ordered views and their iterators are faster than
52 * descending ones.
53 *
54 * <p>All {@code Map.Entry} pairs returned by methods in this class
55 * and its views represent snapshots of mappings at the time they were
56 * produced. They do <em>not</em> support the {@code Entry.setValue}
57 * method. (Note however that it is possible to change mappings in the
58 * associated map using {@code put}, {@code putIfAbsent}, or
59 * {@code replace}, depending on exactly which effect you need.)
60 *
61 * <p>Beware that bulk operations {@code putAll}, {@code equals},
62 * {@code toArray}, {@code containsValue}, and {@code clear} are
63 * <em>not</em> guaranteed to be performed atomically. For example, an
64 * iterator operating concurrently with a {@code putAll} operation
65 * might view only some of the added elements.
66 *
67 * <p>This class and its views and iterators implement all of the
68 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
69 * interfaces. Like most other concurrent collections, this class does
70 * <em>not</em> permit the use of {@code null} keys or values because some
71 * null return values cannot be reliably distinguished from the absence of
72 * elements.
73 *
74 * <p>This class is a member of the
75 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
76 * Java Collections Framework</a>.
77 *
78 * @author Doug Lea
79 * @param <K> the type of keys maintained by this map
80 * @param <V> the type of mapped values
81 * @since 1.6
82 */
83 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
84 implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
85 /*
86 * This class implements a tree-like two-dimensionally linked skip
87 * list in which the index levels are represented in separate
88 * nodes from the base nodes holding data. There are two reasons
89 * for taking this approach instead of the usual array-based
90 * structure: 1) Array based implementations seem to encounter
91 * more complexity and overhead 2) We can use cheaper algorithms
92 * for the heavily-traversed index lists than can be used for the
93 * base lists. Here's a picture of some of the basics for a
94 * possible list with 2 levels of index:
95 *
96 * Head nodes Index nodes
97 * +-+ right +-+ +-+
98 * |2|---------------->| |--------------------->| |->null
99 * +-+ +-+ +-+
100 * | down | |
101 * v v v
102 * +-+ +-+ +-+ +-+ +-+ +-+
103 * |1|----------->| |->| |------>| |----------->| |------>| |->null
104 * +-+ +-+ +-+ +-+ +-+ +-+
105 * v | | | | |
106 * Nodes next v v v v v
107 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
108 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
109 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
110 *
111 * The base lists use a variant of the HM linked ordered set
112 * algorithm. See Tim Harris, "A pragmatic implementation of
113 * non-blocking linked lists"
114 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
115 * Michael "High Performance Dynamic Lock-Free Hash Tables and
116 * List-Based Sets"
117 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
118 * basic idea in these lists is to mark the "next" pointers of
119 * deleted nodes when deleting to avoid conflicts with concurrent
120 * insertions, and when traversing to keep track of triples
121 * (predecessor, node, successor) in order to detect when and how
122 * to unlink these deleted nodes.
123 *
124 * Rather than using mark-bits to mark list deletions (which can
125 * be slow and space-intensive using AtomicMarkedReference), nodes
126 * use direct CAS'able next pointers. On deletion, instead of
127 * marking a pointer, they splice in another node that can be
128 * thought of as standing for a marked pointer (see method
129 * unlinkNode). Using plain nodes acts roughly like "boxed"
130 * implementations of marked pointers, but uses new nodes only
131 * when nodes are deleted, not for every link. This requires less
132 * space and supports faster traversal. Even if marked references
133 * were better supported by JVMs, traversal using this technique
134 * might still be faster because any search need only read ahead
135 * one more node than otherwise required (to check for trailing
136 * marker) rather than unmasking mark bits or whatever on each
137 * read.
138 *
139 * This approach maintains the essential property needed in the HM
140 * algorithm of changing the next-pointer of a deleted node so
141 * that any other CAS of it will fail, but implements the idea by
142 * changing the pointer to point to a different node (with
143 * otherwise illegal null fields), not by marking it. While it
144 * would be possible to further squeeze space by defining marker
145 * nodes not to have key/value fields, it isn't worth the extra
146 * type-testing overhead. The deletion markers are rarely
147 * encountered during traversal, are easily detected via null
148 * checks that are needed anyway, and are normally quickly garbage
149 * collected. (Note that this technique would not work well in
150 * systems without garbage collection.)
151 *
152 * In addition to using deletion markers, the lists also use
153 * nullness of value fields to indicate deletion, in a style
154 * similar to typical lazy-deletion schemes. If a node's value is
155 * null, then it is considered logically deleted and ignored even
156 * though it is still reachable.
157 *
158 * Here's the sequence of events for a deletion of node n with
159 * predecessor b and successor f, initially:
160 *
161 * +------+ +------+ +------+
162 * ... | b |------>| n |----->| f | ...
163 * +------+ +------+ +------+
164 *
165 * 1. CAS n's value field from non-null to null.
166 * Traversals encountering a node with null value ignore it.
167 * However, ongoing insertions and deletions might still modify
168 * n's next pointer.
169 *
170 * 2. CAS n's next pointer to point to a new marker node.
171 * From this point on, no other nodes can be appended to n.
172 * which avoids deletion errors in CAS-based linked lists.
173 *
174 * +------+ +------+ +------+ +------+
175 * ... | b |------>| n |----->|marker|------>| f | ...
176 * +------+ +------+ +------+ +------+
177 *
178 * 3. CAS b's next pointer over both n and its marker.
179 * From this point on, no new traversals will encounter n,
180 * and it can eventually be GCed.
181 * +------+ +------+
182 * ... | b |----------------------------------->| f | ...
183 * +------+ +------+
184 *
185 * A failure at step 1 leads to simple retry due to a lost race
186 * with another operation. Steps 2-3 can fail because some other
187 * thread noticed during a traversal a node with null value and
188 * helped out by marking and/or unlinking. This helping-out
189 * ensures that no thread can become stuck waiting for progress of
190 * the deleting thread.
191 *
192 * Skip lists add indexing to this scheme, so that the base-level
193 * traversals start close to the locations being found, inserted
194 * or deleted -- usually base level traversals only traverse a few
195 * nodes. This doesn't change the basic algorithm except for the
196 * need to make sure base traversals start at predecessors (here,
197 * b) that are not (structurally) deleted, otherwise retrying
198 * after processing the deletion.
199 *
200 * Index levels are maintained using CAS to link and unlink
201 * successors ("right" fields). Races are allowed in index-list
202 * operations that can (rarely) fail to link in a new index node.
203 * (We can't do this of course for data nodes.) However, even
204 * when this happens, the index lists correctly guide search.
205 * This can impact performance, but since skip lists are
206 * probabilistic anyway, the net result is that under contention,
207 * the effective "p" value may be lower than its nominal value.
208 *
209 * Index insertion and deletion sometimes require a separate
210 * traversal pass occurring after the base-level action, to add or
211 * remove index nodes. This adds to single-threaded overhead, but
212 * improves contended multithreaded performance by narrowing
213 * interference windows, and allows deletion to ensure that all
214 * index nodes will be made unreachable upon return from a public
215 * remove operation, thus avoiding unwanted garbage retention.
216 *
217 * Indexing uses skip list parameters that maintain good search
218 * performance while using sparser-than-usual indices: The
219 * hardwired parameters k=1, p=0.5 (see method doPut) mean that
220 * about one-quarter of the nodes have indices. Of those that do,
221 * half have one level, a quarter have two, and so on (see Pugh's
222 * Skip List Cookbook, sec 3.4), up to a maximum of 62 levels
223 * (appropriate for up to 2^63 elements). The expected total
224 * space requirement for a map is slightly less than for the
225 * current implementation of java.util.TreeMap.
226 *
227 * Changing the level of the index (i.e, the height of the
228 * tree-like structure) also uses CAS. Creation of an index with
229 * height greater than the current level adds a level to the head
230 * index by CAS'ing on a new top-most head. To maintain good
231 * performance after a lot of removals, deletion methods
232 * heuristically try to reduce the height if the topmost levels
233 * appear to be empty. This may encounter races in which it is
234 * possible (but rare) to reduce and "lose" a level just as it is
235 * about to contain an index (that will then never be
236 * encountered). This does no structural harm, and in practice
237 * appears to be a better option than allowing unrestrained growth
238 * of levels.
239 *
240 * This class provides concurrent-reader-style memory consistency,
241 * ensuring that read-only methods report status and/or values no
242 * staler than those holding at method entry. This is done by
243 * performing all publication and structural updates using
244 * (volatile) CAS, placing an acquireFence in a few access
245 * methods, and ensuring that linked objects are transitively
246 * acquired via dependent reads (normally once) unless performing
247 * a volatile-mode CAS operation (that also acts as an acquire and
248 * release). This form of fence-hoisting is similar to RCU and
249 * related techniques (see McKenney's online book
250 * https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)
251 * It minimizes overhead that may otherwise occur when using so
252 * many volatile-mode reads. Using explicit acquireFences is
253 * logistically easier than targeting particular fields to be read
254 * in acquire mode: fences are just hoisted up as far as possible,
255 * to the entry points or loop headers of a few methods. A
256 * potential disadvantage is that these few remaining fences are
257 * not easily optimized away by compilers under exclusively
258 * single-thread use. It requires some care to avoid volatile
259 * mode reads of other fields. (Note that the memory semantics of
260 * a reference dependently read in plain mode exactly once are
261 * equivalent to those for atomic opaque mode.) Iterators and
262 * other traversals encounter each node and value exactly once.
263 * Other operations locate an element (or position to insert an
264 * element) via a sequence of dereferences. This search is broken
265 * into two parts. Method findPredecessor (and its specialized
266 * embeddings) searches index nodes only, returning a base-level
267 * predecessor of the key. Callers carry out the base-level
268 * search, restarting if encountering a marker preventing link
269 * modification. In some cases, it is possible to encounter a
270 * node multiple times while descending levels. For mutative
271 * operations, the reported value is validated using CAS (else
272 * retrying), preserving linearizability with respect to each
273 * other. Others may return any (non-null) value holding in the
274 * course of the method call. (Search-based methods also include
275 * some useless-looking explicit null checks designed to allow
276 * more fields to be nulled out upon removal, to reduce floating
277 * garbage, but which is not currently done, pending discovery of
278 * a way to do this with less impact on other operations.)
279 *
280 * To produce random values without interference across threads,
281 * we use within-JDK thread local random support (via the
282 * "secondary seed", to avoid interference with user-level
283 * ThreadLocalRandom.)
284 *
285 * For explanation of algorithms sharing at least a couple of
286 * features with this one, see Mikhail Fomitchev's thesis
287 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
288 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
289 * thesis (http://www.cs.chalmers.se/~phs/).
290 *
291 * Notation guide for local variables
292 * Node: b, n, f, p for predecessor, node, successor, aux
293 * Index: q, r, d for index node, right, down.
294 * Head: h
295 * Keys: k, key
296 * Values: v, value
297 * Comparisons: c
298 */
299
300 private static final long serialVersionUID = -8627078645895051609L;
301
302 /**
303 * The comparator used to maintain order in this map, or null if
304 * using natural ordering. (Non-private to simplify access in
305 * nested classes.)
306 * @serial
307 */
308 @SuppressWarnings("serial") // Conditionally serializable
309 final Comparator<? super K> comparator;
310
311 /** Lazily initialized topmost index of the skiplist. */
312 private transient Index<K,V> head;
313 /** Lazily initialized element count */
314 private transient LongAdder adder;
315 /** Lazily initialized key set */
316 private transient KeySet<K,V> keySet;
317 /** Lazily initialized values collection */
318 private transient Values<K,V> values;
319 /** Lazily initialized entry set */
320 private transient EntrySet<K,V> entrySet;
321 /** Lazily initialized descending map */
322 private transient SubMap<K,V> descendingMap;
323
324 /**
325 * Nodes hold keys and values, and are singly linked in sorted
326 * order, possibly with some intervening marker nodes. The list is
327 * headed by a header node accessible as head.node. Headers and
328 * marker nodes have null keys. The val field (but currently not
329 * the key field) is nulled out upon deletion.
330 */
331 static final class Node<K,V> {
332 final K key; // currently, never detached
333 V val;
334 Node<K,V> next;
335 Node(K key, V value, Node<K,V> next) {
336 this.key = key;
337 this.val = value;
338 this.next = next;
339 }
340 }
341
342 /**
343 * Index nodes represent the levels of the skip list.
344 */
345 static final class Index<K,V> {
346 final Node<K,V> node; // currently, never detached
347 final Index<K,V> down;
348 Index<K,V> right;
349 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
350 this.node = node;
351 this.down = down;
352 this.right = right;
353 }
354 }
355
356 /* ---------------- Utilities -------------- */
357
358 /**
359 * Compares using comparator or natural ordering if null.
360 * Called only by methods that have performed required type checks.
361 */
362 @SuppressWarnings({"unchecked", "rawtypes"})
363 static int cpr(Comparator c, Object x, Object y) {
364 return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
365 }
366
367 /**
368 * Returns the header for base node list, or null if uninitialized
369 */
370 final Node<K,V> baseHead() {
371 Index<K,V> h;
372 VarHandle.acquireFence();
373 return ((h = head) == null) ? null : h.node;
374 }
375
376 /**
377 * Tries to unlink deleted node n from predecessor b (if both
378 * exist), by first splicing in a marker if not already present.
379 * Upon return, node n is sure to be unlinked from b, possibly
380 * via the actions of some other thread.
