ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.24
Committed: Wed May 25 14:05:27 2005 UTC (19 years ago) by dl
Branch: MAIN
Changes since 1.23: +72 -64 lines
Log Message:
Avoid generics warnings; clarify javadocs

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8 import java.util.*;
9 import java.util.concurrent.atomic.*;
10
11 /**
12 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13 * The map is sorted according to the {@linkplain Comparable natural
14 * ordering} of its keys, or by a {@link Comparator} provided at map
15 * creation time, depending on which constructor is used.
16 *
17 * <p>This class implements a concurrent variant of <a
18 * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
19 * expected average <i>log(n)</i> time cost for the
20 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
21 * <tt>remove</tt> operations and their variants. Insertion, removal,
22 * update, and access operations safely execute concurrently by
23 * multiple threads. Iterators are <i>weakly consistent</i>, returning
24 * elements reflecting the state of the map at some point at or since
25 * the creation of the iterator. They do <em>not</em> throw {@link
26 * ConcurrentModificationException}, and may proceed concurrently with
27 * other operations. Ascending key ordered views and their iterators
28 * are faster than descending ones.
29 *
30 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
31 * and its views represent snapshots of mappings at the time they were
32 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
33 * method. (Note however that it is possible to change mappings in the
34 * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
35 * <tt>replace</tt>, depending on exactly which effect you need.)
36 *
37 * <p>Beware that, unlike in most collections, the <tt>size</tt>
38 * method is <em>not</em> a constant-time operation. Because of the
39 * asynchronous nature of these maps, determining the current number
40 * of elements requires a traversal of the elements. Additionally,
41 * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
42 * <tt>clear</tt> are <em>not</em> guaranteed to be performed
43 * atomically. For example, an iterator operating concurrently with a
44 * <tt>putAll</tt> operation might view only some of the added
45 * elements.
46 *
47 * <p>This class and its views and iterators implement all of the
48 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
49 * interfaces. Like most other concurrent collections, this class does
50 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
51 * null return values cannot be reliably distinguished from the absence of
52 * elements.
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../guide/collections/index.html">
56 * Java Collections Framework</a>.
57 *
58 * @author Doug Lea
59 * @param <K> the type of keys maintained by this map
60 * @param <V> the type of mapped values
61 * @since 1.6
62 */
63 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
64 implements ConcurrentNavigableMap<K,V>,
65 Cloneable,
66 java.io.Serializable {
67 /*
68 * This class implements a tree-like two-dimensionally linked skip
69 * list in which the index levels are represented in separate
70 * nodes from the base nodes holding data. There are two reasons
71 * for taking this approach instead of the usual array-based
72 * structure: 1) Array based implementations seem to encounter
73 * more complexity and overhead 2) We can use cheaper algorithms
74 * for the heavily-traversed index lists than can be used for the
75 * base lists. Here's a picture of some of the basics for a
76 * possible list with 2 levels of index:
77 *
78 * Head nodes Index nodes
79 * +-+ right +-+ +-+
80 * |2|---------------->| |--------------------->| |->null
81 * +-+ +-+ +-+
82 * | down | |
83 * v v v
84 * +-+ +-+ +-+ +-+ +-+ +-+
85 * |1|----------->| |->| |------>| |----------->| |------>| |->null
86 * +-+ +-+ +-+ +-+ +-+ +-+
87 * v | | | | |
88 * Nodes next v v v v v
89 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
90 * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
91 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92 *
93 * The base lists use a variant of the HM linked ordered set
94 * algorithm. See Tim Harris, "A pragmatic implementation of
95 * non-blocking linked lists"
96 * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
97 * Michael "High Performance Dynamic Lock-Free Hash Tables and
98 * List-Based Sets"
99 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
100 * basic idea in these lists is to mark the "next" pointers of
101 * deleted nodes when deleting to avoid conflicts with concurrent
102 * insertions, and when traversing to keep track of triples
103 * (predecessor, node, successor) in order to detect when and how
104 * to unlink these deleted nodes.
105 *
106 * Rather than using mark-bits to mark list deletions (which can
107 * be slow and space-intensive using AtomicMarkedReference), nodes
108 * use direct CAS'able next pointers. On deletion, instead of
109 * marking a pointer, they splice in another node that can be
110 * thought of as standing for a marked pointer (indicating this by
111 * using otherwise impossible field values). Using plain nodes
112 * acts roughly like "boxed" implementations of marked pointers,
113 * but uses new nodes only when nodes are deleted, not for every
114 * link. This requires less space and supports faster
115 * traversal. Even if marked references were better supported by
116 * JVMs, traversal using this technique might still be faster
117 * because any search need only read ahead one more node than
118 * otherwise required (to check for trailing marker) rather than
119 * unmasking mark bits or whatever on each read.
120 *
121 * This approach maintains the essential property needed in the HM
122 * algorithm of changing the next-pointer of a deleted node so
123 * that any other CAS of it will fail, but implements the idea by
124 * changing the pointer to point to a different node, not by
125 * marking it. While it would be possible to further squeeze
126 * space by defining marker nodes not to have key/value fields, it
127 * isn't worth the extra type-testing overhead. The deletion
128 * markers are rarely encountered during traversal and are
129 * normally quickly garbage collected. (Note that this technique
130 * would not work well in systems without garbage collection.)
131 *
132 * In addition to using deletion markers, the lists also use
133 * nullness of value fields to indicate deletion, in a style
134 * similar to typical lazy-deletion schemes. If a node's value is
135 * null, then it is considered logically deleted and ignored even
136 * though it is still reachable. This maintains proper control of
137 * concurrent replace vs delete operations -- an attempted replace
138 * must fail if a delete beat it by nulling field, and a delete
139 * must return the last non-null value held in the field. (Note:
140 * Null, rather than some special marker, is used for value fields
141 * here because it just so happens to mesh with the Map API
142 * requirement that method get returns null if there is no
143 * mapping, which allows nodes to remain concurrently readable
144 * even when deleted. Using any other marker value here would be
145 * messy at best.)
146 *
147 * Here's the sequence of events for a deletion of node n with
148 * predecessor b and successor f, initially:
149 *
150 * +------+ +------+ +------+
151 * ... | b |------>| n |----->| f | ...
152 * +------+ +------+ +------+
153 *
154 * 1. CAS n's value field from non-null to null.
155 * From this point on, no public operations encountering
156 * the node consider this mapping to exist. However, other
157 * ongoing insertions and deletions might still modify
158 * n's next pointer.
159 *
160 * 2. CAS n's next pointer to point to a new marker node.
161 * From this point on, no other nodes can be appended to n.
162 * which avoids deletion errors in CAS-based linked lists.
163 *
164 * +------+ +------+ +------+ +------+
165 * ... | b |------>| n |----->|marker|------>| f | ...
166 * +------+ +------+ +------+ +------+
167 *
168 * 3. CAS b's next pointer over both n and its marker.
169 * From this point on, no new traversals will encounter n,
170 * and it can eventually be GCed.
171 * +------+ +------+
172 * ... | b |----------------------------------->| f | ...
173 * +------+ +------+
174 *
175 * A failure at step 1 leads to simple retry due to a lost race
176 * with another operation. Steps 2-3 can fail because some other
177 * thread noticed during a traversal a node with null value and
178 * helped out by marking and/or unlinking. This helping-out
179 * ensures that no thread can become stuck waiting for progress of
180 * the deleting thread. The use of marker nodes slightly
181 * complicates helping-out code because traversals must track
182 * consistent reads of up to four nodes (b, n, marker, f), not
183 * just (b, n, f), although the next field of a marker is
184 * immutable, and once a next field is CAS'ed to point to a
185 * marker, it never again changes, so this requires less care.
186 *
187 * Skip lists add indexing to this scheme, so that the base-level
188 * traversals start close to the locations being found, inserted
189 * or deleted -- usually base level traversals only traverse a few
190 * nodes. This doesn't change the basic algorithm except for the
191 * need to make sure base traversals start at predecessors (here,
192 * b) that are not (structurally) deleted, otherwise retrying
193 * after processing the deletion.
194 *
195 * Index levels are maintained as lists with volatile next fields,
196 * using CAS to link and unlink. Races are allowed in index-list
197 * operations that can (rarely) fail to link in a new index node
198 * or delete one. (We can't do this of course for data nodes.)
199 * However, even when this happens, the index lists remain sorted,
200 * so correctly serve as indices. This can impact performance,
201 * but since skip lists are probabilistic anyway, the net result
202 * is that under contention, the effective "p" value may be lower
203 * than its nominal value. And race windows are kept small enough
204 * that in practice these failures are rare, even under a lot of
205 * contention.
206 *
207 * The fact that retries (for both base and index lists) are
208 * relatively cheap due to indexing allows some minor
209 * simplifications of retry logic. Traversal restarts are
210 * performed after most "helping-out" CASes. This isn't always
211 * strictly necessary, but the implicit backoffs tend to help
212 * reduce other downstream failed CAS's enough to outweigh restart
213 * cost. This worsens the worst case, but seems to improve even
214 * highly contended cases.
215 *
216 * Unlike most skip-list implementations, index insertion and
217 * deletion here require a separate traversal pass occuring after
218 * the base-level action, to add or remove index nodes. This adds
219 * to single-threaded overhead, but improves contended
220 * multithreaded performance by narrowing interference windows,
221 * and allows deletion to ensure that all index nodes will be made
222 * unreachable upon return from a public remove operation, thus
223 * avoiding unwanted garbage retention. This is more important
224 * here than in some other data structures because we cannot null
225 * out node fields referencing user keys since they might still be
226 * read by other ongoing traversals.
227 *
228 * Indexing uses skip list parameters that maintain good search
229 * performance while using sparser-than-usual indices: The
230 * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
231 * that about one-quarter of the nodes have indices. Of those that
232 * do, half have one level, a quarter have two, and so on (see
233 * Pugh's Skip List Cookbook, sec 3.4). The expected total space
234 * requirement for a map is slightly less than for the current
235 * implementation of java.util.TreeMap.
236 *
237 * Changing the level of the index (i.e, the height of the
238 * tree-like structure) also uses CAS. The head index has initial
239 * level/height of one. Creation of an index with height greater
240 * than the current level adds a level to the head index by
241 * CAS'ing on a new top-most head. To maintain good performance
242 * after a lot of removals, deletion methods heuristically try to
243 * reduce the height if the topmost levels appear to be empty.
244 * This may encounter races in which it possible (but rare) to
245 * reduce and "lose" a level just as it is about to contain an
246 * index (that will then never be encountered). This does no
247 * structural harm, and in practice appears to be a better option
248 * than allowing unrestrained growth of levels.
249 *
250 * The code for all this is more verbose than you'd like. Most
251 * operations entail locating an element (or position to insert an
252 * element). The code to do this can't be nicely factored out
253 * because subsequent uses require a snapshot of predecessor
254 * and/or successor and/or value fields which can't be returned
255 * all at once, at least not without creating yet another object
256 * to hold them -- creating such little objects is an especially
257 * bad idea for basic internal search operations because it adds
258 * to GC overhead. (This is one of the few times I've wished Java
259 * had macros.) Instead, some traversal code is interleaved within
260 * insertion and removal operations. The control logic to handle
261 * all the retry conditions is sometimes twisty. Most search is
262 * broken into 2 parts. findPredecessor() searches index nodes
263 * only, returning a base-level predecessor of the key. findNode()
264 * finishes out the base-level search. Even with this factoring,
265 * there is a fair amount of near-duplication of code to handle
266 * variants.
267 *
268 * For explanation of algorithms sharing at least a couple of
269 * features with this one, see Mikhail Fomitchev's thesis
270 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
271 * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
272 * thesis (http://www.cs.chalmers.se/~phs/).
273 *
274 * Given the use of tree-like index nodes, you might wonder why
275 * this doesn't use some kind of search tree instead, which would
276 * support somewhat faster search operations. The reason is that
277 * there are no known efficient lock-free insertion and deletion
278 * algorithms for search trees. The immutability of the "down"
279 * links of index nodes (as opposed to mutable "left" fields in
280 * true trees) makes this tractable using only CAS operations.
281 *
282 * Notation guide for local variables
283 * Node: b, n, f for predecessor, node, successor
284 * Index: q, r, d for index node, right, down.
285 * t for another index node
286 * Head: h
287 * Levels: j
288 * Keys: k, key
289 * Values: v, value
290 * Comparisons: c
291 */
292
293 private static final long serialVersionUID = -8627078645895051609L;
294
295 /**
296 * Special value used to identify base-level header
297 */
298 private static final Object BASE_HEADER = new Object();
299
300 /**
301 * The topmost head index of the skiplist.
302 */
303 private transient volatile HeadIndex<K,V> head;
304
305 /**
306 * The comparator used to maintain order in this map, or null
307 * if using natural ordering.
308 * @serial
309 */
310 private final Comparator<? super K> comparator;
311
312 /**
313 * Seed for simple random number generator. Not volatile since it
314 * doesn't matter too much if different threads don't see updates.
315 */
316 private transient int randomSeed;
317
318 /** Lazily initialized key set */
319 private transient KeySet keySet;
320 /** Lazily initialized entry set */
321 private transient EntrySet entrySet;
322 /** Lazily initialized values collection */
323 private transient Values values;
324 /** Lazily initialized descending key set */
325 private transient DescendingKeySet descendingKeySet;
326 /** Lazily initialized descending entry set */
327 private transient DescendingEntrySet descendingEntrySet;
328
329 /**
330 * Initializes or resets state. Needed by constructors, clone,
331 * clear, readObject. and ConcurrentSkipListSet.clone.