381 *
382 * @param b if nonnull, predecessor
383 * @param n if nonnull, node known to be deleted
384 */
385 static <K,V> void unlinkNode(Node<K,V> b, Node<K,V> n) {
386 if (b != null && n != null) {
387 Node<K,V> f, p;
388 for (;;) {
389 if ((f = n.next) != null && f.key == null) {
390 p = f.next; // already marked
391 break;
392 }
393 else if (NEXT.compareAndSet(n, f,
394 new Node<K,V>(null, null, f))) {
395 p = f; // add marker
396 break;
397 }
398 }
399 NEXT.compareAndSet(b, n, p);
400 }
401 }
402
403 /**
404 * Adds to element count, initializing adder if necessary
405 *
406 * @param c count to add
407 */
408 private void addCount(long c) {
409 LongAdder a;
410 do {} while ((a = adder) == null &&
411 !ADDER.compareAndSet(this, null, a = new LongAdder()));
412 a.add(c);
413 }
414
415 /**
416 * Returns element count, initializing adder if necessary.
417 */
418 final long getAdderCount() {
419 LongAdder a; long c;
420 do {} while ((a = adder) == null &&
421 !ADDER.compareAndSet(this, null, a = new LongAdder()));
422 return ((c = a.sum()) <= 0L) ? 0L : c; // ignore transient negatives
423 }
424
425 /* ---------------- Traversal -------------- */
426
427 /**
428 * Returns an index node with key strictly less than given key.
429 * Also unlinks indexes to deleted nodes found along the way.
430 * Callers rely on this side-effect of clearing indices to deleted
431 * nodes.
432 *
433 * @param key if nonnull the key
434 * @return a predecessor node of key, or null if uninitialized or null key
435 */
436 private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
437 Index<K,V> q;
438 VarHandle.acquireFence();
439 if ((q = head) == null || key == null)
440 return null;
441 else {
442 for (Index<K,V> r, d;;) {
443 while ((r = q.right) != null) {
444 Node<K,V> p; K k;
445 if ((p = r.node) == null || (k = p.key) == null ||
446 p.val == null) // unlink index to deleted node
447 RIGHT.compareAndSet(q, r, r.right);
448 else if (cpr(cmp, key, k) > 0)
449 q = r;
450 else
451 break;
452 }
453 if ((d = q.down) != null)
454 q = d;
455 else
456 return q.node;
457 }
458 }
459 }
460
461 /**
462 * Returns node holding key or null if no such, clearing out any
463 * deleted nodes seen along the way. Repeatedly traverses at
464 * base-level looking for key starting at predecessor returned
465 * from findPredecessor, processing base-level deletions as
466 * encountered. Restarts occur, at traversal step encountering
467 * node n, if n's key field is null, indicating it is a marker, so
468 * its predecessor is deleted before continuing, which we help do
469 * by re-finding a valid predecessor. The traversal loops in
470 * doPut, doRemove, and findNear all include the same checks.
471 *
472 * @param key the key
473 * @return node holding key, or null if no such
474 */
475 private Node<K,V> findNode(Object key) {
476 if (key == null)
477 throw new NullPointerException(); // don't postpone errors
478 Comparator<? super K> cmp = comparator;
479 Node<K,V> b;
480 outer: while ((b = findPredecessor(key, cmp)) != null) {
481 for (;;) {
482 Node<K,V> n; K k; V v; int c;
483 if ((n = b.next) == null)
484 break outer; // empty
485 else if ((k = n.key) == null)
486 break; // b is deleted
487 else if ((v = n.val) == null)
488 unlinkNode(b, n); // n is deleted
489 else if ((c = cpr(cmp, key, k)) > 0)
490 b = n;
491 else if (c == 0)
492 return n;
493 else
494 break outer;
495 }
496 }
497 return null;
498 }
499
500 /**
501 * Gets value for key. Same idea as findNode, except skips over
502 * deletions and markers, and returns first encountered value to
503 * avoid possibly inconsistent rereads.
504 *
505 * @param key the key
506 * @return the value, or null if absent
507 */
508 private V doGet(Object key) {
509 Index<K,V> q;
510 VarHandle.acquireFence();
511 if (key == null)
512 throw new NullPointerException();
513 Comparator<? super K> cmp = comparator;
514 V result = null;
515 if ((q = head) != null) {
516 outer: for (Index<K,V> r, d;;) {
517 while ((r = q.right) != null) {
518 Node<K,V> p; K k; V v; int c;
519 if ((p = r.node) == null || (k = p.key) == null ||
520 (v = p.val) == null)
521 RIGHT.compareAndSet(q, r, r.right);
522 else if ((c = cpr(cmp, key, k)) > 0)
523 q = r;
524 else if (c == 0) {
525 result = v;
526 break outer;
527 }
528 else
529 break;
530 }
531 if ((d = q.down) != null)
532 q = d;
533 else {
534 Node<K,V> b, n;
535 if ((b = q.node) != null) {
536 while ((n = b.next) != null) {
537 V v; int c;
538 K k = n.key;
539 if ((v = n.val) == null || k == null ||
540 (c = cpr(cmp, key, k)) > 0)
541 b = n;
542 else {
543 if (c == 0)
544 result = v;
545 break;
546 }
547 }
548 }
549 break;
550 }
551 }
552 }
553 return result;
554 }
555
556 /* ---------------- Insertion -------------- */
557
558 /**
559 * Main insertion method. Adds element if not present, or
560 * replaces value if present and onlyIfAbsent is false.
561 *
562 * @param key the key
563 * @param value the value that must be associated with key
564 * @param onlyIfAbsent if should not insert if already present
565 * @return the old value, or null if newly inserted
566 */
567 private V doPut(K key, V value, boolean onlyIfAbsent) {
568 if (key == null)
569 throw new NullPointerException();
570 Comparator<? super K> cmp = comparator;
571 for (;;) {
572 Index<K,V> h; Node<K,V> b;
573 VarHandle.acquireFence();
574 int levels = 0; // number of levels descended
575 if ((h = head) == null) { // try to initialize
576 Node<K,V> base = new Node<K,V>(null, null, null);
577 h = new Index<K,V>(base, null, null);
578 b = (HEAD.compareAndSet(this, null, h)) ? base : null;
579 }
580 else {
581 for (Index<K,V> q = h, r, d;;) { // count while descending
582 while ((r = q.right) != null) {
583 Node<K,V> p; K k;
584 if ((p = r.node) == null || (k = p.key) == null ||
585 p.val == null)
586 RIGHT.compareAndSet(q, r, r.right);
587 else if (cpr(cmp, key, k) > 0)
588 q = r;
589 else
590 break;
591 }
592 if ((d = q.down) != null) {
593 ++levels;
594 q = d;
595 }
596 else {
597 b = q.node;
598 break;
599 }
600 }
601 }
602 if (b != null) {
603 Node<K,V> z = null; // new node, if inserted
604 for (;;) { // find insertion point
605 Node<K,V> n, p; K k; V v; int c;
606 if ((n = b.next) == null) {
607 if (b.key == null) // if empty, type check key now
608 cpr(cmp, key, key);
609 c = -1;
610 }
611 else if ((k = n.key) == null)
612 break; // can't append; restart
613 else if ((v = n.val) == null) {
614 unlinkNode(b, n);
615 c = 1;
616 }
617 else if ((c = cpr(cmp, key, k)) > 0)
618 b = n;
619 else if (c == 0 &&
620 (onlyIfAbsent || VAL.compareAndSet(n, v, value)))
621 return v;
622
623 if (c < 0 &&
624 NEXT.compareAndSet(b, n,
625 p = new Node<K,V>(key, value, n))) {
626 z = p;
627 break;
628 }
629 }
630
631 if (z != null) {
632 int lr = ThreadLocalRandom.nextSecondarySeed();
633 if ((lr & 0x3) == 0) { // add indices with 1/4 prob
634 int hr = ThreadLocalRandom.nextSecondarySeed();
635 long rnd = ((long)hr << 32) | ((long)lr & 0xffffffffL);
636 int skips = levels; // levels to descend before add
637 Index<K,V> x = null;
638 for (;;) { // create at most 62 indices
639 x = new Index<K,V>(z, x, null);
640 if (rnd >= 0L || --skips < 0)
641 break;
642 else
643 rnd <<= 1;
644 }
645 if (addIndices(h, skips, x, cmp) && skips < 0 &&
646 head == h) { // try to add new level
647 Index<K,V> hx = new Index<K,V>(z, x, null);
648 Index<K,V> nh = new Index<K,V>(h.node, h, hx);
649 HEAD.compareAndSet(this, h, nh);
650 }
651 if (z.val == null) // deleted while adding indices
652 findPredecessor(key, cmp); // clean
653 }
654 addCount(1L);
655 return null;
656 }
657 }
658 }
659 }
660
661 /**
662 * Add indices after an insertion. Descends iteratively to the
663 * highest level of insertion, then recursively, to chain index
664 * nodes to lower ones. Returns null on (staleness) failure,
665 * disabling higher-level insertions. Recursion depths are
666 * exponentially less probable.
667 *
668 * @param q starting index for current level
669 * @param skips levels to skip before inserting
670 * @param x index for this insertion
671 * @param cmp comparator
672 */
673 static <K,V> boolean addIndices(Index<K,V> q, int skips, Index<K,V> x,
674 Comparator<? super K> cmp) {
675 Node<K,V> z; K key;
676 if (x != null && (z = x.node) != null && (key = z.key) != null &&
677 q != null) { // hoist checks
678 boolean retrying = false;
679 for (;;) { // find splice point
680 Index<K,V> r, d; int c;
681 if ((r = q.right) != null) {
682 Node<K,V> p; K k;
683 if ((p = r.node) == null || (k = p.key) == null ||
684 p.val == null) {
685 RIGHT.compareAndSet(q, r, r.right);
686 c = 0;
687 }
688 else if ((c = cpr(cmp, key, k)) > 0)
689 q = r;
690 else if (c == 0)
691 break; // stale
692 }
693 else
694 c = -1;
695
696 if (c < 0) {
697 if ((d = q.down) != null && skips > 0) {
698 --skips;
699 q = d;
700 }
701 else if (d != null && !retrying &&
702 !addIndices(d, 0, x.down, cmp))
703 break;
704 else {
705 x.right = r;
706 if (RIGHT.compareAndSet(q, r, x))
707 return true;
708 else
709 retrying = true; // re-find splice point
710 }
711 }
712 }
713 }
714 return false;
715 }
716
717 /* ---------------- Deletion -------------- */
718
719 /**
720 * Main deletion method. Locates node, nulls value, appends a
721 * deletion marker, unlinks predecessor, removes associated index
722 * nodes, and possibly reduces head index level.
723 *
724 * @param key the key
725 * @param value if non-null, the value that must be
726 * associated with key
727 * @return the node, or null if not found
728 */
729 final V doRemove(Object key, Object value) {
730 if (key == null)
731 throw new NullPointerException();
732 Comparator<? super K> cmp = comparator;
733 V result = null;
734 Node<K,V> b;
735 outer: while ((b = findPredecessor(key, cmp)) != null &&
736 result == null) {
737 for (;;) {
738 Node<K,V> n; K k; V v; int c;
739 if ((n = b.next) == null)
740 break outer;
741 else if ((k = n.key) == null)
742 break;
743 else if ((v = n.val) == null)
744 unlinkNode(b, n);
745 else if ((c = cpr(cmp, key, k)) > 0)
746 b = n;
747 else if (c < 0)
748 break outer;
749 else if (value != null && !value.equals(v))
750 break outer;
751 else if (VAL.compareAndSet(n, v, null)) {
752 result = v;
753 unlinkNode(b, n);
754 break; // loop to clean up
755 }
756 }
757 }
758 if (result != null) {
759 tryReduceLevel();
760 addCount(-1L);
761 }
762 return result;
763 }
764
765 /**
766 * Possibly reduce head level if it has no nodes. This method can
767 * (rarely) make mistakes, in which case levels can disappear even
768 * though they are about to contain index nodes. This impacts
769 * performance, not correctness. To minimize mistakes as well as
770 * to reduce hysteresis, the level is reduced by one only if the
771 * topmost three levels look empty. Also, if the removed level
772 * looks non-empty after CAS, we try to change it back quick
773 * before anyone notices our mistake! (This trick works pretty
774 * well because this method will practically never make mistakes
775 * unless current thread stalls immediately before first CAS, in
776 * which case it is very unlikely to stall again immediately
777 * afterwards, so will recover.)
778 *
779 * We put up with all this rather than just let levels grow
780 * because otherwise, even a small map that has undergone a large
781 * number of insertions and removals will have a lot of levels,
782 * slowing down access more than would an occasional unwanted
783 * reduction.
784 */
785 private void tryReduceLevel() {
786 Index<K,V> h, d, e;
787 if ((h = head) != null && h.right == null &&
788 (d = h.down) != null && d.right == null &&
789 (e = d.down) != null && e.right == null &&
790 HEAD.compareAndSet(this, h, d) &&
791 h.right != null) // recheck
792 HEAD.compareAndSet(this, d, h); // try to backout
793 }
794
795 /* ---------------- Finding and removing first element -------------- */
796
797 /**
798 * Gets first valid node, unlinking deleted nodes if encountered.
799 * @return first node or null if empty
800 */
801 final Node<K,V> findFirst() {
802 Node<K,V> b, n;
803 if ((b = baseHead()) != null) {
804 while ((n = b.next) != null) {
805 if (n.val == null)
806 unlinkNode(b, n);
807 else
808 return n;
809 }
810 }
811 return null;
812 }
813
814 /**
815 * Entry snapshot version of findFirst
816 */
817 final AbstractMap.SimpleImmutableEntry<K,V> findFirstEntry() {
818 Node<K,V> b, n; V v;
819 if ((b = baseHead()) != null) {
820 while ((n = b.next) != null) {
821 if ((v = n.val) == null)
822 unlinkNode(b, n);
823 else
824 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
825 }
826 }
827 return null;
828 }
829
830 /**
831 * Removes first entry; returns its snapshot.
832 * @return null if empty, else snapshot of first entry
833 */
834 private AbstractMap.SimpleImmutableEntry<K,V> doRemoveFirstEntry() {
835 Node<K,V> b, n; V v;
836 if ((b = baseHead()) != null) {
837 while ((n = b.next) != null) {
838 if ((v = n.val) == null || VAL.compareAndSet(n, v, null)) {
839 K k = n.key;
840 unlinkNode(b, n);
841 if (v != null) {
842 tryReduceLevel();
843 findPredecessor(k, comparator); // clean index
844 addCount(-1L);
845 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
846 }
847 }
848 }
849 }
850 return null;
851 }
852
853 /* ---------------- Finding and removing last element -------------- */
854
855 /**
856 * Specialized version of find to get last valid node.
857 * @return last node or null if empty
858 */
859 final Node<K,V> findLast() {
860 outer: for (;;) {
861 Index<K,V> q; Node<K,V> b;
862 VarHandle.acquireFence();
863 if ((q = head) == null)
864 break;
865 for (Index<K,V> r, d;;) {
866 while ((r = q.right) != null) {
867 Node<K,V> p;
868 if ((p = r.node) == null || p.val == null)
869 RIGHT.compareAndSet(q, r, r.right);
870 else
871 q = r;
872 }
873 if ((d = q.down) != null)
874 q = d;
875 else {
876 b = q.node;
877 break;
878 }
879 }
880 if (b != null) {
881 for (;;) {
882 Node<K,V> n;
883 if ((n = b.next) == null) {
884 if (b.key == null) // empty
885 break outer;
886 else
887 return b;
888 }
889 else if (n.key == null)
890 break;
891 else if (n.val == null)
892 unlinkNode(b, n);
893 else
894 b = n;
895 }
896 }
897 }
898 return null;
899 }
900
901 /**
902 * Entry version of findLast
903 * @return Entry for last node or null if empty
904 */
905 final AbstractMap.SimpleImmutableEntry<K,V> findLastEntry() {
906 for (;;) {
907 Node<K,V> n; V v;
908 if ((n = findLast()) == null)
909 return null;
910 if ((v = n.val) != null)
911 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
912 }
913 }
914
915 /**
916 * Removes last entry; returns its snapshot.
917 * Specialized variant of doRemove.
918 * @return null if empty, else snapshot of last entry
919 */
920 private Map.Entry<K,V> doRemoveLastEntry() {
921 outer: for (;;) {
922 Index<K,V> q; Node<K,V> b;
923 VarHandle.acquireFence();
924 if ((q = head) == null)
925 break;
926 for (;;) {
927 Index<K,V> d, r; Node<K,V> p;
928 while ((r = q.right) != null) {
929 if ((p = r.node) == null || p.val == null)
930 RIGHT.compareAndSet(q, r, r.right);
931 else if (p.next != null)
932 q = r; // continue only if a successor
933 else
934 break;
935 }
936 if ((d = q.down) != null)
937 q = d;
938 else {
939 b = q.node;
940 break;
941 }
942 }
943 if (b != null) {
944 for (;;) {
945 Node<K,V> n; K k; V v;
946 if ((n = b.next) == null) {
947 if (b.key == null) // empty
948 break outer;
949 else
950 break; // retry
951 }
952 else if ((k = n.key) == null)
953 break;
954 else if ((v = n.val) == null)
955 unlinkNode(b, n);
956 else if (n.next != null)
957 b = n;
958 else if (VAL.compareAndSet(n, v, null)) {
959 unlinkNode(b, n);
960 tryReduceLevel();
961 findPredecessor(k, comparator); // clean index
962 addCount(-1L);
963 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
964 }
965 }
966 }
967 }
968 return null;
969 }
970
971 /* ---------------- Relational operations -------------- */
972
973 // Control values OR'ed as arguments to findNear
974
975 private static final int EQ = 1;
976 private static final int LT = 2;
977 private static final int GT = 0; // Actually checked as !LT
978
979 /**
980 * Utility for ceiling, floor, lower, higher methods.
981 * @param key the key
982 * @param rel the relation -- OR'ed combination of EQ, LT, GT
983 * @return nearest node fitting relation, or null if no such
984 */
985 final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
986 if (key == null)
987 throw new NullPointerException();
988 Node<K,V> result;
989 outer: for (Node<K,V> b;;) {
990 if ((b = findPredecessor(key, cmp)) == null) {
991 result = null;
992 break; // empty
993 }
994 for (;;) {
995 Node<K,V> n; K k; int c;
996 if ((n = b.next) == null) {
997 result = ((rel & LT) != 0 && b.key != null) ? b : null;
998 break outer;
999 }
1000 else if ((k = n.key) == null)
1001 break;
1002 else if (n.val == null)
1003 unlinkNode(b, n);
1004 else if (((c = cpr(cmp, key, k)) == 0 && (rel & EQ) != 0) ||
1005 (c < 0 && (rel & LT) == 0)) {
1006 result = n;
1007 break outer;
1008 }
1009 else if (c <= 0 && (rel & LT) != 0) {
1010 result = (b.key != null) ? b : null;
1011 break outer;
1012 }
1013 else
1014 b = n;
1015 }
1016 }
1017 return result;
1018 }
1019
1020 /**
1021 * Variant of findNear returning SimpleImmutableEntry
1022 * @param key the key
1023 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1024 * @return Entry fitting relation, or null if no such
1025 */
1026 final AbstractMap.SimpleImmutableEntry<K,V> findNearEntry(K key, int rel,
1027 Comparator<? super K> cmp) {
1028 for (;;) {
1029 Node<K,V> n; V v;
1030 if ((n = findNear(key, rel, cmp)) == null)
1031 return null;
1032 if ((v = n.val) != null)
1033 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
1034 }
1035 }
1036
1037 /* ---------------- Constructors -------------- */
1038
1039 /**
1040 * Constructs a new, empty map, sorted according to the
1041 * {@linkplain Comparable natural ordering} of the keys.
1042 */
1043 public ConcurrentSkipListMap() {
1044 this.comparator = null;
1045 }
1046
1047 /**
1048 * Constructs a new, empty map, sorted according to the specified
1049 * comparator.
1050 *
1051 * @param comparator the comparator that will be used to order this map.
1052 * If {@code null}, the {@linkplain Comparable natural
1053 * ordering} of the keys will be used.
1054 */
1055 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1056 this.comparator = comparator;
1057 }
1058
1059 /**
1060 * Constructs a new map containing the same mappings as the given map,
1061 * sorted according to the {@linkplain Comparable natural ordering} of
1062 * the keys.
1063 *
1064 * @param m the map whose mappings are to be placed in this map
1065 * @throws ClassCastException if the keys in {@code m} are not
1066 * {@link Comparable}, or are not mutually comparable
1067 * @throws NullPointerException if the specified map or any of its keys
1068 * or values are null
1069 */
1070 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1071 this.comparator = null;
1072 putAll(m);
1073 }
1074
1075 /**
1076 * Constructs a new map containing the same mappings and using the
1077 * same ordering as the specified sorted map.
1078 *
1079 * @param m the sorted map whose mappings are to be placed in this
1080 * map, and whose comparator is to be used to sort this map
1081 * @throws NullPointerException if the specified sorted map or any of
1082 * its keys or values are null
1083 */
1084 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1085 this.comparator = m.comparator();
1086 buildFromSorted(m); // initializes transients
1087 }
1088
1089 /**
1090 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1091 * instance. (The keys and values themselves are not cloned.)
1092 *
1093 * @return a shallow copy of this map
1094 */
1095 public ConcurrentSkipListMap<K,V> clone() {
1096 try {
1097 @SuppressWarnings("unchecked")
1098 ConcurrentSkipListMap<K,V> clone =
1099 (ConcurrentSkipListMap<K,V>) super.clone();
1100 clone.keySet = null;
1101 clone.entrySet = null;
1102 clone.values = null;
1103 clone.descendingMap = null;
1104 clone.adder = null;
1105 clone.buildFromSorted(this);
1106 return clone;
1107 } catch (CloneNotSupportedException e) {
1108 throw new InternalError();
1109 }
1110 }
1111
1112 /**
1113 * Streamlined bulk insertion to initialize from elements of
1114 * given sorted map. Call only from constructor or clone
1115 * method.
1116 */
1117 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1118 if (map == null)
1119 throw new NullPointerException();
1120 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1121 map.entrySet().iterator();
1122
1123 /*
1124 * Add equally spaced indices at log intervals, using the bits
1125 * of count during insertion. The maximum possible resulting
1126 * level is less than the number of bits in a long (64). The
1127 * preds array tracks the current rightmost node at each
1128 * level.
1129 */
1130 @SuppressWarnings("unchecked")
1131 Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1132 Node<K,V> bp = new Node<K,V>(null, null, null);
1133 Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1134 long count = 0;
1135
1136 while (it.hasNext()) {
1137 Map.Entry<? extends K, ? extends V> e = it.next();
1138 K k = e.getKey();
1139 V v = e.getValue();
1140 if (k == null || v == null)
1141 throw new NullPointerException();
1142 Node<K,V> z = new Node<K,V>(k, v, null);
1143 bp = bp.next = z;
1144 if ((++count & 3L) == 0L) {
1145 long m = count >>> 2;
1146 int i = 0;
1147 Index<K,V> idx = null, q;
1148 do {
1149 idx = new Index<K,V>(z, idx, null);
1150 if ((q = preds[i]) == null)
1151 preds[i] = h = new Index<K,V>(h.node, h, idx);
1152 else
1153 preds[i] = q.right = idx;
1154 } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1155 }
1156 }
1157 if (count != 0L) {
1158 VarHandle.releaseFence(); // emulate volatile stores
1159 addCount(count);
1160 head = h;
1161 VarHandle.fullFence();
1162 }
1163 }
1164
1165 /* ---------------- Serialization -------------- */
1166
1167 /**
1168 * Saves this map to a stream (that is, serializes it).
1169 *
1170 * @param s the stream
1171 * @throws java.io.IOException if an I/O error occurs
1172 * @serialData The key (Object) and value (Object) for each
1173 * key-value mapping represented by the map, followed by
1174 * {@code null}. The key-value mappings are emitted in key-order
1175 * (as determined by the Comparator, or by the keys' natural
1176 * ordering if no Comparator).
1177 */
1178 private void writeObject(java.io.ObjectOutputStream s)
1179 throws java.io.IOException {
1180 // Write out the Comparator and any hidden stuff
1181 s.defaultWriteObject();
1182
1183 // Write out keys and values (alternating)
1184 Node<K,V> b, n; V v;
1185 if ((b = baseHead()) != null) {
1186 while ((n = b.next) != null) {
1187 if ((v = n.val) != null) {
1188 s.writeObject(n.key);
1189 s.writeObject(v);
1190 }
1191 b = n;
1192 }
1193 }
1194 s.writeObject(null);
1195 }
1196
1197 /**
1198 * Reconstitutes this map from a stream (that is, deserializes it).
1199 * @param s the stream
1200 * @throws ClassNotFoundException if the class of a serialized object
1201 * could not be found
1202 * @throws java.io.IOException if an I/O error occurs
1203 */
1204 @SuppressWarnings("unchecked")
1205 private void readObject(final java.io.ObjectInputStream s)
1206 throws java.io.IOException, ClassNotFoundException {
1207 // Read in the Comparator and any hidden stuff
1208 s.defaultReadObject();
1209
1210 // Same idea as buildFromSorted
1211 @SuppressWarnings("unchecked")
1212 Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1213 Node<K,V> bp = new Node<K,V>(null, null, null);
1214 Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1215 Comparator<? super K> cmp = comparator;
1216 K prevKey = null;
1217 long count = 0;
1218
1219 for (;;) {
1220 K k = (K)s.readObject();
1221 if (k == null)
1222 break;
1223 V v = (V)s.readObject();
1224 if (v == null)
1225 throw new NullPointerException();
1226 if (prevKey != null && cpr(cmp, prevKey, k) > 0)
1227 throw new IllegalStateException("out of order");
1228 prevKey = k;
1229 Node<K,V> z = new Node<K,V>(k, v, null);
1230 bp = bp.next = z;
1231 if ((++count & 3L) == 0L) {
1232 long m = count >>> 2;
1233 int i = 0;
1234 Index<K,V> idx = null, q;
1235 do {
1236 idx = new Index<K,V>(z, idx, null);
1237 if ((q = preds[i]) == null)
1238 preds[i] = h = new Index<K,V>(h.node, h, idx);
1239 else
1240 preds[i] = q.right = idx;
1241 } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1242 }
1243 }
1244 if (count != 0L) {
1245 VarHandle.releaseFence();
1246 addCount(count);
1247 head = h;
1248 VarHandle.fullFence();
1249 }
1250 }
1251
1252 /* ------ Map API methods ------ */
1253
1254 /**
1255 * Returns {@code true} if this map contains a mapping for the specified
1256 * key.
1257 *
1258 * @param key key whose presence in this map is to be tested
1259 * @return {@code true} if this map contains a mapping for the specified key
1260 * @throws ClassCastException if the specified key cannot be compared
1261 * with the keys currently in the map
1262 * @throws NullPointerException if the specified key is null
1263 */
1264 public boolean containsKey(Object key) {
1265 return doGet(key) != null;
1266 }
1267
1268 /**
1269 * Returns the value to which the specified key is mapped,
1270 * or {@code null} if this map contains no mapping for the key.
1271 *
1272 * <p>More formally, if this map contains a mapping from a key
1273 * {@code k} to a value {@code v} such that {@code key} compares
1274 * equal to {@code k} according to the map's ordering, then this
1275 * method returns {@code v}; otherwise it returns {@code null}.
1276 * (There can be at most one such mapping.)