332 * (Note that comparator must be separately initialized.)
333 */
334 final void initialize() {
335 keySet = null;
336 entrySet = null;
337 values = null;
338 descendingEntrySet = null;
339 descendingKeySet = null;
340 randomSeed = (int) System.nanoTime();
341 head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
342 null, null, 1);
343 }
344
345 /** Updater for casHead */
346 private static final
347 AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
348 headUpdater = AtomicReferenceFieldUpdater.newUpdater
349 (ConcurrentSkipListMap.class, HeadIndex.class, "head");
350
351 /**
352 * compareAndSet head node
353 */
354 private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
355 return headUpdater.compareAndSet(this, cmp, val);
356 }
357
358 /* ---------------- Nodes -------------- */
359
360 /**
361 * Nodes hold keys and values, and are singly linked in sorted
362 * order, possibly with some intervening marker nodes. The list is
363 * headed by a dummy node accessible as head.node. The value field
364 * is declared only as Object because it takes special non-V
365 * values for marker and header nodes.
366 */
367 static final class Node<K,V> {
368 final K key;
369 volatile Object value;
370 volatile Node<K,V> next;
371
372 /**
373 * Creates a new regular node.
374 */
375 Node(K key, Object value, Node<K,V> next) {
376 this.key = key;
377 this.value = value;
378 this.next = next;
379 }
380
381 /**
382 * Creates a new marker node. A marker is distinguished by
383 * having its value field point to itself. Marker nodes also
384 * have null keys, a fact that is exploited in a few places,
385 * but this doesn't distinguish markers from the base-level
386 * header node (head.node), which also has a null key.
387 */
388 Node(Node<K,V> next) {
389 this.key = null;
390 this.value = this;
391 this.next = next;
392 }
393
394 /** Updater for casNext */
395 static final AtomicReferenceFieldUpdater<Node, Node>
396 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
397 (Node.class, Node.class, "next");
398
399 /** Updater for casValue */
400 static final AtomicReferenceFieldUpdater<Node, Object>
401 valueUpdater = AtomicReferenceFieldUpdater.newUpdater
402 (Node.class, Object.class, "value");
403
404 /**
405 * compareAndSet value field
406 */
407 boolean casValue(Object cmp, Object val) {
408 return valueUpdater.compareAndSet(this, cmp, val);
409 }
410
411 /**
412 * compareAndSet next field
413 */
414 boolean casNext(Node<K,V> cmp, Node<K,V> val) {
415 return nextUpdater.compareAndSet(this, cmp, val);
416 }
417
418 /**
419 * Returns true if this node is a marker. This method isn't
420 * actually called in any current code checking for markers
421 * because callers will have already read value field and need
422 * to use that read (not another done here) and so directly
423 * test if value points to node.
424 * @param n a possibly null reference to a node
425 * @return true if this node is a marker node
426 */
427 boolean isMarker() {
428 return value == this;
429 }
430
431 /**
432 * Returns true if this node is the header of base-level list.
433 * @return true if this node is header node
434 */
435 boolean isBaseHeader() {
436 return value == BASE_HEADER;
437 }
438
439 /**
440 * Tries to append a deletion marker to this node.
441 * @param f the assumed current successor of this node
442 * @return true if successful
443 */
444 boolean appendMarker(Node<K,V> f) {
445 return casNext(f, new Node<K,V>(f));
446 }
447
448 /**
449 * Helps out a deletion by appending marker or unlinking from
450 * predecessor. This is called during traversals when value
451 * field seen to be null.
452 * @param b predecessor
453 * @param f successor
454 */
455 void helpDelete(Node<K,V> b, Node<K,V> f) {
456 /*
457 * Rechecking links and then doing only one of the
458 * help-out stages per call tends to minimize CAS
459 * interference among helping threads.
460 */
461 if (f == next && this == b.next) {
462 if (f == null || f.value != f) // not already marked
463 appendMarker(f);
464 else
465 b.casNext(this, f.next);
466 }
467 }
468
469 /**
470 * Returns value if this node contains a valid key-value pair,
471 * else null.
472 * @return this node's value if it isn't a marker or header or
473 * is deleted, else null.
474 */
475 V getValidValue() {
476 Object v = value;
477 if (v == this || v == BASE_HEADER)
478 return null;
479 return (V)v;
480 }
481
482 /**
483 * Creates and returns a new SimpleImmutableEntry holding current
484 * mapping if this node holds a valid value, else null.
485 * @return new entry or null
486 */
487 AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
488 V v = getValidValue();
489 if (v == null)
490 return null;
491 return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
492 }
493 }
494
495 /* ---------------- Indexing -------------- */
496
497 /**
498 * Index nodes represent the levels of the skip list. To improve
499 * search performance, keys of the underlying nodes are cached.
500 * Note that even though both Nodes and Indexes have
501 * forward-pointing fields, they have different types and are
502 * handled in different ways, that can't nicely be captured by
503 * placing field in a shared abstract class.
504 */
505 static class Index<K,V> {
506 final K key;
507 final Node<K,V> node;
508 final Index<K,V> down;
509 volatile Index<K,V> right;
510
511 /**
512 * Creates index node with given values.
513 */
514 Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
515 this.node = node;
516 this.key = node.key;
517 this.down = down;
518 this.right = right;
519 }
520
521 /** Updater for casRight */
522 static final AtomicReferenceFieldUpdater<Index, Index>
523 rightUpdater = AtomicReferenceFieldUpdater.newUpdater
524 (Index.class, Index.class, "right");
525
526 /**
527 * compareAndSet right field
528 */
529 final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
530 return rightUpdater.compareAndSet(this, cmp, val);
531 }
532
533 /**
534 * Returns true if the node this indexes has been deleted.
535 * @return true if indexed node is known to be deleted
536 */
537 final boolean indexesDeletedNode() {
538 return node.value == null;
539 }
540
541 /**
542 * Tries to CAS newSucc as successor. To minimize races with
543 * unlink that may lose this index node, if the node being
544 * indexed is known to be deleted, it doesn't try to link in.
545 * @param succ the expected current successor
546 * @param newSucc the new successor
547 * @return true if successful
548 */
549 final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
550 Node<K,V> n = node;
551 newSucc.right = succ;
552 return n.value != null && casRight(succ, newSucc);
553 }
554
555 /**
556 * Tries to CAS right field to skip over apparent successor
557 * succ. Fails (forcing a retraversal by caller) if this node
558 * is known to be deleted.
559 * @param succ the expected current successor
560 * @return true if successful
561 */
562 final boolean unlink(Index<K,V> succ) {
563 return !indexesDeletedNode() && casRight(succ, succ.right);
564 }
565 }
566
567 /* ---------------- Head nodes -------------- */
568
569 /**
570 * Nodes heading each level keep track of their level.
571 */
572 static final class HeadIndex<K,V> extends Index<K,V> {
573 final int level;
574 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
575 super(node, down, right);
576 this.level = level;
577 }
578 }
579
580 /* ---------------- Comparison utilities -------------- */
581
582 /**
583 * Represents a key with a comparator as a Comparable.
584 *
585 * Because most sorted collections seem to use natural ordering on
586 * Comparables (Strings, Integers, etc), most internal methods are
587 * geared to use them. This is generally faster than checking
588 * per-comparison whether to use comparator or comparable because
589 * it doesn't require a (Comparable) cast for each comparison.
590 * (Optimizers can only sometimes remove such redundant checks
591 * themselves.) When Comparators are used,
592 * ComparableUsingComparators are created so that they act in the
593 * same way as natural orderings. This penalizes use of
594 * Comparators vs Comparables, which seems like the right
595 * tradeoff.
596 */
597 static final class ComparableUsingComparator<K> implements Comparable<K> {
598 final K actualKey;
599 final Comparator<? super K> cmp;
600 ComparableUsingComparator(K key, Comparator<? super K> cmp) {
601 this.actualKey = key;
602 this.cmp = cmp;
603 }
604 public int compareTo(K k2) {
605 return cmp.compare(actualKey, k2);
606 }
607 }
608
609 /**
610 * If using comparator, return a ComparableUsingComparator, else
611 * cast key as Comparator, which may cause ClassCastException,
612 * which is propagated back to caller.
613 */
614 private Comparable<? super K> comparable(Object key) throws ClassCastException {
615 if (key == null)
616 throw new NullPointerException();
617 if (comparator != null)
618 return new ComparableUsingComparator<K>((K)key, comparator);
619 else
620 return (Comparable<? super K>)key;
621 }
622
623 /**
624 * Compares using comparator or natural ordering. Used when the
625 * ComparableUsingComparator approach doesn't apply.
626 */
627 int compare(K k1, K k2) throws ClassCastException {
628 Comparator<? super K> cmp = comparator;
629 if (cmp != null)
630 return cmp.compare(k1, k2);
631 else
632 return ((Comparable<? super K>)k1).compareTo(k2);
633 }
634
635 /**
636 * Returns true if given key greater than or equal to least and
637 * strictly less than fence, bypassing either test if least or
638 * fence are null. Needed mainly in submap operations.
639 */
640 boolean inHalfOpenRange(K key, K least, K fence) {
641 if (key == null)
642 throw new NullPointerException();
643 return ((least == null || compare(key, least) >= 0) &&
644 (fence == null || compare(key, fence) < 0));
645 }
646
647 /**
648 * Returns true if given key greater than or equal to least and less
649 * or equal to fence. Needed mainly in submap operations.
650 */
651 boolean inOpenRange(K key, K least, K fence) {
652 if (key == null)
653 throw new NullPointerException();
654 return ((least == null || compare(key, least) >= 0) &&
655 (fence == null || compare(key, fence) <= 0));
656 }
657
658 /* ---------------- Traversal -------------- */
659
660 /**
661 * Returns a base-level node with key strictly less than given key,
662 * or the base-level header if there is no such node. Also
663 * unlinks indexes to deleted nodes found along the way. Callers
664 * rely on this side-effect of clearing indices to deleted nodes.
665 * @param key the key
666 * @return a predecessor of key
667 */
668 private Node<K,V> findPredecessor(Comparable<? super K> key) {
669 for (;;) {
670 Index<K,V> q = head;
671 for (;;) {
672 Index<K,V> d, r;
673 if ((r = q.right) != null) {
674 if (r.indexesDeletedNode()) {
675 if (q.unlink(r))
676 continue; // reread r
677 else
678 break; // restart
679 }
680 if (key.compareTo(r.key) > 0) {
681 q = r;
682 continue;
683 }
684 }
685 if ((d = q.down) != null)
686 q = d;
687 else
688 return q.node;
689 }
690 }
691 }
692
693 /**
694 * Returns node holding key or null if no such, clearing out any
695 * deleted nodes seen along the way. Repeatedly traverses at
696 * base-level looking for key starting at predecessor returned
697 * from findPredecessor, processing base-level deletions as
698 * encountered. Some callers rely on this side-effect of clearing
699 * deleted nodes.
700 *
701 * Restarts occur, at traversal step centered on node n, if:
702 *
703 * (1) After reading n's next field, n is no longer assumed
704 * predecessor b's current successor, which means that
705 * we don't have a consistent 3-node snapshot and so cannot
706 * unlink any subsequent deleted nodes encountered.
707 *
708 * (2) n's value field is null, indicating n is deleted, in
709 * which case we help out an ongoing structural deletion
710 * before retrying. Even though there are cases where such
711 * unlinking doesn't require restart, they aren't sorted out
712 * here because doing so would not usually outweigh cost of
713 * restarting.
714 *
715 * (3) n is a marker or n's predecessor's value field is null,
716 * indicating (among other possibilities) that
717 * findPredecessor returned a deleted node. We can't unlink
718 * the node because we don't know its predecessor, so rely
719 * on another call to findPredecessor to notice and return
720 * some earlier predecessor, which it will do. This check is
721 * only strictly needed at beginning of loop, (and the
722 * b.value check isn't strictly needed at all) but is done
723 * each iteration to help avoid contention with other
724 * threads by callers that will fail to be able to change
725 * links, and so will retry anyway.
726 *
727 * The traversal loops in doPut, doRemove, and findNear all
728 * include the same three kinds of checks. And specialized
729 * versions appear in doRemoveFirst, doRemoveLast, findFirst, and
730 * findLast. They can't easily share code because each uses the
731 * reads of fields held in locals occurring in the orders they
732 * were performed.
733 *
734 * @param key the key
735 * @return node holding key, or null if no such
736 */
737 private Node<K,V> findNode(Comparable<? super K> key) {
738 for (;;) {
739 Node<K,V> b = findPredecessor(key);
740 Node<K,V> n = b.next;
741 for (;;) {
742 if (n == null)
743 return null;
744 Node<K,V> f = n.next;
745 if (n != b.next) // inconsistent read
746 break;
747 Object v = n.value;
748 if (v == null) { // n is deleted
749 n.helpDelete(b, f);
750 break;
751 }
752 if (v == n || b.value == null) // b is deleted
753 break;
754 int c = key.compareTo(n.key);
755 if (c < 0)
756 return null;
757 if (c == 0)
758 return n;
759 b = n;
760 n = f;
761 }
762 }
763 }
764
765 /**
766 * Specialized variant of findNode to perform Map.get. Does a weak
767 * traversal, not bothering to fix any deleted index nodes,
768 * returning early if it happens to see key in index, and passing
769 * over any deleted base nodes, falling back to getUsingFindNode
770 * only if it would otherwise return value from an ongoing
771 * deletion. Also uses "bound" to eliminate need for some
772 * comparisons (see Pugh Cookbook). Also folds uses of null checks
773 * and node-skipping because markers have null keys.