1277 *
1278 * @throws ClassCastException if the specified key cannot be compared
1279 * with the keys currently in the map
1280 * @throws NullPointerException if the specified key is null
1281 */
1282 public V get(Object key) {
1283 return doGet(key);
1284 }
1285
1286 /**
1287 * Returns the value to which the specified key is mapped,
1288 * or the given defaultValue if this map contains no mapping for the key.
1289 *
1290 * @param key the key
1291 * @param defaultValue the value to return if this map contains
1292 * no mapping for the given key
1293 * @return the mapping for the key, if present; else the defaultValue
1294 * @throws NullPointerException if the specified key is null
1295 * @since 1.8
1296 */
1297 public V getOrDefault(Object key, V defaultValue) {
1298 V v;
1299 return (v = doGet(key)) == null ? defaultValue : v;
1300 }
1301
1302 /**
1303 * Associates the specified value with the specified key in this map.
1304 * If the map previously contained a mapping for the key, the old
1305 * value is replaced.
1306 *
1307 * @param key key with which the specified value is to be associated
1308 * @param value value to be associated with the specified key
1309 * @return the previous value associated with the specified key, or
1310 * {@code null} if there was no mapping for the key
1311 * @throws ClassCastException if the specified key cannot be compared
1312 * with the keys currently in the map
1313 * @throws NullPointerException if the specified key or value is null
1314 */
1315 public V put(K key, V value) {
1316 if (value == null)
1317 throw new NullPointerException();
1318 return doPut(key, value, false);
1319 }
1320
1321 /**
1322 * Removes the mapping for the specified key from this map if present.
1323 *
1324 * @param key key for which mapping should be removed
1325 * @return the previous value associated with the specified key, or
1326 * {@code null} if there was no mapping for the key
1327 * @throws ClassCastException if the specified key cannot be compared
1328 * with the keys currently in the map
1329 * @throws NullPointerException if the specified key is null
1330 */
1331 public V remove(Object key) {
1332 return doRemove(key, null);
1333 }
1334
1335 /**
1336 * Returns {@code true} if this map maps one or more keys to the
1337 * specified value. This operation requires time linear in the
1338 * map size. Additionally, it is possible for the map to change
1339 * during execution of this method, in which case the returned
1340 * result may be inaccurate.
1341 *
1342 * @param value value whose presence in this map is to be tested
1343 * @return {@code true} if a mapping to {@code value} exists;
1344 * {@code false} otherwise
1345 * @throws NullPointerException if the specified value is null
1346 */
1347 public boolean containsValue(Object value) {
1348 if (value == null)
1349 throw new NullPointerException();
1350 Node<K,V> b, n; V v;
1351 if ((b = baseHead()) != null) {
1352 while ((n = b.next) != null) {
1353 if ((v = n.val) != null && value.equals(v))
1354 return true;
1355 else
1356 b = n;
1357 }
1358 }
1359 return false;
1360 }
1361
1362 /**
1363 * {@inheritDoc}
1364 */
1365 public int size() {
1366 long c;
1367 return ((baseHead() == null) ? 0 :
1368 ((c = getAdderCount()) >= Integer.MAX_VALUE) ?
1369 Integer.MAX_VALUE : (int) c);
1370 }
1371
1372 /**
1373 * {@inheritDoc}
1374 */
1375 public boolean isEmpty() {
1376 return findFirst() == null;
1377 }
1378
1379 /**
1380 * Removes all of the mappings from this map.
1381 */
1382 public void clear() {
1383 Index<K,V> h, r, d; Node<K,V> b;
1384 VarHandle.acquireFence();
1385 while ((h = head) != null) {
1386 if ((r = h.right) != null) // remove indices
1387 RIGHT.compareAndSet(h, r, null);
1388 else if ((d = h.down) != null) // remove levels
1389 HEAD.compareAndSet(this, h, d);
1390 else {
1391 long count = 0L;
1392 if ((b = h.node) != null) { // remove nodes
1393 Node<K,V> n; V v;
1394 while ((n = b.next) != null) {
1395 if ((v = n.val) != null &&
1396 VAL.compareAndSet(n, v, null)) {
1397 --count;
1398 v = null;
1399 }
1400 if (v == null)
1401 unlinkNode(b, n);
1402 }
1403 }
1404 if (count != 0L)
1405 addCount(count);
1406 else
1407 break;
1408 }
1409 }
1410 }
1411
1412 /**
1413 * If the specified key is not already associated with a value,
1414 * attempts to compute its value using the given mapping function
1415 * and enters it into this map unless {@code null}. The function
1416 * is <em>NOT</em> guaranteed to be applied once atomically only
1417 * if the value is not present.
1418 *
1419 * @param key key with which the specified value is to be associated
1420 * @param mappingFunction the function to compute a value
1421 * @return the current (existing or computed) value associated with
1422 * the specified key, or null if the computed value is null
1423 * @throws NullPointerException if the specified key is null
1424 * or the mappingFunction is null
1425 * @since 1.8
1426 */
1427 public V computeIfAbsent(K key,
1428 Function<? super K, ? extends V> mappingFunction) {
1429 if (key == null || mappingFunction == null)
1430 throw new NullPointerException();
1431 V v, p, r;
1432 if ((v = doGet(key)) == null &&
1433 (r = mappingFunction.apply(key)) != null)
1434 v = (p = doPut(key, r, true)) == null ? r : p;
1435 return v;
1436 }
1437
1438 /**
1439 * If the value for the specified key is present, attempts to
1440 * compute a new mapping given the key and its current mapped
1441 * value. The function is <em>NOT</em> guaranteed to be applied
1442 * once atomically.
1443 *
1444 * @param key key with which a value may be associated
1445 * @param remappingFunction the function to compute a value
1446 * @return the new value associated with the specified key, or null if none
1447 * @throws NullPointerException if the specified key is null
1448 * or the remappingFunction is null
1449 * @since 1.8
1450 */
1451 public V computeIfPresent(K key,
1452 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1453 if (key == null || remappingFunction == null)
1454 throw new NullPointerException();
1455 Node<K,V> n; V v;
1456 while ((n = findNode(key)) != null) {
1457 if ((v = n.val) != null) {
1458 V r = remappingFunction.apply(key, v);
1459 if (r != null) {
1460 if (VAL.compareAndSet(n, v, r))
1461 return r;
1462 }
1463 else if (doRemove(key, v) != null)
1464 break;
1465 }
1466 }
1467 return null;
1468 }
1469
1470 /**
1471 * Attempts to compute a mapping for the specified key and its
1472 * current mapped value (or {@code null} if there is no current
1473 * mapping). The function is <em>NOT</em> guaranteed to be applied
1474 * once atomically.
1475 *
1476 * @param key key with which the specified value is to be associated
1477 * @param remappingFunction the function to compute a value
1478 * @return the new value associated with the specified key, or null if none
1479 * @throws NullPointerException if the specified key is null
1480 * or the remappingFunction is null
1481 * @since 1.8
1482 */
1483 public V compute(K key,
1484 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1485 if (key == null || remappingFunction == null)
1486 throw new NullPointerException();
1487 for (;;) {
1488 Node<K,V> n; V v; V r;
1489 if ((n = findNode(key)) == null) {
1490 if ((r = remappingFunction.apply(key, null)) == null)
1491 break;
1492 if (doPut(key, r, true) == null)
1493 return r;
1494 }
1495 else if ((v = n.val) != null) {
1496 if ((r = remappingFunction.apply(key, v)) != null) {
1497 if (VAL.compareAndSet(n, v, r))
1498 return r;
1499 }
1500 else if (doRemove(key, v) != null)
1501 break;
1502 }
1503 }
1504 return null;
1505 }
1506
1507 /**
1508 * If the specified key is not already associated with a value,
1509 * associates it with the given value. Otherwise, replaces the
1510 * value with the results of the given remapping function, or
1511 * removes if {@code null}. The function is <em>NOT</em>
1512 * guaranteed to be applied once atomically.
1513 *
1514 * @param key key with which the specified value is to be associated
1515 * @param value the value to use if absent
1516 * @param remappingFunction the function to recompute a value if present
1517 * @return the new value associated with the specified key, or null if none
1518 * @throws NullPointerException if the specified key or value is null
1519 * or the remappingFunction is null
1520 * @since 1.8
1521 */
1522 public V merge(K key, V value,
1523 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1524 if (key == null || value == null || remappingFunction == null)
1525 throw new NullPointerException();
1526 for (;;) {
1527 Node<K,V> n; V v; V r;
1528 if ((n = findNode(key)) == null) {
1529 if (doPut(key, value, true) == null)
1530 return value;
1531 }
1532 else if ((v = n.val) != null) {
1533 if ((r = remappingFunction.apply(v, value)) != null) {
1534 if (VAL.compareAndSet(n, v, r))
1535 return r;
1536 }
1537 else if (doRemove(key, v) != null)
1538 return null;
1539 }
1540 }
1541 }
1542
1543 /* ---------------- View methods -------------- */
1544
1545 /*
1546 * Note: Lazy initialization works for views because view classes
1547 * are stateless/immutable so it doesn't matter wrt correctness if
1548 * more than one is created (which will only rarely happen). Even
1549 * so, the following idiom conservatively ensures that the method
1550 * returns the one it created if it does so, not one created by
1551 * another racing thread.
1552 */
1553
1554 /**
1555 * Returns a {@link NavigableSet} view of the keys contained in this map.
1556 *
1557 * <p>The set's iterator returns the keys in ascending order.
1558 * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1559 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1560 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1561 * key order.
1562 *
1563 * <p>The {@linkplain Spliterator#getComparator() spliterator's comparator}
1564 * is {@code null} if the {@linkplain #comparator() map's comparator}
1565 * is {@code null}.
1566 * Otherwise, the spliterator's comparator is the same as or imposes the
1567 * same total ordering as the map's comparator.
1568 *
1569 * <p>The set is backed by the map, so changes to the map are
1570 * reflected in the set, and vice-versa. The set supports element
1571 * removal, which removes the corresponding mapping from the map,
1572 * via the {@code Iterator.remove}, {@code Set.remove},
1573 * {@code removeAll}, {@code retainAll}, and {@code clear}
1574 * operations. It does not support the {@code add} or {@code addAll}
1575 * operations.
1576 *
1577 * <p>The view's iterators and spliterators are
1578 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1579 *
1580 * <p>This method is equivalent to method {@code navigableKeySet}.
1581 *
1582 * @return a navigable set view of the keys in this map
1583 */
1584 public NavigableSet<K> keySet() {
1585 KeySet<K,V> ks;
1586 if ((ks = keySet) != null) return ks;
1587 return keySet = new KeySet<>(this);
1588 }
1589
1590 public NavigableSet<K> navigableKeySet() {
1591 KeySet<K,V> ks;
1592 if ((ks = keySet) != null) return ks;
1593 return keySet = new KeySet<>(this);
1594 }
1595
1596 /**
1597 * Returns a {@link Collection} view of the values contained in this map.
1598 * <p>The collection's iterator returns the values in ascending order
1599 * of the corresponding keys. The collections's spliterator additionally
1600 * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1601 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1602 * order of the corresponding keys.
1603 *
1604 * <p>The collection is backed by the map, so changes to the map are
1605 * reflected in the collection, and vice-versa. The collection
1606 * supports element removal, which removes the corresponding
1607 * mapping from the map, via the {@code Iterator.remove},
1608 * {@code Collection.remove}, {@code removeAll},
1609 * {@code retainAll} and {@code clear} operations. It does not
1610 * support the {@code add} or {@code addAll} operations.
1611 *
1612 * <p>The view's iterators and spliterators are
1613 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1614 */
1615 public Collection<V> values() {
1616 Values<K,V> vs;
1617 if ((vs = values) != null) return vs;
1618 return values = new Values<>(this);
1619 }
1620
1621 /**
1622 * Returns a {@link Set} view of the mappings contained in this map.
1623 *
1624 * <p>The set's iterator returns the entries in ascending key order. The
1625 * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1626 * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1627 * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1628 * key order.
1629 *
1630 * <p>The set is backed by the map, so changes to the map are
1631 * reflected in the set, and vice-versa. The set supports element
1632 * removal, which removes the corresponding mapping from the map,
1633 * via the {@code Iterator.remove}, {@code Set.remove},
1634 * {@code removeAll}, {@code retainAll} and {@code clear}
1635 * operations. It does not support the {@code add} or
1636 * {@code addAll} operations.
1637 *
1638 * <p>The view's iterators and spliterators are
1639 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1640 *
1641 * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1642 * or {@code spliterator} do <em>not</em> support the {@code setValue}
1643 * operation.
1644 *
1645 * @return a set view of the mappings contained in this map,
1646 * sorted in ascending key order
1647 */
1648 public Set<Map.Entry<K,V>> entrySet() {
1649 EntrySet<K,V> es;
1650 if ((es = entrySet) != null) return es;
1651 return entrySet = new EntrySet<K,V>(this);
1652 }
1653
1654 public ConcurrentNavigableMap<K,V> descendingMap() {
1655 ConcurrentNavigableMap<K,V> dm;
1656 if ((dm = descendingMap) != null) return dm;
1657 return descendingMap =
1658 new SubMap<K,V>(this, null, false, null, false, true);
1659 }
1660
1661 public NavigableSet<K> descendingKeySet() {
1662 return descendingMap().navigableKeySet();
1663 }
1664
1665 /* ---------------- AbstractMap Overrides -------------- */
1666
1667 /**
1668 * Compares the specified object with this map for equality.
1669 * Returns {@code true} if the given object is also a map and the
1670 * two maps represent the same mappings. More formally, two maps
1671 * {@code m1} and {@code m2} represent the same mappings if
1672 * {@code m1.entrySet().equals(m2.entrySet())}. This
1673 * operation may return misleading results if either map is
1674 * concurrently modified during execution of this method.