774 * @param okey the key
775 * @return the value, or null if absent
776 */
777 private V doGet(Object okey) {
778 Comparable<? super K> key = comparable(okey);
779 K bound = null;
780 Index<K,V> q = head;
781 for (;;) {
782 K rk;
783 Index<K,V> d, r;
784 if ((r = q.right) != null &&
785 (rk = r.key) != null && rk != bound) {
786 int c = key.compareTo(rk);
787 if (c > 0) {
788 q = r;
789 continue;
790 }
791 if (c == 0) {
792 Object v = r.node.value;
793 return (v != null)? (V)v : getUsingFindNode(key);
794 }
795 bound = rk;
796 }
797 if ((d = q.down) != null)
798 q = d;
799 else {
800 for (Node<K,V> n = q.node.next; n != null; n = n.next) {
801 K nk = n.key;
802 if (nk != null) {
803 int c = key.compareTo(nk);
804 if (c == 0) {
805 Object v = n.value;
806 return (v != null)? (V)v : getUsingFindNode(key);
807 }
808 if (c < 0)
809 return null;
810 }
811 }
812 return null;
813 }
814 }
815 }
816
817 /**
818 * Performs map.get via findNode. Used as a backup if doGet
819 * encounters an in-progress deletion.
820 * @param key the key
821 * @return the value, or null if absent
822 */
823 private V getUsingFindNode(Comparable<? super K> key) {
824 /*
825 * Loop needed here and elsewhere in case value field goes
826 * null just as it is about to be returned, in which case we
827 * lost a race with a deletion, so must retry.
828 */
829 for (;;) {
830 Node<K,V> n = findNode(key);
831 if (n == null)
832 return null;
833 Object v = n.value;
834 if (v != null)
835 return (V)v;
836 }
837 }
838
839 /* ---------------- Insertion -------------- */
840
841 /**
842 * Main insertion method. Adds element if not present, or
843 * replaces value if present and onlyIfAbsent is false.
844 * @param kkey the key
845 * @param value the value that must be associated with key
846 * @param onlyIfAbsent if should not insert if already present
847 * @return the old value, or null if newly inserted
848 */
849 private V doPut(K kkey, V value, boolean onlyIfAbsent) {
850 Comparable<? super K> key = comparable(kkey);
851 for (;;) {
852 Node<K,V> b = findPredecessor(key);
853 Node<K,V> n = b.next;
854 for (;;) {
855 if (n != null) {
856 Node<K,V> f = n.next;
857 if (n != b.next) // inconsistent read
858 break;;
859 Object v = n.value;
860 if (v == null) { // n is deleted
861 n.helpDelete(b, f);
862 break;
863 }
864 if (v == n || b.value == null) // b is deleted
865 break;
866 int c = key.compareTo(n.key);
867 if (c > 0) {
868 b = n;
869 n = f;
870 continue;
871 }
872 if (c == 0) {
873 if (onlyIfAbsent || n.casValue(v, value))
874 return (V)v;
875 else
876 break; // restart if lost race to replace value
877 }
878 // else c < 0; fall through
879 }
880
881 Node<K,V> z = new Node<K,V>(kkey, value, n);
882 if (!b.casNext(n, z))
883 break; // restart if lost race to append to b
884 int level = randomLevel();
885 if (level > 0)
886 insertIndex(z, level);
887 return null;
888 }
889 }
890 }
891
892 /**
893 * Returns a random level for inserting a new node.
894 * Hardwired to k=1, p=0.5, max 31.
895 *
896 * This uses a cheap pseudo-random function that according to
897 * http://home1.gte.net/deleyd/random/random4.html was used in
898 * Turbo Pascal. It seems the fastest usable one here. The low
899 * bits are apparently not very random (the original used only
900 * upper 16 bits) so we traverse from highest bit down (i.e., test
901 * sign), thus hardly ever use lower bits.
902 */
903 private int randomLevel() {
904 int level = 0;
905 int r = randomSeed;
906 randomSeed = r * 134775813 + 1;
907 if (r < 0) {
908 while ((r <<= 1) > 0)
909 ++level;
910 }
911 return level;
912 }
913
914 /**
915 * Creates and adds index nodes for the given node.
916 * @param z the node
917 * @param level the level of the index
918 */
919 private void insertIndex(Node<K,V> z, int level) {
920 HeadIndex<K,V> h = head;
921 int max = h.level;
922
923 if (level <= max) {
924 Index<K,V> idx = null;
925 for (int i = 1; i <= level; ++i)
926 idx = new Index<K,V>(z, idx, null);
927 addIndex(idx, h, level);
928
929 } else { // Add a new level
930 /*
931 * To reduce interference by other threads checking for
932 * empty levels in tryReduceLevel, new levels are added
933 * with initialized right pointers. Which in turn requires
934 * keeping levels in an array to access them while
935 * creating new head index nodes from the opposite
936 * direction.
937 */
938 level = max + 1;
939 Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
940 Index<K,V> idx = null;
941 for (int i = 1; i <= level; ++i)
942 idxs[i] = idx = new Index<K,V>(z, idx, null);
943
944 HeadIndex<K,V> oldh;
945 int k;
946 for (;;) {
947 oldh = head;
948 int oldLevel = oldh.level;
949 if (level <= oldLevel) { // lost race to add level
950 k = level;
951 break;
952 }
953 HeadIndex<K,V> newh = oldh;
954 Node<K,V> oldbase = oldh.node;
955 for (int j = oldLevel+1; j <= level; ++j)
956 newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
957 if (casHead(oldh, newh)) {
958 k = oldLevel;
959 break;
960 }
961 }
962 addIndex(idxs[k], oldh, k);
963 }
964 }
965
966 /**
967 * Adds given index nodes from given level down to 1.
968 * @param idx the topmost index node being inserted
969 * @param h the value of head to use to insert. This must be
970 * snapshotted by callers to provide correct insertion level
971 * @param indexLevel the level of the index
972 */
973 private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
974 // Track next level to insert in case of retries
975 int insertionLevel = indexLevel;
976 Comparable<? super K> key = comparable(idx.key);
977
978 // Similar to findPredecessor, but adding index nodes along
979 // path to key.
980 for (;;) {
981 Index<K,V> q = h;
982 Index<K,V> t = idx;
983 int j = h.level;
984 for (;;) {
985 Index<K,V> r = q.right;
986 if (r != null) {
987 // compare before deletion check avoids needing recheck
988 int c = key.compareTo(r.key);
989 if (r.indexesDeletedNode()) {
990 if (q.unlink(r))
991 continue;
992 else
993 break;
994 }
995 if (c > 0) {
996 q = r;
997 continue;
998 }
999 }
1000
1001 if (j == insertionLevel) {
1002 // Don't insert index if node already deleted
1003 if (t.indexesDeletedNode()) {
1004 findNode(key); // cleans up
1005 return;
1006 }
1007 if (!q.link(r, t))
1008 break; // restart
1009 if (--insertionLevel == 0) {
1010 // need final deletion check before return
1011 if (t.indexesDeletedNode())
1012 findNode(key);
1013 return;
1014 }
1015 }
1016
1017 if (j > insertionLevel && j <= indexLevel)
1018 t = t.down;
1019 q = q.down;
1020 --j;
1021 }
1022 }
1023 }
1024
1025 /* ---------------- Deletion -------------- */
1026
1027 /**
1028 * Main deletion method. Locates node, nulls value, appends a
1029 * deletion marker, unlinks predecessor, removes associated index
1030 * nodes, and possibly reduces head index level.
1031 *
1032 * Index nodes are cleared out simply by calling findPredecessor.
1033 * which unlinks indexes to deleted nodes found along path to key,
1034 * which will include the indexes to this node. This is done
1035 * unconditionally. We can't check beforehand whether there are
1036 * index nodes because it might be the case that some or all
1037 * indexes hadn't been inserted yet for this node during initial
1038 * search for it, and we'd like to ensure lack of garbage
1039 * retention, so must call to be sure.
1040 *
1041 * @param okey the key
1042 * @param value if non-null, the value that must be
1043 * associated with key
1044 * @return the node, or null if not found
1045 */
1046 private V doRemove(Object okey, Object value) {
1047 Comparable<? super K> key = comparable(okey);
1048 for (;;) {
1049 Node<K,V> b = findPredecessor(key);
1050 Node<K,V> n = b.next;
1051 for (;;) {
1052 if (n == null)
1053 return null;
1054 Node<K,V> f = n.next;
1055 if (n != b.next) // inconsistent read
1056 break;
1057 Object v = n.value;
1058 if (v == null) { // n is deleted
1059 n.helpDelete(b, f);
1060 break;
1061 }
1062 if (v == n || b.value == null) // b is deleted
1063 break;
1064 int c = key.compareTo(n.key);
1065 if (c < 0)
1066 return null;
1067 if (c > 0) {
1068 b = n;
1069 n = f;
1070 continue;
1071 }
1072 if (value != null && !value.equals(v))
1073 return null;
1074 if (!n.casValue(v, null))
1075 break;
1076 if (!n.appendMarker(f) || !b.casNext(n, f))
1077 findNode(key); // Retry via findNode
1078 else {
1079 findPredecessor(key); // Clean index
1080 if (head.right == null)
1081 tryReduceLevel();
1082 }
1083 return (V)v;
1084 }
1085 }
1086 }
1087
1088 /**
1089 * Possibly reduce head level if it has no nodes. This method can
1090 * (rarely) make mistakes, in which case levels can disappear even
1091 * though they are about to contain index nodes. This impacts
1092 * performance, not correctness. To minimize mistakes as well as
1093 * to reduce hysteresis, the level is reduced by one only if the
1094 * topmost three levels look empty. Also, if the removed level
1095 * looks non-empty after CAS, we try to change it back quick
1096 * before anyone notices our mistake! (This trick works pretty
1097 * well because this method will practically never make mistakes
1098 * unless current thread stalls immediately before first CAS, in
1099 * which case it is very unlikely to stall again immediately
1100 * afterwards, so will recover.)
1101 *
1102 * We put up with all this rather than just let levels grow
1103 * because otherwise, even a small map that has undergone a large
1104 * number of insertions and removals will have a lot of levels,
1105 * slowing down access more than would an occasional unwanted
1106 * reduction.
1107 */
1108 private void tryReduceLevel() {
1109 HeadIndex<K,V> h = head;
1110 HeadIndex<K,V> d;
1111 HeadIndex<K,V> e;
1112 if (h.level > 3 &&
1113 (d = (HeadIndex<K,V>)h.down) != null &&
1114 (e = (HeadIndex<K,V>)d.down) != null &&
1115 e.right == null &&
1116 d.right == null &&
1117 h.right == null &&
1118 casHead(h, d) && // try to set
1119 h.right != null) // recheck
1120 casHead(d, h); // try to backout
1121 }
1122
1123 /**
1124 * Version of remove with boolean return. Needed by view classes
1125 */
1126 boolean removep(Object key) {
1127 return doRemove(key, null) != null;
1128 }
1129
1130 /* ---------------- Finding and removing first element -------------- */
1131
1132 /**
1133 * Specialized variant of findNode to get first valid node.
1134 * @return first node or null if empty
1135 */
1136 Node<K,V> findFirst() {
1137 for (;;) {
1138 Node<K,V> b = head.node;
1139 Node<K,V> n = b.next;
1140 if (n == null)
1141 return null;
1142 if (n.value != null)
1143 return n;
1144 n.helpDelete(b, n.next);
1145 }
1146 }
1147
1148 /**
1149 * Removes first entry; returns either its key or a snapshot.
1150 * @param keyOnly if true return key, else return SimpleImmutableEntry
1151 * (This is a little ugly, but avoids code duplication.)
1152 * @return null if empty, first key if keyOnly true, else key,value entry
1153 */
1154 Object doRemoveFirst(boolean keyOnly) {
1155 for (;;) {
1156 Node<K,V> b = head.node;
1157 Node<K,V> n = b.next;
1158 if (n == null)
1159 return null;
1160 Node<K,V> f = n.next;
1161 if (n != b.next)
1162 continue;
1163 Object v = n.value;
1164 if (v == null) {
1165 n.helpDelete(b, f);
1166 continue;
1167 }
1168 if (!n.casValue(v, null))
1169 continue;
1170 if (!n.appendMarker(f) || !b.casNext(n, f))
1171 findFirst(); // retry
1172 clearIndexToFirst();
1173 K key = n.key;
1174 if (keyOnly)
1175 return key;
1176 else
1177 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1178 }
1179 }
1180
1181 /**
1182 * Clears out index nodes associated with deleted first entry.
1183 * Needed by doRemoveFirst.
1184 */
1185 private void clearIndexToFirst() {
1186 for (;;) {
1187 Index<K,V> q = head;
1188 for (;;) {
1189 Index<K,V> r = q.right;
1190 if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1191 break;
1192 if ((q = q.down) == null) {
1193 if (head.right == null)
1194 tryReduceLevel();
1195 return;
1196 }
1197 }
1198 }
1199 }
1200
1201 /**
1202 * Removes first entry; returns key or null if empty.
1203 */
1204 K pollFirstKey() {
1205 return (K)doRemoveFirst(true);
1206 }
1207
1208 /* ---------------- Finding and removing last element -------------- */
1209
1210 /**
1211 * Specialized version of find to get last valid node.
1212 * @return last node or null if empty
1213 */
1214 Node<K,V> findLast() {
1215 /*
1216 * findPredecessor can't be used to traverse index level
1217 * because this doesn't use comparisons. So traversals of
1218 * both levels are folded together.
1219 */
1220 Index<K,V> q = head;
1221 for (;;) {
1222 Index<K,V> d, r;
1223 if ((r = q.right) != null) {
1224 if (r.indexesDeletedNode()) {
1225 q.unlink(r);
1226 q = head; // restart
1227 }
1228 else
1229 q = r;
1230 } else if ((d = q.down) != null) {
1231 q = d;
1232 } else {
1233 Node<K,V> b = q.node;
1234 Node<K,V> n = b.next;
1235 for (;;) {
1236 if (n == null)
1237 return (b.isBaseHeader())? null : b;
1238 Node<K,V> f = n.next; // inconsistent read
1239 if (n != b.next)
1240 break;
1241 Object v = n.value;
1242 if (v == null) { // n is deleted
1243 n.helpDelete(b, f);
1244 break;
1245 }
1246 if (v == n || b.value == null) // b is deleted
1247 break;
1248 b = n;
1249 n = f;
1250 }
1251 q = head; // restart
1252 }
1253 }
1254 }
1255
1256
1257 /**
1258 * Specialized version of doRemove for last entry.
1259 * @param keyOnly if true return key, else return SimpleImmutableEntry
1260 * @return null if empty, last key if keyOnly true, else key,value entry
1261 */
1262 Object doRemoveLast(boolean keyOnly) {
1263 for (;;) {
1264 Node<K,V> b = findPredecessorOfLast();
1265 Node<K,V> n = b.next;
1266 if (n == null) {
1267 if (b.isBaseHeader()) // empty
1268 return null;
1269 else
1270 continue; // all b's successors are deleted; retry
1271 }
1272 for (;;) {
1273 Node<K,V> f = n.next;
1274 if (n != b.next) // inconsistent read
1275 break;
1276 Object v = n.value;
1277 if (v == null) { // n is deleted
1278 n.helpDelete(b, f);
1279 break;
1280 }
1281 if (v == n || b.value == null) // b is deleted
1282 break;
1283 if (f != null) {
1284 b = n;
1285 n = f;
1286 continue;
1287 }
1288 if (!n.casValue(v, null))
1289 break;
1290 K key = n.key;
1291 Comparable<? super K> ck = comparable(key);
1292 if (!n.appendMarker(f) || !b.casNext(n, f))
1293 findNode(ck); // Retry via findNode
1294 else {
1295 findPredecessor(ck); // Clean index
1296 if (head.right == null)
1297 tryReduceLevel();
1298 }
1299 if (keyOnly)
1300 return key;
1301 else
1302 return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1303 }
1304 }
1305 }
1306
1307 /**
1308 * Specialized variant of findPredecessor to get predecessor of
1309 * last valid node. Needed by doRemoveLast. It is possible that
1310 * all successors of returned node will have been deleted upon
1311 * return, in which case this method can be retried.
1312 * @return likely predecessor of last node
1313 */
1314 private Node<K,V> findPredecessorOfLast() {
1315 for (;;) {
1316 Index<K,V> q = head;
1317 for (;;) {
1318 Index<K,V> d, r;
1319 if ((r = q.right) != null) {
1320 if (r.indexesDeletedNode()) {
1321 q.unlink(r);
1322 break; // must restart
1323 }
1324 // proceed as far across as possible without overshooting
1325 if (r.node.next != null) {
1326 q = r;
1327 continue;
1328 }
1329 }
1330 if ((d = q.down) != null)
1331 q = d;
1332 else
1333 return q.node;
1334 }
1335 }
1336 }
1337
1338 /**
1339 * Removes last entry; returns key or null if empty.
1340 */
1341 K pollLastKey() {
1342 return (K)doRemoveLast(true);
1343 }
1344
1345 /* ---------------- Relational operations -------------- */
1346
1347 // Control values OR'ed as arguments to findNear
1348
1349 private static final int EQ = 1;
1350 private static final int LT = 2;
1351 private static final int GT = 0; // Actually checked as !LT
1352
1353 /**
1354 * Utility for ceiling, floor, lower, higher methods.
1355 * @param kkey the key
1356 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1357 * @return nearest node fitting relation, or null if no such
1358 */
1359 Node<K,V> findNear(K kkey, int rel) {
1360 Comparable<? super K> key = comparable(kkey);
1361 for (;;) {
1362 Node<K,V> b = findPredecessor(key);
1363 Node<K,V> n = b.next;
1364 for (;;) {
1365 if (n == null)
1366 return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1367 Node<K,V> f = n.next;
1368 if (n != b.next) // inconsistent read
1369 break;
1370 Object v = n.value;
1371 if (v == null) { // n is deleted
1372 n.helpDelete(b, f);
1373 break;
1374 }
1375 if (v == n || b.value == null) // b is deleted
1376 break;
1377 int c = key.compareTo(n.key);
1378 if ((c == 0 && (rel & EQ) != 0) ||
1379 (c < 0 && (rel & LT) == 0))
1380 return n;
1381 if ( c <= 0 && (rel & LT) != 0)
1382 return (b.isBaseHeader())? null : b;
1383 b = n;
1384 n = f;
1385 }
1386 }
1387 }
1388
1389 /**
1390 * Returns SimpleImmutableEntry for results of findNear.
1391 * @param kkey the key
1392 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1393 * @return Entry fitting relation, or null if no such
1394 */
1395 AbstractMap.SimpleImmutableEntry<K,V> getNear(K kkey, int rel) {
1396 for (;;) {
1397 Node<K,V> n = findNear(kkey, rel);
1398 if (n == null)
1399 return null;
1400 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1401 if (e != null)
1402 return e;
1403 }
1404 }
1405
1406 /**
1407 * Returns ceiling, or first node if key is <tt>null</tt>.
1408 */
1409 Node<K,V> findCeiling(K key) {
1410 return (key == null)? findFirst() : findNear(key, GT|EQ);
1411 }
1412
1413 /**
1414 * Returns lower node, or last node if key is <tt>null</tt>.
1415 */
1416 Node<K,V> findLower(K key) {
1417 return (key == null)? findLast() : findNear(key, LT);
1418 }
1419
1420 /**
1421 * Returns key for results of findNear after screening to ensure
1422 * result is in given range. Needed by submaps.
1423 * @param kkey the key
1424 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1425 * @param least minimum allowed key value
1426 * @param fence key greater than maximum allowed key value
1427 * @return Key fitting relation, or <tt>null</tt> if no such
1428 */
1429 K getNearKey(K kkey, int rel, K least, K fence) {
1430 K key = kkey;
1431 // Don't return keys less than least
1432 if ((rel & LT) == 0) {
1433 if (compare(key, least) < 0) {
1434 key = least;
1435 rel = rel | EQ;
1436 }
1437 }
1438
1439 for (;;) {
1440 Node<K,V> n = findNear(key, rel);
1441 if (n == null || !inHalfOpenRange(n.key, least, fence))
1442 return null;
1443 K k = n.key;
1444 V v = n.getValidValue();
1445 if (v != null)
1446 return k;
1447 }
1448 }
1449
1450
1451 /**
1452 * Returns SimpleImmutableEntry for results of findNear after
1453 * screening to ensure result is in given range. Needed by
1454 * submaps.
1455 * @param kkey the key
1456 * @param rel the relation -- OR'ed combination of EQ, LT, GT
1457 * @param least minimum allowed key value
1458 * @param fence key greater than maximum allowed key value
1459 * @return Entry fitting relation, or <tt>null</tt> if no such
1460 */
1461 Map.Entry<K,V> getNearEntry(K kkey, int rel, K least, K fence) {
1462 K key = kkey;
1463 // Don't return keys less than least
1464 if ((rel & LT) == 0) {
1465 if (compare(key, least) < 0) {
1466 key = least;
1467 rel = rel | EQ;
1468 }
1469 }
1470
1471 for (;;) {
1472 Node<K,V> n = findNear(key, rel);
1473 if (n == null || !inHalfOpenRange(n.key, least, fence))
1474 return null;
1475 K k = n.key;
1476 V v = n.getValidValue();
1477 if (v != null)
1478 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1479 }
1480 }
1481
1482 /**
1483 * Finds and removes least element of subrange.
1484 * @param least minimum allowed key value
1485 * @param fence key greater than maximum allowed key value
1486 * @return least Entry, or <tt>null</tt> if no such
1487 */
1488 Map.Entry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
1489 for (;;) {
1490 Node<K,V> n = findCeiling(least);
1491 if (n == null)
1492 return null;
1493 K k = n.key;
1494 if (fence != null && compare(k, fence) >= 0)
1495 return null;
1496 V v = doRemove(k, null);
1497 if (v != null)
1498 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1499 }
1500 }
1501
1502 /**
1503 * Finds and removes greatest element of subrange.
1504 * @param least minimum allowed key value
1505 * @param fence key greater than maximum allowed key value
1506 * @return least Entry, or <tt>null</tt> if no such
1507 */
1508 Map.Entry removeLastEntryOfSubrange(K least, K fence) {
1509 for (;;) {
1510 Node<K,V> n = findLower(fence);
1511 if (n == null)
1512 return null;
1513 K k = n.key;
1514 if (least != null && compare(k, least) < 0)
1515 return null;
1516 V v = doRemove(k, null);
1517 if (v != null)
1518 return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
1519 }
1520 }
1521
1522
1523
1524 /* ---------------- Constructors -------------- */
1525
1526 /**
1527 * Constructs a new, empty map, sorted according to the
1528 * {@linkplain Comparable natural ordering} of the keys.
1529 */
1530 public ConcurrentSkipListMap() {
1531 this.comparator = null;
1532 initialize();
1533 }
1534
1535 /**
1536 * Constructs a new, empty map, sorted according to the specified
1537 * comparator.
1538 *
1539 * @param comparator the comparator that will be used to order this map.
1540 * If <tt>null</tt>, the {@linkplain Comparable natural
1541 * ordering} of the keys will be used.
1542 */
1543 public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1544 this.comparator = comparator;
1545 initialize();
1546 }
1547
1548 /**
1549 * Constructs a new map containing the same mappings as the given map,
1550 * sorted according to the {@linkplain Comparable natural ordering} of
1551 * the keys.
1552 *
1553 * @param m the map whose mappings are to be placed in this map
1554 * @throws ClassCastException if the keys in <tt>m</tt> are not
1555 * {@link Comparable}, or are not mutually comparable
1556 * @throws NullPointerException if the specified map or any of its keys
1557 * or values are null
1558 */
1559 public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1560 this.comparator = null;
1561 initialize();
1562 putAll(m);
1563 }
1564
1565 /**
1566 * Constructs a new map containing the same mappings and using the
1567 * same ordering as the specified sorted map.
1568 *
1569 * @param m the sorted map whose mappings are to be placed in this
1570 * map, and whose comparator is to be used to sort this map
1571 * @throws NullPointerException if the specified sorted map or any of
1572 * its keys or values are null
1573 */
1574 public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1575 this.comparator = m.comparator();
1576 initialize();
1577 buildFromSorted(m);
1578 }
1579
1580 /**
1581 * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
1582 * instance. (The keys and values themselves are not cloned.)
1583 *
1584 * @return a shallow copy of this map
1585 */
1586 public ConcurrentSkipListMap<K,V> clone() {
1587 ConcurrentSkipListMap<K,V> clone = null;
1588 try {
1589 clone = (ConcurrentSkipListMap<K,V>) super.clone();
1590 } catch (CloneNotSupportedException e) {
1591 throw new InternalError();
1592 }
1593
1594 clone.initialize();
1595 clone.buildFromSorted(this);
1596 return clone;
1597 }
1598
1599 /**
1600 * Streamlined bulk insertion to initialize from elements of
1601 * given sorted map. Call only from constructor or clone
1602 * method.
1603 */
1604 private void buildFromSorted(SortedMap<K, ? extends V> map) {
1605 if (map == null)
1606 throw new NullPointerException();
1607
1608 HeadIndex<K,V> h = head;
1609 Node<K,V> basepred = h.node;
1610
1611 // Track the current rightmost node at each level. Uses an
1612 // ArrayList to avoid committing to initial or maximum level.
1613 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1614
1615 // initialize
1616 for (int i = 0; i <= h.level; ++i)
1617 preds.add(null);
1618 Index<K,V> q = h;
1619 for (int i = h.level; i > 0; --i) {
1620 preds.set(i, q);
1621 q = q.down;
1622 }
1623
1624 Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1625 map.entrySet().iterator();
1626 while (it.hasNext()) {
1627 Map.Entry<? extends K, ? extends V> e = it.next();
1628 int j = randomLevel();
1629 if (j > h.level) j = h.level + 1;
1630 K k = e.getKey();
1631 V v = e.getValue();
1632 if (k == null || v == null)
1633 throw new NullPointerException();
1634 Node<K,V> z = new Node<K,V>(k, v, null);
1635 basepred.next = z;
1636 basepred = z;
1637 if (j > 0) {
1638 Index<K,V> idx = null;
1639 for (int i = 1; i <= j; ++i) {
1640 idx = new Index<K,V>(z, idx, null);
1641 if (i > h.level)
1642 h = new HeadIndex<K,V>(h.node, h, idx, i);
1643
1644 if (i < preds.size()) {
1645 preds.get(i).right = idx;
1646 preds.set(i, idx);
1647 } else
1648 preds.add(idx);
1649 }
1650 }
1651 }
1652 head = h;
1653 }
1654
1655 /* ---------------- Serialization -------------- */
1656
1657 /**
1658 * Save the state of this map to a stream.