1675 *
1676 * @param o object to be compared for equality with this map
1677 * @return {@code true} if the specified object is equal to this map
1678 */
1679 public boolean equals(Object o) {
1680 if (o == this)
1681 return true;
1682 if (!(o instanceof Map))
1683 return false;
1684 Map<?,?> m = (Map<?,?>) o;
1685 try {
1686 Comparator<? super K> cmp = comparator;
1687 // See JDK-8223553 for Iterator type wildcard rationale
1688 Iterator<? extends Map.Entry<?,?>> it = m.entrySet().iterator();
1689 if (m instanceof SortedMap &&
1690 ((SortedMap<?,?>)m).comparator() == cmp) {
1691 Node<K,V> b, n;
1692 if ((b = baseHead()) != null) {
1693 while ((n = b.next) != null) {
1694 K k; V v;
1695 if ((v = n.val) != null && (k = n.key) != null) {
1696 if (!it.hasNext())
1697 return false;
1698 Map.Entry<?,?> e = it.next();
1699 Object mk = e.getKey();
1700 Object mv = e.getValue();
1701 if (mk == null || mv == null)
1702 return false;
1703 try {
1704 if (cpr(cmp, k, mk) != 0)
1705 return false;
1706 } catch (ClassCastException cce) {
1707 return false;
1708 }
1709 if (!mv.equals(v))
1710 return false;
1711 }
1712 b = n;
1713 }
1714 }
1715 return !it.hasNext();
1716 }
1717 else {
1718 while (it.hasNext()) {
1719 V v;
1720 Map.Entry<?,?> e = it.next();
1721 Object mk = e.getKey();
1722 Object mv = e.getValue();
1723 if (mk == null || mv == null ||
1724 (v = get(mk)) == null || !v.equals(mv))
1725 return false;
1726 }
1727 Node<K,V> b, n;
1728 if ((b = baseHead()) != null) {
1729 K k; V v; Object mv;
1730 while ((n = b.next) != null) {
1731 if ((v = n.val) != null && (k = n.key) != null &&
1732 ((mv = m.get(k)) == null || !mv.equals(v)))
1733 return false;
1734 b = n;
1735 }
1736 }
1737 return true;
1738 }
1739 } catch (ClassCastException | NullPointerException unused) {
1740 return false;
1741 }
1742 }
1743
1744 /* ------ ConcurrentMap API methods ------ */
1745
1746 /**
1747 * {@inheritDoc}
1748 *
1749 * @return the previous value associated with the specified key,
1750 * or {@code null} if there was no mapping for the key
1751 * @throws ClassCastException if the specified key cannot be compared
1752 * with the keys currently in the map
1753 * @throws NullPointerException if the specified key or value is null
1754 */
1755 public V putIfAbsent(K key, V value) {
1756 if (value == null)
1757 throw new NullPointerException();
1758 return doPut(key, value, true);
1759 }
1760
1761 /**
1762 * {@inheritDoc}
1763 *
1764 * @throws ClassCastException if the specified key cannot be compared
1765 * with the keys currently in the map
1766 * @throws NullPointerException if the specified key is null
1767 */
1768 public boolean remove(Object key, Object value) {
1769 if (key == null)
1770 throw new NullPointerException();
1771 return value != null && doRemove(key, value) != null;
1772 }
1773
1774 /**
1775 * {@inheritDoc}
1776 *
1777 * @throws ClassCastException if the specified key cannot be compared
1778 * with the keys currently in the map
1779 * @throws NullPointerException if any of the arguments are null
1780 */
1781 public boolean replace(K key, V oldValue, V newValue) {
1782 if (key == null || oldValue == null || newValue == null)
1783 throw new NullPointerException();
1784 for (;;) {
1785 Node<K,V> n; V v;
1786 if ((n = findNode(key)) == null)
1787 return false;
1788 if ((v = n.val) != null) {
1789 if (!oldValue.equals(v))
1790 return false;
1791 if (VAL.compareAndSet(n, v, newValue))
1792 return true;
1793 }
1794 }
1795 }
1796
1797 /**
1798 * {@inheritDoc}
1799 *
1800 * @return the previous value associated with the specified key,
1801 * or {@code null} if there was no mapping for the key
1802 * @throws ClassCastException if the specified key cannot be compared
1803 * with the keys currently in the map
1804 * @throws NullPointerException if the specified key or value is null
1805 */
1806 public V replace(K key, V value) {
1807 if (key == null || value == null)
1808 throw new NullPointerException();
1809 for (;;) {
1810 Node<K,V> n; V v;
1811 if ((n = findNode(key)) == null)
1812 return null;
1813 if ((v = n.val) != null && VAL.compareAndSet(n, v, value))
1814 return v;
1815 }
1816 }
1817
1818 /* ------ SortedMap API methods ------ */
1819
1820 public Comparator<? super K> comparator() {
1821 return comparator;
1822 }
1823
1824 /**
1825 * @throws NoSuchElementException {@inheritDoc}
1826 */
1827 public K firstKey() {
1828 Node<K,V> n = findFirst();
1829 if (n == null)
1830 throw new NoSuchElementException();
1831 return n.key;
1832 }
1833
1834 /**
1835 * @throws NoSuchElementException {@inheritDoc}
1836 */
1837 public K lastKey() {
1838 Node<K,V> n = findLast();
1839 if (n == null)
1840 throw new NoSuchElementException();
1841 return n.key;
1842 }
1843
1844 /**
1845 * @throws ClassCastException {@inheritDoc}
1846 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1847 * @throws IllegalArgumentException {@inheritDoc}
1848 */
1849 public ConcurrentNavigableMap<K,V> subMap(K fromKey,
1850 boolean fromInclusive,
1851 K toKey,
1852 boolean toInclusive) {
1853 if (fromKey == null || toKey == null)
1854 throw new NullPointerException();
1855 return new SubMap<K,V>
1856 (this, fromKey, fromInclusive, toKey, toInclusive, false);
1857 }
1858
1859 /**
1860 * @throws ClassCastException {@inheritDoc}
1861 * @throws NullPointerException if {@code toKey} is null
1862 * @throws IllegalArgumentException {@inheritDoc}
1863 */
1864 public ConcurrentNavigableMap<K,V> headMap(K toKey,
1865 boolean inclusive) {
1866 if (toKey == null)
1867 throw new NullPointerException();
1868 return new SubMap<K,V>
1869 (this, null, false, toKey, inclusive, false);
1870 }
1871
1872 /**
1873 * @throws ClassCastException {@inheritDoc}
1874 * @throws NullPointerException if {@code fromKey} is null
1875 * @throws IllegalArgumentException {@inheritDoc}
1876 */
1877 public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
1878 boolean inclusive) {
1879 if (fromKey == null)
1880 throw new NullPointerException();
1881 return new SubMap<K,V>
1882 (this, fromKey, inclusive, null, false, false);
1883 }
1884
1885 /**
1886 * @throws ClassCastException {@inheritDoc}
1887 * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1888 * @throws IllegalArgumentException {@inheritDoc}
1889 */
1890 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
1891 return subMap(fromKey, true, toKey, false);
1892 }
1893
1894 /**
1895 * @throws ClassCastException {@inheritDoc}
1896 * @throws NullPointerException if {@code toKey} is null
1897 * @throws IllegalArgumentException {@inheritDoc}
1898 */
1899 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
1900 return headMap(toKey, false);
1901 }
1902
1903 /**
1904 * @throws ClassCastException {@inheritDoc}
1905 * @throws NullPointerException if {@code fromKey} is null
1906 * @throws IllegalArgumentException {@inheritDoc}
1907 */
1908 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
1909 return tailMap(fromKey, true);
1910 }
1911
1912 /* ---------------- Relational operations -------------- */
1913
1914 /**
1915 * Returns a key-value mapping associated with the greatest key
1916 * strictly less than the given key, or {@code null} if there is
1917 * no such key. The returned entry does <em>not</em> support the
1918 * {@code Entry.setValue} method.
1919 *
1920 * @throws ClassCastException {@inheritDoc}
1921 * @throws NullPointerException if the specified key is null
1922 */
1923 public Map.Entry<K,V> lowerEntry(K key) {
1924 return findNearEntry(key, LT, comparator);
1925 }
1926
1927 /**
1928 * @throws ClassCastException {@inheritDoc}
1929 * @throws NullPointerException if the specified key is null
1930 */
1931 public K lowerKey(K key) {
1932 Node<K,V> n = findNear(key, LT, comparator);
1933 return (n == null) ? null : n.key;
1934 }
1935
1936 /**
1937 * Returns a key-value mapping associated with the greatest key
1938 * less than or equal to the given key, or {@code null} if there
1939 * is no such key. The returned entry does <em>not</em> support
1940 * the {@code Entry.setValue} method.
1941 *
1942 * @param key the key
1943 * @throws ClassCastException {@inheritDoc}
1944 * @throws NullPointerException if the specified key is null
1945 */
1946 public Map.Entry<K,V> floorEntry(K key) {
1947 return findNearEntry(key, LT|EQ, comparator);
1948 }
1949
1950 /**
1951 * @param key the key
1952 * @throws ClassCastException {@inheritDoc}
1953 * @throws NullPointerException if the specified key is null
1954 */
1955 public K floorKey(K key) {
1956 Node<K,V> n = findNear(key, LT|EQ, comparator);
1957 return (n == null) ? null : n.key;
1958 }
1959
1960 /**
1961 * Returns a key-value mapping associated with the least key
1962 * greater than or equal to the given key, or {@code null} if
1963 * there is no such entry. The returned entry does <em>not</em>
1964 * support the {@code Entry.setValue} method.
1965 *
1966 * @throws ClassCastException {@inheritDoc}
1967 * @throws NullPointerException if the specified key is null
1968 */
1969 public Map.Entry<K,V> ceilingEntry(K key) {
1970 return findNearEntry(key, GT|EQ, comparator);
1971 }
1972
1973 /**
1974 * @throws ClassCastException {@inheritDoc}
1975 * @throws NullPointerException if the specified key is null
1976 */
1977 public K ceilingKey(K key) {
1978 Node<K,V> n = findNear(key, GT|EQ, comparator);
1979 return (n == null) ? null : n.key;
1980 }
1981
1982 /**
1983 * Returns a key-value mapping associated with the least key
1984 * strictly greater than the given key, or {@code null} if there
1985 * is no such key. The returned entry does <em>not</em> support
1986 * the {@code Entry.setValue} method.
1987 *
1988 * @param key the key
1989 * @throws ClassCastException {@inheritDoc}
1990 * @throws NullPointerException if the specified key is null
1991 */
1992 public Map.Entry<K,V> higherEntry(K key) {
1993 return findNearEntry(key, GT, comparator);
1994 }
1995
1996 /**
1997 * @param key the key
1998 * @throws ClassCastException {@inheritDoc}
1999 * @throws NullPointerException if the specified key is null
2000 */
2001 public K higherKey(K key) {
2002 Node<K,V> n = findNear(key, GT, comparator);
2003 return (n == null) ? null : n.key;
2004 }
2005
2006 /**
2007 * Returns a key-value mapping associated with the least
2008 * key in this map, or {@code null} if the map is empty.
2009 * The returned entry does <em>not</em> support
2010 * the {@code Entry.setValue} method.
2011 */
2012 public Map.Entry<K,V> firstEntry() {
2013 return findFirstEntry();
2014 }
2015
2016 /**
2017 * Returns a key-value mapping associated with the greatest
2018 * key in this map, or {@code null} if the map is empty.
2019 * The returned entry does <em>not</em> support
2020 * the {@code Entry.setValue} method.
2021 */
2022 public Map.Entry<K,V> lastEntry() {
2023 return findLastEntry();
2024 }
2025
2026 /**
2027 * Removes and returns a key-value mapping associated with
2028 * the least key in this map, or {@code null} if the map is empty.
2029 * The returned entry does <em>not</em> support
2030 * the {@code Entry.setValue} method.
2031 */
2032 public Map.Entry<K,V> pollFirstEntry() {
2033 return doRemoveFirstEntry();
2034 }
2035
2036 /**
2037 * Removes and returns a key-value mapping associated with
2038 * the greatest key in this map, or {@code null} if the map is empty.
2039 * The returned entry does <em>not</em> support
2040 * the {@code Entry.setValue} method.
2041 */
2042 public Map.Entry<K,V> pollLastEntry() {
2043 return doRemoveLastEntry();
2044 }
2045
2046 /* ---------------- Iterators -------------- */
2047
2048 /**
2049 * Base of iterator classes
2050 */
2051 abstract class Iter<T> implements Iterator<T> {
2052 /** the last node returned by next() */
2053 Node<K,V> lastReturned;
2054 /** the next node to return from next(); */
2055 Node<K,V> next;
2056 /** Cache of next value field to maintain weak consistency */
2057 V nextValue;
2058
2059 /** Initializes ascending iterator for entire range. */
2060 Iter() {
2061 advance(baseHead());
2062 }
2063
2064 public final boolean hasNext() {
2065 return next != null;
2066 }
2067
2068 /** Advances next to higher entry. */
2069 final void advance(Node<K,V> b) {
2070 Node<K,V> n = null;
2071 V v = null;
2072 if ((lastReturned = b) != null) {
2073 while ((n = b.next) != null && (v = n.val) == null)
2074 b = n;
2075 }
2076 nextValue = v;
2077 next = n;
2078 }
2079
2080 public final void remove() {
2081 Node<K,V> n; K k;
2082 if ((n = lastReturned) == null || (k = n.key) == null)
2083 throw new IllegalStateException();
2084 // It would not be worth all of the overhead to directly
2085 // unlink from here. Using remove is fast enough.