1659 *
1660 * @serialData The key (Object) and value (Object) for each
1661 * key-value mapping represented by the map, followed by
1662 * <tt>null</tt>. The key-value mappings are emitted in key-order
1663 * (as determined by the Comparator, or by the keys' natural
1664 * ordering if no Comparator).
1665 */
1666 private void writeObject(java.io.ObjectOutputStream s)
1667 throws java.io.IOException {
1668 // Write out the Comparator and any hidden stuff
1669 s.defaultWriteObject();
1670
1671 // Write out keys and values (alternating)
1672 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1673 V v = n.getValidValue();
1674 if (v != null) {
1675 s.writeObject(n.key);
1676 s.writeObject(v);
1677 }
1678 }
1679 s.writeObject(null);
1680 }
1681
1682 /**
1683 * Reconstitute the map from a stream.
1684 */
1685 private void readObject(final java.io.ObjectInputStream s)
1686 throws java.io.IOException, ClassNotFoundException {
1687 // Read in the Comparator and any hidden stuff
1688 s.defaultReadObject();
1689 // Reset transients
1690 initialize();
1691
1692 /*
1693 * This is nearly identical to buildFromSorted, but is
1694 * distinct because readObject calls can't be nicely adapted
1695 * as the kind of iterator needed by buildFromSorted. (They
1696 * can be, but doing so requires type cheats and/or creation
1697 * of adaptor classes.) It is simpler to just adapt the code.
1698 */
1699
1700 HeadIndex<K,V> h = head;
1701 Node<K,V> basepred = h.node;
1702 ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1703 for (int i = 0; i <= h.level; ++i)
1704 preds.add(null);
1705 Index<K,V> q = h;
1706 for (int i = h.level; i > 0; --i) {
1707 preds.set(i, q);
1708 q = q.down;
1709 }
1710
1711 for (;;) {
1712 Object k = s.readObject();
1713 if (k == null)
1714 break;
1715 Object v = s.readObject();
1716 if (v == null)
1717 throw new NullPointerException();
1718 K key = (K) k;
1719 V val = (V) v;
1720 int j = randomLevel();
1721 if (j > h.level) j = h.level + 1;
1722 Node<K,V> z = new Node<K,V>(key, val, null);
1723 basepred.next = z;
1724 basepred = z;
1725 if (j > 0) {
1726 Index<K,V> idx = null;
1727 for (int i = 1; i <= j; ++i) {
1728 idx = new Index<K,V>(z, idx, null);
1729 if (i > h.level)
1730 h = new HeadIndex<K,V>(h.node, h, idx, i);
1731
1732 if (i < preds.size()) {
1733 preds.get(i).right = idx;
1734 preds.set(i, idx);
1735 } else
1736 preds.add(idx);
1737 }
1738 }
1739 }
1740 head = h;
1741 }
1742
1743 /* ------ Map API methods ------ */
1744
1745 /**
1746 * Returns <tt>true</tt> if this map contains a mapping for the specified
1747 * key.
1748 *
1749 * @param key key whose presence in this map is to be tested
1750 * @return <tt>true</tt> if this map contains a mapping for the specified key
1751 * @throws ClassCastException if the specified key cannot be compared
1752 * with the keys currently in the map
1753 * @throws NullPointerException if the specified key is null
1754 */
1755 public boolean containsKey(Object key) {
1756 return doGet(key) != null;
1757 }
1758
1759 /**
1760 * Returns the value to which this map maps the specified key, or
1761 * <tt>null</tt> if the map contains no mapping for the key.
1762 *
1763 * @param key key whose associated value is to be returned
1764 * @return the value to which this map maps the specified key, or
1765 * <tt>null</tt> if the map contains no mapping for the key
1766 * @throws ClassCastException if the specified key cannot be compared
1767 * with the keys currently in the map
1768 * @throws NullPointerException if the specified key is null
1769 */
1770 public V get(Object key) {
1771 return doGet(key);
1772 }
1773
1774 /**
1775 * Associates the specified value with the specified key in this map.
1776 * If the map previously contained a mapping for the key, the old
1777 * value is replaced.
1778 *
1779 * @param key key with which the specified value is to be associated
1780 * @param value value to be associated with the specified key
1781 * @return the previous value associated with the specified key, or
1782 * <tt>null</tt> if there was no mapping for the key
1783 * @throws ClassCastException if the specified key cannot be compared
1784 * with the keys currently in the map
1785 * @throws NullPointerException if the specified key or value is null
1786 */
1787 public V put(K key, V value) {
1788 if (value == null)
1789 throw new NullPointerException();
1790 return doPut(key, value, false);
1791 }
1792
1793 /**
1794 * Removes the mapping for this key from this map if present.
1795 *
1796 * @param key key for which mapping should be removed
1797 * @return the previous value associated with the specified key, or
1798 * <tt>null</tt> if there was no mapping for the key
1799 * @throws ClassCastException if the specified key cannot be compared
1800 * with the keys currently in the map
1801 * @throws NullPointerException if the specified key is null
1802 */
1803 public V remove(Object key) {
1804 return doRemove(key, null);
1805 }
1806
1807 /**
1808 * Returns <tt>true</tt> if this map maps one or more keys to the
1809 * specified value. This operation requires time linear in the
1810 * map size.
1811 *
1812 * @param value value whose presence in this map is to be tested
1813 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1814 * <tt>false</tt> otherwise
1815 * @throws NullPointerException if the specified value is null
1816 */
1817 public boolean containsValue(Object value) {
1818 if (value == null)
1819 throw new NullPointerException();
1820 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1821 V v = n.getValidValue();
1822 if (v != null && value.equals(v))
1823 return true;
1824 }
1825 return false;
1826 }
1827
1828 /**
1829 * Returns the number of key-value mappings in this map. If this map
1830 * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1831 * returns <tt>Integer.MAX_VALUE</tt>.
1832 *
1833 * <p>Beware that, unlike in most collections, this method is
1834 * <em>NOT</em> a constant-time operation. Because of the
1835 * asynchronous nature of these maps, determining the current
1836 * number of elements requires traversing them all to count them.
1837 * Additionally, it is possible for the size to change during
1838 * execution of this method, in which case the returned result
1839 * will be inaccurate. Thus, this method is typically not very
1840 * useful in concurrent applications.
1841 *
1842 * @return the number of elements in this map
1843 */
1844 public int size() {
1845 long count = 0;
1846 for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1847 if (n.getValidValue() != null)
1848 ++count;
1849 }
1850 return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1851 }
1852
1853 /**
1854 * Returns <tt>true</tt> if this map contains no key-value mappings.
1855 * @return <tt>true</tt> if this map contains no key-value mappings
1856 */
1857 public boolean isEmpty() {
1858 return findFirst() == null;
1859 }
1860
1861 /**
1862 * Removes all of the mappings from this map.
1863 */
1864 public void clear() {
1865 initialize();
1866 }
1867
1868 /**
1869 * Returns a {@link Set} view of the keys contained in this map.
1870 * The set's iterator returns the keys in ascending order.
1871 * The set is backed by the map, so changes to the map are
1872 * reflected in the set, and vice-versa. The set supports element
1873 * removal, which removes the corresponding mapping from the map,
1874 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1875 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1876 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1877 * operations.
1878 *
1879 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1880 * that will never throw {@link ConcurrentModificationException},
1881 * and guarantees to traverse elements as they existed upon
1882 * construction of the iterator, and may (but is not guaranteed to)
1883 * reflect any modifications subsequent to construction.
1884 *
1885 * @return a set view of the keys contained in this map, sorted in
1886 * ascending order
1887 */
1888 public Set<K> keySet() {
1889 /*
1890 * Note: Lazy initialization works here and for other views
1891 * because view classes are stateless/immutable so it doesn't
1892 * matter wrt correctness if more than one is created (which
1893 * will only rarely happen). Even so, the following idiom
1894 * conservatively ensures that the method returns the one it
1895 * created if it does so, not one created by another racing
1896 * thread.
1897 */
1898 KeySet ks = keySet;
1899 return (ks != null) ? ks : (keySet = new KeySet());
1900 }
1901
1902 /**
1903 * Returns a {@link Set} view of the keys contained in this map.
1904 * The set's iterator returns the keys in descending order.
1905 * The set is backed by the map, so changes to the map are
1906 * reflected in the set, and vice-versa. The set supports element
1907 * removal, which removes the corresponding mapping from the map,
1908 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1909 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1910 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
1911 * operations.
1912 *
1913 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1914 * that will never throw {@link ConcurrentModificationException},
1915 * and guarantees to traverse elements as they existed upon
1916 * construction of the iterator, and may (but is not guaranteed to)
1917 * reflect any modifications subsequent to construction.
1918 */
1919 public Set<K> descendingKeySet() {
1920 /*
1921 * Note: Lazy initialization works here and for other views
1922 * because view classes are stateless/immutable so it doesn't
1923 * matter wrt correctness if more than one is created (which
1924 * will only rarely happen). Even so, the following idiom
1925 * conservatively ensures that the method returns the one it
1926 * created if it does so, not one created by another racing
1927 * thread.
1928 */
1929 DescendingKeySet ks = descendingKeySet;
1930 return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1931 }
1932
1933 /**
1934 * Returns a {@link Collection} view of the values contained in this map.
1935 * The collection's iterator returns the values in ascending order
1936 * of the corresponding keys.
1937 * The collection is backed by the map, so changes to the map are
1938 * reflected in the collection, and vice-versa. The collection
1939 * supports element removal, which removes the corresponding
1940 * mapping from the map, via the <tt>Iterator.remove</tt>,
1941 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1942 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
1943 * support the <tt>add</tt> or <tt>addAll</tt> operations.
1944 *
1945 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1946 * that will never throw {@link ConcurrentModificationException},
1947 * and guarantees to traverse elements as they existed upon
1948 * construction of the iterator, and may (but is not guaranteed to)
1949 * reflect any modifications subsequent to construction.
1950 */
1951 public Collection<V> values() {
1952 Values vs = values;
1953 return (vs != null) ? vs : (values = new Values());
1954 }
1955
1956 /**
1957 * Returns a {@link Set} view of the mappings contained in this map.
1958 * The set's iterator returns the entries in ascending key order.
1959 * The set is backed by the map, so changes to the map are
1960 * reflected in the set, and vice-versa. The set supports element
1961 * removal, which removes the corresponding mapping from the map,
1962 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1963 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1964 * operations. It does not support the <tt>add</tt> or
1965 * <tt>addAll</tt> operations.
1966 *
1967 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1968 * that will never throw {@link ConcurrentModificationException},
1969 * and guarantees to traverse elements as they existed upon
1970 * construction of the iterator, and may (but is not guaranteed to)
1971 * reflect any modifications subsequent to construction.
1972 *
1973 * <p>The <tt>Map.Entry</tt> elements returned by
1974 * <tt>iterator.next()</tt> do <em>not</em> support the
1975 * <tt>setValue</tt> operation.
1976 *
1977 * @return a set view of the mappings contained in this map,
1978 * sorted in ascending key order
1979 */
1980 public Set<Map.Entry<K,V>> entrySet() {
1981 EntrySet es = entrySet;
1982 return (es != null) ? es : (entrySet = new EntrySet());
1983 }
1984
1985 /**
1986 * Returns a {@link Set} view of the mappings contained in this map.
1987 * The set's iterator returns the entries in descending key order.
1988 * The set is backed by the map, so changes to the map are
1989 * reflected in the set, and vice-versa. The set supports element
1990 * removal, which removes the corresponding mapping from the map,
1991 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1992 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1993 * operations. It does not support the <tt>add</tt> or
1994 * <tt>addAll</tt> operations.
1995 *
1996 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1997 * that will never throw {@link ConcurrentModificationException},
1998 * and guarantees to traverse elements as they existed upon
1999 * construction of the iterator, and may (but is not guaranteed to)
2000 * reflect any modifications subsequent to construction.
2001 *
2002 * <p>The <tt>Map.Entry</tt> elements returned by
2003 * <tt>iterator.next()</tt> do <em>not</em> support the
2004 * <tt>setValue</tt> operation.
2005 */
2006 public Set<Map.Entry<K,V>> descendingEntrySet() {
2007 DescendingEntrySet es = descendingEntrySet;
2008 return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2009 }
2010
2011 /* ---------------- AbstractMap Overrides -------------- */
2012
2013 /**
2014 * Compares the specified object with this map for equality.
2015 * Returns <tt>true</tt> if the given object is also a map and the
2016 * two maps represent the same mappings. More formally, two maps
2017 * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
2018 * <tt>m1.keySet().equals(m2.keySet())</tt> and for every key
2019 * <tt>k</tt> in <tt>m1.keySet()</tt>, <tt> (m1.get(k)==null ?
2020 * m2.get(k)==null : m1.get(k).equals(m2.get(k))) </tt>. This
2021 * operation may return misleading results if either map is
2022 * concurrently modified during execution of this method.
2023 *
2024 * @param o object to be compared for equality with this map
2025 * @return <tt>true</tt> if the specified object is equal to this map
2026 */
2027 public boolean equals(Object o) {
2028 if (o == this)
2029 return true;
2030 if (!(o instanceof Map))
2031 return false;
2032 Map<K,V> t = (Map<K,V>) o;
2033 try {
2034 return (containsAllMappings(this, t) &&
2035 containsAllMappings(t, this));
2036 } catch (ClassCastException unused) {
2037 return false;
2038 } catch (NullPointerException unused) {
2039 return false;
2040 }
2041 }
2042
2043 /**
2044 * Helper for equals -- check for containment, avoiding nulls.