2086 ConcurrentSkipListMap.this.remove(k);
2087 lastReturned = null;
2088 }
2089 }
2090
2091 final class ValueIterator extends Iter<V> {
2092 public V next() {
2093 V v;
2094 if ((v = nextValue) == null)
2095 throw new NoSuchElementException();
2096 advance(next);
2097 return v;
2098 }
2099 }
2100
2101 final class KeyIterator extends Iter<K> {
2102 public K next() {
2103 Node<K,V> n;
2104 if ((n = next) == null)
2105 throw new NoSuchElementException();
2106 K k = n.key;
2107 advance(n);
2108 return k;
2109 }
2110 }
2111
2112 final class EntryIterator extends Iter<Map.Entry<K,V>> {
2113 public Map.Entry<K,V> next() {
2114 Node<K,V> n;
2115 if ((n = next) == null)
2116 throw new NoSuchElementException();
2117 K k = n.key;
2118 V v = nextValue;
2119 advance(n);
2120 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2121 }
2122 }
2123
2124 /* ---------------- View Classes -------------- */
2125
2126 /*
2127 * View classes are static, delegating to a ConcurrentNavigableMap
2128 * to allow use by SubMaps, which outweighs the ugliness of
2129 * needing type-tests for Iterator methods.
2130 */
2131
2132 static final <E> List<E> toList(Collection<E> c) {
2133 // Using size() here would be a pessimization.
2134 ArrayList<E> list = new ArrayList<E>();
2135 for (E e : c)
2136 list.add(e);
2137 return list;
2138 }
2139
2140 static final class KeySet<K,V>
2141 extends AbstractSet<K> implements NavigableSet<K> {
2142 final ConcurrentNavigableMap<K,V> m;
2143 KeySet(ConcurrentNavigableMap<K,V> map) { m = map; }
2144 public int size() { return m.size(); }
2145 public boolean isEmpty() { return m.isEmpty(); }
2146 public boolean contains(Object o) { return m.containsKey(o); }
2147 public boolean remove(Object o) { return m.remove(o) != null; }
2148 public void clear() { m.clear(); }
2149 public K lower(K e) { return m.lowerKey(e); }
2150 public K floor(K e) { return m.floorKey(e); }
2151 public K ceiling(K e) { return m.ceilingKey(e); }
2152 public K higher(K e) { return m.higherKey(e); }
2153 public Comparator<? super K> comparator() { return m.comparator(); }
2154 public K first() { return m.firstKey(); }
2155 public K last() { return m.lastKey(); }
2156 public K pollFirst() {
2157 Map.Entry<K,V> e = m.pollFirstEntry();
2158 return (e == null) ? null : e.getKey();
2159 }
2160 public K pollLast() {
2161 Map.Entry<K,V> e = m.pollLastEntry();
2162 return (e == null) ? null : e.getKey();
2163 }
2164 public Iterator<K> iterator() {
2165 return (m instanceof ConcurrentSkipListMap)
2166 ? ((ConcurrentSkipListMap<K,V>)m).new KeyIterator()
2167 : ((SubMap<K,V>)m).new SubMapKeyIterator();
2168 }
2169 public boolean equals(Object o) {
2170 if (o == this)
2171 return true;
2172 if (!(o instanceof Set))
2173 return false;
2174 Collection<?> c = (Collection<?>) o;
2175 try {
2176 return containsAll(c) && c.containsAll(this);
2177 } catch (ClassCastException | NullPointerException unused) {
2178 return false;
2179 }
2180 }
2181 public Object[] toArray() { return toList(this).toArray(); }
2182 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2183 public Iterator<K> descendingIterator() {
2184 return descendingSet().iterator();
2185 }
2186 public NavigableSet<K> subSet(K fromElement,
2187 boolean fromInclusive,
2188 K toElement,
2189 boolean toInclusive) {
2190 return new KeySet<>(m.subMap(fromElement, fromInclusive,
2191 toElement, toInclusive));
2192 }
2193 public NavigableSet<K> headSet(K toElement, boolean inclusive) {
2194 return new KeySet<>(m.headMap(toElement, inclusive));
2195 }
2196 public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
2197 return new KeySet<>(m.tailMap(fromElement, inclusive));
2198 }
2199 public NavigableSet<K> subSet(K fromElement, K toElement) {
2200 return subSet(fromElement, true, toElement, false);
2201 }
2202 public NavigableSet<K> headSet(K toElement) {
2203 return headSet(toElement, false);
2204 }
2205 public NavigableSet<K> tailSet(K fromElement) {
2206 return tailSet(fromElement, true);
2207 }
2208 public NavigableSet<K> descendingSet() {
2209 return new KeySet<>(m.descendingMap());
2210 }
2211
2212 public Spliterator<K> spliterator() {
2213 return (m instanceof ConcurrentSkipListMap)
2214 ? ((ConcurrentSkipListMap<K,V>)m).keySpliterator()
2215 : ((SubMap<K,V>)m).new SubMapKeyIterator();
2216 }
2217 }
2218
2219 static final class Values<K,V> extends AbstractCollection<V> {
2220 final ConcurrentNavigableMap<K,V> m;
2221 Values(ConcurrentNavigableMap<K,V> map) {
2222 m = map;
2223 }
2224 public Iterator<V> iterator() {
2225 return (m instanceof ConcurrentSkipListMap)
2226 ? ((ConcurrentSkipListMap<K,V>)m).new ValueIterator()
2227 : ((SubMap<K,V>)m).new SubMapValueIterator();
2228 }
2229 public int size() { return m.size(); }
2230 public boolean isEmpty() { return m.isEmpty(); }
2231 public boolean contains(Object o) { return m.containsValue(o); }
2232 public void clear() { m.clear(); }
2233 public Object[] toArray() { return toList(this).toArray(); }
2234 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2235
2236 public Spliterator<V> spliterator() {
2237 return (m instanceof ConcurrentSkipListMap)
2238 ? ((ConcurrentSkipListMap<K,V>)m).valueSpliterator()
2239 : ((SubMap<K,V>)m).new SubMapValueIterator();
2240 }
2241
2242 public boolean removeIf(Predicate<? super V> filter) {
2243 if (filter == null) throw new NullPointerException();
2244 if (m instanceof ConcurrentSkipListMap)
2245 return ((ConcurrentSkipListMap<K,V>)m).removeValueIf(filter);
2246 // else use iterator
2247 Iterator<Map.Entry<K,V>> it =
2248 ((SubMap<K,V>)m).new SubMapEntryIterator();
2249 boolean removed = false;
2250 while (it.hasNext()) {
2251 Map.Entry<K,V> e = it.next();
2252 V v = e.getValue();
2253 if (filter.test(v) && m.remove(e.getKey(), v))
2254 removed = true;
2255 }
2256 return removed;
2257 }
2258 }
2259
2260 static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
2261 final ConcurrentNavigableMap<K,V> m;
2262 EntrySet(ConcurrentNavigableMap<K,V> map) {
2263 m = map;
2264 }
2265 public Iterator<Map.Entry<K,V>> iterator() {
2266 return (m instanceof ConcurrentSkipListMap)
2267 ? ((ConcurrentSkipListMap<K,V>)m).new EntryIterator()
2268 : ((SubMap<K,V>)m).new SubMapEntryIterator();
2269 }
2270
2271 public boolean contains(Object o) {
2272 if (!(o instanceof Map.Entry))
2273 return false;
2274 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2275 V v = m.get(e.getKey());
2276 return v != null && v.equals(e.getValue());
2277 }
2278 public boolean remove(Object o) {
2279 if (!(o instanceof Map.Entry))
2280 return false;
2281 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2282 return m.remove(e.getKey(),
2283 e.getValue());
2284 }
2285 public boolean isEmpty() {
2286 return m.isEmpty();
2287 }
2288 public int size() {
2289 return m.size();
2290 }
2291 public void clear() {
2292 m.clear();
2293 }
2294 public boolean equals(Object o) {
2295 if (o == this)
2296 return true;
2297 if (!(o instanceof Set))
2298 return false;
2299 Collection<?> c = (Collection<?>) o;
2300 try {
2301 return containsAll(c) && c.containsAll(this);
2302 } catch (ClassCastException | NullPointerException unused) {
2303 return false;
2304 }
2305 }
2306 public Object[] toArray() { return toList(this).toArray(); }
2307 public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2308
2309 public Spliterator<Map.Entry<K,V>> spliterator() {
2310 return (m instanceof ConcurrentSkipListMap)
2311 ? ((ConcurrentSkipListMap<K,V>)m).entrySpliterator()
2312 : ((SubMap<K,V>)m).new SubMapEntryIterator();
2313 }
2314 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
2315 if (filter == null) throw new NullPointerException();
2316 if (m instanceof ConcurrentSkipListMap)
2317 return ((ConcurrentSkipListMap<K,V>)m).removeEntryIf(filter);
2318 // else use iterator
2319 Iterator<Map.Entry<K,V>> it =
2320 ((SubMap<K,V>)m).new SubMapEntryIterator();
2321 boolean removed = false;
2322 while (it.hasNext()) {
2323 Map.Entry<K,V> e = it.next();
2324 if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
2325 removed = true;
2326 }
2327 return removed;
2328 }
2329 }
2330
2331 /**
2332 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2333 * represent a subrange of mappings of their underlying maps.
2334 * Instances of this class support all methods of their underlying
2335 * maps, differing in that mappings outside their range are ignored,
2336 * and attempts to add mappings outside their ranges result in {@link
2337 * IllegalArgumentException}. Instances of this class are constructed
2338 * only using the {@code subMap}, {@code headMap}, and {@code tailMap}
2339 * methods of their underlying maps.
2340 *
2341 * @serial include
2342 */
2343 static final class SubMap<K,V> extends AbstractMap<K,V>
2344 implements ConcurrentNavigableMap<K,V>, Serializable {
2345 private static final long serialVersionUID = -7647078645895051609L;
2346
2347 /** Underlying map */
2348 final ConcurrentSkipListMap<K,V> m;
2349 /** lower bound key, or null if from start */
2350 @SuppressWarnings("serial") // Conditionally serializable
2351 private final K lo;
2352 /** upper bound key, or null if to end */
2353 @SuppressWarnings("serial") // Conditionally serializable
2354 private final K hi;
2355 /** inclusion flag for lo */
2356 private final boolean loInclusive;
2357 /** inclusion flag for hi */
2358 private final boolean hiInclusive;
2359 /** direction */
2360 final boolean isDescending;
2361
2362 // Lazily initialized view holders
2363 private transient KeySet<K,V> keySetView;
2364 private transient Values<K,V> valuesView;
2365 private transient EntrySet<K,V> entrySetView;
2366
2367 /**
2368 * Creates a new submap, initializing all fields.
2369 */
2370 SubMap(ConcurrentSkipListMap<K,V> map,
2371 K fromKey, boolean fromInclusive,
2372 K toKey, boolean toInclusive,
2373 boolean isDescending) {
2374 Comparator<? super K> cmp = map.comparator;
2375 if (fromKey != null && toKey != null &&
2376 cpr(cmp, fromKey, toKey) > 0)
2377 throw new IllegalArgumentException("inconsistent range");
2378 this.m = map;
2379 this.lo = fromKey;
2380 this.hi = toKey;
2381 this.loInclusive = fromInclusive;
2382 this.hiInclusive = toInclusive;
2383 this.isDescending = isDescending;
2384 }
2385
2386 /* ---------------- Utilities -------------- */
2387
2388 boolean tooLow(Object key, Comparator<? super K> cmp) {
2389 int c;
2390 return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2391 (c == 0 && !loInclusive)));
2392 }
2393
2394 boolean tooHigh(Object key, Comparator<? super K> cmp) {
2395 int c;
2396 return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2397 (c == 0 && !hiInclusive)));
2398 }
2399
2400 boolean inBounds(Object key, Comparator<? super K> cmp) {
2401 return !tooLow(key, cmp) && !tooHigh(key, cmp);
2402 }
2403
2404 void checkKeyBounds(K key, Comparator<? super K> cmp) {
2405 if (key == null)
2406 throw new NullPointerException();
2407 if (!inBounds(key, cmp))
2408 throw new IllegalArgumentException("key out of range");
2409 }
2410
2411 /**
2412 * Returns true if node key is less than upper bound of range.
2413 */
2414 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2415 Comparator<? super K> cmp) {
2416 if (n == null)
2417 return false;
2418 if (hi == null)
2419 return true;
2420 K k = n.key;
2421 if (k == null) // pass by markers and headers
2422 return true;
2423 int c = cpr(cmp, k, hi);
2424 return c < 0 || (c == 0 && hiInclusive);
2425 }
2426
2427 /**
2428 * Returns lowest node. This node might not be in range, so
2429 * most usages need to check bounds.
2430 */
2431 ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2432 if (lo == null)
2433 return m.findFirst();
2434 else if (loInclusive)
2435 return m.findNear(lo, GT|EQ, cmp);
2436 else
2437 return m.findNear(lo, GT, cmp);
2438 }
2439
2440 /**
2441 * Returns highest node. This node might not be in range, so
2442 * most usages need to check bounds.
2443 */
2444 ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2445 if (hi == null)
2446 return m.findLast();
2447 else if (hiInclusive)
2448 return m.findNear(hi, LT|EQ, cmp);
2449 else
2450 return m.findNear(hi, LT, cmp);
2451 }
2452
2453 /**
2454 * Returns lowest absolute key (ignoring directionality).
2455 */
2456 K lowestKey() {
2457 Comparator<? super K> cmp = m.comparator;
2458 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2459 if (isBeforeEnd(n, cmp))
2460 return n.key;
2461 else
2462 throw new NoSuchElementException();
2463 }
2464
2465 /**
2466 * Returns highest absolute key (ignoring directionality).