2045 */
2046 static <K,V> boolean containsAllMappings(Map<K,V> a, Map<K,V> b) {
2047 Iterator<Entry<K,V>> it = b.entrySet().iterator();
2048 while (it.hasNext()) {
2049 Entry<K,V> e = it.next();
2050 Object k = e.getKey();
2051 Object v = e.getValue();
2052 if (k == null || v == null || !v.equals(a.get(k)))
2053 return false;
2054 }
2055 return true;
2056 }
2057
2058 /* ------ ConcurrentMap API methods ------ */
2059
2060 /**
2061 * {@inheritDoc}
2062 *
2063 * @return the previous value associated with the specified key,
2064 * or <tt>null</tt> if there was no mapping for the key
2065 * @throws ClassCastException if the specified key cannot be compared
2066 * with the keys currently in the map
2067 * @throws NullPointerException if the specified key or value is null
2068 */
2069 public V putIfAbsent(K key, V value) {
2070 if (value == null)
2071 throw new NullPointerException();
2072 return doPut(key, value, true);
2073 }
2074
2075 /**
2076 * {@inheritDoc}
2077 *
2078 * @throws ClassCastException if the specified key cannot be compared
2079 * with the keys currently in the map
2080 * @throws NullPointerException if the specified key is null
2081 */
2082 public boolean remove(Object key, Object value) {
2083 if (value == null)
2084 return false;
2085 return doRemove(key, value) != null;
2086 }
2087
2088 /**
2089 * {@inheritDoc}
2090 *
2091 * @throws ClassCastException if the specified key cannot be compared
2092 * with the keys currently in the map
2093 * @throws NullPointerException if any of the arguments are null
2094 */
2095 public boolean replace(K key, V oldValue, V newValue) {
2096 if (oldValue == null || newValue == null)
2097 throw new NullPointerException();
2098 Comparable<? super K> k = comparable(key);
2099 for (;;) {
2100 Node<K,V> n = findNode(k);
2101 if (n == null)
2102 return false;
2103 Object v = n.value;
2104 if (v != null) {
2105 if (!oldValue.equals(v))
2106 return false;
2107 if (n.casValue(v, newValue))
2108 return true;
2109 }
2110 }
2111 }
2112
2113 /**
2114 * {@inheritDoc}
2115 *
2116 * @return the previous value associated with the specified key,
2117 * or <tt>null</tt> if there was no mapping for the key
2118 * @throws ClassCastException if the specified key cannot be compared
2119 * with the keys currently in the map
2120 * @throws NullPointerException if the specified key or value is null
2121 */
2122 public V replace(K key, V value) {
2123 if (value == null)
2124 throw new NullPointerException();
2125 Comparable<? super K> k = comparable(key);
2126 for (;;) {
2127 Node<K,V> n = findNode(k);
2128 if (n == null)
2129 return null;
2130 Object v = n.value;
2131 if (v != null && n.casValue(v, value))
2132 return (V)v;
2133 }
2134 }
2135
2136 /* ------ SortedMap API methods ------ */
2137
2138 public Comparator<? super K> comparator() {
2139 return comparator;
2140 }
2141
2142 /**
2143 * @throws NoSuchElementException {@inheritDoc}
2144 */
2145 public K firstKey() {
2146 Node<K,V> n = findFirst();
2147 if (n == null)
2148 throw new NoSuchElementException();
2149 return n.key;
2150 }
2151
2152 /**
2153 * @throws NoSuchElementException {@inheritDoc}
2154 */
2155 public K lastKey() {
2156 Node<K,V> n = findLast();
2157 if (n == null)
2158 throw new NoSuchElementException();
2159 return n.key;
2160 }
2161
2162 /**
2163 * @throws ClassCastException {@inheritDoc}
2164 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2165 * @throws IllegalArgumentException {@inheritDoc}
2166 */
2167 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
2168 if (fromKey == null || toKey == null)
2169 throw new NullPointerException();
2170 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, toKey);
2171 }
2172
2173 /**
2174 * @throws ClassCastException {@inheritDoc}
2175 * @throws NullPointerException if <tt>toKey</tt> is null
2176 * @throws IllegalArgumentException {@inheritDoc}
2177 */
2178 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
2179 if (toKey == null)
2180 throw new NullPointerException();
2181 return new ConcurrentSkipListSubMap<K,V>(this, null, toKey);
2182 }
2183
2184 /**
2185 * @throws ClassCastException {@inheritDoc}
2186 * @throws NullPointerException if <tt>fromKey</tt> is null
2187 * @throws IllegalArgumentException {@inheritDoc}
2188 */
2189 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
2190 if (fromKey == null)
2191 throw new NullPointerException();
2192 return new ConcurrentSkipListSubMap<K,V>(this, fromKey, null);
2193 }
2194
2195 /**
2196 * Equivalent to {@link #navigableSubMap} but with a return type
2197 * conforming to the <tt>SortedMap</tt> interface.
2198 *
2199 * <p>{@inheritDoc}
2200 *
2201 * @throws ClassCastException {@inheritDoc}
2202 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is null
2203 * @throws IllegalArgumentException {@inheritDoc}
2204 */
2205 public SortedMap<K,V> subMap(K fromKey, K toKey) {
2206 return navigableSubMap(fromKey, toKey);
2207 }
2208
2209 /**
2210 * Equivalent to {@link #navigableHeadMap} but with a return type
2211 * conforming to the <tt>SortedMap</tt> interface.
2212 *
2213 * <p>{@inheritDoc}
2214 *
2215 * @throws ClassCastException {@inheritDoc}
2216 * @throws NullPointerException if <tt>toKey</tt> is null
2217 * @throws IllegalArgumentException {@inheritDoc}
2218 */
2219 public SortedMap<K,V> headMap(K toKey) {
2220 return navigableHeadMap(toKey);
2221 }
2222
2223 /**
2224 * Equivalent to {@link #navigableTailMap} but with a return type
2225 * conforming to the <tt>SortedMap</tt> interface.
2226 *
2227 * <p>{@inheritDoc}
2228 *
2229 * @throws ClassCastException {@inheritDoc}
2230 * @throws NullPointerException if <tt>fromKey</tt> is null
2231 * @throws IllegalArgumentException {@inheritDoc}
2232 */
2233 public SortedMap<K,V> tailMap(K fromKey) {
2234 return navigableTailMap(fromKey);
2235 }
2236
2237 /* ---------------- Relational operations -------------- */
2238
2239 /**
2240 * Returns a key-value mapping associated with the greatest key
2241 * strictly less than the given key, or <tt>null</tt> if there is
2242 * no such key. The returned entry does <em>not</em> support the
2243 * <tt>Entry.setValue</tt> method.
2244 *
2245 * @throws ClassCastException {@inheritDoc}
2246 * @throws NullPointerException if the specified key is null
2247 */
2248 public Map.Entry<K,V> lowerEntry(K key) {
2249 return getNear(key, LT);
2250 }
2251
2252 /**
2253 * @throws ClassCastException {@inheritDoc}
2254 * @throws NullPointerException if the specified key is null
2255 */
2256 public K lowerKey(K key) {
2257 Node<K,V> n = findNear(key, LT);
2258 return (n == null)? null : n.key;
2259 }
2260
2261 /**
2262 * Returns a key-value mapping associated with the greatest key
2263 * less than or equal to the given key, or <tt>null</tt> if there
2264 * is no such key. The returned entry does <em>not</em> support
2265 * the <tt>Entry.setValue</tt> method.
2266 *
2267 * @param key the key
2268 * @throws ClassCastException {@inheritDoc}
2269 * @throws NullPointerException if the specified key is null
2270 */
2271 public Map.Entry<K,V> floorEntry(K key) {
2272 return getNear(key, LT|EQ);
2273 }
2274
2275 /**
2276 * @param key the key
2277 * @throws ClassCastException {@inheritDoc}
2278 * @throws NullPointerException if the specified key is null
2279 */
2280 public K floorKey(K key) {
2281 Node<K,V> n = findNear(key, LT|EQ);
2282 return (n == null)? null : n.key;
2283 }
2284
2285 /**
2286 * Returns a key-value mapping associated with the least key
2287 * greater than or equal to the given key, or <tt>null</tt> if
2288 * there is no such entry. The returned entry does <em>not</em>
2289 * support the <tt>Entry.setValue</tt> method.
2290 *
2291 * @throws ClassCastException {@inheritDoc}
2292 * @throws NullPointerException if the specified key is null
2293 */
2294 public Map.Entry<K,V> ceilingEntry(K key) {
2295 return getNear(key, GT|EQ);
2296 }
2297
2298 /**
2299 * @throws ClassCastException {@inheritDoc}
2300 * @throws NullPointerException if the specified key is null
2301 */
2302 public K ceilingKey(K key) {
2303 Node<K,V> n = findNear(key, GT|EQ);
2304 return (n == null)? null : n.key;
2305 }
2306
2307 /**
2308 * Returns a key-value mapping associated with the least key
2309 * strictly greater than the given key, or <tt>null</tt> if there
2310 * is no such key. The returned entry does <em>not</em> support
2311 * the <tt>Entry.setValue</tt> method.
2312 *
2313 * @param key the key
2314 * @throws ClassCastException {@inheritDoc}
2315 * @throws NullPointerException if the specified key is null
2316 */
2317 public Map.Entry<K,V> higherEntry(K key) {
2318 return getNear(key, GT);
2319 }
2320
2321 /**
2322 * @param key the key
2323 * @throws ClassCastException {@inheritDoc}
2324 * @throws NullPointerException if the specified key is null
2325 */
2326 public K higherKey(K key) {
2327 Node<K,V> n = findNear(key, GT);
2328 return (n == null)? null : n.key;
2329 }
2330
2331 /**
2332 * Returns a key-value mapping associated with the least
2333 * key in this map, or <tt>null</tt> if the map is empty.
2334 * The returned entry does <em>not</em> support
2335 * the <tt>Entry.setValue</tt> method.
2336 */
2337 public Map.Entry<K,V> firstEntry() {
2338 for (;;) {
2339 Node<K,V> n = findFirst();
2340 if (n == null)
2341 return null;
2342 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2343 if (e != null)
2344 return e;
2345 }
2346 }
2347
2348 /**
2349 * Returns a key-value mapping associated with the greatest
2350 * key in this map, or <tt>null</tt> if the map is empty.
2351 * The returned entry does <em>not</em> support
2352 * the <tt>Entry.setValue</tt> method.
2353 */
2354 public Map.Entry<K,V> lastEntry() {
2355 for (;;) {
2356 Node<K,V> n = findLast();
2357 if (n == null)
2358 return null;
2359 AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2360 if (e != null)
2361 return e;
2362 }
2363 }
2364
2365 /**
2366 * Removes and returns a key-value mapping associated with
2367 * the least key in this map, or <tt>null</tt> if the map is empty.
2368 * The returned entry does <em>not</em> support
2369 * the <tt>Entry.setValue</tt> method.
2370 */
2371 public Map.Entry<K,V> pollFirstEntry() {
2372 return (AbstractMap.SimpleImmutableEntry<K,V>)doRemoveFirst(false);
2373 }
2374
2375 /**
2376 * Removes and returns a key-value mapping associated with
2377 * the greatest key in this map, or <tt>null</tt> if the map is empty.
2378 * The returned entry does <em>not</em> support
2379 * the <tt>Entry.setValue</tt> method.
2380 */
2381 public Map.Entry<K,V> pollLastEntry() {
2382 return (AbstractMap.SimpleImmutableEntry<K,V>)doRemoveLast(false);
2383 }
2384
2385
2386 /* ---------------- Iterators -------------- */
2387
2388 /**
2389 * Base of ten kinds of iterator classes:
2390 * ascending: {map, submap} X {key, value, entry}
2391 * descending: {map, submap} X {key, entry}
2392 */
2393 abstract class Iter {
2394 /** the last node returned by next() */
2395 Node<K,V> last;
2396 /** the next node to return from next(); */
2397 Node<K,V> next;
2398 /** Cache of next value field to maintain weak consistency */
2399 Object nextValue;
2400
2401 Iter() {}
2402
2403 public final boolean hasNext() {
2404 return next != null;
2405 }
2406
2407 /** Initializes ascending iterator for entire range. */
2408 final void initAscending() {
2409 for (;;) {
2410 next = findFirst();
2411 if (next == null)
2412 break;
2413 nextValue = next.value;
2414 if (nextValue != null && nextValue != next)
2415 break;
2416 }
2417 }
2418
2419 /**
2420 * Initializes ascending iterator starting at given least key,
2421 * or first node if least is <tt>null</tt>, but not greater or
2422 * equal to fence, or end if fence is <tt>null</tt>.