2467 */
2468 K highestKey() {
2469 Comparator<? super K> cmp = m.comparator;
2470 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2471 if (n != null) {
2472 K last = n.key;
2473 if (inBounds(last, cmp))
2474 return last;
2475 }
2476 throw new NoSuchElementException();
2477 }
2478
2479 Map.Entry<K,V> lowestEntry() {
2480 Comparator<? super K> cmp = m.comparator;
2481 for (;;) {
2482 ConcurrentSkipListMap.Node<K,V> n; V v;
2483 if ((n = loNode(cmp)) == null || !isBeforeEnd(n, cmp))
2484 return null;
2485 else if ((v = n.val) != null)
2486 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2487 }
2488 }
2489
2490 Map.Entry<K,V> highestEntry() {
2491 Comparator<? super K> cmp = m.comparator;
2492 for (;;) {
2493 ConcurrentSkipListMap.Node<K,V> n; V v;
2494 if ((n = hiNode(cmp)) == null || !inBounds(n.key, cmp))
2495 return null;
2496 else if ((v = n.val) != null)
2497 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2498 }
2499 }
2500
2501 Map.Entry<K,V> removeLowest() {
2502 Comparator<? super K> cmp = m.comparator;
2503 for (;;) {
2504 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2505 if ((n = loNode(cmp)) == null)
2506 return null;
2507 else if (!inBounds((k = n.key), cmp))
2508 return null;
2509 else if ((v = m.doRemove(k, null)) != null)
2510 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2511 }
2512 }
2513
2514 Map.Entry<K,V> removeHighest() {
2515 Comparator<? super K> cmp = m.comparator;
2516 for (;;) {
2517 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2518 if ((n = hiNode(cmp)) == null)
2519 return null;
2520 else if (!inBounds((k = n.key), cmp))
2521 return null;
2522 else if ((v = m.doRemove(k, null)) != null)
2523 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2524 }
2525 }
2526
2527 /**
2528 * Submap version of ConcurrentSkipListMap.findNearEntry.
2529 */
2530 Map.Entry<K,V> getNearEntry(K key, int rel) {
2531 Comparator<? super K> cmp = m.comparator;
2532 if (isDescending) { // adjust relation for direction
2533 if ((rel & LT) == 0)
2534 rel |= LT;
2535 else
2536 rel &= ~LT;
2537 }
2538 if (tooLow(key, cmp))
2539 return ((rel & LT) != 0) ? null : lowestEntry();
2540 if (tooHigh(key, cmp))
2541 return ((rel & LT) != 0) ? highestEntry() : null;
2542 AbstractMap.SimpleImmutableEntry<K,V> e =
2543 m.findNearEntry(key, rel, cmp);
2544 if (e == null || !inBounds(e.getKey(), cmp))
2545 return null;
2546 else
2547 return e;
2548 }
2549
2550 // Almost the same as getNearEntry, except for keys
2551 K getNearKey(K key, int rel) {
2552 Comparator<? super K> cmp = m.comparator;
2553 if (isDescending) { // adjust relation for direction
2554 if ((rel & LT) == 0)
2555 rel |= LT;
2556 else
2557 rel &= ~LT;
2558 }
2559 if (tooLow(key, cmp)) {
2560 if ((rel & LT) == 0) {
2561 ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2562 if (isBeforeEnd(n, cmp))
2563 return n.key;
2564 }
2565 return null;
2566 }
2567 if (tooHigh(key, cmp)) {
2568 if ((rel & LT) != 0) {
2569 ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2570 if (n != null) {
2571 K last = n.key;
2572 if (inBounds(last, cmp))
2573 return last;
2574 }
2575 }
2576 return null;
2577 }
2578 for (;;) {
2579 Node<K,V> n = m.findNear(key, rel, cmp);
2580 if (n == null || !inBounds(n.key, cmp))
2581 return null;
2582 if (n.val != null)
2583 return n.key;
2584 }
2585 }
2586
2587 /* ---------------- Map API methods -------------- */
2588
2589 public boolean containsKey(Object key) {
2590 if (key == null) throw new NullPointerException();
2591 return inBounds(key, m.comparator) && m.containsKey(key);
2592 }
2593
2594 public V get(Object key) {
2595 if (key == null) throw new NullPointerException();
2596 return (!inBounds(key, m.comparator)) ? null : m.get(key);
2597 }
2598
2599 public V put(K key, V value) {
2600 checkKeyBounds(key, m.comparator);
2601 return m.put(key, value);
2602 }
2603
2604 public V remove(Object key) {
2605 return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2606 }
2607
2608 public int size() {
2609 Comparator<? super K> cmp = m.comparator;
2610 long count = 0;
2611 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2612 isBeforeEnd(n, cmp);
2613 n = n.next) {
2614 if (n.val != null)
2615 ++count;
2616 }
2617 return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2618 }
2619
2620 public boolean isEmpty() {
2621 Comparator<? super K> cmp = m.comparator;
2622 return !isBeforeEnd(loNode(cmp), cmp);
2623 }
2624
2625 public boolean containsValue(Object value) {
2626 if (value == null)
2627 throw new NullPointerException();
2628 Comparator<? super K> cmp = m.comparator;
2629 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2630 isBeforeEnd(n, cmp);
2631 n = n.next) {
2632 V v = n.val;
2633 if (v != null && value.equals(v))
2634 return true;
2635 }
2636 return false;
2637 }
2638
2639 public void clear() {
2640 Comparator<? super K> cmp = m.comparator;
2641 for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2642 isBeforeEnd(n, cmp);
2643 n = n.next) {
2644 if (n.val != null)
2645 m.remove(n.key);
2646 }
2647 }
2648
2649 /* ---------------- ConcurrentMap API methods -------------- */
2650
2651 public V putIfAbsent(K key, V value) {
2652 checkKeyBounds(key, m.comparator);
2653 return m.putIfAbsent(key, value);
2654 }
2655
2656 public boolean remove(Object key, Object value) {
2657 return inBounds(key, m.comparator) && m.remove(key, value);
2658 }
2659
2660 public boolean replace(K key, V oldValue, V newValue) {
2661 checkKeyBounds(key, m.comparator);
2662 return m.replace(key, oldValue, newValue);
2663 }
2664
2665 public V replace(K key, V value) {
2666 checkKeyBounds(key, m.comparator);
2667 return m.replace(key, value);
2668 }
2669
2670 /* ---------------- SortedMap API methods -------------- */
2671
2672 public Comparator<? super K> comparator() {
2673 Comparator<? super K> cmp = m.comparator();
2674 if (isDescending)
2675 return Collections.reverseOrder(cmp);
2676 else
2677 return cmp;
2678 }
2679
2680 /**
2681 * Utility to create submaps, where given bounds override
2682 * unbounded(null) ones and/or are checked against bounded ones.
2683 */
2684 SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2685 K toKey, boolean toInclusive) {
2686 Comparator<? super K> cmp = m.comparator;
2687 if (isDescending) { // flip senses
2688 K tk = fromKey;
2689 fromKey = toKey;
2690 toKey = tk;
2691 boolean ti = fromInclusive;
2692 fromInclusive = toInclusive;
2693 toInclusive = ti;
2694 }
2695 if (lo != null) {
2696 if (fromKey == null) {
2697 fromKey = lo;
2698 fromInclusive = loInclusive;
2699 }
2700 else {
2701 int c = cpr(cmp, fromKey, lo);
2702 if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2703 throw new IllegalArgumentException("key out of range");
2704 }
2705 }
2706 if (hi != null) {
2707 if (toKey == null) {
2708 toKey = hi;
2709 toInclusive = hiInclusive;
2710 }
2711 else {
2712 int c = cpr(cmp, toKey, hi);
2713 if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2714 throw new IllegalArgumentException("key out of range");
2715 }
2716 }
2717 return new SubMap<K,V>(m, fromKey, fromInclusive,
2718 toKey, toInclusive, isDescending);
2719 }
2720
2721 public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2722 K toKey, boolean toInclusive) {
2723 if (fromKey == null || toKey == null)
2724 throw new NullPointerException();
2725 return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2726 }
2727
2728 public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2729 if (toKey == null)
2730 throw new NullPointerException();
2731 return newSubMap(null, false, toKey, inclusive);
2732 }
2733
2734 public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2735 if (fromKey == null)
2736 throw new NullPointerException();
2737 return newSubMap(fromKey, inclusive, null, false);
2738 }
2739
2740 public SubMap<K,V> subMap(K fromKey, K toKey) {
2741 return subMap(fromKey, true, toKey, false);
2742 }
2743
2744 public SubMap<K,V> headMap(K toKey) {
2745 return headMap(toKey, false);
2746 }
2747
2748 public SubMap<K,V> tailMap(K fromKey) {
2749 return tailMap(fromKey, true);
2750 }
2751
2752 public SubMap<K,V> descendingMap() {
2753 return new SubMap<K,V>(m, lo, loInclusive,
2754 hi, hiInclusive, !isDescending);
2755 }
2756
2757 /* ---------------- Relational methods -------------- */
2758
2759 public Map.Entry<K,V> ceilingEntry(K key) {
2760 return getNearEntry(key, GT|EQ);
2761 }
2762
2763 public K ceilingKey(K key) {
2764 return getNearKey(key, GT|EQ);
2765 }
2766
2767 public Map.Entry<K,V> lowerEntry(K key) {
2768 return getNearEntry(key, LT);
2769 }
2770
2771 public K lowerKey(K key) {
2772 return getNearKey(key, LT);
2773 }
2774
2775 public Map.Entry<K,V> floorEntry(K key) {
2776 return getNearEntry(key, LT|EQ);
2777 }
2778
2779 public K floorKey(K key) {
2780 return getNearKey(key, LT|EQ);
2781 }
2782
2783 public Map.Entry<K,V> higherEntry(K key) {
2784 return getNearEntry(key, GT);
2785 }
2786
2787 public K higherKey(K key) {
2788 return getNearKey(key, GT);
2789 }
2790
2791 public K firstKey() {
2792 return isDescending ? highestKey() : lowestKey();
2793 }
2794
2795 public K lastKey() {
2796 return isDescending ? lowestKey() : highestKey();
2797 }
2798
2799 public Map.Entry<K,V> firstEntry() {
2800 return isDescending ? highestEntry() : lowestEntry();
2801 }
2802
2803 public Map.Entry<K,V> lastEntry() {
2804 return isDescending ? lowestEntry() : highestEntry();
2805 }
2806
2807 public Map.Entry<K,V> pollFirstEntry() {
2808 return isDescending ? removeHighest() : removeLowest();
2809 }
2810
2811 public Map.Entry<K,V> pollLastEntry() {
2812 return isDescending ? removeLowest() : removeHighest();
2813 }
2814
2815 /* ---------------- Submap Views -------------- */
2816
2817 public NavigableSet<K> keySet() {
2818 KeySet<K,V> ks;
2819 if ((ks = keySetView) != null) return ks;
2820 return keySetView = new KeySet<>(this);
2821 }
2822
2823 public NavigableSet<K> navigableKeySet() {
2824 KeySet<K,V> ks;
2825 if ((ks = keySetView) != null) return ks;
2826 return keySetView = new KeySet<>(this);
2827 }
2828
2829 public Collection<V> values() {
2830 Values<K,V> vs;
2831 if ((vs = valuesView) != null) return vs;
2832 return valuesView = new Values<>(this);
2833 }
2834
2835 public Set<Map.Entry<K,V>> entrySet() {
2836 EntrySet<K,V> es;
2837 if ((es = entrySetView) != null) return es;
2838 return entrySetView = new EntrySet<K,V>(this);
2839 }
2840
2841 public NavigableSet<K> descendingKeySet() {
2842 return descendingMap().navigableKeySet();
2843 }
2844
2845 /**
2846 * Variant of main Iter class to traverse through submaps.
2847 * Also serves as back-up Spliterator for views.
2848 */
2849 abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
2850 /** the last node returned by next() */
2851 Node<K,V> lastReturned;
2852 /** the next node to return from next(); */
2853 Node<K,V> next;
2854 /** Cache of next value field to maintain weak consistency */
2855 V nextValue;
2856
2857 SubMapIter() {
2858 VarHandle.acquireFence();
2859 Comparator<? super K> cmp = m.comparator;
2860 for (;;) {
2861 next = isDescending ? hiNode(cmp) : loNode(cmp);
2862 if (next == null)
2863 break;
2864 V x = next.val;
2865 if (x != null) {
2866 if (! inBounds(next.key, cmp))
2867 next = null;
2868 else
2869 nextValue = x;
2870 break;
2871 }
2872 }
2873 }
2874
2875 public final boolean hasNext() {
2876 return next != null;
2877 }
2878
2879 final void advance() {
2880 if (next == null)
2881 throw new NoSuchElementException();
2882 lastReturned = next;
2883 if (isDescending)
2884 descend();
2885 else
2886 ascend();
2887 }
2888
2889 private void ascend() {
2890 Comparator<? super K> cmp = m.comparator;
2891 for (;;) {
2892 next = next.next;
2893 if (next == null)
2894 break;
2895 V x = next.val;
2896 if (x != null) {
2897 if (tooHigh(next.key, cmp))
2898 next = null;
2899 else
2900 nextValue = x;
2901 break;
2902 }
2903 }
2904 }
2905
2906 private void descend() {
2907 Comparator<? super K> cmp = m.comparator;
2908 for (;;) {
2909 next = m.findNear(lastReturned.key, LT, cmp);
2910 if (next == null)
2911 break;
2912 V x = next.val;
2913 if (x != null) {
2914 if (tooLow(next.key, cmp))
2915 next = null;
2916 else
2917 nextValue = x;
2918 break;
2919 }
2920 }
2921 }
2922
2923 public void remove() {
2924 Node<K,V> l = lastReturned;
2925 if (l == null)
2926 throw new IllegalStateException();
2927 m.remove(l.key);
2928 lastReturned = null;
2929 }
2930
2931 public Spliterator<T> trySplit() {
2932 return null;
2933 }
2934
2935 public boolean tryAdvance(Consumer<? super T> action) {
2936 if (hasNext()) {
2937 action.accept(next());
2938 return true;
2939 }
2940 return false;
2941 }
2942
2943 public void forEachRemaining(Consumer<? super T> action) {
2944 while (hasNext())
2945 action.accept(next());
2946 }
2947
2948 public long estimateSize() {
2949 return Long.MAX_VALUE;
2950 }
2951
2952 }
2953
2954 final class SubMapValueIterator extends SubMapIter<V> {
2955 public V next() {
2956 V v = nextValue;
2957 advance();
2958 return v;
2959 }
2960 public int characteristics() {
2961 return 0;
2962 }
2963 }
2964
2965 final class SubMapKeyIterator extends SubMapIter<K> {
2966 public K next() {
2967 Node<K,V> n = next;
2968 advance();
2969 return n.key;
2970 }
2971 public int characteristics() {
2972 return Spliterator.DISTINCT | Spliterator.ORDERED |
2973 Spliterator.SORTED;
2974 }
2975 public final Comparator<? super K> getComparator() {
2976 return SubMap.this.comparator();
2977 }
2978 }
2979
2980 final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
2981 public Map.Entry<K,V> next() {
2982 Node<K,V> n = next;
2983 V v = nextValue;
2984 advance();
2985 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2986 }
2987 public int characteristics() {
2988 return Spliterator.DISTINCT;
2989 }
2990 }
2991 }
2992
2993 // default Map method overrides
2994
2995 public void forEach(BiConsumer<? super K, ? super V> action) {
2996 if (action == null) throw new NullPointerException();
2997 Node<K,V> b, n; V v;
2998 if ((b = baseHead()) != null) {
2999 while ((n = b.next) != null) {
3000 if ((v = n.val) != null)
3001 action.accept(n.key, v);
3002 b = n;
3003 }
3004 }
3005 }
3006
3007 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3008 if (function == null) throw new NullPointerException();
3009 Node<K,V> b, n; V v;
3010 if ((b = baseHead()) != null) {
3011 while ((n = b.next) != null) {
3012 while ((v = n.val) != null) {
3013 V r = function.apply(n.key, v);
3014 if (r == null) throw new NullPointerException();
3015 if (VAL.compareAndSet(n, v, r))
3016 break;
3017 }
3018 b = n;
3019 }
3020 }
3021 }
3022
3023 /**
3024 * Helper method for EntrySet.removeIf.