2423 */
2424 final void initAscending(K least, K fence) {
2425 for (;;) {
2426 next = findCeiling(least);
2427 if (next == null)
2428 break;
2429 nextValue = next.value;
2430 if (nextValue != null && nextValue != next) {
2431 if (fence != null && compare(fence, next.key) <= 0) {
2432 next = null;
2433 nextValue = null;
2434 }
2435 break;
2436 }
2437 }
2438 }
2439 /** Advances next to higher entry. */
2440 final void ascend() {
2441 if ((last = next) == null)
2442 throw new NoSuchElementException();
2443 for (;;) {
2444 next = next.next;
2445 if (next == null)
2446 break;
2447 nextValue = next.value;
2448 if (nextValue != null && nextValue != next)
2449 break;
2450 }
2451 }
2452
2453 /**
2454 * Version of ascend for submaps to stop at fence
2455 */
2456 final void ascend(K fence) {
2457 if ((last = next) == null)
2458 throw new NoSuchElementException();
2459 for (;;) {
2460 next = next.next;
2461 if (next == null)
2462 break;
2463 nextValue = next.value;
2464 if (nextValue != null && nextValue != next) {
2465 if (fence != null && compare(fence, next.key) <= 0) {
2466 next = null;
2467 nextValue = null;
2468 }
2469 break;
2470 }
2471 }
2472 }
2473
2474 /** Initializes descending iterator for entire range. */
2475 final void initDescending() {
2476 for (;;) {
2477 next = findLast();
2478 if (next == null)
2479 break;
2480 nextValue = next.value;
2481 if (nextValue != null && nextValue != next)
2482 break;
2483 }
2484 }
2485
2486 /**
2487 * Initializes descending iterator starting at key less
2488 * than or equal to given fence key, or
2489 * last node if fence is <tt>null</tt>, but not less than
2490 * least, or beginning if least is <tt>null</tt>.
2491 */
2492 final void initDescending(K least, K fence) {
2493 for (;;) {
2494 next = findLower(fence);
2495 if (next == null)
2496 break;
2497 nextValue = next.value;
2498 if (nextValue != null && nextValue != next) {
2499 if (least != null && compare(least, next.key) > 0) {
2500 next = null;
2501 nextValue = null;
2502 }
2503 break;
2504 }
2505 }
2506 }
2507
2508 /** Advances next to lower entry. */
2509 final void descend() {
2510 if ((last = next) == null)
2511 throw new NoSuchElementException();
2512 K k = last.key;
2513 for (;;) {
2514 next = findNear(k, LT);
2515 if (next == null)
2516 break;
2517 nextValue = next.value;
2518 if (nextValue != null && nextValue != next)
2519 break;
2520 }
2521 }
2522
2523 /**
2524 * Version of descend for submaps to stop at least
2525 */
2526 final void descend(K least) {
2527 if ((last = next) == null)
2528 throw new NoSuchElementException();
2529 K k = last.key;
2530 for (;;) {
2531 next = findNear(k, LT);
2532 if (next == null)
2533 break;
2534 nextValue = next.value;
2535 if (nextValue != null && nextValue != next) {
2536 if (least != null && compare(least, next.key) > 0) {
2537 next = null;
2538 nextValue = null;
2539 }
2540 break;
2541 }
2542 }
2543 }
2544
2545 public void remove() {
2546 Node<K,V> l = last;
2547 if (l == null)
2548 throw new IllegalStateException();
2549 // It would not be worth all of the overhead to directly
2550 // unlink from here. Using remove is fast enough.
2551 ConcurrentSkipListMap.this.remove(l.key);
2552 }
2553
2554 }
2555
2556 final class ValueIterator extends Iter implements Iterator<V> {
2557 ValueIterator() {
2558 initAscending();
2559 }
2560 public V next() {
2561 Object v = nextValue;
2562 ascend();
2563 return (V)v;
2564 }
2565 }
2566
2567 final class KeyIterator extends Iter implements Iterator<K> {
2568 KeyIterator() {
2569 initAscending();
2570 }
2571 public K next() {
2572 Node<K,V> n = next;
2573 ascend();
2574 return n.key;
2575 }
2576 }
2577
2578 class SubMapValueIterator extends Iter implements Iterator<V> {
2579 final K fence;
2580 SubMapValueIterator(K least, K fence) {
2581 initAscending(least, fence);
2582 this.fence = fence;
2583 }
2584
2585 public V next() {
2586 Object v = nextValue;
2587 ascend(fence);
2588 return (V)v;
2589 }
2590 }
2591
2592 final class SubMapKeyIterator extends Iter implements Iterator<K> {
2593 final K fence;
2594 SubMapKeyIterator(K least, K fence) {
2595 initAscending(least, fence);
2596 this.fence = fence;
2597 }
2598
2599 public K next() {
2600 Node<K,V> n = next;
2601 ascend(fence);
2602 return n.key;
2603 }
2604 }
2605
2606 final class DescendingKeyIterator extends Iter implements Iterator<K> {
2607 DescendingKeyIterator() {
2608 initDescending();
2609 }
2610 public K next() {
2611 Node<K,V> n = next;
2612 descend();
2613 return n.key;
2614 }
2615 }
2616
2617 final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2618 final K least;
2619 DescendingSubMapKeyIterator(K least, K fence) {
2620 initDescending(least, fence);
2621 this.least = least;
2622 }
2623
2624 public K next() {
2625 Node<K,V> n = next;
2626 descend(least);
2627 return n.key;
2628 }
2629 }
2630
2631 /**
2632 * Entry iterators use the same trick as in ConcurrentHashMap and
2633 * elsewhere of using the iterator itself to represent entries,
2634 * thus avoiding having to create entry objects in next().
2635 */
2636 abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2637 /** Cache of last value returned */
2638 Object lastValue;
2639
2640 EntryIter() {
2641 }
2642
2643 public K getKey() {
2644 Node<K,V> l = last;
2645 if (l == null)
2646 throw new IllegalStateException();
2647 return l.key;
2648 }
2649
2650 public V getValue() {
2651 Object v = lastValue;
2652 if (last == null || v == null)
2653 throw new IllegalStateException();
2654 return (V)v;
2655 }
2656
2657 public V setValue(V value) {
2658 throw new UnsupportedOperationException();
2659 }
2660
2661 public boolean equals(Object o) {
2662 // If not acting as entry, just use default.
2663 if (last == null)
2664 return super.equals(o);
2665 if (!(o instanceof Map.Entry))
2666 return false;
2667 Map.Entry e = (Map.Entry)o;
2668 return (getKey().equals(e.getKey()) &&
2669 getValue().equals(e.getValue()));
2670 }
2671
2672 public int hashCode() {
2673 // If not acting as entry, just use default.
2674 if (last == null)
2675 return super.hashCode();
2676 return getKey().hashCode() ^ getValue().hashCode();
2677 }
2678
2679 public String toString() {
2680 // If not acting as entry, just use default.
2681 if (last == null)
2682 return super.toString();
2683 return getKey() + "=" + getValue();
2684 }
2685 }
2686
2687 final class EntryIterator extends EntryIter
2688 implements Iterator<Map.Entry<K,V>> {
2689 EntryIterator() {
2690 initAscending();
2691 }
2692 public Map.Entry<K,V> next() {
2693 lastValue = nextValue;
2694 ascend();
2695 return this;
2696 }
2697 }
2698
2699 final class SubMapEntryIterator extends EntryIter
2700 implements Iterator<Map.Entry<K,V>> {
2701 final K fence;
2702 SubMapEntryIterator(K least, K fence) {
2703 initAscending(least, fence);
2704 this.fence = fence;
2705 }
2706
2707 public Map.Entry<K,V> next() {
2708 lastValue = nextValue;
2709 ascend(fence);
2710 return this;
2711 }
2712 }
2713
2714 final class DescendingEntryIterator extends EntryIter
2715 implements Iterator<Map.Entry<K,V>> {
2716 DescendingEntryIterator() {
2717 initDescending();
2718 }
2719 public Map.Entry<K,V> next() {
2720 lastValue = nextValue;
2721 descend();
2722 return this;
2723 }
2724 }
2725
2726 final class DescendingSubMapEntryIterator extends EntryIter
2727 implements Iterator<Map.Entry<K,V>> {
2728 final K least;
2729 DescendingSubMapEntryIterator(K least, K fence) {
2730 initDescending(least, fence);
2731 this.least = least;
2732 }
2733
2734 public Map.Entry<K,V> next() {
2735 lastValue = nextValue;
2736 descend(least);
2737 return this;
2738 }
2739 }
2740
2741 // Factory methods for iterators needed by submaps and/or
2742 // ConcurrentSkipListSet
2743
2744 Iterator<K> keyIterator() {
2745 return new KeyIterator();
2746 }
2747
2748 Iterator<K> descendingKeyIterator() {
2749 return new DescendingKeyIterator();
2750 }
2751
2752 SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2753 return new SubMapEntryIterator(least, fence);
2754 }
2755
2756 DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2757 return new DescendingSubMapEntryIterator(least, fence);
2758 }
2759
2760 SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2761 return new SubMapKeyIterator(least, fence);
2762 }
2763
2764 DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2765 return new DescendingSubMapKeyIterator(least, fence);
2766 }
2767
2768 SubMapValueIterator subMapValueIterator(K least, K fence) {
2769 return new SubMapValueIterator(least, fence);
2770 }
2771
2772 /* ---------------- Views -------------- */
2773
2774 class KeySet extends AbstractSet<K> {
2775 public Iterator<K> iterator() {
2776 return new KeyIterator();
2777 }
2778 public boolean isEmpty() {
2779 return ConcurrentSkipListMap.this.isEmpty();
2780 }
2781 public int size() {
2782 return ConcurrentSkipListMap.this.size();
2783 }
2784 public boolean contains(Object o) {
2785 return ConcurrentSkipListMap.this.containsKey(o);
2786 }
2787 public boolean remove(Object o) {
2788 return ConcurrentSkipListMap.this.removep(o);
2789 }
2790 public void clear() {
2791 ConcurrentSkipListMap.this.clear();
2792 }
2793 public Object[] toArray() {
2794 Collection<K> c = new ArrayList<K>();
2795 for (Iterator<K> i = iterator(); i.hasNext(); )
2796 c.add(i.next());
2797 return c.toArray();
2798 }
2799 public <T> T[] toArray(T[] a) {
2800 Collection<K> c = new ArrayList<K>();
2801 for (Iterator<K> i = iterator(); i.hasNext(); )
2802 c.add(i.next());
2803 return c.toArray(a);
2804 }
2805 }
2806
2807 class DescendingKeySet extends KeySet {
2808 public Iterator<K> iterator() {
2809 return new DescendingKeyIterator();
2810 }
2811 }
2812
2813 final class Values extends AbstractCollection<V> {
2814 public Iterator<V> iterator() {
2815 return new ValueIterator();
2816 }
2817 public boolean isEmpty() {
2818 return ConcurrentSkipListMap.this.isEmpty();
2819 }
2820 public int size() {
2821 return ConcurrentSkipListMap.this.size();
2822 }
2823 public boolean contains(Object o) {
2824 return ConcurrentSkipListMap.this.containsValue(o);
2825 }
2826 public void clear() {
2827 ConcurrentSkipListMap.this.clear();
2828 }
2829 public Object[] toArray() {
2830 Collection<V> c = new ArrayList<V>();
2831 for (Iterator<V> i = iterator(); i.hasNext(); )
2832 c.add(i.next());
2833 return c.toArray();
2834 }
2835 public <T> T[] toArray(T[] a) {
2836 Collection<V> c = new ArrayList<V>();
2837 for (Iterator<V> i = iterator(); i.hasNext(); )
2838 c.add(i.next());
2839 return c.toArray(a);
2840 }
2841 }
2842
2843 class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2844 public Iterator<Map.Entry<K,V>> iterator() {
2845 return new EntryIterator();
2846 }
2847 public boolean contains(Object o) {
2848 if (!(o instanceof Map.Entry))
2849 return false;
2850 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2851 V v = ConcurrentSkipListMap.this.get(e.getKey());
2852 return v != null && v.equals(e.getValue());
2853 }
2854 public boolean remove(Object o) {
2855 if (!(o instanceof Map.Entry))
2856 return false;
2857 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2858 return ConcurrentSkipListMap.this.remove(e.getKey(),
2859 e.getValue());
2860 }
2861 public boolean isEmpty() {
2862 return ConcurrentSkipListMap.this.isEmpty();
2863 }
2864 public int size() {
2865 return ConcurrentSkipListMap.this.size();
2866 }
2867 public void clear() {
2868 ConcurrentSkipListMap.this.clear();
2869 }
2870
2871 public Object[] toArray() {
2872 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2873 for (Map.Entry e : this)
2874 c.add(new AbstractMap.SimpleEntry<K,V>((K)e.getKey(), (V)e.getValue()));
2875 return c.toArray();
2876 }
2877 public <T> T[] toArray(T[] a) {
2878 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2879 for (Map.Entry e : this)
2880 c.add(new AbstractMap.SimpleEntry<K,V>((K)e.getKey(), (V)e.getValue()));
2881 return c.toArray(a);
2882 }
2883 }
2884
2885 class DescendingEntrySet extends EntrySet {
2886 public Iterator<Map.Entry<K,V>> iterator() {
2887 return new DescendingEntryIterator();
2888 }
2889 }
2890
2891 /**
2892 * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2893 * represent a subrange of mappings of their underlying
2894 * maps. Instances of this class support all methods of their
2895 * underlying maps, differing in that mappings outside their range are
2896 * ignored, and attempts to add mappings outside their ranges result
2897 * in {@link IllegalArgumentException}. Instances of this class are
2898 * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2899 * <tt>tailMap</tt> methods of their underlying maps.
2900 */
2901 static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
2902 implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
2903
2904 private static final long serialVersionUID = -7647078645895051609L;
2905
2906 /** Underlying map */
2907 private final ConcurrentSkipListMap<K,V> m;
2908 /** lower bound key, or null if from start */
2909 private final K least;
2910 /** upper fence key, or null if to end */
2911 private final K fence;
2912 // Lazily initialized view holders
2913 private transient Set<K> keySetView;
2914 private transient Set<Map.Entry<K,V>> entrySetView;
2915 private transient Collection<V> valuesView;
2916 private transient Set<K> descendingKeySetView;
2917 private transient Set<Map.Entry<K,V>> descendingEntrySetView;
2918
2919 /**
2920 * Creates a new submap.
2921 * @param least inclusive least value, or <tt>null</tt> if from start
2922 * @param fence exclusive upper bound or <tt>null</tt> if to end
2923 * @throws IllegalArgumentException if least and fence nonnull
2924 * and least greater than fence
2925 */
2926 ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
2927 K least, K fence) {
2928 if (least != null &&
2929 fence != null &&
2930 map.compare(least, fence) > 0)
2931 throw new IllegalArgumentException("inconsistent range");
2932 this.m = map;
2933 this.least = least;
2934 this.fence = fence;
2935 }
2936
2937 /* ---------------- Utilities -------------- */
2938
2939 boolean inHalfOpenRange(K key) {
2940 return m.inHalfOpenRange(key, least, fence);
2941 }
2942
2943 boolean inOpenRange(K key) {
2944 return m.inOpenRange(key, least, fence);
2945 }
2946
2947 ConcurrentSkipListMap.Node<K,V> firstNode() {
2948 return m.findCeiling(least);
2949 }
2950
2951 ConcurrentSkipListMap.Node<K,V> lastNode() {
2952 return m.findLower(fence);
2953 }
2954
2955 boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
2956 return (n != null &&
2957 (fence == null ||
2958 n.key == null || // pass by markers and headers
2959 m.compare(fence, n.key) > 0));
2960 }
2961
2962 void checkKey(K key) throws IllegalArgumentException {
2963 if (!inHalfOpenRange(key))
2964 throw new IllegalArgumentException("key out of range");
2965 }
2966
2967 /**
2968 * Returns underlying map. Needed by ConcurrentSkipListSet
2969 * @return the backing map
2970 */
2971 ConcurrentSkipListMap<K,V> getMap() {
2972 return m;
2973 }
2974
2975 /**
2976 * Returns least key. Needed by ConcurrentSkipListSet
2977 * @return least key or <tt>null</tt> if from start
2978 */
2979 K getLeast() {
2980 return least;
2981 }
2982
2983 /**
2984 * Returns fence key. Needed by ConcurrentSkipListSet
2985 * @return fence key or <tt>null</tt> if to end
2986 */
2987 K getFence() {
2988 return fence;
2989 }
2990
2991
2992 /* ---------------- Map API methods -------------- */
2993
2994 public boolean containsKey(Object key) {
2995 K k = (K)key;
2996 return inHalfOpenRange(k) && m.containsKey(k);
2997 }
2998
2999 public V get(Object key) {
3000 K k = (K)key;
3001 return ((!inHalfOpenRange(k)) ? null : m.get(k));
3002 }
3003
3004 public V put(K key, V value) {
3005 checkKey(key);
3006 return m.put(key, value);
3007 }
3008
3009 public V remove(Object key) {
3010 K k = (K)key;
3011 return (!inHalfOpenRange(k))? null : m.remove(k);
3012 }
3013
3014 public int size() {
3015 long count = 0;
3016 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3017 isBeforeEnd(n);
3018 n = n.next) {
3019 if (n.getValidValue() != null)
3020 ++count;
3021 }
3022 return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3023 }
3024
3025 public boolean isEmpty() {
3026 return !isBeforeEnd(firstNode());
3027 }
3028
3029 public boolean containsValue(Object value) {
3030 if (value == null)
3031 throw new NullPointerException();
3032 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3033 isBeforeEnd(n);
3034 n = n.next) {
3035 V v = n.getValidValue();
3036 if (v != null && value.equals(v))
3037 return true;
3038 }
3039 return false;
3040 }
3041
3042 public void clear() {
3043 for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3044 isBeforeEnd(n);
3045 n = n.next) {
3046 if (n.getValidValue() != null)
3047 m.remove(n.key);
3048 }
3049 }
3050
3051 /* ---------------- ConcurrentMap API methods -------------- */
3052
3053 public V putIfAbsent(K key, V value) {
3054 checkKey(key);
3055 return m.putIfAbsent(key, value);
3056 }
3057
3058 public boolean remove(Object key, Object value) {
3059 K k = (K)key;
3060 return inHalfOpenRange(k) && m.remove(k, value);
3061 }
3062
3063 public boolean replace(K key, V oldValue, V newValue) {
3064 checkKey(key);
3065 return m.replace(key, oldValue, newValue);
3066 }
3067
3068 public V replace(K key, V value) {
3069 checkKey(key);
3070 return m.replace(key, value);
3071 }
3072
3073 /* ---------------- SortedMap API methods -------------- */
3074
3075 public Comparator<? super K> comparator() {
3076 return m.comparator();
3077 }
3078
3079 public K firstKey() {
3080 ConcurrentSkipListMap.Node<K,V> n = firstNode();
3081 if (isBeforeEnd(n))
3082 return n.key;
3083 else
3084 throw new NoSuchElementException();
3085 }
3086
3087 public K lastKey() {
3088 ConcurrentSkipListMap.Node<K,V> n = lastNode();
3089 if (n != null) {
3090 K last = n.key;
3091 if (inHalfOpenRange(last))
3092 return last;
3093 }
3094 throw new NoSuchElementException();
3095 }
3096
3097 public ConcurrentNavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
3098 if (fromKey == null || toKey == null)
3099 throw new NullPointerException();
3100 if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3101 throw new IllegalArgumentException("key out of range");
3102 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, toKey);
3103 }
3104
3105 public ConcurrentNavigableMap<K,V> navigableHeadMap(K toKey) {
3106 if (toKey == null)
3107 throw new NullPointerException();
3108 if (!inOpenRange(toKey))
3109 throw new IllegalArgumentException("key out of range");
3110 return new ConcurrentSkipListSubMap<K,V>(m, least, toKey);
3111 }
3112
3113 public ConcurrentNavigableMap<K,V> navigableTailMap(K fromKey) {
3114 if (fromKey == null)
3115 throw new NullPointerException();
3116 if (!inOpenRange(fromKey))
3117 throw new IllegalArgumentException("key out of range");
3118 return new ConcurrentSkipListSubMap<K,V>(m, fromKey, fence);
3119 }
3120
3121 public SortedMap<K,V> subMap(K fromKey, K toKey) {
3122 return navigableSubMap(fromKey, toKey);
3123 }
3124
3125 public SortedMap<K,V> headMap(K toKey) {
3126 return navigableHeadMap(toKey);
3127 }
3128
3129 public SortedMap<K,V> tailMap(K fromKey) {
3130 return navigableTailMap(fromKey);
3131 }
3132
3133 /* ---------------- Relational methods -------------- */
3134
3135 public Map.Entry<K,V> ceilingEntry(K key) {
3136 return m.getNearEntry(key, m.GT|m.EQ, least, fence);
3137 }
3138
3139 public K ceilingKey(K key) {
3140 return m.getNearKey(key, m.GT|m.EQ, least, fence);
3141 }
3142
3143 public Map.Entry<K,V> lowerEntry(K key) {
3144 return m.getNearEntry(key, m.LT, least, fence);
3145 }
3146
3147 public K lowerKey(K key) {
3148 return m.getNearKey(key, m.LT, least, fence);
3149 }
3150
3151 public Map.Entry<K,V> floorEntry(K key) {
3152 return m.getNearEntry(key, m.LT|m.EQ, least, fence);
3153 }
3154
3155 public K floorKey(K key) {
3156 return m.getNearKey(key, m.LT|m.EQ, least, fence);
3157 }
3158
3159 public Map.Entry<K,V> higherEntry(K key) {
3160 return m.getNearEntry(key, m.GT, least, fence);
3161 }
3162
3163 public K higherKey(K key) {
3164 return m.getNearKey(key, m.GT, least, fence);
3165 }
3166
3167 public Map.Entry<K,V> firstEntry() {
3168 for (;;) {
3169 ConcurrentSkipListMap.Node<K,V> n = firstNode();
3170 if (!isBeforeEnd(n))
3171 return null;
3172 Map.Entry<K,V> e = n.createSnapshot();
3173 if (e != null)
3174 return e;
3175 }
3176 }
3177
3178 public Map.Entry<K,V> lastEntry() {
3179 for (;;) {
3180 ConcurrentSkipListMap.Node<K,V> n = lastNode();
3181 if (n == null || !inHalfOpenRange(n.key))
3182 return null;
3183 Map.Entry<K,V> e = n.createSnapshot();
3184 if (e != null)
3185 return e;
3186 }
3187 }
3188
3189 public Map.Entry<K,V> pollFirstEntry() {
3190 return m.removeFirstEntryOfSubrange(least, fence);
3191 }
3192
3193 public Map.Entry<K,V> pollLastEntry() {
3194 return m.removeLastEntryOfSubrange(least, fence);
3195 }
3196
3197 /* ---------------- Submap Views -------------- */
3198
3199 public Set<K> keySet() {
3200 Set<K> ks = keySetView;
3201 return (ks != null) ? ks : (keySetView = new KeySetView());
3202 }
3203
3204 class KeySetView extends AbstractSet<K> {
3205 public Iterator<K> iterator() {
3206 return m.subMapKeyIterator(least, fence);
3207 }
3208 public int size() {
3209 return ConcurrentSkipListSubMap.this.size();
3210 }
3211 public boolean isEmpty() {
3212 return ConcurrentSkipListSubMap.this.isEmpty();
3213 }
3214 public boolean contains(Object k) {
3215 return ConcurrentSkipListSubMap.this.containsKey(k);
3216 }
3217 public Object[] toArray() {
3218 Collection<K> c = new ArrayList<K>();
3219 for (Iterator<K> i = iterator(); i.hasNext(); )
3220 c.add(i.next());
3221 return c.toArray();
3222 }
3223 public <T> T[] toArray(T[] a) {
3224 Collection<K> c = new ArrayList<K>();
3225 for (Iterator<K> i = iterator(); i.hasNext(); )
3226 c.add(i.next());
3227 return c.toArray(a);
3228 }
3229 }
3230
3231 public Set<K> descendingKeySet() {
3232 Set<K> ks = descendingKeySetView;
3233 return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3234 }
3235
3236 class DescendingKeySetView extends KeySetView {
3237 public Iterator<K> iterator() {
3238 return m.descendingSubMapKeyIterator(least, fence);
3239 }
3240 }
3241
3242 public Collection<V> values() {
3243 Collection<V> vs = valuesView;
3244 return (vs != null) ? vs : (valuesView = new ValuesView());
3245 }
3246
3247 class ValuesView extends AbstractCollection<V> {
3248 public Iterator<V> iterator() {
3249 return m.subMapValueIterator(least, fence);
3250 }
3251 public int size() {
3252 return ConcurrentSkipListSubMap.this.size();
3253 }
3254 public boolean isEmpty() {
3255 return ConcurrentSkipListSubMap.this.isEmpty();
3256 }
3257 public boolean contains(Object v) {
3258 return ConcurrentSkipListSubMap.this.containsValue(v);
3259 }
3260 public Object[] toArray() {
3261 Collection<V> c = new ArrayList<V>();
3262 for (Iterator<V> i = iterator(); i.hasNext(); )
3263 c.add(i.next());
3264 return c.toArray();
3265 }
3266 public <T> T[] toArray(T[] a) {
3267 Collection<V> c = new ArrayList<V>();
3268 for (Iterator<V> i = iterator(); i.hasNext(); )
3269 c.add(i.next());
3270 return c.toArray(a);
3271 }
3272 }
3273
3274 public Set<Map.Entry<K,V>> entrySet() {
3275 Set<Map.Entry<K,V>> es = entrySetView;
3276 return (es != null) ? es : (entrySetView = new EntrySetView());
3277 }
3278
3279 class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3280 public Iterator<Map.Entry<K,V>> iterator() {
3281 return m.subMapEntryIterator(least, fence);
3282 }
3283 public int size() {
3284 return ConcurrentSkipListSubMap.this.size();
3285 }
3286 public boolean isEmpty() {
3287 return ConcurrentSkipListSubMap.this.isEmpty();
3288 }
3289 public boolean contains(Object o) {
3290 if (!(o instanceof Map.Entry))
3291 return false;
3292 Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3293 K key = e.getKey();
3294 if (!inHalfOpenRange(key))
3295 return false;
3296 V v = m.get(key);
3297 return v != null && v.equals(e.getValue());
3298 }
3299 public boolean remove(Object o) {
3300 if (!(o instanceof Map.Entry))
3301 return false;
3302 Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3303 K key = e.getKey();
3304 if (!inHalfOpenRange(key))
3305 return false;
3306 return m.remove(key, e.getValue());
3307 }
3308 public Object[] toArray() {
3309 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3310 for (Map.Entry e : this)
3311 c.add(new AbstractMap.SimpleEntry<K,V>((K)e.getKey(), (V)e.getValue()));
3312 return c.toArray();
3313 }
3314 public <T> T[] toArray(T[] a) {
3315 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3316 for (Map.Entry e : this)
3317 c.add(new AbstractMap.SimpleEntry<K,V>((K)e.getKey(), (V)e.getValue()));
3318 return c.toArray(a);
3319 }
3320 }
3321
3322 public Set<Map.Entry<K,V>> descendingEntrySet() {
3323 Set<Map.Entry<K,V>> es = descendingEntrySetView;
3324 return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3325 }
3326
3327 class DescendingEntrySetView extends EntrySetView {
3328 public Iterator<Map.Entry<K,V>> iterator() {
3329 return m.descendingSubMapEntryIterator(least, fence);
3330 }
3331 }
3332 }
3333 }