3025 */
3026 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
3027 if (function == null) throw new NullPointerException();
3028 boolean removed = false;
3029 Node<K,V> b, n; V v;
3030 if ((b = baseHead()) != null) {
3031 while ((n = b.next) != null) {
3032 if ((v = n.val) != null) {
3033 K k = n.key;
3034 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
3035 if (function.test(e) && remove(k, v))
3036 removed = true;
3037 }
3038 b = n;
3039 }
3040 }
3041 return removed;
3042 }
3043
3044 /**
3045 * Helper method for Values.removeIf.
3046 */
3047 boolean removeValueIf(Predicate<? super V> function) {
3048 if (function == null) throw new NullPointerException();
3049 boolean removed = false;
3050 Node<K,V> b, n; V v;
3051 if ((b = baseHead()) != null) {
3052 while ((n = b.next) != null) {
3053 if ((v = n.val) != null && function.test(v) && remove(n.key, v))
3054 removed = true;
3055 b = n;
3056 }
3057 }
3058 return removed;
3059 }
3060
3061 /**
3062 * Base class providing common structure for Spliterators.
3063 * (Although not all that much common functionality; as usual for
3064 * view classes, details annoyingly vary in key, value, and entry
3065 * subclasses in ways that are not worth abstracting out for
3066 * internal classes.)
3067 *
3068 * The basic split strategy is to recursively descend from top
3069 * level, row by row, descending to next row when either split
3070 * off, or the end of row is encountered. Control of the number of
3071 * splits relies on some statistical estimation: The expected
3072 * remaining number of elements of a skip list when advancing
3073 * either across or down decreases by about 25%.
3074 */
3075 abstract static class CSLMSpliterator<K,V> {
3076 final Comparator<? super K> comparator;
3077 final K fence; // exclusive upper bound for keys, or null if to end
3078 Index<K,V> row; // the level to split out
3079 Node<K,V> current; // current traversal node; initialize at origin
3080 long est; // size estimate
3081 CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3082 Node<K,V> origin, K fence, long est) {
3083 this.comparator = comparator; this.row = row;
3084 this.current = origin; this.fence = fence; this.est = est;
3085 }
3086
3087 public final long estimateSize() { return est; }
3088 }
3089
3090 static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3091 implements Spliterator<K> {
3092 KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3093 Node<K,V> origin, K fence, long est) {
3094 super(comparator, row, origin, fence, est);
3095 }
3096
3097 public KeySpliterator<K,V> trySplit() {
3098 Node<K,V> e; K ek;
3099 Comparator<? super K> cmp = comparator;
3100 K f = fence;
3101 if ((e = current) != null && (ek = e.key) != null) {
3102 for (Index<K,V> q = row; q != null; q = row = q.down) {
3103 Index<K,V> s; Node<K,V> b, n; K sk;
3104 if ((s = q.right) != null && (b = s.node) != null &&
3105 (n = b.next) != null && n.val != null &&
3106 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3107 (f == null || cpr(cmp, sk, f) < 0)) {
3108 current = n;
3109 Index<K,V> r = q.down;
3110 row = (s.right != null) ? s : s.down;
3111 est -= est >>> 2;
3112 return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3113 }
3114 }
3115 }
3116 return null;
3117 }
3118
3119 public void forEachRemaining(Consumer<? super K> action) {
3120 if (action == null) throw new NullPointerException();
3121 Comparator<? super K> cmp = comparator;
3122 K f = fence;
3123 Node<K,V> e = current;
3124 current = null;
3125 for (; e != null; e = e.next) {
3126 K k;
3127 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3128 break;
3129 if (e.val != null)
3130 action.accept(k);
3131 }
3132 }
3133
3134 public boolean tryAdvance(Consumer<? super K> action) {
3135 if (action == null) throw new NullPointerException();
3136 Comparator<? super K> cmp = comparator;
3137 K f = fence;
3138 Node<K,V> e = current;
3139 for (; e != null; e = e.next) {
3140 K k;
3141 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3142 e = null;
3143 break;
3144 }
3145 if (e.val != null) {
3146 current = e.next;
3147 action.accept(k);
3148 return true;
3149 }
3150 }
3151 current = e;
3152 return false;
3153 }
3154
3155 public int characteristics() {
3156 return Spliterator.DISTINCT | Spliterator.SORTED |
3157 Spliterator.ORDERED | Spliterator.CONCURRENT |
3158 Spliterator.NONNULL;
3159 }
3160
3161 public final Comparator<? super K> getComparator() {
3162 return comparator;
3163 }
3164 }
3165 // factory method for KeySpliterator
3166 final KeySpliterator<K,V> keySpliterator() {
3167 Index<K,V> h; Node<K,V> n; long est;
3168 VarHandle.acquireFence();
3169 if ((h = head) == null) {
3170 n = null;
3171 est = 0L;
3172 }
3173 else {
3174 n = h.node;
3175 est = getAdderCount();
3176 }
3177 return new KeySpliterator<K,V>(comparator, h, n, null, est);
3178 }
3179
3180 static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3181 implements Spliterator<V> {
3182 ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3183 Node<K,V> origin, K fence, long est) {
3184 super(comparator, row, origin, fence, est);
3185 }
3186
3187 public ValueSpliterator<K,V> trySplit() {
3188 Node<K,V> e; K ek;
3189 Comparator<? super K> cmp = comparator;
3190 K f = fence;
3191 if ((e = current) != null && (ek = e.key) != null) {
3192 for (Index<K,V> q = row; q != null; q = row = q.down) {
3193 Index<K,V> s; Node<K,V> b, n; K sk;
3194 if ((s = q.right) != null && (b = s.node) != null &&
3195 (n = b.next) != null && n.val != null &&
3196 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3197 (f == null || cpr(cmp, sk, f) < 0)) {
3198 current = n;
3199 Index<K,V> r = q.down;
3200 row = (s.right != null) ? s : s.down;
3201 est -= est >>> 2;
3202 return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3203 }
3204 }
3205 }
3206 return null;
3207 }
3208
3209 public void forEachRemaining(Consumer<? super V> action) {
3210 if (action == null) throw new NullPointerException();
3211 Comparator<? super K> cmp = comparator;
3212 K f = fence;
3213 Node<K,V> e = current;
3214 current = null;
3215 for (; e != null; e = e.next) {
3216 K k; V v;
3217 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3218 break;
3219 if ((v = e.val) != null)
3220 action.accept(v);
3221 }
3222 }
3223
3224 public boolean tryAdvance(Consumer<? super V> action) {
3225 if (action == null) throw new NullPointerException();
3226 Comparator<? super K> cmp = comparator;
3227 K f = fence;
3228 Node<K,V> e = current;
3229 for (; e != null; e = e.next) {
3230 K k; V v;
3231 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3232 e = null;
3233 break;
3234 }
3235 if ((v = e.val) != null) {
3236 current = e.next;
3237 action.accept(v);
3238 return true;
3239 }
3240 }
3241 current = e;
3242 return false;
3243 }
3244
3245 public int characteristics() {
3246 return Spliterator.CONCURRENT | Spliterator.ORDERED |
3247 Spliterator.NONNULL;
3248 }
3249 }
3250
3251 // Almost the same as keySpliterator()
3252 final ValueSpliterator<K,V> valueSpliterator() {
3253 Index<K,V> h; Node<K,V> n; long est;
3254 VarHandle.acquireFence();
3255 if ((h = head) == null) {
3256 n = null;
3257 est = 0L;
3258 }
3259 else {
3260 n = h.node;
3261 est = getAdderCount();
3262 }
3263 return new ValueSpliterator<K,V>(comparator, h, n, null, est);
3264 }
3265
3266 static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3267 implements Spliterator<Map.Entry<K,V>> {
3268 EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3269 Node<K,V> origin, K fence, long est) {
3270 super(comparator, row, origin, fence, est);
3271 }
3272
3273 public EntrySpliterator<K,V> trySplit() {
3274 Node<K,V> e; K ek;
3275 Comparator<? super K> cmp = comparator;
3276 K f = fence;
3277 if ((e = current) != null && (ek = e.key) != null) {
3278 for (Index<K,V> q = row; q != null; q = row = q.down) {
3279 Index<K,V> s; Node<K,V> b, n; K sk;
3280 if ((s = q.right) != null && (b = s.node) != null &&
3281 (n = b.next) != null && n.val != null &&
3282 (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3283 (f == null || cpr(cmp, sk, f) < 0)) {
3284 current = n;
3285 Index<K,V> r = q.down;
3286 row = (s.right != null) ? s : s.down;
3287 est -= est >>> 2;
3288 return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3289 }
3290 }
3291 }
3292 return null;
3293 }
3294
3295 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3296 if (action == null) throw new NullPointerException();
3297 Comparator<? super K> cmp = comparator;
3298 K f = fence;
3299 Node<K,V> e = current;
3300 current = null;
3301 for (; e != null; e = e.next) {
3302 K k; V v;
3303 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3304 break;
3305 if ((v = e.val) != null) {
3306 action.accept
3307 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3308 }
3309 }
3310 }
3311
3312 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3313 if (action == null) throw new NullPointerException();
3314 Comparator<? super K> cmp = comparator;
3315 K f = fence;
3316 Node<K,V> e = current;
3317 for (; e != null; e = e.next) {
3318 K k; V v;
3319 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3320 e = null;
3321 break;
3322 }
3323 if ((v = e.val) != null) {
3324 current = e.next;
3325 action.accept
3326 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3327 return true;
3328 }
3329 }
3330 current = e;
3331 return false;
3332 }
3333
3334 public int characteristics() {
3335 return Spliterator.DISTINCT | Spliterator.SORTED |
3336 Spliterator.ORDERED | Spliterator.CONCURRENT |
3337 Spliterator.NONNULL;
3338 }
3339
3340 public final Comparator<Map.Entry<K,V>> getComparator() {
3341 // Adapt or create a key-based comparator
3342 if (comparator != null) {
3343 return Map.Entry.comparingByKey(comparator);
3344 }
3345 else {
3346 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3347 @SuppressWarnings("unchecked")
3348 Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3349 return k1.compareTo(e2.getKey());
3350 };
3351 }
3352 }
3353 }
3354
3355 // Almost the same as keySpliterator()
3356 final EntrySpliterator<K,V> entrySpliterator() {
3357 Index<K,V> h; Node<K,V> n; long est;
3358 VarHandle.acquireFence();
3359 if ((h = head) == null) {
3360 n = null;
3361 est = 0L;
3362 }
3363 else {
3364 n = h.node;
3365 est = getAdderCount();
3366 }
3367 return new EntrySpliterator<K,V>(comparator, h, n, null, est);
3368 }
3369
3370 // VarHandle mechanics
3371 private static final VarHandle HEAD;
3372 private static final VarHandle ADDER;
3373 private static final VarHandle NEXT;
3374 private static final VarHandle VAL;
3375 private static final VarHandle RIGHT;
3376 static {
3377 try {
3378 MethodHandles.Lookup l = MethodHandles.lookup();
3379 HEAD = l.findVarHandle(ConcurrentSkipListMap.class, "head",
3380 Index.class);
3381 ADDER = l.findVarHandle(ConcurrentSkipListMap.class, "adder",
3382 LongAdder.class);
3383 NEXT = l.findVarHandle(Node.class, "next", Node.class);
3384 VAL = l.findVarHandle(Node.class, "val", Object.class);
3385 RIGHT = l.findVarHandle(Index.class, "right", Index.class);
3386 } catch (ReflectiveOperationException e) {
3387 throw new ExceptionInInitializerError(e);
3388 }
3389 }
3390 }